JP4392205B2 - Inkjet printer head manufacturing method - Google Patents

Inkjet printer head manufacturing method Download PDF

Info

Publication number
JP4392205B2
JP4392205B2 JP2003282052A JP2003282052A JP4392205B2 JP 4392205 B2 JP4392205 B2 JP 4392205B2 JP 2003282052 A JP2003282052 A JP 2003282052A JP 2003282052 A JP2003282052 A JP 2003282052A JP 4392205 B2 JP4392205 B2 JP 4392205B2
Authority
JP
Japan
Prior art keywords
pressure chamber
pressure
mold
molding
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003282052A
Other languages
Japanese (ja)
Other versions
JP2005047165A5 (en
JP2005047165A (en
Inventor
梅谷  誠
領内  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003282052A priority Critical patent/JP4392205B2/en
Publication of JP2005047165A publication Critical patent/JP2005047165A/en
Publication of JP2005047165A5 publication Critical patent/JP2005047165A5/ja
Application granted granted Critical
Publication of JP4392205B2 publication Critical patent/JP4392205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、インクジェットプリンターヘッドの製造方法に関するものである。
The present invention relates to the production how an inkjet printer head.

従来のインクジェットプリンターヘッドの構成は、主に下記特許文献1に示されているように、図8(a)(b)のような、インクを溜めて圧力を印加する圧力室54をいくつも並べた圧力室基板51とインクを吐出させるためのノズル55をそれぞれの圧力室に設けるためのノズル板52とそれぞれの圧力室に圧力を印加するための、圧電体などからなる圧力印加板53で構成されている。圧力室基板の製造方法としては、前記特許文献1に示されているように、セラミックスの射出成形法や、下記特許文献2に示されているように、樹脂の射出成形法(インサート成形)を用いた方法や、下記特許文献3〜4に示されているようにSi基板をエッチングする方法が提案されている。また、ガラス基板に孔あけ加工を施す方法としては、回転砥石、ドリル、超音波加工、ブラスト加工などの機械加工法や、化学的処理によるエッチング加工法や、バーナーなどで焼き切る熱加工法(下記特許文献5〜6)や、イオンビーム、レーザー、電子ビームなどによるエネルギービーム加工法(下記特許文献7)や、加熱軟化したガラスを金型によってプレス成形する方法(下記特許文献8)などがある。
特開平5−8394号公報 特開平8−39799号公報 特開平10−181010号公報 特開2000−79689号公報 特開2000−16815号公報 特開2000−53435号公報 特開2000−61667号公報 特開2000−319026号公報
The configuration of a conventional ink jet printer head is composed of a number of pressure chambers 54 for storing ink and applying pressure as shown in FIGS. The pressure chamber substrate 51 and the nozzle 55 for ejecting ink are provided in the respective pressure chambers, and the pressure applying plate 53 made of a piezoelectric material for applying pressure to the respective pressure chambers. Has been. As a manufacturing method of the pressure chamber substrate, as shown in Patent Document 1, ceramic injection molding method or resin injection molding method (insert molding) as shown in Patent Document 2 below. The method used and the method of etching a Si substrate are proposed as shown in Patent Documents 3 to 4 below. In addition, as a method of drilling a glass substrate, mechanical processing methods such as a rotating grindstone, drill, ultrasonic processing, blast processing, etching processing by chemical processing, and thermal processing method that burns with a burner (described below) Patent Documents 5 to 6), an energy beam processing method using an ion beam, a laser, an electron beam, or the like (Patent Document 7 below), or a method of press-molding heat-softened glass with a mold (Patent Document 8 below). .
Japanese Patent Laid-Open No. 5-8394 JP-A-8-39799 Japanese Patent Laid-Open No. 10-181010 JP 2000-79589 A JP 2000-16815 A JP 2000-53435 A JP 2000-61667 A JP 2000-319026 A

しかし、より高精細なインクジェットプリンターヘッドを製造する場合、圧力室間隔は非常に小さくなり、従来のセラミックスや樹脂の射出成形による圧力室の製造方法では、成形後の熱収縮により成形品の間隔精度が悪く、圧力印加板やノズル板との位置合わせができなくなると言う問題があった。また、セラミックスや樹脂はインクとの濡れ性が悪く、気泡が入ったりする問題もある。従来のガラス基板の精密孔あけ方法を用いて圧力室を製造した場合も、機械加工法、エッチング加工法、熱加工法は、サブミクロンオーダーの高精度な孔あけ加工が困難であり、特に微細な孔あけを必要とする場合には、これらの工法では困難である。エネルギービーム加工法は一般に装置が高価であり、加工速度も遅く、量産性がない。前記特許文献7に提案されている方法では、YAGレーザーの吸収率の高い成分をガラス材料に含ませることで、YAGレーザーの吸収率を上げて、加工効率を上げているが、ガラス材料に吸収率の良い成分を予め含ませる必要がある。   However, when manufacturing a higher-definition inkjet printer head, the pressure chamber spacing becomes very small, and in the conventional method of manufacturing a pressure chamber by injection molding of ceramics or resin, the accuracy of the spacing between molded products due to thermal shrinkage after molding. However, there was a problem that it was impossible to align with the pressure application plate or the nozzle plate. In addition, ceramics and resins have poor wettability with ink and have the problem of bubbles. Even when the pressure chamber is manufactured using the conventional precision drilling method for glass substrates, the machining method, etching method, and thermal processing method are difficult to drill with high precision on the order of submicron. When it is necessary to drill a hole, these methods are difficult. In general, the energy beam processing method is expensive, the processing speed is low, and there is no mass productivity. In the method proposed in Patent Document 7, the glass material contains a component having a high absorption rate of the YAG laser, thereby increasing the absorption rate of the YAG laser and increasing the processing efficiency. It is necessary to include a component having a high rate in advance.

本発明のインクジェットプリンターヘッドの製造方法は、インクを収納するための圧力室を有する圧力室基板と、前記圧力室からインクを吐出するノズル用貫通孔と、前記圧力室に振動を与える圧力印加板とを含むインクジェットプリンターヘッドの製造方法であって、
平面金型上に離型剤を形成したガラスからなる成形用素材を載せ、全体を加熱し、圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず裏面が残るようになるまでプレス成形する工程と、
前記成形用素材に前記圧力室成形用金型の突起形状を転写する工程と、
冷却せず前記圧力室成形用金型のみ離型する工程と、
冷却後、前記離型剤を除去し、成形された前記成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成する工程と、
前記貫通孔が形成された前記成形用素材を圧力室基板としてそれぞれ前記圧力室に対応した前記ノズル用貫通孔を形成したノズル板を貼付し、それぞれ前記圧力室に対応した圧力印加板を付加する工程とを備えることを特徴とする。
The inkjet printer head manufacturing method of the present invention includes a pressure chamber substrate having a pressure chamber for containing ink, a nozzle through-hole for ejecting ink from the pressure chamber, and a pressure applying plate that vibrates the pressure chamber. A method of manufacturing an inkjet printer head comprising:
Place the molding material made of glass to form a release agent on a plane mold, heating the whole, the pressure chambers mold having a projection shape corresponding to the pressure chamber, the back surface without completely through Press molding until it remains ,
A step of transferring the pressure chamber mold projections shape to the molding material,
A step of releasing only said pressure chamber forming mold without cooling,
After cooling and forming the removal of the release agent, from the rear surface of the molding material is molded, the through holes serving as pressure chambers by polishing,
Using the molding material with the through holes formed as a pressure chamber substrate , a nozzle plate having the nozzle through holes corresponding to the pressure chambers is affixed, and pressure applying plates corresponding to the pressure chambers are respectively added. And a process .

本発明の別のインクジェットプリンターヘッドの製造方法は、インクを収納するための圧力室を有する圧力室基板と、前記圧力室からインクを吐出するノズル用貫通孔と、前記圧力室に振動を与える圧力印加板とを含むインクジェットプリンターヘッドの製造方法であって、
平面金型上にガラスからなる成形用素材を載せ、全体を加熱し、離型膜を形成した圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず裏面が残るようになるまでプレス成形する工程と、
前記成形用素材に前記圧力室成形用金型の突起形状を転写する工程と、
冷却せずに前記圧力室成形用金型のみ離型する工程と、
冷却後、成形された前記成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成する工程と、
前記貫通孔が形成された前記成形用素材を圧力室基板にとしてそれぞれ前記圧力室に対応した前記ノズル用貫通孔を形成したノズル板を貼付し、それぞれ前記圧力室に対応した圧力印加板を付加する工程とを備えることを特徴とする。
Another method of manufacturing an ink jet printer head according to the present invention includes a pressure chamber substrate having a pressure chamber for containing ink, a nozzle through-hole for discharging ink from the pressure chamber, and a pressure that vibrates the pressure chamber. An ink jet printer head manufacturing method including an application plate,
Place the molding material made of glass on a plane mold, heating the whole, the pressure chambers mold having a projection shape corresponding to the pressure chamber forming the release film, the back surface without completely through Press molding until it remains ,
A step of transferring the pressure chamber mold projections shape to the molding material,
A step of releasing without cooling only the pressure chamber forming mold,
After cooling, from the rear surface of the molded material for the molding, and forming a through hole as a pressure chamber by polishing,
Using the molding material with the through-holes as a pressure chamber substrate, affixing nozzle plates with the nozzle through-holes corresponding to the pressure chambers , respectively, and adding pressure application plates corresponding to the pressure chambers , respectively. And a step of performing .

本発明のインクジェットプリンターヘッドの製造方法によれば、成形により高精度に圧力室となる窪みをガラス基板に形成し、裏面より平面研磨する事で、バリの発生が無く、高精度な圧力室となる貫通孔を、非常に低コストで形成できるようになり、ノズル板と圧力印加板を形成することで高精度で低コストなインクジェットプリンターヘッドが製造できる。更に、本発明のインクジェットプリンターヘッド圧力室はガラス製であり、インクとの濡れ性も良く気泡が入りにくい圧力室ができる。   According to the method for manufacturing an inkjet printer head of the present invention, a depression that becomes a pressure chamber with high precision is formed on a glass substrate by molding, and by polishing the surface from the back surface, there is no generation of burrs, The through-hole can be formed at a very low cost. By forming the nozzle plate and the pressure applying plate, a high-precision and low-cost inkjet printer head can be manufactured. Further, the pressure chamber of the ink jet printer head of the present invention is made of glass, and a pressure chamber that has good wettability with ink and is difficult to contain bubbles can be formed.

本発明は、第1に、平面金型上に離型剤を形成したガラスからなる成形用素材を載せ、全体を加熱し、圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず、わずかに裏面が残るようになるまでプレス成形し、成形用素材に圧力室成形用金型の突起形状を完全に転写した後、冷却せず圧力室成形用金型のみに離型し、冷却後、離型剤を除去し、成形された成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成した圧力基板に、レーザ加工またはプレス成形によりノズル用貫通孔を形成したノズル板を貼付し、圧力室上に圧力印加板を形成するというインクジェットプリンターヘッドの製造方法を提供し、容易に高精度なインクジェットプリンタヘッドの製造を可能としたものである。前記において「わずかに裏面が残る」とは、厚さが0.1mm以上をいう(以下においても同じ。)。   The present invention firstly places a molding material made of glass on which a release agent is formed on a flat mold, heats the whole, and a pressure chamber molding mold having a projection shape corresponding to a pressure chamber, Press-mold until the back surface remains slightly without penetrating completely, completely transfer the protrusion shape of the pressure chamber molding die to the molding material, and then only cool the pressure chamber molding die without cooling After releasing and cooling, the release agent is removed, and through the nozzle for laser processing or press molding, the pressure substrate is formed with a through hole that becomes a pressure chamber by polishing from the back of the molded molding material. The present invention provides a method for manufacturing an ink jet printer head in which a nozzle plate having holes formed therein is attached and a pressure applying plate is formed on a pressure chamber, thereby enabling easy manufacture of a highly accurate ink jet printer head. In the above description, “slightly leaving the back surface” means that the thickness is 0.1 mm or more (the same applies below).

第2に、平面金型上にガラスからなる成形用素材を載せ、全体を加熱し、ガラスとの濡れ性が悪く、高温時に容易に離型できる離型膜を形成した圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず、わずかに裏面が残るようになるまでプレス成形し、成形用素材に圧力室成形用金型の突起形状を完全に転写した後、冷却せずに圧力室成形用金型のみ離型し、冷却後、成形された成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成した圧力基板に、レーザ加工またはプレス成形によりノズル用貫通孔を形成したノズル板を貼付し、圧力室上に圧力印加板を形成するというインクジェットプリンターヘッドの製造方法を提供し、容易に高精度なインクジェットプリンターヘッドの製造を可能としたものである。   Second, a projection corresponding to a pressure chamber in which a molding material made of glass is placed on a flat mold and the whole is heated to form a release film that has poor wettability with glass and can be easily released at high temperatures. After the pressure chamber molding die has a shape, press molding until the back surface remains slightly without penetrating completely, and after completely transferring the projection shape of the pressure chamber molding die to the molding material, Only the pressure chamber molding die is released without cooling, and after cooling, it is laser-processed or press-molded on the pressure substrate that has a through-hole that becomes the pressure chamber by polishing from the back side of the molded molding material. Provides a method of manufacturing an ink jet printer head in which a nozzle plate having a nozzle through-hole is pasted and a pressure applying plate is formed on the pressure chamber, thereby enabling easy manufacture of a high-precision ink jet printer head. A.

また、平面金型上にガラスからなる成形用素材を載せ、全体を加熱し、離型剤あるいは離型膜を形成することで、圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず、わずかに裏面が残るようになるまでプレス成形し、成形用素材に圧力室成形用金型の突起形状を完全に転写した後、冷却せずに圧力室成形用金型のみ離型し、冷却後、成形された成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成したインクジェットプリンターヘッド圧力室はガラス製であり、インクとの濡れ性も良く気泡が入りにくい圧力室ができる。   Moreover, by placing a molding material made of glass on a flat mold, heating the whole and forming a release agent or a release film, a pressure chamber molding mold having a projection shape corresponding to a pressure chamber Press molding until the back surface remains slightly without penetrating completely, completely transfer the protrusion shape of the pressure chamber molding die to the molding material, and then cool the pressure chamber molding die without cooling The ink jet printer head pressure chamber is made of glass and has good wettability with ink. Creates a pressure chamber that is difficult to contain.

以下、本発明の各実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1のインクジェットプリンターヘッドの製造方法を図1、〜図6を用いて説明する。   A method of manufacturing the ink jet printer head according to the first embodiment of the present invention will be described with reference to FIGS.

図1(a)〜(d)は本発明の概略工程図を示し、図2(a)〜(b)は本発明の1実施例に用いた成形装置の概略図を示し、図3(a)〜図6(d)は本発明の1実施例の各成形工程での状態図を示したものである。   1 (a) to (d) show schematic process diagrams of the present invention, and FIGS. 2 (a) to (b) show schematic diagrams of a molding apparatus used in one embodiment of the present invention. ) To FIG. 6 (d) show state diagrams in the respective molding steps of one embodiment of the present invention.

図1(a)〜(d)に示したように、本発明の概略工程は、平面金型13上に離型剤14を形成した成形用素材12を載せ、全体を加熱することで、圧力室に相当する突起形状を有する成形用金型11により、完全に貫通させず、少しだけ裏面が残るようになるまでプレス成形し(図1(a))、成形用素材12に成形用金型11の突起形状を完全に転写する(図1(b))。次に、冷却せずに離型し(図1(c))、冷却後、離型剤14を除去し、成形された成形用素材12の裏面15を研磨する(図1(d))。これにより、圧力室16を形成した基板を製造する。   As shown in FIGS. 1 (a) to 1 (d), the general process of the present invention is carried out by placing a molding material 12 on which a release agent 14 is formed on a flat mold 13 and heating the whole so that the pressure is increased. A molding die 11 having a projection shape corresponding to the chamber is press-molded until the back surface remains a little (FIG. 1A) without completely penetrating, and the molding die 12 is formed on the molding material 12. 11 is completely transferred (FIG. 1B). Next, the mold is released without cooling (FIG. 1 (c)), and after cooling, the release agent 14 is removed, and the back surface 15 of the formed molding material 12 is polished (FIG. 1 (d)). Thereby, the substrate on which the pressure chamber 16 is formed is manufactured.

具体的な実施例を図2を用いて説明する。   A specific embodiment will be described with reference to FIG.

用いた成形装置は図2((a)は正面から見た図、(b)は側面から見た図)に示したように、成形機内の雰囲気を非酸化雰囲気(窒素雰囲気など)に保つために全体を密閉できるチャンバー211、平面金型22に成形用素材23を載せたものを成形機内に投入するための入り口シャッター29、ヒーターを内蔵した予熱ステージ25、同じくヒーターを内蔵したプレスステージ26、冷却ステージ27、圧力室成形用金型21を固定し、ヒーターを内蔵し、上下に稼動し圧力を加えることができるプレスシリンダー28、成形完了した成形用素材23を平面金型22に載せたまま外部に取り出すための出口シャッター210、平面金型22と成形用素材23を成形機内の各ステージに順次搬送し、圧力室成形用金型21との位置あわせを行い、プレス終了時に強制的にプレスシリンダー28を上方に引き上げたとき、成形用素材23が圧力室成形用金型21にくっついてしまうことを防止するために平面金型22のストッパーとなるガイド24、そして、酸化防止用のガスを送り込むためのガス導入口212から構成されている。   As shown in FIG. 2 ((a) is a view from the front, (b) is a view from the side), the molding apparatus used is for maintaining the atmosphere in the molding machine in a non-oxidizing atmosphere (such as a nitrogen atmosphere). A chamber 211 that can be hermetically sealed, an entrance shutter 29 for putting a molding material 23 on a flat mold 22 into a molding machine, a preheating stage 25 with a built-in heater, a press stage 26 with a built-in heater, The cooling stage 27 and the pressure chamber molding die 21 are fixed, the heater is built in, the press cylinder 28 that can be operated up and down to apply pressure, and the molding material 23 that has been molded are placed on the planar die 22. The exit shutter 210 for taking out to the outside, the flat mold 22 and the molding material 23 are sequentially conveyed to each stage in the molding machine, and aligned with the pressure chamber molding mold 21. In order to prevent the molding material 23 from sticking to the pressure chamber molding die 21 when the press cylinder 28 is forcibly pulled up at the end of pressing, the guide 24 serving as a stopper for the flat die 22 is used. In addition, the gas inlet 212 is configured to feed in an antioxidant gas.

