WO2007049530A1 - Die holding assembly, fabrication object holding assembly, microfabrication apparatus and method of mounting die - Google Patents

Die holding assembly, fabrication object holding assembly, microfabrication apparatus and method of mounting die Download PDF

Info

Publication number
WO2007049530A1
WO2007049530A1 PCT/JP2006/321009 JP2006321009W WO2007049530A1 WO 2007049530 A1 WO2007049530 A1 WO 2007049530A1 JP 2006321009 W JP2006321009 W JP 2006321009W WO 2007049530 A1 WO2007049530 A1 WO 2007049530A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
workpiece
elastic member
holding
pattern
Prior art date
Application number
PCT/JP2006/321009
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Kusuura
Hitoshi Tambo
Original Assignee
Scivax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax Corporation filed Critical Scivax Corporation
Priority to JP2007542551A priority Critical patent/JPWO2007049530A1/en
Publication of WO2007049530A1 publication Critical patent/WO2007049530A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to a mold holder, a workpiece holder, a microfabrication apparatus, and a mold attachment method that can transfer a pattern of a mold uniformly and at high speed.
  • LSI Large Scale Integrated Circuit
  • photolithography a technique called “photolithography” is generally used.
  • the size of the pattern to be formed is reduced, the size of the apparatus is increased, and the cost is increased.
  • a resin melted by heating is poured into a mold heated to a temperature lower than the glass transition temperature of the resin at high speed and high pressure, and solidified while controlling the pressure.
  • Injection molding is also used.
  • the supplied resin is solidified while taking heat away from the mold, so that it is not possible to form a fine shape in which the resin does not easily penetrate into the fine pattern of the mold. It was difficult. It is also conceivable to heat the mold and wait for the resin to enter the fine pattern, and then cool and mold the mold.
  • injection molding it is necessary to pour resin into the mold at a high pressure, so a large mold that can withstand high pressure is required, and the heat capacity of the mold increases. There was a problem that it took S.
  • a mold in which the formed pattern and pattern are formed on the surface is prepared, and a mold heated to a temperature higher than the glass transition temperature is pressed against a resin held at a temperature lower than the glass transition temperature. Then, the resin surface melts and flows, and the pattern of the mold is transferred to the resin. Next, the mold is cooled to solidify the resin, and the mold is released. Thereby, a pattern is formed in the resin.
  • This method does not require an expensive electron beam light source or optical system, and does not require a heater and a pre-heater.
  • a simple structure based on a device can be used.
  • the resin can be penetrated into the fine pattern of the mold without the problem that the resin is deprived of heat and solidified.
  • the temperature can be raised and lowered at high speed, and there is no throughput problem.
  • microchips and microchips such as optical devices such as diffraction gratings, photonic crystals, and waveguides, and fluid devices such as macrochannels and reactors are used. A situation where devices can also be manufactured is being realized.
  • an elastic member such as silicon rubber is disposed between a press body made of a rigid body and a mold, and the mold is formed so as to follow the fine waviness and unevenness of the substrate. Yes (for example, see Patent Document 2).
  • Patent Document 1 US Pat. No. 5772905 (4th paragraph, lines 46-47)
  • Patent Document 2 JP-A-8-6027 (Page 3, Figure 1)
  • the thickness of the elastic member is such that the swell size of the mold or the substrate (processing object), the Young's modulus of the elastic member, the mold and the substrate (processing object). It was not formed in consideration of the level of pressure during pressurization, and was still insufficient to accurately transfer the pattern of the mold to the substrate.
  • the elastic member is thicker than necessary or the elastic member is made of a material having low thermal conductivity such as silicon rubber, the heating means or cooling means provided on the press substrate side may be used.
  • the speed of raising and lowering the mold is very slow, which hinders throughput.
  • the present invention provides a mold holder, a workpiece holder, a microfabrication apparatus, and a mold attachment method capable of uniformly and rapidly transferring a pattern of a mold or a substrate (object to be processed). Objective.
  • a mold holder presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold onto the workpiece.
  • the mold holder is configured to hold the mold, and is disposed between the mold holding base made of a rigid body and the mold holding base and the mold, and the thickness satisfies the following formula (1): And an elastic member.
  • The size of the swell of at least one of the mold and the workpiece a: “Difference between maximum pressure and minimum pressure” with respect to the “average pressure” in the contact surface between the mold and the workpiece Ratio
  • the thickness t of the elastic member is preferably formed so as to satisfy the following formula (2).
  • the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
  • another mold holder of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
  • a mold holding base made of a rigid body, disposed between the mold holding base and the mold, and having a thermal conductivity of 0.17 (W / m'K) or more.
  • the elastic member is made of a rubber-based adhesive. More preferably, the rubber-based adhesive is a processing temperature at which the mold and the workpiece are pressed. It is better to lose adhesion at higher temperatures.
  • the elastic member may be formed to have a magnetic force. In this case, the mold holding base can be formed to include a magnet.
  • the elastic member may have a groove for vacuum-sucking the mold.
  • the micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, and is a mold made of a rigid body.
  • a mold holding unit that holds the mold and includes a holding base and an elastic member that is disposed between the mold holding base and the mold and has a thickness that satisfies the following formula (3): It is characterized by having a tool.
  • The size of the swell of at least one of the mold and the workpiece a: “Difference between maximum pressure and minimum pressure” with respect to the “average pressure” in the contact surface between the mold and the workpiece Ratio
  • the thickness t of the elastic member is preferably formed so as to satisfy the following formula (4).
  • the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
  • another micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
  • a mold holding base made of a rigid body, and an elastic member disposed between the mold holding base and the mold and having a thermal conductivity of 0.17 (WZm'K) or more. It is characterized by comprising a mold holder for holding the mold.
  • the processing object holder according to the present invention is the above-described processing target in a micromachining apparatus that presses a mold having a predetermined pattern and the processing object to transfer the pattern of the mold to the processing object.
  • a workpiece holding tool for holding a workpiece, which is disposed between a workpiece holding substrate made of a rigid body, the workpiece holding substrate and the workpiece, and a thickness t is expressed by the following formula: (5) an elastic member formed so as to satisfy
  • the thickness t of the elastic member is preferably formed so as to satisfy the following formula (6).
  • the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
  • another processing object holder is a micro-processing apparatus that presses a mold having a predetermined pattern and a processing object to transfer the pattern of the mold to the processing object.
  • the elastic member is made of a rubber-based adhesive. More preferably, the rubber-based adhesive is a processing temperature at which the mold and the workpiece are pressed. It is better to lose adhesion at higher temperatures.
  • the elastic member may be provided with a groove for vacuum-sucking the workpiece.
  • the micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, and is a machining made of a rigid body.
  • a workpiece holding tool for holding the workpiece is provided.
  • the thickness t of the elastic member is preferably formed so as to satisfy the following formula (8).
  • the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
  • another micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
  • a workpiece holding base made of a rigid body and an elastic member having a thermal conductivity of 0.17 (W / m'K) or more and disposed between the workpiece holding base and the workpiece.
  • a workpiece holding tool for holding the workpiece.
  • the mold attachment method of the present invention is a method for holding a mold in a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
  • the rubber-based adhesive loses adhesiveness at a temperature higher than the processing temperature when pressing the mold and the workpiece.
  • the thickness of the elastic member is set to be equal to that of the mold and the workpiece. Is formed as thin as possible with a thickness that can make the pressure between them uniform, so that the mold or workpiece can be heated quickly and throughput can be improved.
  • the elastic member is formed of a rubber-based adhesive
  • the mold holder and the mold can be reliably held without a gap. Can be heated quickly to improve the throughput. Moreover, the mold can be easily attached to the mold holder.
  • the mold having a ferromagnetic force can be easily attached by applying a magnetic force to the mold holder.
  • the rubber adhesive loses adhesiveness at a temperature higher than the processing temperature when pressing the mold and the object to be processed.
  • the mold and the elastic member can be easily removed by heating.
  • FIG. 1 is a front view showing a microfabrication apparatus of the present invention.
  • FIG. 2 is a perspective view showing a mold holder of the present invention.
  • FIG. 3 is a front view for explaining the thickness of the elastic member according to the present invention.
  • FIG. 4 is a plan view showing another mold holder of the present invention.
  • FIG. 5 is a cross-sectional view of the mold holder as seen from the direction of the arrow 1_1 in FIG.
  • FIG. 6 is a plan view showing a processing object holder of the present invention.
  • FIG. 7 is a photograph of the thin film of Example 1.
  • FIG. 8 is a photograph of the thin film of Comparative Example 1.
  • FIG. 9 is a photograph of the thin film of Comparative Example 2.
  • the microfabrication apparatus 1 of the present invention presses a mold 100 having a predetermined pattern and a workpiece 200 to transfer the pattern of the mold 100 to the cache object 200.
  • the relative position of the mold 100 with respect to the workpiece 200 and the position of the mold holder 2 for holding the mold 100, the workpiece holder 12 for holding the workpiece 200, and the position thereof Displacement means 5 capable of adjusting the displacement speed to change the position, position detection means 7 for detecting the relative position of the mold 100 with respect to the workpiece 200, and the pressure between the mold 100 and the workpiece 200 are detected.
  • the pressure detecting means 8, the mold heating means 3 for heating the mold 100, the mold cooling means 4 for cooling the mold 100, the mold temperature detecting means 31 for detecting the temperature of the mold 100, and the workpiece 200 are heated.
  • Heating object heating means 13, Heating object cooling means 14 for cooling the heating object 200, and processing Based on the detection information of the processing object temperature detection means 131 for detecting the temperature of the object 200, the position detection means 7, the pressure detection means 8, the mold temperature detection means 31 and the processing object temperature detection means 131, the displacement means 5, a mold heating means 3, a mold cooling means 4, a heating object heating means 13 and a control means 300 for controlling the operation of the workpiece cooling means 14.
  • the mold holder 2 includes a mold holding base 21 made of a rigid body, and the mold holding base 2 1 and an elastic member 22 disposed between the mold 100 and the mold 100.
  • the mold holding base 21 is formed of a material having high rigidity, for example, a metal such as Nikkenore or stainless steel. Further, the mold holding base 21 is formed with a flat surface on the side holding the mold 100. It is preferable that the flatness of this surface is formed as high as possible, for example, 1 zm or less, preferably lOOnm or less, more preferably 10 nm or less, and even more preferably lnm or less. Note that the mold holding base 21 can of course be formed in a curved surface or a roll shape on the side on which the mold 100 is held.
  • the elastic member 22 is a flat sheet disposed between the mold holding base 21 and the mold 100, and when the mold 100 and the workpiece 200 are pressed, the mold 100 and the workpiece It is intended to absorb the fine swells and irregularities of the object 200. Therefore, the elastic member 22 needs to be formed with a thickness that absorbs fine waviness and unevenness of the mold 100 or the workpiece 200 and realizes a uniform stress distribution.
  • the Young's modulus of the elastic member 22 is E
  • the thickness of the elastic member 22 is t
  • the workpiece 200 is
  • the swell size (flatness) is ⁇
  • the average pressure between the mold 100 and the workpiece 200 is ⁇
  • the maximum deformation amount in the pressing direction of the elastic member 22 is At and the pressure at that time is ⁇ (Fig.
  • the equation (12) is transformed to the thickness t of the elastic member 22 and deformed.
  • the size (flatness) of the waviness of the workpiece 200 is
  • the swell size (flatness) of the mold 100 is larger than the swell size (flatness) of the workpiece 200. Degree) is good even if ⁇ .
  • a value obtained by combining the swell size (flatness) of the workpiece 200 and the swell size (flatness) of the mold 100 may be set as I.
  • the pressure ( ⁇ ) at which the material adheres and cannot be peeled is the upper limit of the pressure, and the processing temperature max
  • the storage modulus of the molding material obtained from rheological data analysis in other words, the minimum pressure ( ⁇ ) at which the pattern can be transferred to the molding material is set to the lower limit of pressure and mm.
  • ⁇ actually used depends on the accuracy desired, but is preferably 100 or less, preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less. 1 or less is good tool more preferably 1 X 10_ 2 or less good tool more preferably 1 X 10_ 3 or less is good.
  • the lower limit a range that can be industrially management, preferably in IX 10_ 6 or more.
  • the mold 100 has the elastic member 22 (the mold holder 2) attached thereto by the mold heating means 3 or the mold cooling means 4. Therefore, if the thickness of the elastic member 22 is too large, the temperature raising / lowering rate (throughput) decreases. Therefore, the thickness t of the elastic member 22 is at least the following formula (15).
  • the thermal conductivity of the elastic member 22 is formed to be 0.17 (W / mK) or more, preferably 0.2 (W / m * K) or more, more preferably 0.3 (W / mK). / m'K) or better, more preferably l (W / m'K) or better, more preferably 2 (W / mK) or better, more preferably 4 (W / m ⁇ K) or better.
  • the heat resistance temperature of the elastic member 22 must be at least the glass transition temperature (Tg) or higher, preferably the glass transition temperature. + 20 ° C (Tg + 20 ° C) or better, more preferably glass transition temperature + 40 ° C (Tg + 40 ° C) or better, more preferably glass transition temperature It should be formed at + 60 ° C (Tg + 60 ° C) or higher.
  • the heat resistance temperature of the elastic member 22 is set to 138 ° C or higher.
  • it is formed at 158 ° C or higher, more preferably 178 ° C or higher, and more preferably 198 ° C or higher.
  • elastic members 22 having such thermal conductivity and heat-resistant temperature.
  • fluorinated rubber perfluoroelastomer
  • nitrile rubber urethane rubber
  • chloroprene rubber butinole rubber
  • styrene rubber natural rubber
  • ethylene propylene rubber foaming resin such as acrylic foam, etc.
  • boron nitride (BN) silicon nitride (Si N), nitride
  • the elastic member 22 may use a rubber-based adhesive so that the mold 100 can be securely held on the mold holding base 21.
  • a rubber adhesive may be applied to at least one of the mold holding base 21 and the mold 100, and the mold holding base 21 and the mold 100 may be bonded together. Accordingly, the mold holding base 21 and the mold 100 can be reliably held without a gap, so that the heat transfer rate from the mold heating means 3 to the mold 100 can be improved. This effect becomes more remarkable in the imprint process under a vacuum atmosphere. Further, it is preferable that this rubber-based adhesive loses its adhesiveness at a temperature higher than the processing temperature when pressing the mold 100 and the workpiece 200.
  • the mold 100 and the elastic member 22 can be easily removed from the mold holding base 21 by heating the elastic member 22 to a temperature at which the adhesiveness is lost (hereinafter referred to as the peeling temperature).
  • a rubber-based adhesive an acrylic adhesive that is a thermoplastic resin, such as siloquinone AP (manufactured by Gyltech Co., Ltd.), siloxane TP (manufactured by Gieltech Co., Ltd.), or the like can be used.
  • siloquinone AP manufactured by Gyltech Co., Ltd.
  • siloxane TP manufactured by Gieltech Co., Ltd.
  • the present invention is not limited to these.
  • the mold holder 2 may be formed so as to include a vacuum chuck capable of adsorbing the mold 100 so that the mold 100 can be easily removed.
  • the elastic member 22 is formed with a vacuum suction groove 23 and a suction port 25 connected to a suction path 24 formed in the mold holding base 21.
  • the suction path 24 of the mold holding base 21 is connected to gas suction means 26 such as a vacuum pump.
  • the groove 23 is formed outside the surface on which the pattern of the mold is formed (pattern surface 100a), and is sized to adsorb the portion outside the area occupied by the pattern formed on the mold. .
  • the elastic member 22 also functions as a seal.
  • the mold 100 can be reliably adsorbed and held.
  • the mold holder 2 can also be formed so as to have a magnetic force capable of attracting and holding a mold (mold 100) made of a ferromagnetic material.
  • a magnet material having a Curie point equal to or higher than the processing temperature in the imprint process.
  • the magnet may be formed as a permanent magnet or an electromagnet, and all or part of the elastic member 22 or the mold holding base 22 may be formed as a magnet.
  • the mold 100 is made of, for example, "metal such as nickel”, “ceramics”, “carbon material such as glassy carbon”, “silicon”, or the like, and has a predetermined surface on one end surface (pattern surface 100a). Pattern is formed. This pattern can be formed by applying precision mechanical processing to the pattern surface 100a. In addition, after a predetermined pattern is formed on a silicon substrate or the like, which is the master of the mold 100, by a semiconductor micromachining technique such as etching, an electric fabrication (elect mouth forming) method such as a nickel plating method is performed on the surface of the silicon substrate. Thus, the metal plating can be applied, and the metal plating layer can be peeled off to form a pattern.
  • the material and manufacturing method of the mold 100 are not particularly limited as long as a fine pattern can be formed.
  • the width of this pattern depends on the type of workpiece 200 used, but is 100 ⁇ or less, 10 ⁇ or less, 2 / im or less, 1 / im or less It is formed in various sizes such as lOOnm or less, 10nm or less.
  • the depth of this pattern (vertical dimension of the workpiece 200) is 10 nm or more, 100 ⁇ m or more, 200 nm or more, 500 or more, ⁇ ⁇ ⁇ or more, ⁇ ⁇ ⁇ or more, ⁇ ⁇ ⁇ or more, etc. Formed in various sizes.
  • there are various aspect ratios of this pattern such as 0.2 or more, 0.5 or more, 1 or more, 2 or more.
  • the mold 100 when the mold 100 is pressed against the workpiece 100, the mold 100 has a thickness that can deform the undulations and irregularities of the mold 100 or the workpiece 200 toward the elastic member 22 side, for example, 0.001 to 2 mm. It is formed.
  • the mold 100 since the mold 100 is heated and cooled during the imprint process, it is preferable to make the mold 100 as thin as possible and reduce its heat capacity.
  • the mold heating means 3 is provided on the side facing the mold 100 with respect to the mold holder 2, and for example, a carbon heater having very good responsiveness is used.
  • a single-bon heater (die heating means 3) is controlled by a control means 300 from a power source (not shown). Supply is controlled and mold 100 can be maintained at a predetermined constant temperature.
  • a heat transfer heater, ceramic heater, halogen heater, or IH heater can be used as the heater.
  • the mold cooling means 4 is provided on the side facing the mold 100 with respect to the mold holder 2, and is formed of a metal having high thermal conductivity such as aluminum or copper, for example.
  • a cooling flow path capable of cooling the mold 100 can be used by flowing a cooling liquid such as water or oil, or a cooling gas such as air or inert gas inside the container.
  • the mold holder 2 is provided with a mold temperature detecting means 31 for detecting the temperature of the mold 100, for example, a thermocouple.
  • the mold temperature detecting means 31 is electrically connected to the control means 300 and is formed so as to transmit the detected information on the temperature of the mold 100 to the control means 300.
  • the workpiece holder 12 includes a rigid workpiece holding base 121 and an elastic member disposed between the workpiece holding base 121 and the workpiece 200. It is composed of member 122.
  • the workpiece holding base 121 is made of a highly rigid material, for example, a metal such as nickel or stainless steel. Further, the workpiece holding base 121 has a flat surface on the side holding the workpiece 200. It is preferable that the flatness of this surface is formed as high as possible, for example, 1 ⁇ or less, preferably lOOnm or less, more preferably 10 nm or less, and even more preferably lnm or less. Of course, the workpiece holding base 121 can be formed in a roll shape. Of course, the workpiece holding base 121 can be formed in a curved surface or a roll shape on the side on which the workpiece 200 is held.
  • the elastic member 122 is a flat sheet disposed between the workpiece holding base 121 and the workpiece 200, and when the die 100 and the workpiece 200 are pressed, Absorbs the fine swells and irregularities of 100 and 200 Caloe objects. Therefore, the elastic member 122 needs to be formed with a thickness that absorbs fine waviness and unevenness of the mold 100 or the workpiece 200 and realizes a uniform stress distribution.
  • the Young's modulus of the elastic member 122 is E
  • the thickness of the elastic member 122 is t
  • the workpiece 200 And the average pressure between the mold 100 and the workpiece 200 is ⁇
  • the ratio of ⁇ ⁇ to the average pressure ⁇ is less than or equal to the predetermined value / 3 (/ 3 is the mold 100 and the Caloe object 200
  • the equation (20) is transformed to the thickness t of the elastic member 122 and deformed.
  • the thickness t of the elastic member 122 is formed so as to satisfy at least Formula (21).
  • the swell size of the mold 100 is larger than the force S with the swell size (flatness) of the workpiece 200 as I; the force S and the swell size (flatness) of the workpiece 200 (flatness).
  • the swell size (flatness) of the mold 100 may be ⁇ .
  • a value obtained by combining the swell size (flatness) of the workpiece 200 and the swell size (flatness) of the mold 100 may be used.
  • the pressure ( ⁇ ) at which the material adheres and cannot be peeled is the upper limit of the pressure, and the processing temperature max
  • the storage modulus of the molding material obtained from rheological data analysis in other words, the minimum pressure ( ⁇ ) at which the pattern can be transferred to the molding material is set to the lower limit of pressure and mm.
  • ⁇ actually used depends on the desired accuracy, but is preferably 100 or less, preferably 20 or less, more preferably 10 or less, even more preferably 5 or less, and even more preferably 1 the following is a good tool and more preferably 1 X 10_ 2 or less good tool more preferably 1 X 10_ 3 or less is good.
  • the lower limit a range that can be industrially management, preferably in IX 10_ 6 or more.
  • the workpiece 200 is heated and cooled by the workpiece heating means 13 or the workpiece cooling means 14 via the elastic member 122 (workpiece holder 12). If the thickness of 122 is too large, the heating / cooling speed (throughput) will decrease. Therefore, it is preferable that the thickness t of the elastic member 122 be formed to a size satisfying at least the following formula (21).
  • the thermal conductivity of the elastic member 122 is 0.17 (W / m- K) or better, preferably 0.2 (W / m * K) or better, more preferably 0.3 (W / m'K) or better, more preferably l ( W / m'K) or better, more preferably 2 (W / m ⁇ K) or better, more preferably 4 (W / m ⁇ K) or better.
  • the elastic member 122 is disposed between the workpiece heating means 13 and the workpiece 200 to be heated, it is necessary to have heat resistance at least equal to or higher than the processing temperature in the imprint process.
  • the heat resistance temperature of the elastic member 122 needs to be at least equal to or higher than the glass transition temperature (Tg), preferably the glass transition temperature. + 20 ° C (Tg + 20 ° C) or better, more preferably glass transition temperature + 40 ° C (Tg + 40 ° C) or better, more preferably glass transition It should be formed at a temperature higher than + 60 ° C (Tg + 60 ° C).
  • the heat resistance temperature of the elastic member 122 is 138 ° C or higher.
  • it is formed at 158 ° C or higher, more preferably 178 ° C or higher, and more preferably 198 ° C or higher.
  • elastic members 122 having such thermal conductivity and heat-resistant temperature, and force that can be freely selected, for example, fluorine-based rubber (perfluoroelastomer), nitrile rubber, urethane, etc. Rubber, chloroprene rubber, butyl rubber, styrene rubber, natural rubber, ethylene propylene rubber, foaming resins such as acrylic foam, and the like can be used.
  • fluorine-based rubber perfluoroelastomer
  • Rubber chloroprene rubber, butyl rubber, styrene rubber, natural rubber, ethylene propylene rubber, foaming resins such as acrylic foam, and the like
  • foaming resins such as acrylic foam, and the like
  • the elastic member 122 may use a rubber adhesive so as to be securely held by the workpiece holding base 121.
  • the workpiece holding base 121 and the elastic member 122 can be formed without gaps, so that the heat transfer rate from the workpiece heating means 13 to the workpiece 200 can be improved. This effect becomes more remarkable in the imprint process under a vacuum atmosphere.
  • this rubber-based adhesive It is preferable that the adhesive loses its adhesiveness at a temperature higher than the processing temperature when pressing the object 200. This is because the elastic member 122 can be easily detached from the workpiece holding base 121 by heating the elastic member 122 to a temperature at which the adhesiveness is lost (hereinafter referred to as a peeling temperature).
  • an acrylic adhesive which is a thermoplastic resin such as siloquinone AP (manufactured by Gyltech Co., Ltd.) or siloquinone TP (manufactured by Gyltech Co., Ltd.) can be used.
  • siloquinone AP manufactured by Gyltech Co., Ltd.
  • siloquinone TP manufactured by Gyltech Co., Ltd.
  • Various objects can be used as the processing object 200.
  • resins such as polycarbonate and polyimide
  • metals such as aluminum, glass, quartz glass, silicon, gallium arsenide, sapphire, and magnesium oxide
  • a material in which the molding material is in the shape of a substrate as it is can be used.
  • the surface of the substrate body made of silicon, glass, etc., with a coating layer such as “resin”, “photoresist”, or “metal such as aluminum, gold, or silver for forming the wiring pattern” It can also be used.
  • the object to be processed 200 may of course have a shape other than the substrate, such as a film.
  • the workpiece holder 12 may be formed to include a vacuum chuck capable of attracting the workpiece 200 so that the workpiece 200 can be easily removed.
  • the elastic member 122 is formed with a vacuum suction groove 123 and a suction port 125 connected to a suction path formed in the workpiece holding base 121.
  • the suction path of the workpiece holding base 121 is connected to gas suction means such as a vacuum pump.
  • the elastic member 122 also serves as a seal, and the force S that reliably holds the workpiece 200 by suction can be achieved.
  • a workpiece heating means 13 for heating the workpiece 200 to be held for example, a very responsive carbon heater is provided below the holding stage.
  • the carbon heater is controlled by the control means 300 to supply a current from a power source (not shown), and can maintain the workpiece 200 on the holding stage at a predetermined constant temperature.
  • a power source not shown
  • the heater for example, a heat transfer heater, a ceramic heater, a halogen heater, an IH heater, or the like can be used.
  • the workpiece holder 12 can be provided with a workpiece cooling means 14 for cooling the workpiece 200.
  • the workpiece cooling means 14 includes, for example, a coolant such as water or oil, air or an inert gas in the inside of the cage holder 12 formed of a metal having high thermal conductivity such as aluminum or copper.
  • a cooling flow path capable of cooling the workpiece 200 can be used by flowing a cooling gas such as.
  • the workpiece holder 12 is provided with an object temperature detector 131 for detecting the temperature of the workpiece 200, for example, a thermocouple. Further, the workpiece temperature detection means 131 is electrically connected to the control means 300 and is configured to transmit information regarding the detected temperature of the workpiece 200 to the control means 300.
  • the displacing means 5 includes, for example, a ball screw 51 arranged in the vertical direction and an electric motor 52 that rotationally drives the ball screw 51. Further, the lower end portion of the ball screw 51 and the upper surface of the mold holder 2 are connected via a pressing portion 53 and a bearing mechanism 54. Then, by rotating the ball screw 51 with the electric motor 52, the pressing portion 53 is placed on the mold 100 and the workpiece 200 against a plurality of, for example, four columns 56 provided between the base 50 and the upper base 55. Can be displaced in the direction of contact / separation (hereinafter referred to as the Z direction).
  • the Z direction the direction of contact / separation
  • the displacing means 5 can adjust the position of the mold 100 relative to the workpiece 200 by a displacement amount not more than the depth of the pattern of the mold 100. Specifically, it is preferable that the amount of displacement can be adjusted to 100 ⁇ or less, preferably 10 / im or less, more preferably 1 / im or less, more preferably lOOnm or less, more preferably 10 nm or less, More preferably, one that can be adjusted to 1 nm or less is preferred.
  • the displacement means 5 is capable of adjusting the displacement speed of the mold 100 with respect to the workpiece 200. Specifically, those that can be adjusted at 100 xm / sec or less are preferable, preferably 10 z mZ seconds or less, more preferably seconds or less, more preferably lOOnmZ seconds or less, more preferably 1 OnmZ seconds or less, more preferably lnm. Things that can be adjusted in less than / second are good. This is because the control means 300 detects the displacement based on the information detected by the pressure detection means 8. The force that controls the operation of stage 5 and adjusts the pressure between the mold 100 and the workpiece 200 It takes some time to feed back the information detected by the pressure detection means 8 to the displacement means 5. . Therefore, if the displacement speed is too high, feedback of the information detected by the pressure detection means 8 to the displacement means 5 is delayed, and the actual pressure between the mold 100 and the workpiece 200 can be accurately controlled. Because it disappears.
  • the displacement means 5 is not limited to a ball screw and an electric motor as long as the relative displacement amount and displacement speed between the mold 100 and the workpiece 200 can be adjusted. It is also possible to use a piezoelectric element that can change the size (dimension) by adjusting, and a magnetostrictive element that can change the size (dimension) by adjusting the magnetic field. Of course, it is possible to use both a ball screw and an electric motor and a piezoelectric element or a magnetostrictive element.
  • a ball screw and an electric motor are applied when the mold 100 and the workpiece 200 are largely displaced, and a piezoelectric element or a magnetostrictive element is used when the mold 100 and the workpiece 200 are displaced by a small amount.
  • a piezoelectric element or a magnetostrictive element is used when the mold 100 and the workpiece 200 are displaced by a small amount.
  • the mold holder 2 that holds the mold 100 is moved up and down, and the pattern surface of the mold 100 is moved with respect to the workpiece 200 that is held by the workpiece holder 12.
  • 100a can be closely approached, pressed and separated.
  • the position detecting means 7 is formed by a linear scale arranged on the mold holder 2, for example. Using this linear scale, the distance between the workpiece 200 and the mold holder 2 is measured, and the value force is also detected by calculating the relative position and displacement speed of the mold 100 with respect to the workpiece 200. Power S can be. Further, the position detection means 7 is electrically connected to the control means 300, and is formed so as to transmit information on the detected position and displacement speed of the mold 100.
  • the position detection means 7 is not limited to a linear scale, and various types can be used. For example, the position of the workpiece 200 can be determined using a laser length measuring device provided on the mold holder 2 side.
  • the resolution of the position detection means 7 is preferably one that can be detected with a value that is at least the size of the pattern of the mold 100 in the depth direction (Z direction) or less than the amount of displacement that the displacement means 5 can adjust.
  • those that can be detected at 100 zm or less are preferable, preferably 10 zm or less, more preferably 1 ⁇ or less, more preferably lOOnm or less, more preferably 10 nm or less, more preferably lnm or less.
  • Those that can be detected by are preferable.
  • the position detecting means 7 By configuring the position detecting means 7 in this way, the position of the pattern surface 100a of the mold 100 relative to the workpiece 200 according to the size of the pattern and the pressure between the mold 100 and the workpiece 200. Can be precisely adjusted, so that the pattern transferability and releasability can be improved.
  • the pressure detecting means 8 detects the pressure between the mold 100 and the workpiece 200.
  • a load cell that measures the load between the mold 100 and the workpiece 200 may be used. it can. As a result, if the load is measured and divided by the area of the pattern surface 100a of the mold 100, the pressure between the mold 100 and the workpiece 200 can be detected. Further, the pressure detection means 8 is electrically connected to the control means 300, and is configured to transmit information on the detected pressure.
  • the control means 300 is based on the displacement means 5, the pressing means 6, and the mold heating.
  • a computer can be used for controlling the operation of the means 3, the mold cooling means 4, the workpiece heating means 13, and the workpiece cooling means 14, for example.
  • Imprinting is performed by using SCIVAX imprinting equipment (VX-2000N-US), heating the mold and workpiece to 145 ° C, and pressing at 2.5 MPa for 10 seconds. went.
  • the mold is made of nickel with a pattern that allows the honeycomb structure to be transferred to the workpiece (a pattern in which the honeycomb structure is reversed) when transferred to the workpiece, and the transferable area is 50mm x 50mm ( (The outer shape of the mold is 55mm x 55mm): Mold with a square area of 2500mm 2 Was used.
  • the honeycomb structure has a line width of 250 nm, a line height of 380 nm (aspect ratio of about 1.5), and a single cell (hexagon) with a maximum inner diameter of 2 ⁇ (that is, a maximum outer diameter including the line width). 2.5 ⁇ ) was used.
  • a sheet-like elastic member made of polyimide having a thickness satisfying the formula (13) was disposed between the mold holding base and the mold (Example 1).
  • the size of the waviness ( ⁇ 2) was about 2.4 ⁇ m (2.4 ⁇ 10 6 m).
  • Equation (14) Substituting into Equation (14) as the IMPa of the theoretical value derived from the max mm logic data,
  • a sheet-like elastic member made of polyetherimide having a thickness of 200 ⁇ that does not satisfy the formula (13) is arranged (Comparative Example 1) and an elastic member that does not use an elastic member (ratio) Comparative Example 2) was also evaluated for imprints.
  • FIGS. 7 to 9 show photographs of the thin film on the silicon substrate after the transfer, respectively.
  • the pattern of the mold is almost 100% transferred (see FIG. 7). In contrast, only about 40% of the mold pattern was transferred to the thin film of Comparative Example 1 (see Fig. 8). See). In the thin film of Comparative Example 2, most of the pattern of the mold was not transferred except for the outer peripheral portion (see FIG. 9).
  • a pattern of a mold or a substrate (processing object) can be transferred uniformly and at high speed.

Abstract

A die holding assembly for, in a microfabrication apparatus capable of applying pressure to die (100) with given pattern and fabrication object (200) to thereby transfer the pattern of the die to the fabrication object (200), holding the die (100), characterized in that the die holding assembly includes die holding substratum (21) of a rigid material and elastic member (22) interposed between the die holding substratum (21) and the die (100) and formed so as to have thickness (t1) satisfying the formula: (1) t1: THICKNESS OF ELASTIC MEMBER (22), λ1: EXTENT OF SWELL OF AT LEAST EITHER DIE (100) OR FABRICATION OBJECT (200), α: RATIO OF “DIFFERENCE OF MAX. PRESSURE MINUS MIN. PRESSURE” TO “AVE. PRESSURE” WITHIN PLANE OF CONTACT OF DIE (100) WITH FABRICATION OBJECT (200), E1: YOUNG’S MODULUS OF ELASTIC MEMBER (22), AND σ1: AVE. PRESSURE BETWEEN DIE (100) AND FABRICATION OBJECT (200).

Description

明 細 書  Specification
型保持具、加工対象物保持具、微細加工装置および型取付方法 技術分野  Technical field of mold holders, workpiece holders, microfabrication devices and mold mounting methods
[0001] この発明は、型のパターンを均一かつ高速に転写可能な型保持具、加工対象物保 持具、微細加工装置および型取付方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a mold holder, a workpiece holder, a microfabrication apparatus, and a mold attachment method that can transfer a pattern of a mold uniformly and at high speed.
背景技術  Background art
[0002] LSI (大規模集積回路)に代表される微細回路パターンを半導体基板 (以下、単に基 板と称する)上に形成するには、フォトリソグラフィ一と呼ばれる技術が一般に用いられ ている。し力 ながら、この方法では、形成するパターンの微細化にともなレ、、装置の 大型化やコストの増大を招レ、てレ、た。  In order to form a fine circuit pattern typified by LSI (Large Scale Integrated Circuit) on a semiconductor substrate (hereinafter simply referred to as “substrate”), a technique called “photolithography” is generally used. However, in this method, the size of the pattern to be formed is reduced, the size of the apparatus is increased, and the cost is increased.
[0003] また、微細な成型物を得るために、加熱されて溶融した樹脂を、この樹脂のガラス 転移温度以下に加熱された金型に高速 ·高圧で流し込み、圧力をコントロールしなが ら凝固させて成型する射出成型も用いられている。し力しながら、この方法では、供 給された樹脂が金型に熱を奪われながら凝固するため、金型の微細なパターンの中 に樹脂が侵入し難ぐ微細な形状を形成することは困難であった。また、金型を加熱 し、微細なパターン内に樹脂が侵入するのを待った後、金型を冷却し成型することも 考えられる。し力、しながら、射出成型では、金型に樹脂を高圧で流し込む必要がある ため、高圧に耐えられる大きな金型が必要であり、金型の熱容量が大きくなる結果、 加熱 ·冷却に時間力 Sかかるという問題があった。  [0003] In addition, in order to obtain a fine molded product, a resin melted by heating is poured into a mold heated to a temperature lower than the glass transition temperature of the resin at high speed and high pressure, and solidified while controlling the pressure. Injection molding is also used. However, in this method, the supplied resin is solidified while taking heat away from the mold, so that it is not possible to form a fine shape in which the resin does not easily penetrate into the fine pattern of the mold. It was difficult. It is also conceivable to heat the mold and wait for the resin to enter the fine pattern, and then cool and mold the mold. However, in injection molding, it is necessary to pour resin into the mold at a high pressure, so a large mold that can withstand high pressure is required, and the heat capacity of the mold increases. There was a problem that it took S.
[0004] 近年、上記問題を解決するものとして、超微細なパターンを基板上に形成するナノ インプリンティングプロセス技術が注目されてレ、る(例えば、特許文献 1参照)。このプ ロセスは、例えば以下の手順で行われる。  [0004] In recent years, as a solution to the above problems, nanoimprinting process technology for forming ultrafine patterns on a substrate has been attracting attention (for example, see Patent Document 1). This process is performed, for example, according to the following procedure.
[0005] まず、形成したレ、パターンが表面に作りこまれた型を準備し、ガラス転移温度以下 の温度に保持された樹脂に、ガラス転移温度以上に加熱された型を押圧する。する と、樹脂表面が溶融、流動し、型のパターンが樹脂に転写される。次に、型を冷却し て樹脂を凝固させ、型を離型する。これにより、樹脂にパターンが形成される。  [0005] First, a mold in which the formed pattern and pattern are formed on the surface is prepared, and a mold heated to a temperature higher than the glass transition temperature is pressed against a resin held at a temperature lower than the glass transition temperature. Then, the resin surface melts and flows, and the pattern of the mold is transferred to the resin. Next, the mold is cooled to solidify the resin, and the mold is released. Thereby, a pattern is formed in the resin.
[0006] この方法では、高価な電子ビーム光源や光学系を必要とせず、加熱用ヒータとプレ ス装置を基本とした簡易な構造を用いることができる。 [0006] This method does not require an expensive electron beam light source or optical system, and does not require a heater and a pre-heater. A simple structure based on a device can be used.
[0007] また、この方法では、樹脂が型に熱を奪われて凝固するという問題もなぐ樹脂を型 の微細なパターン内に侵入させることができる。また、射出成型のような高圧に耐える 大型の金型は不要であるため、高速に昇降温が可能であり、スループットの問題は 生じない。  [0007] Further, in this method, the resin can be penetrated into the fine pattern of the mold without the problem that the resin is deprived of heat and solidified. In addition, since a large mold that can withstand high pressure, such as injection molding, is not required, the temperature can be raised and lowered at high speed, and there is no throughput problem.
[0008] 実際、ナノインプリンティングプロセス技術を用いることで、回折格子、フォトニック結 晶、導波路、等の光デバイスや、マクロチャネル、リアクター等の流体デバイスのよう な、各種のマイクロチップ、マイクロデバイスの製作も可能な状況が実現しつつある。  [0008] In fact, by using the nanoimprinting process technology, various microchips and microchips such as optical devices such as diffraction gratings, photonic crystals, and waveguides, and fluid devices such as macrochannels and reactors are used. A situation where devices can also be manufactured is being realized.
[0009] し力、しながら、型のパターンサイズが小さくなるにつれて、型や加工される基板 (樹 脂等の加工対象物)のうねり(平面度)が問題となる。なぜなら、型や基板にパターン サイズ以上の大きさのうねりがあると型と基板とを均一に加圧することができず、型の パターンを基板に正確に転写することができないからである。  [0009] However, as the pattern size of the mold becomes smaller, undulation (flatness) of the mold and the substrate to be processed (processing object such as resin) becomes a problem. This is because if the mold or the substrate has a undulation larger than the pattern size, the mold and the substrate cannot be uniformly pressed, and the pattern of the mold cannot be accurately transferred to the substrate.
[0010] これを解決するために、剛体からなるプレス基体と型との間にシリコンゴムなどの弾 性部材を配置し、型が基板の微細なうねりや凹凸に追従するように形成したものがあ る (例えば、特許文献 2参照)。  [0010] In order to solve this, an elastic member such as silicon rubber is disposed between a press body made of a rigid body and a mold, and the mold is formed so as to follow the fine waviness and unevenness of the substrate. Yes (for example, see Patent Document 2).
[0011] 特許文献 1 :米国特許第 5772905号明細書 (第 4段落第 46— 47行) [0011] Patent Document 1: US Pat. No. 5772905 (4th paragraph, lines 46-47)
特許文献 2 :特開平 8— 6027号公報 (第 3頁、図 1)  Patent Document 2: JP-A-8-6027 (Page 3, Figure 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] し力しながら、従来の転写装置は、弾性部材の厚みが型や基板 (加工対象物)のう ねりの大きさ、弾性部材のヤング率、型と基板 (加工対象物)とを加圧する際の圧力 の大きさ等を考慮して形成されておらず、型のパターンを基板に正確に転写するに は未だ不十分であった。 [0012] However, in the conventional transfer apparatus, the thickness of the elastic member is such that the swell size of the mold or the substrate (processing object), the Young's modulus of the elastic member, the mold and the substrate (processing object). It was not formed in consideration of the level of pressure during pressurization, and was still insufficient to accurately transfer the pattern of the mold to the substrate.
[0013] また、弾性部材の厚みが必要以上に大きいものや、弾性部材の材料がシリコンゴム のような熱伝導率の低いものを用いると、プレス基体側に設けられた加熱手段や冷却 手段によって型を昇降温する速度が非常に遅くなるため、スループットの妨げとなる 問題があった。 [0013] If the elastic member is thicker than necessary or the elastic member is made of a material having low thermal conductivity such as silicon rubber, the heating means or cooling means provided on the press substrate side may be used. The speed of raising and lowering the mold is very slow, which hinders throughput.
[0014] また、単に型とプレス基体との間に弾性部材を配置する方法では、型と弾性部材、 あるいは、プレス基体と弾性部材の間に隙間が生じ、型を昇降温する速度が更に遅 くなるという問題があった。これは、真空雰囲気下で型のパターンを基板に転写する 際に、より顕著な問題となる。 [0014] Further, in the method of simply disposing the elastic member between the mold and the press substrate, the mold and the elastic member, Alternatively, there is a problem that a gap is generated between the press base and the elastic member, and the speed of raising and lowering the mold is further slowed. This becomes a more prominent problem when a pattern of a mold is transferred to a substrate in a vacuum atmosphere.
[0015] そこで本発明は、型又は基板 (加工対象物)のパターンを均一かつ高速に転写可 能な型保持具、加工対象物保持具、微細加工装置および型取付方法を提供するこ とを目的とする。  Therefore, the present invention provides a mold holder, a workpiece holder, a microfabrication apparatus, and a mold attachment method capable of uniformly and rapidly transferring a pattern of a mold or a substrate (object to be processed). Objective.
課題を解決するための手段  Means for solving the problem
[0016] 上記目的を達成するために、本発明の型保持具は、所定のパターンを有する型と 加工対象物とを押圧して、前記型のパターンを前記加工対象物に転写する微細加 ェ装置において、前記型を保持する型保持具であって、剛体からなる型保持基体と 、前記型保持基体と前記型との間に配置されると共に、厚さ が下記式(1)を満たす ように形成される弾性部材と、を具備することを特徴とする。 [0016] In order to achieve the above object, a mold holder according to the present invention presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold onto the workpiece. In the apparatus, the mold holder is configured to hold the mold, and is disposed between the mold holding base made of a rigid body and the mold holding base and the mold, and the thickness satisfies the following formula (1): And an elastic member.
[0017] [数 1] t ≥^- · ·式 (1 ) t :前記弾性部材の厚さ  [0017] [Equation 1] t ≥ ^-· Equation (1) t: thickness of the elastic member
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  λ: The size of the swell of at least one of the mold and the workpiece a: “Difference between maximum pressure and minimum pressure” with respect to the “average pressure” in the contact surface between the mold and the workpiece Ratio
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
この場合、弾性部材の厚さ tは、更に下記式(2)を満たすように形成される方が好  In this case, the thickness t of the elastic member is preferably formed so as to satisfy the following formula (2).
1  1
ましい。  Good.
[0018] [数 2] ≥h≥ . …式 (2 ) [0018] [number 2] ≥ h≥. ... formula (2)
ασ1 α σ1 ασ 1 α σ 1
また、前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成される方が好ま しい。 [0019] また、本発明の別の型保持具は、所定のパターンを有する型と加工対象物とを押 圧して、前記型のパターンを前記加工対象物に転写する微細加工装置において、 前記型を保持する型保持具であって、剛体からなる型保持基体と、前記型保持基体 と前記型との間に配置されると共に、熱伝導率が 0. 17 (W/m'K)以上に形成され る弾性部材と、を具備することを特徴とする。 Further, it is preferable that the elastic member has a thermal conductivity of 0.17 (W / m′K) or more. [0019] Further, another mold holder of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece. A mold holding base made of a rigid body, disposed between the mold holding base and the mold, and having a thermal conductivity of 0.17 (W / m'K) or more. And an elastic member to be formed.
[0020] また、前記弾性部材は、ゴム系の接着剤からなる方が好ましぐ更に好ましくは、前 記ゴム系の接着剤は、前記型と前記加工対象物とを押圧する際の処理温度より高い 温度で接着性を失うものである方が良い。また、前記弾性部材は磁力を有するように 形成されていても良い。この場合、前記型保持基体は磁石を具備するように形成す ることもできる。また、前記弾性部材は、前記型を真空吸着するための溝が形成され ていても良い。  [0020] Further, it is more preferable that the elastic member is made of a rubber-based adhesive. More preferably, the rubber-based adhesive is a processing temperature at which the mold and the workpiece are pressed. It is better to lose adhesion at higher temperatures. The elastic member may be formed to have a magnetic force. In this case, the mold holding base can be formed to include a magnet. The elastic member may have a groove for vacuum-sucking the mold.
[0021] 本発明の微細加工装置は、所定のパターンを有する型と加工対象物とを押圧して 、前記型のパターンを前記加工対象物に転写する微細加工装置であって、剛体から なる型保持基体と、前記型保持基体と前記型との間に配置されると共に、厚さ が下 記式 (3)を満たすように形成される弾性部材とを有し、前記型を保持する型保持具を 具備することを特徴とする。  [0021] The micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, and is a mold made of a rigid body. A mold holding unit that holds the mold and includes a holding base and an elastic member that is disposed between the mold holding base and the mold and has a thickness that satisfies the following formula (3): It is characterized by having a tool.
[0022] [数 3] t ≥ · ·式 (3 ) t :前記弾性部材の厚さ  [0022] [Equation 3] t ≥ · · Equation (3) t: thickness of the elastic member
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  λ: The size of the swell of at least one of the mold and the workpiece a: “Difference between maximum pressure and minimum pressure” with respect to the “average pressure” in the contact surface between the mold and the workpiece Ratio
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
この場合、弾性部材の厚さ tは、更に下記式 (4)を満たすように形成される方が好  In this case, the thickness t of the elastic member is preferably formed so as to satisfy the following formula (4).
1  1
ましい。  Good.
[0023] [数 4] l^& ≥ ≥ ^. …式 (4 ) [0023] [Equation 4] l ^ & ≥ ≥ ^.… Equation ( 4)
ασ1 a σ1 また、前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成される方が好ま しい。 ασ 1 a σ 1 Further , it is preferable that the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
[0024] また、本発明の別の微細加工装置は、所定のパターンを有する型と加工対象物と を押圧して、前記型のパターンを前記加工対象物に転写する微細加工装置であって 、剛体からなる型保持基体と、前記型保持基体と前記型との間に配置されると共に、 熱伝導率が 0. 17 (WZm'K)以上に形成される弾性部材とを有し、前記型を保持 する型保持具を具備することを特徴とする。  [0024] Further, another micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece. A mold holding base made of a rigid body, and an elastic member disposed between the mold holding base and the mold and having a thermal conductivity of 0.17 (WZm'K) or more. It is characterized by comprising a mold holder for holding the mold.
[0025] 本発明の加工対象物保持具は、所定のパターンを有する型と加工対象物とを押圧 して、前記型のパターンを前記加工対象物に転写する微細加工装置において、前 記加工対象物を保持する加工対象物保持具であって、剛体からなる加工対象物保 持基体と、前記加工対象物保持基体と前記加工対象物との間に配置されると共に、 厚さ tが下記式 (5)を満たすように形成される弾性部材と、を具備することを特徴とす [0025] The processing object holder according to the present invention is the above-described processing target in a micromachining apparatus that presses a mold having a predetermined pattern and the processing object to transfer the pattern of the mold to the processing object. A workpiece holding tool for holding a workpiece, which is disposed between a workpiece holding substrate made of a rigid body, the workpiece holding substrate and the workpiece, and a thickness t is expressed by the following formula: (5) an elastic member formed so as to satisfy
2 2
る。  The
[0026] [数 5]  [0026] [Equation 5]
· ·式 (5 ) t :前記弾性部材の厚さ Equation (5) t: Thickness of the elastic member
2  2
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ  λ: The size of the undulation of at least one of the mold and the workpiece
2  2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
この場合、弾性部材の厚さ tは、更に下記式 (6)を満たすように形成される方が好  In this case, the thickness t of the elastic member is preferably formed so as to satisfy the following formula (6).
2  2
ましい。  Good.
[0027] [数 6] [0027] [Equation 6]
L2/^E2 ≥ ^ ^ · '式 ) L2 / ^ E 2 ≥ ^ ^ · ')
β σ 9 β αη また、前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成される方が好ま しい。 β σ 9 β α η Further, it is preferable that the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
[0028] また、本発明の別の加工対象物保持具は、所定のパターンを有する型と加工対象 物とを押圧して、前記型のパターンを前記加工対象物に転写する微細加工装置に おいて、前記加工対象物を保持する加工対象物保持具であって、剛体からなる加工 対象物保持基体と、前記加工対象物保持基体と前記加工対象物との間に配置され ると共に、熱伝導率が 0. 17 (W/m'K)以上に形成される弾性部材と、を具備する ことを特徴とする。  [0028] Further, another processing object holder according to the present invention is a micro-processing apparatus that presses a mold having a predetermined pattern and a processing object to transfer the pattern of the mold to the processing object. A processing object holder for holding the processing object, the processing object holding base being made of a rigid body, and being disposed between the processing object holding base and the processing object, and having heat conduction And an elastic member formed at a rate of 0.17 (W / m'K) or more.
[0029] また、前記弾性部材は、ゴム系の接着剤からなる方が好ましぐ更に好ましくは、前 記ゴム系の接着剤は、前記型と前記加工対象物とを押圧する際の処理温度より高い 温度で接着性を失うものである方が良い。また、前記弾性部材は、前記加工対象物 を真空吸着するための溝が形成されていても良い。  [0029] Further, it is more preferable that the elastic member is made of a rubber-based adhesive. More preferably, the rubber-based adhesive is a processing temperature at which the mold and the workpiece are pressed. It is better to lose adhesion at higher temperatures. The elastic member may be provided with a groove for vacuum-sucking the workpiece.
[0030] 本発明の微細加工装置は、所定のパターンを有する型と加工対象物とを押圧して 、前記型のパターンを前記加工対象物に転写する微細加工装置であって、剛体から なる加工対象物保持基体と、前記加工対象物保持基体と前記加工対象物との間に 配置されると共に、厚さ が下記式 (7)を満たすように形成される弾性部材とを有し、  [0030] The micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, and is a machining made of a rigid body. An object holding base, and an elastic member that is disposed between the processing target holding base and the processing target and has a thickness that satisfies the following formula (7):
2  2
前記加工対象物を保持する加工対象物保持具を具備することを特徴とする。  A workpiece holding tool for holding the workpiece is provided.
[0031] [数 7] [0031] [Equation 7]
· ·式 (7 ) t :前記弾性部材の厚さ Equation (7) t: Thickness of the elastic member
2  2
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ  λ: The size of the undulation of at least one of the mold and the workpiece
2  2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
この場合、弾性部材の厚さ tは、更に下記式 (8)を満たすように形成される方が好  In this case, the thickness t of the elastic member is preferably formed so as to satisfy the following formula (8).
2  2
ましい。 [0032] 園 Good. [0032] Garden
1¾¾ ≥ f2 ≥^2¾ . · '式 (8 ) 1¾¾ ≥ f2 ≥ ^ 2¾. · 'Expression (8)
β σζ β σ2 t :前記弾性部材の厚さ β σ ζ β σ 2 t: thickness of the elastic member
2  2
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ  λ: The size of the undulation of at least one of the mold and the workpiece
2  2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との接触面内の平均圧力  σ: average pressure in the contact surface between the mold and the workpiece
2  2
また、前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成される方が好ま しい。  Further, it is preferable that the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
[0033] また、本発明の別の微細加工装置は、所定のパターンを有する型と加工対象物と を押圧して、前記型のパターンを前記加工対象物に転写する微細加工装置であって 、剛体からなる加工対象物保持基体と、熱伝導率が 0. 17 (W/m'K)以上に形成さ れると共に、前記加工対象物保持基体と前記加工対象物との間に配置される弾性部 材と、を有し、前記加工対象物を保持する加工対象物保持具を具備することを特徴 とする。  [0033] Further, another micromachining apparatus of the present invention is a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece. A workpiece holding base made of a rigid body and an elastic member having a thermal conductivity of 0.17 (W / m'K) or more and disposed between the workpiece holding base and the workpiece. And a workpiece holding tool for holding the workpiece.
[0034] また、本発明の型取付方法は、所定のパターンを有する型と加工対象物とを押圧し て、前記型のパターンを前記加工対象物に転写する微細加工装置において、前記 型を保持する型保持具への型取付方法であって、ゴム系の接着剤を用いて前記型 を前記型保持具に取り付けることを特徴とする。この場合、前記ゴム系の接着剤は、 前記型と前記加工対象物とを押圧する際の処理温度より高い温度で接着性を失うも のである方が好ましい。  [0034] Further, the mold attachment method of the present invention is a method for holding a mold in a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece. A method of attaching a mold to a mold holder, wherein the mold is attached to the mold holder using a rubber adhesive. In this case, it is preferable that the rubber-based adhesive loses adhesiveness at a temperature higher than the processing temperature when pressing the mold and the workpiece.
発明の効果  The invention's effect
[0035] 請求項 1 , 9, 13, 19記載の発明によれば、弾性部材の厚さを正確に計算して形成 するので、型と加工対象物との間の圧力を均一にすることができ、正確に型のパター ンを加工対象物に転写することができる。  [0035] According to the inventions described in claims 1, 9, 13, and 19, since the thickness of the elastic member is accurately calculated, the pressure between the mold and the workpiece can be made uniform. The mold pattern can be accurately transferred to the workpiece.
[0036] 請求項 2, 10, 14, 20記載の発明によれば、弾性部材の厚さを型と加工対象物と の間の圧力を均一にすることができる厚さで、できるだけ薄く形成するので、型又は 加工対象物の加熱を速やかに行レ、、スループットの向上を図ることができる。 [0036] According to the inventions of claims 2, 10, 14, and 20, the thickness of the elastic member is set to be equal to that of the mold and the workpiece. Is formed as thin as possible with a thickness that can make the pressure between them uniform, so that the mold or workpiece can be heated quickly and throughput can be improved.
[0037] 請求項 3, 4, 11 , 12, 15, 16, 21 , 22記載の発明によれば、弾性部材の熱伝導 率を 0. 17 (W/m*K)以上に形成するので、型又は加工対象物の加熱を速やかに 行レ、、スループットの向上を図ることができる。  [0037] According to the invention described in claims 3, 4, 11, 12, 15, 16, 21, and 22, since the thermal conductivity of the elastic member is formed to be 0.17 (W / m * K) or more, The mold or workpiece can be heated quickly and the throughput can be improved.
[0038] 請求項 5, 17記載の発明によれば、弾性部材をゴム系の接着剤によって形成する ことにより、型保持具と型との間を隙間なく確実に保持することができるので、型の加 熱を速やかに行い、スループットの向上を図ることができる。また、型保持具への型の 取付を簡易に行うことができる。 [0038] According to the inventions of claims 5 and 17, since the elastic member is formed of a rubber-based adhesive, the mold holder and the mold can be reliably held without a gap. Can be heated quickly to improve the throughput. Moreover, the mold can be easily attached to the mold holder.
[0039] 請求項 6, 7記載の発明によれば、型保持具に磁力をもたせることにより、強磁性体 力 なる型の取付を簡易に行うことができる。 [0039] According to the sixth and seventh aspects of the present invention, the mold having a ferromagnetic force can be easily attached by applying a magnetic force to the mold holder.
[0040] 請求項 8, 18記載の発明によれば、弾性部材に型又は加工対象物を真空吸着す るための溝を形成するので、型保持具への型の取付又は加工対象物保持具への加 ェ対象物の保持を簡易に行うことができる。 [0040] According to the inventions of claims 8 and 18, since the groove for vacuum-sucking the mold or the workpiece is formed in the elastic member, the mold is attached to the mold holder or the workpiece holder The object to be added can be easily held.
[0041] 請求項 24, 25, 26記載の発明によれば、ゴム系の接着剤は、型と加工対象物とを 押圧する際の処理温度より高い温度で接着性を失うものであるため、加熱することに より型や弾性部材の取り外しを容易に行うことができる。 [0041] According to the invention of claims 24, 25, and 26, the rubber adhesive loses adhesiveness at a temperature higher than the processing temperature when pressing the mold and the object to be processed. The mold and the elastic member can be easily removed by heating.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明の微細加工装置を示す正面図である。  FIG. 1 is a front view showing a microfabrication apparatus of the present invention.
[図 2]本発明の型保持具を示す斜視図である。  FIG. 2 is a perspective view showing a mold holder of the present invention.
[図 3]本発明に係る弾性部材の厚さを説明する正面図である。  FIG. 3 is a front view for explaining the thickness of the elastic member according to the present invention.
[図 4]本発明の別の型保持具を示す平面図である。  FIG. 4 is a plan view showing another mold holder of the present invention.
[図 5]図 4の 1_1線矢印方向からみた型保持具の断面図である。  FIG. 5 is a cross-sectional view of the mold holder as seen from the direction of the arrow 1_1 in FIG.
[図 6]本発明の加工対象物保持具を示す平面図である。  FIG. 6 is a plan view showing a processing object holder of the present invention.
[図 7]実施例 1の薄膜の写真である。  FIG. 7 is a photograph of the thin film of Example 1.
[図 8]比較例 1の薄膜の写真である。  FIG. 8 is a photograph of the thin film of Comparative Example 1.
[図 9]比較例 2の薄膜の写真である。  FIG. 9 is a photograph of the thin film of Comparative Example 2.
符号の説明 [0043] 1 微細加工装置 Explanation of symbols [0043] 1 Microfabrication equipment
2 型保持具  2 type holder
12 加工対象物保持具  12 Workpiece holder
21 型保持基体  21 type holding substrate
22 弾性部材  22 Elastic member
23 溝  23 groove
121 加工対象物保持基体  121 Substrate holding substrate
122 弾性部材  122 Elastic member
123 溝  123 groove
100 型  100 type
200 加工対象物  200 Workpiece
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下に、本発明の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0045] 本発明の微細加工装置 1は、図 1に示すように、所定のパターンを有する型 100と 加工対象物 200とを押圧して、型 100のパターンをカ卩ェ対象物 200に転写する微細 加工装置であって、型 100を保持する型保持具 2と、加工対象物 200を保持する加 ェ対象物保持具 12と、加工対象物 200に対する型 100の相対的な位置およびその 位置を変化させる変位速度を調節可能な変位手段 5と、加工対象物 200に対する型 100の相対的な位置を検出する位置検出手段 7と、型 100と加工対象物 200との間 の圧力を検出する圧力検出手段 8と、型 100を加熱する型加熱手段 3と、型 100を冷 却する型冷却手段 4と、型 100の温度を検出する型温度検出手段 31と、加工対象物 200を加熱する加ェ対象物加熱手段 13と、加ェ対象物 200を冷却する加ェ対象物 冷却手段 14と、加工対象物 200の温度を検出する加工対象物温度検出手段 131と 、位置検出手段 7、圧力検出手段 8、型温度検出手段 31および加工対象物温度検 出手段 131の検出情報に基づいて、変位手段 5、型加熱手段 3、型冷却手段 4、加 ェ対象物加熱手段 13および加工対象物冷却手段 14の作動を制御する制御手段 3 00と、で主に構成される。 As shown in FIG. 1, the microfabrication apparatus 1 of the present invention presses a mold 100 having a predetermined pattern and a workpiece 200 to transfer the pattern of the mold 100 to the cache object 200. The relative position of the mold 100 with respect to the workpiece 200 and the position of the mold holder 2 for holding the mold 100, the workpiece holder 12 for holding the workpiece 200, and the position thereof Displacement means 5 capable of adjusting the displacement speed to change the position, position detection means 7 for detecting the relative position of the mold 100 with respect to the workpiece 200, and the pressure between the mold 100 and the workpiece 200 are detected. The pressure detecting means 8, the mold heating means 3 for heating the mold 100, the mold cooling means 4 for cooling the mold 100, the mold temperature detecting means 31 for detecting the temperature of the mold 100, and the workpiece 200 are heated. Heating object heating means 13, Heating object cooling means 14 for cooling the heating object 200, and processing Based on the detection information of the processing object temperature detection means 131 for detecting the temperature of the object 200, the position detection means 7, the pressure detection means 8, the mold temperature detection means 31 and the processing object temperature detection means 131, the displacement means 5, a mold heating means 3, a mold cooling means 4, a heating object heating means 13 and a control means 300 for controlling the operation of the workpiece cooling means 14.
[0046] 型保持具 2は、図 2に示すように、剛体からなる型保持基体 21と、この型保持基体 2 1と型 100との間に配置される弾性部材 22とで構成される。 As shown in FIG. 2, the mold holder 2 includes a mold holding base 21 made of a rigid body, and the mold holding base 2 1 and an elastic member 22 disposed between the mold 100 and the mold 100.
[0047] 型保持基体 21は、剛性の高い材料、例えばニッケノレやステンレス鋼等の金属によ つて形成されている。また、型保持基体 21は、型 100を保持する側の面が平坦に形 成される。この面の平面度はできる限り高く形成される方が好ましぐ例えば 1 z m以 下、好ましくは lOOnm以下、更に好ましくは 10nm以下、更に好ましくは lnm以下に形 成される方が良い。なお、型保持基体 21は、型 100を保持する側の面を曲面状に形 成したり、ロール状に形成したりすることも勿論可能である。  [0047] The mold holding base 21 is formed of a material having high rigidity, for example, a metal such as Nikkenore or stainless steel. Further, the mold holding base 21 is formed with a flat surface on the side holding the mold 100. It is preferable that the flatness of this surface is formed as high as possible, for example, 1 zm or less, preferably lOOnm or less, more preferably 10 nm or less, and even more preferably lnm or less. Note that the mold holding base 21 can of course be formed in a curved surface or a roll shape on the side on which the mold 100 is held.
[0048] 弾性部材 22は、型保持基体 21と型 100との間に配置される平坦なシート状のもの で、型 100と加工対象物 200とが押圧された際に、型 100や加工対象物 200の微細 なうねりや凹凸を吸収するためのものである。したがって、弾性部材 22は、型 100又 は加工対象物 200の微細なうねりや凹凸を吸収し、均一な応力分布を実現する厚さ で形成する必要がある。  [0048] The elastic member 22 is a flat sheet disposed between the mold holding base 21 and the mold 100, and when the mold 100 and the workpiece 200 are pressed, the mold 100 and the workpiece It is intended to absorb the fine swells and irregularities of the object 200. Therefore, the elastic member 22 needs to be formed with a thickness that absorbs fine waviness and unevenness of the mold 100 or the workpiece 200 and realizes a uniform stress distribution.
[0049] ここで、弾性部材 22のヤング率を E、弾性部材 22の厚みを t、加工対象物 200の  [0049] Here, the Young's modulus of the elastic member 22 is E, the thickness of the elastic member 22 is t, and the workpiece 200 is
1 1  1 1
うねりの大きさ(平面度)を λ 、型 100と加工対象物 200との間の平均圧力を σ 、押  The swell size (flatness) is λ, the average pressure between the mold 100 and the workpiece 200 is σ,
1 1 圧した際の弾性部材 22の押圧方向の変形量の最小値を Δ ΐ 、そのときの圧力を σ  1 1 The minimum value of deformation in the pressing direction of the elastic member 22 when pressed is Δ 、, and the pressure at that time is σ
11 1 11 1
、弾性部材 22の押圧方向の変形量の最大値を A t そのときの圧力を σ すると {図The maximum deformation amount in the pressing direction of the elastic member 22 is At and the pressure at that time is σ (Fig.
1 12 12 1 12 12
3 (a) , (b)参照 }、フックの法則より、  3 See (a) and (b)}, from Hooke's law,
[0050] [数 9] [0050] [Equation 9]
¾ ^= ση· · '式 (9 ) ¾ ^ = σ η · · 'Equation (9)
[0051] [数 10] [0051] [Equation 10]
Ει σΐ2. . .式 (1 0 ) 応力分布の最大値 σ と最小値 σ の差を Δ σ ( Δ σ = σ σ )とすると、式(9) Ει σΐ2... Equation (1 0) If the difference between the maximum value σ and the minimum value σ of the stress distribution is Δ σ (Δ σ = σ σ), Equation (9)
12 11 1 1 12 11  12 11 1 1 12 11
と式(10)より  And from equation (10)
[0052] [数 11] [0052] [Equation 11]
■·、 τ t12— Δ t11 ).i^1 ノ _ . , ι ι ) , Τ t 12 — Δ t 11 ) .i ^ 1 _, ι ι)
1 t1 t1 平均圧力 σ に対する Δ σ の比を所定の値 α以下 は型 100と加工対象物 200と 1 t 1 t 1 If the ratio of Δ σ to the average pressure σ is less than the predetermined value α, the mold 100 and the workpiece 200
1 1  1 1
の間の圧力分布のばらつきの許容範囲)にするには、  The tolerance of the pressure distribution variation between)
[0053] [数 12] α≥^ = ^ ' …式 (1 2 )  [0053] [Equation 12] α≥ ^ = ^ '… Equation (1 2)
σι t1a1 σι t 1 a 1
式(12)を弾性部材 22の厚さ tにつレ、て変形して、  The equation (12) is transformed to the thickness t of the elastic member 22 and deformed.
[0054] [数 13] h≥ · ·式 (1 3 ) したがって、弾性部材 22の厚み tは、少なくとも式(13)を満たすように形成するの [0054] [Equation 13] h≥ ··· (1 3) Therefore, the thickness t of the elastic member 22 is formed so as to satisfy at least the equation (13).
1  1
が好ましい。なお、上記説明では、加工対象物 200のうねりの大きさ(平面度)をえ と  Is preferred. In the above description, the size (flatness) of the waviness of the workpiece 200 is
1 したが、加工対象物 200のうねりの大きさ(平面度)よりも型 100のうねりの大きさ(平 面度)の方が大きレ、場合には、型 100のうねりの大きさ(平面度)を λ としても良レ、。  1 However, the swell size (flatness) of the mold 100 is larger than the swell size (flatness) of the workpiece 200. Degree) is good even if λ.
1  1
また、加工対象物 200のうねりの大きさ(平面度)と型 100のうねりの大きさ(平面度)と を合わせた値を; I としても良い。  A value obtained by combining the swell size (flatness) of the workpiece 200 and the swell size (flatness) of the mold 100 may be set as I.
1  1
[0055] なお、材料が付着して剥離不可能となる圧力( σ )を圧力の上限とし、処理温度 max  [0055] The pressure (σ) at which the material adheres and cannot be peeled is the upper limit of the pressure, and the processing temperature max
において、レオロジーデータ分析から求められる被成型材料の貯蔵弾性率、換言す ると、被成型材料にパターンを転写することができる最小圧力( σ )を圧力の下限と mm  Therefore, the storage modulus of the molding material obtained from rheological data analysis, in other words, the minimum pressure (σ) at which the pattern can be transferred to the molding material is set to the lower limit of pressure and mm.
すると、少なくともひは、次の式(14)を満たす値を用いる。  Then, a value satisfying the following equation (14) is used for at least hi.
[0056] [数 14] び —び'" , ■ '式 (1 4 ) [0056] [Equation 14] and "",, ■ 'Expression (1 4)
σι  σι
実際に使用する αの値としては、所望する精度にもよるが、 100以下が良ぐ好まし くは 20以下が良ぐ更に好ましくは 10以下が良ぐ更に好ましくは 5以下が良ぐ更に 好ましくは 1以下が良ぐ更に好ましくは 1 X 10_2以下が良ぐ更に好ましくは 1 X 10_ 3以下が良い。また、下限としては、工業的に管理できる範囲として、 I X 10_6以上に するのが好ましい。 The value of α actually used depends on the accuracy desired, but is preferably 100 or less, preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less. 1 or less is good tool more preferably 1 X 10_ 2 or less good tool more preferably 1 X 10_ 3 or less is good. The lower limit, a range that can be industrially management, preferably in IX 10_ 6 or more.
[0057] また、型 100は、型加熱手段 3又は型冷却手段 4により弾性部材 22 (型保持具 2)を 介して加熱'冷却されるため、弾性部材 22の厚みが大きすぎると、昇降温速度 (スル 一プット)が低下する。したがって、弾性部材 22の厚み tは、少なくとも下記式(15)を In addition, the mold 100 has the elastic member 22 (the mold holder 2) attached thereto by the mold heating means 3 or the mold cooling means 4. Therefore, if the thickness of the elastic member 22 is too large, the temperature raising / lowering rate (throughput) decreases. Therefore, the thickness t of the elastic member 22 is at least the following formula (15).
1  1
満たす大きさに形成する方が好ましい。  It is preferable to form it in a size that satisfies.
[0058] [数 15] [0058] [Equation 15]
^^≥tl. · '式 (1 5 ) また、好ましくは、下記式(16)を満たす大きさに形成する方が好ましい。 ^^ ≥ tl . · 'Formula (1 5) Further, it is preferable to form a size satisfying the following formula (16).
[0059] [数 16] [0059] [Equation 16]
^^≥tl. . '式 (1 6 ) ^^ ≥ tl .. 'Formula (1 6)
a σ1 また、昇降温速度 (スループット)を向上させるためには、弾性部材 22の熱伝導率 をできる限り高く形成する方が好ましい。具体的には、熱伝導率が 0. 17 (W/m-K) 以上に形成される方が良ぐ好ましくは 0. 2 (W/m*K)以上が良ぐ更に好ましくは 0. 3 (W/m'K)以上が良ぐ更に好ましくは、 l (W/m'K)以上が良ぐ更に好まし くは 2 (W/m · K)以上が良ぐ更に好ましくは 4 (W/m · K)以上が良い。 a σ 1 Further , in order to improve the temperature raising / lowering rate (throughput), it is preferable to form the thermal conductivity of the elastic member 22 as high as possible. Specifically, it is better that the thermal conductivity is formed to be 0.17 (W / mK) or more, preferably 0.2 (W / m * K) or more, more preferably 0.3 (W / mK). / m'K) or better, more preferably l (W / m'K) or better, more preferably 2 (W / mK) or better, more preferably 4 (W / m · K) or better.
[0060] また、弾性部材 22は、型加熱手段 3とこの加熱手段 3によって加熱される型 100と の間に配置されるため、少なくともインプリントプロセスにおける処理温度以上の耐熱 性を有する必要がある。例えば、型 100をカ卩ェ対象物 200のガラス転移温度以上に 加熱する場合には、弾性部材 22の耐熱温度を少なくともガラス転移温度 (Tg)以上 に形成する必要があり、好ましくはガラス転移温度 + 20°C (Tg + 20°C)以上に形成 するのが良ぐ更に好ましくはガラス転移温度 + 40°C (Tg + 40°C)以上に形成する のが良ぐ更に好ましくはガラス転移温度 + 60°C (Tg + 60°C)以上に形成するのが 良い。具体的には、加工対象物 200が環状ォレフィン系共重合体: COC (Cyclo Olefi n Copolymer) (ガラス転移温度 138°C)からなる場合には、弾性部材 22の耐熱温度 を 138°C以上に形成するのが良ぐ好ましくは 158°C以上に形成するのが良ぐ更に 好ましくは 178°C以上に形成するのが良ぐ更に好ましくは 198°C以上に形成するの が良い。 [0060] Further, since the elastic member 22 is disposed between the mold heating means 3 and the mold 100 heated by the heating means 3, it is necessary to have heat resistance at least equal to or higher than the processing temperature in the imprint process. . For example, in the case where the mold 100 is heated to the glass transition temperature of the cache object 200 or higher, the heat resistance temperature of the elastic member 22 must be at least the glass transition temperature (Tg) or higher, preferably the glass transition temperature. + 20 ° C (Tg + 20 ° C) or better, more preferably glass transition temperature + 40 ° C (Tg + 40 ° C) or better, more preferably glass transition temperature It should be formed at + 60 ° C (Tg + 60 ° C) or higher. Specifically, when the workpiece 200 is made of a cyclic olefin-based copolymer: COC (Cyclo Olefin Copolymer) (glass transition temperature 138 ° C), the heat resistance temperature of the elastic member 22 is set to 138 ° C or higher. Preferably, it is formed at 158 ° C or higher, more preferably 178 ° C or higher, and more preferably 198 ° C or higher.
[0061] このような熱伝導率と耐熱温度を有する弾性部材 22としては種々のものがあり自由 に選択可能である力 例えばフッ素系ゴム(パーフルォロエラストマ一)、二トリルゴム 、ウレタンゴム、クロロプレンゴム、ブチノレゴム、スチレンゴム、天然ゴム、エチレンプロ ピレンゴムや、アクリルフォーム等の発泡性樹脂等を用いることができる。また、熱伝 導率を向上させるために、前記材料に窒化ホウ素(BN)、窒化ケィ素(Si N )、窒化 [0061] There are various elastic members 22 having such thermal conductivity and heat-resistant temperature. For example, fluorinated rubber (perfluoroelastomer), nitrile rubber, urethane rubber, chloroprene rubber, butinole rubber, styrene rubber, natural rubber, ethylene propylene rubber, foaming resin such as acrylic foam, etc. Can be used. In order to improve the thermal conductivity, boron nitride (BN), silicon nitride (Si N), nitride
3 4 アルミニウム (A1N)、アルミナ等のセラミックを混合したものや、銀、銅、金、酸化マグ ネシゥム等の金属を混合したもの、カーボンブラックやカーボンナノチューブ等の炭 素化合物を混合したものを用いることも可能である。  3 4 Use a mixture of ceramics such as aluminum (A1N) and alumina, a mixture of metals such as silver, copper, gold, and magnesium oxide, and a mixture of carbon compounds such as carbon black and carbon nanotubes. It is also possible.
[0062] また、弾性部材 22は、型保持基体 21に型 100を確実に保持し得るように、ゴム系 の接着剤を用いても良い。この場合、型保持基体 21又は型 100の少なくともいずれ か一方にゴム系接着剤を塗布し、型保持基体 21と型 100を貼り合わせれば良い。こ れにより、型保持基体 21と型 100との間を隙間なく確実に保持することができるので 、型加熱手段 3から型 100への伝熱速度を向上することができる。この効果は、真空 雰囲気下でのインプリントプロセスにおいてより顕著になる。また、このゴム系接着剤 は、型 100と加工対象物 200とを押圧する際の処理温度より高い温度で接着性を失 うものである方が好ましい。これは、弾性部材 22を接着性を失う温度(以下、剥離温 度という)以上に加熱することにより、型保持基体 21から型 100や弾性部材 22を容易 に取り外すことができるからである。このようなゴム系接着剤としては、熱可塑性樹脂 であるアクリル系接着剤、例えばシロキノン AP (株式会社ジヱルテック社製)やシロキ ノン TP (株式会社ジエルテック社製)等を用いることができる。もちろん、型 100と加工 対象物 200とを押圧する際の処理温度より高い温度で接着性を失うものであれば、こ れらに限定されるものではない。  [0062] The elastic member 22 may use a rubber-based adhesive so that the mold 100 can be securely held on the mold holding base 21. In this case, a rubber adhesive may be applied to at least one of the mold holding base 21 and the mold 100, and the mold holding base 21 and the mold 100 may be bonded together. Accordingly, the mold holding base 21 and the mold 100 can be reliably held without a gap, so that the heat transfer rate from the mold heating means 3 to the mold 100 can be improved. This effect becomes more remarkable in the imprint process under a vacuum atmosphere. Further, it is preferable that this rubber-based adhesive loses its adhesiveness at a temperature higher than the processing temperature when pressing the mold 100 and the workpiece 200. This is because the mold 100 and the elastic member 22 can be easily removed from the mold holding base 21 by heating the elastic member 22 to a temperature at which the adhesiveness is lost (hereinafter referred to as the peeling temperature). As such a rubber-based adhesive, an acrylic adhesive that is a thermoplastic resin, such as siloquinone AP (manufactured by Gyltech Co., Ltd.), siloxane TP (manufactured by Gieltech Co., Ltd.), or the like can be used. Of course, as long as the adhesiveness is lost at a temperature higher than the processing temperature when pressing the mold 100 and the workpiece 200, the present invention is not limited to these.
[0063] また、型保持具 2は、型 100を簡易に取り外しできるように、型 100を吸着可能な真 空チャックを具備するように形成しても良い。この場合、弾性部材 22には、図 4、図 5 に示すように、真空吸着用の溝 23と、型保持基体 21に形成された吸引路 24に接続 される吸引口 25とが形成される。また、型保持基体 21の吸引路 24は、真空ポンプ等 の気体吸引手段 26に接続される。この場合、溝 23は、型のパターンが形成されてい る面(パターン面 100a)の外側であって、型に形成されたパターンが占める領域の外 側の部分を吸着する大きさに形成される。これにより、弾性部材 22がシールの役割も 果たし、型 100を確実に吸着保持することができる。 [0063] Further, the mold holder 2 may be formed so as to include a vacuum chuck capable of adsorbing the mold 100 so that the mold 100 can be easily removed. In this case, as shown in FIGS. 4 and 5, the elastic member 22 is formed with a vacuum suction groove 23 and a suction port 25 connected to a suction path 24 formed in the mold holding base 21. . The suction path 24 of the mold holding base 21 is connected to gas suction means 26 such as a vacuum pump. In this case, the groove 23 is formed outside the surface on which the pattern of the mold is formed (pattern surface 100a), and is sized to adsorb the portion outside the area occupied by the pattern formed on the mold. . As a result, the elastic member 22 also functions as a seal. As a result, the mold 100 can be reliably adsorbed and held.
[0064] また、型保持具 2は、強磁性体からなる金型 (型 100)を吸着保持し得る磁力を有す るように形成することも可能である。この場合、磁石の材料としては、インプリントプロ セスにおける処理温度以上のキュリー点を有するものを用いる必要がある。なお、磁 石としては、永久磁石として形成しても電磁石として形成しても良ぐまた、弾性部材 22又は型保持基体 22の全部又は一部を磁石として形成すれば良い。  [0064] The mold holder 2 can also be formed so as to have a magnetic force capable of attracting and holding a mold (mold 100) made of a ferromagnetic material. In this case, it is necessary to use a magnet material having a Curie point equal to or higher than the processing temperature in the imprint process. The magnet may be formed as a permanent magnet or an electromagnet, and all or part of the elastic member 22 or the mold holding base 22 may be formed as a magnet.
[0065] 型 100は、例えば「ニッケル等の金属」、「セラミックス」、「ガラス状カーボン等の炭 素素材」、「シリコン」などから形成されており、その一端面 (パターン面 100a)に所定 のパターンが形成されている。このパターンは、そのパターン面 100aに精密機械加 ェを施すことで形成することができる。また、型 100の原盤となるシリコン基板等にェ ツチング等の半導体微細加工技術によって所定のパターンを形成した後、このシリコ ン基板等の表面に電気铸造 (エレクト口フォーミング)法、例えばニッケルメツキ法によ つて金属メツキを施し、この金属メツキ層を剥離してパターンを形成することもできる。 もちろん型 100は、微細パターンが形成できるものであれば材料やその製造方法が 特に限定されるものではない。このパターンの幅(加工対象物 200の平面方向の寸 法)は、用いられる加工対象物 200の種類にもよるが、 100 μ ΐη以下、 10 μ ΐη以下、 2 /i m以下、 1 /i m以下、 lOOnm以下、 10nm以下等種々の大きさに形成される。更 に、このパターンの深さ(加工対象物 200の垂直方向の寸法)は、 10nm以上、 100η m以上、 200nm以上、 500應以上、 Ι μ ΐη以上、 ΙΟ μ ΐη以上、 ΙΟΟ μ ΐη以上等種 々の大きさに形成される。また、このパターンのアスペクト比としては、 0. 2以上、 0. 5 以上、 1以上、 2以上等種々のものがある。  [0065] The mold 100 is made of, for example, "metal such as nickel", "ceramics", "carbon material such as glassy carbon", "silicon", or the like, and has a predetermined surface on one end surface (pattern surface 100a). Pattern is formed. This pattern can be formed by applying precision mechanical processing to the pattern surface 100a. In addition, after a predetermined pattern is formed on a silicon substrate or the like, which is the master of the mold 100, by a semiconductor micromachining technique such as etching, an electric fabrication (elect mouth forming) method such as a nickel plating method is performed on the surface of the silicon substrate. Thus, the metal plating can be applied, and the metal plating layer can be peeled off to form a pattern. Of course, the material and manufacturing method of the mold 100 are not particularly limited as long as a fine pattern can be formed. The width of this pattern (dimension in the plane direction of the workpiece 200) depends on the type of workpiece 200 used, but is 100 μΐη or less, 10 μΐη or less, 2 / im or less, 1 / im or less It is formed in various sizes such as lOOnm or less, 10nm or less. Furthermore, the depth of this pattern (vertical dimension of the workpiece 200) is 10 nm or more, 100 η m or more, 200 nm or more, 500 or more, Ι μ ΐη or more, ΙΟ μ ΐη or more, ΙΟΟ μ ΐη or more, etc. Formed in various sizes. In addition, there are various aspect ratios of this pattern such as 0.2 or more, 0.5 or more, 1 or more, 2 or more.
[0066] また、型 100は、型 100と加工対象物 200とを押圧した際に、型 100又は加工対象 物 200のうねりや凹凸を弾性部材 22側へ変形できる厚さ、例えば 0.001〜2mmに形 成される。また、この型 100は、インプリントプロセス中に加熱 '冷却されるため、できる 限り薄型化し、その熱容量を小さくする方が好ましい。  [0066] Further, when the mold 100 is pressed against the workpiece 100, the mold 100 has a thickness that can deform the undulations and irregularities of the mold 100 or the workpiece 200 toward the elastic member 22 side, for example, 0.001 to 2 mm. It is formed. In addition, since the mold 100 is heated and cooled during the imprint process, it is preferable to make the mold 100 as thin as possible and reduce its heat capacity.
[0067] 型加熱手段 3は、図 1に示すように、型保持具 2に対して型 100と対向する側に設 けられるもので、例えば非常に応答性の良いカーボンヒータが用いられる。また、力 一ボンヒータ(型加熱手段 3)は、制御手段 300によって図示しない電源からの電流 供給を制御されており、型 100を所定の一定温度に維持することができる。なお、ヒ ータとしては、例えば、伝熱ヒータやセラミックヒータ、ハロゲンヒータ、 IHヒータ等を用 レ、ることも可能である。 [0067] As shown in Fig. 1, the mold heating means 3 is provided on the side facing the mold 100 with respect to the mold holder 2, and for example, a carbon heater having very good responsiveness is used. In addition, a single-bon heater (die heating means 3) is controlled by a control means 300 from a power source (not shown). Supply is controlled and mold 100 can be maintained at a predetermined constant temperature. For example, a heat transfer heater, ceramic heater, halogen heater, or IH heater can be used as the heater.
[0068] 型冷却手段 4は、図 1に示すように、型保持具 2に対して型 100と対向する側に設 けられる物で、例えばアルミニウムや銅等の熱伝導性の高い金属で形成された容器 の内部に水や油等の冷却液、空気や不活性ガス等の冷却気体を流すことで、型 10 0を冷却することができる冷却流路を用いることができる。  [0068] As shown in Fig. 1, the mold cooling means 4 is provided on the side facing the mold 100 with respect to the mold holder 2, and is formed of a metal having high thermal conductivity such as aluminum or copper, for example. A cooling flow path capable of cooling the mold 100 can be used by flowing a cooling liquid such as water or oil, or a cooling gas such as air or inert gas inside the container.
[0069] また、型 100の近傍、例えば型保持具 2には、型 100の温度を検出する型温度検 出手段 31、例えば熱伝対が設けられている。また、型温度検出手段 31は、制御手 段 300に電気的に接続されており、検出した型 100の温度に関する情報を制御手段 300に伝達するように形成されている。  [0069] In the vicinity of the mold 100, for example, the mold holder 2 is provided with a mold temperature detecting means 31 for detecting the temperature of the mold 100, for example, a thermocouple. The mold temperature detecting means 31 is electrically connected to the control means 300 and is formed so as to transmit the detected information on the temperature of the mold 100 to the control means 300.
[0070] 加工対象物保持具 12は、図 6に示すように、剛体からなる加工対象物保持基体 12 1と、この加工対象物保持基体 121と加工対象物 200との間に配置される弾性部材 1 22とで構成される。  As shown in FIG. 6, the workpiece holder 12 includes a rigid workpiece holding base 121 and an elastic member disposed between the workpiece holding base 121 and the workpiece 200. It is composed of member 122.
[0071] 加工対象物保持基体 121は、剛性の高い材料、例えばニッケルやステンレス鋼等 の金属によって形成されている。また、加工対象物保持基体 121は、加工対象物 20 0を保持する側の面が平坦に形成される。この面の平面度はできる限り高く形成され る方が好ましぐ例えば 1 μ ΐη以下、好ましくは lOOnm以下、更に好ましくは 10nm以下 、更に好ましくは lnm以下に形成される方が良い。なお、加工対象物保持基体 121 は、ロール状に形成することも勿論可能である。なお、加工対象物保持基体 121は、 加工対象物 200を保持する側の面を曲面状に形成したり、ロール状に形成したりす ることも勿論可能である。  [0071] The workpiece holding base 121 is made of a highly rigid material, for example, a metal such as nickel or stainless steel. Further, the workpiece holding base 121 has a flat surface on the side holding the workpiece 200. It is preferable that the flatness of this surface is formed as high as possible, for example, 1 μΐη or less, preferably lOOnm or less, more preferably 10 nm or less, and even more preferably lnm or less. Of course, the workpiece holding base 121 can be formed in a roll shape. Of course, the workpiece holding base 121 can be formed in a curved surface or a roll shape on the side on which the workpiece 200 is held.
[0072] 弾性部材 122は、加工対象物保持基体 121と加工対象物 200との間に配置される 平坦なシート状のもので、型 100と加工対象物 200とが押圧された際に、型 100やカロ ェ対象物 200の微細なうねりや凹凸を吸収する。したがって、弾性部材 122は、型 1 00又は加工対象物 200の微細なうねりや凹凸を吸収し、均一な応力分布を実現す る厚さで形成する必要がある。  [0072] The elastic member 122 is a flat sheet disposed between the workpiece holding base 121 and the workpiece 200, and when the die 100 and the workpiece 200 are pressed, Absorbs the fine swells and irregularities of 100 and 200 Caloe objects. Therefore, the elastic member 122 needs to be formed with a thickness that absorbs fine waviness and unevenness of the mold 100 or the workpiece 200 and realizes a uniform stress distribution.
[0073] ここで、弾性部材 122のヤング率を E、弾性部材 122の厚みを t、加工対象物 200 のうねりの大きさ(平面度)をえ 、型 100と加工対象物 200との間の平均圧力を σ 、 Here, the Young's modulus of the elastic member 122 is E, the thickness of the elastic member 122 is t, and the workpiece 200 And the average pressure between the mold 100 and the workpiece 200 is σ,
2 2 押圧した際の弾性部材 22の押圧方向の変形量の最小値を Δΐ 、そのときの圧力を  2 2 The minimum amount of deformation in the pressing direction of the elastic member 22 when pressed is Δΐ, and the pressure at that time is
21  twenty one
σ 、弾性部材 122の押圧方向の変形量の最大値を Δΐ そのときの圧力を σ する σ, the maximum value of deformation in the pressing direction of the elastic member 122 Δΐ the pressure at that time σ
21 22 22 と(図示せず)、型保持基体 2の弾性部材 22の厚みについて説明したのと同様に、 [0074] [数 17] 21 22 22 (not shown), the same as described for the thickness of the elastic member 22 of the mold holding base 2 [0074] [Equation 17]
Ε,^=σ - · ·式 (1 7) Ε, ^ = σ-· · · Equation (1 7)
[0075] [数 18] [0075] [Equation 18]
Ε,^= σ„· . '式 (18) Ε, ^ = σ „·. '(18)
-- 応力分布の最大値 σ と最小値 σ の差を Δ σ (Δ σ = σ σ )とすると、式(1  -If the difference between the maximum value σ and the minimum value σ of the stress distribution is Δ σ (Δ σ = σ σ), the equation (1
22 21 2 2 22 21  22 21 2 2 22 21
7)と式(18)より  From 7) and formula (18)
[0076] [数 19] [0076] [Equation 19]
Δσ (Ati-Atli)E =x E < · ,式 (i 9) Δσ (At i -At li ) E = x E < ·, Equation (i 9)
" tし 2 t 2  "t then 2 t 2
平均圧力 σ に対する Δ σ の比を所定の値 /3以下( /3は型 100とカロェ対象物 200と  The ratio of Δ σ to the average pressure σ is less than or equal to the predetermined value / 3 (/ 3 is the mold 100 and the Caloe object 200
2 2  twenty two
の間の圧力分布のばらつきの許容範囲)にするには、  The tolerance of the pressure distribution variation between)
[0077] [数 20] β≥ ^ = · ·式 (2 0) [0077] [Equation 20] β≥ ^ = · · Equation (2 0)
び 2 2°2  2 2 ° 2
式(20)を弾性部材 122の厚さ tにつレ、て変形して、  The equation (20) is transformed to the thickness t of the elastic member 122 and deformed.
2  2
[0078] [数 21]  [0078] [Equation 21]
· '式 (2 1) したがって、弾性部材 122の厚み tは、少なくとも式(21)を満たすように形成する · 'Formula (2 1) Therefore, the thickness t of the elastic member 122 is formed so as to satisfy at least Formula (21).
2  2
のが好ましい。なお、上記説明では、加工対象物 200のうねりの大きさ(平面度)を; I とした力 S、加工対象物 200のうねりの大きさ(平面度)よりも型 100のうねりの大きさ( Is preferred. In the above description, the swell size of the mold 100 is larger than the force S with the swell size (flatness) of the workpiece 200 as I; the force S and the swell size (flatness) of the workpiece 200 (flatness).
2 2
平面度)の方が大きい場合には、型 100のうねりの大きさ(平面度)を λ としても良い 。また、加工対象物 200のうねりの大きさ(平面度)と型 100のうねりの大きさ(平面度) とを合わせた値をえ としても良い。 If the flatness is larger, the swell size (flatness) of the mold 100 may be λ . Alternatively, a value obtained by combining the swell size (flatness) of the workpiece 200 and the swell size (flatness) of the mold 100 may be used.
2  2
[0079] なお、材料が付着して剥離不可能となる圧力( σ )を圧力の上限とし、処理温度 max  [0079] The pressure (σ) at which the material adheres and cannot be peeled is the upper limit of the pressure, and the processing temperature max
において、レオロジーデータ分析から求められる被成型材料の貯蔵弾性率、換言す ると、被成型材料にパターンを転写することができる最小圧力( σ )を圧力の下限と mm  Therefore, the storage modulus of the molding material obtained from rheological data analysis, in other words, the minimum pressure (σ) at which the pattern can be transferred to the molding material is set to the lower limit of pressure and mm.
すると、少なくとも /3は、次の式(14)を満たす値を用いる。  Then, a value satisfying the following equation (14) is used for at least / 3.
[0080] [数 22] び —び'" , ■ '式 (2 2 ) [0080] [Numerical equation 22] and “',” ■' Expression (2 2)
び 1  1
実際に使用する βの値としては、所望する精度にもよるが、 100以下が良ぐ好ましく は 20以下が良ぐ更に好ましくは 10以下が良ぐ更に好ましくは 5以下が良ぐ更に 好ましくは 1以下が良ぐ更に好ましくは 1 X 10_2以下が良ぐ更に好ましくは 1 X 10_ 3以下が良い。また、下限としては、工業的に管理できる範囲として、 I X 10_6以上に するのが好ましい。 The value of β actually used depends on the desired accuracy, but is preferably 100 or less, preferably 20 or less, more preferably 10 or less, even more preferably 5 or less, and even more preferably 1 the following is a good tool and more preferably 1 X 10_ 2 or less good tool more preferably 1 X 10_ 3 or less is good. The lower limit, a range that can be industrially management, preferably in IX 10_ 6 or more.
[0081] また、加工対象物 200は、加工対象物加熱手段 13又は加工対象物冷却手段 14に より弾性部材 1 22 (加工対象物保持具 12)を介して加熱 '冷却されるため、弾性部材 1 22の厚みが大きすぎると、昇降温速度 (スループット)が低下する。したがって、弾 性部材 1 22の厚み tは、少なくとも下記式(21 )を満たす大きさに形成する方が好ま  [0081] Further, the workpiece 200 is heated and cooled by the workpiece heating means 13 or the workpiece cooling means 14 via the elastic member 122 (workpiece holder 12). If the thickness of 122 is too large, the heating / cooling speed (throughput) will decrease. Therefore, it is preferable that the thickness t of the elastic member 122 be formed to a size satisfying at least the following formula (21).
2  2
しい。  That's right.
[0082] [数 21] [0082] [Equation 21]
¾^≥ t2 - · ·式 (2 1 ) ¾ ^ ≥ t 2- · · Equation (2 1)
β ひ 2 β 2
また、好ましくは、下記式(22)を満たす大きさに形成する方が好ましい。  In addition, it is preferable to form a size satisfying the following formula (22).
[0083] [数 22] [0083] [Equation 22]
¾^≥ t2 - ■ '式 (2 2 ) ¾ ^ ≥ t 2- ■ 'Formula (2 2)
β ο 2 β ο 2
更に、昇降温速度 (スループット)を向上させるためには、弾性部材 1 22の熱伝導 率をできる限り高く形成する方が好ましい。具体的には、熱伝導率が 0. 17 (W/m - K)以上に形成される方が良ぐ好ましくは 0. 2 (W/m*K)以上が良ぐ更に好ましく は 0· 3 (W/m'K)以上が良ぐ更に好ましくは、 l (W/m'K)以上が良ぐ更に好ま しくは 2 (W/m · K)以上が良ぐ更に好ましくは 4 (W/m · K)以上が良レ、。 Further, in order to improve the temperature raising / lowering rate (throughput), it is preferable to form the thermal conductivity of the elastic member 122 as high as possible. Specifically, the thermal conductivity is 0.17 (W / m- K) or better, preferably 0.2 (W / m * K) or better, more preferably 0.3 (W / m'K) or better, more preferably l ( W / m'K) or better, more preferably 2 (W / m · K) or better, more preferably 4 (W / m · K) or better.
[0084] また、弾性部材 122は、加工対象物加熱手段 13と加熱される加工対象物 200との 間に配置されるため、少なくともインプリントプロセスにおける処理温度以上の耐熱性 を有する必要がある。例えば、加工対象物 200をそのガラス転移温度 (Tg)近傍に加 熱する場合には、弾性部材 122の耐熱温度を少なくともガラス転移温度 (Tg)以上に 形成する必要があり、好ましくはガラス転移温度 + 20°C (Tg + 20°C)以上に形成す るのが良ぐ更に好ましくはガラス転移温度 + 40°C (Tg + 40°C)以上に形成するの が良ぐ更に好ましくはガラス転移温度 + 60°C (Tg + 60°C)以上に形成するのが良 レ、。具体的には、加工対象物 200が環状ォレフィン系共重合体: C〇C (Cyclo Olefin Copolymer) (ガラス転移温度 138°C)からなる場合には、弾性部材 122の耐熱温度 を 138°C以上に形成するのが良ぐ好ましくは 158°C以上に形成するのが良ぐ更に 好ましくは 178°C以上に形成するのが良ぐ更に好ましくは 198°C以上に形成するの が良い。 [0084] Further, since the elastic member 122 is disposed between the workpiece heating means 13 and the workpiece 200 to be heated, it is necessary to have heat resistance at least equal to or higher than the processing temperature in the imprint process. For example, when the workpiece 200 is heated in the vicinity of its glass transition temperature (Tg), the heat resistance temperature of the elastic member 122 needs to be at least equal to or higher than the glass transition temperature (Tg), preferably the glass transition temperature. + 20 ° C (Tg + 20 ° C) or better, more preferably glass transition temperature + 40 ° C (Tg + 40 ° C) or better, more preferably glass transition It should be formed at a temperature higher than + 60 ° C (Tg + 60 ° C). Specifically, when the workpiece 200 is made of a cyclic olefin-based copolymer: C ° C (Cyclo Olefin Copolymer) (glass transition temperature 138 ° C), the heat resistance temperature of the elastic member 122 is 138 ° C or higher. Preferably, it is formed at 158 ° C or higher, more preferably 178 ° C or higher, and more preferably 198 ° C or higher.
[0085] このような熱伝導率と耐熱温度を有する弾性部材 122としては種々のものがあり自 由に選択可能である力 例えばフッ素系ゴム(パーフルォロエラストマ一)、二トリルゴ ム、ウレタンゴム、クロロプレンゴム、ブチルゴム、スチレンゴム、天然ゴム、エチレンプ ロピレンゴムや、アクリルフォーム等の発泡性樹脂等を用いることができる。また、熱 伝導率を向上させるために、前記材料に窒化ホウ素(BN)、窒化ケィ素(Si N )、窒  [0085] There are various elastic members 122 having such thermal conductivity and heat-resistant temperature, and force that can be freely selected, for example, fluorine-based rubber (perfluoroelastomer), nitrile rubber, urethane, etc. Rubber, chloroprene rubber, butyl rubber, styrene rubber, natural rubber, ethylene propylene rubber, foaming resins such as acrylic foam, and the like can be used. In order to improve the thermal conductivity, boron nitride (BN), silicon nitride (Si N), nitrogen
3 4 化アルミニウム (A1N)、アルミナ等のセラミックを混合したものや、銀、銅、金、酸化マ グネシゥム等の金属を混合したもの、カーボンブラックやカーボンナノチューブ等の 炭素化合物を混合したものを用いることも可能である。  3 4 Use a mixture of ceramics such as aluminum nitride (A1N) and alumina, a mixture of metals such as silver, copper, gold, magnesium oxide, and a mixture of carbon compounds such as carbon black and carbon nanotubes. It is also possible.
[0086] また、弾性部材 122は、加工対象物保持基体 121に確実に保持されるように、ゴム 系の接着剤を用いても良い。これにより、加工対象物保持基体 121と弾性部材 122と の間を隙間なく形成することができるので、加工対象物加熱手段 13から加工対象物 200への伝熱速度を向上することができる。この効果は、真空雰囲気下でのインプリ ントプロセスにおいてより顕著になる。また、このゴム系接着剤は、型 100と加工対象 物 200とを押圧する際の処理温度より高い温度で接着性を失うものである方が好まし レ、。これは、弾性部材 122を接着性を失う温度(以下、剥離温度という)以上に加熱 することにより、加工対象物保持基体 121から弾性部材 122を容易に取り外すことが できるからである。このようなゴム系接着剤としては、熱可塑性樹脂であるアクリル系 接着剤、例えばシロキノン AP (株式会社ジヱルテック社製)やシロキノン TP (株式会 社ジヱルテック社製)等を用いることができる。もちろん、型 100と加工対象物 200とを 押圧する際の処理温度より高い温度で接着性を失うものであれば、これらに限定され るものではない。 [0086] The elastic member 122 may use a rubber adhesive so as to be securely held by the workpiece holding base 121. As a result, the workpiece holding base 121 and the elastic member 122 can be formed without gaps, so that the heat transfer rate from the workpiece heating means 13 to the workpiece 200 can be improved. This effect becomes more remarkable in the imprint process under a vacuum atmosphere. In addition, this rubber-based adhesive It is preferable that the adhesive loses its adhesiveness at a temperature higher than the processing temperature when pressing the object 200. This is because the elastic member 122 can be easily detached from the workpiece holding base 121 by heating the elastic member 122 to a temperature at which the adhesiveness is lost (hereinafter referred to as a peeling temperature). As such a rubber adhesive, an acrylic adhesive which is a thermoplastic resin, such as siloquinone AP (manufactured by Gyltech Co., Ltd.) or siloquinone TP (manufactured by Gyltech Co., Ltd.) can be used. Of course, it is not limited to these as long as the adhesiveness is lost at a temperature higher than the processing temperature when pressing the mold 100 and the workpiece 200.
[0087] 加工対象物 200としては、種々のものを用いることができ、例えばポリカーボネート 、ポリイミド等の樹脂の他、アルミニウム等の金属、ガラス、石英ガラス、シリコン、ガリ ゥム砒素、サファイア、酸化マグネシウム等の材料など、成形素材がそのまま基板形 状をなしているものを用いることができる。また、シリコンやガラス等からなる基板本体 の表面に、「樹脂」、「フォトレジスト」、「配線パターンを形成するためのアルミニウム、 金、銀などの金属」等の被覆層が形成されたものを用いることもできる。更に、加工対 象物 200は、基板以外の形状、例えばフィルム等であっても勿論良い。  [0087] Various objects can be used as the processing object 200. For example, in addition to resins such as polycarbonate and polyimide, metals such as aluminum, glass, quartz glass, silicon, gallium arsenide, sapphire, and magnesium oxide A material in which the molding material is in the shape of a substrate as it is can be used. Also, the surface of the substrate body made of silicon, glass, etc., with a coating layer such as “resin”, “photoresist”, or “metal such as aluminum, gold, or silver for forming the wiring pattern” It can also be used. Furthermore, the object to be processed 200 may of course have a shape other than the substrate, such as a film.
[0088] また、加工対象物保持具 12は、加工対象物 200を簡易に取り外しできるように、加 ェ対象物 200を吸着可能な真空チャックを具備するように形成しても良い。この場合 、弾性部材 122には、図 6に示すように、真空吸着用の溝 123と、加工対象物保持基 体 121に形成された吸引路に接続される吸引口 125とが形成される。また、加工対 象物保持基体 121の吸引路は、真空ポンプ等の気体吸引手段に接続される。これに より、弾性部材 122がシールの役割も果たし、加工対象物 200を確実に吸着保持す ること力 Sできる。  [0088] Further, the workpiece holder 12 may be formed to include a vacuum chuck capable of attracting the workpiece 200 so that the workpiece 200 can be easily removed. In this case, as shown in FIG. 6, the elastic member 122 is formed with a vacuum suction groove 123 and a suction port 125 connected to a suction path formed in the workpiece holding base 121. The suction path of the workpiece holding base 121 is connected to gas suction means such as a vacuum pump. As a result, the elastic member 122 also serves as a seal, and the force S that reliably holds the workpiece 200 by suction can be achieved.
[0089] また、保持ステージの下部には保持した加工対象物 200を加熱するための加工対 象物加熱手段 13、例えば非常に応答性の良いカーボンヒータを備えている。カーボ ンヒータは、制御手段 300によって図示しない電源からの電流供給を制御されており 、保持ステージ上の加工対象物 200を所定の一定温度に維持することができる。な お、ヒータとしては、例えば、伝熱ヒータやセラミックヒータ、ハロゲンヒータ、 IHヒータ 等を用いることも可能である。 [0090] また、加工対象物保持具 12には、加工対象物 200を冷却する加工対象物冷却手 段 14を設けることも可能である。加工対象物冷却手段 14としては、例えばアルミニゥ ムゃ銅等の熱伝導性の高い金属で形成されたカ卩ェ対象物保持具 12の内部に水や 油等の冷却液、空気や不活性ガス等の冷却気体を流すことで、加工対象物 200を冷 却することができる冷却流路を用いることができる。 In addition, a workpiece heating means 13 for heating the workpiece 200 to be held, for example, a very responsive carbon heater is provided below the holding stage. The carbon heater is controlled by the control means 300 to supply a current from a power source (not shown), and can maintain the workpiece 200 on the holding stage at a predetermined constant temperature. As the heater, for example, a heat transfer heater, a ceramic heater, a halogen heater, an IH heater, or the like can be used. In addition, the workpiece holder 12 can be provided with a workpiece cooling means 14 for cooling the workpiece 200. The workpiece cooling means 14 includes, for example, a coolant such as water or oil, air or an inert gas in the inside of the cage holder 12 formed of a metal having high thermal conductivity such as aluminum or copper. A cooling flow path capable of cooling the workpiece 200 can be used by flowing a cooling gas such as.
また、加工対象物 200の近傍、例えば加工対象物保持具 12には、加工対象物 20 0の温度を検出する加ェ対象物温度検出手段 131、例えば熱伝対が設けられている 。また、加工対象物温度検出手段 131は、制御手段 300に電気的に接続されており 、検出した加工対象物 200の温度に関する情報を制御手段 300に伝達するように形 成されている。  Further, in the vicinity of the workpiece 200, for example, the workpiece holder 12 is provided with an object temperature detector 131 for detecting the temperature of the workpiece 200, for example, a thermocouple. Further, the workpiece temperature detection means 131 is electrically connected to the control means 300 and is configured to transmit information regarding the detected temperature of the workpiece 200 to the control means 300.
[0091] 変位手段 5は、図 1に示すように、例えば、垂直方向に配置されたボールネジ 51と 、このボールネジ 51を回転駆動させる電気モータ 52とから構成されている。また、ボ 一ルネジ 51の下端部と型保持具 2の上面は、押圧部 53、ベアリング機構 54を介して 連結されている。そして、ボールネジ 51を電気モータ 52で回転駆動することで、基台 50と上部ベース 55との間に設けられた複数例えば 4本の支柱 56に対し、押圧部 53 を型 100と加工対象物 200の接離方向(以下、 Z方向と称する)に変位させることがで きる。なお、電気モータ 52としては、直流モータ、交流モータ、ステッピングモータ、 サーボモータ等、種々のものを用いることができる。ここで、変位手段 5は、加工対象 物 200に対する型 100の位置を、型 100のパターンの深さ以下の変位量で調節でき る方が好ましい。具体的には、変位量を 100 μ ΐη以下で調節することができるものが 良ぐ好ましくは 10 /i m以下、更に好ましくは 1 /i m以下、更に好ましくは lOOnm以 下、更に好ましくは 10nm以下、更に好ましくは lnm以下で調節できるものが好まし レ、。  As shown in FIG. 1, the displacing means 5 includes, for example, a ball screw 51 arranged in the vertical direction and an electric motor 52 that rotationally drives the ball screw 51. Further, the lower end portion of the ball screw 51 and the upper surface of the mold holder 2 are connected via a pressing portion 53 and a bearing mechanism 54. Then, by rotating the ball screw 51 with the electric motor 52, the pressing portion 53 is placed on the mold 100 and the workpiece 200 against a plurality of, for example, four columns 56 provided between the base 50 and the upper base 55. Can be displaced in the direction of contact / separation (hereinafter referred to as the Z direction). As the electric motor 52, various types such as a DC motor, an AC motor, a stepping motor, and a servo motor can be used. Here, it is preferable that the displacing means 5 can adjust the position of the mold 100 relative to the workpiece 200 by a displacement amount not more than the depth of the pattern of the mold 100. Specifically, it is preferable that the amount of displacement can be adjusted to 100 μΐη or less, preferably 10 / im or less, more preferably 1 / im or less, more preferably lOOnm or less, more preferably 10 nm or less, More preferably, one that can be adjusted to 1 nm or less is preferred.
[0092] また、変位手段 5は、加工対象物 200に対する型 100の変位速度を調節できるもの が好ましい。具体的には、 100 x m/秒以下で調節できるものが良ぐ好ましくは 10 z mZ秒以下、更に好ましくは 秒以下、更に好ましくは lOOnmZ秒以下、 更に好ましくは 1 OnmZ秒以下、更に好ましくは lnm/秒以下で調節できるものが良 レ、。なぜなら、制御手段 300は、圧力検出手段 8が検出した情報に基づいて変位手 段 5の作動を制御し、型 100と加工対象物 200との間の圧力を調節している力 圧力 検出手段 8が検出した情報を変位手段 5にフィードバックするには、多少の時間が掛 かる。したがって、変位速度が大き過ぎると圧力検出手段 8が検出した情報を変位手 段 5にフィードバックするのが遅れ、型 100と加工対象物 200との間の実際の圧力を 正確に制御することができなくなるからである。 Further, it is preferable that the displacement means 5 is capable of adjusting the displacement speed of the mold 100 with respect to the workpiece 200. Specifically, those that can be adjusted at 100 xm / sec or less are preferable, preferably 10 z mZ seconds or less, more preferably seconds or less, more preferably lOOnmZ seconds or less, more preferably 1 OnmZ seconds or less, more preferably lnm. Things that can be adjusted in less than / second are good. This is because the control means 300 detects the displacement based on the information detected by the pressure detection means 8. The force that controls the operation of stage 5 and adjusts the pressure between the mold 100 and the workpiece 200 It takes some time to feed back the information detected by the pressure detection means 8 to the displacement means 5. . Therefore, if the displacement speed is too high, feedback of the information detected by the pressure detection means 8 to the displacement means 5 is delayed, and the actual pressure between the mold 100 and the workpiece 200 can be accurately controlled. Because it disappears.
[0093] なお、ここでは、変位手段 5を型保持具 2側に設ける場合について説明したが、カロ ェ対象物保持具 12側に設けることも勿論可能である。また、変位手段 5としては、型 100と加工対象物 200との相対的な変位量や変位速度を調節できるものであれば、 ボールねじと電気モータにより構成されるものに限られず、例えば、電圧を調節して 大きさ(寸法)を変化させることができる圧電素子や磁界を調節して大きさ(寸法)を変 化させることができる磁歪素子を用いることもできる。また、ボールねじおよび電気モ ータと圧電素子又は磁歪素子の両方を用いることも勿論可能である。この場合には、 型 100と加工対象物 200を大きく変位させる際に、ボールねじおよび電気モータを適 用し、型 100と加工対象物 200を微小量変位させる際に、圧電素子又は磁歪素子を 用いることができる。更に、油圧式のものや空圧式のもの等を用いることも勿論可能 である。 Here, the case where the displacing means 5 is provided on the mold holder 2 side has been described, but it is of course possible to provide the displacement means 5 on the calorie object holder 12 side. The displacement means 5 is not limited to a ball screw and an electric motor as long as the relative displacement amount and displacement speed between the mold 100 and the workpiece 200 can be adjusted. It is also possible to use a piezoelectric element that can change the size (dimension) by adjusting, and a magnetostrictive element that can change the size (dimension) by adjusting the magnetic field. Of course, it is possible to use both a ball screw and an electric motor and a piezoelectric element or a magnetostrictive element. In this case, a ball screw and an electric motor are applied when the mold 100 and the workpiece 200 are largely displaced, and a piezoelectric element or a magnetostrictive element is used when the mold 100 and the workpiece 200 are displaced by a small amount. Can be used. Further, it is of course possible to use a hydraulic type or a pneumatic type.
[0094] 変位手段 5をこのように構成することによって、型 100を保持する型保持具 2を上下 し、加工対象物保持具 12に保持される加工対象物 200に対し、型 100のパターン面 100aを精密に近接 ·押圧及び離間することができる。  By configuring the displacing means 5 in this way, the mold holder 2 that holds the mold 100 is moved up and down, and the pattern surface of the mold 100 is moved with respect to the workpiece 200 that is held by the workpiece holder 12. 100a can be closely approached, pressed and separated.
[0095] 位置検出手段 7は、例えば、型保持具 2に配置されたリニアスケールにより形成され る。このリニアスケールを用いて、加工対象物 200と型保持具 2との距離を測定し、そ の値力も加工対象物 200に対する型 100の相対的な位置や変位速度を計算して検 出すること力 Sできる。また、位置検出手段 7は、制御手段 300に電気的に接続されて おり、検出した型 100の位置や変位速度に関する情報を伝達するように形成されて いる。なお、位置検出手段 7としては、リニアスケールに限らず種々のものを用いるこ とができ、例えば、型保持具 2側に設けられたレーザー測長機を用いて、加工対象物 200の位置を測定するか、加工対象物保持具 12側に設けられたレーザー測長機を 用いて、型 100の位置を測定すればよい。また、電気モータに設けられたエンコーダ を用いて、変位手段 5の変位量から計算により測定するものでもよい。なお、位置検 出手段 7の分解能は、少なくとも型 100のパターンの深さ方向(Z方向)の大きさ以下 、あるいは、変位手段 5が調節できる変位量以下の値で検出できるものが好ましい。 具体的には、 100 z m以下で検出することができるものが良ぐ好ましくは 10 z m以 下、更に好ましくは 1 μ πι以下、更に好ましくは lOOnm以下、更に好ましくは 10nm 以下、更に好ましくは lnm以下で検出することができるものが好ましい。 The position detecting means 7 is formed by a linear scale arranged on the mold holder 2, for example. Using this linear scale, the distance between the workpiece 200 and the mold holder 2 is measured, and the value force is also detected by calculating the relative position and displacement speed of the mold 100 with respect to the workpiece 200. Power S can be. Further, the position detection means 7 is electrically connected to the control means 300, and is formed so as to transmit information on the detected position and displacement speed of the mold 100. The position detection means 7 is not limited to a linear scale, and various types can be used. For example, the position of the workpiece 200 can be determined using a laser length measuring device provided on the mold holder 2 side. Measurement may be performed or the position of the mold 100 may be measured using a laser length measuring device provided on the workpiece holder 12 side. Also, an encoder provided in the electric motor , And may be measured by calculation from the displacement amount of the displacement means 5. The resolution of the position detection means 7 is preferably one that can be detected with a value that is at least the size of the pattern of the mold 100 in the depth direction (Z direction) or less than the amount of displacement that the displacement means 5 can adjust. Specifically, those that can be detected at 100 zm or less are preferable, preferably 10 zm or less, more preferably 1 μπι or less, more preferably lOOnm or less, more preferably 10 nm or less, more preferably lnm or less. Those that can be detected by are preferable.
[0096] 位置検出手段 7をこのように構成することによって、パターンの大きさや型 100と加 ェ対象物 200との間の圧力に応じて、加工対象物 200に対する型 100のパターン面 100aの位置を精密に調節することができるので、パターンの転写性および離型性を 向上することができる。 [0096] By configuring the position detecting means 7 in this way, the position of the pattern surface 100a of the mold 100 relative to the workpiece 200 according to the size of the pattern and the pressure between the mold 100 and the workpiece 200. Can be precisely adjusted, so that the pattern transferability and releasability can be improved.
[0097] 圧力検出手段 8は、型 100と加工対象物 200との間の圧力を検出するもので、例え ば、型 100と加工対象物 200との間の荷重を測定するロードセルを用いることができ る。これにより、荷重を測定し、型 100のパターン面 100aの面積で割れば型 100と加 ェ対象物 200との間の圧力を検出することができる。また、圧力検出手段 8は、制御 手段 300に電気的に接続されており、検出した圧力に関する情報を伝達するように 形成されている。  [0097] The pressure detecting means 8 detects the pressure between the mold 100 and the workpiece 200. For example, a load cell that measures the load between the mold 100 and the workpiece 200 may be used. it can. As a result, if the load is measured and divided by the area of the pattern surface 100a of the mold 100, the pressure between the mold 100 and the workpiece 200 can be detected. Further, the pressure detection means 8 is electrically connected to the control means 300, and is configured to transmit information on the detected pressure.
[0098] 制御手段 300は、位置検出手段 7、圧力検出手段 8、型温度検出手段 31および加 ェ対象物温度検出手段 131の検出情報に基づいて、変位手段 5、押圧手段 6、型加 熱手段 3、型冷却手段 4、加工対象物加熱手段 13および加工対象物冷却手段 14の 作動を制御するもので、例えばコンピュータを用いることができる。  [0098] Based on the detection information of the position detection means 7, the pressure detection means 8, the mold temperature detection means 31, and the object temperature detection means 131, the control means 300 is based on the displacement means 5, the pressing means 6, and the mold heating. For controlling the operation of the means 3, the mold cooling means 4, the workpiece heating means 13, and the workpiece cooling means 14, for example, a computer can be used.
実施例  Example
[0099] 以下に本発明の実施例について説明するが、本発明はこれらの実施例に限定され るものではない。  [0099] Examples of the present invention will be described below, but the present invention is not limited to these examples.
[0100] インプリントは、 SCIVAX社のインプリント装置(VX-2000N-US)を用レ、、型と加工対 象物とを 145°Cに加熱し、 2. 5MPaで 10秒間押圧することにより行った。型は、加工 対象物に転写した際に、加工対象物にハニカム構造を転写可能なパターン (ハニ力 ム構造を反転させたパターン)を有するニッケル製のもので、転写可能領域が 50mm X 50mm (金型の外形は 55mm X 55mm):面積が 2500mm2の正方形である金型 を用いた。ハニカム構造は、線幅が 250nmでこの線の高さが 380nm (アスペクト比 が約 1· 5)、一つのセル(六角形)の最大内径が 2μΐη (すなわち、線幅も含めた最大 外径が 2. 5 μΐη)のものを用いた。また、加工対象物としては、環状ォレフィン系共重 合体: COC(Cyclo Olefin Copolymer)からなる厚さ約 1 μ mの薄膜が形成されたシリコ ン基板を用いた。この際、型保持基体と型との間には、式(13)を満たす厚さのポリイ ミドからなるシート状の弾性部材を配置した(実施例 1)。 [0100] Imprinting is performed by using SCIVAX imprinting equipment (VX-2000N-US), heating the mold and workpiece to 145 ° C, and pressing at 2.5 MPa for 10 seconds. went. The mold is made of nickel with a pattern that allows the honeycomb structure to be transferred to the workpiece (a pattern in which the honeycomb structure is reversed) when transferred to the workpiece, and the transferable area is 50mm x 50mm ( (The outer shape of the mold is 55mm x 55mm): Mold with a square area of 2500mm 2 Was used. The honeycomb structure has a line width of 250 nm, a line height of 380 nm (aspect ratio of about 1.5), and a single cell (hexagon) with a maximum inner diameter of 2μΐη (that is, a maximum outer diameter including the line width). 2.5 μΐη) was used. In addition, a silicon substrate on which a thin film having a thickness of about 1 μm made of a cyclic olefin-based copolymer: COC (Cyclo Olefin Copolymer) was used was used as a workpiece. At this time, a sheet-like elastic member made of polyimide having a thickness satisfying the formula (13) was disposed between the mold holding base and the mold (Example 1).
[0101] ここで、薄膜が形成されたシリコン基板の表面を、粗さ計を用いて測定したところ、う ねりの大きさ(λ )は約 2.4 xm(2.4 X 10 6 m)であった。 Here, when the surface of the silicon substrate on which the thin film was formed was measured using a roughness meter, the size of the waviness (λ 2) was about 2.4 × m (2.4 × 10 6 m).
1  1
[0102] また、 ひの値は式(14)力 計算した値を用いた。すなわち、 ひの導出に必要な最 大圧力( σ )を、この金型と COCからなるフィルムとを押圧した際に、両者が剥離不  [0102] In addition, the value of the force was calculated using the formula (14) force. In other words, when the maximum pressure (σ) necessary for derivation of the string is pressed against this mold and the film made of COC, the two do not peel off.
max  max
可能となる圧力(σ )である lOMPaとし、 ひの導出に必要な最小圧力(σ )を、レ  Let lOMPa be the possible pressure (σ), and let the minimum pressure (σ) required to
max mm ォロジ一データから導出される理論値の IMPaとして、式(14)に代入すると、  Substituting into Equation (14) as the IMPa of the theoretical value derived from the max mm logic data,
[0103] [数 23] [0103] [Equation 23]
^び -び, =1 0- 1 = 3. 6 ^ Bi-bi, = 1 0- 1 = 3.6
σ, 2. 5 となる。したがって、 ひの値には 3. 6を用いた。  σ, 2.5. Therefore, 3.6 was used for the value of chick.
更に、ポリイミドのヤング率(Ε )=2. 5GPa、 ひ =3. 6として式(13)を計算すると、  Further, when the equation (13) is calculated with the Young's modulus of polyimide (= 2) = 2.5 GPa and H = 3.6,
1  1
[0104] [数 24]  [0104] [Equation 24]
^≥0. 6 6 7 x10"β となる。すなわち、弾性部材の厚さ(t )が 0· 667 10_6111以上(667 111以上)の場 合に式(13)を満たす。したがって、本実施例では、弾性部材の厚さを 680 / mとした ^ ≥0.6 6 7 x10 " β . That is, when the thickness (t) of the elastic member is 0 · 667 10 _6 111 or more (667 111 or more), Equation (13) is satisfied. In the example, the thickness of the elastic member was 680 / m
[0105] また、比較例として、式(13)を満たさない 200 μΐηの厚さのポリエーテルイミドから なるシート状の弾性部材を配置したもの(比較例 1 )及び弾性部材を用いないもの(比 較例 2)についても、インプリントの評価を行った。 [0105] Further, as comparative examples, a sheet-like elastic member made of polyetherimide having a thickness of 200 μΐη that does not satisfy the formula (13) is arranged (Comparative Example 1) and an elastic member that does not use an elastic member (ratio) Comparative Example 2) was also evaluated for imprints.
[0106] それぞれ転写後のシリコン基板上の薄膜の写真を図 7ないし図 9に示す。  FIGS. 7 to 9 show photographs of the thin film on the silicon substrate after the transfer, respectively.
実施例 1の薄膜は、型のパターンがほぼ 100%転写されている(図 7参照)。これに 対し、比較例 1の薄膜は、型のパターンが約 40%しか転写されていなかった(図 8参 照)。また、比較例 2の薄膜は、外周部分を除き型のパターンのほとんどが転写されて いなかった(図 9参照)。 In the thin film of Example 1, the pattern of the mold is almost 100% transferred (see FIG. 7). In contrast, only about 40% of the mold pattern was transferred to the thin film of Comparative Example 1 (see Fig. 8). See). In the thin film of Comparative Example 2, most of the pattern of the mold was not transferred except for the outer peripheral portion (see FIG. 9).
[0107] 以上より、本発明は、パターンを均一かつ高速に転写できることが明らかとなった。 [0107] From the above, it has become clear that the present invention can transfer a pattern uniformly and at high speed.
産業上の利用可能性  Industrial applicability
[0108] 本発明により、型又は基板 (加工対象物)のパターンを均一かつ高速に転写するこ とができる。 According to the present invention, a pattern of a mold or a substrate (processing object) can be transferred uniformly and at high speed.

Claims

請求の範囲 [1] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、前記型を保持する型保持具であって 剛体からなる型保持基体と、 前記型保持基体と前記型との間に配置されると共に、厚 が下記式(1)を満たす ように形成される弾性部材と、 を具備することを特徴とする型保持具。 Claims [1] In a micro-machining apparatus that presses a mold having a predetermined pattern and an object to be processed and transfers the pattern of the mold to the object to be processed, a mold holder that holds the mold. A mold holding base made of a rigid body, and an elastic member that is disposed between the mold holding base and the mold and has a thickness that satisfies the following formula (1): Mold holder to do.
[数 1] ≥ · '式 (1 ) t :前記弾性部材の厚さ  [Equation 1] ≥ · 'Expression (1) t: Thickness of the elastic member
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  λ: The size of the swell of at least one of the mold and the workpiece a: “Difference between maximum pressure and minimum pressure” with respect to the “average pressure” in the contact surface between the mold and the workpiece Ratio
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
[2] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、前記型を保持する型保持具であって 剛体からなる型保持基体と、 [2] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, a mold holder for holding the mold, from a rigid body A mold holding substrate,
前記型保持基体と前記型との間に配置されると共に、厚さ が下記式 (2)を満たす ように形成される弾性部材と、  An elastic member disposed between the mold holding substrate and the mold and having a thickness satisfying the following formula (2):
を具備することを特徴とする型保持具。  A mold holder characterized by comprising:
[数 2] …式 (2 ) [Equation 2] ... Formula ( 2)
Figure imgf000027_0001
Figure imgf000027_0001
t :前記弾性部材の厚さ λ 少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比 t: thickness of the elastic member λ Waviness of at least one of the mold and the workpiece a: ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
[3] 前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成されることを特徴とする 請求項 1又は 2記載の型保持具。 [3] The mold holder according to claim 1 or 2, wherein the elastic member has a thermal conductivity of 0.17 (W / m'K) or more.
[4] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、前記型を保持する型保持具であって 剛体からなる型保持基体と、 [4] In a microfabrication apparatus that presses a mold having a predetermined pattern and an object to be processed and transfers the pattern of the mold to the object to be processed, a mold holder for holding the mold, A mold holding substrate,
前記型保持基体と前記型との間に配置されると共に、熱伝導率が 0. 17 (W/m-K )以上に形成される弾性部材と、  An elastic member disposed between the mold holding base and the mold and having a thermal conductivity of 0.17 (W / m-K) or more;
を具備することを特徴とする型保持具。  A mold holder characterized by comprising:
[5] 前記弾性部材は、ゴム系の接着剤からなることを特徴とする請求項 1ないし 4のいず れかに記載の型保持具。  [5] The mold holder according to any one of claims 1 to 4, wherein the elastic member is made of a rubber adhesive.
[6] 前記弾性部材は磁力を有するように形成されていることを特徴とする請求項 1ないし6. The elastic member is formed so as to have a magnetic force.
5のレ、ずれかに記載の型保持具。 The mold holder as described in 5).
[7] 前記型保持基体は磁石を具備することを特徴とする請求項 1ないし 6のいずれかに 記載の型保持具。 7. The mold holder according to any one of claims 1 to 6, wherein the mold holding base includes a magnet.
[8] 前記弾性部材は、前記型を真空吸着するための溝が形成されていることを特徴とす る請求項 1なレ、し 7のレ、ずれかに記載の型保持具。  8. The mold holder according to claim 1, wherein the elastic member is formed with a groove for vacuum-sucking the mold.
[9] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、 [9] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる型保持基体と、前記型保持基体と前記型との間に配置されると共に、 厚さ tが下記式(3)を満たすように形成される弾性部材とを有し、前記型を保持する A mold holding base made of a rigid body, and an elastic member that is disposed between the mold holding base and the mold and has a thickness t satisfying the following formula (3). Hold
1 1
型保持具を具備することを特徴とする微細加工装置。  A fine processing apparatus comprising a mold holder.
[数 3] rt≥^ - · ·式 (3 ) ti :前記弾性部材の厚さ [Equation 3] r t ≥ ^-··· Equation (3) t i: Thickness of the elastic member
λ 少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  λ Waviness of at least one of the mold and the workpiece a: ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
[10] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、 [10] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる型保持基体と、前記型保持基体と前記型との間に配置されると共に、 厚さ tが下記式 (4)を満たすように形成される弾性部材とを有し、前記型を保持する A mold holding base made of a rigid body, and an elastic member that is disposed between the mold holding base and the mold and has a thickness t satisfying the following formula (4). Hold
1 1
型保持具を具備することを特徴とする微細加工装置。  A fine processing apparatus comprising a mold holder.
[数 4] …式 (4 ) [Equation 4] ... Formula ( 4)
Figure imgf000029_0001
Figure imgf000029_0001
t :前記弾性部材の厚さ  t: thickness of the elastic member
え 少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ a:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  The size of the swell of at least one of the mold and the workpiece a: ratio of the “difference between the maximum pressure and the minimum pressure” to the “average pressure” in the contact surface between the mold and the workpiece
E :弹性部材のヤング率  E: Young's modulus of inertia
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
[11] 前記弾性部材は、熱伝導率が 0. 17 (W/m*K)以上に形成されることを特徴とする 請求項 9又は 10記載の微細加工装置。 11. The microfabrication apparatus according to claim 9, wherein the elastic member has a thermal conductivity of 0.17 (W / m * K) or more.
[12] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、 [12] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる型保持基体と、前記型保持基体と前記型との間に配置されると共に、 熱伝導率が 0. 17 (W/m'K)以上に形成される弾性部材とを有し、前記型を保持 する型保持具を具備することを特徴とする微細加工装置。 A mold holding base composed of a rigid body, and an elastic member disposed between the mold holding base and the mold and having a thermal conductivity of 0.17 (W / m'K) or more, Hold the mold A microfabrication apparatus comprising a mold holder.
[13] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加ェ装置において、前記加ェ対象物を保持する加ェ対象 物保持具であって、  [13] In a fine processing apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the processing object, the processing object that holds the processing object A holding tool,
剛体からなる加工対象物保持基体と、  A workpiece holding substrate made of a rigid body;
前記加工対象物保持基体と前記加工対象物との間に配置されると共に、厚 が  It is disposed between the workpiece holding base and the workpiece, and the thickness is
2 下記式 (5)を満たすように形成される弾性部材と、  2 an elastic member formed to satisfy the following formula (5);
を具備することを特徴とする加工対象物保持具。  A workpiece holding tool characterized by comprising:
[数 5] r2≥ · '式 (5 ) t :前記弾性部材の厚さ [Equation 5] r 2 ≥ · '(5) t: thickness of the elastic member
2  2
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ λ: The size of the undulation of at least one of the mold and the workpiece
2 2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
[14] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加ェ装置において、前記加ェ対象物を保持する加ェ対象 物保持具であって、  [14] In a fine processing apparatus that presses a mold having a predetermined pattern and an object to be processed to transfer the pattern of the mold to the object to be processed, the object to be processed that holds the object to be processed A holding tool,
剛体からなる加工対象物保持基体と、  A workpiece holding substrate made of a rigid body;
前記加工対象物保持基体と前記加工対象物との間に配置されると共に、厚 が  It is disposed between the workpiece holding base and the workpiece, and the thickness is
2 下記式 (6)を満たすように形成される弾性部材と、  2 an elastic member formed to satisfy the following formula (6);
を具備することを特徴とする加工対象物保持具。  A workpiece holding tool characterized by comprising:
[数 6]  [Equation 6]
f2≥ fe. . '式 (6 ) f2 ≥ fe.. 'Equation (6)
β σζ β σ2 t :前記弾性部材の厚さ λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさβ σ ζ β σ 2 t: thickness of the elastic member λ: The size of the undulation of at least one of the mold and the workpiece
2 2
i3:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  i3: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
E :弹性部材のヤング率  E: Young's modulus of inertia
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
[15] 前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成されることを特徴とする 請求項 13又は 14記載の加工対象物保持具。  15. The workpiece holding tool according to claim 13 or 14, wherein the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
[16] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加ェ装置において、前記加ェ対象物を保持する加ェ対象 物保持具であって、 [16] In a fine processing apparatus that presses a mold having a predetermined pattern and an object to be processed to transfer the pattern of the mold to the object to be processed, the object to be processed that holds the object to be processed A holding tool,
剛体からなる加工対象物保持基体と、  A workpiece holding substrate made of a rigid body;
前記加工対象物保持基体と前記加工対象物との間に配置されると共に、熱伝導率 が 0. 17 (W/m*K)以上に形成される弾性部材と、  An elastic member disposed between the workpiece holding substrate and the workpiece and having a thermal conductivity of 0.17 (W / m * K) or more;
を具備することを特徴とする加工対象物保持具。  A workpiece holding tool characterized by comprising:
[17] 前記弾性部材は、ゴム系の接着剤からなることを特徴とする請求項 13ないし 16のい ずれかに記載の加工対象物保持具。  17. The workpiece holder according to claim 13, wherein the elastic member is made of a rubber adhesive.
[18] 前記弾性部材は、前記加工対象物を真空吸着するための溝が形成されていることを 特徴とする請求項 13ないし 17のいずれかに記載の加工対象物保持具。 18. The processing object holder according to any one of claims 13 to 17, wherein the elastic member is formed with a groove for vacuum-sucking the processing object.
[19] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、 [19] In a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる加工対象物保持基体と、前記加工対象物保持基体と前記加工対象 物との間に配置されると共に、厚 が下記式 (7)を満たすように形成される弾性部  A processing object holding base made of a rigid body, and an elastic portion that is disposed between the processing object holding base and the processing target and has a thickness that satisfies the following formula (7):
2  2
材とを有し、前記加工対象物を保持する加工対象物保持具を具備することを特徴と する微細加工装置。  And a processing object holder for holding the processing object.
[数 7] 2≥ · ·式 (7 )  [Equation 7] 2≥ · · Equation (7)
&。2  &. 2
t :前記弾性部材の厚さ λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさt: thickness of the elastic member λ: The size of the undulation of at least one of the mold and the workpiece
2 2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
[20] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、  [20] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる加工対象物保持基体と、前記加工対象物保持基体と前記加工対象 物との間に配置されると共に、厚 が下記式 (8)を満たすように形成される弾性部  A workpiece holding base made of a rigid body, and an elastic portion that is disposed between the workpiece holding base and the workpiece and has a thickness that satisfies the following formula (8):
2  2
材とを有し、前記加工対象物を保持する加工対象物保持具を具備することを特徴と する微細加工装置。  And a processing object holder for holding the processing object.
[数 8] . . '式 (8 ) [Equation 8].. Formula (8)
Figure imgf000032_0001
Figure imgf000032_0001
t :前記弾性部材の厚さ  t: thickness of the elastic member
2  2
λ :少なくとも前記型および前記加工対象物のいずれか一方のうねりの大きさ  λ: The size of the undulation of at least one of the mold and the workpiece
2  2
β:前記型と前記加工対象物との接触面内の「平均圧力」に対する「最大圧力と最小 圧力の差」との比  β: Ratio of “difference between maximum pressure and minimum pressure” to “average pressure” in the contact surface between the mold and the workpiece
Ε :弹性部材のヤング率  Ε: Young's modulus of the inertia member
2  2
σ :前記型と前記加工対象物との間の平均圧力  σ: average pressure between the mold and the workpiece
2  2
[21] 前記弾性部材は、熱伝導率が 0. 17 (W/m'K)以上に形成されることを特徴とする 請求項 19又は 20記載の微細加工装置。  21. The microfabrication apparatus according to claim 19, wherein the elastic member has a thermal conductivity of 0.17 (W / m′K) or more.
[22] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、 [22] In a microfabrication apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece.
剛体からなる加工対象物保持基体と、熱伝導率が 0. 17 (W/m*K)以上に形成さ れると共に、前記加工対象物保持基体と前記加工対象物との間に配置される弾性部 材と、を有し、前記加工対象物を保持する加工対象物保持具を具備することを特徴 とする微細加工装置。 A workpiece holding base made of a rigid body and an elastic member having a thermal conductivity of 0.17 (W / m * K) or more and disposed between the workpiece holding base and the workpiece. And a processing target object holder for holding the processing target object.
[23] 所定のパターンを有する型と加工対象物とを押圧して、前記型のパターンを前記加 ェ対象物に転写する微細加工装置において、前記型を保持する型保持具への型取 付方法であって、 [23] In a micromachining apparatus that presses a mold having a predetermined pattern and a workpiece to transfer the pattern of the mold to the workpiece, the mold is attached to a mold holder that holds the mold A method,
ゴム系の接着剤を用いて前記型を前記型保持具に取り付けることを特徴とする型 取付方法。  A mold attaching method, wherein the mold is attached to the mold holder using a rubber adhesive.
[24] 前記ゴム系の接着剤は、前記型と前記加工対象物とを押圧する際の処理温度より 高い温度で接着性を失うものであることを特徴とする請求項 5記載の型保持具。  24. The mold holder according to claim 5, wherein the rubber-based adhesive loses adhesiveness at a temperature higher than a processing temperature when pressing the mold and the workpiece. .
[25] 前記ゴム系の接着剤は、前記型と前記加工対象物とを押圧する際の処理温度より 高い温度で接着性を失うものであることを特徴とする請求項 17記載の加工対象物保 持具。  [25] The processing object according to claim 17, wherein the rubber-based adhesive loses adhesiveness at a temperature higher than a processing temperature when pressing the mold and the processing object. Holding equipment.
[26] 前記ゴム系の接着剤は、前記型と前記加工対象物とを押圧する際の処理温度より 高い温度で接着性を失うものであることを特徴とする請求項 23記載の型取付方法。  26. The mold attachment method according to claim 23, wherein the rubber adhesive loses adhesiveness at a temperature higher than a processing temperature when pressing the mold and the workpiece. .
PCT/JP2006/321009 2005-10-24 2006-10-23 Die holding assembly, fabrication object holding assembly, microfabrication apparatus and method of mounting die WO2007049530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542551A JPWO2007049530A1 (en) 2005-10-24 2006-10-23 Mold holder, workpiece holder, micro-machining device, and mold mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005308504 2005-10-24
JP2005-308504 2005-10-24

Publications (1)

Publication Number Publication Date
WO2007049530A1 true WO2007049530A1 (en) 2007-05-03

Family

ID=37967642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321009 WO2007049530A1 (en) 2005-10-24 2006-10-23 Die holding assembly, fabrication object holding assembly, microfabrication apparatus and method of mounting die

Country Status (2)

Country Link
JP (1) JPWO2007049530A1 (en)
WO (1) WO2007049530A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006620A (en) * 2007-06-29 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Stamper for imprinting and its manufacturing method
WO2009081586A1 (en) 2007-12-26 2009-07-02 Maruzen Petrochemical Co., Ltd. Imprinting device and imprinting method
JP2009248503A (en) * 2008-04-09 2009-10-29 Hitachi High-Technologies Corp Microstructure transfer device
WO2010001538A1 (en) * 2008-06-30 2010-01-07 株式会社日立製作所 Fine structure and stamper for imprinting
JP2010036514A (en) * 2008-08-07 2010-02-18 Hitachi High-Technologies Corp Nanoimprint stamper, and microfine structure transfer device using the same
JP2010265340A (en) * 2009-05-12 2010-11-25 Nitta Ind Corp Pressure-sensitive adhesive sheet for chucking and pressure-sensitive adhesive tape for chucking
JP2011001520A (en) * 2009-06-22 2011-01-06 Nitta Corp Adhesive sheet and tape for fixing mold
CN102126286A (en) * 2009-12-15 2011-07-20 株式会社光成技术 Method and apparatus for pressing nickel base thin film for forming melamine sheet
JP2012160635A (en) * 2011-02-02 2012-08-23 Canon Inc Retainer, imprint apparatus using it and method of manufacturing article
JP2014522745A (en) * 2011-06-29 2014-09-08 フエック レイニッシェ ゲーエムベーハー Press sheet or endless belt with sandwich structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203398A (en) * 2001-10-30 2003-07-18 Sony Corp Method of producing information recording medium, production apparatus and information recording medium
JP2004034300A (en) * 2002-06-28 2004-02-05 Elionix Kk Micro-extruder
JP2004074770A (en) * 2002-06-18 2004-03-11 Meiki Co Ltd Press molding apparatus and control method therefor
JP2005052841A (en) * 2003-08-01 2005-03-03 Meisho Kiko Kk High precision press
JP2005178236A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Method for molding article having minute shape and molding machine
JP2006048881A (en) * 2004-08-09 2006-02-16 Toshiba Corp Device and method for imprinting
JP2006326927A (en) * 2005-05-24 2006-12-07 Hitachi High-Technologies Corp Imprinting device and fine structure transferring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203398A (en) * 2001-10-30 2003-07-18 Sony Corp Method of producing information recording medium, production apparatus and information recording medium
JP2004074770A (en) * 2002-06-18 2004-03-11 Meiki Co Ltd Press molding apparatus and control method therefor
JP2004034300A (en) * 2002-06-28 2004-02-05 Elionix Kk Micro-extruder
JP2005052841A (en) * 2003-08-01 2005-03-03 Meisho Kiko Kk High precision press
JP2005178236A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Method for molding article having minute shape and molding machine
JP2006048881A (en) * 2004-08-09 2006-02-16 Toshiba Corp Device and method for imprinting
JP2006326927A (en) * 2005-05-24 2006-12-07 Hitachi High-Technologies Corp Imprinting device and fine structure transferring method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006620A (en) * 2007-06-29 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Stamper for imprinting and its manufacturing method
WO2009081586A1 (en) 2007-12-26 2009-07-02 Maruzen Petrochemical Co., Ltd. Imprinting device and imprinting method
JP2009248503A (en) * 2008-04-09 2009-10-29 Hitachi High-Technologies Corp Microstructure transfer device
WO2010001538A1 (en) * 2008-06-30 2010-01-07 株式会社日立製作所 Fine structure and stamper for imprinting
JP2010036514A (en) * 2008-08-07 2010-02-18 Hitachi High-Technologies Corp Nanoimprint stamper, and microfine structure transfer device using the same
JP2010265340A (en) * 2009-05-12 2010-11-25 Nitta Ind Corp Pressure-sensitive adhesive sheet for chucking and pressure-sensitive adhesive tape for chucking
JP2011001520A (en) * 2009-06-22 2011-01-06 Nitta Corp Adhesive sheet and tape for fixing mold
CN102126286A (en) * 2009-12-15 2011-07-20 株式会社光成技术 Method and apparatus for pressing nickel base thin film for forming melamine sheet
JP2012160635A (en) * 2011-02-02 2012-08-23 Canon Inc Retainer, imprint apparatus using it and method of manufacturing article
JP2014522745A (en) * 2011-06-29 2014-09-08 フエック レイニッシェ ゲーエムベーハー Press sheet or endless belt with sandwich structure

Also Published As

Publication number Publication date
JPWO2007049530A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
WO2007049530A1 (en) Die holding assembly, fabrication object holding assembly, microfabrication apparatus and method of mounting die
KR101850156B1 (en) Reinforced composite stamp for dry transfer printing of semiconductor elements
JP5039145B2 (en) Method and apparatus for applying a sheet to a substrate
WO2007099907A1 (en) Imprinting mold and method of imprinting
SE515607C2 (en) Device and method for fabrication of structures
JP4835277B2 (en) Pattern forming body manufacturing method and imprint transfer apparatus
EP1710624A2 (en) Methods of fabricating nano-scale and micro-scale mold for nano-imprint, and mold usage on nano-imprinting equipment
JPWO2004062886A1 (en) Pattern forming apparatus, pattern forming method, and pattern forming system
JP2006289684A (en) Microprocessing mold
TW200902332A (en) Imprinting jig and imprinting apparatus
JP2010052288A (en) Fine structure transfer mold and fine structure transfer device
WO2004093171A1 (en) Pattern forming apparatus and pattern forming method
JP2006289505A (en) Processing device capable of controlling relative displacement between mold and workpiece or the like
JP4784601B2 (en) Fine structure processing method and fine structure processing apparatus
WO2006082867A1 (en) Hybrid contacting/detaching system
JP2009050919A (en) Microstructure and its manufacturing method
JP2006327007A (en) Mold for microfabrication
WO2007029524A1 (en) Method of microfabrication under controlled pressure and microfabrication apparatus
JP2007276410A (en) Processing object holding device and microfabrication apparatus provided with the same, and processing object for microfabrication
Tu et al. Droplet spreading nanoimprinting method for micro-/nano-fabrication
JP4244207B2 (en) Press transfer mold with buffer layer and press transfer method
TWI768116B (en) Master for electroforming and method for manufacturing electroforming mold using the master
JP2008006586A (en) Lamination type fine processing apparatus and lamination unit
JP5061269B2 (en) Molding stamper and molding apparatus
JP5193662B2 (en) Microstructure transfer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822030

Country of ref document: EP

Kind code of ref document: A1