JP2006289684A - Microprocessing mold - Google Patents

Microprocessing mold Download PDF

Info

Publication number
JP2006289684A
JP2006289684A JP2005111039A JP2005111039A JP2006289684A JP 2006289684 A JP2006289684 A JP 2006289684A JP 2005111039 A JP2005111039 A JP 2005111039A JP 2005111039 A JP2005111039 A JP 2005111039A JP 2006289684 A JP2006289684 A JP 2006289684A
Authority
JP
Japan
Prior art keywords
mold
pedestal
thin piece
diamond
microfabrication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005111039A
Other languages
Japanese (ja)
Other versions
JP4546315B2 (en
Inventor
Takayuki Hirano
貴之 平野
Takashi Kohori
隆 古保里
Takeshi Tachibana
武史 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005111039A priority Critical patent/JP4546315B2/en
Publication of JP2006289684A publication Critical patent/JP2006289684A/en
Application granted granted Critical
Publication of JP4546315B2 publication Critical patent/JP4546315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microprocessing mold constituted so as to be easily supported on a press machine in forming a microstructure on a substrate by a nano-imprinting method, a hot embossing method or the like, preventing the deformation or distortion caused by pressure and heating at the time of pressing and capable of performing microprocessing with high precision at a low cost. <P>SOLUTION: The microprocessing mold is constituted by joining a thin piece mold 2 having a microstructure formed thereto and a pedestal 3, which is composed of a material of which the coefficient of thermal expansion is same to or almost equal to that of the material of the thin piece mold 2 and thicker than the thin piece mold 2, through a thin film 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細な凹凸パターンを半導体などの被加工基板の表面に転写して微細加工を行うための微細加工用型に関する。     The present invention relates to a microfabrication mold for performing microfabrication by transferring a fine concavo-convex pattern onto the surface of a substrate such as a semiconductor.

近年、高密度光記録媒体や光学素子などを製造するために、微細な凹凸パターンの形成を低コストで行うための新しい技術として、いわゆるナノインプリント技術が注目されている。この技術は、基板上に形成したいパターンと同じパターンの凹凸を有するスタンパ(型)を、被転写基板表面に形成された樹脂などの材料に対して型押しすることで所定のパターンを転写するものである(特許文献1,2、非特許文献1など参照)。   In recent years, a so-called nanoimprint technique has attracted attention as a new technique for forming a fine concavo-convex pattern at a low cost in order to produce a high-density optical recording medium or an optical element. In this technology, a predetermined pattern is transferred by embossing a stamper (mold) having the same pattern as the pattern to be formed on the substrate against a material such as a resin formed on the surface of the substrate to be transferred. (See Patent Documents 1 and 2, Non-Patent Document 1, etc.).

特に特許文献2や非特許文献1に記載のナノインプリント技術によれば、シリコンウエハをスタンパ(型)として用い、25nm以下の微細構造(微細パターン)を転写により形成可能であるとしている。   In particular, according to the nanoimprint technology described in Patent Document 2 and Non-Patent Document 1, a silicon wafer is used as a stamper (mold), and a fine structure (fine pattern) of 25 nm or less can be formed by transfer.

また、同じく高密度光記録媒体や光学素子などを製造するために、微細な凹凸パターンをガラスや樹脂の構造体の表面に形成するいわゆるホットエンボシングの技術領域でも同様の微細な構造の型をプレス形成する技術が注目されている。   Similarly, in order to manufacture high-density optical recording media and optical elements, a mold with the same fine structure is used in the so-called hot embossing technology area in which a fine uneven pattern is formed on the surface of a glass or resin structure. The technology for press forming is drawing attention.

これらナノインプリントやホットエンボシングと呼ばれる技術では、いかに低コストで微細構造の型(以下、「微細加工用型」ともいう。)を作り、これをいかに精度良く基板に転写し、かつ繰り返し使用できることが最終製品の品質とコストをきめる重要なポイントとなる。数十〜数百nmサイズの微細構造をプレス形成するにあたっては精密な制御が必要であるが、プレス時には圧力とともに熱も印加するため、加熱時の型の変形や歪み、位置ずれなどが問題となる。また、プレス時に圧力を均一に印加すること、また成型物から型を綺麗に引き剥がすことなども重要な技術ポイントであり、たとえば特許文献3のような提案もなされている。
米国特許5,259,926号公報 米国特許5,772,905号公報 特開2004−288845号公報 S.Y.Chou et al.,J.Vac.Sci.Technol.B,vol.14,No.6,p.4129(1996)
With these technologies called nanoimprinting and hot embossing, it is possible to produce a microstructured mold (hereinafter also referred to as “microfabrication mold”) at a low cost, transfer it to a substrate with high accuracy, and use it repeatedly. It is an important point that determines the quality and cost of the final product. Precise control is necessary to press-form a fine structure of several tens to several hundreds of nanometers in size, but heat is applied together with pressure during pressing, so there are problems such as mold deformation, distortion, and misalignment during heating. Become. Further, it is important to apply pressure uniformly during pressing and to cleanly remove the mold from the molded product. For example, Patent Document 3 has also been proposed.
US Pat. No. 5,259,926 US Pat. No. 5,772,905 JP 2004-288845 A S. Y. Chou et al. , J .; Vac. Sci. Technol. B, vol. 14, no. 6, p. 4129 (1996)

これらの技術に用いられる型については、半導体の微細加工技術、フォトリソグラフィ、電子ビーム描画、ドライエッチング等の方法で形成されることが主であり、これらの技術との相性から、数百μm程度の厚さのシリコンウエハや、石英、メッキ金属材料などが用いられる。   The molds used in these technologies are mainly formed by a method such as semiconductor microfabrication technology, photolithography, electron beam drawing, dry etching, etc. From the compatibility with these technologies, about several hundred μm A silicon wafer, quartz, or a plated metal material is used.

これらは総じて薄く、均等に圧力を印加することが難しいだけでなく、型の支持も困難である。   These are generally thin, and it is difficult not only to apply pressure evenly but also to support the mold.

上記特許文献3ではNi等の金属材料からなる型を弾性体などを介して支持することが提案されているが、プレス時における圧力や熱による型の変形に対する考慮はなんらなされていない。   In Patent Document 3, it is proposed to support a mold made of a metal material such as Ni via an elastic body. However, no consideration is given to deformation of the mold due to pressure or heat during pressing.

例えば樹脂を加工する(樹脂に転写する)場合でも10MPa以上の圧力が要求されるが、厚さ500μm、長さ10mm程度のシリコン製の型に対して、型の両端部のみを支えてこの圧力を印加すると数百μm程度のたわみが生じてしまうことが簡単な計算によって求めることができる。   For example, even when a resin is processed (transferred to a resin), a pressure of 10 MPa or more is required, but for a silicon mold having a thickness of about 500 μm and a length of about 10 mm, this pressure is supported by supporting both ends of the mold. It can be determined by a simple calculation that a deflection of about several hundreds of μm will occur when a voltage is applied.

また、1mm以下の薄い型を用いるとプレス装置との固定が困難であり、成形物からの引き剥がしの際にも問題が生じる。仮に型とプレス装置との固定に接着剤のようなものを用いたとしても加圧の際には圧力の不均一や取付け精度の劣化を回避することが困難である。   Further, when a thin mold of 1 mm or less is used, it is difficult to fix it to the press apparatus, and a problem arises when peeling from the molded product. Even if an adhesive or the like is used to fix the mold and the press device, it is difficult to avoid uneven pressure and deterioration of mounting accuracy during pressurization.

また型自体が薄いために、接着剤層やプレス装置の固定部との熱膨張係数の差により型に反りなどが生じ、プレスの精度を劣化させる。   Further, since the mold itself is thin, the mold is warped due to the difference in thermal expansion coefficient from the adhesive layer and the fixing portion of the press apparatus, and the press accuracy is deteriorated.

本発明は上記のような問題を回避するためになされたものであり、ナノインプリント、ホットエンボシング等の方法により基板(被成型材料)上に微細構造を形成するにあたり、プレス装置に支持しやすく、かつプレス時における加圧および加熱による変形や歪みを防止し、高精度かつ低コストで加工しうる微細加工用型を提供することを目的とする。   The present invention has been made in order to avoid the above problems, and in forming a fine structure on a substrate (molded material) by a method such as nanoimprinting or hot embossing, it is easy to support the pressing device, It is another object of the present invention to provide a fine processing mold that can prevent deformation and distortion due to pressurization and heating during pressing and can be processed with high accuracy and low cost.

請求項1に記載の発明は、微細な構造が形成された薄片型と、この薄片型の材料と熱膨張係数が同一または略同等の材料からなり前記薄片型より厚みの大きい台座とを備え、前記薄片型と前記台座とが接合されてなることを特徴とする微細加工用型である。   The invention according to claim 1 includes a thin piece mold in which a fine structure is formed, and a pedestal made of a material having the same or substantially the same thermal expansion coefficient as that of the thin piece mold and having a thickness larger than that of the thin piece mold, The thin processing mold and the pedestal are joined to form a microfabrication mold.

請求項2に記載の発明は、前記薄片型および前記台座が、ともに無機材料、またはいずれか一方が無機材料からなる請求項1に記載の微細加工用型である。   The invention according to claim 2 is the microfabrication mold according to claim 1, wherein the thin piece mold and the pedestal are both made of an inorganic material, or one of them is made of an inorganic material.

請求項3に記載の発明は、前記薄片型が、シリコン、石英、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボンおよびガラス状カーボンよりなる群から選ばれた1種の材料からなる請求項1に記載の微細加工用型である。   According to a third aspect of the present invention, in the first aspect, the flake mold is made of one material selected from the group consisting of silicon, quartz, glassy carbon, diamond, diamond-like carbon, and glassy carbon. It is a mold for fine processing.

請求項4に記載の発明は、前記台座が、シリコン、石英、ホウ珪酸ガラス、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボン、ガラス状カーボンおよび窒化硼素よりなる群から選ばれた1種の材料からなる請求項1または3に記載の微細加工用型である。   According to a fourth aspect of the invention, the pedestal is made of one material selected from the group consisting of silicon, quartz, borosilicate glass, glassy carbon, diamond, diamond-like carbon, glassy carbon, and boron nitride. It is a type | mold for microfabrication of Claim 1 or 3.

請求項5に記載の発明は、前記薄片型と前記台座とが、SiO2を主成分とする薄膜を介して接合されてなる請求項1〜4のいずれか1項に記載の微細加工用型である。 According to a fifth aspect of the present invention, in the microfabrication mold according to any one of the first to fourth aspects, the thin piece mold and the pedestal are joined via a thin film containing SiO 2 as a main component. It is.

請求項6に記載の発明は、前記薄片型と前記台座とが、フッ酸接合により接合されてなる請求項1〜5のいずれか1項に記載の微細加工用型である。   The invention according to claim 6 is the mold for fine processing according to any one of claims 1 to 5, wherein the thin piece mold and the pedestal are joined by hydrofluoric acid joining.

請求項7に記載の発明は、前記薄片型はダイヤモンドからなり、前記台座上に気相合成により形成されてなる請求項1に記載の微細加工用型である。   The invention according to claim 7 is the mold for microfabrication according to claim 1, wherein the flake mold is made of diamond and formed on the pedestal by vapor phase synthesis.

請求項8に記載の発明は、前記台座は、その厚み方向の少なくとも1つの方位の断面形状が、前記薄片型との接合面とは反対側の面に向かって裾広がりの形状である請求項1〜7のいずれか1項に記載の微細加工用型である。
ここに「方位」とは、台座の厚み方向に対して垂直な平面上における方角を意味するものとする。
In the invention according to claim 8, the pedestal has a shape in which the cross-sectional shape in at least one direction in the thickness direction is widened toward the surface opposite to the joint surface with the thin piece mold. It is a type | mold for microfabrication of any one of 1-7.
Here, the “azimuth” means a direction on a plane perpendicular to the thickness direction of the pedestal.

本発明によれば、薄片型と、これより厚みの大きい台座とを直接または薄膜を介して接合した構造とすることにより、プレス装置に支持しやすくなり、さらに熱膨張係数が同一または略同等の材料で薄片型と台座とを作成したことにより、プレス時における加熱による変形や歪みを効果的に防止できるようになった。その結果、高精度かつ低コストで基板を加工しうる微細加工用型を提供することが可能となった。   According to the present invention, by adopting a structure in which a thin piece mold and a pedestal having a thickness larger than this are joined directly or via a thin film, it becomes easier to support the press apparatus, and the thermal expansion coefficient is the same or substantially the same. By creating a thin piece mold and a pedestal using materials, it has become possible to effectively prevent deformation and distortion due to heating during pressing. As a result, it has become possible to provide a fine processing mold capable of processing a substrate with high accuracy and low cost.

〔実施形態〕
以下、本発明に係る微細加工用型の実施形態を図に基づいて説明する。
Embodiment
Embodiments of a micromachining die according to the present invention will be described below with reference to the drawings.

(1)本発明に係る微細加工用型の構成
図1は、本発明に係る微細加工用型の一実施形態の構成を示す縦断面図であり、微細加工用型1は、薄片型2と台座3とが薄膜4を介して接合され形成されている。
(1) Configuration of Micromachining Mold According to the Present Invention FIG. 1 is a longitudinal sectional view showing a configuration of an embodiment of a micromachining mold according to the present invention. A pedestal 3 is joined and formed via a thin film 4.

薄片型2は、例えばシリコンウエハ上にフォトリソグラフィの方法を用いて微細なパターン(微細構造)を形成し、これをドライエッチング法により加工したのち、所定の大きさに切り出して作成する。半導体の製造ラインのように大口径のシリコンウエハ上に多数の薄片型2を一度に形成し、後で切り出すことで薄片型2の製造コストを下げることが可能となる(後述の実施例1参照)。   For example, the thin mold 2 is formed by forming a fine pattern (fine structure) on a silicon wafer by using a photolithography method, processing the dry pattern by a dry etching method, and then cutting it into a predetermined size. It is possible to reduce the manufacturing cost of the flake mold 2 by forming a large number of flake molds 2 on a large-diameter silicon wafer at a time like a semiconductor production line and cutting it later (see Example 1 described later). ).

なお、本発明は、薄片型2の厚みが1mm以下の場合に特に好適である。   In addition, this invention is especially suitable when the thickness of the thin piece type | mold 2 is 1 mm or less.

台座3は、例えば薄片型2と同じ材料(すなわち、同一の熱膨張係数の材料)である単結晶シリコンのインゴットから、薄片型2より厚みが大きくなるように切り出して作成する。台座3の方は十分な平面度という要求を満たせば機械加工で容易に作成することができる。   The pedestal 3 is formed by cutting a single crystal silicon ingot, which is the same material as the thin piece mold 2 (that is, a material having the same thermal expansion coefficient), for example, so as to be thicker than the thin piece mold 2. The pedestal 3 can be easily created by machining if it satisfies the requirement of sufficient flatness.

薄片型2とそれより分厚い台座3とを張り合わせた構造を採用することで、プレス時の圧力に耐える機械的強度を保持させることができるとともに、プレス装置への支持および被成型材料からの剥離を容易とする機能を台座3の部分に持たせることが可能となる。   By adopting a structure in which the flake mold 2 and a thicker base 3 are bonded together, it is possible to maintain the mechanical strength that can withstand the pressure during pressing, and to support the pressing device and peel it from the molding material. It becomes possible to give the pedestal 3 a function that makes it easy.

例えば、台座3を機械加工により、図1に示すように、厚み方向のある方位の断面形状を裾広がりの形状、例えば台形状に形成するのが好ましい。これにより、後述するように、プレス装置に容易かつ確実に支持することができる。   For example, it is preferable to form the pedestal 3 by machining so that the cross-sectional shape in a certain direction in the thickness direction is a flared shape, for example, a trapezoidal shape, as shown in FIG. Thereby, as will be described later, it can be easily and reliably supported by the pressing device.

薄膜4は、例えば台座3の上面(面積の小さい側の水平面)上にCVD法によりSiO2層を形成して作成する。そして、薄片型3の反凹凸パターン側の表面と薄膜4の表面とを例えばフッ酸接合法にて接合することにより、微細加工用型1が得られる。 The thin film 4 is formed by, for example, forming an SiO 2 layer by the CVD method on the upper surface (horizontal surface on the side having a smaller area) of the pedestal 3. And the mold 1 for microfabrication is obtained by joining the surface of the thin piece mold 3 on the anti-concave / convex pattern side and the surface of the thin film 4 by, for example, a hydrofluoric acid joining method.

上記のように薄片型2と台座3との界面にSiO2(石英)からなる薄膜4を形成し、フッ酸接合を行うことにより室温〜80℃程度で加圧するだけで容易に接合ができる。 As described above, the thin film 4 made of SiO 2 (quartz) is formed at the interface between the thin piece mold 2 and the pedestal 3 and the hydrofluoric acid bonding is performed, so that the bonding can be easily performed only by pressing at about room temperature to 80 ° C.

この場合、微細パターンが形成された面はフォトレジスト等の樹脂で保護し、接合後に有機溶媒で取り除くことでパターン面を保護しつつ接合が可能となる。薄片型2と台座3との界面に薄膜4を形成しても、これが非常に薄い場合には反りなどの問題が生じることがなく、機械的精度を劣化することがない。   In this case, the surface on which the fine pattern is formed is protected with a resin such as a photoresist, and the bonding can be performed while protecting the pattern surface by removing with an organic solvent after the bonding. Even if the thin film 4 is formed at the interface between the flake mold 2 and the pedestal 3, if it is very thin, problems such as warping do not occur, and the mechanical accuracy does not deteriorate.

(2)本発明に係る微細加工用型を用いたパターン形成方法
図2は、本発明に係る微細加工用型を用いて被成型材料にパターンを形成する方法を説明するための縦断面図である。
(2) Pattern Forming Method Using Micromachining Mold According to the Present Invention FIG. 2 is a longitudinal sectional view for explaining a method for forming a pattern on a molding material using the micromachining mold according to the present invention. is there.

まず、上記のようにして得られた微細加工用型1を、ヒータ(図示せず)が埋め込まれたプレス装置5のヘッド5aに装着し、一方、プレス装置5の固定台5bには加工対象である被成型材料6を固定する(同図(a)参照)。そして、上記ヒータをオンにして所定温度に加熱したヘッド5aを降下させて薄片型2を被成型材料6に押し付け、圧力および温度を印加する(同図(b)参照)。ついで、薄片型2を被成型材料6に押し付けたまま上記ヒータをオフにして室温まで冷却した後、ヘッド5aを上昇させて抜重することにより被成型材料6に微細パターンが転写される(同図(c)参照)。   First, the micromachining die 1 obtained as described above is mounted on the head 5a of the pressing device 5 in which a heater (not shown) is embedded, while the fixed base 5b of the pressing device 5 is to be processed. The material 6 to be molded is fixed (see FIG. 5A). Then, the heater 5 is turned on, the head 5a heated to a predetermined temperature is lowered, the thin piece mold 2 is pressed against the material 6 to be molded, and pressure and temperature are applied (see FIG. 5B). Next, the heater 2 is turned off and cooled to room temperature while pressing the thin piece mold 2 against the molding material 6, and then the head 5 a is lifted and extracted to transfer a fine pattern to the molding material 6 (the same figure). (See (c)).

台座3は厚み方向のある方位の断面形状が薄片型2との接合面(上面)3aとは反対側の面(底面)3bに向かって裾広がりの台形状になっている。このため、同図(a)に示すように、例えばヘッド5aにネジで固定された固定部7aとバネに接続された押付け部7bからなる支持手段7で台座3の断面台形状の部分を両側から支持することにより簡単かつ確実に台座3をプレス装置5のヘッド5aに支持することができる、さらに、プレス後の引き剥がしも、下記の変形防止効果と相まって高精度に行うことができる。   The pedestal 3 has a trapezoidal shape in which the cross-sectional shape in a certain direction in the thickness direction spreads toward the surface (bottom surface) 3b opposite to the joint surface (upper surface) 3a with the thin mold 2. For this reason, as shown in FIG. 2A, for example, the trapezoidal section of the pedestal 3 is formed on both sides by the supporting means 7 including a fixing portion 7a fixed to the head 5a with a screw and a pressing portion 7b connected to a spring. It is possible to easily and reliably support the pedestal 3 on the head 5a of the pressing device 5, and to peel off after pressing can be performed with high accuracy in combination with the following deformation preventing effect.

また、薄片型2と台座3とに同じ材料(本例ではシリコン)を用いたので、両者の熱膨張率が同一であることから、プレス時の加熱によって薄片型2および/または台座3に反りも生じにくく、薄片型−台座間の剥離も生じにくい。   In addition, since the same material (silicon in this example) is used for the thin piece mold 2 and the pedestal 3, both have the same coefficient of thermal expansion, so that the thin piece mold 2 and / or the pedestal 3 are warped by heating during pressing. Is also unlikely to occur, and peeling between the flake mold and the pedestal is unlikely to occur.

さらに、シリコンは熱膨張係数が2〜4ppm/℃と小さく、熱伝導率も高いため、もともと熱による変形や歪みが生じにくく、ナノインプリント技術の型材料として優れた特性を有する材料として知られている。   Furthermore, since silicon has a low coefficient of thermal expansion of 2 to 4 ppm / ° C. and high thermal conductivity, it is not easily deformed or distorted by heat and is known as a material having excellent characteristics as a mold material for nanoimprint technology. .

したがって、本実施形態に係る微細加工用型を用いることにより、プレス時における熱による変形や歪みを効果的に防止でき、高精度かつ低コストで微細構造の基板を加工できる。   Therefore, by using the microfabrication mold according to this embodiment, deformation and distortion due to heat during pressing can be effectively prevented, and a substrate having a fine structure can be processed with high accuracy and low cost.

〔変形例〕
上記実施形態では、薄片型および台座は、熱膨張係数が同一の材料(すなわち、同一の材料)を用いる例を示したが、薄片型および/または台座に実質的に変形や歪みが生じない限り、熱膨張係数が略同等の材料を用いてもよい。ここに、熱膨張係数が略同等の材料とは、薄片型の材料の熱膨張係数に対して、台座の材料の熱膨張係数が±2ppm/℃以内の材料をいう。なお、熱膨張係数の測定法としては、JIS R1618「ファインセラミックスの熱機械分析による熱膨張の測定法」が挙げられる。
[Modification]
In the above embodiment, the thin piece mold and the pedestal are examples using the same thermal expansion coefficient (that is, the same material). However, as long as the thin flake mold and / or the pedestal are not substantially deformed or distorted. Alternatively, a material having substantially the same thermal expansion coefficient may be used. Here, the material having substantially the same thermal expansion coefficient means a material in which the thermal expansion coefficient of the pedestal material is within ± 2 ppm / ° C. with respect to the thermal expansion coefficient of the thin piece type material. In addition, as a measuring method of a thermal expansion coefficient, JIS R1618 "The measuring method of the thermal expansion by the thermomechanical analysis of fine ceramics" is mentioned.

また、熱膨張係数は温度によって変化するが、使用温度範囲(プレス時の加熱温度〜冷却後の室温までの範囲)において熱膨張係数の差が小さい材料を選択するのが望ましく、薄片型と台座との熱膨張係数の差が1ppm/℃以下であることが好ましい。なお、プレス時の加熱温度は、例えば、微細加工の被成型材料が樹脂の場合100〜150℃程度であり、微細加工の被成型材料がガラス系材料の場合400〜600℃程度である。   In addition, although the thermal expansion coefficient varies depending on the temperature, it is desirable to select a material with a small difference in thermal expansion coefficient in the operating temperature range (from the heating temperature during pressing to the room temperature after cooling). It is preferable that the difference in thermal expansion coefficient is 1 ppm / ° C. or less. The heating temperature at the time of pressing is, for example, about 100 to 150 ° C. when the material to be microprocessed is a resin, and about 400 to 600 ° C. when the material to be microprocessed is a glass-based material.

また上記実施形態では、薄片型および台座の材料は、ともに無機材料(本例ではシリコン)を用いる例を示したが、ともに貴金属材料、または一方が無機材料で他方が貴金属材料としてもよい。   In the above embodiment, an example in which an inorganic material (silicon in this example) is used for both the thin piece mold and the pedestal has been described. However, both may be a noble metal material, or one may be an inorganic material and the other may be a noble metal material.

薄片型に用いられる無機材料としては、シリコンの他、石英、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボン、またはガラス状カーボンを用いることができる。   In addition to silicon, quartz, glassy carbon, diamond, diamond-like carbon, or glassy carbon can be used as the inorganic material used for the flake mold.

台座に用いられる無機材料としては、シリコンの他、石英、ホウ珪酸ガラス、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボン、ガラス状カーボン、または窒化硼素を用いることができる。   As an inorganic material used for the pedestal, quartz, borosilicate glass, glassy carbon, diamond, diamond-like carbon, glassy carbon, or boron nitride can be used in addition to silicon.

上記薄片型および台座の双方に用いられる無機材料のうち、シリコン、ホウ珪酸ガラスおよびガラス状カーボンはほぼ同じ熱膨張係数を有するので、これらから適宜組み合わせて用いるのが、特に好ましい。例えば図4に示すように、シリコンとパイレックスガラス(ホウ珪酸ガラスの一種;「パイレックス」は米国コーニング社の登録商標である。)とは、約400℃以下の温度範囲にて熱膨張係数がほぼ一致している。また、SD1ガラスおよびSD2ガラス(いずれもHOYA社の商品名)は、シリコンの熱膨張係数ときわめて近い値を有し、例えばSD2ガラスの場合、3.20ppm/℃(30〜300℃)と3.41ppm/℃(30〜450℃)という値が示されている。   Of the inorganic materials used for both the flake mold and the pedestal, silicon, borosilicate glass, and glassy carbon have substantially the same thermal expansion coefficient, and therefore, it is particularly preferable to use them in combination as appropriate. For example, as shown in FIG. 4, silicon and Pyrex glass (a kind of borosilicate glass; “Pyrex” is a registered trademark of Corning, USA) has a thermal expansion coefficient of about 400 ° C. or less. Match. SD1 glass and SD2 glass (both trade names of HOYA) have values very close to the thermal expansion coefficient of silicon. For example, in the case of SD2 glass, 3.20 ppm / ° C. (30 to 300 ° C.) and 3 A value of .41 ppm / ° C. (30-450 ° C.) is shown.

薄片型および台座に用いられる材料としては、上記以外にも、タングステンカーバイド(WC)、チタンカーバイド(TiC)、酸化アルミニウム、アルミナ系セラミック、酸化ジルコニウム等の金属炭化物、金属酸化物、金属窒化物、金属ホウ素化合物等、または、タングステン、タンタル、モリブデン等の熱膨張係数が小さい高融点金属を用いることもできる。   As materials used for the flake mold and the pedestal, in addition to the above, tungsten carbide (WC), titanium carbide (TiC), aluminum oxide, alumina ceramic, zirconium carbide and other metal carbides, metal oxides, metal nitrides, A metal boron compound or the like, or a refractory metal having a small thermal expansion coefficient such as tungsten, tantalum, or molybdenum can also be used.

なお、薄片型に石英を用いる場合は、台座3も石英とすることで薄膜を介することなく、直接フッ酸接合により接合することが可能となる。   When quartz is used for the thin piece mold, the base 3 is also made of quartz so that it can be directly joined by hydrofluoric acid joining without using a thin film.

また、薄片型の材料としてダイヤモンドを用いる場合は、例えば台座上に気相合成によりダイヤモンドを形成してもよい。   Further, when diamond is used as the thin piece material, for example, diamond may be formed on the pedestal by vapor phase synthesis.

また、上記実施形態では、薄片型と台座とを薄膜を介して接合する例を示したが、薄膜なしで直接接合してもよい。上記のとおり、例えば薄片型に石英を用いる場合は、台座3も石英とすることで直接フッ酸接合により接合することが可能となる。他にも陽極接合やプラズマ活性化張り合わせなどの方法を用いることで400℃以下の低温で薄膜なしで直接接合することができる。   Moreover, although the example which joins a thin piece type | mold and a base via a thin film was shown in the said embodiment, you may join directly without a thin film. As described above, for example, when quartz is used for the thin piece mold, the base 3 can be made of quartz so that it can be directly joined by hydrofluoric acid joining. In addition, by using a method such as anodic bonding or plasma activation bonding, direct bonding can be performed without a thin film at a low temperature of 400 ° C. or lower.

さらに、はんだ等の低融点金属を用いて接合することも可能である。なお、低融点金属は強度が低い傾向にあり、加圧・加熱時の変形が懸念されるが、この場合にも薄片型の厚みよりも薄い接合層(薄膜)を用いることで変形の影響を回避することができる。具体的には、接合層(薄膜)の厚みはサブミクロン程度またはそれ以下とするのが望ましい。   Furthermore, it is also possible to join using a low melting point metal such as solder. In addition, low melting point metal tends to have low strength, and there is a concern about deformation during pressurization and heating. It can be avoided. Specifically, the thickness of the bonding layer (thin film) is preferably about submicron or less.

また、上記実施形態では、薄膜の材料としてSiO2を例示したが、SiO2を主成分とするものであればよく、例えば水ガラスを用いてもよい。 In the above embodiment has illustrated a SiO 2 as the material of the thin film may be one composed mainly of SiO 2, may be used such as water glass.

また上記実施形態では、台座の厚み方向の断面形状を台形状とする例を示したが、裾広がりの形状であればよく、例えば台形の斜辺が曲線状であってもよい。   Moreover, although the example which makes the cross-sectional shape of the thickness direction of a base into a trapezoid was shown in the said embodiment, it should just be a shape of hem-spreading, for example, the hypotenuse of a trapezoid may be curvilinear.

また上記実施形態では、台座の厚み方向の1つの方位の断面形状のみを裾広がりの形状とする例を示したが、複数の方位の断面形状を裾広がりの形状としてもよい。例えば直角の2方位(2つの方角)の断面形状を台形状として、直角の2方向から支持することで、ガタツキをなくして、より確実に固定することができる。   In the above-described embodiment, an example in which only the cross-sectional shape of one azimuth in the thickness direction of the pedestal is a flared shape is shown. For example, the cross-sectional shape of two perpendicular directions (two directions) is trapezoidal and is supported from two perpendicular directions, so that it can be fixed more reliably without rattling.

本実施例では、上記実施形態で説明した微細加工用型を作成した。まず、シリコンウエハ(シリコン基板)上にフォトリソグラフィの方法を用いてパターンを形成し、ドライエッチングにより加工を行った。本実施例で用いたシリコン基板は、通常の半導体製造ラインで加工可能な、200mm径、0.7mm厚さのものを用いたが、あとで裏面に接合を行うため、両鏡面のシリコンウエハを用いた。台座は単結晶シリコンのインゴットから切り出した3mm厚さの平板を、機械加工で厚み方向断面形状を台形状に加工して形成した。   In this example, the micromachining mold described in the above embodiment was created. First, a pattern was formed on a silicon wafer (silicon substrate) using a photolithography method, and processing was performed by dry etching. The silicon substrate used in this example was a 200 mm diameter, 0.7 mm thick material that can be processed on a normal semiconductor production line. Using. The pedestal was formed by machining a 3 mm thick flat plate cut out from a single crystal silicon ingot into a trapezoidal cross section in the thickness direction by machining.

薄片型と台座との接合は、図3に示すような手順で行った。まず微細パターンを形成したシリコンウエハの面をフォトレジスト樹脂で被覆して保護し(同図(a)参照)、ダイシングにより10mm角の大きさに切り出し、これを薄片型とした(同図(b)参照)。一方で台座にはCVD法にて0.1μm厚さのSiO2膜を形成しておき、薄片型と台座の両者を洗浄後、希フッ酸を塗布して両者を室温で加圧して接合した(フッ酸接合法)(同図(c)参照)。最後にシリコンウエハの面を被覆した樹脂を有機溶剤で除去し洗浄して、微細加工用型を得た(同図(d)参照)。 The thin piece mold and the pedestal were joined by the procedure shown in FIG. First, the surface of the silicon wafer on which the fine pattern is formed is covered with a photoresist resin to protect it (see FIG. 1A), cut into a size of 10 mm square by dicing, and this is made into a thin piece type (FIG. 2B). )reference). On the other hand, a SiO 2 film having a thickness of 0.1 μm is formed on the pedestal by CVD, and after washing both the thin piece mold and the pedestal, dilute hydrofluoric acid is applied and both are pressurized and bonded at room temperature. (Hydrofluoric acid bonding method) (see FIG. 3C). Finally, the resin covering the surface of the silicon wafer was removed with an organic solvent and washed to obtain a microfabrication mold (see FIG. 4D).

このようにして得られた微細加工用型を、ヒータが埋め込まれたプレス装置のヘッドに装着し、被成型材料としての、シリコン基板上に形成したPMMA樹脂または熱可塑性樹脂にプレスすることで微細パターンの転写を行った(前述の図2参照)。台座はその断面形状が台形状になっているため、図2(a)に示すような支持手段で簡単に支持することができ、プレス後の被成型材料からの引き剥がしも容易に行うことができた。また、微細パターンも高精度に転写されることを確認した。   The microfabrication mold thus obtained is mounted on the head of a press device in which a heater is embedded, and pressed into a PMMA resin or thermoplastic resin formed on a silicon substrate as a molding material. The pattern was transferred (see FIG. 2 described above). Since the cross-sectional shape of the pedestal is trapezoidal, it can be easily supported by the support means as shown in FIG. 2 (a), and can be easily peeled off from the molding material after pressing. did it. It was also confirmed that the fine pattern was transferred with high accuracy.

本実施例では、薄片型としてダイヤモンドを用いる場合を説明する。ダイヤモンドやダイヤモンドライクカーボン、ガラス状カーボンなど炭素系の材料は硬度が高く耐久性に優れているだけでなく、熱膨張係数が小さく(加熱時の位置ずれが小さい)、かつ熱伝導率は高い(熱が良く伝わる)といった特質をもつため薄片型を形成する上で優れた材料である。また一般に他材料と反応しにくく、表面エネルギーが大きいため被加工材料と付着しにくく、離型性にも優れている。   In this embodiment, a case where diamond is used as a thin piece type will be described. Carbon-based materials such as diamond, diamond-like carbon, and glassy carbon not only have high hardness and excellent durability, but also have a low thermal expansion coefficient (small misalignment during heating) and high thermal conductivity ( It is an excellent material for forming a flake mold because it has the property that heat is transmitted well. In general, it is difficult to react with other materials, and since it has a large surface energy, it is difficult to adhere to the material to be processed, and it has excellent releasability.

ダイヤモンドの薄片型は以下のようにして作成した。すなわち、シリコン基板上に微細パターンを形成した後、CVD法により多結晶ダイヤモンドを堆積した。そして、ダイヤの表面を研磨して平坦化を行い、シリコンを溶解してダイヤモンドの薄片型を得た。   A diamond flake mold was prepared as follows. That is, after forming a fine pattern on a silicon substrate, polycrystalline diamond was deposited by CVD. Then, the surface of the diamond was polished and flattened, and silicon was dissolved to obtain a diamond flake mold.

ダイヤモンドの薄片型の場合にも台座の材料はダイヤモンドが望ましいが、非常に高価であるため構造材としての台座には他の材料の利用が実用的である。ダイヤモンドは熱膨張係数が約1ppm/℃と小さいため、SiO2(熱膨張係数 約0.5ppm/℃)や一部の焼結材料のように熱膨張係数の小さな材料を用いることにより、高温まで高精度を保つことができる。前述したように台座部分は熱伝達性能も要求されるため、ここでは、BN焼結体(窒化硼素;熱膨張係数1.8ppm/℃、熱伝導率8.2W/(m・K))を用いた。 In the case of a diamond flake type, the base material is preferably diamond. However, since the base material is very expensive, it is practical to use other materials for the base as a structural material. Diamond has a low coefficient of thermal expansion of about 1 ppm / ° C. Therefore, by using a material with a low coefficient of thermal expansion such as SiO 2 (thermal expansion coefficient of about 0.5 ppm / ° C) or some sintered materials, High accuracy can be maintained. Since the pedestal portion is also required to have heat transfer performance as described above, a BN sintered body (boron nitride; thermal expansion coefficient 1.8 ppm / ° C., thermal conductivity 8.2 W / (m · K)) is used here. Using.

薄片型と台座との接合は、薄片型と台座各々にSiO2薄膜を薄く形成することで上記実施例1と同様のフッ酸接合法により可能となる。また、他にもアルミニウム等の金属膜を数百nm程度に薄く形成し、これを接合層(薄膜)として用いることでプラズマ接合など他の接合方法でも微細加工用型を形成することができる。 The thin piece mold and the pedestal can be joined by the same hydrofluoric acid joining method as in the first embodiment by forming a thin SiO 2 thin film on each of the thin piece mold and the pedestal. In addition, by forming a metal film such as aluminum as thin as about several hundreds nm and using this as a bonding layer (thin film), it is possible to form a mold for microfabrication by other bonding methods such as plasma bonding.

本発明に係る微細加工用型の一実施形態の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of one Embodiment of the type | mold for microfabrication which concerns on this invention. 本発明に係る微細加工用型を用いて被成型材料にパターンを形成する方法を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the method of forming a pattern in a to-be-molded material using the type | mold for microfabrication which concerns on this invention. 実施例1において、薄片型と台座とを接合する手順を説明するための縦断面図である。In Example 1, it is a longitudinal cross-sectional view for demonstrating the procedure which joins a thin piece type | mold and a base. シリコンおよびパイレックスガラスにおける、温度と熱膨張係数との関係を示すグラフ図である。It is a graph which shows the relationship between temperature in a silicon | silicone and pyrex glass, and a thermal expansion coefficient.

符号の説明Explanation of symbols

1:微細加工用型
2:薄片型
3:台座
3a:接合面(上面)
3b:接合面3aとは反対側の面(底面)
4:薄膜
5:プレス装置
5a:ヘッド
5b:固定台
6:被成型材料
7:支持手段
7a:固定部
7b:押付け部

1: Micro processing mold 2: Thin mold 3: Pedestal 3a: Bonding surface (upper surface)
3b: Surface (bottom surface) opposite to the bonding surface 3a
4: Thin film 5: Press device 5a: Head 5b: Fixing base 6: Molding material 7: Support means 7a: Fixing part 7b: Pressing part

Claims (8)

微細な構造が形成された薄片型と、この薄片型の材料と熱膨張係数が同一または略同等の材料からなり前記薄片型より厚みの大きい台座とを備え、前記薄片型と前記台座とが接合されてなることを特徴とする微細加工用型。   A thin piece mold in which a fine structure is formed, and a pedestal made of a material having the same or substantially the same thermal expansion coefficient as that of the thin piece mold and having a larger thickness than the thin piece mold, and the thin piece mold and the pedestal are joined to each other A mold for microfabrication characterized by being made. 前記薄片型および前記台座が、ともに無機材料、またはいずれか一方が無機材料からなる請求項1に記載の微細加工用型。   The mold for microfabrication according to claim 1, wherein the thin piece mold and the pedestal are both made of an inorganic material, or one of them is made of an inorganic material. 前記薄片型が、シリコン、石英、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボンおよびガラス状カーボンよりなる群から選ばれた1種の材料からなる請求項1に記載の微細加工用型。   2. The mold for microfabrication according to claim 1, wherein the flake mold is made of one material selected from the group consisting of silicon, quartz, glassy carbon, diamond, diamond-like carbon, and glassy carbon. 前記台座が、シリコン、石英、ホウ珪酸ガラス、ガラス状カーボン、ダイヤモンド、ダイヤモンドライクカーボン、ガラス状カーボンおよび窒化硼素よりなる群から選ばれた1種の材料からなる請求項1または3に記載の微細加工用型。   The fine structure according to claim 1 or 3, wherein the pedestal is made of one material selected from the group consisting of silicon, quartz, borosilicate glass, glassy carbon, diamond, diamond-like carbon, glassy carbon, and boron nitride. Mold for processing. 前記薄片型と前記台座とが、SiO2を主成分とする薄膜を介して接合されてなる請求項1〜4のいずれか1項に記載の微細加工用型。 The mold for microfabrication according to any one of claims 1 to 4, wherein the thin piece mold and the pedestal are joined via a thin film containing SiO 2 as a main component. 前記薄片型と前記台座とが、フッ酸接合により接合されてなる請求項1〜5のいずれか1項に記載の微細加工用型。   The mold for microfabrication according to any one of claims 1 to 5, wherein the thin piece mold and the pedestal are joined by hydrofluoric acid joining. 前記薄片型はダイヤモンドからなり、前記台座上に気相合成により形成されてなる請求項1に記載の微細加工用型。   The fine processing mold according to claim 1, wherein the flake mold is made of diamond and formed on the pedestal by vapor phase synthesis. 前記台座は、その厚み方向の少なくとも1つの方位の断面形状が、前記薄片型との接合面とは反対側の面に向かって裾広がりの形状である請求項1〜7のいずれか1項に記載の微細加工用型。

8. The pedestal according to claim 1, wherein a cross-sectional shape of at least one direction in a thickness direction of the pedestal is a shape that spreads toward the surface opposite to the joint surface with the thin piece mold. The mold for microfabrication described.

JP2005111039A 2005-04-07 2005-04-07 Manufacturing method of mold for microfabrication Expired - Fee Related JP4546315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111039A JP4546315B2 (en) 2005-04-07 2005-04-07 Manufacturing method of mold for microfabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111039A JP4546315B2 (en) 2005-04-07 2005-04-07 Manufacturing method of mold for microfabrication

Publications (2)

Publication Number Publication Date
JP2006289684A true JP2006289684A (en) 2006-10-26
JP4546315B2 JP4546315B2 (en) 2010-09-15

Family

ID=37410804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111039A Expired - Fee Related JP4546315B2 (en) 2005-04-07 2005-04-07 Manufacturing method of mold for microfabrication

Country Status (1)

Country Link
JP (1) JP4546315B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2009023132A (en) * 2007-07-18 2009-02-05 Tomei Diamond Co Ltd Nano-imprinting stamper, and method for producing the same
JP2009119695A (en) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp Nanoimprint resin stamper
JP2009132084A (en) * 2007-11-30 2009-06-18 Soken Chem & Eng Co Ltd Hot imprinting mold and manufacturing method of optical element employing thereof
WO2009153926A1 (en) * 2008-06-18 2009-12-23 株式会社ニコン Template manufacturing method, template inspecting method and inspecting apparatus, nanoimprint apparatus, nanoimprint system, and device manufacturing method
JP2010162796A (en) * 2009-01-16 2010-07-29 Tomei Diamond Co Ltd Surface material for stamper
JP2010225223A (en) * 2009-03-23 2010-10-07 Toshiba Corp Method for manufacturing glass stamper, glass stamper, and method for manufacturing magnetic recording medium
JP2012153117A (en) * 2011-01-28 2012-08-16 Ricoh Co Ltd Mold, printing plate and method for manufacturing the same, method for forming functional film, inkjet head, and inkjet recording apparatus
JP2012158026A (en) * 2011-01-31 2012-08-23 Ricoh Co Ltd Printing plate, method for manufacturing the same, method for forming functional film, inkjet head and inkjet recording apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014179630A (en) * 2014-04-16 2014-09-25 Hoya Corp Method of manufacturing imprint mold
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132734A (en) * 1985-12-05 1987-06-16 Olympus Optical Co Ltd Mold for forming optical element
JPH03274271A (en) * 1990-03-26 1991-12-05 Semiconductor Energy Lab Co Ltd Thin diamond film-coated member
JPH10302328A (en) * 1997-04-28 1998-11-13 Matsushita Electric Ind Co Ltd Optical disk molding device, stamper disposed at optical disk molding device and optical disk molded by optical disk molding device
JP2001283755A (en) * 2000-03-31 2001-10-12 Canon Inc Electron optical system array and preparing method thereof, charged particle beam exposure device and device manufacturing method
JP2002097030A (en) * 2000-09-22 2002-04-02 Ntt Advanced Technology Corp Die and method of producing the same
JP2002234741A (en) * 2000-12-04 2002-08-23 Nippon Sheet Glass Co Ltd Optical element, forming die and method for producing those
JP2005508075A (en) * 2001-03-28 2005-03-24 フリースケール セミコンダクター インコーポレイテッド Lithographic template

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132734A (en) * 1985-12-05 1987-06-16 Olympus Optical Co Ltd Mold for forming optical element
JPH03274271A (en) * 1990-03-26 1991-12-05 Semiconductor Energy Lab Co Ltd Thin diamond film-coated member
JPH10302328A (en) * 1997-04-28 1998-11-13 Matsushita Electric Ind Co Ltd Optical disk molding device, stamper disposed at optical disk molding device and optical disk molded by optical disk molding device
JP2001283755A (en) * 2000-03-31 2001-10-12 Canon Inc Electron optical system array and preparing method thereof, charged particle beam exposure device and device manufacturing method
JP2002097030A (en) * 2000-09-22 2002-04-02 Ntt Advanced Technology Corp Die and method of producing the same
JP2002234741A (en) * 2000-12-04 2002-08-23 Nippon Sheet Glass Co Ltd Optical element, forming die and method for producing those
JP2005508075A (en) * 2001-03-28 2005-03-24 フリースケール セミコンダクター インコーポレイテッド Lithographic template

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2009023132A (en) * 2007-07-18 2009-02-05 Tomei Diamond Co Ltd Nano-imprinting stamper, and method for producing the same
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009119695A (en) * 2007-11-14 2009-06-04 Hitachi High-Technologies Corp Nanoimprint resin stamper
JP2009132084A (en) * 2007-11-30 2009-06-18 Soken Chem & Eng Co Ltd Hot imprinting mold and manufacturing method of optical element employing thereof
JP5413816B2 (en) * 2008-06-18 2014-02-12 株式会社ニコン Template inspection method and inspection apparatus, nanoimprint apparatus, nanoimprint system, and device manufacturing method
US8807978B2 (en) 2008-06-18 2014-08-19 Nikon Corporation Template manufacturing method, template inspecting method and inspecting apparatus, nanoimprint apparatus, nanoimprint system, and device manufacturing method
WO2009153926A1 (en) * 2008-06-18 2009-12-23 株式会社ニコン Template manufacturing method, template inspecting method and inspecting apparatus, nanoimprint apparatus, nanoimprint system, and device manufacturing method
JP2010162796A (en) * 2009-01-16 2010-07-29 Tomei Diamond Co Ltd Surface material for stamper
JP2010225223A (en) * 2009-03-23 2010-10-07 Toshiba Corp Method for manufacturing glass stamper, glass stamper, and method for manufacturing magnetic recording medium
JP2012153117A (en) * 2011-01-28 2012-08-16 Ricoh Co Ltd Mold, printing plate and method for manufacturing the same, method for forming functional film, inkjet head, and inkjet recording apparatus
JP2012158026A (en) * 2011-01-31 2012-08-23 Ricoh Co Ltd Printing plate, method for manufacturing the same, method for forming functional film, inkjet head and inkjet recording apparatus
JP2014179630A (en) * 2014-04-16 2014-09-25 Hoya Corp Method of manufacturing imprint mold

Also Published As

Publication number Publication date
JP4546315B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4546315B2 (en) Manufacturing method of mold for microfabrication
JP4705742B2 (en) Method for producing micro mechanical parts and micro optical parts made of glass-like materials
SE515607C2 (en) Device and method for fabrication of structures
US8189021B2 (en) Thermal head manufacturing method, thermal head, and printer
JP2006148055A (en) Method of hot embossing lithography
JP5195074B2 (en) Mold
US8685306B2 (en) Molding apparatus and molding method
JP2023027129A5 (en)
WO2007111215A1 (en) Mold for pattern transfer
JP5694889B2 (en) Nanoimprint method, nanoimprint apparatus used therefor, and manufacturing method of patterned substrate
JP2006212859A (en) Molding method and molding machine
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JP6300466B2 (en) Mask blank substrate, mask blank, imprint mold, and manufacturing method thereof
JP5056131B2 (en) Imprint mold and imprint apparatus provided with the same
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
JP2006327007A (en) Mold for microfabrication
JP2005132679A (en) Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
JP2004345897A (en) Method for producing mold for pressing glass
JP5799393B2 (en) Ni-W electroforming liquid for molding dies, method for producing molding dies, method for producing molding dies and molded products
JP5273786B2 (en) Thermal head, printer, and thermal head manufacturing method
JP5081666B2 (en) Fine pattern molding die and manufacturing method thereof
JP2006137019A (en) Shape transferring method
JP2007112648A (en) SiC MOLD
JP4392205B2 (en) Inkjet printer head manufacturing method
TWI329620B (en) Mold for molding glass optical articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees