WO2007043567A1 - 脂肪酸アルキルエステルの製造方法 - Google Patents

脂肪酸アルキルエステルの製造方法 Download PDF

Info

Publication number
WO2007043567A1
WO2007043567A1 PCT/JP2006/320295 JP2006320295W WO2007043567A1 WO 2007043567 A1 WO2007043567 A1 WO 2007043567A1 JP 2006320295 W JP2006320295 W JP 2006320295W WO 2007043567 A1 WO2007043567 A1 WO 2007043567A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
reaction
ester
carboxylic acid
phase
Prior art date
Application number
PCT/JP2006/320295
Other languages
English (en)
French (fr)
Inventor
Shiro Saka
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005298162A external-priority patent/JP4543177B2/ja
Priority claimed from JP2005327942A external-priority patent/JP2007131595A/ja
Priority claimed from JP2005365631A external-priority patent/JP4378534B2/ja
Application filed by Kyoto University filed Critical Kyoto University
Publication of WO2007043567A1 publication Critical patent/WO2007043567A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/08Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a fatty acid alkyl ester (also referred to as “fatty acid ester”). More specifically, the present invention relates to a method for producing a fatty acid alkyl ester used as a biodiesel fuel.
  • Biodiesel fuel generally abbreviated as "BDF”
  • BDF is also called fatty acid triglyceride
  • fatty acid glyceride which is the main component of vegetable oils, animal fats or waste oils (for example, waste cooking oil). It is a fuel that also has fatty acid ester power obtained by a method of esterifying a fatty acid obtained by transesterification or hydrolysis with alcohol. This fuel can be used in vehicles with diesel engines, ships, agricultural and industrial machinery, and generators.
  • this biodiesel fuel Compared to diesel oil, this biodiesel fuel generates less particulate matter (PM) in the exhaust gas due to less graphite and sulfur oxides that cause acid rain. Since it is a fuel derived from biomass resources and can be reduced, it has already been used as a substitute for fossil fuels because it has the advantage of not destroying the global carbon lance.
  • this method can be roughly divided into an alkali catalyst method, an acid catalyst method, and a lipase enzyme method.
  • the alkali catalyst method is a method of obtaining a target fatty acid methyl ester by adding methanol and a basic catalyst to fats and oils and carrying out a transesterification reaction. This method allows the reaction to proceed under relatively mild temperature and pressure conditions, but requires a step of removing the alkali catalyst in the purification step.
  • the free fatty acids in the raw fats and oils react with the alkali catalyst to produce alkali soaps, and the water in the raw fats and oils reduces the catalytic function, leading to a reduction in ester yield. ing.
  • the acid catalyst method does not cause the formation of alkali soap as in the alkali catalyst method. Similar to the alkali catalyst method, the catalyst function is lowered by the moisture in the raw oil and fat, and the reaction rate is slow. Therefore, it is difficult to use this method alone as an industrial process.
  • the lipase enzyme method is a method of converting raw oil and fat to biodiesel fuel by the catalytic action of the lipase enzyme, and does not require neutralization of the product and is not affected by free fatty acids in the raw material.
  • the control of the amount of methanol added is essential, and there are problems such as a slow reaction rate and high cost.
  • a fatty acid ester composition is made non-catalytic by performing a transesterification reaction and an esterification reaction using raw material fats and oils as a solvent at high temperature and high pressure in a supercritical or subcritical alcohol.
  • this technology there is a reverse reaction in which fatty acid alkyl ester and glycerin react to return to fatty acid monoglyceride, so a large excess of alcohol must be used to tilt the reaction in the direction of fatty acid alkyl ester formation, and the temperature ⁇ There was room for strict improvement in pressure conditions.
  • Patent Document 1 a first step of obtaining fatty acid and glycerin from the fatty acid triglyceride by hydrolyzing in the presence of a raw oil and fat containing fatty acid triglyceride and water, adding an alcohol to the product of the first step, and a predetermined temperature
  • a second process i.e., esterification process
  • a non-catalytic 'two-stage process has been proposed.
  • Patent Document 3 the transesterification of triglyceride and carboxylic acid ester is described in Patent Document 3.
  • a technology for producing a fuel comprising a triglyceride such as triacetin (glycerin triacetate) and a carboxylic acid ester obtained by the above-described method is disclosed. That is, a technique for producing a fatty acid alkyl ester using alcohol as a solvent is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-204392.
  • Patent Document 2 PCT International Publication WO03Z106604.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-149742.
  • Non-Patent Literature 1 Journal of the Japan Institute of Energy, Vol. 84, 413—419 (2005).
  • the present invention aims to solve the above technical problem and to produce a fatty acid alkyl ester suitable for industrial production, more specifically, a reaction system that does not use an alcohol solvent as a solvent, and a reaction that uses an alcohol solvent.
  • the main objective of each system is to provide a new method for producing fatty acid alkyl esters that have good reaction efficiency and can be used for a wide range of raw oils and fats. Means for solving the problem
  • the present inventor has made a more advantageous production assuming the industrial production of fatty acid alkyl esters by drastically changing the idea from the method using an alcohol solvent, which has been the mainstream of conventional fatty acid alkyl ester production techniques.
  • the target fatty acid alkyl ester is obtained by reacting a fatty acid or a fatty acid glyceride with a carboxylic acid ester in a supercritical or subcritical condition by reacting the carboxylic acid or the like to proceed with an esterification reaction or a transesterification reaction. I found out that I can get it efficiently
  • fatty acid in this production method free fatty acids present in the raw oil and fat can be effectively used.
  • the fatty acid obtained through a predetermined process from raw material fats and oils can also be utilized as the fatty acid in this production method. Both the fatty acid and the free fatty acid can be used.
  • the above-mentioned predetermined process for obtaining fatty acids in raw material fats and oils is not particularly limited, but as an example, fatty acid glycerides and carboxylic acids in the raw material fats and oils can be obtained in excess of the carboxylic acid.
  • a step of obtaining a fatty acid by transesterification under critical or subcritical conditions can be employed.
  • a step of obtaining a fatty acid by hydrolyzing the fatty acid triglyceride in the raw material fat under supercritical or subcritical conditions can be employed.
  • the fatty acid alkyl ester that is the object of the production method according to the present invention includes other The fatty acid alkyl ester obtained from the reaction route of As an example, a fatty acid alkyl ester obtained by a transesterification reaction between a fatty acid glyceride and a power rubonic acid ester in the raw material fat may be contained.
  • a fat is added by adding a third component to the esterification reaction system. It is advisable to carry out the miscibility of the fatty acid phase and the carboxylic acid ester phase. This compatibility enhances the transesterification reaction between the fatty acid and the carboxylic acid ester, and can therefore be used effectively in industrial production.
  • the fatty acid glyceride phase and the carboxylic acid phase, or the fatty acid glyceride phase and the carboxylic acid ester phase are mixed. May be. This compatibility is effective in industrial production because the transesterification reaction is further promoted.
  • a first stage process for obtaining a fatty acid by hydrolyzing a fatty acid glyceride contained in a raw oil and fat under supercritical or subcritical conditions and the first stage process are obtained.
  • a second stage step of obtaining a fatty acid alkyl ester by esterifying the fatty acid wherein in the second stage step, (1) a reaction of esterifying the fatty acid with an alcohol under supercritical or subcritical conditions; (2)
  • a method for producing a fatty acid alkyl ester using a reaction in which the fatty acid is esterified with a carboxylic acid ester under supercritical or subcritical conditions is provided.
  • the “combination” includes not only the simultaneous use of the reactions (1) and (2) but also the use with a time difference.
  • a fatty acid alkyl ester is obtained by devising a free fatty acid contained in the raw material fat from the beginning to obtain a fatty acid alkyl ester. Further improve the yield of alkyl ester.
  • the third component is added to the reaction system of the fatty acid glyceride phase and the carboxylic acid ester phase for compatibilization, so that supercritical conditions or subcritical conditions can be obtained.
  • the transesterification reaction can also proceed efficiently.
  • the carboxylic acid ester that can be used in the esterification reaction or transesterification reaction in the present invention is not particularly limited, but it is possible to use a formic acid ester such as methyl formate.
  • oil and fat includes at least one of fatty acid glycerides (including fatty acid triglycerides, fatty acid diglycerides, and fatty acid monoglycerides) and fatty acids.
  • fatty acid alkyl ester means (1) free fatty acid originally contained in raw oil and fat, (2) fatty acid produced by some reaction of ingredients in raw oil and fat, (3
  • a fatty acid alkyl ester can be efficiently produced without adding a catalyst to an external force reaction system.
  • alcohol is not used as a solvent.
  • Fats by reacting conventional fatty acids with alcohols Unlike the process for producing acid alkyl esters, the generation of water that is not suitable as a composition in fuel does not occur in the reaction system.
  • carboxylic acid ester or carboxylic acid is present until the final stage of the reaction, and this carboxylic acid ester or carboxylic acid exhibits an acid catalyst function.
  • the reaction efficiency is improved, and as a result, a high-quality fatty acid alkyl ester can be produced.
  • crude alcohol containing a fatty acid ester can be used as it is in the method for producing a fatty acid alkyl ester.
  • crude methanol containing a formate can be used as it is in the method for producing a fatty acid alkyl ester according to the present invention.
  • FIG. 1 is a conceptual diagram of the basic production process (X process) of a fatty acid alkyl ester according to the present invention
  • FIG. 2 is a diagram for explaining the esterification reaction related to the basic production process (X process) in more detail. It is.
  • R 1 and R 3 shown in FIG. 2 mean hydrocarbon groups, and these and R 3 are different types of hydrocarbon groups, or all or any of R 1 and R 3 Or two of them may be the same type of hydrocarbon group.
  • R 1 and R 3 are not limited to a narrow number of carbon atoms, and other functional groups such as an alkoxy group may be bonded in some cases even if there is a carbon-carbon unsaturated bond. (The same applies to other processes hereinafter.)
  • R 2 related to the carboxylic acid ester is hydrogen or a hydrocarbon group.
  • R OOR 3 in FIG. 2 means a formic acid alkyl ester, while R 2 is a hydrocarbon group.
  • the number of carbon atoms is not limited narrowly, and other functional groups such as an alkoxy group may be present depending on the case where there is a carbon-carbon unsaturated bond in R 2. May be bonded (hereinafter the same in other processes)
  • the "esterification reaction" related to the step X shown in Fig. 1 and Fig. 2 is preferably performed by treating the raw oil and fat with the carboxylic acid ester as the temperature and pressure under supercritical or subcritical conditions. Can be advanced.
  • the “supercritical state” of a carboxylic acid ester as a solvent means that the temperature in the reaction system is higher than the critical temperature (Tc) of the carboxylic acid ester and the pressure is higher than the critical pressure (P c) of the carboxylic acid ester.
  • Tc critical temperature
  • P c critical pressure
  • the “subcritical state” means that the temperature in the reaction system is equal to or higher than the boiling point of the carboxylic acid ester and is generally about 100 to 150 ° C., and the pressure is the vapor pressure of the carboxylic acid ester at the reaction temperature. Above, and generally refers to the state of 0.5-2MPa or more
  • Examples of the carboxylic acid ester include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methynole propionate, ethyl propionate, propyl propionate, butyl propionate, Methyl butyrate, ethyl butyrate, propyl butyrate, butyl butyrate and the like can be used.
  • the critical temperature (Tc) and critical pressure (Pc) of the main carboxylic acid esters are summarized in “Table 1” below.
  • the esterification reaction process shown in FIGS. 1 and 2 is positioned as an essential basic process.
  • the fatty acid phase and the carboxylic acid ester phase are compatible by adding a third component to the esterification reaction system. This is because by performing this compatibility, it is possible to promote the esterification reaction.
  • a third component components that contribute to compatibilization of the fatty acid phase and the carboxylic acid ester phase can be widely used.
  • alkanes such as pentane and hexane and petroleum ether can be used.
  • FIG. 3 is a diagram showing an example of another reaction route that can be used in the production method according to the present invention.
  • FIG. 4 is a diagram showing a reaction example of step A (transesterification step), which is the first step in this reaction path.
  • Step A transesterification step
  • Fig. 3 and Fig. 4 the purpose of Step A (transesterification step) shown in Fig. 3 and Fig. 4 is from fatty acid glycerides (in Fig. 4, fatty acid triglycerides are exemplified) to X step (esterification step). It is to obtain fatty acids that can be used in sputum reaction, see Fig. 1 and Fig. 2.
  • step A which is a transesterification step
  • acetin acetin, Fig. 4
  • triacetin is separated and recovered, and then this fatty acid is subjected to supercritical or subcritical conditions with a carboxylic acid ester in Step X shown in FIGS.
  • the reaction route is to obtain the ester (see Figure 3).
  • fatty acid triglycerides include fatty acid diglycerides and fatty acid monoglycerides
  • acetin includes diacetin and monoacetin in addition to triacetin.
  • the "supercritical state" of the carboxylic acid that is the solvent means that the temperature in the reaction system is the criticality of the carboxylic acid. A state where the temperature is above the temperature (Tc) and the pressure is above the critical pressure (Pc) of the carboxylic acid.
  • the “subcritical state” of carboxylic acid means that the temperature in the reaction system is not less than the boiling point of carboxylic acid, generally not less than 200 ° C., and the pressure is not less than the vapor pressure of carboxylic acid at the reaction temperature. And generally refers to a state of 2 to 3 MPa or more.
  • the present invention can propose a two-stage supercritical process of piodiesel fuel based on the process A (transesterification reaction) and the process X (esterification reaction).
  • fatty acids obtained by ester exchange of fatty acid glycerides contained in raw oils and fats with supercritical or subcritical carboxylic acids were originally coexisted in the raw oils and fats and separated together with the fatty acids.
  • a method for producing a fatty acid alkyl ester (biodiesel fuel) by using a carboxylic acid ester to esterify the fatty acid under supercritical or subcritical conditions of the carboxylic acid ester can be proposed.
  • step A it is preferable to carry out the miscibility of the fatty acid glyceride phase and the carboxylic acid phase by adding a third component to the transesterification reaction system (step A).
  • a third component that can be used for this compatibilization widely covers components that contribute to the compatibility of the fatty acid glyceride phase and the carboxylic acid phase.
  • alkanes such as pentane and hexane and petroleum ethers can be used.
  • FIG. 5 is a diagram showing an example of another reaction path that can be used in the production method according to the present invention.
  • FIG. 6 is a diagram showing a reaction example of the process B (hydrolysis process), which is the initial process of this reaction path.
  • Step B hydrolysis step
  • fatty acid glycerides in FIG. 6, fatty acid triglycerides are exemplified
  • the glycerin produced as a raw material fat is dissolved in water and can be easily separated (described later). For this reason, since it becomes possible to suppress the reverse reaction with the fatty acid ester produced by the esterification reaction which is the next process step, a highly pure fatty acid alkyl ester can be obtained.
  • the fatty acid glyceride contained in the raw oil and fat is hydrolyzed to obtain fatty acid and glycerin, for example, at a temperature of 150 to 300 ° C, It is carried out under subcritical water conditions of a specific pressure of 250 to 300 ° C., a pressure of 5 to 25 MPa, a pressure of 7 to 20 MPa, and particularly preferably 20 to 40 minutes.
  • a specific pressure of 250 to 300 ° C. a pressure of 5 to 25 MPa, a pressure of 7 to 20 MPa, and particularly preferably 20 to 40 minutes.
  • fatty acid triglyceride is shown as a representative example. However, fatty acid diglyceride and fatty acid monoglyceride which can be contained in the raw material fats and oils are not hydrolyzed in the same way as in Fig. 6. Fatty acids can be obtained by the reaction.
  • step B If water remains in the oil phase obtained by such a phase separation step, a part of the fatty acid ester is hydrolyzed and returned to the fatty acid in the subsequent step X. It is preferable to remove as much water as possible. Also, considering the energy efficiency of the entire manufacturing process, it is not preferable to cool the product after the hydrolysis step (step B) to room temperature.
  • the phase separation step is devised so as to be performed near the hydrolysis temperature (for example, 250 to 300 ° C). This eliminates the need to cool the product and provides the advantage that no energy is required for subsequent heating for the esterification reaction (see Figures 1 and 2).
  • fatty acid glycerides contained in raw fats and oils containing fatty acids are hydrolyzed with supercritical or subcritical water (pressurized hot water), and the resulting fatty acids are originally fats and oils. It is possible to propose a method for producing a diesel fuel that is fractionated together with the fatty acid coexisting in the mixture and esterified with a carboxylic acid ester under supercritical or subcritical conditions to produce a fatty acid alkyl ester.
  • Fig. 7 attached shows an example of a two-step reaction route in the case of using a formate (methyl formate (HCOOCH)) as a solvent in the X step (esterification step)!
  • a formate methyl formate (HCOOCH)
  • FIG. 8 is a diagram showing a reaction example of a transesterification step (step C) that can be used for increasing the yield of fatty acid alkyl ester in the production method according to the present invention. It is.
  • the transesterification reaction related to Step C shown in Fig. 8 is related to the production method of the present invention.
  • the transesterification proceeds between the fatty acid glyceride and the carboxylic acid ester, for example, under supercritical or subcritical conditions of the carboxylic acid ester. It is a reaction to obtain fatty acid alkyl esters.
  • Step C is a reaction step that contributes to an improvement in the yield of the fatty acid alkyl ester.
  • the transesterification reaction has a critical temperature (Tc) of alkyl formate (214 to 285 ° C) and a critical pressure (Pc) of 3.5. ⁇ 6.0, critical temperature of alkyl acetate (Tc): 234 ⁇ 287.8 ° C, critical pressure (Pc): 3.3 ⁇ 4.7MPa, so the decomposition of the components is over 300 ° C Considering what happens, the supercritical or subcritical conditions of the carboxylic acid ester, 200 ° C to 300 ° C, 2. OMPa to 15 MPa are suitable.
  • the miscibility of the fatty acid glyceride phase and the carboxylic acid ester phase may be performed by adding a third component to the transesterification reaction system illustrated in FIG. This is because the transesterification can promote the transesterification reaction, and as a result, it is possible to reduce the reaction treatment conditions, for example, the treatment temperature.
  • the third component that can be used for this compatibilization widely covers components that contribute to compatibilization of the fatty acid glyceride phase and the carboxylic acid ester phase.
  • alkanes such as pentane and hexane and petroleum ether can be used.
  • FIG. 9 is a diagram summarizing the concept of the reaction path from the C process (transesterification process) represented by the reaction example shown in FIG. 8 to the X process (esterification process) described above. .
  • the fatty acid and acetin for example, triacetin
  • the transesterification step between the fatty acid glyceride and the carboxylic acid are separated.
  • the separated fatty acid is introduced into the X process (esterification process) to obtain the fatty acid alkyl ester (see Fig. 8).
  • the separated acetin can be used as it is as a BDF (see Patent Document 3).
  • this acetin for example, triacetin
  • this acetin is used in the C step.
  • Transesterification step a transesterification reaction (see FIG. 8) between acetin (ie, fatty acid glyceride) and a carboxylic acid ester proceeds to obtain a fatty acid alkyl ester. Therefore, in the reaction route shown in FIG.
  • the fatty acid alkyl ester in addition to the fatty acid alkyl ester obtained through the XI step (esterification step) between the fatty acid and the carboxylic acid ester, the fatty acid glyceride and the carboxylic acid ester
  • the fatty acid alkyl ester can be obtained through the C step (transesterification step) between the fatty acid glyceride (acetin) and the carboxylic acid ester produced from the A step (transesterification step) with the acid (See Figure 9). That is, in this reaction route, the yield of fatty acid alkyl ester from the reaction system can be improved.
  • a carboxylic acid ester or a carboxylic acid is present until the final stage of the reaction. Since this carboxylic acid ester or carboxylic acid exhibits an acid catalyst function effectively, it is possible to produce a high-quality fatty acid alkyl ester with high reaction efficiency.
  • FIG. 10 is a diagram showing an example of a general component configuration of the raw material fat used in the method for producing a fatty acid alkyl ester according to the present invention.
  • the raw fats and oils used in this production method generally include free fatty acids, fatty acid triglycerides, fatty acid diglycerides, fatty acid glycerides such as fatty acid monoglycerides, and other components (for example, moisture and trace element components).
  • fatty acid triglycerides are the main component
  • free fatty acids are the main component.
  • raw material fats and oils containing either one or both of free fatty acids and fatty acid glycerides are widely used.
  • FIGS. 11 to 14 are diagrams for explaining the concept of the basic process of the manufacturing method according to the present invention and an example of its reaction. More specifically, FIG. 11 is a diagram showing the overall concept of the basic two-stage process of the production method according to the present invention, and FIG. 12 is an example of a hydrolysis reaction that can be used as the first process constituting the two-stage process. FIG. 13 is a diagram showing an esterification reaction example 1 that can be used as the second step constituting the two-stage process, and FIG. 14 is a diagram showing the esterification reaction example 2.
  • R 4 , R 5 , R 6 , R 7 shown in FIGS. 11 to 13 mean hydrocarbon groups, and these R 4 , R 5 , R 6 , R 7 May be a different kind of hydrocarbon group, or all or any two of R 4 , R 5 , R 6 and R 7 may be the same type of hydrocarbon group.
  • R 4 , R 5 , R 6 , and R 7 are not limited to a limited number of carbon atoms, and may have carbon-carbon unsaturated bonds. In some cases, another functional group such as an alkoxy group may be bonded (hereinafter, the same applies to other processes).
  • R 6 includes only a hydrogen atom (H) (hereinafter, the same applies to other processes).
  • R 6 is hydrogen
  • R 6 COOR 7 in FIG. 14 means an alkyl formate
  • R 4 at the end of the fatty acid triglyceride may be the same type of hydrocarbon group or different types of hydrocarbon groups in the same molecule.
  • the basic process of the manufacturing method according to the present invention is composed of two-stage processes (first process and second process).
  • the first step which is positioned as a previous step, obtains fatty acids and glycerin from fatty acid glycerides contained in the raw fats and oils by a hydrolysis reaction using pressurized hot water under supercritical or subcritical conditions. This is a process (see the first process in Fig. 11).
  • the reaction in the first step is performed by hydrolyzing fatty acid glycerides contained in the raw fats and oils to produce fatty acids (R 4 COOH) and glycerin ( HOCH
  • fatty acid triglycerides (R 4 COOCH CH (OOCR 4 ) CH OOCR 4
  • fatty acid diglyceride or fatty acid monoglyceride which can be contained in the raw material fats and oils for the purpose of limiting to this can also be obtained by hydrolysis reaction as in FIG.
  • the “pressurized hot water” in the reaction formula shown in FIG. 12 is a force that means the subcritical water, and is not limited to that. Widely includes subcritical water.
  • phase separation into an oil phase and an aqueous phase occurs (phase separation).
  • the oil phase separated by this process contains fatty acids, and one aqueous phase contains glycerin (HOCH CH (OH) CH OH) as a by-product.
  • the fatty acid used in the second step (see Fig. 13 and Fig. 14), which is Can be collected.
  • This fatty acid contains fatty acids (R 4 COOH) produced by hydrolysis (see Fig. 15) and raw fatty acids from the beginning! / And free fatty acids (described later).
  • this phase separation step so as to be performed near the hydrolysis temperature (for example, 250 to 300 ° C.). This eliminates the need to cool the product, and then has the advantage that the energy to reheat for the esterification reaction (see FIGS. 13 and 14) is not required.
  • FIG. 13 shows an ester ester reaction example 1 involved in a second step subsequent to the first step.
  • This esterification reaction example 1 is a process using fatty acid (R 4 COOH) generated by hydrolysis of fatty acid glycerides in raw oil and fat in the first process.
  • this esterification reaction example 1 in FIG. 13 this fatty acid (R 4 COOH) is reacted with a supercritical or subcritical alcohol to promote esterification, thereby producing a fatty acid alkyl ester (R 4 COOR 5 ). And get water (HO). That is, this esterification reaction example 1 is
  • the esterification reaction example 1 shown in Fig. 13 is preferably allowed to proceed by esterifying the raw oil and fat with alcohol as the temperature and pressure under supercritical conditions or subcritical conditions.
  • an alcohol for example, an alkyl alcohol such as methanol
  • R 4 COOH free fatty acid
  • an esterification step of converting the free fatty acid (R 4 COOH) into a fatty acid alkyl ester (R 4 COOR 5 ) is performed under the conditions of a temperature of 200 to 300 ° C. and a pressure of 1 to 20 MPa.
  • the process time is, for example, 10 to 60 minutes, more preferably 15 to 25 minutes.
  • suitable processing time changes with temperature conditions, and it can process in a short time, so that it is high temperature.
  • alcohol refers to linear alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 2-butanol, t-butanol, It means a branched alcohol such as allylic alcohol, and is represented by the general formula ROH (R is a hydrocarbon group containing 1 to about 24 carbon atoms) (hereinafter the same applies to other steps).
  • the "supercritical state of alcohol” means that the temperature in the reaction system is the critical temperature of alcohol.
  • the “alcohol subcritical state” means that the temperature in the reaction system is not less than the boiling point of the alcohol and generally not less than 150 ° C, and the pressure is not less than the vapor pressure of the alcohol at the reaction temperature. Generally, it means a state of OMPa or higher (the same applies to other processes).
  • FIG. 14 shows an esterification reaction example 2 involved in the second step.
  • This esterification reaction example 2 is a process using the fatty acid (R 4 COOH) produced by hydrolysis of fatty acid glycerides in the raw oil and fat in the first process.
  • the esterification reaction example 2 the fatty acid (R 4 COOH) is reacted with a supercritical or subcritical carboxylic acid ester (R 6 COOR 7 ) to promote esterification, and the fatty acid alkyl ester ( R 4 COOR 7 ) and a low molecular weight fatty acid (R 6 COOH) derived from the carboxylic acid ester can be obtained. That is, the esterification reaction example 2 is a reaction step that contributes to an improvement in the yield of the fatty acid alkyl ester.
  • the fatty acid phase and the carboxylic acid ester phase are compatible by adding a third component to the esterification reaction system.
  • a third component a component that contributes to compatibilization of the fatty acid phase and the carboxylic acid ester phase can be widely used.
  • alkanes such as pentane and hexane, petroleum ether, and the like can be mentioned.
  • fatty acid glycerides contained in the raw material fats and oils are hydrolyzed with supercritical or subcritical water (pressurized hot water), and the resulting fatty acid (R 4 COOH) is obtained.
  • Fatty acid alkyls that are useful as biodiesel fuel by fractionating together with free fatty acids that were originally present in the fats and oils (described later), and esterifying these fatty acids with alcohols and strong rubonic esters under supercritical or subcritical conditions.
  • a method for producing esters can be proposed.
  • FIGS. 15 to 17 are diagrams showing the concept of esterification reaction (esterification reaction involving free fatty acids in raw oils and fats) that can be used in the production method according to the present invention and examples of the reactions. is there. More specifically, FIG. 15 is a diagram showing a basic concept of a process related to the esterification reaction, FIG. 16 is a diagram showing the esterification reaction example S, and FIG. 17 is a diagram showing the esterification reaction example T. is there.
  • R 8 shown in FIGS. 16 and 17 means a hydrocarbon group.
  • R 8 is not limited to a limited number of carbon atoms, and may be bonded to another functional group such as an alkoxy group, depending on whether there is a carbon-carbon unsaturated bond! /.
  • the free fatty acid which also contains the initial force in the raw oil and fat, has a supercritical or subcritical alcohol solvent and a supercritical or subcritical condition.
  • Carrying out the esterification reaction in combination with a carboxylic acid ester solvent carries out a reaction to produce fatty acid alkyl ester, fatty acid (low molecular weight fatty acid derived from carboxylic acid ester) and water.
  • This step is composed of two esterification reactions (reaction example S and reaction example T) as shown in FIGS.
  • the esterification reaction example S in FIG. 16 is an ester of free fatty acid (R 8 COOH) initially contained in raw oil and fat with alcohol (R 5 OH) under supercritical or subcritical conditions.
  • R 5 OH alcohol
  • R OOR 5 fatty acid alkyl ester
  • HO water
  • the produced water is removed from the reaction system by phase separation or the like.
  • one of the esterification reaction examples T is that V, a free fatty acid (R 8 COOH) contained in the raw oil and fat from the beginning, is a supercritical or subcritical carboxylic acid ester.
  • This is a reaction to produce a fatty acid alkyl ester (R3 ⁇ 4OOR 7 ) and a low molecular weight fatty acid (R 6 COOH) derived from a strong rubonic ester by esterification with (R 6 C OOR 7 ).
  • the first step of obtaining fatty acids by hydrolyzing the fatty acid glycerides contained in the raw oil and fat under supercritical or subcritical conditions is performed.
  • the fatty acids obtained from the first step and the raw fats and oils that are present from the beginning are used in combination with supercritical or subcritical alcohols and carboxylic acid esters.
  • esterifying fatty acid alkyl esters useful as BDF can be obtained efficiently.
  • a fatty acid in which an alcohol is involved is obtained by using a “supercritical or subcritical alcohol solvent” and a “supercritical or subcritical carboxylic acid ester solvent” in combination.
  • the fatty acid alkyl ester production reaction involving the carboxylic acid ester can be advanced, so that the yield of the fatty acid alkyl ester can be improved.
  • FIG. 18 to 20 are diagrams for explaining the process concept and the reaction example of the embodiment example of the production method according to the present invention. More specifically, FIG. 18 is used in the manufacturing method according to the present invention.
  • a diagram showing the overall concept of a possible embodiment hereinafter referred to as V process
  • FIG. 19 is a diagram showing an example of transesterification reaction V involved in the V process
  • FIG. 20 is a transesterification reaction involved in the V process.
  • fatty acid alkyl ester, acetin, and glycerin are obtained from fatty acid glyceride that can be contained in the raw oil and fat.
  • Step V transesterification reaction
  • Fig. 18 utilizes fatty acid glycerides present in the reaction system according to the production method of the present invention, and the fatty acid glycerides are supercritical or subcritical.
  • the main purpose of this reaction is to obtain fatty acid alkyl esters by proceeding transesterification with alcohols and carboxylic acid esters under conditions.
  • FIG. 19 shows an example of transesterification V that can be used in the V process.
  • fatty acid glycerides present in the raw oil and fat, such as fatty acid triglycerides (R 4 COOCH CH (OOCR 4 ) CH OOCR 4 ) and supercritical or subcritical conditions.
  • fatty acid diglyceride is produced from fatty acid triglyceride, but fatty acid monoglyceride is produced from fatty acid diglyceride and glycerin is produced from fatty acid monoglyceride.
  • an alcohol for example, an alkyl alcohol such as methanol
  • the temperature is under supercritical or subcritical conditions.
  • the transesterification step of converting the fatty acid triglyceride into a fatty acid alkyl ester is performed under the conditions of a temperature of 200 to 300 ° C. and a pressure of 1.0 to 20 MPa.
  • the process time is, for example, 10 to 60 minutes, more preferably 15 to 25 minutes.
  • the preferred treatment time varies depending on the temperature, and the shorter the temperature, the higher the temperature.
  • triacetin is produced from fatty acid triglycerides, but diacetin is produced from fatty acid diglycerides and monoacetin is produced from fatty acid monoglycerides.
  • critical temperature (Tc) 214 to 285 ° C
  • critical pressure (Pc) 3.5 to 6.
  • OMPa when alkyl acetate is used, critical temperature (Tc): 234 to 288 ° C, ambient pressure (Pc): 3.1 to 4.7 MPa, so considering that the decomposition of components occurs at 300 ° C or higher, the supercritical or subcritical conditions of carboxylate ester It is preferably 200 ° C or higher and 300 ° C or lower, 2. OMPa or higher and 15MPa or lower is preferable.
  • the fatty acid glyceride phase and the carboxylic acid ester phase may be mixed with each other.
  • Examples include alkanes such as pentane and hexane and petroleum ether.
  • Acetin (eg, triacetin) produced in Transesterification Example V
  • BDF BDF
  • triacetin which is a complete ester of fatty acid glycerides
  • BDF BDF
  • Absent by separating acetin having an unreacted terminal (for example, diacetin or monoacetin) from the reaction system and introducing it again into the ester exchange reaction example V, the acetin (ie, fatty acid glyceride) and
  • a formation reaction from a fatty acid glyceride to a fatty acid alkyl ester is achieved.
  • Fatty acid alkyl esters can also be used in a two-solvent system of alcohol and carboxylic acid ester.
  • a crude alcohol (such as methanol) containing a carboxylic acid ester such as formic acid ester can be used as it is for the reaction for producing the fatty acid alkyl ester.
  • the oleic acid was treated under the supercritical condition to verify whether the esterich reaction proceeds.
  • Fig. 21 shows the GPC chromatogram after the treatment at each molar ratio, which is the result of Example 1.
  • the yield of methyl oleate obtained from these peak areas is shown in “Table 4” below, and the graph thereof is shown in FIG.
  • the peak observed near the retention time of 13 minutes is considered to be an impurity contained in the original sample.
  • the glycerin produced by the fat-and-fat strength can be separated from the fatty acid because it dissolves in water, so the reverse of the fatty acid ester produced in the subsequent esterification reaction. Since the reaction can be suppressed, high-purity biodiesel fuel (BDF) can be obtained.
  • BDF biodiesel fuel
  • fatty acid obtained by hydrolyzing fatty acid triglycerides under supercritical or subcritical conditions is esterified with supercritical or subcritical methyl formate (HCOOCH).
  • Fig. 23 shows the reaction pathway for obtaining fatty acid methyl esters.
  • formic acid HCOOH
  • the effect of an acid catalyst by the formic acid can be expected.
  • FIG. 24 shows the HPLC chromatogram.
  • rapeseed oil in addition to diglyceride which is a reaction intermediate, a peak considered to be a fatty acid was observed. This is probably because the transesterification reaction (an example of step A) shown in FIG. 25 progressed between the fatty acid triglyceride and acetic acid contained in the rapeseed oil.
  • the transesterification reaction an example of step A
  • the oleic acid treatment system it is considered that there was almost no reaction that changed much from the untreated one.
  • Example 3 an ester exchange reaction using a carboxylic acid ester that can be used in Step A according to the present invention was verified.
  • Fatty acid triglycerides (I ⁇ COOCH CH COOCR 1 )
  • the fatty acid triglyceride contained in the rapeseed oil using the methyl formate as a supercritical condition Thus, it was verified whether the transesterification reaction proceeded.
  • Figure 26 shows the HPLC chromatogram after 9 minutes of treatment
  • Figure 27 shows the HP LC chromatogram after 15 minutes of treatment.
  • MG reaction intermediate monoglyceride
  • DG diglyceride
  • FIG. 28 shows the transesterification yield of each sample obtained from the GPC analysis results.
  • Example 4 the compatibility in the reaction system of the production method according to the present invention was verified. Create the mixed system shown in Table 6 below under normal temperature and pressure conditions, and observe the dissolution state. did. Furthermore, each mixed system was cooled overnight in a refrigerator (5 ° C.), and changes in the dissolved state were observed. The experimental results relating to Example 4 are shown in FIGS. 29 to 36, which are photographs substituted for drawings.
  • the mixed system of methyl formate and oil (rapeseed oil) produces a precipitate in two phases.
  • the systems to which the third component is added are all in one phase, and a good transesterification reaction can be expected even under supercritical or subcritical conditions. Therefore, relaxation of the reaction conditions can be achieved. For example, it can be sufficiently expected that the reaction temperature is lowered from 350 ° C to 300 ° C or lower.
  • Example 5 the compatibilization in the three-component reaction system of the production method according to the present invention was verified.
  • the mixed system shown in Table 8 below was created under normal temperature and normal pressure conditions, and the dissolution state was observed.
  • pentane, hexane, or acetone was added as a compatibilizer until the system became one layer, and the volume required for each was examined.
  • the experimental results relating to Example 5 are shown in FIGS. 37 to 50, which are photographs substituted for drawings.
  • the solubility of methyl formate and methanol was examined, and it was confirmed that methyl formate did not dissolve in methanol.
  • ethyl formate, methanol, rapeseed oil, and pentane were mixed in a volume ratio of 1: 1: 1: 0.1 and separated into two layers (see Figure 45).
  • pentane was added as a compatibilizer until the mixed system of ethyl formate, methanol, and rapeseed oil had a further structure, the volume of pentane required was 2.0 times that of methanol (see Figure 46).
  • ethyl formate, methanol, rapeseed oil, and hexane were mixed in a volume ratio of 1: 1: 1: 0.1 and separated into two layers (see Fig. 47).
  • hexane was added as a compatibilizing solvent until the mixed system of ethyl formate, methanol, and rapeseed oil had a further structure, and the volume of hexane required was 2.6 times that of methanol (see Figure 48).
  • the present invention can be used as a technique for efficiently producing a high-grade fatty acid alkyl ester that can be suitably used as a biodiesel fuel without using a catalyst.
  • FIG. 1 is a conceptual diagram of a basic production process (process X) of a fatty acid alkyl ester according to the present invention.
  • FIG. 2 is a diagram for explaining the esterification reaction related to the basic production process in more detail.
  • FIG. 3 is a diagram showing examples of reaction routes that can be used in the production method according to the present invention.
  • FIG. 4 is a diagram showing a reaction example of step A (transesterification step), which is an example of the first step in the reaction pathway.
  • FIG. 5 is a diagram showing an example of another reaction route that can be used in the production method according to the present invention.
  • FIG. 6 is a diagram showing a reaction example of a process B (hydrolysis process) which is an initial stage process of the reaction pathway.
  • FIG. 7 is a diagram showing an example of a two-step reaction route in the case of using methyl carboxylate (HCO 2 OCH 3) as a solvent in step X (esterification step).
  • HCO 2 OCH 3 methyl carboxylate
  • FIG. 8 is a diagram showing a reaction example of a transesterification step (step C) that can be used to increase the yield of fatty acid alkyl ester in the production method according to the present invention.
  • FIG. 9 is a diagram summarizing the concept of the reaction route leading to the C process (transesterification process) force X process (esterification process).
  • FIG. 10 is a diagram showing an example of a general component configuration of a raw material fat used in the method for producing a fatty acid alkyl ester according to the present invention.
  • FIG. 11 is a diagram showing an overall concept of a basic two-stage process of a manufacturing method according to the present invention.
  • FIG. 12 is a diagram showing an example of a hydrolysis reaction that can be used as the first step constituting the two-step process.
  • FIG. 13 is a diagram showing an ester ester reaction example 1 that can be used as a second step constituting the two-step process.
  • FIG. 14 is a diagram showing Example 2 of the esterification reaction.
  • FIG. 15 Esterification reaction that can be used in the production method according to the present invention (free fat in raw oil and fat
  • FIG. 2 is a diagram showing a basic concept of an esterification reaction involving a fatty acid.
  • FIG. 16 is a view showing the same esterification reaction example S.
  • FIG. 17 is a diagram showing the same esterification reaction example T.
  • FIG. 18 is a diagram showing an overall concept of an embodiment (hereinafter referred to as V process) that can be used in the manufacturing method according to the present invention.
  • FIG. 19 shows a transesterification example V involved in the V step.
  • FIG. 20 shows a transesterification example V involved in the V step.
  • FIG. 21 is a GPC chromatogram after treatment at each molar ratio, which is the result of a verification experiment according to Example 1.
  • FIG. 22 is a graph showing the yield of methyl oleate determined from the peak area of the GPC chromatogram (FIG. 21).
  • FIG. 5 is a diagram showing a reaction route for obtaining a fatty acid methyl ester.
  • FIG. 24 is an HPLC chromatogram showing the results of a verification experiment according to Example 2.
  • FIG. 25 is a diagram showing an example of a transesterification reaction (step A) between a fatty acid triglyceride and acetic acid contained in rapeseed oil.
  • FIG. 26 is a diagram showing an HPLC chromatogram after 9 minutes of treatment, which is the result of a verification experiment according to Example 3.
  • FIG. 27 is a diagram showing an HPLC chromatogram after the treatment for 15 minutes.
  • FIG. 28 is a diagram (graph) showing the transesterification yield of each sample obtained from the results of GPC analysis in Example 3.
  • FIG. 36 is a drawing-substituting photograph showing the observation results after overnight cooling in the same mixed system category (4).
  • 37] A drawing-substituting photograph showing the observation result of the mixed system classification (1) in the verification experiment according to Example 5.
  • FIG. 39 is a drawing-substituting photograph showing the state of a further structure in the mixed system classification (2).
  • ⁇ 40] Shows the observation result of the mixed system classification (3) in the verification experiment according to Example 5. This is a drawing substitute photo.
  • FIG. 45 A drawing-substituting photograph showing the observation result of the mixed system classification (6) in the verification experiment according to Example 5.
  • FIG. 46 This is a substitute for a drawing which shows a state where the mixed system division (6) is further structured. 47] A drawing-substituting photograph showing the observation result of the mixed system classification (7) in the verification experiment according to Example 5.
  • FIG. 48 This is a drawing substitute true that shows a state where the mixed system division (7) has a further structure.
  • Drawing substitute photograph showing observation result of mixed system classification (8) in verification experiment according to Example 5 It is.
  • FIG. 50 is a drawing substitute true that shows the state of a further structure in the mixed system classification (8). Explanation of symbols
  • Process B (fatty acid glyceride) hydrolysis process (first stage process)
  • Step V which is one embodiment of the production method according to the present invention (transesterification)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

  【課題】脂肪酸アルキルエステルの製造効率の向上を達成すること。 【解決手段】脂肪酸とカルボン酸エステルとの間で、所定の温度・圧力条件で、エステル化反応を進行させることによって脂肪酸アルキルエステルを製造する(X工程)。前記脂肪酸は、原料油脂に存在する遊離脂肪酸や原料油脂から所定工程を経て得られる脂肪酸を対象とすることができる。X工程につなぐ前記所定工程として、前記原料油脂中の脂肪酸グリセリドとカルボン酸との間で、所定の温度・圧力条件でエステル交換反応することによって脂肪酸を得る工程(A工程)、前記原料油脂中の脂肪酸グリセリドを所定の温度・圧力条件で加水分解することによって脂肪酸を得る工程(B工程)などを採用できる。

Description

明 細 書
脂肪酸アルキルエステルの製造方法
技術分野
[0001] 本発明は、脂肪酸アルキルエステル(「脂肪酸エステル」とも言う。)の製造方法に関 する。より詳しくは、バイオディーゼル燃料として使用する脂肪酸アルキルエステルの 製造方法に関する。
背景技術
[0002] 一般に「BDF」と略称されるバイオディーゼル燃料は、植物性油脂、動物性油脂又 はこれらの廃油脂 (例えば、廃食油)の主成分である脂肪酸トリグリセリド(「脂肪酸グ リセリド」とも言う。 )をエステル交換又は加水分解して得られる脂肪酸をアルコールで エステルイ匕する方法などによって得られる脂肪酸エステル力もなる燃料である。この 燃料は、ディーゼル機関を有する車両、船舶、農工業機械、発電機などに使用可能 である。
[0003] このバイオディーゼル燃料は、軽油に比べてその排気ガス中の黒鉛や酸性雨の原 因となる硫黄酸化物が少なぐ浮遊粒子状物質 (PM)の発生も少ないため、環境負 荷を軽減できるという利点やバイオマス資源由来の燃料であるので、地球上の炭素 ノ《ランスを崩さないという利点を有することなどから、既に化石燃料の代替としての利 用が始まっている。また、油脂類力 脂肪酸エステルを工業的に製造する方法も幾 つか開発されており、この方法は、概ねアルカリ触媒法、酸触媒法、リパーゼ酵素法 に大別できる。
[0004] アルカリ触媒法は、油脂にメタノールと塩基性触媒を加えてエステル交換反応を行 うことにより、目的の脂肪酸メチルエステルを得る方法である。この方法は、比較的穏 やかな温度 ·圧力条件で反応を進行させることができるが、精製段階でアルカリ触媒 の除去工程が必要となる。また、原料油脂中の遊離脂肪酸とアルカリ触媒が反応し てアルカリセッケンを生成したり、原料油脂中の水が触媒機能を低下させたりして、ェ ステル収率の低下を招くなどの問題を抱えている。
[0005] 酸触媒法は、アルカリ触媒法のようなアルカリセッケンの生成は起こらな 、が、前記 アルカリ触媒法同様に、原料油脂中の水分によって触媒機能が低下し、また、反応 速度も遅いため、この方法単独で工業的製法とすることは困難である。
[0006] リパーゼ酵素法は、リパーゼ酵素の触媒作用によって、原料油脂をバイオディーゼ ル燃料へ変換する方法であり、生産物の中和が不要であり、原料中の遊離脂肪酸の 影響を受けないなどの利点があるが、メタノール添加量の制御が不可欠であり、反応 速度が遅ぐコストも高いなどの問題を抱えている。
[0007] これらの製法に対し、本願発明者は、無触媒条件下で脂肪酸エステルを製造する 技術を提案している。例えば、特許文献 1では、原料油脂を、高温 '高圧の超臨界状 態又は亜臨界状態のアルコールを溶媒に用いてエステル交換反応及びエステルイ匕 反応を行うことによって、脂肪酸エステル組成物を無触媒で製造する技術を提案して いる。この技術では、脂肪酸アルキルエステルとグリセリンとが反応して脂肪酸モノグ リセリドに戻る逆反応が存在するため、脂肪酸アルキルエステル生成方向へ反応を 傾けるために大過剰量のアルコールを用いる必要があり、また温度 ·圧力の条件も厳 しぐ改良の余地があった。
[0008] また、本願発明者は、特許文献 2や非特許文献 1にお ヽて、前記特許文献 1の改 良技術を提案している。より詳しくは、脂肪酸トリグリセリドを含む原料油脂と水を共存 させて加水分解し、前記脂肪酸トリグリセリドから脂肪酸とグリセリンを得る第 1工程と 、この第 1工程の生成物にアルコールを添加し、所定の温度'圧力条件で前記生成 物中の脂肪酸を脂肪酸アルキルエステルに変換する第 2工程 (即ち、エステルィ匕ェ 程)と、から構成される製造方法 (以下、「無触媒'二段階方法」と称する)を提案して いる。
[0009] この無触媒 '二段階方法では、第 1工程後に、グリセリンを分離除去することにより 第 2工程での逆反応を有効に阻止し、かつ第 1工程力 得られた脂肪酸中の水分を 除去しておくことで、第 2工程のエステル化反応をより優勢に進行させることができる ため、脂肪酸アルキルエステルを効率良く製造できる。この方法は、特に、水や遊離 脂肪酸を含む廃油などの原料油脂を用いる脂肪酸アルキルエステルの工業的製法 として有用な技術である。
[0010] カロえて、特許文献 3には、トリグリセリドとカルボン酸エステルとをエステル交換反応 させて得られてくるトリァセチン (グリセリントリァセタート)などのトリグリセリドとカルボン 酸エステルとからなる燃料を製造する技術が開示されている。即ち、アルコールを溶 媒として用いな ヽ脂肪酸アルキルエステルの製造技術が開示されて ヽる。
[0011] 特許文献 1:特開 2000— 204392号公報。
特許文献 2 : PCT国際公開 WO03Z106604号公報。
特許文献 3 :特開 2004— 149742号公報。
非特許文献 1 Journal of the Japan Institute of Energy, Vol. 84, 413— 419 (2005)。
発明の開示
発明が解決しょうとする課題
[0012] BDFに有用である脂肪酸アルキルエステルの製法に係わる従来技術は、上記した ように、概ね、アルコールを溶媒とするエステルイ匕反応やエステル交換反応に基づい ている。アルコール溶媒系では、例えば、アルコールを超臨界条件とすることで、原 料油脂中の遊離脂肪酸に対してもエステルイ匕反応を進行させることができるが、脂肪 酸トリグリセリドをグリセロールへ変換する反応に時間が力かるという課題を抱えてい る。また、アルコール溶媒を用いない上記特許文献 3に開示された技術については、 原料油脂の主成分が脂肪酸トリグリセリドである場合は有用であるが、原料油脂の主 成分が遊離脂肪酸からなる場合 (例えば、ダーク油)は、対応が困難である。
[0013] 今後、脂肪酸アルキルエステルの製造技術を実用化するに当たり、広範な種類の 原料油脂に対応可能であること、反応工程の簡略化、反応条件 (例えば、温度、圧 力)の緩和、反応効率の向上、触媒の使用回避、燃料に不適な副産物 (例えば、水、 グリセリンなど)の発生の抑制又は防止、ひいては最終燃料組成物の高品位ィ匕が今 後の重要な技術的課題となって 、る。
[0014] そこで、本発明は、前記技術的課題の解決を図り、工業生産により適する脂肪酸ァ ルキルエステルの製造方法、より詳しくは、溶媒としてアルコール溶媒を用いない反 応系、アルコール溶媒を用いる反応系のそれぞれについて、反応効率が良ぐかつ 広範な原料油脂にも対応できる脂肪酸アルキルエステルの新規製造方法を提供す ることを主目的とする。 課題を解決するための手段
[0015] 本願発明者は、従来力 脂肪酸アルキルエステルの製造技術の主流になっている アルコール溶媒を用いる方法カゝら発想を大きく転換して、脂肪酸アルキルエステルの 工業生産を想定したより有利な製造方法の鋭意研究を行った。その結果、脂肪酸や 脂肪酸グリセリドに対して、超臨界又は亜臨界の条件のカルボン酸エステルある ヽは カルボン酸などを反応させて、エステルィヒ反応やエステル交換反応を進行させること により、 目的の脂肪酸アルキルエステルを効率良く得ることができることを突き止めた
[0016] そこで、本発明では、まず、脂肪酸とカルボン酸エステルとの間で、該カルボン酸ェ ステルの超臨界又は亜臨界の条件でエステルィヒ反応を進行させることによって脂肪 酸アルキルエステルを製造する方法を提供する。
[0017] この製造方法における前記脂肪酸は、原料油脂に存在している遊離脂肪酸を有効 に利用することができる。また、この製造方法における前記脂肪酸として、原料油脂 から所定工程を経て得られる脂肪酸を利用することもできる。なお、該脂肪酸と前記 遊離脂肪酸の両方を用いることもできる。
[0018] 原料油脂中の成分力 脂肪酸を得る上記所定工程は、特に狭く限定されることは ないが、一例を挙げれば、前記原料油脂中の脂肪酸グリセリドとカルボン酸を、該カ ルボン酸の超臨界又は亜臨界の条件でエステル交換することによって脂肪酸を得る 工程を採用することができる。あるいは、前記原料油脂中の脂肪酸トリグリセリドを超 臨界又は亜臨界の条件で加水分解することによって脂肪酸を得る工程を採用できる
[0019] 本発明に係る製造方法の目的物である前記脂肪酸アルキルエステルには、脂肪酸 とカルボン酸エステルとの間の上記エステルイ匕反応を進行させることによって得られ る脂肪酸アルキルエステルの他に、他の反応経路から得られる脂肪酸アルキルエス テルが含まれていてもよい。一例を挙げると、前記原料油脂中の脂肪酸グリセリドと力 ルボン酸エステルとの間のエステル交換反応で得られる脂肪酸アルキルエステルが 含まれていてもよい。
[0020] 本製造方法では、上記エステル化反応系に第三成分を添加することによって、脂 肪酸相とカルボン酸エステル相の相溶ィ匕を行うとよい。この相溶ィ匕によって、脂肪酸 とカルボン酸エステルのエステル交換反応がより促進されることになるため、工業生 産においても有効に活用可能である。
[0021] また、上記エステル交換反応系に対しても第三成分を添加することによって、脂肪 酸グリセリド相とカルボン酸相、ある 、は脂肪酸グリセリド相とカルボン酸エステル相 の相溶ィ匕を行ってもよい。この相溶ィ匕によって、エステル交換反応がより促進されるこ とになるため、工業生産において有効である。
[0022] 続、て、本願発明者は、脂肪酸アルキルエステルの製造技術の主流になって 、る アルコール溶媒を用いる方法にぉ 、て、脂肪酸アルキルエステルの工業生産を想定 した、より有利な製造方法の鋭意研究を行なった。その結果、「超臨界又は亜臨界条 件のアルコール溶媒」と「超臨界又は亜臨界条件のカルボン酸エステル溶媒」を併用 することによって、アルコールが関与する脂肪酸アルキルエステルの生成反応にカロ えて、カルボン酸エステルが関与する脂肪酸アルキルエステルの生成反応が進行す ること、並びに後者の生成反応ではカルボン酸エステル由来の低分子量脂肪酸が酸 触媒としての作用を発揮することなどを新規に見出し、これらにより脂肪酸アルキル エステルの収率向上を達成できることを突き止めた。
[0023] そこで、本発明では、原料油脂中に含まれている脂肪酸グリセリドを超臨界又は亜 臨界条件で加水分解して脂肪酸を得る第 1段階工程と、該第 1段階工程カゝら得られ る脂肪酸をエステルイ匕して脂肪酸アルキルエステルを得る第 2段階工程と、からなり、 前記第 2段階工程において、(1)前記脂肪酸を超臨界又は亜臨界条件のアルコー ルでエステル化する反応と、 (2)前記脂肪酸を超臨界又は亜臨界条件のカルボン酸 エステルでエステルィヒする反応を併用する脂肪酸アルキルエステルの製造方法を提 供する。なお、本発明において「併用」とは、上記(1)と(2)の反応の同時使用のみな らず、時間差をおいた使用も含まれる。
[0024] また、前記第 2段階工程では、前記脂肪酸に加えて、原料油脂中に最初から含ま れて ヽる遊離脂肪酸をエステルイ匕して脂肪酸アルキルエステルを得るように工夫す ることにより、脂肪酸アルキルエステルの収率をさらに向上させる。
[0025] そして、前記エステル化の反応系に第三成分を添加することによって、脂肪酸相と カルボン酸エステル相の相溶ィ匕を行 ヽ、エステルイ匕反応をさらに促進させるようにす る。
[0026] さらに、本発明では、原料油脂中に含まれている脂肪酸グリセリドと前記アルコール との間でエステル交換する反応と、該脂肪酸グリセリドと前記カルボン酸エステルとの 間でエステル交換する反応と、を含み、これら二つの反応のそれぞれから前記脂肪 酸アルキルエステルを得ることができる脂肪酸アルキルエステルの製造方法を提供 する。
[0027] また、本発明では、前記脂肪酸グリセリド相と前記カルボン酸エステル相との反応 系に第三成分を添加して相溶化することで、超臨界条件又は亜臨界条件にお!、ても 効率的にエステル交換反応を進行させることもできる。
[0028] 同様に、前記脂肪酸グリセリド相と前記カルボン酸エステル相と前記アルコール相 との三相間につ 、ても第三成分を添加して相溶ィ匕することで、効率的にエステル交 換反応を進行させることができる。
[0029] 本発明におけるエステルイ匕反応やエステル交換反応にぉ 、て利用可能なカルボン 酸エステルは、とくに狭く限定されないが、蟻酸メチルなどの蟻酸エステルを利用す ることち可會である。
[0030] なお、本発明において「油脂」とは、脂肪酸グリセリド (脂肪酸トリグリセリド、脂肪酸 ジグリセリド、脂肪酸モノグリセリドを含む。)及び脂肪酸のいずれかを少なくとも含む ものである。「脂肪酸アルキルエステル」とは、(1)原料油脂中に最初から含まれてい た遊離脂肪酸、(2)原料油脂中の成分が何らかの反応を受けて生成した脂肪酸、 (3
)原料油脂中に含まれる脂肪酸や脂肪酸グリセリドなどが、エステルイ匕反応、あるい はエステル交換反応などを経て得られる脂肪酸エステルを意味する。 発明の効果
[0031] 本発明によれば、外部力 反応系へ触媒を添加することもなぐ脂肪酸アルキルェ ステルを効率良く製造することができる。また、脂肪酸とカルボン酸エステルとの間で 、該カルボン酸エステルの超臨界又は亜臨界の条件でエステルィヒ反応を進行させる ことによって脂肪酸アルキルエステルを製造する方法では、アルコールを溶媒として 用いないため、例えば、従来の脂肪酸とアルコールとをエステルイ匕反応させて脂肪 酸アルキルエステルを製造する方法とは異なり、燃料中の組成物として不適な水の 発生が反応系にお 、て起こらな 、。
[0032] 本発明の製造方法に係る反応系では、反応の最終段階に至るまでカルボン酸エス テルやカルボン酸が存在することになり、このカルボン酸エステルやカルボン酸が酸 触媒機能を発揮するため、反応効率が向上し、ひいては高品位な脂肪酸アルキル エステルを製造することができる。
[0033] また、本発明によれば、脂肪酸エステルを含むクルードなアルコールなどであって も、そのまま脂肪酸アルキルエステルの製造方法に用いることができる。例えば、蟻 酸エステルを含むクルードなメタノールなどもそのまま本発明に係る脂肪酸アルキル エステルの製造方法に用いることができる。
発明を実施するための最良の形態
[0034] 以下、本発明を実施するための好適な形態について、添付図面を参照しながら説 明する。なお、添付図面に示された各実施形態は、本発明に係わる製造方法の代表 的な実施形態例を示したものであり、これにより本発明の範囲が狭く解釈されることは ない。
[0035] まず、図 1は、本発明に係る脂肪酸アルキルエステルの基本製造工程 (X工程)の 概念図、図 2は同基本製造工程 (X工程)に係わるエステルイ匕反応をより詳しく説明 する図である。
[0036] ここで、図 2中に示す R1, R3は、炭化水素基を意味しており、これら , R3は異種の 炭化水素基であったり、 R1, R3の全部又はいずれか二つが同種の炭化水素基であ つたりしてもよい。また、 R1, R3は、その炭素数を狭く限定されることはなぐまた、炭 素 炭素不飽和結合があってもよぐ場合によってはアルコキシ基などの他の官能 基が結合していてもよい(以下、他の工程でも同様)。また、カルボン酸エステルに関 わる R2は、水素又は炭化水素基であって、 R2が水素の場合は図 2の R OOR3は蟻 酸アルキルエステルを意味し、一方 R2が炭化水素基の場合は、その炭素数は狭く限 定されることはなく、また、 R2中に炭素一炭素不飽和結合があってもよぐ場合によつ てはアルコキシ基などの他の官能基が結合していてもよい(以下、他の工程でも同様
) o [0037] 図 1、図 2に示された X工程に係わる「エステル化反応」は、好適には、カルボン酸 エステルを超臨界条件又は亜臨界条件の温度及び圧力として原料油脂を処理する ことによって進行させることができる。
[0038] 溶媒であるカルボン酸エステルの「超臨界状態」とは、反応系内の温度がカルボン 酸エステルの臨界温度 (Tc)以上で、かつ圧力がカルボン酸エステルの臨界圧力(P c)以上の状態を言う。また、「亜臨界状態」とは、反応系内の温度がカルボン酸エス テルの沸点以上で、かつ概ね 100〜150°C以上であり、かつ圧力が反応温度にお けるカルボン酸エステルの蒸気圧以上で、かつ概ね 0.5〜2MPa以上の状態を言う
[0039] カルボン酸エステルとして、例えば、蟻酸メチル、蟻酸ェチル、蟻酸プロピル、蟻酸 ブチル、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチノレ、 プロピオン酸ェチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸 ェチル、酪酸プロピル、酪酸ブチルなどを用いることができる。なお、主要なカルボン 酸エステルの臨界温度 (Tc)及び臨界圧力(Pc)を以下の「表 1」にまとめた。
[0040] [表 1] カルボン酸エステル 沸点 臨界温度 (Tc) 臨界圧力 (P c)
(°C) t°C] [MP a] 蟻酸メチル 3 1. 8 2 14 6. 0 蟻酸ェチル 54. 2 23 δ 4. 7 蟻酸プロピル 8 1. 3 264 4. 1 蟻酸ブチル 1 06. 8 285 3. 5 酢酸メチル 57. 8 234 4. 7 酢酸ェチル 77. 1 250 3. 8 酢酸プロピル 1 0 1. δ 27 6 3. 3 酢酸ィソブチル 1 1 8 287. 8 3. 1 [0041] このエステルイ匕反応の対象となる脂肪酸は、原料油脂中に最初力 含まれて!/、る 遊離脂肪酸、あるいは原料油脂中に含まれる成分 (例えば、脂肪酸グリセリド)から所 定工程を経て得られてくる脂肪酸のいずれか一方又は両方を利用することができる。 なお、本製造方法では、この図 1、図 2に示されたエステルイ匕反応工程を必須の基本 工程と位置付ける。
[0042] 本発明では、このエステルイ匕反応系に第三成分を添加することによって、脂肪酸相 とカルボン酸エステル相の相溶ィ匕を行なうのが望まし ヽ。この相溶ィ匕を行うことによつ て、該エステルイ匕反応の反応を促進させることが可能となるからである。前記第三成 分は、脂肪酸相とカルボン酸エステル相の相溶化に寄与する成分が広く利用するこ とができる。例えば、ペンタン、へキサンなどのアルカンや石油エーテルなどを挙げる ことができる。
[0043] 次に、図 3は、本発明に係る製造方法において利用可能な別の反応経路の例を示 す図である。図 4は、この反応経路の初段階の工程である A工程 (エステル交換工程 )の反応例を示す図である。
[0044] まず、この図 3及び図 4に示された A工程 (エステル交換工程)の目的は、原料油脂 中に含まれ得る脂肪酸グリセリド(図 4では、脂肪酸トリグリセリドを例示)から X工程 ( エステルイ匕反応、図 1、図 2参照)で利用可能な脂肪酸を収得することである。
[0045] 即ち、本発明に係る製造方法にお!ヽて、エステル交換工程である A工程を採用す る場合は、該反応によって得られた脂肪酸 (I^COOH)とァセチン (acetin、図 4では トリァセチンを例示)から脂肪酸を分離回収し、続いてこの脂肪酸を図 1及び図 2に示 す X工程にぉ 、て、カルボン酸エステルによって超臨界又は亜臨界条件でエステル 化し、目的の脂肪酸アルキルエステルを収得するという反応経路となる (図 3参照)。
[0046] ここで、図 4に示す A工程の反応例では、脂肪酸トリグリセリドとカルボン酸との間で 、該カルボン酸の超臨界又は亜臨界条件下、いわゆるエステル交換反応を行って、 ァセチンと脂肪酸 (I^COOH)を得る工程が示されている。なお、脂肪酸グリセリドと して、脂肪酸トリグリセリド以外に、脂肪酸ジグリセリド、脂肪酸モノグリセリドも含まれ、 ァセチンとして、トリァセチン以外に、ジァセチンやモノァセチンも含まれる。
[0047] 溶媒であるカルボン酸の「超臨界状態」とは、反応系内の温度がカルボン酸の臨界 温度 (Tc)以上で、かつ圧力がカルボン酸の臨界圧力(Pc)以上の状態を言う。また 、カルボン酸の「亜臨界状態」とは、反応系内の温度がカルボン酸の沸点以上で、か つ概ね 200°C以上であり、かつ圧力が反応温度におけるカルボン酸の蒸気圧以上 で、かつ概ね 2〜3MPa以上の状態を言う。しかし、 350°Cを超える温度条件では、 特に不飽和脂肪酸が熱分解するため、 350°C以下、より好ましくは 300°C以下の条 件が望まれる。なお、以下に主要なカルボン酸の臨界温度 (Tc)及び臨界圧力(Pc) を以下の「表 2」にまとめた。
[0048] [表 2]
Figure imgf000011_0001
[0049] 以上から、本発明では、 A工程 (エステル交換反応)と X工程 (エステルイ匕反応)を ベースとしたパイォディーゼル燃料の二段階超臨界工程を提案できる。例えば、原 料油脂に含まれる脂肪酸グリセリドを、超臨界又は亜臨界条件のカルボン酸でエス テル交換して得られた脂肪酸を、もともと原料油脂中に共存して 、た脂肪酸と共に分 別し、次に、カルボン酸エステルを用いて、該カルボン酸エステルの超臨界又は亜臨 界条件下で前記脂肪酸をエステル化して脂肪酸アルキルエステル (バイオディーゼ ル燃料)を得る製造方法を提案できる。
[0050] なお、このような製造方法では、この前記エステル交換反応系 (A工程)に第三成分 を添加することによって、脂肪酸グリセリド相とカルボン酸相の相溶ィ匕を行なうとよい。 この相溶ィ匕を行うことによって、該エステル交換反応を促進させることができ、また、そ の結果、反応処理条件、例えば、処理温度を低減することが可能になるからである。 この相溶化に利用可能な第三成分は、脂肪酸グリセリド相とカルボン酸相の相溶ィ匕 に寄与する成分が広く対象となる。例えば、ペンタン、へキサンなどのアルカンや石 油エーテルなどを挙げることができる。
[0051] 次に、図 5は、本発明に係る製造方法において利用可能な他の反応経路の例を示 す図である。図 6は、この反応経路の初段階の工程である B工程 (加水分解工程)の 反応例を示す図である。
[0052] この図 5に示された B工程 (加水分解工程)の目的は、上記 A工程と同様に、原料 油脂中に含まれる脂肪酸グリセリド(図 6では、脂肪酸トリグリセリドを例示)を図 1のェ ステル化反応で利用できる脂肪酸へ変換することである。
[0053] 即ち、加水分解工程である B工程を初段階工程として採用すると、該 B工程によつ て得られる脂肪酸 (I^COOH)とグリセリン力 脂肪酸だけを分離回収し、続いてこの 脂肪酸を図 1、図 2の X工程へ移行させ、超臨界又は亜臨界条件のカルボン酸エス テルによってエステルイ匕し、目的の脂肪酸アルキルエステルを収得するという反応経 路を提案することができる(図 5参照)。
[0054] 初段階工程である加水分解工程後、原料油脂力 生成したグリセリンは水に溶解 するため脂肪酸力 容易に分離することができる (後述)。このため、次の工程段階で あるエステルイ匕反応で生成した脂肪酸エステルとの間での逆反応を抑えることが可 能となるので、高純度の脂肪酸アルキルエステルが得られる。
[0055] ここで、図 6に示す B工程の反応例では、原料油脂中に含まれる脂肪酸グリセリドを 加水分解して、脂肪酸とグリセリンを得る工程であって、例えば、温度 150〜300°C、 特【こ 250〜300oC、圧力 5〜25MPa、特【こ 7〜20MPaの亜臨界水条件で、 15〜6 0分、特に好適には 20〜40分実施する。このような B工程力も得られる生成物中に は、未反応の脂肪酸トリグリセリドが殆ど残存しな 、と 、う利点がある。
[0056] なお、図 6中では、脂肪酸トリグリセリドを代表例として示しているが、これに限定す る趣旨ではなぐ原料油脂中に含まれ得る脂肪酸ジグリセリドゃ脂肪酸モノグリセリド 力 も、図 6同様に加水分解反応によって脂肪酸を得ることができる。
[0057] 図 6に示す反応式中の「加圧熱水」とは、前記亜臨界水のことを意味する力 それ に狭く限定されるのではなぐ超臨界水や低温'低圧での亜臨界水を広く包含する。 [0058] この加水分解工程である B工程カゝら得られる生成物を含む反応溶液を静置すると、 油相と水相への相分離が起こる (相分離工程)。この工程により分離された油相には 脂肪酸が、一方の水相には副産物であるグリセリンが含まれる。この油相を分離回収 すること〖こよって、続くエステル化工程である X工程(図 1、図 2参照)で使用する脂肪 酸を回収することができる。この脂肪酸には、加水分解(図 6参照)によって生成した 脂肪酸や原料油脂中に当初から含まれて!/、た遊離脂肪酸が含まれて!/ヽる。
[0059] このような相分離工程によって得られる油相中に水が残留すると、続く X工程にお V、て脂肪酸エステルの一部が加水分解を受けて脂肪酸に戻ることから、油相中から 可能な限りの水を除去することが好ましい。また、製造プロセス全体のエネルギー効 率を考慮すると、加水分解工程 (B工程)後の生成物を常温まで冷却することは好ま しくない。
[0060] そこで、本発明では、この相分離工程を加水分解温度 (例えば、 250〜300°C)付 近で行うように工夫する。これにより、生成物を冷却する必要がなくなり、その後、エス テル化反応(図 1、図 2参照)のために再び加熱するエネルギーも不要となるという利 点が得られる。
[0061] 以上から、本発明では、脂肪酸を含む原料油脂に含まれる脂肪酸グリセリドを、超 臨界又は亜臨界条件の水 (加圧熱水)で加水分解し、得られた脂肪酸を、もともと油 脂中に共存して ヽた脂肪酸と共に分別し、カルボン酸エステルで超臨界又は亜臨界 条件下でエステルイ匕して脂肪酸アルキルエステルとするノ ィォディーゼル燃料の製 造方法を提案できる。
[0062] 次に、添付した図 7には、 X工程(エステル化工程)にお!/、てカルボン酸エステルで ある蟻酸メチル (HCOOCH )を溶媒として用いた場合の二段階反応経路の一例を
3
示している。この反応経路では、 X工程のエステルイ匕反応によって、反応系に蟻酸( HCOOH)が生成するため、該蟻酸の酸触媒の効果が期待できる。
[0063] 続、て、図 8は、本発明に係る製造方法にお!、て、脂肪酸アルキルエステルの収 率を高めるために利用可能なエステル交換反応工程 (C工程)の反応例を示す図で ある。
[0064] この図 8に示された C工程に係わるエステル交換反応は、本発明の製造方法に係 わる反応系に存在して 、る脂肪酸グリセリドを利用し、該脂肪酸グリセリドとカルボン 酸エステルとの間で、例えば、該カルボン酸エステルの超臨界又は亜臨界条件下で エステル交換反応を進行させることによって、脂肪酸アルキルエステルを収得する反 応である。この C工程は、該脂肪酸アルキルエステルの収率の向上に寄与する反応 工程である。
[0065] 前記エステル交換反応は、上掲の「表 1」に示されて ヽるように、蟻酸アルキルの臨 界温度(Tc) : 214〜285°C、臨界圧力(Pc) : 3. 5〜6. 0、酢酸アルキルの臨界温 度(Tc) : 234〜287. 8°C、臨界圧力(Pc) : 3. 3〜4. 7MPaであるので、成分の分 解が 300°C以上で起こることを考慮すると、カルボン酸エステルの超臨界乃至亜臨 界条件である、 200°C以上 300°C以下、 2. OMPa以上 15MPa以下が好適である。
[0066] 本発明では、この図 8に例示されているエステル交換反応系に第三成分を添加す ることによって、脂肪酸グリセリド相とカルボン酸エステル相の相溶ィ匕を行ってもよい。 この相溶ィ匕を行うことによって、該エステル交換反応を促進させることができ、また、そ の結果、反応処理条件、例えば、処理温度を低減することが可能になるからである。
[0067] この相溶化に利用可能な第三成分は、脂肪酸グリセリド相とカルボン酸エステル相 の相溶化に寄与する成分が広く対象となる。例えば、ペンタン、へキサンなどのアル カンや石油エーテルなどを挙げることができる。
[0068] 図 9は、この図 8のような反応例に代表される C工程 (エステル交換工程)から既述し た X工程 (エステル化工程)へ至る反応経路の概念をまとめた図である。
[0069] まず、図 4で示された A工程、即ち脂肪酸グリセリドとカルボン酸との間のエステル 交換工程を経て得られる脂肪酸とァセチン (例えば、トリァセチン)を分離する。そし て、分離された脂肪酸を X工程 (エステル化工程)に導入して、脂肪酸アルキルエス テルを収得する(図 8参照)。
[0070] 一方、分離されたァセチンは、そのまま BDFとして利用することも可能であるが(特 許文献 3参照)、図 9に示す反応経路のように、このァセチン (例えば、トリァセチン)を C工程 (エステル交換工程)へ導入する。この C工程では、ァセチン (即ち、脂肪酸グ リセリド)とカルボン酸エステルとの間のエステル交換反応(図 8参照)を進行させ、脂 肪酸アルキルエステルを収得する。 [0071] 従って、図 9に示すような反応経路では、脂肪酸とカルボン酸エステルとの間の XI 程 (エステル化工程)を介して得られてくる脂肪酸アルキルエステルに加えて、脂肪 酸グリセリドとカルボン酸との間の A工程 (エステル交換工程)から生成する脂肪酸グ リセリド (ァセチン)とカルボン酸エステルとの間での C工程 (エステル交換工程)を経 て脂肪酸アルキルエステルを収得することができる(図 9参照)。即ち、この反応経路 では、反応系からの脂肪酸アルキルエステルの収率を向上させることができる。
[0072] 以上説明してきた本発明の製造方法に係る反応系では、反応の最終段階に至るま でカルボン酸エステルやカルボン酸が存在することになる。このカルボン酸エステル やカルボン酸は酸触媒機能を有効に発揮するため、反応効率が良ぐひいては高品 位な脂肪酸アルキルエステルを製造することができる。
[0073] 次に、図 10は、本発明に係る脂肪酸アルキルエステルの製造方法で使用する原料 油脂の一般的な成分構成の一例を示す図である。
[0074] 本製造方法で使用する原料油脂には、一般的には、遊離脂肪酸、脂肪酸トリグリセ リド、脂肪酸ジグリセリド、脂肪酸モノグリセリドなどの脂肪酸グリセリド、その他の成分 (例えば、水分や微量元素成分)が含まれている場合が多い。例えば、廃食油などの 廃油脂では、脂肪酸トリグリセリドが主成分であり、ダーク油は遊離脂肪酸が主成分 である。本発明では、遊離脂肪酸と脂肪酸グリセリドのいずれか一方又は両方を含む 原料油脂を広く対象とする。
[0075] そして、図 11〜14は、本発明に係る製造方法の基本工程の概念とその反応例を 説明するための図である。より詳しくは、図 11は、本発明に係る製造方法の基本的な 二段階工程の全体概念を示す図、図 12は、同二段階工程を構成する第 1工程とし て利用できる加水分解反応例を示す図、図 13は、同二段階工程を構成する第 2ェ 程として利用できるエステルイ匕反応例 1を示す図、図 14は、同エステル化反応例 2を 示す図である。
[0076] ここで、図 11から図 13中に示す R4, R5, R6, R7は、炭化水素基を意味しており、こ れら R4, R5, R6, R7は異種の炭化水素基であったり、 R4, R5, R6, R7の全部又はい ずれか二つが同種の炭化水素基であったりしてもよい。また、 R4, R5, R6, R7は、そ の炭素数を狭く限定されることはなぐまた、炭素 炭素不飽和結合があってもよぐ 場合によってはアルコキシ基などの他の官能基が結合して 、てもよ ヽ(以下、他のェ 程でも同様)。そして、 R6は水素原子 (H)のみの場合も含む (以下、他の工程でも同 様)。 R6が水素の場合は、例えば、図 14の R6COOR7は蟻酸アルキルエステルを意 味する。また、脂肪酸トリグリセリド末端の R4は、同一分子中において同種の炭化水 素基であってよいし、異種の炭化水素基であってもよい。
[0077] まず、図 11に示されて 、るように、本発明に係る製造方法の基本工程は、二段階 の工程 (第 1工程、第 2工程)から構成されている。前段階工程として位置付けられる 第 1工程は、超臨界条件又は亜臨界条件の加圧熱水を用いた加水分解反応によつ て、原料油脂中に含まれている脂肪酸グリセリドから脂肪酸とグリセリンを得る工程で ある(図 11中の第 1工程参照)。
[0078] この第 1工程の反応は、次の図 12に示された反応例のように、原料油脂中に含ま れている脂肪酸グリセリドを加水分解して、脂肪酸 (R4COOH)とグリセリン (HOCH
2
CH (OH) CH OH)を得る工程であり、例えば、温度 150〜300°C、特に 250°C〜3
2
00°C、圧力 5〜25MPa、特に 7〜20MPaの亜臨界水条件で、 15〜60分、特に好 適には 20〜40分実施する。このような第 1工程力も得られる生成物中には、未反応 の脂肪酸トリグリセリドが殆ど残存しな 、と 、う利点がある。
[0079] なお、図 12中では、脂肪酸トリグリセリド(R4COOCH CH (OOCR4) CH OOCR4
2 2
)を代表例として示しているが、これに限定する趣旨ではなぐ原料油脂中に含まれ 得る脂肪酸ジグリセリドゃ脂肪酸モノグリセリドからも、図 12同様に、加水分解反応に よって脂肪酸を得ることができる。
[0080] ここで、図 12に示す反応式中の「加圧熱水」とは、前記亜臨界水のことを意味する 力 それに狭く限定されるのではなぐ超臨界水や低温'低圧での亜臨界水を広く包 含する。
[0081] ここで、この加水分解工程である第 1工程(図 12参照)から得られる生成物を含む 反応溶液を静置することによって、油相と水相への相分離が起こる(相分離工程)。こ の工程により分離された油相には脂肪酸が、一方の水相には副産物であるグリセリン (HOCH CH (OH) CH OH)が含まれる。この油相を分離回収することによって、続
2 2
くエステルイ匕工程である第 2工程(図 13、図 14参照)で使用する脂肪酸を確実に回 収することができる。この脂肪酸には、加水分解(図 15参照)によって生成した脂肪 酸 (R4COOH)や原料油脂中に当初から含まれて!/、た遊離脂肪酸 (後述)が含まれ ている。
[0082] なお、このような相分離工程によって得られる油相中に水が残留すると、続く第 2ェ 程において脂肪酸アルキルエステルの一部が加水分解を受けて脂肪酸に戻ることか ら、油相中から可能な限りの水を除去することが好ましい。また、製造プロセス全体の エネルギー効率を考慮すると、加水分解工程 (第 1工程)後の生成物を常温まで冷却 することは好ましくない。
[0083] そこで、本発明では、この相分離工程を加水分解温度 (例えば、 250〜300°C)付 近で行うように工夫するのが望ましい。これにより、生成物を冷却する必要がなくなり、 その後、エステルイ匕反応(図 13、図 14参照)のために再び加熱するエネルギーも不 要となると ヽぅ利点が得られる。
[0084] 次に、図 13には、上記第 1工程に続く後段階の第 2工程に関与するエステルイ匕反 応例 1が示されている。このエステルイ匕反応例 1は、第 1工程によって原料油脂中の 脂肪酸グリセリドの加水分解により生成した脂肪酸 (R4COOH)を用いる工程である
[0085] この図 13のエステルイ匕反応例 1では、この脂肪酸 (R4COOH)に超臨界又は亜臨 界条件のアルコールを反応させてエステル化を進行させ、脂肪酸アルキルエステル ( R4COOR5)と水 (H O)を得ることができる。即ち、このエステルイ匕反応例 1は、該脂
2
肪酸アルキルエステルの収率の向上に寄与する反応工程となる。
[0086] 図 13に示されたエステルイ匕反応例 1は、好適には、アルコールを超臨界条件又は 亜臨界条件の温度及び圧力として原料油脂をエステル化処理することによって進行 させることがでさる。
[0087] 具体的には、遊離脂肪酸 (R4COOH)を含む油相中へアルコール (例えば、メタノ ールなどのアルキルアルコール)を添カ卩し、その超臨界又は亜臨界条件となる温度' 圧力条件下で、例えば、温度 200〜300°C、圧力 l〜20MPaの条件で、前記遊離 脂肪酸 (R4COOH)を脂肪酸アルキルエステル (R4COOR5)に変換するエステルイ匕 工程を行う。工程時間は、例えば、 10〜60分、より好ましくは 15〜25分が望ましい。 なお、温度条件によって好適な処理時間は異なり、高温ほど短時間で処理できる。
[0088] ここで、本発明にお 、て「アルコール」は、メタノール、エタノール、 1-プロパノール、 2-プロパノール、 1-ブタノールなどの直鎖アルコール類、イソブチルアルコール、 2- ブタノール、 t-ブタノール、ァリルアルコールなどの分岐アルコール類などを意味し、 一般式 ROH (Rは 1〜約 24個の炭素原子を含有する炭化水素基)で表される(以下 、他の工程でも同様)。
[0089] また、「アルコールの超臨界状態」とは、反応系内の温度がアルコールの臨界温度
(Tc)以上で、かつ圧力がアルコールの臨界圧力(Pc)以上の状態を言う。また、「ァ ルコールの亜臨界状態」とは、反応系内の温度がアルコールの沸点以上で、かつ概 ね 150°C以上であり、かつ圧力が反応温度におけるアルコールの蒸気圧以上で、か つ概ね 2. OMPa以上の状態を言う(以下、他の工程でも同様)。
[0090] また、図 14には、同第 2工程に関与するエステルイ匕反応例 2が示されている。この エステルイ匕反応例 2は、第 1工程によって原料油脂中の脂肪酸グリセリドの加水分解 により生成した脂肪酸 (R4COOH)を用いる工程である。
[0091] このエステルイ匕反応例 2では、この脂肪酸 (R4COOH)に超臨界又は亜臨界条件 のカルボン酸エステル (R6COOR7)を反応させてエステル化を進行させ、脂肪酸ァ ルキルエステル (R4COOR7)と前記カルボン酸エステル由来の低分子量脂肪酸 (R6 COOH)を得ることができる。即ち、このエステルイ匕反応例 2は、該脂肪酸アルキルェ ステルの収率の向上に寄与する反応工程となる。
[0092] なお、エステル化反応例 2にお!/、て、カルボン酸エステルである蟻酸メチル(HCO OCH )を溶媒として用いた場合は、このエステルイ匕反応によって、反応系に蟻酸 (H
3
COOH)が生成するため酸触媒の効果が充分に期待できる。
[0093] なお、本発明では、このエステルイ匕反応系に第三成分を添加することによって、脂 肪酸相とカルボン酸エステル相の相溶ィ匕を行なうのが望まし 、。この相溶ィ匕を行うこ とによって、該エステルイ匕反応の反応を促進させることが可能となるからである。前記 第三成分は、脂肪酸相とカルボン酸エステル相の相溶化に寄与する成分が広く利用 することができる。例えば、ペンタン、へキサンなどのアルカンや石油エーテルなどを 挙げることができる。 [0094] 以上から、本発明では、原料油脂に含まれる脂肪酸グリセリドを、超臨界又は亜臨 界条件の水 (加圧熱水)で加水分解し、得られた脂肪酸 (R4COOH)を、もともと油脂 中に共存していた遊離脂肪酸 (後述)と共に分別し、これら脂肪酸をアルコールと力 ルボン酸エステルで超臨界又は亜臨界条件下でエステルイ匕することによって、バイ ォディーゼル燃料として有用な脂肪酸アルキルエステルを製造する方法を提案でき る。
[0095] 次に、図 15から図 17は、本発明に係る製造方法で利用できるエステル化反応 (原 料油脂中の遊離脂肪酸が関与するエステル化反応)の概念とその反応例を示す図 である。より詳しくは、図 15は、同エステル化反応に係わる工程の基本概念を示す図 、図 16は、同エステル化反応例 Sを示す図、図 17は、同エステル化反応例 Tを示す 図である。
[0096] ここで、図 16と図 17に示す R8は、炭化水素基を意味している。 R8はその炭素数を 狭く限定されることはなぐまた、炭素 炭素不飽和結合があってもよぐ場合によつ てはアルコキシ基などの他の官能基が結合して 、てもよ!/、。
[0097] まず、図 15に示すように、この工程では、原料油脂中に最初力も含まれている遊離 脂肪酸に対して、超臨界又は亜臨界条件のアルコール溶媒と超臨界又は亜臨界条 件のカルボン酸エステル溶媒を併用してエステルイ匕反応を進行させることにより、脂 肪酸アルキルエステル、脂肪酸 (カルボン酸エステル由来の低分子量脂肪酸)、並び に水を生成する反応を実施する。この工程は、図 16、図 17に示されているように、二 つのエステル化反応 (反応例 S、反応例 T)から構成されて!、る。
[0098] まず、図 16のエステルイ匕反応例 Sは、原料油脂中に最初力 含まれている遊離脂 肪酸 (R8COOH)を超臨界又は亜臨界条件のアルコール (R5OH)でエステル化して 、脂肪酸アルキルエステル (R OOR5)と水 (H O)を生成させる反応である。なお、
2
生成した水は、相分離などにより反応系から除去する。
[0099] 次に、一方のエステルイ匕反応例 T (図 17参照)は、原料油脂中に最初から含まれて V、る遊離脂肪酸 (R8COOH)を超臨界又は亜臨界条件のカルボン酸エステル (R6C OOR7)でエステル化することによって、脂肪酸アルキルエステル (R¾OOR7)と、力 ルボン酸エステル由来の低分子量脂肪酸 (R6COOH)を生成させる反応である。 [0100] なお、この反応では、カルボン酸エステル由来の低分子量脂肪酸 (R6COOH)が 生成するため、アルコール (R5OH)が関与する脂肪酸アルキルエステルの生成反応 の逆反応である加水分解の進行を有効に防止でき、かっこの低分子量脂肪酸 (R7C OOH)が酸触媒としての作用を発揮することから、外部から反応系へ触媒を添加し なくても、脂肪酸アルキルエステルの収率向上を達成することができる。
[0101] 以上のように、本発明に係る製造方法では、まず、原料油脂中に含まれている脂肪 酸グリセリドを超臨界又は亜臨界条件で加水分解して脂肪酸を得る第 1段階工程を 行い、続く第 2工程では、該第 1段階工程から得られる脂肪酸や原料油脂中に最初 から存在して!/、る遊離脂肪酸を、超臨界又は亜臨界条件のアルコールとカルボン酸 エステルを併用してエステルイ匕することによって、 BDFとして有用な脂肪酸アルキル エステルを効率良く得ることができる。
[0102] このように、本発明によれば、「超臨界又は亜臨界条件のアルコール溶媒」と「超臨 界又は亜臨界条件のカルボン酸エステル溶媒」を併用することによって、アルコール が関与する脂肪酸アルキルエステルの生成反応に加えて、カルボン酸エステルが関 与する脂肪酸アルキルエステルの生成反応を進行させることが可能であるので、脂 肪酸アルキルエステルの収率向上を達成することができる。
[0103] また、カルボン酸エステルが関与する脂肪酸アルキルエステルの生成反応では、力 ルボン酸エステル由来の低分子量脂肪酸が生成するため、アルコールが関与する 脂肪酸からの脂肪酸アルキルエステルの生成反応の逆反応である加水分解の進行 を有効に防止できる。また、この低分子量脂肪酸が酸触媒としての作用を発揮するこ とから、外部から反応系へ触媒を添加しなくても、脂肪酸アルキルエステルの収率向 上を達成することができる。
[0104] 続、て、原料油脂中に含まれて 、る脂肪酸グリセリドと超臨界又は亜臨界条件のァ ルコールとの間でエステル交換する反応と、脂肪酸グリセリドと超臨界又は亜臨界条 件のカルボン酸エステルとの間でエステル交換する反応と、を含み、これら二つの反 応のそれぞれから脂肪酸アルキルエステルを得る製造方法について説明する。
[0105] 図 18〜20は、本発明に係る製造方法の実施形態例の工程概念及び反応例を説 明するための図である。より詳しくは、図 18は、本発明に係る製造方法において利用 可能な実施形態例(以下、 V工程)の全体概念を示す図、図 19は、同 V工程に関与 するエステル交換反応例 Vを示す図、図 20は、同 V工程に関与するエステル交換 反応例 Vを示す図である。
2
[0106] まず、図 18からもわ力るように、この V工程では、原料油脂中に含まれ得る脂肪酸 グリセリドから脂肪酸アルキルエステルとァセチンとグリセリンを収得する。
[0107] この図 18に示された V工程 (エステル交換反応)は、本発明の製造方法に係わる反 応系に存在している脂肪酸グリセリドを利用し、該脂肪酸グリセリドと超臨界又は亜臨 界条件下のアルコールやカルボン酸エステルとの間で、エステル交換反応を進行さ せることによって、脂肪酸アルキルエステルを収得することを主目的とする反応である
[0108] 図 19には V工程に利用できるエステル交換反応例 Vが示されている。このエステ ル交換反応例 Vでは、原料油脂中に存在している脂肪酸グリセリド、例えば脂肪酸ト リグリセリド (R4COOCH CH (OOCR4) CH OOCR4)と超臨界又は亜臨界条件下
2 2
のアルコール (R5OH)とを反応させてエステル交換を行い、脂肪酸アルキルエステ ル (R4COOR5)とグリセリン(HOCH CH (OH) CH OH)を得る。なお、このエステ
2 2
ル交換の過程では、脂肪酸トリグリセリドからは脂肪酸ジグリセリドが生成するが、脂 肪酸ジグリセリドからは脂肪酸モノグリセリドが、脂肪酸モノグリセリドからはグリセリン が生成する。
[0109] 具体的には、前記脂肪酸トリグリセリドを含む油相中へアルコール (例えば、メタノー ルなどのアルキルアルコール)を添カ卩し、その超臨界又は亜臨界条件となる温度'圧 力条件下で、例えば、温度 200〜300°C、圧力 1. 0〜20MPaの条件で、前記脂肪 酸トリグリセリドを脂肪酸アルキルエステル (R4COOR5)に変換するエステル交換ェ 程を行う。工程時間は、例えば、 10〜60分、より好ましくは 15〜25分が望ましい。伹 し、温度により好適な処理時間は異なり、高温程短時間となる。
[0110] また、図 20に示された V工程で利用可能なエステル交換反応例 Vでは、原料油脂
2
中に存在している脂肪酸グリセリド、例えば脂肪酸トリグリセリド (R4COOCH CH (0
2
OCR4) CH OOCR4)と超臨界又は亜臨界条件下のカルボン酸エステル (R6COOR
2
7)とを反応させてエステル交換を行い、トリァセチン(R6COOCH CH (OOCR6) CH OOCR6)と脂肪酸アルキルエステル(R4COOR7)を得る。なお、このエステル交換
2
の過程では、脂肪酸トリグリセリドからはトリァセチンが生成するが、脂肪酸ジグリセリ ドからはジァセチン、脂肪酸モノグリセリドからはモノァセチンが生成する。
[0111] このエステル交換反応例 Aでは、上掲の「表 1」に示されているように、例えば、蟻
2
酸アルキルを用いた場合は、臨界温度 (Tc) : 214〜285°C、臨界圧力(Pc) : 3. 5〜 6. OMPaであり、酢酸アルキルを用いた場合は、臨界温度 (Tc) : 234〜288°C、臨 界圧力(Pc) : 3. 1〜4. 7MPaであるため、成分の分解が 300°C以上で起こることを 考慮すると、カルボン酸エステルの超臨界又は亜臨界条件である、 200°C以上 300 °C以下、 2. OMPa以上 15MPa以下が好適である。
[0112] なお、この図 20に例示されているエステル交換反応例 Vに第三成分を添加するこ
2
とによって、脂肪酸グリセリド相とカルボン酸エステル相の相溶ィ匕を行ってもよい。例 えば、ペンタン、へキサンなどのアルカンや石油エーテルなどを挙げることができる。 これにより、第三成分を添加した系は一相となり、該エステル交換反応を促進させる ことができる。その結果、反応処理条件、例えば、処理温度を低減することが可能に なる力もである。例えば、反応温度を 350°Cから 300°C以下に下げることが充分に期 待できる。
[0113] このようなエステル交換反応例 Vにおいて生成したァセチン (例えば、トリァセチン
2
)は、そのまま BDFとして利用することも可能であるが(特許文献 3参照)、実際には、 脂肪酸グリセリドの完全エステルイ匕であるトリァセチンは多くなぐジァセチン又はモノ ァセチンとして存在するため、 BDFとしては好ましくない。従って、未反応の末端を有 するァセチン (例えば、ジァセチンやモノァセチン)を反応系から分離して再びエステ ル交換反応例 Vへ導入することによって、前記ァセチン (即ち、脂肪酸グリセリド)と
2
カルボン酸エステルとの間のエステル交換反応(図 20参照)をさらに進行させ、脂肪 酸アルキルエステルを収得することも可能である。
[0114] このように、本発明によれば、超臨界若しくは亜臨界条件のアルコール溶媒、又は 超臨界若しくは亜臨界条件のカルボン酸エステル溶媒を用いることによって、脂肪酸 グリセリドから脂肪酸アルキルエステルへの生成反応を進行させることが可能となる。 また、アルコールとカルボン酸エステルとの二溶媒系でも脂肪酸アルキルエステルを 得ることが可能となる。従って、蟻酸エステルなどのカルボン酸エステルを含んだクル ードなアルコール (メタノールなど)も、そのまま脂肪酸アルキルエステルの生成反応 に用いることができる。
実施例 1
[0115] <カルボン酸エステルを用いたエステル化反応 (X工程)の検証 >
[0116] まず、カルボン酸エステルとして蟻酸メチル (HCOOCH )を用いた。この蟻酸メチ
3
ルを超臨界条件としてォレイン酸を処理し、エステルィヒ反応が進行するかどうかにつ いて検証した。
[0117] 実験方法。ォレイン酸 (ナカライ製)と蟻酸メチル (Aldrich製、 99%)とをモル比 1: 2、 1 : 7、 1 : 15の割合で内容積 5mLのバッチ型反応管に封入し、 350°Cで 3〜9分間処 理した。処理後の反応物から溶媒をエバポレーターで留去し、ゲル浸透クロマトダラ フィー(GPC)により分析した。また、ォレイン酸およびォレイン酸メチルについても G PCにより分析した。尚、分析時の GPCの環境は、次の「表 3」の通りである。
[0118] [表 3] ぐ G P Cの環境〉
Figure imgf000023_0001
[0119] 本実施例 1の結果である各モル比における処理後の GPCクロマトグラムを図 21に 示す。また、これらのピーク面積より求めたォレイン酸メチルの収率を以下の「表 4」に 、そのグラフを図 22にそれぞれ示す。なお、図 21において保持時間 13分付近に見 られるピークは、元の試料に含まれる不純物であると考えられる。
[0120] [表 4] 各モル比における処理時問とォレイン酸メチル収率との関係 (%)
Figure imgf000024_0001
[0121] 考察。蟻酸メチルのモル分率が大きいほど、また処理時間が長くなるほどォレイン 酸の量が減少し、得られるォレイン酸メチルの量が増加する傾向にあることがわ力 た。ただし、いずれのモル比の溶液に関しても、 6分間の処理と 9分間の処理におけ る収率の差はほんのわずかであり、 6分の処理でかなり反応が完結しているものと考 えられる。これより、カルボン酸エステルである蟻酸メチルを溶媒として脂肪酸を処理 すると、エステルイ匕反応が進行することが明らかとなった。
[0122] なお、第 1工程の加水分解後、油脂力 生成したグリセリンは水に溶解するため脂 肪酸から分離することができるので、続くエステル化反応で生成した脂肪酸エステル との間での逆反応を抑えることが可能であるので、高純度のバイオディーゼル燃料( BDF)力得られる。
[0123] なお、脂肪酸トリグリセリドを超臨界又は亜臨界上条件で加水分解して得られる得 た脂肪酸を、超臨界又は亜臨界上条件の蟻酸メチル (HCOOCH )でエステルイ匕す
3
ることによって脂肪酸メチルエステルを得る反応経路を図 23に示す。この図 23に示 すごとぐこの反応系では、蟻酸 (HCOOH)が生成するため、該蟻酸による酸触媒 の効果が期待できる。
実施例 2
[0124] く超臨界カルボン酸を用いた原料油脂のエステル交換反応 (Α工程)の検証 > [0125] 本実施例 2では、カルボン酸として酢酸 (CH COOH)を用いた。この酢酸を超臨 界条件として菜種油及びォレイン酸を処理し、上記 A工程に係わるエステル交換反 応が進行するかどうかにっ 、て検証した。
[0126] 実験方法。内容積 5mLのバッチ型反応管に菜種油 1. 4mLと酢酸 3. 6mL (モル 比 1 :42)を封入し、 270°Cで 9分間処理した。次に、処理後の液体に上蒸留水を加 えて撹拌し、遠心分離した後、水層を除去した。この操作をもう一度繰り返した後、ェ バポレーターで不要物を留去し、高速液体クロマトグラフィー (HPLC)により分析し た。また、ォレイン酸 2. 2mLと酢酸 2. 8mL (モル比 1 : 7)ついても同様の操作を行つ た。なお、 HPLCによる分析時の環境は、次の「表 5」の通りである。
[0127] [表 5]
<H P L Cの環境 >
Figure imgf000025_0001
[0128] 添付した図 24に HPLCのクロマトグラムを示す。この図 24に示されているように、菜 種油の処理では、反応中間体であるジグリセリドの他に、脂肪酸と見られるピークが 見られた。これは、菜種油に含まれる脂肪酸トリグリセリドと酢酸との間で、図 25に示 されたエステル交換反応 (A工程の一例)が進行したものと考えられる。これに対して 、ォレイン酸の処理系では、未処理のものとあまり変化がなぐ反応がほとんど起こら なかったと考えられる。
実施例 3
[0129] 本実施例 3では、本発明に係る A工程で利用できるカルボン酸エステルを用いたェ ステル交換反応について検証した。脂肪酸トリグリセリド (I^COOCH CH COOCR1)
2
CH OOCR1)を含んでいる菜種油と、カルボン酸エステルとして蟻酸メチル(HCOO
2
CH )と、アルコールとしてメタノール(CH OH)とを用いた(図 20、図 21参照)。そし
3 3
て、前記蟻酸メチルを超臨界条件として、前記菜種油に含まれる脂肪酸トリグリセリド につ 、てのエステル交換反応が進行するかどうかにっ 、て検証した。
[0130] 実験方法。蟻酸メチル (Aldrich製、 99%)をメタノールにそれぞれ 0, 6, 50, 10 Owt%の割合で混合し、反応溶媒を調製した。次に、内容積 5mLのバッチ型反応管 に、菜種油と各溶媒とを体積比 1 : 1 : 7 (溶媒力 タノールの場合でモル比 1 :42)の割 合で封入し、 350°Cで 1〜30分間処理した。処理後の反応物力も前記溶媒をエバポ レーターで留去し、高速液体クロマトグラフィー(HPLC)及びゲル浸透クロマトグラフ ィー(GPC)により分析した。
[0131] 結果と考察。 9分間処理後の HPLCクロマトグラムを図 26に、 15分間処理後の HP LCクロマトグラムを図 27にそれぞれ示す。 9分間の処理では、 50wt%までの蟻酸メ チルの添カ卩により、反応中間体であるモノグリセリド (以下、 MG)に対応するピークが 増大し、蟻酸メチルのみの溶媒では同じく反応中間体であるジグリセリド (以下、 DG) に対応するピークがかなり大きくなつた(図 26参照)。これに対し、 15分間の処理で は 50wt%までの蟻酸メチルの添加では、前記 MGや DGのピークはほとんど変わら なかったが、蟻酸メチルのみの溶媒では依然として DGのピークが大きかった(図 27 参照)。
[0132] 図 28に、 GPC分析の結果より求めた各試料のエステル交換反応の収率を示す。
添加する蟻酸メチルの量が多いほど反応速度が遅くなる傾向がある力 50wt%まで の添加量ではそれほど影響の大きさに変化はな力つた。また、反応時間を 30分間に すると、蟻酸メチルの添カ卩量にかかわらず 70〜80%程度のエステル交換反応の収 率が得られた。なお、 350°Cでは、菜種油に含まれるリノレン酸やリノール酸メチルな どの不飽和脂肪酸エステルが熱分解するため、処理時間 10分以降で収率が低下し ている。これらの結果から、本反応系において、メタノールだけでなく蟻酸メチルもェ ステル交換反応を引き起こすと示唆される(図 21参照)。従って、油脂類のカルボン 酸エステルによるエステル交換反応が明らかとなつた。
実施例 4
[0133] <反応系における相溶化の検証 >
[0134] 本実施例 4では、本発明に係る製造方法の反応系における相溶ィ匕にっ 、て検証し た。以下の「表 6」に示す混合系を常温 ·常圧条件下で作成し、その溶解状態を観察 した。更に、各混合系を一晩冷蔵庫 (5°C)で冷却し、溶解状態の変化を観察した。 本実施例 4に関する実験結果を図面代用写真である図 29〜図 36に示した。
[表 6] 各混合系を構成する成分とその体積比
Figure imgf000027_0001
[0136] (1)蟻酸メチル +菜種油(1:1)について。
常温では、ほぼ溶解したが、白い沈殿が少量底に残っているのが観察された (図 29 参照)。これを冷蔵庫(5°C)で一晩冷却すると、黄金色の上層と、無色透明な下層と に分かれた。両層の高さの比はおよそ 4: 1であった(図 30参照)。
[0137] (2)蟻酸メチル +菜種油 +ペンタン(1:1:0. 1)について。
常温ではほぼ完全に溶解した(図 31参照)。これを冷蔵庫(5°C)で一晩冷却すると 、薄い黄金色の上層と、無色透明な下層とに分かれた。両層の高さの比はおよそ 8: 1であった(図 32参照)。
[0138] (3)蟻酸メチル +菜種油 +へキサン(1:1:0. 1)について。
常温ではほぼ完全に溶解した(図 33参照)。これを冷蔵庫(5°C)で一晩冷却すると 、薄い黄金色の上層と、無色透明な下層とに分かれた。両層の高さの比はおよそ 8: 1であった(図 34参照)。
[0139] (4)蟻酸メチル+菜種油 +石油エーテル(1:1:0. 1)について。
常温ではほぼ完全に溶解した(図 35参照)。これを冷蔵庫(5°C)で一晩冷却すると 、薄い黄金色の上層と、無色透明な下層とに分かれた。両層の高さの比はおよそ 8: 1であった(図 36参照)。以上の(1)〜 (4)の結果を次の「表 7」にまとめた。 [0140] [表 7]
ぐ各混合系の常温および 冷却時における溶解状態 >
Figure imgf000028_0001
[0141] この結果力もわ力るように、蟻酸メチルと油脂(菜種油)の混合系は二相で沈殿物を 生じている。一方、第三成分を添加した系ではいずれも一相となっており、超臨界条 件又は亜臨界条件下にお!/ヽても良好なエステル交換反応が期待できる。このため反 応条件の緩和を達成することができる。例えば、反応温度を 350°Cから 300°C以下 に下げることが充分に期待できる。
実施例 5
[0142] < 3成分反応系における相溶ィ匕の検証 >
[0143] 本実施例 5では、本発明に係る製造方法の 3成分反応系における相溶化について 検証した。まず、以下の「表 8」に示す混合系を常温 ·常圧条件下で作成し、その溶 解状態を観察した。次に、表 8の(1)及び (5)の混合系を除き、相溶剤としてペンタン 、へキサン、又はアセトンを系が一層になるまでカ卩え、それぞれの要した体積を調べ た。なお、本実施例 5に関する実験結果を図面代用写真である図 37〜図 50に示し た。また、確認実験として蟻酸メチルとメタノールとの溶解性を調べたところ、蟻酸メチ ル 'メタノール系では互いに溶解しな 、ことを確認した。
[0144] [表 8] 各混合系を構成する成分とその体積比
Figure imgf000029_0001
[0145] (1)蟻酸メチル +メタノール +菜種油(1:1:1)。
蟻酸メチルとメタノールと菜種油とを混合して静置したところ、無色透明な上層と黄 金色の下層とにわかれた。その際の二層の高さの比はおよそ 3 :2であった(図 37参 照)。
[0146] (2)蟻酸メチル +メタノール +菜種油 +ペンタン(1:1: 1:0.1)。
まず、蟻酸メチルとメタノールと菜種油とペンタンとを 1 :1:1:0. 1の体積比で混合 したところ、二層にわかれた(図 38参照)。次に、蟻酸メチルとメタノールと菜種油との 混合系が一層構造となるまで相溶剤としてペンタンを添加したところ、要したペンタン の体積はメタノールの 3.0倍であった(図 39参照)。
[0147] (3)蟻酸メチル +メタノール +菜種油 +へキサン(1:1: 1:0. 1)。
まず、蟻酸メチルとメタノールと菜種油とペンタンとを 1 :1:1:0. 1の体積比で混合 したところ、二層にわかれた(図 40参照)。次に、蟻酸メチルとメタノールと菜種油との 混合系が一層構造となるまで相溶剤としてへキサンを添加したところ、要したへキサ ンの体積はメタノールの 14.0倍であった(図 41参照)。
[0148] (4)蟻酸メチル +メタノール +菜種油 +アセトン(1:1: 1:0.1)。 まず、蟻酸メチルとメタノールと菜種油とアセトンとを 1 :1:1:0. 1の体積比で混合し たところ、二層にわかれた(図 42参照)。次に、蟻酸メチルとメタノールと菜種油との 混合系が一層構造となるまで相溶剤としてアセトンを添加したところ、要したアセトン の体積はメタノールの 5.7倍であった(図 43参照)。
[0149] (5)蟻酸ェチル +メタノール +菜種油(1:1:1)。
蟻酸ェチルとメタノールと菜種油とを混合して静置したところ、無色透明な上層と黄 金色の下層とにわかれた。その際の二層の高さの比はおよそ 3 :2であった(図 44参 照)。
[0150] (6)蟻酸ェチル +メタノール +菜種油 +ペンタン(1:1: 1:0.1)。
まず、蟻酸ェチルとメタノールと菜種油とペンタンとを 1 :1:1:0.1の体積比で混合 したところ、二層にわかれた(図 45参照)。次に、蟻酸ェチルとメタノールと菜種油と の混合系が一層構造となるまで相溶剤としてペンタンを添加したところ、要したペンタ ンの体積はメタノールの 2.0倍であった(図 46参照)。
[0151] (7)蟻酸ェチル +メタノール +菜種油 +へキサン(1:1 :1:0.1)。
まず、蟻酸ェチルとメタノールと菜種油とへキサンとを 1 :1:1:0.1の体積比で混合 したところ、二層にわかれた(図 47参照)。次に、蟻酸ェチルとメタノールと菜種油と の混合系が一層構造となるまで相溶剤としてへキサンを添加したところ、要したへキ サンの体積はメタノールの 2.6倍であった(図 48参照)。
[0152] (8)蟻酸ェチル +メタノール +菜種油 +アセトン(1:1: 1:0.1)。
まず、蟻酸ェチルとメタノールと菜種油とアセトンとを 1 :1:1:0.1の体積比で混合 したところ、二層にわかれた(図 49参照)。次に、蟻酸ェチルとメタノールと菜種油と の混合系が一層構造となるまで相溶剤としてアセトンを添加したところ、要したァセト ンの体積はメタノールの 4.3倍であった(図 50参照)。以上の結果を、次の「表 9」に まとめた。
[0153] [表 9] 各混合系の溶解状態
Figure imgf000031_0001
[0154] この結果から、相溶剤として第三成分を添加した系ではいずれも一相とすることが できた。また、相溶剤の添加量について考察すれば、本実施例は常温 ·常圧下条件 であるためメタノールの水素結合が強く働き、そのため 3成分が溶解するまでに多量 の相溶剤を要したものと考えられる。
[0155] 一方、高温 '高圧である超臨界条件又は亜臨界条件下での 3成分反応系では、ァ ルコールの水素結合が開裂することで疎水性が増すため、系全体がより溶解しやす くなると考えられる。即ち、本発明に係るエステル交換反応などでは、前記相溶剤の 添カ卩はより少量でよいことが期待できる。従って、超臨界条件又は亜臨界条件下に ぉ 、ても良好なエステル交換反応が期待できる。
産業上の利用可能性 [0156] 本発明は、バイオディーゼル燃料として好適に使用可能な高品位な脂肪酸アルキ ルエステルを無触媒で効率良く製造する技術として利用可能である。
図面の簡単な説明
[0157] [図 1]本発明に係る脂肪酸アルキルエステルの基本製造工程 (X工程)の概念図であ る。
[図 2]同基本製造工程に係わるエステルイ匕反応をより詳しく説明する図である。
[図 3]本発明に係る製造方法において利用可能な反応経路の例を示す図である。
[図 4]同反応経路の初段階工程の一例である A工程 (エステル交換工程)の反応例を 示す図である。
[図 5]本発明に係る製造方法において利用可能な他の反応経路の例を示す図であ る。
[図 6]同反応経路の初段階工程である B工程 (加水分解工程)の反応例を示す図で ある。
[図 7]X工程(エステル化工程)にお!/、てカルボン酸エステルである蟻酸メチル (HCO OCH )を溶媒として用いた場合の二段階反応経路の一例を示す図である。
3
[図 8]本発明に係る製造方法にお!ヽて、脂肪酸アルキルエステルの収率を高めるた めに利用可能なエステル交換反応工程 (C工程)の反応例を示す図である。
[図 9]C工程 (エステル交換工程)力 X工程 (エステル化工程)に至る反応経路の概 念をまとめた図である。
[図 10]本発明に係る脂肪酸アルキルエステルの製造方法で使用する原料油脂の一 般的な成分構成の一例を示す図である。
[図 11]本発明に係る製造方法の基本的な二段階工程の全体概念を示す図である。
[図 12]同二段階工程を構成する第 1工程として利用できる加水分解反応例を示す図 である。
[図 13]同二段階工程を構成する第 2工程として利用できるエステルイ匕反応例 1を示す 図である。
[図 14]同エステルイ匕反応例 2を示す図である。
[図 15]本発明に係る製造方法で利用できるエステル化反応 (原料油脂中の遊離脂 肪酸が関与するエステル化反応)の基本概念を示す図である。
[図 16]同エステルイ匕反応例 Sを示す図である。
[図 17]同エステルイ匕反応例 Tを示す図である。
圆 18]本発明に係る製造方法において利用可能な実施形態例(以下、 V工程)の全 体概念を示す図である。
[図 19]同 V工程に関与するエステル交換反応例 Vを示す図である。
[図 20]同 V工程に関与するエステル交換反応例 Vを示す図である。
2
[図 21]実施例 1に係る検証実験の結果である各モル比における処理後の GPCクロマ トグラムである。
[図 22]GPCクロマトグラム(図 21)のピーク面積より求めたォレイン酸メチルの収率の グラフである。
圆 23]脂肪酸トリグリセリドを超臨界又は亜臨界上条件で加水分解して得られる得た 脂肪酸を、超臨界又は亜臨界上条件の蟻酸メチル (HCOOCH )でエステルイ匕する
3
こと〖こよって、脂肪酸メチルエステルを得る反応経路を示す図である。
[図 24]実施例 2に係る検証実験の結果である HPLCクロマトグラムである。
[図 25]菜種油に含まれる脂肪酸トリグリセリドと酢酸との間でのエステル交換反応 (A 工程)の一例を示す図である。
[図 26]実施例 3に係る検証実験の結果である 9分間処理後の HPLCクロマトグラムを 示す図である。
[図 27]同 15分間処理後の HPLCクロマトグラムを示す図である。
[図 28]実施例 3の GPC分析の結果より求めた各試料のエステル交換反応の収率を 示す図(グラフ)である。
圆 29]実施例 4に係る検証実験の混合系区分(1)の常温での観察結果を示す図面 代用写真である。
圆 30]同混合系区分 (1)の一晩冷却後の観察結果を示す図面代用写真である。 圆 31]実施例 4に係る検証実験の混合系区分 (2)の常温での観察結果を示す図面 代用写真である。
圆 32]同混合系区分 (2)の一晩冷却後の観察結果を示す図面代用写真である。 圆 33]実施例 4に係る検証実験の混合系区分 (3)の常温での観察結果を示す図面 代用写真である。
圆 34]同混合系区分 (3)の一晩冷却後の観察結果を示す図面代用写真である。 圆 35]実施例 4に係る検証実験の混合系区分 (4)の常温での観察結果を示す図面 代用写真である。
[図 36]同混合系区分 (4)の一晩冷却後の観察結果を示す図面代用写真である。 圆 37]実施例 5に係る検証実験の混合系区分 (1)の観察結果を示す図面代用写真 である。
圆 38]実施例 5に係る検証実験の混合系区分 (2)の観察結果を示す図面代用写真 である。
[図 39]同混合系区分 (2)にお 、て一層構造となった状態を示す図面代用写真である 圆 40]実施例 5に係る検証実験の混合系区分 (3)の観察結果を示す図面代用写真 である。
圆 41]同混合系区分 (3)にお 、て一層構造となった状態を示す図面代用写真である 圆 42]実施例 5に係る検証実験の混合系区分 (4)の観察結果を示す図面代用写真 である。
[図 43]同混合系区分 (4)にお 、て一層構造となった状態を示す図面代用真である。 圆 44]実施例 5に係る検証実験の混合系区分 (5)の観察結果を示す図面代用写真 である。
圆 45]実施例 5に係る検証実験の混合系区分 (6)の観察結果を示す図面代用写真 である。
[図 46]同混合系区分 (6)にお 、て一層構造となった状態を示す図面代用真である。 圆 47]実施例 5に係る検証実験の混合系区分 (7)の観察結果を示す図面代用写真 である。
[図 48]同混合系区分 (7)にお 、て一層構造となった状態を示す図面代用真である。 圆 49]実施例 5に係る検証実験の混合系区分 (8)の観察結果を示す図面代用写真 である。
[図 50]同混合系区分 (8)にお 、て一層構造となった状態を示す図面代用真である。 符号の説明
X工程 (脂肪酸とカルボン酸エステルの)エステル化工程
A工程 (脂肪酸グリセリドとカルボン酸の)エステル交換工程 (初段階工程)
B工程 (脂肪酸グリセリドの)加水分解工程 (初段階工程)
C工程 (脂肪酸グリセリドとカルボン酸エステルの)エステル交換工程
V工程 本発明に係る製造方法の実施形態の一つである工程 (エステル交換)
V工程 V工程に関与するエステル交換反応例
V工程 V工程に関与する別のエステル交換反応例

Claims

請求の範囲
[I] 脂肪酸とカルボン酸エステルとの間で、該カルボン酸エステルの超臨界又は亜臨 界の条件でエステルイ匕反応を進行させることによって脂肪酸アルキルエステルを製 造する方法。
[2] 前記脂肪酸は、原料油脂に存在する遊離脂肪酸であることを特徴とする請求の範 囲第 1項記載の製造方法。
[3] 前記脂肪酸は、原料油脂力 所定工程を経て得られる脂肪酸であることを特徴とす る請求の範囲第 1項記載の製造方法。
[4] 前記所定工程は、前記原料油脂中の脂肪酸グリセリドとカルボン酸との間で、該カ ルボン酸の超臨界又は亜臨界の条件でエステル交換反応を行うことによって脂肪酸 を得る工程であることを特徴とする請求の範囲第 3項記載の製造方法。
[5] 前記所定工程は、前記原料油脂中の脂肪酸グリセリドを、超臨界又は亜臨界の条 件で加水分解することによって脂肪酸を得る工程であることを特徴とする請求の範囲 第 3項記載の製造方法。
[6] 前記脂肪酸アルキルエステルには、前記原料油脂中の脂肪酸グリセリドとカルボン 酸エステルとの間のエステル交換反応で得られる脂肪酸アルキルエステルが含まれ ることを特徴とする請求の範囲第 1項記載の製造方法。
[7] 前記エステルイ匕反応系に第三成分を添加することによって、脂肪酸相とカルボン酸 エステル相の相溶ィ匕を行うことを特徴とする請求の範囲第 1項記載の製造方法。
[8] 前記エステル交換反応系に第三成分を添加することによって、脂肪酸グリセリド相と カルボン酸相の相溶化を行うことを特徴とする請求の範囲第 4項記載の製造方法。
[9] 前記エステル交換反応系に第三成分を添加することによって、脂肪酸グリセリド相と カルボン酸エステル相の相溶ィ匕を行うことを特徴とする請求の範囲第 6項記載の製 造方法。
[10] 前記カルボン酸エステルは、蟻酸エステルであることを特徴とする請求の範囲第 1 項記載の製造方法。
[II] 前記蟻酸エステルは、蟻酸メチルであることを特徴とする請求の範囲第 9項記載の 製造方法。
[12] 原料油脂中に含まれて 、る脂肪酸グリセリドを超臨界又は亜臨界条件で加水分解 して脂肪酸を得る第 1段階工程と、
該第 1段階工程カゝら得られる脂肪酸をエステルイ匕して脂肪酸アルキルエステルを得 る第 2段階工程と、から構成され、
前記第 2段階工程にお 、て、次の(1)と(2)の反応を併用する脂肪酸アルキルエス テルの製造方法。
(1)前記脂肪酸を超臨界又は亜臨界条件のアルコールでエステル化する反応。
(2)前記脂肪酸を超臨界又は亜臨界条件のカルボン酸エステルでエステルィヒする 反応。
[13] 前記第 2段階工程では、前記脂肪酸に加えて、原料油脂中に最初から含まれてい る遊離脂肪酸をエステルイ匕して脂肪酸アルキルエステルを得ることを特徴とする請求 の範囲第 12項記載の製造方法。
[14] 前記エステルイ匕の反応系に第三成分を添加することによって、脂肪酸相とカルボン 酸エステル相の相溶ィ匕を行うことを特徴とする請求の範囲第 12項又は請求の範囲 第 13項記載の製造方法。
[15] 原料油脂中に含まれている脂肪酸グリセリドと超臨界又は亜臨界条件のアルコー ルとの間でエステル交換する反応と、
前記脂肪酸グリセリドと超臨界又は亜臨界条件のカルボン酸エステルとの間でエス テル交換する反応と、を含み、これら二つの反応のそれぞれから脂肪酸アルキルェ ステルを得ることを特徴とする原料油脂から脂肪酸アルキルエステルを製造する方法
[16] 前記エステル交換の反応系に第三成分を添加することによって、脂肪酸グリセリド 相とカルボン酸エステル相との相溶ィ匕を行なうことを特徴とする請求の範囲第 15項 記載の製造方法。
[17] 前記エステル交換の反応系に第三成分を添加することによって、脂肪酸グリセリド 相とカルボン酸エステル相とアルコール相との相溶ィ匕を行うことを特徴とする請求の 範囲第 15項記載の製造方法。
PCT/JP2006/320295 2005-10-12 2006-10-11 脂肪酸アルキルエステルの製造方法 WO2007043567A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-298162 2005-10-12
JP2005298162A JP4543177B2 (ja) 2005-10-12 2005-10-12 脂肪酸アルキルエステルの製造方法
JP2005327942A JP2007131595A (ja) 2005-11-11 2005-11-11 脂肪酸アルキルエステルの製造方法
JP2005-327942 2005-11-11
JP2005365631A JP4378534B2 (ja) 2005-12-19 2005-12-19 脂肪酸アルキルエステルの製造方法
JP2005-365631 2005-12-19

Publications (1)

Publication Number Publication Date
WO2007043567A1 true WO2007043567A1 (ja) 2007-04-19

Family

ID=37942797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320295 WO2007043567A1 (ja) 2005-10-12 2006-10-11 脂肪酸アルキルエステルの製造方法

Country Status (1)

Country Link
WO (1) WO2007043567A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194490A (ja) * 2015-04-01 2016-11-17 株式会社住化分析センター ヒンダードアミン系光安定剤の分析方法および分析システム
CN108728249A (zh) * 2018-06-15 2018-11-02 成都恒润高新科技股份有限公司 一种利用潲水制备生物柴油的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204392A (ja) * 1999-01-13 2000-07-25 Asahi Chem Ind Co Ltd エステル組成物及び製造方法
WO2003106604A1 (ja) * 2002-06-13 2003-12-24 株式会社京都ロンフォード 脂肪酸アルキルエステル組成物の製造方法
JP2004149742A (ja) * 2002-11-01 2004-05-27 Toyota Motor Corp 燃料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204392A (ja) * 1999-01-13 2000-07-25 Asahi Chem Ind Co Ltd エステル組成物及び製造方法
WO2003106604A1 (ja) * 2002-06-13 2003-12-24 株式会社京都ロンフォード 脂肪酸アルキルエステル組成物の製造方法
JP2004149742A (ja) * 2002-11-01 2004-05-27 Toyota Motor Corp 燃料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194490A (ja) * 2015-04-01 2016-11-17 株式会社住化分析センター ヒンダードアミン系光安定剤の分析方法および分析システム
CN108728249A (zh) * 2018-06-15 2018-11-02 成都恒润高新科技股份有限公司 一种利用潲水制备生物柴油的方法

Similar Documents

Publication Publication Date Title
JP5419713B2 (ja) 変性された構造のトリグリセリドに基づく燃料または燃料添加剤の使用およびその調製のためのプロセス
US7795460B2 (en) Method of making alkyl esters
JP2003507495A (ja) トリグリセリドおよび脂肪酸の混合物から脂肪酸メチルエステルを生成する単相プロセス
US7777085B2 (en) Method for conversion of oil-containing algae to 1,3-propanediol
KR102061374B1 (ko) 에스테르의 제조 방법 및 그의 용도
CA2620253A1 (fr) Procede de fabrication d&#39;esters ethyliques d&#39;acides gras a partir de triglycerides et d&#39;alcools
EP1512738B1 (en) Process for producing fatty acid alkyl ester composition
Isayama et al. Biodiesel production by supercritical process with crude bio-methanol prepared by wood gasification
WO2006081644A2 (en) Catalytic process for the esterification of fatty acids
JP4052748B2 (ja) エステル組成物及び製造方法
Ahmed et al. Feedstocks, catalysts, process variables and techniques for biodiesel production by one-pot extraction-transesterification: a review
Kocsisová et al. High‐temperature esterification of fatty acids with methanol at ambient pressure
JP5058459B2 (ja) 脂肪酸アルキルエステルの製造方法
JP5181106B2 (ja) 液化ジメチルエーテルによるメタノール抽出型バイオディーゼル燃料高速製造方法
JP4543177B2 (ja) 脂肪酸アルキルエステルの製造方法
Sanchez et al. Optimization of biodiesel production process using sunflower oil and tetramethyl ammonium hydroxide as catalyst
WO2007043567A1 (ja) 脂肪酸アルキルエステルの製造方法
JP5454836B2 (ja) 再生固体酸触媒を用いる脂肪酸モノエステル化物の製造方法
JP5454835B2 (ja) 固体酸触媒による脂肪酸モノエステル化物の製造方法
JP2007131595A (ja) 脂肪酸アルキルエステルの製造方法
JP4378534B2 (ja) 脂肪酸アルキルエステルの製造方法
JP5090676B2 (ja) 脂肪酸エステル組成物の製法
JP3842273B2 (ja) 脂肪酸アルキルエステル組成物の製造方法
WO2010043013A2 (en) A method for the production of biodiesel fuel
WO2010016441A1 (ja) 脂肪酸アルキルエステル組成物の製造方法及び油脂類の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811602

Country of ref document: EP

Kind code of ref document: A1