まず、40mm×40mm、厚さ10mmのWCを主成分とする超硬合金(熱膨張係数;50×10-7/K)素材を放電加工法により、中心部分に高さ200μm、巾130μm、長さ1.3mm、テーパ角度約10度の突起をピッチ340μmで50個一列に並べた形状に加工し、表面にスパッタリング法により、Ir−W合金薄膜を1μm形成することで圧力室成形用金型21を作製し、プレスシリンダー28に固定した。続いて、40mm×40mm、厚さ10mmのWCを主成分とする超硬合金素材を平面研磨した後、表面にスパッタリング法により、Ir−W合金薄膜を1μm形成することで平面金型22を作製した。平面金型22を下金型とし、平面金型22上に、圧力室成形用金型21と接する面にBN粉の離型剤を塗布した、25mm×25mm、厚さ1mmのガラス(PBK40;ホウ珪酸ガラス)からなる成形用素材23(熱膨張係数;73×10-7/K)をのせ、その状態で、窒素をガス導入口212より送り込み非酸化雰囲気となっている成形機中に入り口シャッター29を開けて投入した(図3(a))。 First, a cemented carbide (coefficient of thermal expansion: 50 × 10 −7 / K) mainly composed of 40 mm × 40 mm and 10 mm thick WC is used for the center part by height 200 μm, width 130 μm, long Pressure chamber molding die by processing 50 protrusions with a thickness of 1.3 mm and taper angle of about 10 degrees into a line with 50 pitches of 340 μm and forming 1 μm of Ir—W alloy thin film on the surface by sputtering. 21 was prepared and fixed to the press cylinder 28. Subsequently, after planarizing a cemented carbide material mainly composed of WC having a size of 40 mm × 40 mm and a thickness of 10 mm, a planar mold 22 is manufactured by forming an Ir—W alloy thin film to a thickness of 1 μm on the surface by sputtering. did. The flat mold 22 is a lower mold, and a release agent of BN powder is applied onto the flat mold 22 on the surface in contact with the pressure chamber molding mold 21. The glass is 25 mm × 25 mm and 1 mm thick (PBK40; A molding material 23 (thermal expansion coefficient; 73 × 10 −7 / K) made of borosilicate glass is placed, and in that state, nitrogen is fed from the gas inlet 212 into the non-oxidizing atmosphere in the molding machine. The shutter 29 was opened and turned on (FIG. 3A).

そして、金型全体をガイド24に沿って、予熱ステージ25に搬送し、予備加熱を行い500℃まで加熱した(図3(b))。   And the whole metal mold | die was conveyed to the preheating stage 25 along the guide 24, preheated and heated to 500 degreeC (FIG.3 (b)).

続いて、550℃以上の温度に保持したプレスステージ26へそのまま搬送し(図4(a))、全体が550℃以上の温度になるまで加熱し、プレスシリンダー28を下方に降ろし、圧力室成形用金型21が成形用素材23に接するところで、さらに、成形用素材23の表面が550℃以上の温度になるまで加熱した(図4(b))。   Subsequently, it is directly conveyed to the press stage 26 maintained at a temperature of 550 ° C. or higher (FIG. 4A), heated until the whole reaches a temperature of 550 ° C. or higher, the press cylinder 28 is lowered, and the pressure chamber is formed. When the mold 21 was in contact with the molding material 23, the surface of the molding material 23 was further heated until the temperature reached 550 ° C. or higher (FIG. 4B).

そして、成形用素材23がプレス圧力により変形可能な温度(550℃以上;粘度1010.35ポアズ以下)に達したところで、平面金型22側まで貫通させず、0.2mmだけ成形用素材23であるガラスの厚みが残るように、圧力室成形用金型21の形状を完全に転写するまで、圧力室成形用金型21の上方より、2000Nの圧力を加え、プレス成形した(図5(a))。 When the molding material 23 reaches a temperature (550 ° C. or more; viscosity of 10.1035 poise or less) that can be deformed by the pressing pressure, the molding material 23 is not penetrated to the flat mold 22 side and is only 0.2 mm. A pressure of 2000 N was applied from above the pressure chamber molding die 21 until the shape of the pressure chamber molding die 21 was completely transferred so that the thickness of the glass remained, and press molding was performed (FIG. 5A). ).

そして、そのままの状態で冷却せずに圧力を解放し、圧力室成形用金型21を上方に引き上げた。圧力室成形用金型21と成形用素材23であるガラスの面には離型剤が塗布してあり、圧力室成形用金型21と成形用素材23であるガラスは容易に離型し、さらに、圧力室成形用金型21と成形用素材23であるガラスが真空吸着により、上方へ持ち上がるのを防ぐためにガイド24に平面金型22が引っかかって、成形用素材23と平面金型22との間には離型剤を塗布していないので、くっついたまま、そのままの状態でプレスステージ26に残る(図5(b))。   Then, the pressure was released without cooling as it was, and the pressure chamber molding die 21 was pulled upward. A mold release agent is applied to the surfaces of the pressure chamber molding die 21 and the molding material 23, and the pressure chamber molding die 21 and the molding material 23 glass are easily released. Further, in order to prevent the pressure chamber molding die 21 and the molding material glass from being lifted upward by vacuum suction, the planar die 22 is caught by the guide 24, and the molding material 23 and the planar die 22 are Since no release agent is applied between the two, it remains on the press stage 26 as it is (FIG. 5B).

その後、平面金型22と成形したガラス23を冷却ステージ27に移動させて300℃まで冷却すると、成形したガラス23は平面金型22より、熱収縮差により発生する応力により離型した(図6(a))。   Thereafter, when the planar mold 22 and the molded glass 23 are moved to the cooling stage 27 and cooled to 300 ° C., the molded glass 23 is released from the planar mold 22 by the stress generated by the thermal shrinkage difference (FIG. 6). (A)).

そして、出口シャッター210を開けて、平面金型22に成形したガラス23を載せたまま外部に取り出し、室温まで冷却して成形したガラス23を平面金型22から引き離し成形工程は完了した(図6(b))。   Then, the outlet shutter 210 is opened, and the glass 23 formed on the flat mold 22 is taken out to the outside, cooled to room temperature, and the formed glass 23 is pulled away from the flat mold 22 to complete the molding process (FIG. 6). (B)).

続いて、図1に示したように、成形転写性の良好な成形物の表面に残った離型剤を洗浄及び研磨により除去し、表面を樹脂接着剤で覆い、平面基板に張り付けた後、成形物の裏面15より、酸化セリウム及びダイヤモンド砥粒を用いて、平面研磨して、50個の圧力室に相当する貫通孔16を得た。貫通孔の深さは全て0.18mmとした。作製した圧力室ガラス基板の圧力室部分の断面顕微鏡写真(倍率100)を図7に示した。圧力室となる貫通孔42が高精度に形成された圧力室ガラス基板41が得られていることが解った。このようにして製造した圧力室の加工にかかる製造コストは、従来の機械加工による孔あけ加工を施した圧力室に比べて、約1/3程度であった。また、各圧力室の間隔の位置精度は、0.2%の誤差範囲内であり、セラミックスあるいは樹脂の成形法を用いた圧力室の位置精度数%に比べて10倍以上の高精度にできていることがわかった。   Subsequently, as shown in FIG. 1, the release agent remaining on the surface of the molded article having good molding transferability is removed by washing and polishing, the surface is covered with a resin adhesive, and attached to a flat substrate. From the back surface 15 of the molded product, surface polishing was performed using cerium oxide and diamond abrasive grains to obtain through holes 16 corresponding to 50 pressure chambers. The depths of the through holes were all 0.18 mm. FIG. 7 shows a cross-sectional micrograph (magnification 100) of the pressure chamber portion of the produced pressure chamber glass substrate. It was found that the pressure chamber glass substrate 41 in which the through-hole 42 serving as the pressure chamber was formed with high accuracy was obtained. The manufacturing cost for the processing of the pressure chamber manufactured in this way was about 1/3 compared with the pressure chamber subjected to the drilling by conventional machining. In addition, the positional accuracy of the intervals between the pressure chambers is within an error range of 0.2%, which can be more than 10 times higher than the positional accuracy of the pressure chambers using ceramic or resin molding methods. I found out.

また、成形温度(ガラスの粘度)と転写性及び離型性との関係を調べたところ、560℃以下の温度では成形転写性が得られず、未転写部分、特に圧力室との間の転写が甘くなり、610℃以上の温度ではガラスが付着して離型しなかった。   Further, when the relationship between the molding temperature (glass viscosity), transferability and mold release properties was examined, molding transferability could not be obtained at a temperature of 560 ° C. or lower, and transfer between untransferred portions, particularly between pressure chambers. Became sweet, and at a temperature of 610 ° C. or higher, the glass adhered and did not release.

以上のように、本実施例によれば、成形工程と平面研磨工程のみで、低コストで、高精度に整列させたインクジェットプリンターヘッド圧力室の製造が可能となった。   As described above, according to the present embodiment, it is possible to manufacture an ink jet printer head pressure chamber that is aligned with high accuracy at low cost only by a molding process and a planar polishing process.

このようにして製造した圧力室基板に、レーザ加工またはプレス成形によりノズル用貫通孔(直径φ50μm、厚さ0.1mm)を形成したノズル板を研磨面側に紫外線(UV)硬化樹脂で貼付し、さらに圧力室上に圧電体などからなる圧力印加板を形成してインクジェットプリンターヘッドを完成させた。その構成は図8と同様になる。   A nozzle plate in which through holes for nozzles (diameter: φ50 μm, thickness: 0.1 mm) are formed by laser processing or press molding is pasted on the polishing surface side with ultraviolet (UV) curable resin on the pressure chamber substrate thus manufactured. Further, a pressure applying plate made of a piezoelectric material or the like was formed on the pressure chamber to complete the ink jet printer head. The configuration is the same as in FIG.

本発明の実施例2のインクジェットプリンターヘッドの製造方法を図3〜図6を用いて説明する。   A method of manufacturing the ink jet printer head according to the second embodiment of the present invention will be described with reference to FIGS.

まず、40mm×40mm、厚さ10mmのWCを主成分とする超硬合金(熱膨張係数;50×10-7/K)素材を放電加工法により、中心部分に高さ200μm、巾130μm、長さ1.3mm、テーパ角度約10度の突起をピッチ340μmで50個一列に並べた形状に加工し、表面にスパッタリング法により、Pt−Ta合金薄膜を1μm形成し、さらに、高温時にガラスとの濡れ性を悪くするために炭素(C)膜をスパッタリング法により、約0.2μm形成することで圧力室成形用金型21を作製し、プレスシリンダー28に固定した。続いて、40mm×40mm、厚さ10mmのWCを主成分とする超硬合金素材を平面研磨した後、表面にスパッタリング法により、Pt−Ta合金薄膜を1μm形成することで平面金型22を作製した。平面金型22を下金型とし、平面金型22上に、25mm×25mm、厚さ1mmのガラス(SF8;重フリントガラス)からなる成形用素材23(熱膨張係数;90×10-7/K)をのせ、その状態で、窒素をガス導入口212より送り込み非酸化雰囲気となっている成形機中に入り口シャッター29を開けて投入した(図3(a))。 First, a cemented carbide (coefficient of thermal expansion: 50 × 10 −7 / K) mainly composed of 40 mm × 40 mm and 10 mm thick WC is used for the center part by height 200 μm, width 130 μm, long Processed into a shape in which 50 protrusions with a thickness of 1.3 mm and a taper angle of about 10 degrees are arranged in a line at a pitch of 340 μm, a 1 μm Pt-Ta alloy thin film is formed on the surface by sputtering, In order to deteriorate the wettability, a pressure chamber molding die 21 was produced by forming a carbon (C) film to a thickness of about 0.2 μm by sputtering, and was fixed to the press cylinder 28. Subsequently, after planarizing a cemented carbide material mainly composed of 40 mm × 40 mm and 10 mm thick WC, a planar mold 22 is formed by forming a Pt—Ta alloy thin film on the surface by 1 μm by sputtering. did. The planar mold 22 is a lower mold, and a molding material 23 (thermal expansion coefficient: 90 × 10 −7 / 9) made of glass (SF8; heavy flint glass) having a thickness of 25 mm × 25 mm and a thickness of 1 mm is formed on the planar mold 22. In this state, nitrogen was fed from the gas inlet 212 and the entrance shutter 29 was opened and placed in a non-oxidizing atmosphere (FIG. 3A).

そして、金型全体をガイド24に沿って、予熱ステージ25に搬送し、予備加熱を行い400℃まで加熱した(図3(b))。   And the whole metal mold | die was conveyed to the preheating stage 25 along the guide 24, preheated and heated to 400 degreeC (FIG.3 (b)).

続いて、460℃以上の温度に保持したプレスステージ26へそのまま搬送し(図4(a))、全体が460℃以上の温度になるまで加熱し、プレスシリンダー28を下方に降ろし、圧力室成形用金型21が成形用素材23に接するところで、さらに、成形用素材23の表面が460℃以上の温度になるまで加熱した(図4(b))。   Subsequently, the sheet is conveyed as it is to the press stage 26 maintained at a temperature of 460 ° C. or higher (FIG. 4A), heated until the whole reaches a temperature of 460 ° C. or higher, the press cylinder 28 is lowered, and a pressure chamber is formed. When the mold 21 was in contact with the molding material 23, the surface of the molding material 23 was further heated until the temperature reached 460 ° C. or higher (FIG. 4B).

そして、成形用素材23がプレス圧力により変形可能な温度(460℃以上;粘度1010.35ポアズ以下)に達したところで、平面金型22側まで貫通させず、0.2mmだけ成形用素材23であるガラスの厚みが残るように、圧力室成形用金型21の形状を完全に転写するまで、圧力室成形用金型21の上方より、2000Nの圧力を加え、プレス成形した(図5(a))。 When the molding material 23 reaches a temperature (460 ° C. or higher; viscosity 10 10.35 poise or less) that can be deformed by the pressing pressure, the molding material 23 is not penetrated to the flat mold 22 side and is only 0.2 mm. A pressure of 2000 N was applied from above the pressure chamber molding die 21 until the shape of the pressure chamber molding die 21 was completely transferred so that the thickness of the glass remained, and press molding was performed (FIG. 5A). ).

そして、そのままの状態で冷却せずに圧力を解放し、圧力室成形用金型21を上方に引き上げた。圧力室成形用金型21と成形用素材23であるガラスの面には離型膜が形成してあり、圧力室成形用金型21と成形用素材23であるガラスは容易に離型し、さらに、圧力室成形用金型21と成形用素材23であるガラスが真空吸着により、上方へ持ち上がるのを防ぐためにガイド24に平面金型22が引っかかって、成形用素材23と平面金型22は離型膜を形成していないので、くっついたまま、そのままの状態でプレスステージ26に残る(図5(b))。   Then, the pressure was released without cooling as it was, and the pressure chamber molding die 21 was pulled upward. A release film is formed on the surface of the glass that is the pressure chamber molding die 21 and the molding material 23, and the pressure chamber molding die 21 and the glass that is the molding material 23 are easily released from the mold, Further, in order to prevent the pressure chamber molding die 21 and the molding material 23 glass from being lifted upward by vacuum suction, the planar die 22 is caught on the guide 24, and the molding material 23 and the planar die 22 are Since the release film is not formed, it remains attached to the press stage 26 as it is (FIG. 5B).

その後、平面金型22と成形したガラス23を冷却ステージ27に移動させて300℃まで冷却すると、成形したガラス23は平面金型22より、熱収縮差により発生する応力により離型した(図6(a))。   Thereafter, when the planar mold 22 and the molded glass 23 are moved to the cooling stage 27 and cooled to 300 ° C., the molded glass 23 is released from the planar mold 22 by the stress generated by the thermal shrinkage difference (FIG. 6). (A)).

そして、出口シャッター210を開けて、平面金型22に成形したガラス23を載せたまま外部に取り出し、室温まで冷却して成形したガラス23を平面金型22から引き離し成形工程は完了した(図6(b))。   Then, the outlet shutter 210 is opened, and the glass 23 formed on the flat mold 22 is taken out to the outside, cooled to room temperature, and the formed glass 23 is pulled away from the flat mold 22 to complete the molding process (FIG. 6). (B)).

続いて、図1に示したように、成形転写性の良好な成形物の表面を樹脂接着剤で覆い、平面基板に張り付けた後、成形物の裏面15より、酸化セリウム及びダイヤモンド砥粒を用いて、平面研磨して、50個の圧力室に相当する貫通孔16を得た。貫通孔の深さは全て0.18mmとした。作製した圧力室ガラス基板の圧力室部分の断面を顕微鏡観察したところ、図7と全く同じ圧力室基板ができていることが解った。このようにして製造した圧力室の加工にかかる製造コストは、従来の機械加工による孔あけ加工を施した圧力室に比べて、約1/3程度であった。また、各圧力室の間隔の位置精度は、0.2%の誤差範囲内であり、セラミックスあるいは樹脂の成形法を用いた圧力室の位置精度数%に比べて10倍以上の高精度にできていることがわかった。   Subsequently, as shown in FIG. 1, the surface of the molded article having good molding transferability is covered with a resin adhesive and attached to a flat substrate, and then cerium oxide and diamond abrasive grains are used from the back surface 15 of the molded article. Then, the surface was polished to obtain through holes 16 corresponding to 50 pressure chambers. The depths of the through holes were all 0.18 mm. When the cross section of the pressure chamber portion of the produced pressure chamber glass substrate was observed with a microscope, it was found that the same pressure chamber substrate as that in FIG. 7 was formed. The manufacturing cost for the processing of the pressure chamber manufactured in this way was about 1/3 compared with the pressure chamber subjected to the drilling by conventional machining. In addition, the positional accuracy of the intervals between the pressure chambers is within an error range of 0.2%, which can be more than 10 times higher than the positional accuracy of the pressure chambers using ceramic or resin molding methods. I found out.

また、成形温度(ガラスの粘度)と転写性及び離型性との関係を調べたところ、470℃以下の温度では成形転写性が得られず、未転写部分、特に圧力室との間の転写が甘くなり、530℃以上の温度ではガラスが付着して離型しなかった。   Further, when the relationship between the molding temperature (glass viscosity), transferability and mold release properties was examined, molding transferability could not be obtained at temperatures of 470 ° C. or lower, and transfer between untransferred parts, particularly pressure chambers. Became sweet, and the glass adhered and did not release at a temperature of 530 ° C. or higher.

このようにして製造した圧力室基板に、レーザ加工またはプレス成形によりノズル用貫通孔(直径φ50μm、厚さ0.1mm)を形成したノズル板を研磨面側に紫外線(UV)硬化樹脂で貼付し、さらに圧力室上に圧電体などからなる圧力印加板を形成してインクジェットプリンターヘッドを完成させた。その構成は図8と同様になる。   A nozzle plate in which through holes for nozzles (diameter: φ50 μm, thickness: 0.1 mm) are formed by laser processing or press molding is pasted on the polishing surface side with ultraviolet (UV) curable resin on the pressure chamber substrate thus manufactured. Further, a pressure applying plate made of a piezoelectric material or the like was formed on the pressure chamber to complete the ink jet printer head. The configuration is the same as in FIG.

以上のように、本発明によれば、ガラスの成形工程と平面研磨工程のみで、低コストで、高精度に整列させたガラス製インクジェットプリンターヘッド圧力室の製造が可能となった。   As described above, according to the present invention, it is possible to manufacture a glass ink jet printer head pressure chamber that is aligned with high accuracy at low cost only by a glass forming process and a plane polishing process.

以上の実施例に示したように、ガラスの種類を変えてもほぼ同じ様な成形結果が得られた。すなわち、本実施例の方法では、ガラスの粘度が107.65ポアズ以上1010.35ポアズ以下の温度領域で成形することが望ましい。 As shown in the above examples, almost the same molding results were obtained even if the type of glass was changed. That is, in the method of the present embodiment, it is desirable to form the glass in a temperature range of 10 7.65 poise or more and 10 10.35 poise or less.

本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法を示す概略工程図。FIG. 3 is a schematic process diagram illustrating a method for manufacturing an ink jet printer head pressure chamber according to an embodiment of the present invention. 本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法に用いた成形機の概略図((a)正面図、(b)側面図)。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the molding machine used for the manufacturing method of the inkjet printer head pressure chamber in one Example of this invention ((a) front view, (b) side view). (a)〜(b)は、本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法を示す工程図。(A)-(b) is process drawing which shows the manufacturing method of the inkjet printer head pressure chamber in one Example of this invention. (a)〜(b)は、本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法を示す工程図。(A)-(b) is process drawing which shows the manufacturing method of the inkjet printer head pressure chamber in one Example of this invention. (a)〜(b)は、本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法を示す工程図。(A)-(b) is process drawing which shows the manufacturing method of the inkjet printer head pressure chamber in one Example of this invention. (a)〜(b)は、本発明の一実施例におけるインクジェットプリンタヘッド圧力室の製造方法を示す工程図。(A)-(b) is process drawing which shows the manufacturing method of the inkjet printer head pressure chamber in one Example of this invention. 本発明の一実施例において製造したインクジェットプリンタヘッド圧力室の断面顕微鏡写真(倍率100)。1 is a cross-sectional photomicrograph (magnification 100) of an ink jet printer head pressure chamber manufactured in one embodiment of the present invention. 従来のインクジェットプリンタヘッドの構成図((a)正面図、(b)側面図)。The block diagram of the conventional inkjet printer head ((a) front view, (b) side view).

符号の説明Explanation of symbols

11,21 圧力室成形金型
12,23 成形用素材
13,22 平面金型
14 離型剤
15 研磨する面
16 形成された圧力室
24 ガイド
25 予熱ステージ
26 プレスステージ
27 冷却ステージ
28 プレスシリンダー
29 入り口シャッター
210 出口シャッター
211 チャンバー
212 ガス導入口
41 製造した圧力室基板
42 圧力室となる貫通孔
51 圧力室基板
52 ノズル板
53 圧力印加板
54 圧力室
55 ノズル
11, 21 Pressure chamber molding dies 12, 23 Molding material 13, 22 Plane mold 14 Mold release agent 15 Surface to be polished 16 Pressure chamber 24 formed Guide 25 Preheating stage 26 Press stage 27 Cooling stage 28 Press cylinder 29 Entrance Shutter 210 Exit shutter 211 Chamber 212 Gas inlet 41 Manufactured pressure chamber substrate 42 Through hole 51 to be pressure chamber Pressure chamber substrate 52 Nozzle plate 53 Pressure application plate 54 Pressure chamber 55 Nozzle

Claims (2)

インクを収納するための圧力室を有する圧力室基板と、前記圧力室からインクを吐出するノズル用貫通孔と、前記圧力室に振動を与える圧力印加板とを含むインクジェットプリンターヘッドの製造方法であって、
平面金型上に離型剤を形成したガラスからなる成形用素材を載せ、全体を加熱し、圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず裏面が残るようになるまでプレス成形する工程と、
前記成形用素材に前記圧力室成形用金型の突起形状を転写する工程と、
冷却せず前記圧力室成形用金型のみ離型する工程と、
冷却後、前記離型剤を除去し、成形された前記成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成する工程と、
前記貫通孔が形成された前記成形用素材を圧力室基板としてそれぞれ前記圧力室に対応した前記ノズル用貫通孔を形成したノズル板を貼付し、それぞれ前記圧力室に対応した圧力印加板を付加する工程とを備えることを特徴とするインクジェットプリンターヘッドの製造方法。
An ink jet printer head manufacturing method comprising: a pressure chamber substrate having a pressure chamber for containing ink; a nozzle through-hole that discharges ink from the pressure chamber; and a pressure applying plate that vibrates the pressure chamber. And
Place the molding material made of glass to form a release agent on a plane mold, heating the whole, the pressure chambers mold having a projection shape corresponding to the pressure chamber, the back surface without completely through Press molding until it remains ,
A step of transferring the pressure chamber mold projections shape to the molding material,
A step of releasing only said pressure chamber forming mold without cooling,
After cooling and forming the removal of the release agent, from the rear surface of the molding material is molded, the through holes serving as pressure chambers by polishing,
Using the molding material with the through holes formed as a pressure chamber substrate , a nozzle plate having the nozzle through holes corresponding to the pressure chambers is affixed, and pressure applying plates corresponding to the pressure chambers are respectively added. And a process for producing an ink jet printer head.
インクを収納するための圧力室を有する圧力室基板と、前記圧力室からインクを吐出するノズル用貫通孔と、前記圧力室に振動を与える圧力印加板とを含むインクジェットプリンターヘッドの製造方法であって、
平面金型上にガラスからなる成形用素材を載せ、全体を加熱し、離型膜を形成した圧力室に相当する突起形状を有する圧力室成形用金型により、完全に貫通させず裏面が残るようになるまでプレス成形する工程と、
前記成形用素材に前記圧力室成形用金型の突起形状を転写する工程と、
冷却せずに前記圧力室成形用金型のみ離型する工程と、
冷却後、成形された前記成形用素材の裏面より、研磨することで圧力室となる貫通孔を形成する工程と、
前記貫通孔が形成された前記成形用素材を圧力室基板にとしてそれぞれ前記圧力室に対応した前記ノズル用貫通孔を形成したノズル板を貼付し、それぞれ前記圧力室に対応した圧力印加板を付加する工程とを備えることを特徴とするインクジェットプリンターヘッドの製造方法。
An ink jet printer head manufacturing method comprising: a pressure chamber substrate having a pressure chamber for containing ink; a nozzle through-hole that discharges ink from the pressure chamber; and a pressure applying plate that vibrates the pressure chamber. And
Place the molding material made of glass on a plane mold, heating the whole, the pressure chambers mold having a projection shape corresponding to the pressure chamber forming the release film, the back surface without completely through Press molding until it remains ,
A step of transferring the pressure chamber mold projections shape to the molding material,
A step of releasing without cooling only the pressure chamber forming mold,
After cooling, from the rear surface of the molded material for the molding, and forming a through hole as a pressure chamber by polishing,
Using the molding material with the through-holes as a pressure chamber substrate, affixing nozzle plates with the nozzle through-holes corresponding to the pressure chambers , respectively, and adding pressure application plates corresponding to the pressure chambers , respectively. A method for manufacturing an ink jet printer head.
JP2003282052A 2003-07-29 2003-07-29 Inkjet printer head manufacturing method Expired - Fee Related JP4392205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282052A JP4392205B2 (en) 2003-07-29 2003-07-29 Inkjet printer head manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282052A JP4392205B2 (en) 2003-07-29 2003-07-29 Inkjet printer head manufacturing method

Publications (3)

Publication Number Publication Date
JP2005047165A JP2005047165A (en) 2005-02-24
JP2005047165A5 JP2005047165A5 (en) 2006-09-07
JP4392205B2 true JP4392205B2 (en) 2009-12-24

Family

ID=34267382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282052A Expired - Fee Related JP4392205B2 (en) 2003-07-29 2003-07-29 Inkjet printer head manufacturing method

Country Status (1)

Country Link
JP (1) JP4392205B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296675A (en) 2006-04-28 2007-11-15 Mimaki Engineering Co Ltd Fluid ejection device
JP2007320042A (en) 2006-05-30 2007-12-13 Mimaki Engineering Co Ltd Fluid delivering apparatus and fluid delivering apparatus group
US9096062B2 (en) * 2011-08-01 2015-08-04 Xerox Corporation Manufacturing process for an ink jet printhead including a coverlay

Also Published As

Publication number Publication date
JP2005047165A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4546315B2 (en) Manufacturing method of mold for microfabrication
JP2002068761A (en) Method of forming microstructure on glass or plastic substrate by hot forming and molding tool used therefor
JP4383803B2 (en) Inkjet printer head manufacturing method
JP4392205B2 (en) Inkjet printer head manufacturing method
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JP2009090538A (en) Manufacturing method of plastic thin film
JPWO2009016993A1 (en) Lower mold manufacturing method, glass gob manufacturing method, and glass molded body manufacturing method
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
WO2012124711A1 (en) Ni-W ELECTROFORMING SOLUTION FOR PRODUCING FORMING DIE, PROCESS FOR PRODUCING FORMING DIE, FORMING DIE, AND PROCESS FOR PRODUCING FORMED ARTICLE
JP2011016671A (en) Method for manufacturing glass lens by hot-imprinting process
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JP2006198779A (en) Device and method for forming through pore and equipment and method for manufacturing nozzle plate for inkjet recording head
JP6504933B2 (en) Optical element molding method
JP5353706B2 (en) Lower mold manufacturing method
TW504460B (en) Chip protection device
JP2002187727A (en) Method of manufacturing glass substrate and die for molding glass substrate
JP5081666B2 (en) Fine pattern molding die and manufacturing method thereof
JP4779866B2 (en) Method for manufacturing antireflection structure
JP2004142952A (en) Method for manufacturing glass molding
EP4335605A1 (en) Method of manufacturing structure
JP5233433B2 (en) Mold and method for producing glass molded body
JP2004210550A (en) Molding mold
TWI220403B (en) Method for designing and manufacturing mold and method for using such a mold in manufacturing film with micro-apertures
TWI329620B (en) Mold for molding glass optical articles
JPH06305742A (en) Mold for forming glass optical element and production of glass optical element

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees