WO2007046479A1 - 光ヘッド及び光情報記録再生装置 - Google Patents

光ヘッド及び光情報記録再生装置 Download PDF

Info

Publication number
WO2007046479A1
WO2007046479A1 PCT/JP2006/320869 JP2006320869W WO2007046479A1 WO 2007046479 A1 WO2007046479 A1 WO 2007046479A1 JP 2006320869 W JP2006320869 W JP 2006320869W WO 2007046479 A1 WO2007046479 A1 WO 2007046479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
recording
liquid crystal
objective lens
Prior art date
Application number
PCT/JP2006/320869
Other languages
English (en)
French (fr)
Inventor
Makoto Takashima
Akihiro Arai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007046479A1 publication Critical patent/WO2007046479A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements

Definitions

  • the present invention relates to an optical head for recording or reproducing information on an optical recording medium or an optical information recording / reproducing apparatus equipped with the optical head.
  • a digital versatile disc has been used for recording and reproducing image information because it has a capacity about six times that of a compact disc (CD).
  • images have shifted from standard definition to high-definition (high-definition), and as a result, optical disks use a light source with a wavelength of 660 nm and an objective lens with a numerical aperture (NA) of 0.6.
  • NA numerical aperture
  • the DVD has been increased in capacity by a Blu-ray Disc using a blue-violet laser light source with a wavelength of 405 nm and an objective lens of NA0.85.
  • FIG. 9 is a diagram showing a schematic configuration of a conventional optical head described in the patent document.
  • 101 is a GaN-based semiconductor laser that is a light source
  • 102 is an optical disk
  • 103 is a beam splitter
  • an optical element for branching light from the light source 101 and reflected light from the optical disk 102
  • 104 A collimating lens 105 that converts the light emitted from the light source 101 into parallel light
  • 105 is a mirror for deflecting the light reflected by the beam splitter 103 toward the optical disk 102.
  • the photodiodes K and 109 are optical elements including an absorption film that absorbs light with an intensity filter, and can be mechanically inserted into and removed from the optical path of the optical system.
  • 110 is the emitted light of the semiconductor laser power
  • 111 is the light after passing through the intensity filter
  • 112 is the light reflected from the optical disk 102
  • 120 is the entire optical head.
  • an intensity filter 109 is inserted in the path of the emitted light 110 of the semiconductor laser 101.
  • the intensity of the emitted light 110 from the semiconductor laser 101 is attenuated by the intensity filter 109.
  • the outgoing light 111 whose light amount has been adjusted by the intensity filter 109 is reflected by the beam splitter 103, converted into parallel light by the collimating lens 104, reflected by the mirror 105, and then condensed by the objective lens 106 and applied to the optical disk 102. Focus.
  • the light reflected by the optical disk 102 is incident on the photodiode IC 10 8 through the objective lens 106, the mirror 105, the collimating lens 104, the beam splitter 103, and the multi-lens 107, where it is converted into an electric signal, Information written on the optical disk 102 is reproduced.
  • the intensity filter 109 is also removed from the path force of the emitted light 110 of the semiconductor laser 101.
  • the emitted light 110 from the semiconductor laser 101 passes through the beam splitter 103 as it is, is converted into parallel light by the collimating lens 104, is reflected by the mirror 105, is then condensed by the objective lens 106, and is collected on the optical disk 102. Focus and write.
  • the intensity filter 109 is provided so that it can be taken in and out of the path of the emitted light 110 of the semiconductor laser 101, and the amount of transmitted light is attenuated by inserting the intensity filter 109 into the path of the emitted light 110 during reproduction. Conversely, by increasing the amount of light emitted from the semiconductor laser 101, it can be used where the relative noise intensity is small, and high-quality reproduction can be performed with low noise.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-195086 (for example, page 7, Fig. 1) Disclosure of the invention
  • the optical head 120 of the conventional example mechanical components such as a motor, a shaft, and a frame for holding the strength filter are required to put in and out the strength filter 109, which may help reduce the size of the device. Have difficulty.
  • the mechanical filter is mechanically operated in and out of the strength filter 109, it takes time to insert and remove the strength filter 109, and there is a problem that it takes a long time until the system is started after the optical disk is identified.
  • the present invention has been made in view of such a problem, and is capable of irradiating light with low quantum noise when information is recorded or reproduced on an optical recording medium such as an optical disk. It is an object of the present invention to provide an optical head and an optical information recording / reproducing apparatus that are small in size and can shorten the system startup time.
  • the first aspect of the present invention includes a light source that emits light
  • a transmitted light amount variable unit using liquid crystal that varies the amount of light emitted by diffracting, reflecting, or refracting part of incident light. It is an optical head.
  • the transmitted light amount variable unit includes:
  • the transmitted light amount variable unit includes:
  • a polarization rotation element that rotates a polarization direction of incident light in accordance with a voltage applied to the liquid crystal
  • a polarization beam splitter that receives light emitted from the polarization rotation element, transmits light having the same polarization direction as the incident light, and reflects light having a polarization direction orthogonal to the incident light.
  • the polarizing beam splitter In the first optical head according to the present invention, light transmitted through the polarizing beam splitter is guided to the objective lens.
  • the fourth aspect of the present invention is the optical head according to the third aspect of the present invention, wherein the light reflected by the polarizing beam splitter is unnecessary light that is not used in the optical head.
  • the fifth aspect of the present invention guides the light emitted from the light source provided in the optical path between the light source and the objective lens to the objective lens and reflects the light from the optical recording medium.
  • the transmitted light amount variable section is the optical head according to the first aspect of the present invention, which is provided between the light source and the beam splitter.
  • the sixth aspect of the present invention guides the light emitted from the light source provided in the optical path between the light source and the objective lens to the objective lens and reflects it from the optical recording medium.
  • the transmitted light amount varying unit is the optical head according to the first aspect of the present invention, which is provided in an optical path between the beam splitter and the objective lens.
  • an optical path between the beam splitter and the objective lens is a forward path of light from the light source to the optical recording medium, and from the optical recording medium to the beam splitter. Is shared with the light return path,
  • the transmitted light amount varying section is the optical head of the sixth aspect of the present invention provided in the shared optical path.
  • the eighth aspect of the present invention further includes a divergence degree adjusting unit that adjusts the degree of divergence of the emitted light from the beam splittaka and guides it to the objective lens,
  • the light according to the seventh aspect of the present invention wherein the transmitted light amount varying unit is provided in an optical path between the divergence degree adjusting unit and the objective lens, or an optical path between the beam splitter and the divergence degree adjusting unit. Head.
  • the ninth aspect of the present invention provides an optical information recording for recording or reproducing information on an optical recording medium.
  • a playback device for recording or reproducing information on an optical recording medium.
  • An optical information recording / reproducing apparatus comprising the optical head according to the first aspect of the present invention as means for recording or reproducing information with respect to the optical recording medium.
  • the tenth aspect of the present invention further includes a transmittance control unit that controls the transmittance of the transmitted light amount variable unit in proportion to the emitted light amount of the light source,
  • the amount of emitted light is increased and decreased with an output at which the quantum noise of the light source falls below an allowable position as a lower limit.
  • the amount of light emitted from the objective lens is P2
  • the transmittance of the transmitted light amount variable unit is K2.
  • the optical information recording / reproducing apparatus has a relationship of P1 ⁇ P2, K1 ⁇ K2.
  • the optical recording medium has one or more recording layers
  • the first output is required when recording or reproducing information on the optical recording medium having the one recording layer
  • the optical information recording / reproducing apparatus is the case where the second output is required when recording or reproducing information on the optical recording medium having the plurality of recording layers.
  • the thirteenth aspect of the present invention is to record or reproduce information on the optical recording medium at a standard speed or a high speed.
  • the first output is required when recording or reproducing information at the standard speed
  • optical information recording / reproducing apparatus wherein the second output is required when information is recorded or reproduced at the high speed.
  • the optical recording medium has a plurality of recording layers
  • the reflectance of the predetermined value or more of the plurality of recording layers When recording or reproducing information to or from the recording layer,
  • the eleventh light of the present invention is when the second output is required when recording or reproducing information to or from the recording layer having a reflectance smaller than the predetermined value among the plurality of recording layers.
  • FIG. 1 is a block diagram of an optical head capable of recording / reproducing a single-layer optical disk and a multi-layer optical disk and an optical disk recording / reproducing apparatus equipped with the optical head according to Embodiment 1 of the present invention.
  • FIG. 2 (a) shows the operation of liquid crystal element 2 in the first and third embodiments of the present invention.
  • FIG. 2 (b) shows the operation of liquid crystal element 2 in the first and third embodiments of the present invention.
  • C Diagram showing operation of liquid crystal element 2 in the third embodiment of the present invention
  • d Diagram showing operation of liquid crystal element 2 in the third embodiment of the present invention
  • FIG. 3 is a block diagram of an optical head capable of recording / reproducing single-layer and multi-layer optical disks and an optical disk recording / reproducing apparatus equipped with the optical head according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing the operation of the liquid crystal element 13 and the polarization beam splitter 14 when the control voltage is OFF for the optical head 17 in Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing the operation of the liquid crystal element 13 and the polarization beam splitter 14 when the control voltage used in the optical head 17 in Embodiment 2 of the present invention is ON.
  • FIG. 6 is a block diagram of an optical head capable of recording / reproducing single-layer and multi-layer optical disks and an optical disk recording / reproducing apparatus equipped with the optical head according to Embodiment 3 of the present invention.
  • FIG. 7 is a block diagram of an optical head capable of recording / reproducing single-layer and multi-layer optical disks and an optical disk recording / reproducing apparatus equipped with the optical head in Embodiment 4 of the present invention.
  • FIG. 9 is a diagram showing a schematic configuration of a conventional optical head
  • Liquid crystal element drive circuit Collimate lens feed drive circuit Gain switching circuit
  • FIG. 1 is a block diagram of an optical head 16 capable of recording / reproducing a single-layer optical disk and a multi-layer optical disk according to Embodiment 1 of the present invention, and an optical disk recording / reproducing apparatus equipped with the optical head 16, FIG. 2 (a), FIG. FIG. 6B is a diagram showing the operation of the liquid crystal element 2 used for the optical head 16.
  • reference numeral 1 denotes a semiconductor laser that outputs blue-violet light typified by a short-wavelength laser as a light source, and the polarization direction thereof is perpendicular to the paper surface (S-polarized light). Arranged in the optical head 16.
  • Reference numeral 2 denotes a liquid crystal element formed by filling a liquid crystal 2c between a diffraction grating 2b having a diffraction surface on the inside and a transparent substrate 2a. The diffraction of the transparent substrate 2a and the diffraction grating 2b in contact with the liquid crystal 2c Each surface is provided with electrodes (not shown), and a control voltage can be applied to the liquid crystal 2c via these electrodes.
  • the refractive index of the diffraction grating 2b is made to coincide with the ordinary light refractive index (no) of the liquid crystal 2c.
  • the liquid crystal 2c is a liquid crystal that is not twisted, and is arranged so that the major axis of the liquid crystal molecules is in the direction perpendicular to the paper surface when no control voltage is applied to the electrodes (OFF state).
  • the inner surface of the transparent substrate 2a is subjected to orientation treatment by rubbing or the like.
  • 3 is a polarization beam splitter, and 3a is a reflecting surface thereof.
  • the transmittance and reflectance of the reflecting surface 3a are, for example, 95% for S-polarized light, 5% for S-polarized light, and 99% for P-polarized light.
  • 4 is a collimating lens
  • 5 is a ⁇ 4 plate
  • 6 is an objective lens for focusing on the recording surface 7a of the optical disc
  • 7 is an optical disc having a recording surface of one or more layers.
  • optical disc 7 For the sake of convenience, the drawing shows a plurality of layers of recording surfaces.
  • [0037] 8 is a lens for condensing the light transmitted through the polarizing beam splitter 3 on the front light photo detector
  • 9 is a front light photo detector for detecting the amount of light emitted from the semiconductor laser 1
  • 10 is an optical disk 7
  • 11 a photodetector for detecting the focusing and tracking servo signals and RF signal
  • 15 a transmitter for moving the collimating lens 4 in the optical axis direction.
  • Reference numeral 26 denotes a mirror for deflecting light in the direction of the objective lens 6.
  • the semiconductor laser 1 corresponds to the light source of the present invention
  • the objective lens 6 corresponds to the objective lens of the present invention
  • the liquid crystal element 2 is an optical element of the present invention and corresponds to a transmitted light amount variable unit.
  • the transparent substrate 2a corresponds to the transparent substrate of the present invention
  • the diffraction grating 2b corresponds to the diffraction grating of the present invention
  • the liquid crystal 2c corresponds to the liquid crystal of the present invention.
  • the polarizing beam splitter 3 corresponds to the polarizing beam splitter of the present invention
  • the collimating lens 4 corresponds to the divergence degree converting unit of the present invention
  • the optical disk 7 corresponds to the optical recording medium of the present invention.
  • the optical head 16 configured as described above includes the liquid crystal element 2 as means for controlling the amount of light emitted from the semiconductor laser 1.
  • the pitch of the unevenness of the diffraction grating 2b is such that, in the state where the liquid crystal element 2 is disposed in the optical head 16, ⁇ 1st-order or higher diffracted lights 12b and 12c are transmitted from the semiconductor laser 1 to the objective lens 6.
  • the diffraction angle is determined so as not to enter the opening of a holder (not shown) that holds the objective lens 6.
  • the ratio of the 0th-order light to the incident light is defined as the transmittance K1 of the liquid crystal element 2.
  • K1 is defined by the depth of the unevenness of the diffraction grating 2b.
  • the ratio of the transmitted light to the incident light at this time is defined as the transmittance K 2 of the liquid crystal element 2. K2 is almost 100%.
  • the liquid crystal element 2 has a function of changing its transmittance to Kl and K2 in accordance with application of a control voltage.
  • the configuration can be reduced in size and the transmittance can be switched at a high speed compared to the intensity filter 109 that puts in and out so as to block the optical path in the optical head by a conventional mechanical mechanism. .
  • Light 12 emitted from the semiconductor laser 1 enters the liquid crystal element 2 as S-polarized light.
  • the liquid crystal element 2 functions as a diffraction grating as a whole, and part of the light 12 is diffracted, so that the incident light to the polarization beam splitter 3 is reduced. To be lighted.
  • the liquid crystal element 2 when the control voltage is ON, the liquid crystal element 2 functions as a transparent plate as a whole, and the light 12 is transmitted almost 100% and enters the polarizing beam splitter 3.
  • the polarization beam splitter 3 95% of the S-polarized light incident on the reflecting surface 3a is reflected, 5% is transmitted, and the transmitted light is incident on the front-light photodetector 9 by the lens 8 and is the front light. The amount is detected.
  • the collimating lens 4 is moved in the optical axis direction by the feeding mechanism 15 in order to cancel the spherical aberration due to the layer thickness. Thereby, the degree of divergence of the light passing through the collimating lens 4 is adjusted to be divergent light or convergent light according to the spherical aberration to be canceled.
  • the light that has passed through the collimating lens 4 including the parallel light and the light whose divergence degree has been adjusted to correct the spherical aberration is generally referred to as substantially parallel light. is doing.
  • the light reflected by the optical disc 7 becomes circularly polarized light in the opposite direction to that at the time of incidence. Converted.
  • the convergent light re-enters the polarizing beam splitter 3, and 99% of the ⁇ -polarized light is transmitted, the point error is corrected by the cylindrical lens 10 to obtain the focus error signal, and the photodetector 11 performs focusing and tracking. Servo signal and RF signal are detected.
  • the semiconductor laser 1 that emits light the objective lens 6 that condenses the light emitted from the semiconductor laser 1 on the optical disc 7, and the semiconductor laser 1
  • the semiconductor laser 1 and the polarization beam splitter 3 Since the liquid crystal element 2 whose transmittance is changed by functioning as a diffractive element or a transparent plate in response to the application of a control voltage is provided between the optical head and the conventional mechanical mechanism as described above.
  • the filter 109 that puts in and out so as to block the optical path there is an advantage that the configuration can be downsized and the transmittance can be switched at high speed. In addition, there is an advantage that improvement in reliability can be emphasized.
  • Figure 1 is used for explanation.
  • 16 is an optical head
  • 20 is a semiconductor laser drive circuit for causing the semiconductor laser 1 to emit a constant amount of light based on a signal from the front light photodetector 9
  • 21 is an amount of light reflected from the optical disk 7 by the optical head 16.
  • a mode detection circuit that identifies the type of the optical disk by an identification signal obtained from a cartridge that protects the optical disk and sends the identification signal to each circuit
  • 22 is a liquid crystal element drive circuit that drives the liquid crystal element 2
  • 23 is Collimet training
  • the collimating lens feed drive circuit cancels spherical aberration that occurs when reproducing optical discs with multiple layers by moving the lens in the optical axis direction
  • 24 is a gain switch that switches the sensitivity of the front light detector 9 according to the operation mode. Circuit.
  • the mode detection circuit 21, the liquid crystal element drive circuit 22, the gain switching circuit 24, and the semiconductor laser drive circuit 20 correspond to the transmittance control unit of the present invention.
  • the relative noise intensity value at the time of light emission is 123 dBZHz. Since the relative noise intensity value allowed for an optical disk recording / reproducing device is 125 dBZHz or less, the relative noise intensity value is unacceptable for single-layer disk reproduction.
  • the control voltage is set to the low power operation mode and the liquid crystal element drive circuit 22 turns off the liquid crystal element 2. Is applied.
  • the liquid crystal element 2 functions as a diffractive element and reduces the transmittance.
  • the transmittance K1 is, for example, 50%
  • the light emission amount of the semiconductor laser 1 as the light source is 2 mW.
  • the relative noise intensity value at this time is -130 dBZHz, which is within the allowable relative noise intensity value, and a signal with a low quantum noise level can be obtained.
  • the mode detection circuit 21 identifies the optical disc 7 as an optical disk having a plurality of layers with low reflectivity
  • the high power operation mode is set.
  • the liquid crystal element 2 is turned on by the liquid crystal element drive circuit 22, and the liquid crystal element 2 functions as a transparent flat plate, and the transmittance K2 becomes 100%.
  • the light emission of the semiconductor laser 1 as the light source is 2 mW.
  • the relative noise intensity at this time is 130 dBZHz, which is within the allowable relative noise intensity, and a signal with a low quantum noise level is obtained.
  • the amount of light incident on the front light photodetector 9 changes twice.
  • the APC is driven by the semiconductor laser, the amount of light emitted from the semiconductor laser 1 is suppressed so that the same amount of light can be obtained.
  • the semiconductor laser 1 requires low power in an optical disk recording / reproducing apparatus that records or reproduces blue-ray information on an optical disk 7 having one or more recording layers.
  • the amount of light emitted from the objective lens 6 is Pl
  • the transmittance of the liquid crystal element 2 is K1
  • the semiconductor laser 1 has a plurality of recording layers that require high power.
  • the amount of light emitted from the object lens can be increased by increasing the transmittance of the transmitted light amount varying means, thereby preventing an increase in the driving current of the semiconductor laser 1 and extending the life. it can.
  • the optical disk recording / reproducing apparatus for recording / reproducing an optical disk recording medium having one or more recording layers has been described.
  • the optical disk recording medium is recorded / reproduced at a standard speed or a high speed. The same effect can be obtained even with an optical disk reproducing apparatus.
  • FIG. 3 is a block diagram of an optical head 17 capable of recording / reproducing one-layer and plural-layer optical disks and an optical disk recording / reproducing apparatus equipped with the optical head 17 according to Embodiment 2 of the present invention.
  • 13 is a liquid crystal element
  • 13a and 13b are transparent substrates
  • 13c is a liquid crystal layer
  • 14 is a polarizing beam splitter
  • 14a is a reflecting surface
  • P-polarized light transmittance has a film characteristic of about 100%.
  • 25 blocks liquid crystal element 13 and polarization beam splitter 14 This is a converted filter block.
  • the other components are the same as those in Fig. 1 and will not be described.
  • the liquid crystal element 13 corresponds to the polarization rotation element of the present invention
  • the polarization beam splitter 14 corresponds to the polarization beam splitter of the present invention
  • the filter block is the transmitted light amount variable unit of the present invention.
  • the optical head 17 configured as described above includes a filter block 25 having a liquid crystal element 13 and a polarization beam splitter 14 as means for controlling the amount of light emitted from the semiconductor laser 1, thereby Similar to Form 1, the transmittance is controlled according to the application of the control voltage.
  • FIG. 4 shows the operation of the liquid crystal element 13 and the polarization beam splitter 14 used for the optical head 17 when the control voltage is OFF
  • FIG. 5 shows the liquid crystal element 13 and the polarization beam splitter when the control voltage used for the optical head 17 is ON.
  • the output polarized light is designed to be inclined by 45 ° with respect to the incident polarized light. That is, the light emitted from the semiconductor laser 1 and incident on the transparent substrate 13a side is inclined by 45 ° with respect to the incident light when transmitted through the liquid crystal layer 13c as shown in FIG. Light tilted by 45 ° is incident on the polarizing beam splitter 14
  • the reflecting surface 14a is designed to transmit approximately 100% of the P-polarized light, so that it is the same direction as the incident light as 50% of the original light quantity. Polarized light is transmitted through the light, and light that is inclined 90 ° with respect to the incident light is reflected as 50% of the light.
  • the outgoing polarized light is designed to be transmitted while maintaining the same inclination as the incident polarized light. Therefore, the light emitted from the semiconductor laser 1 toward the transparent substrate 13a enters the polarization beam splitter 14 while being inclined by 90 ° with respect to the reference line in the figure. Reflective surface 14a transmits almost 100% of P-polarized light It is designed so that almost 100% of light is transmitted.
  • the transmittance of the filter block 25 including the liquid crystal element 13 and the polarizing beam splitter 14 changes to 50% and 100%, respectively, when the liquid crystal element 13 is turned on and off.
  • the configuration can be reduced in size and the transmittance can be switched at high speed as compared with the strength filter 109 that puts and removes the optical path in the optical head by a conventional mechanical mechanism.
  • the operation of the optical head 17 as a whole is as follows.
  • the light emitted from the semiconductor laser 1 is incident on the filter block 25, is subjected to a predetermined process, is emitted from the filter block 25, and is incident on the polarization beam splitter 3. Since it is the same as Embodiment 1, it abbreviate
  • the filter block 25 having the liquid crystal element 13 that rotates the polarization direction of the incident light and the polarization beam splitter 14 the same as in the first embodiment.
  • the effect is obtained.
  • unnecessary light can be easily led out of the optical head 17, thereby reducing the possibility of unnecessary light becoming stray light in the optical head 17, and having an effect of obtaining a signal with a small offset.
  • the filter block 15 that is a composite element of the liquid crystal element 13 that rotates the polarization direction and the polarization beam splitter 14 has been described as the transmitted light amount variable unit of the present invention. If the transmittance can be controlled by reflecting a part of the incident light by electrical switching, it is not limited to the specific configuration.
  • FIG. 3 shows an optical disk recording / reproducing apparatus equipped with the optical head 17 described above.
  • the components 20 to 24 are not explained because they use the same names and symbols as in FIG.
  • the present embodiment is the same in operation as the transmitted light amount variable unit in that the liquid crystal element 2 which is the transmitted light amount variable unit of the first embodiment is replaced with a filter block 25. That is, during low power operation, the liquid crystal element 13 is turned off and the transmittance K1 of the filter block 25 is reduced by 50%. During high power operation, the liquid crystal element 13 is turned on and the transmittance K2 of the filter block 25 is increased. 100%. Further, the operation of each other part is the same as that of the first embodiment, and a detailed description thereof is omitted.
  • the semiconductor laser 1 requires low power in the optical disc recording / reproducing apparatus for recording / reproducing the blue-ray information on the optical disc 7 having one or a plurality of recording layers.
  • the amount of light emitted from the objective lens 6 is Pl
  • the transmittance of the filter block 25 is K1
  • the semiconductor laser 1 has multiple recording layers that require high power. Operate so that the relationship of P1 ⁇ P2 and K1 ⁇ K2 is generated, where P2 is the amount of light emitted from objective lens 6 and K2 is the transmittance of liquid crystal element 2 when playing back an optical disk recording medium.
  • P2 is the amount of light emitted from objective lens 6
  • K2 is the transmittance of liquid crystal element 2 when playing back an optical disk recording medium.
  • the transmittance of the transmitted light amount varying means by increasing the transmittance of the transmitted light amount varying means, the amount of light emitted from the object lens can be increased, the increase in the drive current of the semiconductor laser can be prevented, and the life can be extended.
  • the same effect can be obtained even in an optical disk reproducing apparatus that records and reproduces an optical disk recording medium at a standard speed or a high speed.
  • the standard speed recording or reproduction should be performed in the low power operation mode
  • the high speed recording or reproduction should be performed in the high !
  • the power operation mode the standard speed recording or reproduction should be performed in the low power operation mode
  • FIG. 6 is a block diagram of an optical head 18 and an optical disk recording / reproducing apparatus equipped with the optical head 18 capable of recording / reproducing one-layer and plural-layer optical disks according to Embodiment 3 of the present invention.
  • FIGS. 2 (b), 2 (c), and 2 (d) are diagrams for explaining the operation of the diffraction element, which is a transmittance varying means used in the optical head 18.
  • 27 is a polarization beam splitter
  • 27a is the reflection surface
  • the S-polarized light reflectance is approximately 100%
  • the P-polarized light transmittance is approximately 100%
  • 28 is a beam splitter that splits the light emitted from the semiconductor laser 1 into light directed to the front light detector 8 and the objective lens 6
  • 29 is a semiconductor laser 1, a polarization beam splitter 27, a cylindrical lens 10, and a photo detector. This is an integrated unit that integrates the data 11.
  • the optical head 18 configured as described above functions as a diffractive element or a transparent flat plate in accordance with application of a control voltage as means for controlling the amount of light emitted from the semiconductor laser 1 as in the first embodiment.
  • the liquid crystal element 2 whose transmittance is changed is provided.
  • the liquid crystal element 2 is arranged at the rear stage of the collimating lens 4. Further, it is characterized in that the light passes through the liquid crystal element 2 both in the optical path from the semiconductor laser 1 to the optical disk 7 as the forward path and in the optical path from the optical disk 7 as the return path to the photodetector 11.
  • the liquid crystal element 2 functions as a transparent flat plate for P-polarized incident light regardless of the presence or absence of a control voltage.
  • the optical head 18 having the liquid crystal element 2 as described above will be described in the case where the control voltage applied to the liquid crystal element 2 is OFF and ON.
  • the path from which the light emitted from the semiconductor laser 1 is directed to the optical disk 7 corresponds to the forward path of the present invention, and the reflected light generated from the optical disk 7 is directed to the photodetector 11. Corresponds to the return path of the invention.
  • the light 12 emitted from the semiconductor laser 1 enters the polarization beam splitter 27 as S-polarized light.
  • the polarizing beam splitter 27 approximately 100% of the light incident on the S-polarized light is reflected by the reflecting surface 27a, enters the collimating lens 4, and is converted into substantially parallel light.
  • the S-polarized light converted into substantially parallel light also enters the liquid crystal element 2 with the side force of the transparent substrate 2a.
  • the liquid crystal element 2 at this time performs the operation shown in FIG. 2 (a) and functions as a diffraction element.
  • the incident light is partially diffracted, and the 0th-order light 12a as the attenuated component is converted into circularly polarized light by the ⁇ ⁇ 4 plate 5, and the beam splitter 28 is directed to the front light photodetector 9 and the objective lens. Branches into the light directed to 6. Of the branched light, the light incident on the objective lens 6 is condensed on the optical disk 7 to form a light spot on the recording surface 7a. The other light branched by the beam splitter 28 is condensed by the lens 8 onto the front light photodetector 9.
  • the thickness of the layer is several lOum, so that the collimating lens is used by the feeding mechanism 15 to cancel the spherical aberration due to the layer thickness. Move 4 in the direction of the optical axis.
  • the light reflected by the optical disc 7 becomes circularly polarized light in the direction opposite to that at the time of incidence, enters the objective lens 6 again, enters the ⁇ Z4 plate 5 and becomes P-polarized light, and enters the liquid crystal element 2 from the diffraction grating 2b side.
  • the liquid crystal element 2 operates as shown in FIG. 2 (c) and functions as a transparent flat plate. All the light incident on the liquid crystal element 2 travels straight and enters the collimating lens 4 where it is converted into convergent light.
  • the light 12 emitted from the semiconductor laser 1 follows the same path as that when the control voltage is OFF and enters the liquid crystal element 2.
  • the liquid crystal element 2 at this time performs the operation shown in FIG. 2 (b) and functions as a transparent flat plate.
  • the incident light from the transparent substrate 2a goes straight without being diffracted.
  • the light that travels straight is converted into circularly polarized light by the ⁇ 4 plate 5, and is split by the beam splitter 28 into light that is directed toward the front light photodetector 9 and light that is directed toward the objective lens 6.
  • the beam splitter 28 Of the branched light, the light incident on the objective lens 6 is condensed on the optical disk 7 to form a light spot on the recording surface 7a.
  • the beam splitter 28 The other split light is condensed on the front light detector 9 by the lens 8.
  • the light reflected by the optical disc 7 becomes circularly polarized light in the opposite direction to the direction of incidence, enters the objective lens 6 again, enters the ⁇ Z4 plate 5 and becomes P-polarized light, and enters the liquid crystal element 2 from the diffraction grating 2b side.
  • the liquid crystal element 2 operates as shown in FIG. 2 (d) and functions as a transparent flat plate. All the light incident on the liquid crystal element 2 travels straight and enters the collimating lens 4 where it is converted into convergent light. The convergent light re-enters the polarization beam splitter 27, approximately 100% of the P-polarized light is transmitted, and the point aberration is corrected by the cylindrical lens 10 to obtain the focus error signal. Focusing and tracking are performed by the photodetector 11. Signals for and RF signals are detected.
  • the semiconductor laser 1 that emits light, the objective lens 6 that condenses the light emitted from the semiconductor laser 1 onto the optical disc 7, and the semiconductor laser 1 In an optical head having a polarization beam splitter 27 for branching the emitted light into light used for recording / reproduction of the optical disc 7 and light for controlling the light emission amount of the light source, the polarization beam splitter 27 and the collimating lens 4
  • the liquid crystal element 2 whose transmittance changes by functioning as a diffractive element or a transparent flat plate according to the application of the control voltage, the same effect as in the first embodiment can be obtained.
  • the liquid crystal element 2 is arranged subsequent to the collimating lens 4 and disposed at a position where the emitted light from the semiconductor laser 1 is converted into substantially parallel light. .
  • the energy density of the light with the thickest beam diameter is the lowest, especially when the laser light has a short wavelength, such as BD, which has the effect of reducing damage to the liquid crystal due to the short wavelength light.
  • the liquid crystal element 2 has been described as being disposed between the collimating lens 4 and the ⁇ 4 plate 5.
  • the optical path between the polarizing beam splitter 27 and the collimating lens 4 Even if it arrange
  • the intensity filter as in the conventional example is arranged at the same position as the liquid crystal element 2 of the present embodiment, the amount of light in the return path is also attenuated by the intensity filter, There is a drawback that the signal quantity obtained by the detector is attenuated and the SN becomes worse. On the other hand, in the case of the present embodiment, there is an advantage that SN deterioration can be prevented because there is no attenuation of the light amount in the return path.
  • the shape of the integrated unit increases.
  • the liquid crystal element 2 is provided in the reciprocating optical path, so that the transmitted light amount variable part can be omitted from the integrated unit, and the integrated unit can be downsized. Can help.
  • the liquid crystal element 2 that is a composite element of the liquid crystal 2c and the diffraction grating 2b has been described as the optical element of the present invention.
  • a part of the incident light is electrically switched by using the liquid crystal.
  • the transmittance can be controlled by diffracting the light, it is not limited to the specific configuration.
  • FIG. 6 shows an optical disk recording / reproducing apparatus equipped with the optical head 18 described above.
  • the components 20 to 24 are not explained because they use the same names and symbols as in FIG.
  • the positional force of the liquid crystal element 2 that is the transmitted light amount variable section of the first embodiment is between the polarization beam splitter 3 and the semiconductor laser 1 and between the collimating lens 4 and the ⁇ 4 plate 5.
  • the basic operation is the same in that the part that performs the front light detection is replaced with the optical path after the transmittance varying means. That is, during low power operation, the liquid crystal element 2 is turned off and the liquid crystal element 2 functions as a diffractive element to reduce the transmittance K1 by 50%, and during high power operation, the liquid crystal element 2 is turned off. By making the liquid crystal element 2 function as a transparent flat plate, the transmittance K2 is set to 100%. Further, the operation of each other part is the same as that of the first embodiment, and detailed description thereof is omitted.
  • the semiconductor laser 1 requires low power in an optical disc recording / reproducing apparatus that records or reproduces blue information on an optical disc 7 having one or more recording layers.
  • the amount of light emitted from the objective lens 6 is Pl
  • the transmittance of the liquid crystal element 2 is K1
  • the semiconductor laser 1 has multiple layers that require high power.
  • P2 is the amount of light emitted from the objective lens 6
  • K2 is the transmittance of the liquid crystal element 2, so that P1 ⁇ P2 and K1 ⁇ K2
  • the amount of light emitted from the object lens can be increased by increasing the transmittance of the transmitted light amount varying means, thereby preventing an increase in the drive current of the semiconductor laser 1 and extending its life. it can.
  • the optical disk recording / reproducing apparatus for recording / reproducing an optical disk recording medium having one or a plurality of recording layers has been described.
  • the optical disk recording medium is recorded / reproduced at a standard speed or a high speed. The same effect can be obtained even with an optical disk reproducing apparatus.
  • FIG. 7 is a block diagram of an optical head 19 capable of recording / reproducing a plurality of optical discs having different reflectivities and an optical disc recording / reproducing apparatus equipped with the optical head 19 in Embodiment 4 of the present invention.
  • components other than 7b, 7c, 19, and 30 are given the same names and symbols as in FIG.
  • Reference numerals 7b and 7c denote a plurality of recording surfaces of the optical disc 7, respectively.
  • the reflectances of the recording surfaces 7a, 7b, and 7c are Rl, R2, and R3, respectively, and the relationship between the reflectances is Rl, R2, and R3.
  • Reference numeral 30 denotes a photodetector that detects light transmitted through the beam splitter 28 out of the reflected light from the optical disk 7.
  • the operation of the optical head 19 configured as described above is basically the same as that of the optical head 18 of the third embodiment, but the reflected light from each recording surface of the optical disc 7 is detected by the photodetector 30. However, it is different in that the transmittance of the liquid crystal element 2 as the transmitted light amount variable portion is changed for each recording surface based on the detection result.
  • the recording layer discrimination operation is performed as follows.
  • the optical disc 7 is reproduced or recorded by the optical disc recording / reproducing apparatus, when the recording surface 7a farthest from the objective lens 6 is targeted, the focus servo is pulled in, and the amount of light at that time is detected by the photodetector 9 and the photodetector. Detect each at 30.
  • the reflectance of the beam splitter 29 is K3
  • the detected light amount of the photodetector 9 is ⁇ 4
  • the detected light amount of the photodetector 30 is ⁇ 5
  • the transmittance of the objective lens 6 and the transmittance of the lens 8 are 100% for convenience
  • the disk The reflectance of the recording surface 7a of 7 is calculated using the detected light amounts P4 and P5 and the reflectance K3.
  • a predetermined value or a range of a predetermined value as a threshold for switching between the high power operation mode and the low power operation mode is determined, and the calculated reflectance is the predetermined value. If it is above, it is operated in the low power operation mode, and if it is smaller than the predetermined value, it is operated in the high power operation mode, and the liquid crystal element 2 can be controlled according to each operation mode. Done.
  • the predetermined value of the present invention may be a unique value or a range having a certain width.
  • the reflectance of the recording surface 7a can be detected, and the operation mode can be switched according to the detection result.
  • the mode detection circuit 21 determines and switches the operation mode.
  • a low power operation mode may be assigned at the time of reproduction, and a high power operation mode may be assigned at the time of recording.
  • the assignment of the low power operation mode and the high power operation mode as the control operation of the transmittance control unit of the present invention is based on various states relating to recording Z or reproduction of the optical disc 7 (type of operation, reproduction or recording speed, recording Media type, recording surface phase change, etc.) In consideration of the above, the designer may arbitrarily perform it.
  • the change in the amount of emitted light and the change in the transmittance of the liquid crystal element 2 and the filter block 25 are the intermittent forces of three or more steps, which are the binary values of Pl, P2, Kl, and ⁇ 2, respectively. Or it may be a continuous change. If the amount of light emitted from the semiconductor laser is a minimum value that the relative noise intensity of the quantum noise can tolerate, it may be increased or decreased within the range of the higher value. Further, the transmittance may be made proportional to the amount of emitted light. As a result, it is possible to prevent excessively strong light from entering the optical recording medium.
  • the transmitted light amount varying unit of the present invention varies the amount of light by diffracting or reflecting a part of incident light by a combination of a liquid crystal and a diffraction element or a polarization beam splitter.
  • a liquid crystal and a diffraction element or a polarization beam splitter it is possible to refract part of the incident light using liquid crystal and change the amount of light by making the refracted light unnecessarily out of the optical path.
  • the optical head and the optical information recording / reproducing apparatus according to the present invention can irradiate light with little quantum noise when recording or reproducing information on an optical recording medium, and are small in size and system. It has the effect of shortening the start-up time, and is useful as an optical head used for Blu-ray Discs or an optical information recording / reproducing apparatus equipped with an optical head.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 光ディスク等の光記録媒体に対し情報を記録又は再生する際に量子雑音の少ない光を照射することが可能であって、小型でシステム起動の時間を短縮する。  光を出射する半導体レーザ1と、半導体レーザ1から出射した光を光ディスク7に集光する対物レンズ6と、半導体レーザ1と対物レンズ6との間に設けられ、入射する光の一部を回折、反射又は屈折させることにより出射される光の光量を可変する、液晶を用いた透過光量可変部としての液晶素子2とを備えた。

Description

明 細 書
光ヘッド及び光情報記録再生装置
技術分野
[0001] 本発明は光記録媒体に対レ f青報を記録又は情報を再生するための光ヘッド又は 光ヘッドを搭載した光情報記録再生装置に関する。
背景技術
[0002] 従来、デジタルバーサタイルディスク(DVD)は、コンパクトディスク(CD)の約 6倍 の容量があるため画像情報の記録再生に用いられてきた。しかしながら、近年、画像 も標準画質(Standard Definition)から高精細度画質(High— Definition)へと 移り、それにともない光ディスクも波長 660nmの光源と、開口数 (NA) 0. 6の対物レ ンズを使用した DVDから、波長 405nmの青紫色レーザの光源と、 NA0. 85の対物 レンズを使用した Blu— ray Discによって 5倍の容量アップが図られてきている。
[0003] 現在、さらに大容量ィ匕するために従来 1層であった記録層を 2層以上の複数の記 録層を有する光ディスク記録媒体の開発が行われて!/ヽる。これにより 4層を実現でき れば 1層の DVD— RAMディスクと比較して約 20倍の容量が実現でき、高精細度画 質の画像でも長時間の記録再生が可能となる。しかし、これに使用される波長 405η mの半導体レーザは量子雑音が大きい問題を有している。レーザ出力と相対雑音強 度の関係を図 8に示す。レーザ出力が小さくなると相対雑音強度が上昇するのがわ かる。
[0004] この相対雑音強度の問題に対して、メカニズムで強度フィルタを光路中に出し入れ して対処した光ヘッドが提案されている (例えば、特許文献 1参照)。
[0005] 図 9は、前記特許文献に記載された従来例の光ヘッドの概略構成を示す図である
[0006] 図 9において、 101は光源である GaN系の半導体レーザ、 102は光ディスク、 103 はビームスプリッタで光源 101からの光と光ディスク 102からの反射光を分岐するた めの光学素子、 104は光源 101から出射した光を平行光に変換するコリメートレンズ 、 105はビームスプリッタ 103で反射した光を光ディスク 102へと偏向させるためのミ ラー、 106は光ディスク 102の記録面へ光を集光するための対物レンズ、 107は光デ イスク 102からの反射光をフォトダイオード ICに集光させるマルチレンズ、 108は信号 光検出用受光素子としてのフォトダイオード K、 109は強度フィルタで光を吸収する 吸収膜を含む光学素子で光学系の光路中に機械的に出し入れ可能となっている。 1 10は半導体レーザ力もの出射光、 111は強度フィルタ透過後の光、 112は光デイス ク 102からの反射光のうちビームスプリッタ 103で分岐された光、 120は光ヘッド全体 である。
[0007] 次に光ヘッド 120の動作について説明する。
[0008] まず、再生時には、半導体レーザ 101の出射光 110の経路に強度フィルタ 109を 挿入しておく。このとき、半導体レーザ 101の出射光 110の光量は、この強度フィルタ 109により減衰する。強度フィルタ 109により光量が調整された出射光 111は、ビー ムスプリッタ 103で反射されコリメートレンズ 104により平行光に変換され、ミラー 105 で反射された後、対物レンズ 106により集光されて光ディスク 102に焦点を結ぶ。
[0009] そして、この光ディスク 102で反射された光が対物レンズ 106、ミラー 105、コリメート レンズ 104、ビームスプリッタ 103及びマルチレンズ 107を経てフォトダイオード IC10 8に入射し、ここで電気信号に変換され、光ディスク 102に書き込まれた情報が再生 される。
[0010] 又、記録時には、半導体レーザ 101の出射光 110の経路力も強度フィルタ 109を 外しておく。このとき、半導体レーザ 101からの出射光 110はそのまま、ビームスプリ ッタ 103を経てコリメートレンズ 104により平行光に変換され、ミラー 105で反射された 後、対物レンズ 106により集光されて光ディスク 102に焦点を結び、書き込みが行わ れる。
[0011] これにより、半導体レーザ 101の出射光 110の経路に対して出し入れ可能に強度 フィルタ 109を設け、再生時には強度フィルタ 109を出射光 110の経路に挿入するこ とにより透過光量を減衰させ、逆に半導体レーザ 101の出射光量を増すことにより相 対雑音強度の小さいところで使用することが可能となり、低雑音で良質の再生を行う ことができる。
特許文献 1 :特開 2000— 195086号公報 (例えば第 7頁、図 1) 発明の開示
発明が解決しょうとする課題
[0012] しかしながら、従来例の光ヘッド 120の構成では、強度フィルタ 109の出し入れに はモーター、シャフト、強度フィルタを保持するフレーム等の機構部品が必要となり機 器の小型化をは力ることが困難である。又、強度フィルタ 109の出し入れは機構部品 が協働する機械的な動作なので、強度フィルタ 109の出し入れに時間がかかり、光 ディスクを判別してシステムが起動するまでの時間が長くなる課題もある。
[0013] 本発明は、このような課題に鑑みてなされたものであり、光ディスク等の光記録媒体 に対し情報を記録又は再生する際に量子雑音の少ない光を照射することが可能で あって、小型でシステム起動の時間を短縮することができる光ヘッド及び光情報記録 再生装置を提供することを目的とする。
課題を解決するための手段
[0014] 上記の目的を達成するために、第 1の本発明は、光を出射する光源と、
前記光源から出射した光を光記録媒体に集光する対物レンズと、
前記光源と前記対物レンズとの間に設けられ、入射する光の一部を回折、反射又 は屈折させることにより出射される光の光量を可変する、液晶を用いた透過光量可変 部とを備えた、光ヘッドである。
[0015] また、第 2の本発明は、前記透過光量可変部は、
透明基板と
回折格子と、
前記透明基板と前記回折格子との間に前記液晶が封入された光学素子であり、 前記液晶へ印加する電圧に応じて、入射する光を透過するか、その一部が回折す るかを制御するものである、第 1の本発明の光ヘッドである。
[0016] また、第 3の本発明は、前記透過光量可変部は、
前記液晶へ印加する電圧に応じて入射光の偏光方向を回転させる偏光回転素子 と、
前記偏光回転素子から出射した光の入力を受け、前記入射光と同一偏光方向の 光を透過し、前記入射光と直交する偏光方向の光を反射する偏光ビームスプリ ッタを有し、
前記偏光ビームスプリッタを透過する光が前記対物レンズへ導かれる、第 1の本発 明の光ヘッドである。
[0017] また、第 4の本発明は、前記偏光ビームスプリッタで反射した光は、前記光ヘッド内 で用いられない不要光である、第 3の本発明の光ヘッドである。
[0018] また、第 5の本発明は、前記光源と前記対物レンズとの間の光路に設けられた、前 記光源から出射した光を前記対物レンズへ導くとともに、前記光記録媒体から反射さ れた光を前記光源と自らとがなす光路とは異なる光路に分岐するビームスプリッタを 更に備え、
前記透過光量可変部は、前記光源と前記ビームスプリッタとの間に設けられている 、第 1の本発明の光ヘッドである。
[0019] また、第 6の本発明は、前記光源と前記対物レンズとの間の光路に設けられた、前 記光源から出射した光を前記対物レンズへ導くとともに、前記光記録媒体から反射さ れた光を前記光源と自らとがなす光路とは異なる光路に分岐するビームスプリッタを 更に備え、
前記透過光量可変部は、前記ビームスプリッタと前記対物レンズとの間の光路に設 けられている、第 1の本発明の光ヘッドである。
[0020] また、第 7の本発明は、前記ビームスプリッタと前記対物レンズとの間の光路は、前 記光源から前記光記録媒体までの光の往路と、前記光記録媒体から前記ビームスプ リツタまでの光の復路とで共有されており、
前記透過光量可変部は、前記共有された光路内に設けられている、第 6の本発明 の光ヘッドである。
[0021] また、第 8の本発明は、前記ビームスプリツタカも出射した光の発散度合いを調整し て前記対物レンズに導く発散度合い調整部を更に備え、
前記透過光量可変部は、前記発散度合い調整部と前記対物レンズとの間の光路、 又は前記ビームスプリッタと前記発散度合い調整部との間の光路に設けられている、 第 7の本発明の光ヘッドである。
[0022] また、第 9の本発明は、光記録媒体に対し情報の記録又は再生を行う光情報記録 再生装置であって、
前記光記録媒体に対し情報の記録又は再生を行う手段として第 1の本発明の光へ ッドを備えた、光情報記録再生装置である。
[0023] また、第 10の本発明は、前記光源の出射光量に比例して前記透過光量可変部の 透過率を制御する透過率制御部をさらに備え、
前記出射光量は、前記光源の量子雑音が許容位置以下となる出力を下限として増 減されるものである、第 9の本発明の光情報記録再生装置である。
[0024] また、第 11の本発明は、前記光記録媒体に対し、前記光源が第 1の出力を要する 場合の、前記対物レンズからの出射光量を Pl、前記透過光量可変部の透過率を K1 とし、
前記光記録媒体に対し、前記光源が前記第 1の出力より高い第 2の出力を要する 場合の、前記対物レンズからの出射光量を P2、前記透過光量可変部の透過率を K2 とすると、
P1 < P2、 K1 <K2の関係がある、第 10の本発明の光情報記録再生装置である。
[0025] また、第 12の本発明は、前記光記録媒体は、 1層又は複数の記録層を有し、
前記第 1の出力を要する場合は、前記 1層の記録層を持つ前記光記録媒体に対し 情報の記録又は再生するときであり、
前記第 2の出力を要する場合は、前記複数の層の記録層を持つ前記光記録媒体 に対し情報の記録又は再生するときである、第 11の本発明の光情報記録再生装置 である。
[0026] また、第 13の本発明は、前記光記録媒体に、標準速又は高倍速で情報の記録又 は再生を行うものであり、
前記第 1の出力を要する場合は、前記標準速で情報の記録又は再生をするときで あり、
前記第 2の出力を要する場合は、前記高倍速で情報の記録又は再生をするときで ある、第 11の本発明の光情報記録再生装置である。
[0027] また、第 14の本発明は、前記光記録媒体は、複数の記録層を有し、
前記第 1の出力を要する場合は、前記複数の記録層のうち、所定値以上の反射率 を持つ前記記録層に対し情報の記録又は再生するときであり、
前記第 2の出力を要する場合は、前記複数の記録層のうち、前記所定値より小さい 反射率を持つ前記記録層に対し情報の記録又は再生するときである、第 11の本発 明の光情報記録再生装置である。
発明の効果
[0028] 以上のような本発明によれば、小型でシステム起動の時間を短縮することができる 光ヘッド及び光情報記録再生装置を提供することができる。
図面の簡単な説明
[0029] [図 1]本発明の実施の形態 1における 1層及び複数層の光ディスクの記録再生ができ る光ヘッド及び光ヘッドを搭載した光ディスク記録再生装置のブロック図
[図 2] (a)本発明の実施の形態 1及び実施の形態 3における液晶素子 2の動作を示す 図 (b)本発明の実施の形態 1及び実施の形態 3における液晶素子 2の動作を示す図 (c)本発明の実施の形態 3における液晶素子 2の動作を示す図(d)本発明の実施の 形態 3における液晶素子 2の動作を示す図
[図 3]本発明の実施の形態 2における 1層及び複数層の光ディスクの記録再生ができ る光ヘッド及び光ヘッドを搭載した光ディスク記録再生装置のブロック図
[図 4]本発明の実施の形態 2における光ヘッド 17に用いる制御電圧 OFF時の液晶素 子 13と偏光ビームスプリッタ 14の動作を示す図
[図 5]本発明の実施の形態 2における光ヘッド 17に用いる制御電圧 ON時の液晶素 子 13と偏光ビームスプリッタ 14の動作を示す図
[図 6]本発明の実施の形態 3における 1層及び複数層の光ディスクの記録再生ができ る光ヘッド及び光ヘッドを搭載した光ディスク記録再生装置のブロック図
[図 7]本発明の実施の形態 4における 1層及び複数層の光ディスクの記録再生ができ る光ヘッド及び光ヘッドを搭載した光ディスク記録再生装置のブロック図
[図 8]レーザ出力と相対雑音強度の関係を表す図
[図 9]従来の光ヘッドの概略構成を示す図
符号の説明
[0030] 1 半導体レーザ 液晶素子
偏光ビームスプリッタ コリメートレンズ
λ Ζ4板
対物レンズ
光ディスク
レンズ
フォトディテクタ
シリンドリカノレレンズ フォトディテクタ
液晶素子
偏光ビームスプリッタ コリメートレンズ送り機構 17, 18 光ヘッド
半導体レーザ駆動回路 モード検出回路
液晶素子駆動回路 コリメートレンズ送り駆動回路 ゲイン切替回路
ラー
偏光ビームスプリッタ ビームスプリッタ
集積ユニット
半導体レーザ
光ディスク
コリメートレンズ
ミラー 106 対物レンズ
107 マルチレンズ
108 フォトダイオード
109 強度フィルタ
110 出射光
111 強度フィルタ透過後の光
120 光ヘッド全体
発明を実施するための最良の形態
[0031] 以下本発明の実施の形態について、図面を参照しながら説明する。
[0032] (実施の形態 1)
図 1は、本発明の実施の形態 1における 1層及び複数層の光ディスクの記録再生が できる光ヘッド 16及び光ヘッド 16を搭載した光ディスク記録再生装置のブロック図、 図 2 (a)、図 2 (b)は光ヘッド 16に用いる液晶素子 2の動作を示す図である。
[0033] 図 1に示す光ヘッド 16において、 1は光源である短波長レーザに代表される青紫色 光を出力する半導体レーザであり、その偏光方向が紙面に垂直 (S偏光)となる位置 で光ヘッド 16内に配置されて 、る。
[0034] 2は回折面を内側にした回折格子 2bと透明基板 2aの間に液晶 2cを充填して構成 される液晶素子で、液晶 2cと接触している透明基板 2aと回折格子 2bの回折面には それぞれ図示しない電極が設けられており、これら電極を介して液晶 2cに制御電圧 を印加することができる。
[0035] ここで、回折格子 2bの屈折率は、液晶 2cの常光屈折率 (no)と一致させておく。又 、この液晶 2cはツイストしていない液晶を用い、電極に制御電圧を印加していない状 態 (OFF状態)では紙面の垂直方向に液晶分子の長軸がくるように配列されて 、る。 この配向のために透明基板 2aの基板内面をラビング等で配向処理しておく。
[0036] 3は偏光ビームスプリッタ、 3aはその反射面である。反射面 3aの透過率及び反射率 は例えば S偏光反射率を 95%、 S偏光透過率を 5%、 P偏光透過率を 99%とする。 4 はコリメートレンズ、 5は λ Ζ4板、 6は光ディスク 7の記録面 7aに集光するための対物 レンズ、 7は 1層又は複数層の記録面を有する光ディスクである。ただし光ディスク 7 にお 、て便宜上、図には複数層の記録面は図示して 、な 、。
[0037] 8は偏光ビームスプリッタ 3を透過した光を前光用フォトディテクタ 9上に集光させる ためのレンズ、 9は半導体レーザ 1の発光量を検出するための前光用フォトディテクタ 、 10は光ディスク 7からの反射光にフォーカス誤差信号を付加させるためのシリンドリ カルレンズ、 11はフォーカシング用及びトラッキング用サーボ信号及び RF信号を検 出するフォトディテクタ、 15はコリメートレンズ 4を光軸方向に移動させるための送り機 構、 26は光を対物レンズ 6の方向に偏向させるためのミラーである。
[0038] なお、以上の構成において、半導体レーザ 1は本発明の光源に相当し、対物レン ズ 6は本発明の対物レンズに相当する。又、液晶素子 2は本発明の光学素子であつ て透過光量可変部に相当する。透明基板 2aは本発明の透明基板に、回折格子 2b は本発明の回折格子に、液晶 2cは本発明の液晶に相当する。
[0039] 又、偏光ビームスプリッタ 3は本発明の偏光ビームスプリッタに相当し、コリメートレン ズ 4は本発明の発散度合い変換部に相当する。又光ディスク 7は本発明の光記録媒 体に相当する。
[0040] 以上のように構成された光ヘッド 16は、半導体レーザ 1から出射する光量を制御す る手段として、液晶素子 2を備えたことを特徴とする。
[0041] 液晶素子 2の動作について説明する。液晶素子 2は、図 2 (a)に示すように制御電 圧 OFF状態で、透明基板 2a側力 の入射光が S偏光 (紙面に垂直方向の偏光)の 場合、回折格子 2bの屈折率 (n=no)と液晶 2cの屈折率 (異常光屈折率: ne)は一 致しないため、回折格子 2bの凹凸により液晶素子 2は全体として回折素子として機 能して、入射光は回折して 0次光 12aと ± 1次以上の回折光 12b、 12cとに分離され る。
[0042] 回折格子 2bの凹凸のピッチは、光ヘッド 16内に液晶素子 2が配置された状態にお いて、 ± 1次以上の回折光 12b、 12cが、半導体レーザ 1〜対物レンズ 6までの光路 内において、対物レンズ 6を保持するホルダ(図示せず)の開口に入らなくなるような 回折角を有するように決められる。
[0043] このような配置においては、半導体レーザ 1からの出射光のうち、対物レンズ 6から 出射するのは 0次光のみとなり、入射光が減衰したことと等価になる。なお、 ± 1次以 上の回折光 12b、 12cは光ヘッド 16内にお!/、ては不要光となる。
[0044] この入射光に対する 0次光の比を、液晶素子 2の透過率 K1とする。 K1は具体的に は回折格子 2bの凹凸の深さによって規定される。
[0045] 次に、図 2 (b)に示すように、制御電圧 ON状態では液晶 2cの液晶分子は立ち上が る。液晶 2cの屈折率は常光屈折率となり、回折格子 2bの屈折率 (n=no)と一致し、 透明基板 2a側力 の入射側力 見て回折格子 2bの凹凸は透明となる。すなわち液 晶素子 2は全体として透明平板として機能する。したがって入射光は回折せず直進 すること〖こなる。
[0046] この時の入射光に対する透過光の比を、液晶素子 2の透過率 K2とする。 K2はほ ぼ 100%となる。
[0047] 以上のように、液晶素子 2は、制御電圧の印加に応じて、その透過率が Kl, K2と 変化する機能を有する。これにより、従来の機械的機構によって光ヘッド内の光路を 遮るように出し入れする強度フィルタ 109に比して、構成を小型化でき、透過率の切 り替えを高速に行うことができる利点がある。
[0048] 次に、光ヘッド 16全体の動作について説明する。半導体レーザ 1から出射した光 1 2は S偏光で液晶素子 2に入射する。液晶素子 2に印加される制御電圧が OFFの時 は、液晶素子 2は全体として回折格子として機能し、光 12はその一部が回折されるた め、偏光ビームスプリッタ 3への入射光は減光される。
[0049] 一方、制御電圧が ONの時は、液晶素子 2は全体として透明平板として機能し、光 1 2はほぼ 100%透過して偏光ビームスプリッタ 3に入射する。
[0050] 偏光ビームスプリッタ 3において、反射面 3aで S偏光入射する光のうち 95%は反射 、 5%は透過し、透過した光はレンズ 8で前光用フォトディテクタ 9に入射し前光の光 量が検出される。
[0051] 又、反射面 3aで反射した 95%の光はコリメートレンズ 4に入射し略平行光に変換さ れる。略平行光に変換された S偏光の光は λ Ζ4板 5で円偏光に変換され、ミラー 26 で反射され対物レンズ 6に入射する。光は対物レンズ 6で集光され光ディスク 7上の 記録面 7aに光スポットが形成される。
[0052] なお、複数の記録層を有する光ディスク 7で記録層を変えて読み取る場合、層の厚 さが数 10umあるため、層の厚さによる球面収差をキャンセルするために送り機構 15 でコリメートレンズ 4を光軸方向に移動させる。これにより、コリメートレンズ 4を通過す る光はその発散度合いが、キャンセルしょうとする球面収差に応じて、発散光又は収 束光となるよう調整される。
[0053] なお、本明細書においては、球面収差を補正するために発散度合いが調整された これらの光と、平行光とを含めて、コリメートレンズ 4を通過した光を、略平行光と総称 している。
[0054] 光ディスク 7で反射された光は入射時と逆方向の円偏光となり、再び対物レンズ 6に 入射し λ Z4板 5に入射し P偏光となってコリメートレンズ 4に入射し、収束光に変換さ れる。収束光は偏光ビームスプリッタ 3に再度入射し 99%の Ρ偏光の光は透過しシリ ンドリカノレレンズ 10によってフォーカス誤差信号を得るために 点収差をカロえられ、 フォトディテクタ 11でフォーカシング及びトラッキングのためのサーボ信号及び RF信 号が検出される。
[0055] 以上のように、本実施の形態 1によれば、光を出射する半導体レーザ 1と、半導体レ 一ザ 1から出射した光を光ディスク 7に集光する対物レンズ 6と、半導体レーザ 1から 出射した光を光ディスク 7の記録再生に使用する光と光源の発光量を制御するため の光とに分岐する偏光ビームスプリッタ 3とを備えた光ヘッドにおいて、半導体レーザ 1と偏光ビームスプリッタ 3との間に、制御電圧の印加に応じて回折素子又は透明平 板として機能することにより透過率が変化する液晶素子 2を設けたことにより、上述の ように、従来の機械的機構によって光ヘッド内の光路を遮るように出し入れする強度 フィルタ 109に比して、構成を小型化でき、透過率の切り替えを高速に行うことができ る利点がある。さらに信頼性の向上もは力ることができる利点がある。
[0056] 次に、上述した光ヘッド 16を搭載した光ディスク記録再生装置について説明する。
説明には図 1を用いる。図において、 16は光ヘッド、 20は前光用フォトディテクタ 9か らの信号をもとに半導体レーザ 1を一定光量発光させるための半導体レーザ駆動回 路、 21は光ヘッド 16が光ディスク 7の反射光量もしくは光ディスクを保護するカートリ ッジ等カゝら得られる識別信号で光ディスクの種類を識別し、各回路に識別信号を送る モード検出回路、 22は液晶素子 2を駆動する液晶素子駆動回路、 23はコリメ一トレ ンズを光軸方向に移動させて複数層の光ディスクを再生する際発生する球面収差を キャンセルするためのコリメートレンズ送り駆動回路、 24は動作モードに応じて前光 用フォトディテクタ 9の感度を切り替えるゲイン切替回路である。
[0057] なお、上記の構成において、モード検出回路 21、液晶素子駆動回路 22、ゲイン切 り替え回路 24及び半導体レーザ駆動回路 20は、本発明の透過率制御部に相当す る。
[0058] 以上のように構成された光ディスク記録再生装置の動作にっ 、て説明する。
[0059] 光ディスク 7として、反射率の高い 1層の記録面を有する光ディスクを再生する時、 即ち低パワー動作モードで動作させる場合を考える。
[0060] 半導体レーザ 1の光量を制御せず透過率 100%で利用する場合、再生に必要な 対物レンズ出射パワーを P1 = 0. 3mW、光ヘッド 16の光利用効率を 30%とすると、 光源である半導体レーザ 1の発光量は lmWとなる。
[0061] 図 8より発光量時の相対雑音強度値は 123dBZHzとなる。光ディスク記録再生 装置として許容される相対雑音強度値は 125dBZHz以下なので、相対雑音強度 値は 1層ディスクの再生に許容できないレベルとなる。
[0062] そこで本実施の形態においは、モード検出回路 21が、光ディスク 7を反射率の高い 光ディスクと識別した場合、低パワー動作モードとなり液晶素子駆動回路 22によって 液晶素子 2を OFFとする制御電圧を印加する。液晶素子 2が回折素子として機能し、 透過率を低下させる。
[0063] 透過率 K1が例えば 50%となると、光源である半導体レーザ 1の発光量は 2mWと なる。この時の相対雑音強度値は— 130dBZHzとなり、許容内の相対雑音強度値 となり量子雑音レベルの低 、信号が得られる。
[0064] 又、モード検出回路 21が、光ディスク 7を反射率の低い複数の層を有する光デイス クと識別した場合、高パワー動作モードとなる。このとき液晶素子駆動回路 22によつ て液晶素子 2は ONされ液晶素子 2は透明平板として機能し、透過率 K2は 100%と なる。再生に必要な対物レンズ出射パワーを P2 = 0. 6mWとすると光源である半導 体レーザ 1の発光量は 2mWとなる。この時の相対雑音強度値は 130dBZHzとな り許容内の相対雑音強度となり量子雑音レベルの低い信号が得られる。 [0065] 又、低パワー動作モードから高パワー動作モードに切り替えると、前光用フォトディ テクタ 9に入射する光量は 2倍変化する。半導体レーザに APCが力かって駆動される と同じ光量になるように半導体レーザ 1の発光量を抑えられてしまうのでゲイン切替回 路 24で高パワー動作モード時はゲインを 1Z2に落とすように働く。
[0066] 力かる構成によれば、 1層又は複数の記録層を有する光ディスク 7に対レ f青報の記 録又再生する光ディスク記録再生装置において、半導体レーザ 1が低パワーを要す る 1層の記録層を持つ光ディスク記録媒体を再生するとき対物レンズ 6からの出射光 量を Pl、液晶素子 2の透過率を K1とし、半導体レーザ 1が高パワーを要する複数層 の記録層を持つ光ディスク記録媒体を再生するとき対物レンズ 6からの出射光量を P 2、液晶素子 2の透過率を K2としたとき、 P1 < P2、 K1 <K2の関係が生じるように動 作させることにより、低パワー動作モード時の透過光量可変手段の透過率を下げて、 半導体レーザ 1の発光量を上げることにより必要とされる相対雑音強度以下の領域で 使用することができ量子雑音レベルの小さな信号を得ることができる。
[0067] 又、高パワー動作モード時では透過光量可変手段の透過率を上げることにより対 物レンズ出射光量を増すことができ、半導体レーザ 1の駆動電流の増加を防ぎ、寿 命をのばすことができる。
[0068] なお、本実施の形態では 1層又は複数の記録層を有する光ディスク記録媒体を記 録再生する光ディスク記録再生装置について説明したが、標準速又は高倍速で光 ディスク記録媒体を記録再生する光ディスク再生装置であっても同様な効果がある。 このとき、標準速による記録又は再生時は低パワー動作モード時に、高倍速による記 録又は再生時は高 、パワー動作モード時にそれぞれ対応するようにすればょ 、。
[0069] (実施の形態 2)
図 3は、本発明の実施の形態 2における 1層及び複数層の光ディスクの記録再生が できる光ヘッド 17及び光ヘッド 17を搭載した光ディスク記録再生装置のブロック図で ある。
[0070] 図 3に示す光ヘッド 17において、 13は液晶素子で 13a、 13bは透明基板、 13cは 液晶層である。 14は偏光ビームスプリッタ、 14aは反射面であり P偏光透過率は略 10 0%の膜特性を持たせて 、る。 25は液晶素子 13と偏光ビームスプリッタ 14をブロック 化したフィルタブロックである。なお、他の構成要素については図 1と同じ名称と符号 を用いるので説明を省略する。
[0071] なお、以上の構成において、液晶素子 13は本発明の偏光回転素子に相当し、偏 光ビームスプリッタ 14は本発明の偏光ビームスプリッタに相当し、フィルタブロックは 本発明の透過光量可変部を構成する。
[0072] 以上のように構成された光ヘッド 17は、半導体レーザ 1から出射する光量を制御す る手段として、液晶素子 13及び偏光ビームスプリッタ 14を有するフィルタブロック 25 を備え、これにより、実施の形態 1と同様、制御電圧の印加に応じて透過率を制御す ることを特徴とする。
[0073] フィルタブロックの動作について、図 4,図 5を参照して説明する。ただし、図 4は光 ヘッド 17に用いる、制御電圧 OFF時の液晶素子 13と偏光ビームスプリッタ 14の動作 を示す図、図 5は光ヘッド 17に用いる制御電圧 ON時の液晶素子 13と偏光ビームス プリッタ 14の動作を示す図である。
[0074] 制御電源 OFF時の液晶素子 13において、出射偏光は入射偏光に対して 45° 傾 くように設計されている。すなわち、半導体レーザ 1から出射し、透明基板 13a側に入 射した光は図 4に示すように液晶層 13cを透過時に入射光に対して 45° 傾く。 45° 傾いた光は偏光ビームスプリッタ 14に入射する力 反射面 14aでは P偏光を略 100 %透過するように設計されているので、もとの光量の 50%の光として入射光と同一方 向に偏光した光が透過し、同 50%の光として、入射光と 90° 傾いて偏光した光が反 射する。
[0075] 光ヘッド 17でのフィルタブロック 25の配置においては、偏光ビームスプリッタ 14の 反射面 14aを透過した 50%の光のみが対物レンズ 6から出射することとなり、入射光 が減衰したことと等価になる。なお、反射面 14aで反射した、入射光から 90° 偏光方 向が傾いた光は、光ヘッド 17内においては不要光となり利用されない。
[0076] 次に、図 5に示すように、制御電源 ON時の液晶素子 13において、出射偏光は入 射偏光と同一の傾きを維持したまま透過するように設計されている。したがって、半導 体レーザ 1から透明基板 13a側に出射した光は、図中基準線に対して 90° 傾いたま ま偏光ビームスプリッタ 14に入射する。反射面 14aでは P偏光を略 100%透過するよ うに設計されて 、るのでほぼ 100%の光が透過する。
[0077] このように、液晶素子 13と偏光ビームスプリッタ 14からなるフィルタブロック 25は液 晶素子 13を ONZOFFすることにより、それぞれ透過率が 50%と 100%と変化する 。これにより、従来の機械的機構によって光ヘッド内の光路を遮るように出し入れする 強度フィルタ 109に比して、構成を小型化でき、透過率の切り替えを高速に行うこと ができる利点がある。
[0078] 光ヘッド 17全体の動作としての、フィルタブロック 25に半導体レーザ 1の出射光が 入射し、所定の処理が行われてフィルタブロック 25から出射して偏光ビームスプリッタ 3に入射以後の動作は実施の形態 1と同じであるので省略する。
[0079] このように、本実施の形態によれば、入射光の偏光方向を回転させる液晶素子 13 と偏光ビームスプリッタ 14とを有するフィルタブロック 25を用いたことにより、実施の形 態 1と同様の効果が得られる。又、不要光は光ヘッド 17の外に容易に導き出すことが でき、これにより不要光が光ヘッド 17内にて迷光となる恐れを削減して、オフセットの 少な 、信号を得られる効果がある。
[0080] なお、本実施の形態では、偏光方向を回転させる液晶素子 13と偏光ビームスプリツ タ 14の複合素子であるフィルタブロック 15を本発明の透過光量可変部として説明し たが、液晶を用いて電気的切替によって入射光の一部を反射することで透過率を制 御できるものであれば、その具体的な構成に限定されるものではな 、。
[0081] 次に、上述した光ヘッド 17を搭載した光ディスク記録再生装置を図 3に示す。 20か ら 24の構成要素については図 1と同じ名称と符号を用いるので説明を省略する。
[0082] 本実施の形態は、実施の形態 1の透過光量可変部である液晶素子 2がフィルタブ口 ック 25と入れ替わったところが異なる点で透過光量可変部としての動作は同じである 。すなわち、低パワー動作時は、液晶素子 13を OFFとして、フィルタブロック 25の透 過率 K1を 50%低下させ、高パワー動作時は、液晶素子 13を ONとして、フィルタブ ロック 25の透過率 K2を 100%とする。又、他の各部の動作は実施の形態 1と同様な ので詳細な説明は省略する。
[0083] 力かる構成によれば、 1層又は複数の記録層を有する光ディスク 7に対レ f青報の記 録又再生する光ディスク記録再生装置において、半導体レーザ 1が低パワーを要す る 1層の記録層を持つ光ディスク記録媒体を再生するとき対物レンズ 6からの出射光 量を Pl、フィルタブロック 25の透過率を K1とし、半導体レーザ 1が高パワーを要する 複数層の記録層を持つ光ディスク記録媒体を再生するときの対物レンズ 6からの出 射光量を P2、液晶素子 2の透過率を K2としたとき、 P1 < P2、 K1 <K2の関係が生 じるように動作させることにより、低パワー動作モード時の透過光量可変手段の透過 率を下げて、半導体レーザ 1の発光量を上げることにより必要とされる相対雑音強度 以下の領域で使用することができ量子雑音レベルの小さな信号を得ることができる。
[0084] 又、高パワー動作モード時では透過光量可変手段の透過率を上げることにより対 物レンズ出射光量を増すことができ、半導体レーザの駆動電流の増加を防ぎ、寿命 をのばすことができる。
[0085] 又、実施の形態 1同様、標準速又は高倍速で光ディスク記録媒体を記録再生する 光ディスク再生装置であっても同様な効果がある。このとき、標準速による記録又は 再生時は低パワー動作モード時に、高倍速による記録又は再生時は高!、パワー動 作モード時にそれぞれ対応するようにすればよ 、。
[0086] (実施の形態 3)
図 6は、本発明の実施の形態 3における 1層及び複数層の光ディスクの記録再生が できる光ヘッド 18よび光ヘッド 18を搭載した光ディスク記録再生装置のブロック図、 図 2 (a)、図 2 (b)、図 2 (c)、図 2 (d)は光ヘッド 18に用いる透過率可変手段である回 折素子の動作を説明する図である。
[0087] 図 6において、 27は偏光ビームスプリッタで、 27aはその反射面で S偏光反射率は 略 100%、 P偏光透過率は略 100%とする。 28は、半導体レーザ 1から出射した光を 前光用フォトディテクタ 8と対物レンズ 6に向力う光とに分岐させるビームスプリッタ、 2 9は半導体レーザ 1と偏光ビームスプリッタ 27とシリンドリカルレンズ 10とフォトディテク タ 11を集積ィ匕してなる集積ユニットである。
[0088] 他の構成要素については図 1と同じ名称と符号を用いるので説明を省略する。
[0089] 以上のように構成された光ヘッド 18は、実施の形態 1と同様、半導体レーザ 1から 出射する光量を制御する手段として、制御電圧の印加に応じて回折素子又は透明 平板として機能することにより透過率が変化する液晶素子 2を備えている。 [0090] さらに、液晶素子 2をコリメートレンズ 4の後段に配置したことを特徴とする。さらに往 路としての半導体レーザ 1から光ディスク 7までの光路と、復路としての光ディスク 7か らフォトディテクタ 11への光路との両方において液晶素子 2を光が通過する構成とし たことを特徴とする。
[0091] 以下、液晶素子 2の動作、次いで光ヘッド 18の動作について説明する。
[0092] 液晶素子 2の動作のうち、コリメートレンズ 4からの入射光が S偏光の場合(図 2 (a)、 図 2 (b) )は実施の形態 1で説明してあるので省略する。
[0093] 一方、入射光が P偏光の場合を図 2 (c)、図 2 (d)を参照して説明する。
[0094] 図 2 (c)に示すように、制御電圧 OFFで P偏光 (紙面に平行方向の偏光)が透明基 板 2aに入射した場合、液晶 2cの液晶分子は紙面に垂直に配向されているので回折 格子 2bの屈折率 (n=no)と液晶 2cの屈折率(常光屈折率: no)は一致し、透明基板 2a側力もの入射側力も見て回折格子 2bの凹凸は透明となる。すなわち液晶素子 2は 全体として透明平板として機能する。したがって入射光は回折せず直進する。
[0095] 次に図 2 (d)に示すように、制御電圧 ONの場合、液晶 2cの液晶分子は立ち上がる ので液晶 2cの屈折率は常光屈折率 noとなり回折格子 2bの凹凸の屈折率(常光屈 折率: no)と一致する。したがって、図 2 (c)の場合と同様、透明基板 2a側力 の入射 側から見て回折格子 2bの凹凸は透明となる。
[0096] すなわち、液晶素子 2は、 P偏光の入射光に対しては、制御電圧の有無に関わらず 、透明平板として機能する。
[0097] なお、図 2 (c)、図 2 (d)では透明基板 2a側力 光が入射する説明だが、回折格子 2 b側カゝら入射しても同じ動作をする。
[0098] 以上のような液晶素子 2を有する光ヘッド 18の動作を、液晶素子 2に印加される制 御電圧が OFFの場合と ONの場合とで説明する。なお、以下の説明において、半導 体レーザ 1から出射した光が光ディスク 7へ向力う経路は本発明の往路に相当し、光 ディスク 7から生じた反射光がフォトディテクタ 11へ向力 経路は本発明の復路に相 当する。
[0099] 第 1に、液晶素子 2に印加される制御電圧が OFFの場合、半導体レーザ 1から出射 した光 12は S偏光で偏光ビームスプリッタ 27に入射する。 [0100] 偏光ビームスプリッタ 27において、 S偏光入射する光の略 100%は反射面 27aで反 射し、コリメートレンズ 4に入射し、略平行光に変換される。略平行光に変換された S 偏光の光は、透明基板 2a側力も液晶素子 2に入射する。
[0101] このときの液晶素子 2は図 2 (a)に示す動作を行い、回折素子として機能する。入射 光は一部回折され、減光された成分としての 0次光 12aは、 λ Ζ4板 5で円偏光に変 換され、ビームスプリッタ 28で前光用フォトディテクタ 9に向力う光と対物レンズ 6に向 力う光とに分岐される。分岐された光のうちの対物レンズ 6に入射した光は光ディスク 7に集光され記録面 7aに光スポットが形成される。又、ビームスプリッタ 28で分岐され た他方の光はレンズ 8で前光用フォトディテクタ 9上に集光される。
[0102] なお、複数の記録層を有する光ディスク 7で記録層を変えて読み取る場合、層の厚 さが数 lOumあるため、層の厚さによる球面収差をキャンセルするために送り機構 15 でコリメートレンズ 4を光軸方向に移動させる。
[0103] 光ディスク 7で反射された光は入射時と逆方向の円偏光となり、再び対物レンズ 6に 入射し λ Z4板 5に入射し P偏光となって、回折格子 2b側から液晶素子 2に入射する
[0104] このとき液晶素子 2は図 2 (c)に示す動作となり、透明平板として機能する。液晶素 子 2に入射した光は全て直進してコリメートレンズ 4に入射し、収束光に変換される。
[0105] 収束光は偏光ビームスプリッタ 27に再度入射し、 P偏光の光は略 100%透過し、シ リンドリカルレンズ 10によってフォーカス誤差信号を得るために非点収差をカ卩えられ、 フォトディテクタ 11でフォーカシング及びトラッキングのためのサーボ信号及び RF信 号が検出される。
[0106] 第 2に、液晶素子 2に印加される制御電圧が ONの場合、半導体レーザ 1から出射 した光 12は制御電圧 OFFの場合と同様な経路をたどり液晶素子 2に入射する。
[0107] このときの液晶素子 2は図 2 (b)に示す動作を行い、透明平板として機能する。透明 基板 2aからの入射光は回折されず全光量直進する。直進した光は λ Ζ4板 5で円偏 光に変換され、ビームスプリッタ 28で前光用フォトディテクタ 9に向力う光と対物レンズ 6に向力う光とに分岐される。分岐された光のうちの対物レンズ 6に入射した光は光デ イスク 7に集光され記録面 7aに光スポットが形成される。又、ビームスプリッタ 28で分 岐された他方の光はレンズ 8で前光用フォトディテクタ 9上に集光される。
[0108] 光ディスク 7で反射された光は入射時と逆方向の円偏光となり、再び対物レンズ 6に 入射し λ Z4板 5に入射し P偏光となって、回折格子 2b側から液晶素子 2に入射する
[0109] このとき液晶素子 2は図 2 (d)に示す動作となり、透明平板として機能する。液晶素 子 2に入射した光は全て直進してコリメートレンズ 4に入射し、収束光に変換される。 収束光は偏光ビームスプリッタ 27に再度入射し、略 100%の P偏光の光は透過しシリ ンドリカノレレンズ 10によってフォーカス誤差信号を得るために 点収差をカロえられ、 フォトディテクタ 11でフォーカシング及びトラッキングのための信号及び RF信号が検 出される。
[0110] 以上のように、本実施の形態によれば、光を出射する半導体レーザ 1と、半導体レ 一ザ 1から出射した光を光ディスク 7に集光する対物レンズ 6と、半導体レーザ 1から 出射した光を光ディスク 7の記録再生に使用する光と光源の発光量を制御するため の光とに分岐する偏光ビームスプリッタ 27とを備えた光ヘッドにおいて、偏光ビーム スプリッタ 27とコリメートレンズ 4との間に、制御電圧の印加に応じて回折素子又は透 明平板として機能することにより透過率が変化する液晶素子 2を設けたことにより、実 施の形態 1と同様の効果が得られる。
[0111] さらに、本実施の形態の場合は、液晶素子 2はコリメートレンズ 4の後段であって、 半導体レーザ 1からの出射光が略平行光に変換された位置に配設されるようにした。 これにより、光束径が最も太ぐ光のエネルギー密度が最も低くなり、特にレーザ光が BDのように短波長である場合、短波長光による液晶の損傷を軽減できる効果がある
[0112] 又、本実施の形態では、液晶素子 2は、コリメートレンズ 4と λ Ζ4板 5との間に配置 したものとして説明を行った力 偏光ビームスプリッタ 27とコリメートレンズ 4との間の 光路に配置されるようにしても、同様の効果が得られる。
[0113] 又、従来例のような強度フィルタを、本実施の形態の液晶素子 2と同様の位置に配 置するような構成をとると、復路の光の光量も強度フィルタによって減衰し、フォトディ テクタで得られる信号量が減衰し、 SNが悪くなる欠点がある。 [0114] これに対し、本実施の形態の場合、復路において光量の減衰がないため、 SNの劣 化を防ぐことができる利点がある。
[0115] 又、実施の形態 1、実施の形態 2のように光の往路に液晶素子 2等の透過光量可変 部を配置する構成で集積化すると、集積ィ匕ユニット形状が大きくなるが、本実施の形 態 3の発光系と検出系を集積ィ匕した集積ユニット 29では往復光路に液晶素子 2を設 けたため、集積ユニットから透過光量可変部を省くことが出来、集積ユニットの小型化 をは力ることができる。
[0116] なお、本実施の形態では半導体レーザ 1と偏光ビームスプリッタ 27とシリンドリカル レンズ 10とフォトディテクタ 11の集積ユニット 29で説明した力 バルタ構成であっても 良いのは言うまでもない。
[0117] 又、本実施の形態では、液晶 2cと回折格子 2bの複合素子である液晶素子 2を本発 明の光学素子として説明したが、液晶の利用により電気的切替によって入射光の一 部を回折することで透過率を制御できるものであれば、その具体的な構成に限定さ れるものではない。
[0118] 次に、上述した光ヘッド 18を搭載した光ディスク記録再生装置を図 6に示す。 20か ら 24の構成要素については図 1と同じ名称と符号を用いるので説明を省略する。
[0119] 本実施の形態は、実施の形態 1の透過光量可変部である液晶素子 2の位置力 偏 光ビームスプリッタ 3と半導体レーザ 1の間から、コリメートレンズ 4と λ Ζ4板 5の間に 、前光検出を行う部分が透過率可変手段以降の光路に入れ替えたところが異なる点 で基本的動作は同じである。すなわち、往路において、低パワー動作時は、液晶素 子 2を OFFとして液晶素子 2を回折素子として機能させることにより透過率 K1を 50% 低下させ、高パワー動作時は、液晶素子 2を OFFとして液晶素子 2を透明平板として 機能させることにより透過率 K2を 100%とする。又、他の各部の動作は実施の形態 1 と同様なので詳細な説明は省略する。
[0120] 力かる構成によれば、 1層又は複数の記録層を有する光ディスク 7に対レ f青報の記 録又再生する光ディスク記録再生装置において、半導体レーザ 1が低パワーを要す る 1層の記録層を持つ光ディスク記録媒体を再生するとき対物レンズ 6からの出射光 量を Pl、液晶素子 2の透過率を K1とし、半導体レーザ 1が高パワーを要する複数層 の記録層を持つ光ディスク記録媒体を再生するとき対物レンズ 6からの出射光量を P 2、液晶素子 2の透過率を K2としたとき、 P1 < P2、 K1 <K2の関係が生じるように動 作させることにより、低パワー動作モード時の透過光量可変手段の透過率を下げて、 半導体レーザ 1の発光量を上げることにより必要とされる相対雑音強度以下の領域で 使用することができ量子雑音レベルの小さな信号を得ることができる。
[0121] 又、高パワー動作モード時では透過光量可変手段の透過率を上げることにより対 物レンズ出射光量を増すことができ、半導体レーザ 1の駆動電流の増加を防ぎ、寿 命をのばすことができる。
[0122] なお、本実施の形態では 1層又は複数の記録層を有する光ディスク記録媒体を記 録再生する光ディスク記録再生装置について説明したが、標準速又は高倍速で光 ディスク記録媒体を記録再生する光ディスク再生装置であっても同様な効果がある。 このとき、標準速による記録又は再生時は低パワー動作モード時に、高倍速による記 録又は再生時は高 、パワー動作モード時にそれぞれ対応するようにすればょ 、。
[0123] (実施の形態 4)
図 7は、本発明の実施の形態 4における、反射率の異なる複数層の光ディスクの記 録再生ができる光ヘッド 19及び光ヘッド 19を搭載した光ディスク記録再生装置のブ ロック図である。図 7において、 7b、 7c、 19、 30以外の構成要素については図 6と同 じ名称と符号を用いるので説明を省略する。 7b、 7cは光ディスク 7の複数の記録面を それぞれ示し、記録面 7a、 7b、 7cのそれぞれの反射率を Rl、 R2、 R3としてその反 射率の関係を Rl、 R2、 R3とする。 30は光ディスク 7からの反射光のうち、ビームスプ リツター 28を透過した光を検出するフォトディテクタである。
[0124] 以上のように構成された光ヘッド 19の動作は、基本的には実施の形態 3の光ヘッド 18と同じであるが、光ディスク 7の各記録面からの反射光をフォトディテクタ 30で検出 し、検出結果に基づき、各記録面毎に、透過光量可変部としての液晶素子 2の透過 率を変化させるようにした点にお 、て異なる。
[0125] 記録層の判別動作は以下のように行う。光ディスク 7が光ディスク記録再生装置に て再生又は記録する際、対物レンズ 6から最も遠い記録面 7aを対象とした場合、フォ 一カスサーボを引き込んで、その時の光量を、フォトディテクタ 9及びフォトディテクタ 30でそれぞれ検出する。
[0126] ビームスプリッタ 29の反射率を K3、フォトディテクタ 9の検出光量を Ρ4、フォトディテ クタ 30の検出光量を Ρ5、対物レンズ 6の透過率及びレンズ 8の透過率を便宜上 100 %とすると、ディスク 7の記録面 7aの反射率は、検出光量 P4、 P5及び反射率 K3を用 いて算出される。
[0127] このとき、モード検出回路 21において、高パワー動作モードと低パワー動作モード との切り替えの閾値となる所定値、又は所定値の範囲を定めておき、算出された反射 率が当該所定値以上であった場合は、低パワー動作モードによって動作させ、当該 所定値より小さい値であった場合は、高いパワー動作モードによって動作させ、それ ぞれの動作モードに応じて液晶素子 2の制御が行われる。なお、上述のように、本発 明の所定値は、一意な値であってもよいし、一定の幅を持った範囲であってもよい。
[0128] このように、記録面 7aの反射率を検出し、この検出結果に応じて動作モードを切り 替えることができる。
[0129] 又、他の記録面 7b、 7cを対象とした場合も、上記と同様にして、個別に反射率を検 出し、モード検出回路 21が判断を行い、動作モードを切り替える。
[0130] これにより、実施の形態 1〜3と同様、対物レンズ 6からの出射光量は P1 < P2、液 晶素子の透過率は KKK2となる関係が維持される。
[0131] このように、動作させることにより低パワー動作モード時の透過光量可変手段の透 過率を下げて、半導体レーザの発光量を上げることにより必要とされる相対雑音強度 以下の領域で使用することができノイズレベルの小さな信号を得ることができる。
[0132] 又、高 、反射率の記録面と低!、反射率の記録面とが複数混在する場合でも、各記 録層の反射率を個別に判断して、高い反射率の場合は低パワーモード、低い反射 率の場合は高パワーモードが割り当てられるので、層ごとに対応できる利点がある。
[0133] 又、同一の光ディスク 7に対して情報の記録又は再生を行う場合、再生時に低パヮ 一動作モードを割り当て、記録時に高パワー動作モードを割り当てるようにしてもょ ヽ 。要するに、本発明の透過率制御部の制御動作としての低パワー動作モードと高パ ヮー動作モードとの割り当ては、光ディスク 7の記録 Z又は再生に関する各種状態( 動作の種類、再生又は記録速度、記録媒体の種類、記録面の相変化の状態、など) を考慮して、設計者が任意に行うようにすればよい。
[0134] 又、出射光量の変化及び液晶素子 2、フィルタブロック 25透過率の変化はそれぞ れ Pl、 P2及び Kl、 Κ2の 2値的なものとした力 3段階以上の断続的な変化、又は 連続変化であってよい。半導体レーザの出射光量が、量子雑音の相対雑音強度が 許容できる最低限の値であれば、それ以上の値の範囲内で増減させるようにしてもよ い。又、透過率は出射光量に比例させれるようにすればよい。これにより光記録媒体 に必要以上に強い光が入射するのを防ぐことができる。
[0135] 又、本発明の透過光量可変部は、上述のように液晶と回折素子、又は偏光ビーム スプリッタとの組み合わせにより入射光の一部を回折又は反射させることによって光 量を可変させたが、液晶を利用して入射光の一部を屈折させて、屈折光が光路から 外れた不要光となることにより光量を可変させるようにしてもょ 、。
産業上の利用可能性
[0136] 本発明にかかる光ヘッド及び光情報記録再生装置は、光記録媒体に対し情報を記 録又は再生する際に量子雑音の少ない光を照射することが可能であって、小型でシ ステム起動の時間を短縮することができる効果を有し、 Blu-ray Disc等に用いる 光ヘッド又は光ヘッドを搭載した光情報記録再生装置として有用である。

Claims

請求の範囲
[1] 光を出射する光源と、
前記光源から出射した光を光記録媒体に集光する対物レンズと、
前記光源と前記対物レンズとの間に設けられ、入射する光の一部を回折、反射又 は屈折させることにより出射される光の光量を可変する、液晶を用いた透過光量可変 部とを備えた、光ヘッド。
[2] 前記透過光量可変部は、
透明基板と
回折格子と、
前記透明基板と前記回折格子との間に前記液晶が封入された光学素子であり、 前記液晶へ印加する電圧に応じて、入射する光を透過するか、その一部が回折す るかを制御するものである、請求の範囲第 1項に記載の光ヘッド。
[3] 前記透過光量可変部は、
前記液晶へ印加する電圧に応じて入射光の偏光方向を回転させる偏光回転素子 と、
前記偏光回転素子から出射した光の入力を受け、前記入射光と同一偏光方向の 光を透過し、前記入射光と直交する偏光方向の光を反射する偏光ビームスプリ ッタを有し、
前記偏光ビームスプリッタを透過する光が前記対物レンズへ導かれる、請求の範囲 第 1項に記載の光ヘッド。
[4] 前記偏光ビームスプリッタで反射した光は、前記光ヘッド内で用いられな 、不要光 である、請求の範囲第 3項に記載の光ヘッド。
[5] 前記光源と前記対物レンズとの間の光路に設けられた、前記光源から出射した光 を前記対物レンズへ導くとともに、前記光記録媒体から反射された光を前記光源と自 らとがなす光路とは異なる光路に分岐するビームスプリッタを更に備え、
前記透過光量可変部は、前記光源と前記ビームスプリッタとの間に設けられている
、請求の範囲第 1項に記載の光ヘッド。
[6] 前記光源と前記対物レンズとの間の光路に設けられた、前記光源から出射した光 を前記対物レンズへ導くとともに、前記光記録媒体から反射された光を前記光源と自 らとがなす光路とは異なる光路に分岐するビームスプリッタを更に備え、
前記透過光量可変部は、前記ビームスプリッタと前記対物レンズとの間の光路に設 けられている、請求の範囲第 1項に記載の光ヘッド。
[7] 前記ビームスプリッタと前記対物レンズとの間の光路は、前記光源から前記光記録 媒体までの光の往路と、前記光記録媒体から前記ビームスプリッタまでの光の復路と で共有されており、
前記透過光量可変部は、前記共有された光路内に設けられている、請求の範囲第 6項に記載の光ヘッド。
[8] 前記ビームスプリツタカ 出射した光の発散度合いを調整して前記対物レンズに導 く発散度合い調整部を更に備え、
前記透過光量可変部は、前記発散度合い調整部と前記対物レンズとの間の光路、 又は前記ビームスプリッタと前記発散度合い調整部との間の光路に設けられている、 請求の範囲第 7項に記載の光ヘッド。
[9] 光記録媒体に対し情報の記録又は再生を行う光情報記録再生装置であって、 前記光記録媒体に対し情報の記録又は再生を行う手段として請求の範囲第 1項に 記載の光ヘッドを備えた、光情報記録再生装置。
[10] 前記光源の出射光量に比例して前記透過光量可変部の透過率を制御する透過率 制御部をさらに備え、
前記出射光量は、前記光源の量子雑音が許容位置以下となる出力を下限として増 減されるものである、請求の範囲第 9項に記載の光情報記録再生装置。
[11] 前記光記録媒体に対し、前記光源が第 1の出力を要する場合の、前記対物レンズ からの出射光量を P 1、前記透過光量可変部の透過率を K1とし、
前記光記録媒体に対し、前記光源が前記第 1の出力より高い第 2の出力を要する 場合の、前記対物レンズからの出射光量を P2、前記透過光量可変部の透過率を K2 とすると、
P1 < P2、 K1 <K2の関係がある、請求の範囲第 10項に記載の光情報記録再生 装置。
[12] 前記光記録媒体は、 1層又は複数の記録層を有し、
前記第 1の出力を要する場合は、前記 1層の記録層を持つ前記光記録媒体に対し 情報の記録又は再生するときであり、
前記第 2の出力を要する場合は、前記複数の層の記録層を持つ前記光記録媒体 に対し情報の記録又は再生するときである、請求の範囲第 11項に記載の光情報記 録再生装置。
[13] 前記光記録媒体に、標準速又は高倍速で情報の記録又は再生を行うものであり、 前記第 1の出力を要する場合は、前記標準速で情報の記録又は再生をするときで あり、
前記第 2の出力を要する場合は、前記高倍速で情報の記録又は再生をするときで ある、請求の範囲第 11項に記載の光情報記録再生装置。
[14] 前記光記録媒体は、複数の記録層を有し、
前記第 1の出力を要する場合は、前記複数の記録層のうち、所定値以上の反射率 を持つ前記記録層に対し情報の記録又は再生するときであり、
前記第 2の出力を要する場合は、前記複数の記録層のうち、前記所定値より小さい 反射率を持つ前記記録層に対し情報の記録又は再生するときである、請求の範囲 第 11項に記載の光情報記録再生装置。
PCT/JP2006/320869 2005-10-20 2006-10-19 光ヘッド及び光情報記録再生装置 WO2007046479A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-305488 2005-10-20
JP2005305488A JP2009009616A (ja) 2005-10-20 2005-10-20 光ヘッドおよび光ディスク記録再生装置

Publications (1)

Publication Number Publication Date
WO2007046479A1 true WO2007046479A1 (ja) 2007-04-26

Family

ID=37962572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320869 WO2007046479A1 (ja) 2005-10-20 2006-10-19 光ヘッド及び光情報記録再生装置

Country Status (2)

Country Link
JP (1) JP2009009616A (ja)
WO (1) WO2007046479A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294645A (ja) * 1985-06-21 1986-12-25 Hitachi Ltd 情報記録再生装置
JP2003050317A (ja) * 2001-03-28 2003-02-21 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置、及び光学活性高分子膜の製造方法
JP2004272949A (ja) * 2003-03-05 2004-09-30 Matsushita Electric Ind Co Ltd 光ヘッドおよび光情報記録再生装置
JP2005158234A (ja) * 2003-10-29 2005-06-16 Matsushita Electric Ind Co Ltd 記録再生方法、記録再生装置および半導体回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294645A (ja) * 1985-06-21 1986-12-25 Hitachi Ltd 情報記録再生装置
JP2003050317A (ja) * 2001-03-28 2003-02-21 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置、及び光学活性高分子膜の製造方法
JP2004272949A (ja) * 2003-03-05 2004-09-30 Matsushita Electric Ind Co Ltd 光ヘッドおよび光情報記録再生装置
JP2005158234A (ja) * 2003-10-29 2005-06-16 Matsushita Electric Ind Co Ltd 記録再生方法、記録再生装置および半導体回路

Also Published As

Publication number Publication date
JP2009009616A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
EP1688937B1 (en) Optical pickup apparatus which is compatible with multiple types of media
JP2006024333A (ja) 光ピックアップ装置、記録及び/又は再生装置
US20070008858A1 (en) Optical pickup and optical disc apparatus
US7948858B2 (en) Optical information processing apparatus, optical pick-up device and optical recording disc system
WO2006006572A1 (ja) 光ディスク装置、光ピックアップの制御方法及び光ディスク判別方法
WO2007114280A1 (ja) 光ピックアップ及び情報機器
JP4608545B2 (ja) 光ピックアップ装置及び情報記録再生装置
JP2005327403A (ja) 光ピックアップ及び光学記録媒体記録再生装置
US7898910B2 (en) Optical pickup apparatus
JP2007073173A (ja) 互換型光ピックアップ、及びこれを採用した光記録及び/または再生機器
JP2005327338A (ja) 光ピックアップ及びディスク状光学記録媒体記録再生装置
JP3896171B2 (ja) 光ピックアップおよび光ディスク装置
WO2007046479A1 (ja) 光ヘッド及び光情報記録再生装置
KR100683888B1 (ko) 광픽업 장치
JP2008016166A (ja) 光ピックアップ及び光ディスク装置
JP4479463B2 (ja) 光ピックアップ装置および光ディスク装置
JP4012926B2 (ja) 対物レンズ
JP4117302B2 (ja) 光ピックアップおよび光ディスク装置
JP4474454B2 (ja) 対物レンズ
JP4248597B2 (ja) 対物レンズ
JP4178175B2 (ja) 対物レンズ
JP2006286079A (ja) 光ヘッド及び光ディスク装置
JP2006040432A (ja) 光ピックアップ装置およびそのような光ピックアップ装置を備えた情報処理装置
JP2008257797A (ja) 光ピックアップ装置及び光ディスク装置
JP2007272971A (ja) 光ピックアップ装置、制御装置、光ディスク装置、制御プログラムおよびコンピュータ読み取り可能な記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP