WO2007040257A1 - Article provided with organic-inorganic composite film and method for producing same - Google Patents

Article provided with organic-inorganic composite film and method for producing same Download PDF

Info

Publication number
WO2007040257A1
WO2007040257A1 PCT/JP2006/319944 JP2006319944W WO2007040257A1 WO 2007040257 A1 WO2007040257 A1 WO 2007040257A1 JP 2006319944 W JP2006319944 W JP 2006319944W WO 2007040257 A1 WO2007040257 A1 WO 2007040257A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
composite film
inorganic composite
film
article according
Prior art date
Application number
PCT/JP2006/319944
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Inoguchi
Teruyuki Sasaki
Kazutaka Kamitani
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to JP2007538794A priority Critical patent/JPWO2007040257A1/en
Publication of WO2007040257A1 publication Critical patent/WO2007040257A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Definitions

  • the present invention relates to an article formed with an organic-inorganic composite film and a method for producing the same, and more specifically, wear resistance while including a material having a low heat resistance typified by a sol-gel method and typified by an organic substance.
  • the present invention relates to an article on which an excellent film is formed and a method for producing the same. Background art
  • Glass materials are generally hard and are also used in the form of a film covering a substrate. However, if a glassy film (silica-based film) is to be obtained, a high temperature treatment is required in the melting method, so that the materials constituting the substrate and the film are limited.
  • sol-gel method a solution of a metal organic or inorganic compound is used as a starting material, and the solution is converted into metal oxide or hydroxide fine particles by hydrolysis reaction and condensation polymerization reaction of the compound in the solution.
  • This is a method in which a sol in which sol is dissolved, gelled and solidified, and this gel is heated to obtain an oxide solid.
  • the sol-gel method makes it possible to produce a glassy film at a low temperature.
  • a method for forming a silica-based film by a sol-gel method is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-269657.
  • a silica-based film formed by a sol-gel method is inferior in mechanical strength, particularly the abrasion resistance of the film, as compared with a glassy film obtained by a melting method.
  • JP-A-11 269657 discloses that “at least one of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) is 0.010 to 3 wt% in terms of silica, and acid 0.0 010 to 1
  • a method for forming a silica-based film by applying an alcohol solution containing 0N and 0 to 10% by weight of water as a coating liquid to a substrate is disclosed.
  • the silica-based film obtained by this method has a strength enough to withstand the dry cloth abrasion test, and although it is not sufficient, the film obtained by the sol-gel method has good wear resistance. Have sex.
  • the silica-based film that can be formed by the method disclosed in Japanese Patent Application Laid-Open No. 11 269657 is limited to a maximum film thickness of 250 nm in order to ensure a practical appearance.
  • the thickness of the silica-based film formed by the sol-gel method is usually 100-200n m.
  • the silica-based film By applying the coating liquid a plurality of times to form a multilayer film, the silica-based film can be thickened. However, the adhesion at the interface of each layer is lowered, and the wear resistance of the silica-based film may be lowered. There is also a problem that the manufacturing process of the silica film is complicated.
  • a technique for forming an organic-inorganic composite film in which an inorganic material and an organic material are combined by a sol-gel method has been proposed. Since the sol-gel method is characterized by film formation at a low temperature, a silica-based film containing an organic substance can be formed.
  • the organic-inorganic composite film by the sol-gel method is disclosed, for example, in JP-A-3-212451, JP-A-3-56535, and JP-A-2002-338304.
  • a substrate such as glass or resin may be provided with a node coat layer containing an antistatic material in order to prevent surface charging.
  • a node coat layer containing an antistatic material in order to prevent surface charging.
  • it is required to control its surface resistivity within a range of 10 14 ⁇ or less.
  • antistatic material metal oxide fine particles such as indium stannate ( ⁇ ) and antimony stannate ( ⁇ ) are generally used. Recently, carbon nanotubes and fullerenes, which exhibit excellent conductivity and thermal stability, have attracted attention as materials. However, these antistatic materials have a problem that they have a tendency to agglomerate in the coating liquid and are not easily compatible.
  • Hard coat films containing soot and soot are attracting attention, particularly in the field of display panels, as a film that can exhibit a near-infrared absorbing effect.
  • the silica-based film is not less than 450 ° C. It is desirable to heat-treat above. However, if the organic-inorganic composite film is heat-treated at such a high temperature, the organic matter in the film is decomposed or the function of functional fine particles such as ITO is reduced.
  • An object of the present invention is to provide an article in which an organic-inorganic composite film excellent in wear resistance is formed while containing a material having antistatic ability and near infrared absorption ability.
  • the present invention is an article on which an organic-inorganic composite film is formed, including a base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base,
  • the organic / inorganic composite film contains silica as the inorganic oxide
  • the organic / inorganic composite film contains silica as a main component and is applied to the surface of the organic / inorganic composite film.
  • the organic-inorganic composite film does not peel off due to the substrate strength, and the organic-inorganic composite film is further added as at least part of the organic substance or as the inorganic oxide, and further, carbon nanotubes, fullerenes, antimony tins.
  • an article formed with an organic-inorganic composite film comprising at least one selected from oxide and indium stannate properties, and Z or a conductive polymer.
  • the main component means that the content is the highest and the component is! The content is evaluated on a mass% basis.
  • the Taber abrasion test according to JIS R 3212 can be performed using a commercially available Taber abrasion tester. This test is a wear test at a rotation speed of 1000 times while applying a load of 500g weight as specified in the above 6JIS.
  • the present invention includes a base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base, and the organic-inorganic composite film is the inorganic Silica is included as an oxide, the organic-inorganic composite film is mainly composed of the silica, and the organic-inorganic composite film is used as at least a part of the organic substance or as the inorganic oxide.
  • a method for producing an article formed with an organic-inorganic composite film comprising at least one selected from the group consisting of fullerene, antimony stannate and indium sulphate, and Z or a conductive polymer, A coating step of applying the organic-inorganic composite film forming solution to the surface of the substrate; and removing at least a part of the liquid component contained in the forming solution from the forming solution applied to the substrate.
  • the The forming solution contains silicon alkoxide, strong acid, water and alcohol, at least one selected from carbon nanotubes, fullerene, antimony tin oxide and indium tin oxide, and Z or a conductive polymer,
  • the forming solution further contains a hydrophilic organic polymer and Z or a surfactant as at least a part of the strong acid or as a component different from the strong acid, and the concentration force of the silicon alkoxide Silicon atoms contained in the silicon alkoxide SiO concentration when converted to SiO
  • the concentration of the strong acid is 0.001-0. Lm olZkg expressed by the molar concentration of protons assuming that the proton is completely dissociated from the strong acid.
  • the number of moles of water is at least four times the total number of moles of silicon atoms contained in the silicon alkoxide, and in the coating step, while maintaining the relative humidity of the atmosphere at less than 40%,
  • the forming solution is applied to the substrate, and in the removing step, at least a part of the liquid component contained in the forming solution applied to the substrate is removed while maintaining the substrate at a temperature of 300 ° C. or lower.
  • a method for producing an article on which an organic-inorganic composite film is formed is provided.
  • an organic-inorganic composite film having excellent wear resistance and exhibiting antistatic ability and near infrared absorption ability can be formed by a sol-gel method even when the film thickness is thicker than 250 nm. wear.
  • the organic-inorganic composite film according to the present invention includes at least one selected from carbon nanotubes, fullerenes, antimony stannates, and indium stannates, and contains Z or a conductive polymer. It can have excellent wear resistance comparable to a glass plate obtained by the melting method.
  • the organic-inorganic composite film according to the present invention can have a high antistatic ability such that the film has a surface resistivity of 1.0 to 10 ” ⁇ or less.
  • the organic-inorganic composite film according to the present invention has a wavelength of 1700 nm. It can have a high near-infrared absorption capacity with a near infrared transmittance of 30% or less.
  • the film thickness is more than 250 ⁇ m and the wear resistance is excellent, and high antistatic ability and near infrared absorption ability are obtained.
  • a possible film can be formed.
  • silicon alkoxide contained in a film coating solution (hereinafter referred to as a forming solution) is hydrolyzed in the presence of water and a catalyst in the forming solution.
  • a forming solution silicon alkoxide contained in a film coating solution
  • a catalyst in the forming solution.
  • the forming solution in a sol state is applied to the substrate, and water or an organic solvent such as alcohol volatilizes from the applied forming solution.
  • the oligomer is concentrated, the polycondensation reaction proceeds, the molecular weight increases, and the solution loses fluidity over time.
  • a film having a semi-solid gel force is formed on the substrate.
  • the gap between the siloxane bond networks is filled with organic solvent and water. Gel force When water or solvent volatilizes, the siloxane polymer shrinks, the condensation polymerization reaction proceeds further, and the film is cured.
  • the gap filled with the organic solvent and water in the solidified gel remains as pores that cannot be completely filled even after heat treatment up to about 400 ° C.
  • the abrasion resistance of the film should not be high enough. Therefore, conventionally, in order to obtain a hard film, a heat treatment at a higher temperature, for example, 500 ° C. or more has been required.
  • the gap between the formed networks is filled with an organic solvent or water. It is known that the size of this gap depends on the form of polymerization of the silicon alkoxide in the solution.
  • spherical oligomers are likely to grow in an alkaline liquid.
  • a structure in which spherical oligomers are connected to each other is formed, and a film having a relatively large gap is formed. Since this gap is formed by bonding and growing spherical oligomers, cracks are unlikely to occur when the solvent or water volatilizes from the gap.
  • the present inventors form a dense and crack-free film under certain conditions by adjusting the concentration of strong acid, the amount of water, etc. appropriately.
  • the present invention has been completed by finding the knowledge that it can be done and further developing this knowledge.
  • silanol it is known that the isoelectric point of silanol is 2. This indicates that when the pH of the forming solution is 2, silanol can exist most stably in the solution. That is, even when a large amount of hydrolyzed silicon alkoxide is present in the solution, if the pH of the solution is about 2, the probability that an oligomer is formed by the dehydration condensation polymerization reaction is very low. As a result, the hydrolyzed silicon alkoxide force monomer or low polymerization state tends to exist in the forming solution.
  • silicon alkoxide is stabilized in a state where one alkoxyl group per molecule is hydrolyzed to form silanol.
  • tetraalkoxysilane has four alkoxyl groups, one of which is hydrolyzed and stabilized in the form of silanol.
  • the molar mass of proton (hereinafter, simply referred to as “proton concentration”) is: If it is about 001-0.2molZkg, the pH of the solution will be about 3-1. By adjusting the pH to this range, the silicon alkoxide can be stably present as a monomer or a low polymerization silanol in the forming solution.
  • the forming solution contains a mixed solvent of water and alcohol, and can be added with another solvent as necessary.
  • a strong acid is used and the strong acid strength is also high.
  • the molar concentration of protons it is not necessary to consider protons having an acid dissociation index of 1S 4 or higher in water of the acid used. For example, since the acid dissociation index of acetic acid, which is a weak acid, in water is 4.8, even when acetic acid is included in the forming solution, the proton concentration of acetic acid is not included in the above proton concentration.
  • phosphoric acid has three dissociation stages, and there is a possibility of dissociating three protons per molecule.
  • the first-stage dissociation index is 2.15, which can be regarded as a strong acid, but the second-stage dissociation index is 7.2, and the third-stage dissociation index is even higher. Therefore, the above proton concentration on the premise of dissociation with strong acidity may be calculated assuming that only one proton is dissociated from one molecule of phosphoric acid.
  • Phosphoric acid after the dissociation of one proton is not a strong acid. It is not necessary to consider the dissociation of protons after the second stage.
  • the strong acid specifically refers to an acid having protons having an acid dissociation exponential force in water.
  • the reason why the proton concentration is defined as the concentration when the proton of the strong acid is completely dissociated is that the degree of dissociation of the strong acid is accurately determined in a mixture of an organic solvent and water. It is a force that is difficult to ask for.
  • This film is dense. Due to insufficient hydrolysis and polycondensation reaction of silicon alkoxide, heating in a low temperature range of 150 ° C or lower does not exceed a certain hardness. . In view of this, water was excessively added to the silicon alkoxide so that it proceeded easily after the application of the hydrolytic and polycondensation reaction force forming solution of the silicon alkoxide. Hydrolysis and polycondensation reactions are likely to proceed! In the soot state, the film becomes hard without heating to a high temperature. Specifically, the maximum number of moles required for hydrolysis, that is, four times or more of water, is added to the total number of moles of silicon atoms contained in the silicon alkoxide. The upper limit of the amount of water added can be, for example, 20 times, or even 40 times.
  • the forming solution When the forming solution is dried, water evaporates in parallel with the volatilization of the solvent. Considering this, the number of moles of water is more than four times the total number of moles of silicon atoms, for example, 5 to 20 times. It is preferable that
  • silicon alkoxide up to four alkoxyl groups can be bonded to one silicon atom.
  • An alkoxide having a small number of alkoxyl groups reduces the number of moles of water required for hydrolysis.
  • tetraalkoxysilane in which four alkoxyl groups are bonded to a silicon atom may be a polymer (for example, “Ethylsilicate manufactured by Colcoat”).
  • the total number of moles of water required for hydrolysis is less than four times that of silicon atoms (assuming that the number of moles of Si in the polymer is n (n ⁇ 2))
  • the stoichiometric amount of water required for hydrolysis is (2n + 2) moles).
  • a silica-based film having excellent wear resistance can be obtained even if it is thick.
  • the silicon atom contained in the silicon alkoxide is adjusted by the SiO concentration when converted to SiO so that the silicon alkoxide concentration is relatively high.
  • the formation solution should be prepared so that it exceeds 3% by weight. Specifically, it is desirable that the range be over 3% by mass and below 30% by mass.
  • a hydrophilic organic polymer and Z or a surfactant may be further added to the forming solution.
  • Hydrophilic organic polymers and surfactants suppress the generation of cracks that may occur as the liquid components contained in the applied forming solution evaporate.
  • hydrophilic organic Polymers and surfactants are interposed between the silica particles generated in the liquid, and alleviate the influence of film shrinkage caused by evaporation of the liquid component.
  • a hydrophilic organic polymer or a surfactant is added, excessive curing shrinkage of the film can be suppressed, so that the stress in the film is relieved.
  • the hydrophilic organic polymer and the surfactant serve to suppress the shrinkage of the film and maintain the abrasion resistance of the film.
  • the hydrophilic organic polymer and Z or surfactant may be added to the forming solution in advance.
  • the organic-inorganic composite film in which the forming solution force is also formed it is considered that the organic substance and the inorganic substance are combined at the molecular level.
  • hydrophilic organic polymer and the surfactant suppress the growth of silica particles formed by the sol-gel reaction and suppress the porous property of the film. .
  • hydrophilic organic polymer a polymer containing a polyoxyalkylene group (polyalkylene oxide structure), for example, polyethylene glycol, polypropylene glycol, polyether-based surfactant and the like can be used. Further, polyvinyl pyrrolidone type, polybule force prolatatam type surfactants and the like can also be used. Further, sodium polystyrene sulfonate can be used.
  • a hydrophilic organic polymer that can function as the above-described surfactant may be used.
  • a quaternary ammonium compound represented by the formula or represented by a structural formula having a chloride group (C1) in place of the hydroxyl group (OH) can also be used.
  • C1 chloride group
  • OH hydroxyl group
  • hydrophilic organic polymers and surfactants may be used alone or in combination of two or more.
  • the organic-inorganic composite film according to the present invention comprises carbon nanotubes, fullerenes, antimony
  • the surface resistivity can be less than 1. ⁇ 14 ⁇ .
  • the organic-inorganic composite film further includes at least one selected from antimony stannate and indium stannate as the inorganic oxide.
  • the transmittance of near-infrared light having a wavelength of 1700 nm can be 30% or less, and the transmittance can be 20% or less.
  • the organic-inorganic composite film according to the present invention may further contain carbon nanotubes and at least one selected from fullerene force and Z or a conductive polymer as at least a part of the organic substance.
  • the article formed with the organic-inorganic composite film according to the present invention is suitable as a display substrate.
  • carbon nanotubes and fullerenes for example, various ones described in S. Iijima, Nature, 354, 56 (1991) can be used.
  • the conductive polymer for example, polythiophene and derivatives thereof and polyisothianaphthene and derivatives thereof can be used.
  • An example of the polythiophene derivative is polyethylene dioxythiophene (PEDOT).
  • the conductive polymer may include PED OT.
  • An example of a PEDOT dopant is p-toluenesulfonic acid. Since PEDOT is insoluble, it is desirable to coexist with, for example, polystyrene sulfonic acid when added to the forming solution.
  • self-doped conductive polymers represented by the above polythiophenes and polyisothianaphthenes are water-soluble.
  • the conductive polymer may be a polymer that can function as a hydrophilic organic polymer.
  • the hydrophilic organic polymer that coexists with the conductive polymer is a non-conductive polymer.
  • Antimony tin oxide (ATO) and indium tin oxide (ITO) are preferably those having a volume average particle size of 1 to LOONm.
  • ATO antimony tin oxide
  • ITO indium tin oxide
  • the particle size exceeds lOOnm, light is remarkably reflected by Rayleigh scattering, and the film may be whitened to reduce transparency. If the particle size is less than 1 nm, the conductivity may be lowered or the dispersibility of the particles may be lowered.
  • the thickness of the organic-inorganic composite film is more than 250 nm and not more than 5 ⁇ m, preferably more than 300 nm and not more than 5 ⁇ m, more preferably more than 800 nm and not more than 5 ⁇ m, and still more preferably It is more than 1 m and not more than 5 ⁇ m, particularly preferably more than 2 ⁇ m and not more than 5 ⁇ m.
  • the thickness of the organic / inorganic composite film may be 4 ⁇ m or less.
  • the haze ratio of the portion to which the Taber abrasion test is applied can be 4% or less, further 3% or less. This is wear resistance equivalent to a glassy film obtained by the melting method.
  • the organic substance content is 0.1 to 60%, preferably 2 to 60%, based on the total mass of the organic-inorganic composite film.
  • the organic-inorganic composite film according to the present invention may contain phosphorus.
  • a near infrared ray having a wavelength of 800 to 1200 nm is used as an optical signal.
  • Electronic displays such as plasma display panels (PDP) may emit near-infrared rays of such a wavelength as well as display surface force.
  • the reading of the optical signal from the remote operation terminal may be hindered and the electronic device may malfunction.
  • the transmittance of near infrared rays having a wavelength of ⁇ ⁇ m can be 30% or less, and further the transmittance can be 20% or less. For this reason, when the article of the present invention is applied to a display substrate, for example, it is possible to prevent malfunction of the electronic device.
  • the addition of fluorine resin particles to the film is a force S.
  • the organic-inorganic composite film according to the present invention has suitable wear resistance despite the fact that it does not contain fluorine resin fine particles, as shown in the examples described later.
  • the organic-inorganic composite film according to the present invention may be in a state that does not contain the fluorocoagulant fine particles.
  • the absence of fluorine resin fine particles does not mean that fluorine resin fine particles in an amount less than the addition amount necessary for imparting a function are mixed in the film.
  • the method of the present invention includes silicon alkoxide, strong acid, water, alcohol, a hydrophilic organic polymer, and Z or a surfactant. At least one selected from Len, antimony stannate and indium stannate
  • Hydrophilic organic polymers and surfactants are usually added as components separate from strong acids, but polymers that function as strong acids, such as polymers containing phosphate ester groups, are added as at least part of the strong acid. A little.
  • the silicon alkoxide is preferably at least one selected from tetraalkoxysilane and its polymer strength. Silicon alkoxides and polymers thereof may include those in which some or all of the alkoxyl groups are hydrolyzed. The force described later in detail In the present invention, silicon alcohol other than tetrafunctional silane such as trifunctional silane (R'Si (OR)) is used.
  • An organic / inorganic composite film having excellent wear resistance can be formed to a thickness of more than 250 nm while suppressing the occurrence of cracks, without using coxide.
  • the concentration of silicon alkoxide is expressed as SiO concentration when silicon atoms contained in the silicon alkoxide are converted to SiO, and is more than 3 mass% and not more than 30 mass%.
  • it is in the range of more than 3% by mass and less than 13% by mass, more preferably in the range of more than 3% by mass and not more than 9% by mass. If the concentration of silicon alkoxide in the forming solution is too high, cracks may be generated in the film that cause the substrate force to peel off.
  • the total concentration of the hydrophilic organic polymer and the surfactant is the same as the concentration of silicon alkoxide.
  • the total concentration of the hydrophilic organic polymer and the surfactant is preferably 0.1% by mass or more, particularly 5% by mass or more with respect to the SiO 2.
  • the hydrophilic organic polymer and the surfactant also function as a dispersant for suppressing aggregation of carbon nanotubes, ATO fine particles and the like with respect to acid.
  • phosphate surfactants containing a phosphate ester group and a polyoxyalkylene group are excellent in dispersibility.
  • carbon nanotubes Including a step of adding silicon alkoxide, water and alcohol to a mixed solution containing at least one selected from the group consisting of fullerene, ATO and ITO, and a hydrophilic organic polymer and cocoon or surfactant. Preferable to prepare the solution.
  • strong acids examples include hydrochloric acid, nitric acid, trichloroacetic acid, trifluoroacetic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid.
  • volatile acids can be preferably used because they do not volatilize when heated and remain in the cured film. If an acid remains in the cured film, the inorganic component may be prevented from binding, and the film hardness may decrease.
  • Examples of the alcohol used in the production method of the present invention include methyl alcohol, ethyl alcohol, 1-propyl alcohol, isopropyl alcohol, and t-butyl alcohol.
  • the organic-inorganic composite film-forming solution is coated on the resin substrate while keeping the relative humidity of the atmosphere below 40%. If the relative humidity is too high, it may not be possible to obtain excellent wear resistance in which the silica-based film after film formation is difficult to become a dense structure due to excessive suction of moisture in the atmosphere. From the viewpoint of improving the wear resistance of the silica-based film, it is preferable to control the relative humidity to 30% or less.
  • the lower limit of the relative humidity of the atmosphere in the coating process is not particularly limited, but from the viewpoint of improving the handleability (coating property) of the forming solution, the relative humidity is, for example, 15% or more, further 20% or more. It is preferable to control. Applying the forming solution under an atmosphere controlled so that the humidity is within the above range is important for achieving good wear resistance.
  • the removing step in the method of the present invention at least a part, preferably substantially all, of the liquid components of the forming solution applied onto the substrate, for example, water and alcohol, are removed.
  • the removal step is performed at a temperature of 300 ° C or lower, preferably 250 ° C or lower, in view of the decomposition temperature of the organic matter.
  • the lower limit temperature may be appropriately selected according to the required film hardness.
  • the heat treatment temperature may be, for example, 100 ° C or higher, further 150 ° C or higher, and in some cases 180 ° C or higher.
  • the removing step is performed at room temperature (25 ° C) followed by an air drying step and an air drying step. It may be performed by a heat treatment step in an atmosphere of a higher temperature and 300 ° C or lower, for example, an atmosphere of 100 ° C or higher and 300 ° C or lower.
  • the air drying step is preferably performed in an atmosphere controlled to a relative humidity of less than 0%, and further 30% or less. By controlling the relative humidity of the atmosphere within this range, the occurrence of film cracks can be more reliably prevented.
  • the lower limit value of the relative humidity of the atmosphere in the air drying process is not particularly limited. For example, it may be 15% or even 20%.
  • the hydrolysis or polycondensation state of silicon alkoxide in the organic-inorganic composite film forming solution is adjusted by adjusting the pH of the forming solution or by adding a hydrophilic organic polymer or a surfactant.
  • a hydrophilic organic polymer and a surfactant are added in order to suppress excessive film shrinkage while adjusting the amount of water so that sufficient film shrinkage force can be obtained during drying and heating.
  • the coating step of applying the organic-inorganic composite film forming solution and the removing step of removing at least a part of the liquid component contained in the applied forming solution are performed once, thereby reducing the By heat treatment in the temperature range, it has excellent wear resistance, and an organic / inorganic composite film with a thickness of more than 250 nm and below can be formed to some extent.
  • the organic-inorganic composite film according to the present invention has an abrasion resistance that is superior to a glass plate obtained by a melting method by heat treatment at a relatively low temperature. Even if this organic / inorganic composite film is applied to window glass for automobiles or buildings, it is sufficiently practical. However, when a film having a thickness of 0.1 mm or less, particularly a resin film, is used for a substrate on which an organic-inorganic composite film is formed, the strength of the substrate itself is not sufficient, and the organic-inorganic composite is easily deformed. Abrasion resistance of the film decreases. Considering this, in the present invention, it is desirable to use a substrate having a thickness exceeding 0.1 mm.
  • the thickness of the substrate is preferably 0.3 mm or more, more preferably 0.4 mm or more, and more preferably 0.5 mm or more, and may be 2 mm or more, and even 3 mm or more.
  • the upper limit value of the substrate thickness is not particularly limited, but may be, for example, 20 mm, or 10 mm.
  • a glass substrate or a resin substrate can be used as the substrate.
  • the adhesion between the organic / inorganic composite film and the substrate can be easily improved.
  • the materials for the resin substrate are: Polycarbonate, Polyethylene, Polypropylene, Polyethylene terephthalate, Polyethylene Examples of the resin include sulfone, polysulfone, cyclic polyolefin, polymethylpentene, and nylon.
  • the organic-inorganic composite film according to the present invention has a surface resistivity of 1. OX 10 14 ⁇ / port or less, and in some cases 4. ⁇ 10 13 ⁇ port or less, and is excellent in antistatic performance. Furthermore, since the organic-inorganic composite film can be formed with a thickness corresponding to the wavelength in the visible light region, that is, a thickness exceeding 800 nm, it is easy to prevent the occurrence of interference fringes in the film.
  • Functional materials such as organic dyes and ultraviolet absorbers can be further introduced using the organic-inorganic composite film that can be formed according to the present invention as a matrix.
  • Many organic fine particles that can be used as these functional materials start to decompose at a temperature of 200 to 300 ° C.
  • these thermally unstable materials can be obtained without impairing the function of the functional material.
  • Organic fine particles can be introduced into the organic-inorganic composite film.
  • the forming solution contains a hydrophilic polymer or a surfactant, it is easy to uniformly disperse these organic fine particles in the film.
  • the phosphate surfactant having a polyether group is particularly excellent in dispersibility.
  • a dispersant may be further added to the organic-inorganic composite film forming solution.
  • an organically modified metal alkoxide is used, and the number of moles of metal atoms of the metal alkoxide is 10% or less of the number of moles of silicon atoms of the silicon alkoxide. You may add so that it may become this quantity.
  • a metal oxide other than Si may be added within a range not exceeding the mass fraction of the silicon oxide to form a composite oxide. In that case, it is desirable to add in a way that does not affect the reactivity of silicon alkoxide.
  • Metal compounds that dissolve in water or alcohol especially those that are simply ionized and dissolved, such as lithium, sodium, potassium, cesium, magnesium, calcium, cobalt, iron, nickel, copper, aluminum, gallium , Indium, scandium, yttrium
  • boric acid or boron alkoxides such as acetylacetone It can be added after chelating with ⁇ -diketone.
  • Polyether phosphate ester surfactant (Solsperse 41 000 made by Nippon Lubrizol) 0.17g, tetraethoxysilane (made by Shin-Etsu Chemical) 5.21g, ethyl alcohol (Katayama Chemical) 17.23g, pure 4.86 g of water, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.03 g, ATO fine particle dispersion (ethyl alcohol solution containing 30% by mass of ATO) 2.5 g, polyethylene dallicol 200 (manufactured by Katayama Chemical) 0 02g was added in order to obtain a forming solution.
  • polyethylene glycol 200 is a polyethylene glycol having a mass average molecular weight of 200.
  • Solsperse 41000 is a monoester type surfactant and hydrophilic organic polymer obtained by esterifying polyoxyethylene alkyl ether with phosphoric acid, and functions as an acid that dissociates two protons.
  • Table 1 shows the contents of silicon alkoxide (in terms of silica), proton concentration, water, and hydrophilic organic polymer and Z or surfactant in the forming solution.
  • the water content in the forming solution is calculated by adding the water (0.35 mass%) contained in ethyl alcohol.
  • the proton concentration was calculated assuming that all protons contained in the strong acid were dissociated.
  • the calculation method of the water content and proton concentration is the same in all the following examples and comparative examples.
  • Example A3 5.0 0.01 1 1 1 Tube
  • Example A4 2.0 0.01 1 1 Fullerene 3
  • Example A5 5.0 0.005 35 PEDOT 1 1 1 Comparative example A1 13.0 0.01 7 None 30 Comparative example A2 13.0 0.01 7 None 0
  • the hardness of the film was evaluated by an abrasion test according to JIS R 3212. That is, using a commercially available Taber abrasion tester (TABER INDUSTRIES 5150 ABRASER), the wear was performed 1000 times with a load of 500 g, and the haze ratio before and after the abrasion test was measured.
  • the surface resistivity of the organic-inorganic composite film was measured using a commercially available surface resistivity meter (MCP-HT-260 HIRESTA IP manufactured by Mitsubishi Chemical Corporation). Film thickness, surface resistivity of organic / inorganic composite film, haze ratio before and after Taber test, presence or absence of film peeling after Taber test Table 2 shows the presence or absence of cracks.
  • the haze rate was measured using HGM-2DP manufactured by Suga Test Instruments Co., Ltd.
  • the obtained organic-inorganic composite film had a hardness equivalent to that of a molten glass plate having a low haze ratio of 3.5% after the Taber test. In addition, there was no film peeling or cracking after the Taber test. Further, the surface resistivity of the organic-inorganic composite film was 9.2 ⁇ 10 13 ⁇ , and the antistatic property was excellent.
  • Example A2 is an example in which an organic-inorganic composite film was formed using a forming solution prepared in the same manner as in Example A1, except that carbon nanotubes were added instead of ATO fine particles.
  • this forming solution was applied by a flow coat method at a humidity of 30% at room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled.
  • the obtained film was a film having a thickness of 300 nm and having no cracks and a slightly high transparency.
  • This organic-inorganic composite film contained 0.1% by mass of carbon nanotubes.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 2.5%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic-inorganic composite film was 3. ⁇ 10 13 ⁇ and was excellent in antistatic properties.
  • Example A3 was the same as Example A1 except that carbon nanotubes were added instead of soot particles, and quaternary hydroxyammonium hydroxide was added instead of polyetherolate surfactant. This is an example in which an organic-inorganic composite film is formed using the forming solution prepared as described above.
  • Tube dispersion (ENA: ethanol solution containing 5% by mass of carbon nanotubes) Add 0.02 g, and after mixing, add 1.61 g of pure water and 6.47 g of ethyl alcohol (manufactured by Katayama Chemical). Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.), 0.01 g, and tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 1. 74 g were sequentially added to obtain a forming solution. Table 1 shows the various compositions in this solution.
  • this forming solution was applied by flow coating at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 18 minutes, and then cooled.
  • the film obtained was a highly transparent film with a thickness of 500 nm and no cracks.
  • This organic-inorganic composite film contained 0.01% by mass of carbon nanotubes.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 1.6%, which was as low as a molten glass sheet. Also, film peeling and cracking after the Taber test were strong.
  • the organic / inorganic composite film had a surface resistivity of 1.3 to 10 13 ⁇ and excellent antistatic properties.
  • Example IV4 is an example in which an organic-inorganic composite film was formed using a forming solution prepared in the same manner as Example A1, except that fullerene was added instead of the soot fine particles.
  • this forming solution was applied by flow coating on a soda-lime silicate glass substrate (305 X 305 mm, thickness: 3. lmm) washed at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled.
  • the film obtained was a highly transparent film having a thickness of 300 nm and no cracks.
  • the organic-inorganic composite film contained 0.1 mass 0/0 fullerenes.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was as low as 3.9%, a hardness comparable to a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic / inorganic composite film was 2.3 ⁇ 10 13 ⁇ and the antistatic property was excellent.
  • Example ⁇ 5 was formed in the same manner as in Example A1, except that instead of ⁇ fine particles, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOTZPSS) was added. This is an example in which an organic-inorganic composite film is formed using a solution.
  • PEDOT polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • this forming solution was applied by spin coating at a humidity of 30% at room temperature.
  • the coated substrate is heated for 5 minutes on a hot plate heated to 70 ° C, then dried at room temperature for about 10 minutes, and then placed in an oven heated to 180 ° C in advance and heated for 30 minutes. And then cooled.
  • the obtained film was a film with a thickness of 1200 nm and no cracks and a high transparency.
  • This organic-inorganic composite film contained 0.5% by mass of PEDOT.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 3.1%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. Further, the surface resistivity of the organic-inorganic composite film was 3.8 410 4 ⁇ / mouth, and the antistatic property was excellent.
  • Comparative Example A1 an organic-inorganic composite film was formed using a forming solution prepared in the same manner as in Example A1, except that no soot particles were added and only polyethylene glycol was used as the hydrophilic organic polymer. It is an attempted example.
  • polyethylene glycol 400 is a polyethylene glycol having a mass average molecular weight of 00.
  • this forming solution was applied by a flow coating method on a cleaned soda-lime silicate glass substrate (100 X 100 mm, thickness: 3. lmm) at 30% humidity and room temperature. As it was, it was dried at room temperature for about 30 minutes, put in an oven preheated to 200 ° C., heated for 40 minutes, and then cooled.
  • the obtained film was a 2800 nm thick crack-free film with high transparency. As shown, part of the film peeled after the Taber test. Furthermore, when the surface resistivity of the film was measured, it showed a value exceeding 1 ⁇ 10 14 ⁇ / mouth and was inferior in antistatic property.
  • Comparative Example ⁇ 2 uses a forming solution prepared in the same manner as in Example A1 except that ⁇ fine particles are not added and phosphoric acid is used in place of the polyether phosphate ester surfactant. This is an example in which formation was attempted.
  • this forming solution was applied by flow coating on a cleaned soda lime silicate glass substrate (100 X 100 mm, thickness: 3. lmm) at 30% humidity and room temperature. As it was, it was dried at room temperature for about 30 minutes, put in an oven preheated to 200 ° C., heated for 40 minutes, and then cooled.
  • ITO fine particle dispersion (Mitsubishi Materials: Ethyl alcohol solution containing 40% by mass of ITO) 7.5g, polyether phosphate ester surfactant (Disparon DA-375 manufactured by Enomoto Iseisei) 0.15g, Tetra Ethoxysilane (manufactured by Shin-Etsu Chemical) 20.8g, ethyl alcohol (manufactured by Katayama Chemical) 55.45g, pure water 15.8g, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.3g A forming solution was obtained. Table 3 shows the various compositions in this solution.
  • Disposon DA-375 is a monoester surfactant obtained by esterifying polyoxyethylene alkyl ether with phosphoric acid, and functions as an acid that dissociates two protons.
  • this forming solution was applied by flow coating on a soda-lime silicate glass substrate (100 ⁇ 100 mm, thickness: 2.5 mm) washed at 30% humidity and room temperature. Continue to air dry at room temperature for about 3 hours, then put into an oven heated to 90 ° C in advance and heated for 30 minutes, then into an oven heated to 200 ° C in advance and heated for 1 hour, Then it was cooled.
  • the obtained film was a highly transparent film without cracks having a film thickness of lOOOnm.
  • Example A1 The hardness of the film was evaluated in the same manner as in Example A1.
  • Table 4 shows the film thickness, the haze ratio before and after the Taber test, the presence or absence of film peeling after the Taber test, the presence or absence of cracks, the content of fine particles, and the transmittance of near-infrared light with wavelengths lOOOnm and 1700 nm.
  • Table 4 also shows the haze ratio before and after the Taber test on a molten glass plate as a blank.
  • the haze ratio after the Taber test was as low as 2.8%, which was a hardness comparable to a molten glass plate. Also, there was no film peeling or cracking after the Taber test. Further, this film-coated article had transmittances of 18% and 15% of near-infrared transmittances of wavelengths lOOOnm and 1700 nm, respectively.
  • Example B2 is an example in which a polyether phosphate ester surfactant different from Example B1 and polyethylene glycol were used as the hydrophilic organic polymer.
  • ITO fine particle dispersion (Mitsubishi Materials Co., Ltd., ethyl alcohol solution containing 40% by mass of ITO) 1.
  • polyether phosphate ester surfactant (Sonores Nose 41000, Nippon Lubrizol) 0 23g, Polyethylene Glycol Nore 400 (Katayama Chemical) 0.04g, Tetraethoxysilane (Shin-Etsu Chemical) 6.25g, Ethyl Alcohol (Katayama Chemical) 15. 32g, Pure Water 5.
  • Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was added in order to obtain a forming solution.
  • Table 3 Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was added in order to obtain a forming solution.
  • Table 3 Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was added in order to obtain a forming solution.
  • Table 3 Concentrated hydrochlor
  • this forming solution was applied by flow coating on a soda-lime silicate glass substrate (305 X 305 mm, thickness: 2.5 mm) washed at 30% humidity and room temperature. As it is, After drying at room temperature for about 30 minutes, it was put into an oven preheated to 200 ° C, heated for 14 minutes, and then cooled. The film obtained was a highly transparent film without cracks with a film thickness of lOOOnm.
  • the film hardness was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 2.4%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. In addition, this film-coated article had near infrared transmittances of 18% and 14% at wavelengths of 10 OOnm and 1700 nm, respectively.
  • Example B3 is an example in which a polyether phosphate ester surfactant different from Example B1 and polyethylene glycol are used as the hydrophilic organic polymer, and ATO fine particles are used in place of the ITO fine particles.
  • this forming solution was applied by flow coating on a soda-lime silicate glass substrate (300 ⁇ 300 mm, thickness: 2. lmm) washed at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled. The obtained film was a highly transparent film having a thickness of 2000 nm and no cracks.
  • Example A1 The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.5%, which was as low as a molten glass plate. The tape Film peeling and cracking after the bar test were strong. In addition, this film-coated article had near-infrared transmittances of 19% and 23% at wavelengths of 10 OOnm and 1700nm, respectively.
  • Comparative Example B1 is an example in which an organic-inorganic composite film was attempted in the same manner as Comparative Example A1. As shown in Table 4, the obtained film peeled after the Taber test. In addition, this film-coated article had a transmittance of near infrared light having a wavelength of 1700 nm exceeding 30%.
  • Comparative Example B2 is an example in which the formation of an organic-inorganic composite film was attempted in the same manner as Comparative Example A2.
  • Comparative Example B2 As shown in Table 4, cracks accompanied by peeling occurred and the film was not formed.
  • Example B4 is an example in which an organic-inorganic composite film was formed on a substrate having transmittances of 82% and 87% of light with wavelengths lOOOnm and 1700 nm, respectively, using a forming solution prepared in the same manner as in Example B2. It is.
  • ITO fine particle dispersion (Mitsubishi Materials Co., Ltd., ethyl alcohol solution containing 40% by mass of ITO) 3. 38 g of polyether phosphate ester surfactant (Nihon Lubrizol Sonol Nose 41000) 0 49g, Polyethylene Glycol Nole 200 (Made by Katayama) 0.07g, Tetraethoxysilane (Made by Shin-Etsu Chemical) 7.29g, Ethyl Alcohol (Made by Katayama Chemical) 13.15g, Pure Water 5. 61g Then, 0.02 g of concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was sequentially added to obtain a forming solution. Various compositions in this solution are as shown in Table 3.
  • this forming solution was applied by flow coating at a humidity of 30% and room temperature. As it was, it was dried at room temperature for about 20 minutes, put in an oven preheated to 200 ° C., heated for 18 minutes, and then cooled. The obtained film was a highly transparent film without a 2000 nm-thick crack.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.1%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. This film-coated article has a wavelength of 17 The near-infrared transmittance of OOnm was 19%.
  • Example B5 is an example in which an organic-inorganic composite film is formed on a substrate having transmittances of 82% and 87% of light with wavelengths lOOOnm and 1700 nm, respectively, using a forming solution prepared in the same manner as in Example B3. It is.
  • this forming solution was applied by flow coating at a humidity of 30% and room temperature. After drying for about 10 minutes at room temperature, it was put in an oven preheated to 200 ° C, heated for 18 minutes, and then cooled. The obtained film was a highly transparent film without cracks having a film thickness of 2200 nm.
  • Example A2 The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.5%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. In addition, this film-coated article had a near infrared transmittance of 19% at a wavelength of 17 OOnm.
  • Comparative Example B3 is an example in which an organic-inorganic composite film was formed in the same manner as Comparative Example B1, except that the substrate in Comparative Example B1 was changed to the substrate used in Example B4. As shown in Table 4, the obtained film peeled after the Taber test. In addition, this film-coated article had a near-infrared transmittance of 1700 nm in wavelength exceeding 30%.
  • Example C1 uses a forming solution prepared in the same manner as in Example A5 except that ATO fine particles were further added, and the transmittance of light with a wavelength of lOOOnm and 1700 nm was respectively obtained. This is an example in which an organic-inorganic composite film is formed on a substrate of 21% and 46%.
  • Polyether phosphate ester surfactant (Solsperse 41 000 manufactured by Nippon Lubrizol Co., Ltd.) 0.01 g, Polyethylene Glycolol 0.02 g, Ethino Reano Reconole (manufactured by Katayama Yi Gakuen) 1. After adding 68 g and 1.30 g of pure water, tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.87 g, paratoluene sulfonic acid (manufactured by Kanto Chemical) 0.001 g, PEDOTZPSS (Bayer BaytronP HC
  • X 100 mm, thickness: 3.1 mm was applied by spin coating at 30% humidity and room temperature.
  • the coated substrate is heated on a hot plate heated to 70 ° C for 5 minutes, dried at room temperature for about 5 minutes, and then placed in an oven heated to 200 ° C in advance and heated for 20 minutes. And then cooled.
  • the obtained film was a highly transparent film having a thickness of 1200 nm and no cracks.
  • the organic-inorganic composite film contained PEDOT 0. 15 mass 0/0.
  • the hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 6, the haze ratio after the Taber test was 3.4%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic / inorganic composite film was 3.4 X 10 1Q QZ port. Further, this film-coated article had transmittances of 18% and 25% of near-infrared rays having wavelengths of lOOOnm and 1700 nm, respectively.
  • the present invention provides an article on which an organic-inorganic composite film excellent in wear resistance is formed while including a material having antistatic ability and near infrared absorption ability. It has great utility value in each field that uses the formed article.

Abstract

Disclosed is an article provided with an organic-inorganic composite film which is excellent in abrasion resistance while containing materials having antistatic properties and near infrared absorbing properties. This article comprises a base, and an organic-inorganic composite film formed on the base and containing an organic matter and an inorganic oxide. The organic-inorganic composite film mainly contains silica as at least a part of the inorganic oxide, while containing at least one selected from carbon nanotubes, fullerenes, antimony tin oxides and indium tin oxides and/or a conductive polymer as at least a part of the organic matter or the inorganic oxide. This organic-inorganic composite film does not separate from the base after Taber abrasion test performed on the surface of the organic-inorganic composite film in accordance with JIS R 3212.

Description

明 細 書  Specification
有機無機複合膜が形成された物品およびその製造方法  Article formed with organic-inorganic composite film and method for producing the same
技術分野  Technical field
[0001] 本発明は、有機無機複合膜が形成された物品およびその製造方法に関し、詳しく は、ゾルゲル法により形成され、かつ有機物に代表される耐熱性の低い材料を含み ながらも、耐摩耗性に優れた膜が形成された物品およびその製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to an article formed with an organic-inorganic composite film and a method for producing the same, and more specifically, wear resistance while including a material having a low heat resistance typified by a sol-gel method and typified by an organic substance. The present invention relates to an article on which an excellent film is formed and a method for producing the same. Background art
[0002] ガラス材料は一般に硬質であり、基体を被覆する膜の形態でも利用される。しかし、 ガラス質の膜 (シリカ系膜)を得ようとすると、熔融法では高温処理が必要になるため 、基体および膜を構成する材料が制限される。  [0002] Glass materials are generally hard and are also used in the form of a film covering a substrate. However, if a glassy film (silica-based film) is to be obtained, a high temperature treatment is required in the melting method, so that the materials constituting the substrate and the film are limited.
[0003] ゾルゲル法は、金属の有機または無機化合物の溶液を出発原料とし、溶液中の化 合物の加水分解反応および縮重合反応によって、溶液を金属の酸化物あるいは水 酸ィ匕物の微粒子が溶解したゾルとし、さらにゲルィ匕させて固化し、このゲルを加熱し て酸化物固体を得る方法である。  [0003] In the sol-gel method, a solution of a metal organic or inorganic compound is used as a starting material, and the solution is converted into metal oxide or hydroxide fine particles by hydrolysis reaction and condensation polymerization reaction of the compound in the solution. This is a method in which a sol in which sol is dissolved, gelled and solidified, and this gel is heated to obtain an oxide solid.
[0004] ゾルゲル法は、低温でのガラス質の膜の製造を可能とする。ゾルゲル法によりシリカ 系膜を形成する方法は、例えば特開平 11― 269657号公報に開示されて 、る。  [0004] The sol-gel method makes it possible to produce a glassy film at a low temperature. A method for forming a silica-based film by a sol-gel method is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-269657.
[0005] 一般に、ゾルゲル法により形成したシリカ系膜は、熔融法により得たガラス質の膜と 比較すると、機械的強度、特に膜の耐摩耗性に劣る。  [0005] In general, a silica-based film formed by a sol-gel method is inferior in mechanical strength, particularly the abrasion resistance of the film, as compared with a glassy film obtained by a melting method.
[0006] 特開平 11 269657号公報には、「シリコンアルコキシドおよびその加水分解物( 部分加水分解物を含む)の少なくとも 1つがシリカ換算で 0. 010〜3重量%、酸 0. 0 010〜1. 0規定、および水 0〜10重量%を含有するアルコール溶液をコーティング 液として基体に塗布してシリカ系膜を形成する方法」が開示されている。  JP-A-11 269657 discloses that “at least one of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) is 0.010 to 3 wt% in terms of silica, and acid 0.0 010 to 1 A method for forming a silica-based film by applying an alcohol solution containing 0N and 0 to 10% by weight of water as a coating liquid to a substrate is disclosed.
[0007] この方法により得られたシリカ系膜は、乾布磨耗試験に耐える程度の強度を有し、 十分であるとは言えないまでも、ゾルゲル法により得られた膜としては、良好な耐摩耗 性を有する。しかし、特開平 11 269657号公報が開示する方法により成膜できる シリカ系膜は、実用に耐える外観を確保しょうとすると、その膜厚が最大でも 250nm に制限される。ゾルゲル法により形成されるシリカ系膜の厚さは、通常、 100〜200n m程度である。 [0007] The silica-based film obtained by this method has a strength enough to withstand the dry cloth abrasion test, and although it is not sufficient, the film obtained by the sol-gel method has good wear resistance. Have sex. However, the silica-based film that can be formed by the method disclosed in Japanese Patent Application Laid-Open No. 11 269657 is limited to a maximum film thickness of 250 nm in order to ensure a practical appearance. The thickness of the silica-based film formed by the sol-gel method is usually 100-200n m.
[0008] コーティング液を複数回に渡って塗布して多層膜を形成することで、シリカ系膜を 厚膜ィ匕することができる。しかし、各層の界面の密着性が低くなり、シリカ系膜の耐摩 耗性が低下する場合がある。また、シリカ系膜の製造プロセスが複雑ィ匕するという問 題もある。  [0008] By applying the coating liquid a plurality of times to form a multilayer film, the silica-based film can be thickened. However, the adhesion at the interface of each layer is lowered, and the wear resistance of the silica-based film may be lowered. There is also a problem that the manufacturing process of the silica film is complicated.
[0009] 以上のような事情から、ゾルゲル法により、膜厚が 250nmを超える程度に厚ぐ力 っ耐摩耗性に優れたシリカ系膜を得ることは困難であった。  [0009] Because of the circumstances as described above, it has been difficult to obtain a silica-based film excellent in wear resistance and thick enough to have a film thickness exceeding 250 nm by the sol-gel method.
[0010] ゾルゲル法により、無機物と有機物とを複合させた有機無機複合膜を形成する技 術が提案されている。ゾルゲル法は、低温での成膜を特徴とするため、有機物を含 むシリカ系膜の成膜を可能とする。ゾルゲル法による有機無機複合膜は、例えば、特 開平 3— 212451号公報、特開平 3— 56535号公報、特開 2002— 338304号公報 に開示されている。  [0010] A technique for forming an organic-inorganic composite film in which an inorganic material and an organic material are combined by a sol-gel method has been proposed. Since the sol-gel method is characterized by film formation at a low temperature, a silica-based film containing an organic substance can be formed. The organic-inorganic composite film by the sol-gel method is disclosed, for example, in JP-A-3-212451, JP-A-3-56535, and JP-A-2002-338304.
[0011] ところで、ガラス、榭脂等の基体には、表面の帯電を防止するため、帯電防止材料 を含有したノヽードコート層が形成されることがある。なお、ハードコート層に帯電防止 能を発揮させるためには、その表面抵抗率を 1014ΩΖ口以下の範囲に制御すること が要求されている。 [0011] Incidentally, a substrate such as glass or resin may be provided with a node coat layer containing an antistatic material in order to prevent surface charging. In order for the hard coat layer to exhibit antistatic performance, it is required to control its surface resistivity within a range of 10 14 Ω or less.
[0012] 帯電防止材料としては、一般に、インジウムスズ酸ィ匕物(ΙΤΟ)やアンチモンスズ酸 化物 (ΑΤΟ)などの金属酸ィ匕物微粒子が用いられている。また、最近では、優れた導 電性および熱的安定性を発揮する、カーボンナノチューブやフラーレンがその材料と して注目されている。しかし、これらの帯電防止材料は、コーティング液中での凝集 傾向が強ぐ相溶しにくいという問題がある。  [0012] As the antistatic material, metal oxide fine particles such as indium stannate (ΙΤΟ) and antimony stannate (一般) are generally used. Recently, carbon nanotubes and fullerenes, which exhibit excellent conductivity and thermal stability, have attracted attention as materials. However, these antistatic materials have a problem that they have a tendency to agglomerate in the coating liquid and are not easily compatible.
[0013] ΙΤΟや ΑΤΟを含有するハードコート膜は、近赤外線吸収作用を発揮しうる膜として 、特にディスプレイパネルの分野にぉ 、ても注目されて 、る。  [0013] Hard coat films containing soot and soot are attracting attention, particularly in the field of display panels, as a film that can exhibit a near-infrared absorbing effect.
[0014] 特開 2005— 15615号公報において、ポリエチレンオキサイド水溶液に、親水性の 二酸ィ匕珪素の微粒子および界面活性剤とともに、 ΙΤΟや ΑΤΟなどを添加することに より、コーティング液中での ΙΤΟなどの分散性を高める技術が提案されている。しかし ながら、この技術によって得られる絶縁膜の耐摩耗性は必ずしも十分でな!、。  [0014] In Japanese Patent Application Laid-Open No. 2005-15615, the addition of soot and soot to a polyethylene oxide aqueous solution together with hydrophilic silicon dioxide fine particles and a surfactant makes it possible to remove soot in the coating solution. Techniques that improve dispersibility such as these have been proposed. However, the abrasion resistance of the insulating film obtained by this technology is not always sufficient!
[0015] ゾルゲル法によるシリカ系膜の耐摩耗性を向上させるには、シリカ系膜を 450°C以 上で熱処理することが望ましい。しかし、有機無機複合膜をこの程度の高温で熱処 理すると、膜中の有機物が分解したり、 ITOのような機能性微粒子の機能が低下した りする。 [0015] In order to improve the abrasion resistance of the silica-based film by the sol-gel method, the silica-based film is not less than 450 ° C. It is desirable to heat-treat above. However, if the organic-inorganic composite film is heat-treated at such a high temperature, the organic matter in the film is decomposed or the function of functional fine particles such as ITO is reduced.
発明の開示  Disclosure of the invention
[0016] 本発明は、帯電防止能や近赤外線吸収能を有する材料を含みながらも、耐摩耗性 に優れた有機無機複合膜が形成された物品を提供することを目的とする。  [0016] An object of the present invention is to provide an article in which an organic-inorganic composite film excellent in wear resistance is formed while containing a material having antistatic ability and near infrared absorption ability.
[0017] 本発明は、基体と、前記基体の表面に形成された、有機物および無機酸ィ匕物を含 む有機無機複合膜とを含む、有機無機複合膜が形成された物品であって、前記有 機無機複合膜が前記無機酸化物としてシリカを含み、前記有機無機複合膜が前記 シリカを主成分とし、前記有機無機複合膜の表面に対して実施する JIS R 3212〖こ 規定されたテーバー摩耗試験の後に、前記有機無機複合膜が前記基体力ゝら剥離せ ず、前記有機無機複合膜が、前記有機物の少なくとも一部として、または前記無機 酸化物としてさらに、カーボンナノチューブ、フラーレン、アンチモンスズ酸化物およ びインジウムスズ酸ィ匕物力も選ばれた少なくとも 1種、ならびに Zまたは導電性ポリマ 一を含む、有機無機複合膜が形成された物品を提供する。  [0017] The present invention is an article on which an organic-inorganic composite film is formed, including a base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base, The organic / inorganic composite film contains silica as the inorganic oxide, and the organic / inorganic composite film contains silica as a main component and is applied to the surface of the organic / inorganic composite film. After the wear test, the organic-inorganic composite film does not peel off due to the substrate strength, and the organic-inorganic composite film is further added as at least part of the organic substance or as the inorganic oxide, and further, carbon nanotubes, fullerenes, antimony tins. Provided is an article formed with an organic-inorganic composite film comprising at least one selected from oxide and indium stannate properties, and Z or a conductive polymer.
[0018] 本明細書にぉ 、て、主成分とは、含有率が最も高!、成分を!、う。含有率は質量% 基準で評価する。 JIS R 3212によるテーバー摩耗試験は、市販のテーバー摩耗 試験機を用いて実施できる。この試験は、上言 6JISに規定されているとおり、 500g重 の荷重を印加しながら行う、回転数 1000回の摩耗試験である。  In the present specification, the main component means that the content is the highest and the component is! The content is evaluated on a mass% basis. The Taber abrasion test according to JIS R 3212 can be performed using a commercially available Taber abrasion tester. This test is a wear test at a rotation speed of 1000 times while applying a load of 500g weight as specified in the above 6JIS.
[0019] 本発明は、その別の側面から、基体と、前記基体の表面に形成された、有機物およ び無機酸化物を含む有機無機複合膜とを含み、前記有機無機複合膜が前記無機 酸ィ匕物としてシリカを含み、前記有機無機複合膜が前記シリカを主成分とし、前記有 機無機複合膜が、前記有機物の少なくとも一部として、または前記無機酸化物として さら〖こ、カーボンナノチューブ、フラーレン、アンチモンスズ酸ィ匕物およびインジウムス ズ酸ィ匕物力 選ばれた少なくとも 1種、ならびに Zまたは導電性ポリマーを含む、有 機無機複合膜が形成された物品の製造方法であって、前記基体の表面に前記有機 無機複合膜の形成溶液を塗布する塗布工程と、前記基体に塗布された形成溶液か ら当該形成溶液に含まれる液体成分の少なくとも一部を除去する除去工程と、を含 み、前記形成溶液が、シリコンアルコキシド、強酸、水およびアルコールと、カーボン ナノチューブ、フラーレン、アンチモンスズ酸化物およびインジウムスズ酸化物から選 ばれた少なくとも 1種、ならびに Zまたは導電性ポリマーとを含み、前記形成溶液が、 前記強酸の少なくとも一部として、もしくは前記強酸とは別の成分として、親水性有機 ポリマーおよび Zまたは界面活性剤をさらに含み、前記シリコンアルコキシドの濃度 力 当該シリコンアルコキシドに含まれるシリコン原子を SiOに換算したときの SiO濃 [0019] From another aspect, the present invention includes a base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base, and the organic-inorganic composite film is the inorganic Silica is included as an oxide, the organic-inorganic composite film is mainly composed of the silica, and the organic-inorganic composite film is used as at least a part of the organic substance or as the inorganic oxide. A method for producing an article formed with an organic-inorganic composite film, comprising at least one selected from the group consisting of fullerene, antimony stannate and indium sulphate, and Z or a conductive polymer, A coating step of applying the organic-inorganic composite film forming solution to the surface of the substrate; and removing at least a part of the liquid component contained in the forming solution from the forming solution applied to the substrate. Including a removal step that, the The forming solution contains silicon alkoxide, strong acid, water and alcohol, at least one selected from carbon nanotubes, fullerene, antimony tin oxide and indium tin oxide, and Z or a conductive polymer, The forming solution further contains a hydrophilic organic polymer and Z or a surfactant as at least a part of the strong acid or as a component different from the strong acid, and the concentration force of the silicon alkoxide Silicon atoms contained in the silicon alkoxide SiO concentration when converted to SiO
2 2 度により表示して 3質量%を超え、前記強酸の濃度が、前記強酸からプロトンが完全 に解離したと仮定したときのプロトンの質量モル濃度により表示して 0. 001-0. lm olZkgの範囲にあり、前記水のモル数が、前記シリコンアルコキシドに含まれるシリコ ン原子の総モル数の 4倍以上であり、前記塗布工程では、雰囲気の相対湿度を 40 %未満に保持しながら、前記形成溶液を前記基体に塗布し、前記除去工程では、前 記基体を 300°C以下の温度に保持しながら、前記基体に塗布された形成溶液に含 まれる液体成分の少なくとも一部を除去する、有機無機複合膜が形成された物品の 製造方法を提供する。  2 Indicated by 2 degrees and exceeding 3% by mass, the concentration of the strong acid is 0.001-0. Lm olZkg expressed by the molar concentration of protons assuming that the proton is completely dissociated from the strong acid. The number of moles of water is at least four times the total number of moles of silicon atoms contained in the silicon alkoxide, and in the coating step, while maintaining the relative humidity of the atmosphere at less than 40%, The forming solution is applied to the substrate, and in the removing step, at least a part of the liquid component contained in the forming solution applied to the substrate is removed while maintaining the substrate at a temperature of 300 ° C. or lower. A method for producing an article on which an organic-inorganic composite film is formed is provided.
[0020] 本発明によれば、ゾルゲル法により、膜厚が 250nmを超える程度に厚くても、耐摩 耗性に優れた、帯電防止能や近赤外線吸収能を発揮する有機無機複合膜を形成で きる。本発明による有機無機複合膜は、カーボンナノチューブ、フラーレン、アンチモ ンスズ酸ィ匕物およびインジウムスズ酸ィ匕物から選ばれた少なくとも 1種、ならびに Zま たは導電性ポリマーを含むにもかかわらず、熔融法により得たガラス板に匹敵する程 度に優れた耐摩耗性を有しうる。本発明による有機無機複合膜は、膜の表面抵抗率 が 1. 0 Χ 10"ΩΖ口以下となる、高い帯電防止能を有しうる。また、本発明による有 機無機複合膜は、波長 1700nmの近赤外線の透過率が 30%以下となる、高い近赤 外線吸収能を有しうる。  [0020] According to the present invention, an organic-inorganic composite film having excellent wear resistance and exhibiting antistatic ability and near infrared absorption ability can be formed by a sol-gel method even when the film thickness is thicker than 250 nm. wear. The organic-inorganic composite film according to the present invention includes at least one selected from carbon nanotubes, fullerenes, antimony stannates, and indium stannates, and contains Z or a conductive polymer. It can have excellent wear resistance comparable to a glass plate obtained by the melting method. The organic-inorganic composite film according to the present invention can have a high antistatic ability such that the film has a surface resistivity of 1.0 to 10 ”Ω or less. The organic-inorganic composite film according to the present invention has a wavelength of 1700 nm. It can have a high near-infrared absorption capacity with a near infrared transmittance of 30% or less.
[0021] 本発明の製造方法によれば、形成溶液の一度の塗布により、例えば膜厚が 250η mを超える程度に厚ぐ耐摩耗性に優れるとともに、高い帯電防止能や近赤外線吸 収能を有しうる膜を形成できる。  [0021] According to the production method of the present invention, by applying the forming solution once, for example, the film thickness is more than 250 ηm and the wear resistance is excellent, and high antistatic ability and near infrared absorption ability are obtained. A possible film can be formed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、まずゾルゲルプロセスについて説明する。 [0023] シリコンアルコキシドを出発原料とするゾルゲル法の場合、膜のコーティング液 (以 下、形成溶液と呼ぶ)に含まれるシリコンアルコキシドは、形成溶液中において、水と 触媒との存在の下、加水分解反応および脱水縮合反応を経てシロキサン結合を介し たオリゴマーとなり、これに伴って形成溶液はゾル状態となる。 [0022] Hereinafter, the sol-gel process will be described first. In the sol-gel method using silicon alkoxide as a starting material, silicon alkoxide contained in a film coating solution (hereinafter referred to as a forming solution) is hydrolyzed in the presence of water and a catalyst in the forming solution. Through a decomposition reaction and a dehydration condensation reaction, it becomes an oligomer via a siloxane bond, and the forming solution becomes a sol state along with this.
[0024] ゾル状態となった形成溶液は基体に塗布され、塗布された形成溶液からは、水や、 アルコールなどの有機溶媒が揮発する。この乾燥工程において、オリゴマーは濃縮 され、縮重合反応が進行して分子量が大きくなり、やがて溶液は流動性を失う。こうし て、基体上に半固形状のゲル力もなる膜が形成される。ゲルィ匕直後は、シロキサン結 合のネットワークの隙間に、有機溶媒や水が満たされた状態にある。ゲル力 水や溶 媒が揮発すると、シロキサンポリマーが収縮し、縮重合反応がさらに進行して、膜が 硬化する。  [0024] The forming solution in a sol state is applied to the substrate, and water or an organic solvent such as alcohol volatilizes from the applied forming solution. In this drying step, the oligomer is concentrated, the polycondensation reaction proceeds, the molecular weight increases, and the solution loses fluidity over time. Thus, a film having a semi-solid gel force is formed on the substrate. Immediately after gelling, the gap between the siloxane bond networks is filled with organic solvent and water. Gel force When water or solvent volatilizes, the siloxane polymer shrinks, the condensation polymerization reaction proceeds further, and the film is cured.
[0025] 従来のゾルゲル法では、固化したゲルにおいて、有機溶媒や水が満たされていた 隙間は、 400°C程度までの熱処理を行っても、完全に埋まることはなぐ細孔として残 存するため、膜の耐摩耗性は十分に高くはならない。それゆえ、従来は、硬質な膜を 得るために、さらに高温、例えば 500°C以上での熱処理を必要としていた。  [0025] In the conventional sol-gel method, the gap filled with the organic solvent and water in the solidified gel remains as pores that cannot be completely filled even after heat treatment up to about 400 ° C. The abrasion resistance of the film should not be high enough. Therefore, conventionally, in order to obtain a hard film, a heat treatment at a higher temperature, for example, 500 ° C. or more has been required.
[0026] ゾルゲル法によるシリカ系膜の熱処理における、反応と温度との関係についてさら に詳しく述べる。約 100〜150°Cの熱処理では、形成溶液に含まれている溶媒や水 が蒸発する。約 250〜400°Cの熱処理では、原料に有機材料が含まれていると、そ の有機材料が分解し、蒸発する。 400°Cを超える温度で熱処理すると、通常、膜には 有機材料が残らない。約 500°C以上の熱処理では、ゲル骨格の収縮が起こり、膜が 歉密になる。  [0026] The relationship between the reaction and temperature in the heat treatment of the silica-based film by the sol-gel method will be described in more detail. The heat treatment at about 100-150 ° C evaporates the solvent and water contained in the forming solution. In the heat treatment at about 250-400 ° C, if the raw material contains organic material, the organic material decomposes and evaporates. When heat-treated at a temperature exceeding 400 ° C, usually no organic material remains in the film. Heat treatment above about 500 ° C causes the gel skeleton to shrink and the film to become dense.
[0027] 上述したように、通常のゾルゲル反応では、ゲル化の直後には、形成されたネットヮ ークの隙間に有機溶媒や水が満たされている。この隙間の大きさは、溶液中でのシリ コンアルコキシドの重合の形態に依存することが知られている。  [0027] As described above, in a normal sol-gel reaction, immediately after gelation, the gap between the formed networks is filled with an organic solvent or water. It is known that the size of this gap depends on the form of polymerization of the silicon alkoxide in the solution.
[0028] 重合の形態は、溶液の pHによって大きく変化する。酸性の液中では、シリコンアル コキシドのオリゴマーは直鎖状に成長しやすい。このような液を基体に塗布すると、直 鎖状のオリゴマーが折り重なって網目状組織を形成し、得られる膜は比較的隙間の 小さい緻密な膜となる。しかし、直鎖状のポリマーが折り重なった状態で固化されるた め、ミクロ構造は強固ではなぐ隙間から溶媒や水が揮発する際にクラックが入りやす い。 [0028] The form of polymerization varies greatly depending on the pH of the solution. In an acidic solution, oligomers of silicon alkoxide tend to grow linearly. When such a liquid is applied to the substrate, the linear oligomers are folded to form a network structure, and the resulting film becomes a dense film with relatively small gaps. However, the linear polymer is solidified in a folded state For this reason, the microstructure is not strong, and cracks easily occur when the solvent or water volatilizes through gaps.
[0029] 一方、アルカリ性の液中では、球状のオリゴマーが成長しやすい。このような液を基 体に塗布すると、球状のオリゴマーが互いにつながった構造を形成し、比較的大きな 隙間を有する膜となる。この隙間は、球状のオリゴマーが結合し成長して形成される ため、隙間から溶媒や水が揮発する際にクラックは入りにくい。  [0029] On the other hand, spherical oligomers are likely to grow in an alkaline liquid. When such a liquid is applied to the substrate, a structure in which spherical oligomers are connected to each other is formed, and a film having a relatively large gap is formed. Since this gap is formed by bonding and growing spherical oligomers, cracks are unlikely to occur when the solvent or water volatilizes from the gap.
[0030] 本発明者らは、比較的緻密な膜ができる酸性領域で、強酸の濃度、水分量などを 適切に調整すると、ある条件下では、厚膜としても緻密でクラックのない膜を形成でき るという知見を見出し、さらにこの知見を発展させることにより、本発明を完成した。  [0030] In the acidic region where a relatively dense film can be formed, the present inventors form a dense and crack-free film under certain conditions by adjusting the concentration of strong acid, the amount of water, etc. appropriately. The present invention has been completed by finding the knowledge that it can be done and further developing this knowledge.
[0031] シラノールの等電点は 2であることが知られている。これは、形成溶液の pHが 2であ ると、液中においてシラノールが最も安定に存在できる、ということを示している。つま り、加水分解されたシリコンアルコキシドが溶液中に多量に存在する場合においても 、溶液の pHが 2程度であれば、脱水縮重合反応によりオリゴマーが形成される確率 が非常に低くなる。この結果、加水分解されたシリコンアルコキシド力 モノマーまた は低重合の状態で、形成溶液中に存在しやすくなる。  [0031] It is known that the isoelectric point of silanol is 2. This indicates that when the pH of the forming solution is 2, silanol can exist most stably in the solution. That is, even when a large amount of hydrolyzed silicon alkoxide is present in the solution, if the pH of the solution is about 2, the probability that an oligomer is formed by the dehydration condensation polymerization reaction is very low. As a result, the hydrolyzed silicon alkoxide force monomer or low polymerization state tends to exist in the forming solution.
[0032] pHが 2程度の領域では、シリコンアルコキシドは、 1分子当たり 1個のアルコキシル 基が加水分解され、シラノールとなった状態で安定化される。例えば、テトラアルコキ シシランには 4つのアルコキシル基があるが、そのうちの 1つのアルコキシル基が加水 分解され、シラノールとなった状態で安定化されるのである。  [0032] In the region where the pH is about 2, silicon alkoxide is stabilized in a state where one alkoxyl group per molecule is hydrolyzed to form silanol. For example, tetraalkoxysilane has four alkoxyl groups, one of which is hydrolyzed and stabilized in the form of silanol.
[0033] ゾルゲル溶液に、強酸を添カ卩し、強酸のプロトンが完全に解離したとしたときのプロ トンの質量モル濃度(以下、単に「プロトン濃度」と称することがある)で、 0. 001-0. 2molZkg程度となるようにすると、溶液の pHは 3〜1程度となる。この範囲に pHを 調整すると、形成溶液中において、シリコンアルコキシドがモノマーまたは低重合の シラノールとして安定して存在できる。  [0033] When the strong acid is added to the sol-gel solution and the proton of the strong acid is completely dissociated, the molar mass of proton (hereinafter, simply referred to as “proton concentration”) is: If it is about 001-0.2molZkg, the pH of the solution will be about 3-1. By adjusting the pH to this range, the silicon alkoxide can be stably present as a monomer or a low polymerization silanol in the forming solution.
[0034] 形成溶液は、水およびアルコールの混合溶媒を含み、必要に応じて他の溶媒を添 加することが可能である力 そのような混合溶媒の場合にも、強酸を用い、かつ強酸 力もプロトンが完全に解離したと仮定したときのプロトンの質量モル濃度を 0. 001〜 0. 2molZkgとなるようにすることで、 pH2前後の液とすることができる。 [0035] プロトンの質量モル濃度の計算に当たっては、使用する酸の水中での酸解離指数 1S 4以上のプロトンを考慮する必要はない。例えば、弱酸である酢酸の水中での酸 解離指数は 4. 8であるから、形成溶液に酢酸を含ませた場合にも、酢酸のプロトンは 上記のプロトン濃度には含めない。 [0034] The forming solution contains a mixed solvent of water and alcohol, and can be added with another solvent as necessary. In the case of such a mixed solvent, a strong acid is used and the strong acid strength is also high. By setting the molar concentration of protons to 0.001 to 0.2 molZkg when it is assumed that protons are completely dissociated, a liquid having a pH of around 2 can be obtained. In calculating the molar concentration of protons, it is not necessary to consider protons having an acid dissociation index of 1S 4 or higher in water of the acid used. For example, since the acid dissociation index of acetic acid, which is a weak acid, in water is 4.8, even when acetic acid is included in the forming solution, the proton concentration of acetic acid is not included in the above proton concentration.
[0036] また例えば、リン酸の解離段は 3段であり、一分子に付き 3つのプロトンを解離する 可能性がある。しかし、 1段目の解離指数は 2. 15であり強酸とみなせるが、 2段目の 解離指数は 7. 2であり、 3段目の解離指数はさらに大きい値となる。したがって、強酸 力もの解離を前提とする上記のプロトン濃度は、リン酸 1分子からは、 1個のプロトンし か解離しないものとして計算すればよい。 1個のプロトンが解離した後のリン酸は強酸 ではなぐ 2段目以降のプロトンの解離を考慮する必要はない。本明細書において、 強酸とは、具体的には、水中での酸解離指数力 未満のプロトンを有する酸をいう。  [0036] For example, phosphoric acid has three dissociation stages, and there is a possibility of dissociating three protons per molecule. However, the first-stage dissociation index is 2.15, which can be regarded as a strong acid, but the second-stage dissociation index is 7.2, and the third-stage dissociation index is even higher. Therefore, the above proton concentration on the premise of dissociation with strong acidity may be calculated assuming that only one proton is dissociated from one molecule of phosphoric acid. Phosphoric acid after the dissociation of one proton is not a strong acid. It is not necessary to consider the dissociation of protons after the second stage. In the present specification, the strong acid specifically refers to an acid having protons having an acid dissociation exponential force in water.
[0037] なお、上述のように、プロトン濃度を強酸のプロトンが完全に解離したとしたときの濃 度として規定する理由は、有機溶媒と水との混合液中では、強酸の解離度を正確に 求めることが困難だ力 である。  [0037] As described above, the reason why the proton concentration is defined as the concentration when the proton of the strong acid is completely dissociated is that the degree of dissociation of the strong acid is accurately determined in a mixture of an organic solvent and water. It is a force that is difficult to ask for.
[0038] このように形成溶液の pHを 1〜3程度に保ち、これを基体表面に塗布して乾燥させ ると、低重合状態にあるシリコンアルコキシドが密に充填されるため、細孔が小さぐ カゝなり緻密な膜が得られる。  [0038] When the pH of the forming solution is maintained at about 1 to 3 and applied to the substrate surface and dried in this way, the silicon alkoxide in a low polymerization state is closely packed, so that the pores are small. Succeedingly a dense film can be obtained.
[0039] この膜は緻密ではある力 シリコンアルコキシドの加水分解および縮重合反応が不 十分であることに起因して、 150°C以下での低温度域での加熱では、ある硬度以上 にはならない。そこで、シリコンアルコキシドの加水分解および縮重合反応力 形成 溶液の塗布後において容易に進行するように、水を、シリコンアルコキシドに対して 過剰に添加することとした。加水分解および縮重合反応が進行しやす!ヽ状態とすると 、高温に加熱しなくても膜が硬くなる。具体的には、シリコンアルコキシドに含まれるシ リコン原子の総モル数に対し、加水分解に必要とされる最大のモル数、すなわち 4倍 以上のモル数の水を添カ卩しておく。水の添カ卩量の上限は例えば 20倍、さらには 40 倍とすることができる。  [0039] This film is dense. Due to insufficient hydrolysis and polycondensation reaction of silicon alkoxide, heating in a low temperature range of 150 ° C or lower does not exceed a certain hardness. . In view of this, water was excessively added to the silicon alkoxide so that it proceeded easily after the application of the hydrolytic and polycondensation reaction force forming solution of the silicon alkoxide. Hydrolysis and polycondensation reactions are likely to proceed! In the soot state, the film becomes hard without heating to a high temperature. Specifically, the maximum number of moles required for hydrolysis, that is, four times or more of water, is added to the total number of moles of silicon atoms contained in the silicon alkoxide. The upper limit of the amount of water added can be, for example, 20 times, or even 40 times.
[0040] 形成溶液の乾燥時には、溶媒の揮発と並行して水も蒸発する。これを考慮すると、 水のモル数は、シリコン原子の総モル数に対し、 4倍を超える程度、例えば 5〜20倍 とすることが好ましい。 [0040] When the forming solution is dried, water evaporates in parallel with the volatilization of the solvent. Considering this, the number of moles of water is more than four times the total number of moles of silicon atoms, for example, 5 to 20 times. It is preferable that
[0041] なお、シリコンアルコキシドでは、 1つのシリコン原子について最大 4つのアルコキシ ル基が結合しうる。アルコキシル基の数が少ないアルコキシドでは、加水分解に必要 な水のモル数は少なくなる。また、 4つのアルコキシル基がシリコン原子に結合したテ トラアルコキシシランであっても、その重合体 (例えば、コルコート製「ェチルシリケート [0041] In silicon alkoxide, up to four alkoxyl groups can be bonded to one silicon atom. An alkoxide having a small number of alkoxyl groups reduces the number of moles of water required for hydrolysis. In addition, tetraalkoxysilane in which four alkoxyl groups are bonded to a silicon atom may be a polymer (for example, “Ethylsilicate manufactured by Colcoat”).
40」などとして市販されている)では、加水分解に必要な水の総モル数は、シリコン原 子の 4倍よりも少ない(重合体の Siのモル数を nとすると(n≥ 2)、化学量論的に加水 分解に必要な水のモル数は、(2n+ 2)モルとなる)。重合度の高いアルコキシシラン 原料を使うほど、加水分解に必要な水のモル数は少なくなる。したがって、現実には 、シリコンアルコキシドの加水分解に必要な水のモル数は、シリコンアルコキシドに含 まれるシリコン原子の総モル数の 4倍を下回ることもある力 過剰な水の添カ卩がむしろ 好ましいことを考慮し、本発明では、シリコン原子の総モル数の 4倍以上、好ましくは 4倍を超える、さらに好ましくは 5倍以上のモル数の水を添加することとした。 40 ”), the total number of moles of water required for hydrolysis is less than four times that of silicon atoms (assuming that the number of moles of Si in the polymer is n (n≥2)) The stoichiometric amount of water required for hydrolysis is (2n + 2) moles). The higher the degree of polymerization, the lower the number of moles of water required for hydrolysis. Therefore, in reality, the number of moles of water required for hydrolysis of silicon alkoxide may be less than four times the total number of moles of silicon atoms contained in silicon alkoxide. In consideration of this, in the present invention, it is decided to add water having a mole number of 4 times or more, preferably more than 4 times, more preferably 5 times or more, the total mole number of silicon atoms.
[0042] 化学量論的に加水分解に必要なモル数を超える水を添加すると、乾燥工程におけ る水の蒸発に伴う毛管収縮が大きくなり、シリコンアルコキシドの拡散および濃縮が起 こりやすくなり、加水分解および縮重合反応が促進される。溶媒の揮発および水の蒸 発に伴って、塗布された液における pHが上記の範囲力 変動することも、加水分解 が促進される要因の一つとなる。こうして、緻密な膜を形成し、かつ加水分解および 脱水縮合反応を十分に進行させると、硬質の膜が形成される。その結果、従来よりも 低温の熱処理により、耐摩耗性に優れた膜を得ることができる。  [0042] When water exceeding the stoichiometric amount required for hydrolysis is added, capillary shrinkage due to evaporation of water in the drying process increases, and silicon alkoxide tends to diffuse and concentrate. Hydrolysis and condensation polymerization reactions are promoted. As the solvent volatilizes and water evaporates, the pH of the applied liquid fluctuates in the above range. This is another factor that promotes hydrolysis. Thus, when a dense film is formed and the hydrolysis and dehydration condensation reactions are sufficiently advanced, a hard film is formed. As a result, a film having excellent wear resistance can be obtained by a heat treatment at a lower temperature than conventional.
[0043] この方法を用いると、厚くても耐摩耗性に優れたシリカ系膜を得ることができる。厚 い膜を得るためには、シリコンアルコキシドの濃度が比較的高くなるように、例えばシ リコンアルコキシドに含まれるシリコン原子を、 SiOに換算したときの SiO濃度により  [0043] When this method is used, a silica-based film having excellent wear resistance can be obtained even if it is thick. In order to obtain a thick film, for example, the silicon atom contained in the silicon alkoxide is adjusted by the SiO concentration when converted to SiO so that the silicon alkoxide concentration is relatively high.
2 2 表示して 3質量%を超えるように、形成溶液を調製するとよい。詳しくは、 3質量%を 超えて 30質量%以下の範囲とすることが望まし 、。  2 2 The formation solution should be prepared so that it exceeds 3% by weight. Specifically, it is desirable that the range be over 3% by mass and below 30% by mass.
[0044] 形成溶液には、さらに、親水性有機ポリマーおよび Zまたは界面活性剤を添加す るとよい。親水性有機ポリマーや界面活性剤は、塗布した形成溶液に含まれる液体 成分の蒸発に伴って、生じることのあるクラックの発生を抑制する。また、親水性有機 ポリマーや界面活性剤は、液中に生成したシリカ粒子の間に介在し、液体成分の蒸 発に伴う膜収縮の影響を緩和する。このように、親水性有機ポリマーや界面活性剤を 添加すると、膜の過剰な硬化収縮を抑えることができるため、膜中の応力が緩和され ると考えられる。親水性有機ポリマーや界面活性剤は、膜の収縮を抑制し、膜の耐摩 耗性を保持する役割を果たすこととなる。 [0044] A hydrophilic organic polymer and Z or a surfactant may be further added to the forming solution. Hydrophilic organic polymers and surfactants suppress the generation of cracks that may occur as the liquid components contained in the applied forming solution evaporate. Also hydrophilic organic Polymers and surfactants are interposed between the silica particles generated in the liquid, and alleviate the influence of film shrinkage caused by evaporation of the liquid component. Thus, it is considered that when a hydrophilic organic polymer or a surfactant is added, excessive curing shrinkage of the film can be suppressed, so that the stress in the film is relieved. The hydrophilic organic polymer and the surfactant serve to suppress the shrinkage of the film and maintain the abrasion resistance of the film.
[0045] 本発明の方法では、従来よりも低温で膜を加熱すれば足りるため、加熱後も親水性 有機ポリマーや界面活性剤は膜に残存する。本発明によれば、さらに厚膜ィ匕しても、 親水性有機ポリマーや界面活性剤が膜中に存在した状態で、耐摩耗性に優れた膜 を得ることが可能となる。  [0045] In the method of the present invention, it is sufficient to heat the film at a lower temperature than in the prior art, so that the hydrophilic organic polymer and the surfactant remain in the film even after the heating. According to the present invention, it is possible to obtain a film having excellent abrasion resistance even when the film is thicker, in the state where the hydrophilic organic polymer and the surfactant are present in the film.
[0046] 親水性有機ポリマーおよび Zまたは界面活性剤は、予め形成溶液に添加しておく とよい。この形成溶液力も形成した有機無機複合膜では、有機物と無機物とが分子レ ベルで複合ィ匕して 、ると考えられる。 [0046] The hydrophilic organic polymer and Z or surfactant may be added to the forming solution in advance. In the organic-inorganic composite film in which the forming solution force is also formed, it is considered that the organic substance and the inorganic substance are combined at the molecular level.
[0047] 種々の実験結果を参照すると、親水性有機ポリマーや界面活性剤は、ゾルゲル反 応によって形成されるシリカ粒子の成長を抑制し、膜の多孔質ィ匕を抑制しているよう でもある。 [0047] Referring to various experimental results, it seems that the hydrophilic organic polymer and the surfactant suppress the growth of silica particles formed by the sol-gel reaction and suppress the porous property of the film. .
[0048] 親水性有機ポリマーとしては、ポリオキシアルキレン基 (ポリアルキレンォキシド構造 )を含むもの、例えばポリエチレングリコール、ポリプロピレングリコール、ポリエーテル 系の界面活性剤等を用いることができる。また、ポリビニルピロリドン系、ポリビュル力 プロラタタム系の界面活性剤等を用いることもできる。また、ポリスチレンスルホン酸ナ トリウムを用いることちできる。  [0048] As the hydrophilic organic polymer, a polymer containing a polyoxyalkylene group (polyalkylene oxide structure), for example, polyethylene glycol, polypropylene glycol, polyether-based surfactant and the like can be used. Further, polyvinyl pyrrolidone type, polybule force prolatatam type surfactants and the like can also be used. Further, sodium polystyrene sulfonate can be used.
[0049] 界面活性剤としては、上記の界面活性剤として機能しうる親水性有機ポリマーを用 いてもよいし、例えば、 R NOH、 RR' NOH、 R R' NOH、 RR'R"R"'NOHの構造  [0049] As the surfactant, a hydrophilic organic polymer that can function as the above-described surfactant may be used. For example, R NOH, RR 'NOH, RR' NOH, RR'R "R" 'NOH Structure of
4 3 2 2  4 3 2 2
式で示される、または水酸基 (OH)に代えて塩化物基 (C1)を有する構造式で示され る、第 4級アンモ-ゥム化合物を用いることもできる。膜中にカーボンナノチューブを 分散させる場合には、第 4級アンモ-ゥム化合物を用いることが特に好ましい。  A quaternary ammonium compound represented by the formula or represented by a structural formula having a chloride group (C1) in place of the hydroxyl group (OH) can also be used. When carbon nanotubes are dispersed in the film, it is particularly preferable to use a quaternary ammonium compound.
[0050] これらの親水性有機ポリマーや界面活性剤は、単独で、または複数種を組み合わ せて用いてもよい。 [0050] These hydrophilic organic polymers and surfactants may be used alone or in combination of two or more.
[0051] 本発明による有機無機複合膜は、カーボンナノチューブ、フラーレン、アンチモンス ズ酸ィ匕物およびインジウムスズ酸ィ匕物から選ばれた少なくとも 1種、ならびに Zまたは 導電性ポリマーを含むことにより、表面抵抗率が 1. οχ ιο14ΩΖ口以下となりうる。ま た、本発明による有機無機複合膜が形成された物品は、有機無機複合膜が、無機酸 化物としてさらに、アンチモンスズ酸ィ匕物およびインジウムスズ酸ィ匕物から選ばれた 少なくとも 1種を含むことにより、波長 1700nmの近赤外線の透過率が 30%以下、さ らには当該透過率が 20%以下となりうる。本発明による有機無機複合膜は、有機物 の少なくとも一部としてさらに、カーボンナノチューブならびにフラーレン力 選ばれ た少なくとも 1種および Zまたは導電性ポリマーを含むものであってもよい。本発明に よる有機無機複合膜が形成された物品は、ディスプレイ用基材として好適である。 [0051] The organic-inorganic composite film according to the present invention comprises carbon nanotubes, fullerenes, antimony By including at least one selected from oxalates and indium stannates, and Z or conductive polymers, the surface resistivity can be less than 1. οχιο 14 Ω. Further, in the article in which the organic-inorganic composite film according to the present invention is formed, the organic-inorganic composite film further includes at least one selected from antimony stannate and indium stannate as the inorganic oxide. By including, the transmittance of near-infrared light having a wavelength of 1700 nm can be 30% or less, and the transmittance can be 20% or less. The organic-inorganic composite film according to the present invention may further contain carbon nanotubes and at least one selected from fullerene force and Z or a conductive polymer as at least a part of the organic substance. The article formed with the organic-inorganic composite film according to the present invention is suitable as a display substrate.
[0052] カーボンナノチューブやフラーレンとしては、例えば S.Iijima, Nature, 354, 56 (1991) に記載の種々のものを用いることができる。  [0052] As the carbon nanotubes and fullerenes, for example, various ones described in S. Iijima, Nature, 354, 56 (1991) can be used.
[0053] 導電性ポリマーは、例えば、ポリチォフェンおよびその誘導体ならびにポリイソチア ナフテンおよびその誘導体を使用できる。ポリチォフェン誘導体としては、ポリエチレ ンジォキシチォフェン(PEDOT)が例示できる。このように、導電性ポリマーは PED OTを含むものであってよい。 PEDOTのドーパントとしては、パラトルエンスルホン酸 が例示できる。 PEDOTは不溶性であるため、形成溶液への添加に際し、例えばポリ スチレンスルホン酸と共存させることが望ましい。他方、上記のポリチォフェンおよび ポリイソチアナフテンに代表される自己ドープ型導電性ポリマーは水溶性である。こ のように、導電性ポリマーは、親水性有機ポリマーとして機能しうるポリマーであっても よい。導電性ポリマーと共存させる親水性有機ポリマーは、非導電性のポリマーとす る。  [0053] As the conductive polymer, for example, polythiophene and derivatives thereof and polyisothianaphthene and derivatives thereof can be used. An example of the polythiophene derivative is polyethylene dioxythiophene (PEDOT). Thus, the conductive polymer may include PED OT. An example of a PEDOT dopant is p-toluenesulfonic acid. Since PEDOT is insoluble, it is desirable to coexist with, for example, polystyrene sulfonic acid when added to the forming solution. On the other hand, self-doped conductive polymers represented by the above polythiophenes and polyisothianaphthenes are water-soluble. Thus, the conductive polymer may be a polymer that can function as a hydrophilic organic polymer. The hydrophilic organic polymer that coexists with the conductive polymer is a non-conductive polymer.
[0054] アンチモンスズ酸化物(ATO)やインジウムスズ酸化物(ITO)としては、体積平均 粒径 1〜: LOOnmの範囲にあるものが好ましい。粒径が lOOnmを超えるとレイリー散 乱によって光が著しく反射され、膜が白化して透明性が低下する場合がある。また、 粒径が lnm未満であると、導電性が低下したり粒子の分散性が低下したりする場合 がある。  [0054] Antimony tin oxide (ATO) and indium tin oxide (ITO) are preferably those having a volume average particle size of 1 to LOONm. When the particle size exceeds lOOnm, light is remarkably reflected by Rayleigh scattering, and the film may be whitened to reduce transparency. If the particle size is less than 1 nm, the conductivity may be lowered or the dispersibility of the particles may be lowered.
[0055] 以上のようなゾルゲル法の改善により、有機物に代表される耐熱性の低い材料を含 むにもかかわらず、 JIS R 3212に規定されたテーバー摩耗試験を適用しても、基 体力も剥離しない有機無機複合膜が、クラックが発生することなしに形成された物品 が提供される。 [0055] By the improvement of the sol-gel method as described above, even if the Taber abrasion test stipulated in JIS R 3212 is applied even though it includes a material having low heat resistance typified by organic matter, Provided is an article in which an organic-inorganic composite film that does not peel off its physical strength is formed without generation of cracks.
[0056] 有機無機複合膜の膜厚は、 250nmを超え 5 μ m以下であり、好ましくは 300nmを 超え 5 μ m以下であり、より好ましくは 800nmを超え 5 μ m以下であり、さらに好ましく は 1 mを超え 5 μ m以下であり、特に好ましくは 2 μ mを超え 5 μ m以下である。有 機無機複合膜の膜厚は 4 μ m以下であってもよ 、。  [0056] The thickness of the organic-inorganic composite film is more than 250 nm and not more than 5 μm, preferably more than 300 nm and not more than 5 μm, more preferably more than 800 nm and not more than 5 μm, and still more preferably It is more than 1 m and not more than 5 μm, particularly preferably more than 2 μm and not more than 5 μm. The thickness of the organic / inorganic composite film may be 4 μm or less.
[0057] 本発明によれば、テーバー摩耗試験の後に測定した、当該テーバー摩耗試験を適 用した部分のヘイズ率を 4%以下、さらには 3%以下、とすることもできる。これは、熔 融法により得たガラス質膜に相当する耐摩耗性である。  [0057] According to the present invention, the haze ratio of the portion to which the Taber abrasion test is applied, which is measured after the Taber abrasion test, can be 4% or less, further 3% or less. This is wear resistance equivalent to a glassy film obtained by the melting method.
[0058] 本発明による有機無機複合膜では、有機物の含有量が、有機無機複合膜の総質 量に対して 0. 1〜60%、好ましくは 2〜60%である。本発明による有機無機複合膜 はリンを含んでいてもよい。  [0058] In the organic-inorganic composite film according to the present invention, the organic substance content is 0.1 to 60%, preferably 2 to 60%, based on the total mass of the organic-inorganic composite film. The organic-inorganic composite film according to the present invention may contain phosphorus.
[0059] 電子機器等の遠隔操作用端末では、光信号として、波長 800〜1200nmの近赤 外線が使用されている。プラズマディスプレイパネル (PDP)に代表される電子ディス プレイは、このような波長の近赤外線をディスプレイ表面力も放出することがある。こ の際、遠隔操作用端末からの光信号の読み取りに支障が生じ、電子機器が誤作動 する場合がある。本発明による有機無機複合膜が形成された物品では、波長 ΙΟΟΟη mの近赤外線の透過率が 30%以下、さらには当該透過率が 20%以下となりうる。こ のため、本発明の物品を例えばディスプレイ用基材に適用すると、電子機器の誤作 動を防止できる。  [0059] In a remote operation terminal such as an electronic device, a near infrared ray having a wavelength of 800 to 1200 nm is used as an optical signal. Electronic displays such as plasma display panels (PDP) may emit near-infrared rays of such a wavelength as well as display surface force. At this time, the reading of the optical signal from the remote operation terminal may be hindered and the electronic device may malfunction. In an article in which the organic-inorganic composite film according to the present invention is formed, the transmittance of near infrared rays having a wavelength of 波長 ηm can be 30% or less, and further the transmittance can be 20% or less. For this reason, when the article of the present invention is applied to a display substrate, for example, it is possible to prevent malfunction of the electronic device.
[0060] シリカ系膜に耐摩耗性を付与するために、膜にフッ素榭脂微粒子が添加されること 力 Sある。しかし、本発明による有機無機複合膜は、後述する実施例で示すように、フッ 素榭脂微粒子を含まないにもかかわらず好適な耐摩耗性を有する。このように、本発 明による有機無機複合膜は、フッ素榭脂微粒子を含まない状態にあってもよい。フッ 素榭脂微粒子を含まないとは、機能の付与に必要となる添加量に満たない程度の量 のフッ素榭脂微粒子が膜中に混入することを排除する趣旨ではない。  [0060] In order to impart abrasion resistance to the silica-based film, the addition of fluorine resin particles to the film is a force S. However, the organic-inorganic composite film according to the present invention has suitable wear resistance despite the fact that it does not contain fluorine resin fine particles, as shown in the examples described later. Thus, the organic-inorganic composite film according to the present invention may be in a state that does not contain the fluorocoagulant fine particles. The absence of fluorine resin fine particles does not mean that fluorine resin fine particles in an amount less than the addition amount necessary for imparting a function are mixed in the film.
[0061] 本発明の方法では、シリコンアルコキシド、強酸、水、アルコールならびに親水性有 機ポリマーおよび Zまたは界面活性剤を含み、さらにカーボンナノチューブ、フラー レン、アンチモンスズ酸ィ匕物およびインジウムスズ酸ィ匕物から選ばれた少なくとも 1種[0061] The method of the present invention includes silicon alkoxide, strong acid, water, alcohol, a hydrophilic organic polymer, and Z or a surfactant. At least one selected from Len, antimony stannate and indium stannate
、ならびに Zまたは導電性ポリマーを含む、形成溶液を用いる。親水性有機ポリマー や界面活性剤は、通常、強酸とは別の成分として添加されるが、強酸として機能する ポリマー、例えばリン酸エステル基を含むポリマー、を強酸の少なくとも一部として添 カロしてちょい。 And a forming solution comprising Z or a conductive polymer. Hydrophilic organic polymers and surfactants are usually added as components separate from strong acids, but polymers that function as strong acids, such as polymers containing phosphate ester groups, are added as at least part of the strong acid. A little.
[0062] シリコンアルコキシドは、テトラアルコキシシランおよびその重合体力 選ばれる少な くとも 1種が好適である。シリコンアルコキシドおよびその重合体は、その一部または 全てのアルコキシル基が加水分解されたものを含んでもよい。なお、詳しくは後述す る力 本発明では、 3官能シラン (R'Si(OR) )などの 4官能シラン以外のシリコンアル  [0062] The silicon alkoxide is preferably at least one selected from tetraalkoxysilane and its polymer strength. Silicon alkoxides and polymers thereof may include those in which some or all of the alkoxyl groups are hydrolyzed. The force described later in detail In the present invention, silicon alcohol other than tetrafunctional silane such as trifunctional silane (R'Si (OR)) is used.
3  Three
コキシドを用いずとも、耐摩耗性に優れた有機無機複合膜を、クラックの発生を抑制 しつつ、膜厚が 250nmを超える程度に厚く形成することもできる。  An organic / inorganic composite film having excellent wear resistance can be formed to a thickness of more than 250 nm while suppressing the occurrence of cracks, without using coxide.
[0063] シリコンアルコキシドの濃度は、当該シリコンアルコキシドに含まれるシリコン原子を SiOに換算したときの SiO濃度により表示して、 3質量%を超えて 30質量%以下の[0063] The concentration of silicon alkoxide is expressed as SiO concentration when silicon atoms contained in the silicon alkoxide are converted to SiO, and is more than 3 mass% and not more than 30 mass%.
2 2 twenty two
範囲にあることが望ましぐ 3質量%を超えて 13質量%未満の範囲にあることが好ま しぐ 3質量%を超えて 9質量%以下の範囲にあることがより好ましい。形成溶液にお けるシリコンアルコキシドの濃度が高すぎると、基体力 剥離するようなクラックが膜中 に発生することがある。  Desirably, it is in the range of more than 3% by mass and less than 13% by mass, more preferably in the range of more than 3% by mass and not more than 9% by mass. If the concentration of silicon alkoxide in the forming solution is too high, cracks may be generated in the film that cause the substrate force to peel off.
[0064] 親水性有機ポリマーや界面活性剤の総濃度は、シリコンアルコキシドの濃度を SiO  [0064] The total concentration of the hydrophilic organic polymer and the surfactant is the same as the concentration of silicon alkoxide.
2 濃度により表示した場合、当該 SiOに対して 60質量%以下とすることが好ましぐ 40  2 When expressed by concentration, it is preferable to be 60% by mass or less based on the SiO 40
2  2
質量%以下とすることがより好ましい。残存量が多くなると、加熱硬化後の膜強度が 低下してしまう場合があるからである。他方、親水性有機ポリマーや界面活性剤の濃 度が低すぎると、硬化時の収縮による膜応力を緩和することができずクラックが発生 することがある。それゆえ、親水性有機ポリマーや界面活性剤の総濃度は、上記 SiO に対して 0. 1質量%以上、特に 5質量%以上、とすることが好ましい。  More preferably, it is not more than mass%. This is because if the remaining amount increases, the film strength after heat curing may decrease. On the other hand, if the concentration of the hydrophilic organic polymer or the surfactant is too low, the film stress due to shrinkage during curing cannot be relieved, and cracks may occur. Therefore, the total concentration of the hydrophilic organic polymer and the surfactant is preferably 0.1% by mass or more, particularly 5% by mass or more with respect to the SiO 2.
2  2
[0065] 親水性有機ポリマーや界面活性剤は、カーボンナノチューブや ATO微粒子等の 酸に対する凝集を抑制する分散剤としても機能する。特に、リン酸エステル基および ポリオキシアルキレン基を含むリン酸系界面活性剤は、その分散性に優れている。形 成溶液中にこれらの帯電防止材料を均一に分散させるには、カーボンナノチューブ 、フラーレン、 ATOおよび ITO力も選ばれた少なくとも 1種と、親水性有機ポリマーお よび Ζまたは界面活性剤とを含む混合液に、シリコンアルコキシド、水およびアルコ ールを添加する工程を含んで、形成溶液を調製することが好ま 、。 [0065] The hydrophilic organic polymer and the surfactant also function as a dispersant for suppressing aggregation of carbon nanotubes, ATO fine particles and the like with respect to acid. In particular, phosphate surfactants containing a phosphate ester group and a polyoxyalkylene group are excellent in dispersibility. To uniformly disperse these antistatic materials in the forming solution, carbon nanotubes Including a step of adding silicon alkoxide, water and alcohol to a mixed solution containing at least one selected from the group consisting of fullerene, ATO and ITO, and a hydrophilic organic polymer and cocoon or surfactant. Preferable to prepare the solution.
[0066] 強酸としては、塩酸、硝酸、トリクロ口酢酸、トリフルォロ酢酸、硫酸、リン酸、メタンス ルホン酸、パラトルエンスルホン酸、シユウ酸を例示できる。強酸のうち、揮発性の酸 は、加熱時に揮発して硬化後の膜中に残存することがないので、好ましく用いること ができる。硬化後の膜中に酸が残ると、無機成分の結合が妨げられ、膜硬度が低下 してしまうことがある。 [0066] Examples of strong acids include hydrochloric acid, nitric acid, trichloroacetic acid, trifluoroacetic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid. Among strong acids, volatile acids can be preferably used because they do not volatilize when heated and remain in the cured film. If an acid remains in the cured film, the inorganic component may be prevented from binding, and the film hardness may decrease.
[0067] 本発明の製造方法に用いるアルコールとしては、メチルアルコール、ェチルアルコ ール、 1 プロピルアルコール、イソプロピルアルコール、 t ブチルアルコールなど を例示できる。  [0067] Examples of the alcohol used in the production method of the present invention include methyl alcohol, ethyl alcohol, 1-propyl alcohol, isopropyl alcohol, and t-butyl alcohol.
[0068] 本発明の方法における塗布工程では、雰囲気の相対湿度を 40%未満に保持しな がら、有機無機複合膜の形成溶液を榭脂基体上に塗布する。相対湿度が高すぎると 、雰囲気中の水分の過剰な吸い込みにより、成膜後のシリカ系膜が緻密な構造体と なりにくぐ優れた耐摩耗性が得られないことがある。なお、シリカ系膜の耐摩耗性を 向上させる観点からは、当該相対湿度を 30%以下に制御することが好ましい。塗布 工程における雰囲気の相対湿度の下限値は特に限定されな ヽが、形成溶液の取り 扱い性 (塗布性)を高める観点からは、その相対湿度を、例えば 15%以上、さらには 20%以上に制御することが好ましい。湿度が上記の範囲となるように制御された雰囲 気下で形成溶液を塗布することは、良好な耐摩耗性を実現する上で重要である。  [0068] In the coating step in the method of the present invention, the organic-inorganic composite film-forming solution is coated on the resin substrate while keeping the relative humidity of the atmosphere below 40%. If the relative humidity is too high, it may not be possible to obtain excellent wear resistance in which the silica-based film after film formation is difficult to become a dense structure due to excessive suction of moisture in the atmosphere. From the viewpoint of improving the wear resistance of the silica-based film, it is preferable to control the relative humidity to 30% or less. The lower limit of the relative humidity of the atmosphere in the coating process is not particularly limited, but from the viewpoint of improving the handleability (coating property) of the forming solution, the relative humidity is, for example, 15% or more, further 20% or more. It is preferable to control. Applying the forming solution under an atmosphere controlled so that the humidity is within the above range is important for achieving good wear resistance.
[0069] 本発明の方法における除去工程では、基体上に塗布された形成溶液の液体成分 、例えば水およびアルコール、の少なくとも一部、好ましくは実質的に全部、が除去さ れる。  [0069] In the removing step in the method of the present invention, at least a part, preferably substantially all, of the liquid components of the forming solution applied onto the substrate, for example, water and alcohol, are removed.
[0070] 除去工程は、有機物の分解温度等を鑑み、 300°C以下の温度、好ましくは 250°C 以下の温度で行う。下限温度としては、要求される膜の硬度に応じて、適宜選択すれ ばよい。熱処理温度は、例えば、 100°C以上、さらには 150°C以上、場合によっては 180°C以上であってよい。  [0070] The removal step is performed at a temperature of 300 ° C or lower, preferably 250 ° C or lower, in view of the decomposition temperature of the organic matter. The lower limit temperature may be appropriately selected according to the required film hardness. The heat treatment temperature may be, for example, 100 ° C or higher, further 150 ° C or higher, and in some cases 180 ° C or higher.
[0071] 除去工程は、室温(25°C)下での風乾工程と、風乾工程に続いて行われる、室温よ りも高温かつ 300°C以下の雰囲気下、例えば 100°C以上 300°C以下の雰囲気下で の熱処理工程とにより行うとよい。風乾工程は、相対湿度力 0%未満、さらには 30% 以下に制御された雰囲気下で行うことが好ましい。雰囲気の相対湿度を当該範囲に 制御すると、膜のクラックの発生をより確実に防止できる。なお、風乾工程における雰 囲気の相対湿度の下限値は特に限定されない。例えば 15%、さらには 20%であつ てよい。 [0071] The removing step is performed at room temperature (25 ° C) followed by an air drying step and an air drying step. It may be performed by a heat treatment step in an atmosphere of a higher temperature and 300 ° C or lower, for example, an atmosphere of 100 ° C or higher and 300 ° C or lower. The air drying step is preferably performed in an atmosphere controlled to a relative humidity of less than 0%, and further 30% or less. By controlling the relative humidity of the atmosphere within this range, the occurrence of film cracks can be more reliably prevented. The lower limit value of the relative humidity of the atmosphere in the air drying process is not particularly limited. For example, it may be 15% or even 20%.
[0072] 本発明の方法では、有機無機複合膜の形成溶液中におけるシリコンアルコキシド の加水分解や縮重合状態を、当該形成溶液の pH調整や、親水性有機ポリマーや 界面活性剤の添カ卩により制御している。また、乾燥や加熱時に十分な膜収縮力が得 られるように水分量を調整しつつ、過剰な膜収縮を抑制するために、親水性有機ポリ マーや界面活性剤を添加している。これにより、有機無機複合膜の形成溶液を塗布 する塗布工程と、塗布された当該形成溶液に含まれる液体成分の少なくとも一部を 除去する除去工程と、をそれぞれ 1回ずつ実施することにより、低温度域の熱処理に よって、耐摩耗性に優れるとともに、膜厚が 250nmを超え 以下である程度に厚 V、有機無機複合膜を形成することができる。  [0072] In the method of the present invention, the hydrolysis or polycondensation state of silicon alkoxide in the organic-inorganic composite film forming solution is adjusted by adjusting the pH of the forming solution or by adding a hydrophilic organic polymer or a surfactant. I have control. In addition, a hydrophilic organic polymer and a surfactant are added in order to suppress excessive film shrinkage while adjusting the amount of water so that sufficient film shrinkage force can be obtained during drying and heating. Thus, the coating step of applying the organic-inorganic composite film forming solution and the removing step of removing at least a part of the liquid component contained in the applied forming solution are performed once, thereby reducing the By heat treatment in the temperature range, it has excellent wear resistance, and an organic / inorganic composite film with a thickness of more than 250 nm and below can be formed to some extent.
[0073] 本発明による有機無機複合膜は、上述のように、比較的低温の熱処理で、熔融法 により得たガラス板に匹敵する程度に優れた耐摩耗性を有する。この有機無機複合 膜を、自動車用あるいは建築用の窓ガラスに適用しても、十分実用に耐える。しかし 、厚さが 0. 1mm以下であるフィルム、特に榭脂フィルムを、有機無機複合膜を形成 する基体に用いると、基体自体の強度が十分でなく容易に変形するために、有機無 機複合膜の耐摩耗性が低下する。これを考慮し、本発明では、厚さが 0. 1mmを超 える基体を用いることが望ましい。基体の厚さは、 0. 3mm以上が好ましぐ 0. 4mm 以上がより好ましぐ 0. 5mm以上がさらに好ましぐ場合によっては 2mm以上、さら には 3mm以上であってよい。基体厚の上限値は特に限定されないが、例えば 20m m、さらには 10mmであってよい。  [0073] As described above, the organic-inorganic composite film according to the present invention has an abrasion resistance that is superior to a glass plate obtained by a melting method by heat treatment at a relatively low temperature. Even if this organic / inorganic composite film is applied to window glass for automobiles or buildings, it is sufficiently practical. However, when a film having a thickness of 0.1 mm or less, particularly a resin film, is used for a substrate on which an organic-inorganic composite film is formed, the strength of the substrate itself is not sufficient, and the organic-inorganic composite is easily deformed. Abrasion resistance of the film decreases. Considering this, in the present invention, it is desirable to use a substrate having a thickness exceeding 0.1 mm. The thickness of the substrate is preferably 0.3 mm or more, more preferably 0.4 mm or more, and more preferably 0.5 mm or more, and may be 2 mm or more, and even 3 mm or more. The upper limit value of the substrate thickness is not particularly limited, but may be, for example, 20 mm, or 10 mm.
[0074] 基体は、ガラス基板または榭脂基板を使用できる。ガラス基板を使用すると、有機 無機複合膜と基体との密着性の向上が容易となる。榭脂基板の材料としては、ポリ力 ーボネート、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエーテノレ スルホン、ポリスルホン、環状ポリオレフイン、ポリメチルペンテン、ナイロン等の榭脂 が例示できる。 [0074] As the substrate, a glass substrate or a resin substrate can be used. When a glass substrate is used, the adhesion between the organic / inorganic composite film and the substrate can be easily improved. The materials for the resin substrate are: Polycarbonate, Polyethylene, Polypropylene, Polyethylene terephthalate, Polyethylene Examples of the resin include sulfone, polysulfone, cyclic polyolefin, polymethylpentene, and nylon.
[0075] 本発明による有機無機複合膜は、膜の表面抵抗率が 1. O X 1014 Ω /口以下、場 合によっては 4. Ο Χ 1013ΩΖ口以下となり、帯電防止能に優れる。さらに、可視光領 域の波長に相当する厚さ、すなわち 800nmを超えた厚さで有機無機複合膜を形成 することができるため、当該膜における干渉縞の発生を防止することも容易となる。 [0075] The organic-inorganic composite film according to the present invention has a surface resistivity of 1. OX 10 14 Ω / port or less, and in some cases 4. 以下 10 13 Ω port or less, and is excellent in antistatic performance. Furthermore, since the organic-inorganic composite film can be formed with a thickness corresponding to the wavelength in the visible light region, that is, a thickness exceeding 800 nm, it is easy to prevent the occurrence of interference fringes in the film.
[0076] 本発明により成膜できる有機無機複合膜をマトリクスとして、有機色素、紫外線吸収 剤等の機能性材料をさらに導入することもできる。これらの機能性材料として用いうる 有機物微粒子は、 200〜300°Cの温度で分解が始まるものが多い。本発明では、 20 0°C程度の加熱であっても、有機無機複合膜を十分に硬化させることが可能であるた め、機能性材料の機能を損なわずに、これらの熱的に不安定な有機物微粒子を有 機無機複合膜中に導入することができる。また、本発明の方法では形成溶液中に親 水性有機ポリマーや界面活性剤を含有するため、これら有機物微粒子を膜中に均一 に分散させることも容易である。なお、ポリエーテル基を有するリン酸系界面活性剤 は、特に分散性に優れている。また、本発明では、有機無機複合膜の形成溶液中に 、分散剤をさらに添加してもよい。  [0076] Functional materials such as organic dyes and ultraviolet absorbers can be further introduced using the organic-inorganic composite film that can be formed according to the present invention as a matrix. Many organic fine particles that can be used as these functional materials start to decompose at a temperature of 200 to 300 ° C. In the present invention, since the organic-inorganic composite film can be sufficiently cured even when heated to about 200 ° C., these thermally unstable materials can be obtained without impairing the function of the functional material. Organic fine particles can be introduced into the organic-inorganic composite film. Further, in the method of the present invention, since the forming solution contains a hydrophilic polymer or a surfactant, it is easy to uniformly disperse these organic fine particles in the film. The phosphate surfactant having a polyether group is particularly excellent in dispersibility. In the present invention, a dispersant may be further added to the organic-inorganic composite film forming solution.
[0077] 有機無機複合膜の形成溶液には、有機修飾された金属アルコキシドを、その金属 アルコキシドの金属原子のモル数力 有機修飾されて ヽな 、シリコンアルコキシドの シリコン原子のモル数の 10%以下の量となるように、添加してもよい。  [0077] In the solution for forming the organic-inorganic composite film, an organically modified metal alkoxide is used, and the number of moles of metal atoms of the metal alkoxide is 10% or less of the number of moles of silicon atoms of the silicon alkoxide. You may add so that it may become this quantity.
[0078] Si以外の金属酸ィ匕物をシリコン酸ィ匕物の質量分率を超えない範囲で添加し、複合 酸ィ匕物としてもよい。その際に、シリコンアルコキシドの反応性に、影響を与えない方 法で添加することが望ま 、。 [0078] A metal oxide other than Si may be added within a range not exceeding the mass fraction of the silicon oxide to form a composite oxide. In that case, it is desirable to add in a way that does not affect the reactivity of silicon alkoxide.
[0079] 水あるいはアルコールに溶解する金属化合物、特に、単純に電離して溶解するも の、例えば、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、コバ ルト、鉄、ニッケル、銅、アルミニウム、ガリウム、インジウム、スカンジウム、イットリウム[0079] Metal compounds that dissolve in water or alcohol, especially those that are simply ionized and dissolved, such as lithium, sodium, potassium, cesium, magnesium, calcium, cobalt, iron, nickel, copper, aluminum, gallium , Indium, scandium, yttrium
、ランタン、セリウム、亜鉛などの金属の、塩化物、酸化物、硝酸塩などを必要量添加 してちよい。 Necessary amounts of chlorides, oxides, nitrates, etc. of metals such as lanthanum, cerium, and zinc may be added.
[0080] ボロンに関しては、ホウ酸あるいはホウ素のアルコキシドをァセチルアセトンなどの β—ジケトンでキレートイ匕して添加することが可能である。 [0080] Regarding boron, boric acid or boron alkoxides such as acetylacetone It can be added after chelating with β-diketone.
[0081] チタン、ジルコニウムに関しては、ォキシ塩化物、ォキシ硝酸化物、あるいはアルコ キシドを j8—ジケトンでキレートイ匕して添加することが可能である。  [0081] Regarding titanium and zirconium, it is possible to add oxychloride, oxynitrate or alkoxide after chelating with j8-diketone.
[0082] また、アルミニウムに関しても、アルコキシドを β—ジケトンでキレートイ匕して添加す ることが可能である。  [0082] Also for aluminum, it is possible to add alkoxide after chelating with β-diketone.
実施例  Example
[0083] 以下、実施例により、本発明をさらに詳細に説明する。  [0083] Hereinafter, the present invention will be described in more detail by way of examples.
[0084] (実施例 A1)  [0084] (Example A1)
ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 0. 17gに、テトラエトキシシラン (信越ィ匕学製) 5. 21g、エチルアルコール (片山 化学製) 17. 23g、純水 4. 86g、濃塩酸(35質量%、関東化学製) 0. 03g、 ATO微 粒子分散液 (ATOを 30質量%含むエチルアルコール溶液) 2. 5g、ポリエチレンダリ コール 200 (片山化学製) 0. 02gを順に添加して、形成溶液を得た。  Polyether phosphate ester surfactant (Solsperse 41 000 made by Nippon Lubrizol) 0.17g, tetraethoxysilane (made by Shin-Etsu Chemical) 5.21g, ethyl alcohol (Katayama Chemical) 17.23g, pure 4.86 g of water, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.03 g, ATO fine particle dispersion (ethyl alcohol solution containing 30% by mass of ATO) 2.5 g, polyethylene dallicol 200 (manufactured by Katayama Chemical) 0 02g was added in order to obtain a forming solution.
[0085] なお、上記「ポリエチレングリコール 200」は、その質量平均分子量が 200のポリエ チレングリコールである。上記「ソルスパース 41000」は、ポリオキシエチレンアルキル エーテルをリン酸でエステルイ匕したモノエステル型の界面活性剤かつ親水性有機ポ リマーであり、 2つのプロトンが解離する酸として機能する。  Note that the above “polyethylene glycol 200” is a polyethylene glycol having a mass average molecular weight of 200. “Solsperse 41000” is a monoester type surfactant and hydrophilic organic polymer obtained by esterifying polyoxyethylene alkyl ether with phosphoric acid, and functions as an acid that dissociates two protons.
[0086] 形成溶液中のシリコンアルコキシド (シリカ換算)、プロトン濃度、水、ならびに親水 性有機ポリマーおよび Zまたは界面活性剤の含有量は、表 1に示すとおりである。な お、形成溶液中の水の含有量は、エチルアルコール中に含まれる水分(0. 35質量 %)を加えて計算している。プロトン濃度は、強酸に含まれるプロトンがすべて解離し たとして算出した。水の含有量およびプロトン濃度の計算方法は、以下のすべての実 施例、比較例において同一である。  [0086] Table 1 shows the contents of silicon alkoxide (in terms of silica), proton concentration, water, and hydrophilic organic polymer and Z or surfactant in the forming solution. The water content in the forming solution is calculated by adding the water (0.35 mass%) contained in ethyl alcohol. The proton concentration was calculated assuming that all protons contained in the strong acid were dissociated. The calculation method of the water content and proton concentration is the same in all the following examples and comparative examples.
[0087] [表 1] シリコンアル 親水性 [0087] [Table 1] Silicon Al hydrophilic
水 有機ポリマー、 コキシド プロトン澳度  Water Organic polymer, Coxide Proton concentration
(対総 Si置; 剤 (Si02換算: (mol/kgノ 帯電防止材料 界面活性 (To total Si location; agent (Si0 2 in terms of: (mol / kg Roh antistatic materials surfactant
モル比) (対 Si02置; 質置%) Molar ratio) (vs. Si0 2 position; quality position%)
質量%) 実施例 A1 5.0 0.011 11 ATO 13 力一ボンナノ  (Mass%) Example A1 5.0 0.011 11 ATO 13
実施例 A2 2.0 0.01 1 1 3 チューブ  Example A2 2.0 0.01 1 1 3 Tube
カーボンナノ  Carbon nano
実施例 A3 5.0 0.01 1 1 1 チューブ 実施例 A4 2.0 0.01 1 1 フラーレン 3 実施例 A5 5.0 0.005 35 PEDOT 1 1 比較例 A1 13.0 0.01 7 なし 30 比較例 A2 13.0 0.01 7 なし 0  Example A3 5.0 0.01 1 1 1 Tube Example A4 2.0 0.01 1 1 Fullerene 3 Example A5 5.0 0.005 35 PEDOT 1 1 Comparative example A1 13.0 0.01 7 None 30 Comparative example A2 13.0 0.01 7 None 0
[0088] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(300 X 300mm,厚さ: 3. lmm) 上に、相対湿度(以下、単に「湿度」という) 30%、室温(25°C)下でこの形成溶液を フローコート法にて塗布した。そのまま、室温で約 10分程度乾燥した後、予め 200°C に昇温したオーブンに投入し 12分間加熱し、その後冷却した。得られた膜は、膜厚 1 OOOnmのクラックのない透明度の高い膜であった。この有機無機複合膜は、 ATO微 粒子を 4質量%含んで 、た。 [0088] Next! On a cleaned soda-lime silicate glass substrate (300 x 300 mm, thickness: 3. lmm), 30% relative humidity (hereinafter simply referred to as “humidity”), room temperature (25 ° C) This forming solution was applied by flow coating. As it was, it was dried for about 10 minutes at room temperature, then put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled. The film obtained was a highly transparent film having a thickness of 1 OOOnm and no cracks. This organic-inorganic composite film contained 4% by mass of ATO fine particles.
[0089] 膜の硬さの評価は、 JIS R 3212に準拠した摩耗試験によって行った。すなわち、 市販のテーバー摩耗試験機(TABER INDUSTRIES社製 5150 ABRASER) を用い、 500gの荷重で 1000回摩耗を行い、摩耗試験前後のヘイズ率の測定を行 つた。また、有機無機複合膜の表面抵抗率は、市販の表面抵抗率測定器 (三菱化学 社製 MCP— HT— 260 HIRESTA IP)を用いて測定した。膜厚、有機無機複合 膜の表面抵抗率、テーバー試験前後のヘイズ率、テーバー試験後の膜剥離の有無 、クラックの有無を表 2に示す。ヘイズ率は、スガ試験機社製 HGM— 2DPを用いて 測定した。 [0089] The hardness of the film was evaluated by an abrasion test according to JIS R 3212. That is, using a commercially available Taber abrasion tester (TABER INDUSTRIES 5150 ABRASER), the wear was performed 1000 times with a load of 500 g, and the haze ratio before and after the abrasion test was measured. The surface resistivity of the organic-inorganic composite film was measured using a commercially available surface resistivity meter (MCP-HT-260 HIRESTA IP manufactured by Mitsubishi Chemical Corporation). Film thickness, surface resistivity of organic / inorganic composite film, haze ratio before and after Taber test, presence or absence of film peeling after Taber test Table 2 shows the presence or absence of cracks. The haze rate was measured using HGM-2DP manufactured by Suga Test Instruments Co., Ltd.
[0090] [表 2] [0090] [Table 2]
Figure imgf000019_0001
Figure imgf000019_0001
[0091] 得られた有機無機複合膜は、表 2に示すように、テーバー試験後のヘイズ率は 3. 5 %と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テーバー試験後の膜剥 離やクラックの発生がな力 た。また、有機無機複合膜の表面抵抗率は 9. 2 X 1013 Ω Ζ口であり、帯電防止性に優れていた。 [0091] As shown in Table 2, the obtained organic-inorganic composite film had a hardness equivalent to that of a molten glass plate having a low haze ratio of 3.5% after the Taber test. In addition, there was no film peeling or cracking after the Taber test. Further, the surface resistivity of the organic-inorganic composite film was 9.2 × 10 13 Ω, and the antistatic property was excellent.
[0092] (実施例 A2)  [0092] (Example A2)
実施例 A2は、 ATO微粒子に代えてカーボンナノチューブを添加したこと以外は、 実施例 A1と同様にして調製した形成溶液を用いて、有機無機複合膜を形成した例 である。  Example A2 is an example in which an organic-inorganic composite film was formed using a forming solution prepared in the same manner as in Example A1, except that carbon nanotubes were added instead of ATO fine particles.
[0093] ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 0. 02gに、カーボンナノチューブ 0. 03gを添加し、混合後、エチルアルコール (片山化学製) 25. 98g、純水 1. 86gを添加し、さらに、テトラエトキシシラン (信越ィ匕 学製) 2. 08g、濃硝酸 (60質量%、関東ィ匕学製) 0. 03gを順に添加して、形成溶液 を得た。この溶液中の種々の組成については、表 1に示すとおりである。 [0093] Polyether phosphate ester surfactant (Solsperse 41 000 manufactured by Nippon Lubrizol Co., Ltd.) 0.02 g of carbon nanotubes was added to the mixture, and after mixing, 25.98 g of ethyl alcohol (Katayama Chemical Co., Ltd.) Add 1.86 g of pure water, and then add 2.08 g of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.03 g of concentrated nitric acid (60% by mass, manufactured by Kanto Chemical Co., Ltd.) Got. The various compositions in this solution are as shown in Table 1.
[0094] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(305 X 305mm,厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 10分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 12分加熱 し、その後冷却した。得られた膜は、膜厚 300nmのクラックのない、やや透明度の高 い膜であった。この有機無機複合膜は、カーボンナノチューブを 0. 1質量%含んで いた。 Next, on the washed soda-lime silicate glass substrate (305 X 305 mm, thickness: 3. lmm), this forming solution was applied by a flow coat method at a humidity of 30% at room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled. The obtained film was a film having a thickness of 300 nm and having no cracks and a slightly high transparency. This organic-inorganic composite film contained 0.1% by mass of carbon nanotubes.
[0095] 膜の硬さの評価は、実施例 A1と同様に行った。表 2に示すように、テーバー試験後 のヘイズ率は 2. 5%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、有機無機複合膜の表面抵 抗率は 3. Ο Χ 1013ΩΖ口であり、帯電防止性に優れていた。 [0095] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 2.5%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic-inorganic composite film was 3.Ο10 13 Ω and was excellent in antistatic properties.
[0096] (実施例 A3)  [0096] (Example A3)
実施例 A3は、 ΑΤΟ微粒子に代えてカーボンナノチューブを添加し、ポリエーテノレ リン酸エステル系界面活性剤に代えて第 4級水酸ィ匕アンモ-ゥムを添加したこと以外 は、実施例 A1と同様にして調製した形成溶液を用いて、有機無機複合膜を形成し た例である。  Example A3 was the same as Example A1 except that carbon nanotubes were added instead of soot particles, and quaternary hydroxyammonium hydroxide was added instead of polyetherolate surfactant. This is an example in which an organic-inorganic composite film is formed using the forming solution prepared as described above.
[0097] 第 4級水酸化アンモ -ゥムとして、コリン (多摩化学工業製、商品名: Choline、化学 式: [ (CH ) N+CH CH OH]OH— )を 4質量0 /0含む水溶液 0. 15gに、カーボンナノ [0097] quaternary hydroxide ammonium - as © beam, choline (Tama Chemicals Co., Ltd., trade name: Choline, chemical formula: [(CH) N + CH CH OH] OH-) an aqueous solution containing 4 mass 0/0 0.15g to carbon nano
3 3 2 2  3 3 2 2
チューブ分散液 (エーナ製:カーボンナノチューブを 5質量%含むエタノール溶液) 0 . 02gを添加し、混合後、純水 1. 61g、エチルアルコール(片山化学製) 6. 47gを添 加し、さらに、濃塩酸 (35質量%、関東ィ匕学製) 0. 01g、テトラエトキシシラン (信越ィ匕 学製) 1. 74gを順に添加して、形成溶液を得た。この溶液中の種々の組成について は、表 1に示すとおりである。  Tube dispersion (ENA: ethanol solution containing 5% by mass of carbon nanotubes) Add 0.02 g, and after mixing, add 1.61 g of pure water and 6.47 g of ethyl alcohol (manufactured by Katayama Chemical). Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.), 0.01 g, and tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 1. 74 g were sequentially added to obtain a forming solution. Table 1 shows the various compositions in this solution.
[0098] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(100 X 100mm,厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 10分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 18分加熱 し、その後冷却した。得られた膜は、膜厚 500nmのクラックのない透明度の高い膜で あった。この有機無機複合膜は、カーボンナノチューブを 0. 01質量%含んでいた。 [0099] 膜の硬さの評価は、実施例 A1と同様に行った。表 2に示すように、テーバー試験後 のヘイズ率は 1. 6%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、有機無機複合膜の表面抵 抗率は 1. 3 Χ 1013ΩΖ口であり、帯電防止性に優れていた。 Next, on the washed soda-lime silicate glass substrate (100 × 100 mm, thickness: 3. lmm), this forming solution was applied by flow coating at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 18 minutes, and then cooled. The film obtained was a highly transparent film with a thickness of 500 nm and no cracks. This organic-inorganic composite film contained 0.01% by mass of carbon nanotubes. [0099] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 1.6%, which was as low as a molten glass sheet. Also, film peeling and cracking after the Taber test were strong. The organic / inorganic composite film had a surface resistivity of 1.3 to 10 13 Ω and excellent antistatic properties.
[0100] (実施例 Α4)  [0100] (Example Α4)
実施例 Α4は、 ΑΤΟ微粒子に代えてフラーレンを添加したこと以外は、実施例 A1と 同様にして調製した形成溶液を用いて、有機無機複合膜を形成した例である。  Example IV4 is an example in which an organic-inorganic composite film was formed using a forming solution prepared in the same manner as Example A1, except that fullerene was added instead of the soot fine particles.
[0101] ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 0. 02gと、フラーレン(MER製 C ) 0. 03gとを混合し、エチルアルコール(片  [0101] Polyether phosphate ester surfactant (Solsperse 41 000 made by Nippon Lubrizol) and 0.03g fullerene (MER C) were mixed with ethyl alcohol
60  60
山化学製) 25. 98g、純水 1. 86gを添加後、テトラエトキシシラン (信越ィ匕学製) 2. 0 8g、濃硝酸 (60質量%、関東ィ匕学製) 0. 03gを順に添加して、形成溶液を得た。こ の溶液中の種々の組成については、表 1に示すとおりである。  25. 98g, pure water 1.86g added, then tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 2.0 g, concentrated nitric acid (60% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.03g in order Addition gave a forming solution. Table 1 shows the various compositions in this solution.
[0102] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(305 X 305mm,厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 10分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 12分加熱 し、その後冷却した。得られた膜は、膜厚 300nmのクラックのない透明度の高い膜で あった。この有機無機複合膜は、フラーレンを 0. 1質量0 /0含んでいた。 Next, this forming solution was applied by flow coating on a soda-lime silicate glass substrate (305 X 305 mm, thickness: 3. lmm) washed at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled. The film obtained was a highly transparent film having a thickness of 300 nm and no cracks. The organic-inorganic composite film contained 0.1 mass 0/0 fullerenes.
[0103] 膜の硬さの評価は、実施例 A1と同様に行った。表 2に示すように、テーバー試験後 のヘイズ率は 3. 9%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、有機無機複合膜の表面抵 抗率は 2. 3 Χ 1013ΩΖ口であり、帯電防止性に優れていた。 [0103] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was as low as 3.9%, a hardness comparable to a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic / inorganic composite film was 2.3 Χ 10 13 Ω and the antistatic property was excellent.
[0104] (実施例 Α5)  [0104] (Example Α5)
実施例 Α5は、 ΑΤΟ微粒子に代えてポリエチレンジォキシチォフェン(PEDOT)と ポリスチレンスルホン酸 (PSS)との混合物(PEDOTZPSS)を添カロしたこと以外は、 実施例 A1と同様にして調製した形成溶液を用いて、有機無機複合膜を形成した例 である。  Example Α5 was formed in the same manner as in Example A1, except that instead of ΑΤΟfine particles, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOTZPSS) was added. This is an example in which an organic-inorganic composite film is formed using a solution.
[0105] ポリエチレングリコールを 0. 06gと、エチルアルコール(片山化学製) 2. 87g、純水 1. 86gを添加後、テトラエトキシシラン (信越ィ匕学製) 1. 74g、濃塩酸 (35質量%、関 東化学製) 0. OOlgゝ PEDOTZPSS (バイエル製 BaytronP HC V4) 3. 85gを 順に添加して、形成溶液を得た。この溶液中の種々の組成については、表 1に示す とおりである。 [0105] 0.06 g of polyethylene glycol and 2.87 g of ethyl alcohol (Katayama Chemical) 1.86 g of pure water were added, followed by tetraethoxysilane (Shin-Etsu Chemical Co., Ltd.) 1.74 g, concentrated hydrochloric acid (35 mass) %, Seki (Tohoku Chemical Co., Ltd.) 0. OOlg ゝ PEDOTZPSS (Bayer BaytronP HC V4) 3. 85 g was added in order to obtain a forming solution. The various compositions in this solution are shown in Table 1.
[0106] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(100 X 100mm,厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をスピンコート法にて塗布した。塗布後の 基板を、 70°Cに昇温したホットプレート上で 5分加熱した後、室温で約 10分程度乾 燥し、さらに、予め 180°Cに昇温したオーブンに投入し 30分加熱し、その後冷却した 。得られた膜は、膜厚 1200nmのクラックのない透明度の高い膜であった。この有機 無機複合膜は、 PEDOTを 0. 5質量%含んでいた。  Next, on the washed soda-lime silicate glass substrate (100 × 100 mm, thickness: 3. lmm), this forming solution was applied by spin coating at a humidity of 30% at room temperature. The coated substrate is heated for 5 minutes on a hot plate heated to 70 ° C, then dried at room temperature for about 10 minutes, and then placed in an oven heated to 180 ° C in advance and heated for 30 minutes. And then cooled. The obtained film was a film with a thickness of 1200 nm and no cracks and a high transparency. This organic-inorganic composite film contained 0.5% by mass of PEDOT.
[0107] 膜の硬さの評価は、実施例 A1と同様に行った。表 2に示すように、テーバー試験後 のヘイズ率は 3. 1%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、有機無機複合膜の表面抵 抗率は 3. 8 Χ 104 Ω /口であり、帯電防止性に優れていた。 [0107] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 2, the haze ratio after the Taber test was 3.1%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. Further, the surface resistivity of the organic-inorganic composite film was 3.8 410 4 Ω / mouth, and the antistatic property was excellent.
[0108] (比較例 A1)  [0108] (Comparative Example A1)
比較例 A1は、 ΑΤΟ微粒子を添加せず、親水性有機ポリマーとしてポリエチレング リコールのみを用いたこと以外は、実施例 A1と同様にして調製した形成溶液を用い て、有機無機複合膜の形成を試みた例である。  In Comparative Example A1, an organic-inorganic composite film was formed using a forming solution prepared in the same manner as in Example A1, except that no soot particles were added and only polyethylene glycol was used as the hydrophilic organic polymer. It is an attempted example.
[0109] エチルアルコール (片山化学製) 23. 70gに、テトラエトキシシラン (信越ィ匕学製) 45 . 14g、純水 27. 16g、濃塩酸(35質量%、関東ィ匕学製) 0. 10g、ポリエチレングリコ ール 400 (関東化学製) 3. 90gを添加、撹拌し、形成溶液を得た。この溶液中の種 々の組成については、表 1に示すとおりである。  [0109] 23.70 g of ethyl alcohol (made by Katayama Chemical), 45.14 g of tetraethoxysilane (made by Shin-Etsu Chemical), 27.16 g of pure water, concentrated hydrochloric acid (35 mass%, manufactured by Kanto Chemical) 0. 10 g, polyethylene glycol 400 (manufactured by Kanto Chemical) 3. 90 g was added and stirred to obtain a forming solution. The various compositions in this solution are as shown in Table 1.
[0110] なお、上記「ポリエチレングリコール 400」は、その質量平均分子量力 00のポリエ チレングリコールである。  [0110] The above "polyethylene glycol 400" is a polyethylene glycol having a mass average molecular weight of 00.
[0111] 次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100 X 100mm、厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 30分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 40分加熱 し、その後冷却した。  [0111] Next, this forming solution was applied by a flow coating method on a cleaned soda-lime silicate glass substrate (100 X 100 mm, thickness: 3. lmm) at 30% humidity and room temperature. As it was, it was dried at room temperature for about 30 minutes, put in an oven preheated to 200 ° C., heated for 40 minutes, and then cooled.
[0112] 得られた膜は、膜厚 2800nmのクラックのない透明度の高い膜であった力 表 3に 示すように、テーバー試験後に膜の一部が剥離した。さらに膜の表面抵抗率を測定 したところ、 1 Χ 1014 Ω /口を超える値を示し、帯電防止性に劣っていた。 [0112] The obtained film was a 2800 nm thick crack-free film with high transparency. As shown, part of the film peeled after the Taber test. Furthermore, when the surface resistivity of the film was measured, it showed a value exceeding 1Χ10 14 Ω / mouth and was inferior in antistatic property.
[0113] (比較例 Α2) [0113] (Comparative example Α2)
比較例 Α2は、 ΑΤΟ微粒子を添加せず、ポリエーテルリン酸エステル系界面活性 剤に代えてリン酸を用いたこと以外は、実施例 A1と同様にして調製した形成溶液を 用いて、膜の形成を試みた例である。  Comparative Example Α2 uses a forming solution prepared in the same manner as in Example A1 except that ΑΤΟfine particles are not added and phosphoric acid is used in place of the polyether phosphate ester surfactant. This is an example in which formation was attempted.
[0114] エチルアルコール (片山化学製) 27. 49gに、テトラエトキシシラン (信越ィ匕学製) 45[0114] Ethyl alcohol (made by Katayama Chemical) 27. 49g, tetraethoxysilane (made by Shin-Etsu Chemical) 45
. 14g、純水 27. 16g、濃塩酸(35質量%、関東ィ匕学製) 0. lOg、リン酸 (85質量%14g, pure water 27.16g, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Sugaku) 0. lOg, phosphoric acid (85% by mass)
、関東ィ匕学製) 0. l lgを添加、撹拌し、形成溶液を得た。この溶液中の種々の組成 については、表 1に示すとおりである。 0. llg was added and stirred to obtain a forming solution. The various compositions in this solution are shown in Table 1.
[0115] 次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100 X 100mm、厚さ: 3. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 30分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 40分加熱 し、その後冷却した。 [0115] Next, this forming solution was applied by flow coating on a cleaned soda lime silicate glass substrate (100 X 100 mm, thickness: 3. lmm) at 30% humidity and room temperature. As it was, it was dried at room temperature for about 30 minutes, put in an oven preheated to 200 ° C., heated for 40 minutes, and then cooled.
[0116] 当該例では、表 2で示すように、剥離を伴ったクラックが発生し、膜として成立しなか つた o  [0116] In this example, as shown in Table 2, cracks accompanied by peeling occurred and the film was not formed.
[0117] (実施例 B1)  [0117] (Example B1)
ITO微粒子分散液 (三菱マテリアル製: ITOを 40質量%含むエチルアルコール溶 液) 7. 5gに、ポリエーテルリン酸エステル系界面活性剤 (楠本ィ匕成製ディスパロン D A— 375) 0. 15g、テトラエトキシシラン (信越化学製) 20. 8g、エチルアルコール(片 山化学製) 55. 45g、純水 15. 8g、濃塩酸(35質量%、関東ィ匕学製) 0. 3gを順に添 加して、形成溶液を得た。この溶液中の種々の組成については、表 3に示すとおりで ある。  ITO fine particle dispersion (Mitsubishi Materials: Ethyl alcohol solution containing 40% by mass of ITO) 7.5g, polyether phosphate ester surfactant (Disparon DA-375 manufactured by Enomoto Iseisei) 0.15g, Tetra Ethoxysilane (manufactured by Shin-Etsu Chemical) 20.8g, ethyl alcohol (manufactured by Katayama Chemical) 55.45g, pure water 15.8g, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.3g A forming solution was obtained. Table 3 shows the various compositions in this solution.
[0118] なお、上記「ディスパロン DA— 375」は、ポリオキシエチレンアルキルエーテルをリ ン酸でエステルイ匕したモノエステル型の界面活性剤であり、 2つのプロトンが解離す る酸として機能する。本例ならびに後述する実施例 B2〜B3および比較例 B1〜B2 では、波長 lOOOnmおよび 1700nmの光線の透過率がそれぞれ 21%および 46% である基板を用いた。 [0119] [表 3] [0118] The above-mentioned "Dispalon DA-375" is a monoester surfactant obtained by esterifying polyoxyethylene alkyl ether with phosphoric acid, and functions as an acid that dissociates two protons. In this example and Examples B2 to B3 and Comparative Examples B1 to B2 to be described later, substrates having light transmittances of 21% and 46% for wavelengths lOOOnm and 1700 nm, respectively, were used. [0119] [Table 3]
Figure imgf000024_0001
Figure imgf000024_0001
[0120] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(100 X 100mm,厚さ: 2. 5mm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 3時間程度、風乾した後、予め 90°Cに昇温したオーブンに投入し 30分力口 熱し、さらに、予め 200°Cに昇温したオーブンに投入し 1時間加熱し、その後冷却し た。得られた膜は、膜厚 lOOOnmのクラックのない透明度の高い膜であった。 Next, this forming solution was applied by flow coating on a soda-lime silicate glass substrate (100 × 100 mm, thickness: 2.5 mm) washed at 30% humidity and room temperature. Continue to air dry at room temperature for about 3 hours, then put into an oven heated to 90 ° C in advance and heated for 30 minutes, then into an oven heated to 200 ° C in advance and heated for 1 hour, Then it was cooled. The obtained film was a highly transparent film without cracks having a film thickness of lOOOnm.
[0121] 膜の硬さの評価は、実施例 A1と同様に行った。膜厚、テーバー試験前後のヘイズ 率、テーバー試験後の膜剥離の有無、クラックの有無、微粒子の含有量、ならびに波 長 lOOOnmおよび 1700nmの近赤外線の透過率を表 4に示す。なお、ブランクとし て、熔融ガラス板におけるテーバー試験前後のヘイズ率も表 4に示す。  [0121] The hardness of the film was evaluated in the same manner as in Example A1. Table 4 shows the film thickness, the haze ratio before and after the Taber test, the presence or absence of film peeling after the Taber test, the presence or absence of cracks, the content of fine particles, and the transmittance of near-infrared light with wavelengths lOOOnm and 1700 nm. Table 4 also shows the haze ratio before and after the Taber test on a molten glass plate as a blank.
[0122] [表 4] ヘイズ率(%) テ一パ一 微粒子 波長 1000nm 波長 1700nm 膜厚 クラックの [0122] [Table 4] Haze rate (%) Taper Fine particle Wavelength 1000nm Wavelength 1700nm Film thickness Crack
試験後の (対膜全体: での透過率 での透過率 テーバー 発生  Permeability after test (Whole membrane: Permeability in
初期 膜剥がれ 莨量%) (%) (%) 試験後  Initial film peeling (%) (%) (%) After test
実施例 B1 1000 0.0 2.8 なし なし 3 18 15 実施例 B2 1000 0.2 2.4 なし なし 3 18 14 実施例 B3 2000 0.4 3.5 なし なし 4.5 19 23 実施例 B4 2000 0.4 3.1 なし なし 4.5 75 10 実施例 B5 2200 0.4 3.5 なし なし 5 63 19 比較例 B1 2800 0.2 2.3 あり なし ― 21 >30 比較例 B2 ― ― ― ― あ y  Example B1 1000 0.0 2.8 None None 3 18 15 Example B2 1000 0.2 2.4 None None 3 18 14 Example B3 2000 0.4 3.5 None None 4.5 19 23 Example B4 2000 0.4 3.1 None None 4.5 75 10 Example B5 2200 0.4 3.5 No No 5 63 19 Comparative example B1 2800 0.2 2.3 Yes No ― 21> 30 Comparative example B2 ― ― ― ― Oh y
(全面) ― ― ― 比較例 B3 2800 0.2 2.4 あり なし ― >30 >30 ガフス板 - 0.0 1.5 ― ― ― ― ―  (Full surface) ― ― ― Comparative example B3 2800 0.2 2.4 Yes No ―> 30> 30 Gauff board-0.0 1.5 ― ― ― ― ―
[0123] 表 4に示すように、テーバー試験後のヘイズ率は 2. 8%と低ぐ熔融ガラス板に匹 敵する硬度を有していた。また、テーバー試験後の膜剥離やクラックの発生がなかつ た。また、この膜付き物品は、波長 lOOOnmおよび 1700nmの近赤外線の透過率が それぞれ 18%および 15%であった。 [0123] As shown in Table 4, the haze ratio after the Taber test was as low as 2.8%, which was a hardness comparable to a molten glass plate. Also, there was no film peeling or cracking after the Taber test. Further, this film-coated article had transmittances of 18% and 15% of near-infrared transmittances of wavelengths lOOOnm and 1700 nm, respectively.
[0124] (実施例 B2)  [0124] (Example B2)
実施例 B2は、親水性有機ポリマーとして、実施例 B1とは別のポリエーテルリン酸ェ ステル系界面活性剤と、ポリエチレングリコールとを用いた例である。  Example B2 is an example in which a polyether phosphate ester surfactant different from Example B1 and polyethylene glycol were used as the hydrophilic organic polymer.
[0125] ITO微粒子分散液(三菱マテリアル製、 ITOを 40質量%含むエチルアルコール溶 液) 1. 88gに、ポリエーテルリン酸エステル系界面活性剤(日本ルーブリゾ一ル製ソ ノレスノ ース 41000) 0. 23g、ポリエチレングリコーノレ 400 (片山ィ匕学製) 0. 04g、テ卜 ラエトキシシラン (信越ィ匕学製) 6. 25g、エチルアルコール (片山化学製) 15. 32g、 純水 5. 88g、濃塩酸(35質量%、関東ィ匕学製) 0. 03gを順に添加して、形成溶液を 得た。この溶液中の種々の組成については、表 3に示すとおりである。  [0125] ITO fine particle dispersion (Mitsubishi Materials Co., Ltd., ethyl alcohol solution containing 40% by mass of ITO) 1. To 88 g, polyether phosphate ester surfactant (Sonores Nose 41000, Nippon Lubrizol) 0 23g, Polyethylene Glycol Nore 400 (Katayama Chemical) 0.04g, Tetraethoxysilane (Shin-Etsu Chemical) 6.25g, Ethyl Alcohol (Katayama Chemical) 15. 32g, Pure Water 5. 88g Concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was added in order to obtain a forming solution. Various compositions in this solution are as shown in Table 3.
[0126] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(305 X 305mm,厚さ: 2. 5mm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 30分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 14分加熱 し、その後冷却した。得られた膜は、膜厚 lOOOnmのクラックのない透明度の高い膜 であった。 Next, this forming solution was applied by flow coating on a soda-lime silicate glass substrate (305 X 305 mm, thickness: 2.5 mm) washed at 30% humidity and room temperature. As it is, After drying at room temperature for about 30 minutes, it was put into an oven preheated to 200 ° C, heated for 14 minutes, and then cooled. The film obtained was a highly transparent film without cracks with a film thickness of lOOOnm.
[0127] 膜の硬さの評価は、実施例 A1と同様に行った。表 4に示すように、テーバー試験後 のヘイズ率は 2. 4%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、この膜付き物品は、波長 10 OOnmおよび 1700nmの近赤外線の透過率がそれぞれ 18%および 14%であった。  [0127] The film hardness was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 2.4%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. In addition, this film-coated article had near infrared transmittances of 18% and 14% at wavelengths of 10 OOnm and 1700 nm, respectively.
[0128] ITO微粒子は、 250°C以上の温度に曝されると、酸化が促進されて近赤外線吸収 能が低下する場合がある。しかし、実施例 B1および B2では、熱処理温度を 200°C以 下としているため、 ITO微粒子による近赤外線吸収能が維持されることが確認された  [0128] When ITO fine particles are exposed to a temperature of 250 ° C or higher, oxidation may be accelerated and the near-infrared absorption ability may be reduced. However, in Examples B1 and B2, it was confirmed that the near-infrared absorption ability by the ITO fine particles was maintained because the heat treatment temperature was 200 ° C or lower.
[0129] (実施例 B3) [0129] (Example B3)
実施例 B3は、親水性有機ポリマーとして、実施例 B1とは別のポリエーテルリン酸ェ ステル系界面活性剤と、ポリエチレングリコールとを用い、 ITO微粒子に代えて ATO 微粒子を用いた例である。  Example B3 is an example in which a polyether phosphate ester surfactant different from Example B1 and polyethylene glycol are used as the hydrophilic organic polymer, and ATO fine particles are used in place of the ITO fine particles.
[0130] ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 0. 89g、エチルアルコール(片山ィ匕学製) 9. 48g、純水 5. 62g、ポリエチレン グリコール 200 (片山化学製) 0. 12g、濃塩酸(35質量%、関東ィ匕学製) 0. 003g、 テトラエトキシシラン (信越ィ匕学製) 9. 38g、 ATO微粒子分散液 (ATOを 30質量% 含むエチルアルコール溶液) 4. 5gを順に添加して、形成溶液を得た。この溶液中の 種々の組成については、表 3に示すとおりである。  [0130] Polyether phosphate surfactant (Nippon Lubrizol Solsperse 41 000) 0. 89g, Ethyl alcohol (Katayama Yigaku) 9. 48g, Pure water 5.62g, Polyethylene glycol 200 (Katayama Chemical) 0.12g, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.003g, tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 9.38g, ATO fine particle dispersion (ethyl containing 30% by mass of ATO) (Alcohol solution) 4.5 g was added in order to obtain a forming solution. Table 3 shows the various compositions in this solution.
[0131] 次!、で、洗浄したソーダ石灰珪酸塩ガラス基板(300 X 300mm,厚さ: 2. lmm) 上に、湿度 30%、室温下でこの形成溶液をフローコート法にて塗布した。そのまま、 室温で約 10分程度乾燥した後、予め 200°Cに昇温したオーブンに投入し 12分間加 熱し、その後冷却した。得られた膜は、膜厚 2000nmのクラックのない透明度の高い 膜であった。  Next, this forming solution was applied by flow coating on a soda-lime silicate glass substrate (300 × 300 mm, thickness: 2. lmm) washed at 30% humidity and room temperature. As it was, it was dried at room temperature for about 10 minutes, put in an oven preheated to 200 ° C., heated for 12 minutes, and then cooled. The obtained film was a highly transparent film having a thickness of 2000 nm and no cracks.
[0132] 膜の硬さの評価は、実施例 A1と同様に行った。表 4に示すように、テーバー試験後 のヘイズ率は 3. 5%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、この膜付き物品は、波長 10 OOnmおよび 1700nmの近赤外線の透過率がそれぞれ 19%および 23%であった。 [0132] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.5%, which was as low as a molten glass plate. The tape Film peeling and cracking after the bar test were strong. In addition, this film-coated article had near-infrared transmittances of 19% and 23% at wavelengths of 10 OOnm and 1700nm, respectively.
[0133] (比較例 B1) [0133] (Comparative Example B1)
比較例 B1は、比較例 A1と同様にして有機無機複合膜の形成を試みた例である。 得られた膜は、表 4に示すように、テーバー試験後に剥離した。また、この膜付き物品 は、波長 1700nmの近赤外線の透過率が 30%を超えていた。  Comparative Example B1 is an example in which an organic-inorganic composite film was attempted in the same manner as Comparative Example A1. As shown in Table 4, the obtained film peeled after the Taber test. In addition, this film-coated article had a transmittance of near infrared light having a wavelength of 1700 nm exceeding 30%.
[0134] (比較例 B2) [0134] (Comparative Example B2)
比較例 B2は、比較例 A2と同様にして有機無機複合膜の形成を試みた例である。 当該例では、表 4に示すように、剥離を伴ったクラックが発生し、膜として成立しなか つた o  Comparative Example B2 is an example in which the formation of an organic-inorganic composite film was attempted in the same manner as Comparative Example A2. In this example, as shown in Table 4, cracks accompanied by peeling occurred and the film was not formed.
[0135] (実施例 B4)  [0135] (Example B4)
実施例 B4は、実施例 B2と同様にして調整した形成溶液を用いて、波長 lOOOnm および 1700nmの光線の透過率がそれぞれ 82%および 87%である基板上に、有機 無機複合膜を形成した例である。  Example B4 is an example in which an organic-inorganic composite film was formed on a substrate having transmittances of 82% and 87% of light with wavelengths lOOOnm and 1700 nm, respectively, using a forming solution prepared in the same manner as in Example B2. It is.
[0136] ITO微粒子分散液(三菱マテリアル製、 ITOを 40質量%含むエチルアルコール溶 液) 3. 38gに、ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソ ノレスノ ース 41000) 0. 49g、ポリエチレングリコーノレ 200 (片山ィ匕学製) 0. 07g、テ卜 ラエトキシシラン (信越ィ匕学製) 7. 29g、エチルアルコール (片山化学製) 13. 15g、 純水 5. 61g、濃塩酸(35質量%、関東ィ匕学製) 0. 02gを順に添加して、形成溶液を 得た。この溶液中の種々の組成については、表 3に示すとおりである。  [0136] ITO fine particle dispersion (Mitsubishi Materials Co., Ltd., ethyl alcohol solution containing 40% by mass of ITO) 3. 38 g of polyether phosphate ester surfactant (Nihon Lubrizol Sonol Nose 41000) 0 49g, Polyethylene Glycol Nole 200 (Made by Katayama) 0.07g, Tetraethoxysilane (Made by Shin-Etsu Chemical) 7.29g, Ethyl Alcohol (Made by Katayama Chemical) 13.15g, Pure Water 5. 61g Then, 0.02 g of concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) was sequentially added to obtain a forming solution. Various compositions in this solution are as shown in Table 3.
[0137] 次 、で、上記の光線透過能を有する、洗浄したソーダ石灰珪酸塩ガラス基板 (305  [0137] Next, the washed soda-lime-silicate glass substrate (305
X 305mm,厚さ: 2. 5mm)上に、湿度 30%、室温下でこの形成溶液をフローコート 法にて塗布した。そのまま、室温で約 20分程度乾燥した後、予め 200°Cに昇温した オーブンに投入し 18分加熱し、その後冷却した。得られた膜は、膜厚 2000nmのク ラックのな 、透明度の高!、膜であった。  X 305 mm, thickness: 2.5 mm), this forming solution was applied by flow coating at a humidity of 30% and room temperature. As it was, it was dried at room temperature for about 20 minutes, put in an oven preheated to 200 ° C., heated for 18 minutes, and then cooled. The obtained film was a highly transparent film without a 2000 nm-thick crack.
[0138] 膜の硬さの評価は、実施例 A1と同様に行った。表 4に示すように、テーバー試験後 のヘイズ率は 3. 1%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、この膜付き物品は、波長 17 OOnmの近赤外線の透過率が 19%であった。 [0138] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.1%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. This film-coated article has a wavelength of 17 The near-infrared transmittance of OOnm was 19%.
[0139] (実施例 B5)  [0139] (Example B5)
実施例 B5は、実施例 B3と同様にして調整した形成溶液を用いて、波長 lOOOnm および 1700nmの光線の透過率がそれぞれ 82%および 87%である基板上に、有機 無機複合膜を形成した例である。  Example B5 is an example in which an organic-inorganic composite film is formed on a substrate having transmittances of 82% and 87% of light with wavelengths lOOOnm and 1700 nm, respectively, using a forming solution prepared in the same manner as in Example B3. It is.
[0140] ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 1. 05g、ェチノレ ノレ =3—ノレ(片山ィ匕学製) 7. 09g、純水 6. 26g、ポジエチレン グリコール 200 (片山化学製) 0. 18g、濃塩酸(35質量%、関東ィ匕学製) 0. 003g、 テトラエトキシシラン (信越ィ匕学製) 10. 42g、 ATO微粒子分散液 (ATOを 30質量% 含むエチルアルコール溶液) 5. OOgを順に添加して、形成溶液を得た。この溶液中 の種々の糸且成については、表 3に示すとおりである。  [0140] Polyether phosphate ester surfactant (Solsperse 41 000 made by Nippon Lubrizol) 1. 05g, Etenore Nore = 3—Nore (Katayama Igaku) 7.09g, pure water 6.26g, positive ethylene Glycol 200 (manufactured by Katayama Chemical) 0.18 g, concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) 0.003 g, tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 10. 42 g, ATO fine particle dispersion (30 ATO) (Ethal alcohol solution containing mass%) 5. OOg was added in order to obtain a forming solution. Table 3 shows the various yarns in this solution.
[0141] 次 、で、上記の光線透過能を有する、洗浄したソーダ石灰珪酸塩ガラス基板 (300  [0141] Next, a washed soda-lime-silicate glass substrate (300
X 300mm,厚さ: 2. 5mm)上に、湿度 30%、室温下でこの形成溶液をフローコート 法にて塗布した。そのまま、室温で約 10分程度乾燥した後、予め 200°Cに昇温した オーブンに投入し 18分間加熱し、その後冷却した。得られた膜は、膜厚 2200nmの クラックのな 、透明度の高 、膜であった。  X 300 mm, thickness: 2.5 mm), this forming solution was applied by flow coating at a humidity of 30% and room temperature. After drying for about 10 minutes at room temperature, it was put in an oven preheated to 200 ° C, heated for 18 minutes, and then cooled. The obtained film was a highly transparent film without cracks having a film thickness of 2200 nm.
[0142] 膜の硬さの評価は、実施例 A1と同様に行った。表 4に示すように、テーバー試験後 のヘイズ率は 3. 5%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、この膜付き物品は、波長 17 OOnmの近赤外線の透過率が 19%であった。  [0142] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 4, the haze ratio after the Taber test was 3.5%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. In addition, this film-coated article had a near infrared transmittance of 19% at a wavelength of 17 OOnm.
[0143] (比較例 B3)  [0143] (Comparative Example B3)
比較例 B3は、比較例 B1における基板を、実施例 B4で使用した基板に変更したこ と以外は、比較例 B1と同様にして有機無機複合膜の形成を試みた例である。得られ た膜は、表 4に示すように、テーバー試験後に剥離した。また、この膜付き物品は、波 長 1700nmの近赤外線の透過率が 30%を超えていた。  Comparative Example B3 is an example in which an organic-inorganic composite film was formed in the same manner as Comparative Example B1, except that the substrate in Comparative Example B1 was changed to the substrate used in Example B4. As shown in Table 4, the obtained film peeled after the Taber test. In addition, this film-coated article had a near-infrared transmittance of 1700 nm in wavelength exceeding 30%.
[0144] (実施例 C1)  [0144] (Example C1)
実施例 C1は、 ATO微粒子をさらに添加したこと以外は実施例 A5と同様にして調 製した形成溶液を用いて、波長 lOOOnmおよび 1700nmの光線の透過率がそれぞ れ 21%および 46%である基板上に、有機無機複合膜を形成した例である。 Example C1 uses a forming solution prepared in the same manner as in Example A5 except that ATO fine particles were further added, and the transmittance of light with a wavelength of lOOOnm and 1700 nm was respectively obtained. This is an example in which an organic-inorganic composite film is formed on a substrate of 21% and 46%.
[0145] ポリエーテルリン酸エステル系界面活性剤 (日本ルーブリゾ一ル製ソルスパース 41 000) 0. 01g、ポリエチレングリコーノレを 0. 02gと、ェチノレアノレコーノレ(片山ィ匕学製) 1 . 68g、純水 1. 30gを添加後、テトラエトキシシラン (信越ィ匕学製) 0. 87g、パラトルェ ンスルホン酸(関東化学製) 0. 001g、 PEDOTZPSS (バイエル製 BaytronP HC[0145] Polyether phosphate ester surfactant (Solsperse 41 000 manufactured by Nippon Lubrizol Co., Ltd.) 0.01 g, Polyethylene Glycolol 0.02 g, Ethino Reano Reconole (manufactured by Katayama Yi Gakuen) 1. After adding 68 g and 1.30 g of pure water, tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.87 g, paratoluene sulfonic acid (manufactured by Kanto Chemical) 0.001 g, PEDOTZPSS (Bayer BaytronP HC
V4) 0. 63g、 ATO微粒子分散液 (三菱マテリアル製、 ITOを 30質量%含むェチ ルアルコール溶液) 0. 5gを順に添カ卩して、形成溶液を得た。この溶液中の種々の組 成については、表 5に示すとおりである。 V4) 0.63 g, ATO fine particle dispersion (manufactured by Mitsubishi Materials, ethyl alcohol solution containing 30% by mass of ITO) 0.5 g was added in order to obtain a forming solution. Table 5 shows the various compositions in this solution.
[0146] [表 5] [0146] [Table 5]
Figure imgf000029_0001
Figure imgf000029_0001
[0147] 次 、で、上記の光線透過能を有する、洗浄したソーダ石灰珪酸塩ガラス基板(100 [0147] Next, a washed soda-lime-silicate glass substrate (100
X 100mm,厚さ: 3. 1mm)上に、湿度 30%、室温下でこの形成溶液をスピンコート 法にて塗布した。塗布後の基板を、 70°Cに昇温したホットプレート上で 5分加熱した 後、室温で約 5分程度乾燥し、さらに、予め 200°Cに昇温したオーブンに投入し 20 分加熱し、その後冷却した。得られた膜は、膜厚 1200nmのクラックのない透明度の 高い膜であった。この有機無機複合膜は、 PEDOTを 0. 15質量0 /0含んでいた。 X 100 mm, thickness: 3.1 mm) was applied by spin coating at 30% humidity and room temperature. The coated substrate is heated on a hot plate heated to 70 ° C for 5 minutes, dried at room temperature for about 5 minutes, and then placed in an oven heated to 200 ° C in advance and heated for 20 minutes. And then cooled. The obtained film was a highly transparent film having a thickness of 1200 nm and no cracks. The organic-inorganic composite film contained PEDOT 0. 15 mass 0/0.
[0148] 膜の硬さの評価は、実施例 A1と同様に行った。表 6に示すように、テーバー試験後 のヘイズ率は 3. 4%と低ぐ熔融ガラス板に匹敵する硬度を有していた。また、テー バー試験後の膜剥離やクラックの発生がな力つた。また、有機無機複合膜の表面抵 抗率は 3. 4 X 101QQZ口であった。また、この膜付き物品は、波長 lOOOnmおよび 1 700nmの近赤外線の透過率がそれぞれ 18%および 25%であった。 [0148] The hardness of the film was evaluated in the same manner as in Example A1. As shown in Table 6, the haze ratio after the Taber test was 3.4%, which was as low as a molten glass plate. Also, film peeling and cracking after the Taber test were strong. The surface resistivity of the organic / inorganic composite film was 3.4 X 10 1Q QZ port. Further, this film-coated article had transmittances of 18% and 25% of near-infrared rays having wavelengths of lOOOnm and 1700 nm, respectively.
[0149] [表 6]
Figure imgf000030_0001
産業上の利用可能性
[0149] [Table 6]
Figure imgf000030_0001
Industrial applicability
本発明は、帯電防止能や近赤外線吸収能を有する材料を含みながらも、耐摩耗性 に優れた有機無機複合膜が形成された物品を提供するものとして、帯電防止膜や近 赤外線吸収膜が形成された物品を利用する各分野において多大な利用価値を有す る。  The present invention provides an article on which an organic-inorganic composite film excellent in wear resistance is formed while including a material having antistatic ability and near infrared absorption ability. It has great utility value in each field that uses the formed article.

Claims

請求の範囲 The scope of the claims
[I] 基体と、前記基体の表面に形成された、有機物および無機酸ィ匕物を含む有機無機 複合膜とを含む、有機無機複合膜が形成された物品であって、  [I] An article formed with an organic-inorganic composite film, including a base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base,
前記有機無機複合膜が前記無機酸ィ匕物としてシリカを含み、  The organic-inorganic composite film contains silica as the inorganic oxide,
前記有機無機複合膜が前記シリカを主成分とし、  The organic-inorganic composite film is mainly composed of the silica,
前記有機無機複合膜の表面に対して実施する JIS R 3212に規定されたテーバ 一摩耗試験の後に、前記有機無機複合膜が前記基体から剥離せず、  After the Taber one wear test specified in JIS R 3212 performed on the surface of the organic-inorganic composite film, the organic-inorganic composite film does not peel from the substrate,
前記有機無機複合膜が、前記有機物の少なくとも一部として、または前記無機酸 化物としてさらに、カーボンナノチューブ、フラーレン、アンチモンスズ酸化物および インジウムスズ酸ィ匕物力も選ばれた少なくとも 1種、ならびに Zまたは導電性ポリマー を含む、  The organic-inorganic composite film is at least one selected from carbon nanotubes, fullerenes, antimony tin oxides and indium stannates as at least a part of the organic matter or as the inorganic oxide, and Z or Including conductive polymer,
有機無機複合膜が形成された物品。  Articles with an organic-inorganic composite film formed.
[2] 前記有機無機複合膜が、前記有機物として親水性有機ポリマーおよび Zまたは界 面活性剤を含む、請求項 1に記載の物品。 [2] The article according to claim 1, wherein the organic-inorganic composite film contains a hydrophilic organic polymer and Z or a surfactant as the organic substance.
[3] 前記有機無機複合膜が、前記有機物の少なくとも一部としてさらに、カーボンナノ チューブおよびフラーレン力 選ばれた少なくとも 1種、ならびに Zまたは導電性ポリ マーを含む、請求項 1に記載の物品。 [3] The article according to claim 1, wherein the organic-inorganic composite film further includes at least one selected from a carbon nanotube and a fullerene force, and Z or a conductive polymer as at least a part of the organic substance.
[4] 前記導電性ポリマーが、ポリエチレンジォキシチォフェンを含む、請求項 1に記載の 物品。 [4] The article according to claim 1, wherein the conductive polymer includes polyethylene dioxythiophene.
[5] 前記親水性有機ポリマーが、ポリオキシアルキレン基を含む、請求項 2に記載の物  [5] The article according to claim 2, wherein the hydrophilic organic polymer contains a polyoxyalkylene group.
P P
PPo PPo
[6] 前記親水性有機ポリマー力 リン酸エステル基およびポリオキシアルキレン基を含 む、請求項 2に記載の物品。  [6] The article according to claim 2, comprising a hydrophilic organic polymer force phosphate group and a polyoxyalkylene group.
[7] 前記界面活性剤が、第 4級アンモニゥム化合物を含む、請求項 2に記載の物品。 7. The article according to claim 2, wherein the surfactant includes a quaternary ammonium compound.
[8] 前記第 4級アンモ-ゥム化合物が水酸ィ匕物である、請求項 7に記載の物品。 8. The article according to claim 7, wherein the quaternary ammonia compound is a hydroxide.
[9] 前記基体の厚さが 0. 1mmを超える、請求項 1に記載の物品。 [9] The article according to claim 1, wherein the thickness of the substrate is more than 0.1 mm.
[10] 前記基体がガラス基板または榭脂基板である、請求項 1に記載の物品。 10. The article according to claim 1, wherein the substrate is a glass substrate or a resin substrate.
[II] 前記有機無機複合膜が、前記アンチモンスズ酸ィ匕物を含み、 800nmを超える膜厚 を有する、請求項 1に記載の物品。 [II] The organic-inorganic composite film contains the antimony stannate and has a film thickness exceeding 800 nm. The article of claim 1, comprising:
[12] 前記有機無機複合膜の表面抵抗率が 1. O X 1014Ω /口以下である、請求項 1に 記載の物品。 12. The article according to claim 1, wherein the surface resistivity of the organic-inorganic composite film is 1. OX 10 14 Ω / mouth or less.
[13] 前記有機無機複合膜が、前記無機酸ィ匕物としてさらに、アンチモンスズ酸化物およ びインジウムスズ酸ィ匕物カゝら選ばれた少なくとも 1種を含み、波長 1700nmの近赤外 線の透過率が 30%以下である、請求項 1に記載の物品。  [13] The organic-inorganic composite film further includes at least one selected from antimony tin oxide and indium stannic acid oxide as the inorganic oxide, and has a near infrared wavelength of 1700 nm. The article according to claim 1, wherein the transmittance of the line is 30% or less.
[14] 波長 1700nmの近赤外線の透過率が 20%以下である、請求項 13に記載の物品。 14. The article according to claim 13, wherein the transmittance of near infrared rays having a wavelength of 1700 nm is 20% or less.
[15] 前記有機無機複合膜の膜厚が 250nmを超え 5 m以下である、請求項 1に記載の 物品。 15. The article according to claim 1, wherein the thickness of the organic-inorganic composite film is more than 250 nm and 5 m or less.
[16] 前記有機無機複合膜の膜厚が 300nmを超え 5 μ m以下である、請求項 15に記載 の物品。  [16] The article according to claim 15, wherein the thickness of the organic-inorganic composite film is more than 300 nm and not more than 5 μm.
[17] 前記有機無機複合膜の膜厚が 1 m以上 5 μ m以下である、請求項 16に記載の 物品。  17. The article according to claim 16, wherein the thickness of the organic-inorganic composite film is 1 m or more and 5 μm or less.
[18] ディスプレイ用基材である、請求項 1に記載の物品。  18. The article according to claim 1, which is a display substrate.
[19] 前記有機無機複合膜が、フッ素榭脂微粒子を含まな!/ヽ請求項 1に記載の榭脂物品  [19] The resin article according to claim 1, wherein the organic-inorganic composite film does not contain fine particles of fluorocoagulant!
[20] 基体と、前記基体の表面に形成された、有機物および無機酸化物を含む有機無機 複合膜とを含み、前記有機無機複合膜が前記無機酸ィ匕物としてシリカを含み、前記 有機無機複合膜が前記シリカを主成分とし、前記有機無機複合膜が、前記有機物の 少なくとも一部として、または前記無機酸ィ匕物としてさらに、カーボンナノチューブ、フ ラーレン、アンチモンスズ酸ィ匕物およびインジウムスズ酸ィ匕物力も選ばれた少なくとも 1種、ならびに/または導電性ポリマーを含む、有機無機複合膜が形成された物品 の製造方法であって、 [20] A base and an organic-inorganic composite film containing an organic substance and an inorganic oxide formed on the surface of the base, wherein the organic-inorganic composite film contains silica as the inorganic oxide, and the organic-inorganic The composite film is mainly composed of the silica, and the organic-inorganic composite film is further added as at least a part of the organic material, or as the inorganic oxide, and further includes carbon nanotubes, fullerene, antimony stannate, and indium tin. A method for producing an article formed with an organic-inorganic composite film, comprising at least one selected from acidity and / or a conductive polymer,
前記基体の表面に前記有機無機複合膜の形成溶液を塗布する塗布工程と、 前記基体に塗布された形成溶液から当該形成溶液に含まれる液体成分の少なくと も一部を除去する除去工程と、を含み、  An application step of applying the organic-inorganic composite film forming solution to the surface of the substrate; and a removing step of removing at least a part of the liquid component contained in the forming solution from the forming solution applied to the substrate; Including
前記形成溶液が、シリコンアルコキシド、強酸、水およびアルコールと、カーボンナ ノチューブ、フラーレン、アンチモンスズ酸化物およびインジウムスズ酸化物から選ば れた少なくとも l種、ならびに Zまたは導電性ポリマーとを含み、 The forming solution is selected from silicon alkoxide, strong acid, water and alcohol, carbon nanotube, fullerene, antimony tin oxide and indium tin oxide. And at least one species, as well as Z or a conductive polymer,
前記形成溶液が、前記強酸の少なくとも一部として、もしくは前記強酸とは別の成 分として、親水性有機ポリマーおよび Zまたは界面活性剤をさらに含み、  The forming solution further comprises a hydrophilic organic polymer and Z or a surfactant as at least a part of the strong acid or as a component different from the strong acid,
前記シリコンアルコキシドの濃度力 当該シリコンアルコキシドに含まれるシリコン原 子を SiOに換算したときの SiO濃度により表示して 3質量%を超え、  Concentration power of the silicon alkoxide, exceeding 3 mass%, expressed by the SiO concentration when the silicon atom contained in the silicon alkoxide is converted to SiO,
2 2  twenty two
前記強酸の濃度が、前記強酸力 プロトンが完全に解離したと仮定したときのプロト ンの質量モル濃度により表示して 0. 001〜0. ImolZkgの範囲にあり、  The concentration of the strong acid is in the range of 0.001 to 0.1 ImolZkg, expressed by the molar concentration of proton when it is assumed that the strong acid proton is completely dissociated,
前記水のモル数力 前記シリコンアルコキシドに含まれるシリコン原子の総モル数 の 4倍以上であり、 前記塗布工程では、雰囲気の相対湿度を 40%未満に保持しな がら、前記形成溶液を前記基体に塗布し、  The number of moles of water is at least 4 times the total number of moles of silicon atoms contained in the silicon alkoxide. Apply to
前記除去工程では、前記基体を 300°C以下の温度に保持しながら、前記基体に塗 布された形成溶液に含まれる液体成分の少なくとも一部を除去する、  In the removing step, at least a part of the liquid component contained in the forming solution applied to the substrate is removed while maintaining the substrate at a temperature of 300 ° C. or lower.
有機無機複合膜が形成された物品の製造方法。  A method for producing an article on which an organic-inorganic composite film is formed.
[21] 前記除去工程において、前記基体を 250°C以下の温度に保持しながら、前記液体 成分の少なくとも一部を除去する、請求項 20に記載の物品の製造方法。 21. The method for producing an article according to claim 20, wherein in the removing step, at least a part of the liquid component is removed while maintaining the substrate at a temperature of 250 ° C. or lower.
[22] 前記水のモル数が、前記シリコンアルコキシドに含まれるシリコン原子の総モル数 の 40倍以下である、請求項 20に記載の物品の製造方法。 22. The method for producing an article according to claim 20, wherein the number of moles of water is 40 times or less the total number of moles of silicon atoms contained in the silicon alkoxide.
[23] 前記水のモル数が、前記シリコンアルコキシドに含まれるシリコン原子の総モル数 の 20倍以下である、請求項 22に記載の物品の製造方法。 23. The method for producing an article according to claim 22, wherein the number of moles of water is 20 times or less the total number of moles of silicon atoms contained in the silicon alkoxide.
[24] 前記シリコンアルコキシドの濃度が前記 SiO濃度により表示して 30質量%以下で [24] The concentration of the silicon alkoxide is 30% by mass or less expressed by the SiO concentration.
2  2
ある、請求項 20に記載の物品の製造方法。  21. A method for manufacturing an article according to claim 20.
[25] 前記カーボンナノチューブ、フラーレン、アンチモンスズ酸化物およびインジウムス ズ酸ィ匕物力 選ばれた少なくとも 1種、ならびに Zまたは導電性ポリマーと、前記親水 性有機ポリマーおよび Zまたは界面活性剤と、を含む混合液に、前記シリコンアルコ キシド、水およびアルコールを添加する工程を含むことにより、前記形成溶液の調製 を行う、請求項 20に記載の物品の製造方法。  [25] The carbon nanotube, the fullerene, the antimony tin oxide, and the indium tin oxide, at least one selected from the above, and Z or a conductive polymer, and the hydrophilic organic polymer and Z or a surfactant. 21. The method for producing an article according to claim 20, wherein the forming solution is prepared by adding a step of adding the silicon alkoxide, water, and alcohol to the mixed solution.
[26] 前記塗布工程と、前記除去工程と、をそれぞれ 1回ずつ実施することにより、膜厚が 250nmを超え 5 m以下である前記有機無機複合膜を形成する、請求項 20に記載 の物品の製造方法。 [26] The organic-inorganic composite film having a thickness of more than 250 nm and not more than 5 m is formed by performing the coating step and the removing step once each. Manufacturing method of the article.
PCT/JP2006/319944 2005-10-05 2006-10-05 Article provided with organic-inorganic composite film and method for producing same WO2007040257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007538794A JPWO2007040257A1 (en) 2005-10-05 2006-10-05 Article formed with organic-inorganic composite film and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005292617 2005-10-05
JP2005-292618 2005-10-05
JP2005-292617 2005-10-05
JP2005292618 2005-10-05

Publications (1)

Publication Number Publication Date
WO2007040257A1 true WO2007040257A1 (en) 2007-04-12

Family

ID=37906299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319944 WO2007040257A1 (en) 2005-10-05 2006-10-05 Article provided with organic-inorganic composite film and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2007040257A1 (en)
WO (1) WO2007040257A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279986A3 (en) * 2006-06-30 2012-07-25 Cardinal CG Company Carbon nanotube coating technology
JP2013216971A (en) * 2012-03-02 2013-10-24 Rohm & Haas Electronic Materials Llc Composite of carbon black and metal
JPWO2012128332A1 (en) * 2011-03-24 2014-07-24 旭硝子株式会社 Liquid composition, method for producing the same, and glass article
CN104880745A (en) * 2015-06-11 2015-09-02 丹阳市精通眼镜技术创新服务中心有限公司 Carbon nanotube transparent antistatic resin lens and production method thereof
JPWO2015170695A1 (en) * 2014-05-08 2017-04-20 富士フイルム株式会社 Insulation film for windows, insulation glass for windows, building materials, windows, buildings and vehicles
CN107434360A (en) * 2017-08-25 2017-12-05 福耀玻璃工业集团股份有限公司 A kind of super hydrophilic dose, preparation method and super hydrophilic glass for vehicle window

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291666A (en) * 1994-04-18 1995-11-07 Nippon Sheet Glass Co Ltd Method for forming water-repelling coating film
JP2001079980A (en) * 1999-09-17 2001-03-27 Gunze Ltd Surface hard transparent sheet and its manufacture
JP2002003751A (en) * 2000-04-10 2002-01-09 Sekisui Chem Co Ltd Antistatic hard-coating composition, antistatic hard coat, method for producing the same, and laminated film with the antistatic hard coat
JP2002166488A (en) * 2000-12-01 2002-06-11 Gunze Ltd Transparent sheet with hard surface and its manufacturing method
WO2003060941A2 (en) * 2002-01-15 2003-07-24 Versilant Nanotechnologies, Llc Compositions of suspended carbon nanotubes, methods of making the same, and uses thereof
JP2003277537A (en) * 2002-03-27 2003-10-02 Gunze Ltd Transparent moisture-resistant gas barrier film
JP2005035810A (en) * 2003-07-15 2005-02-10 Mikuni Color Ltd Zero-dimensional or one-dimensional carbon structure dispersion
JP2005139269A (en) * 2003-11-05 2005-06-02 Toppan Forms Co Ltd Internal antistatic agent
JP2005163035A (en) * 2003-11-14 2005-06-23 Aica Kogyo Co Ltd Hard coating agent and hard coated film prepared by using the agent
JP2005241600A (en) * 2004-02-27 2005-09-08 Mitsubishi Rayon Co Ltd Method for evaluating physical property of carbon nanotube
JP2005263935A (en) * 2004-03-17 2005-09-29 Jsr Corp Liquid state curable composition, cured film and laminated material for static prevention
JP2005264132A (en) * 2004-02-17 2005-09-29 Teijin Chem Ltd Polycarbonate resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291666A (en) * 1994-04-18 1995-11-07 Nippon Sheet Glass Co Ltd Method for forming water-repelling coating film
JP2001079980A (en) * 1999-09-17 2001-03-27 Gunze Ltd Surface hard transparent sheet and its manufacture
JP2002003751A (en) * 2000-04-10 2002-01-09 Sekisui Chem Co Ltd Antistatic hard-coating composition, antistatic hard coat, method for producing the same, and laminated film with the antistatic hard coat
JP2002166488A (en) * 2000-12-01 2002-06-11 Gunze Ltd Transparent sheet with hard surface and its manufacturing method
WO2003060941A2 (en) * 2002-01-15 2003-07-24 Versilant Nanotechnologies, Llc Compositions of suspended carbon nanotubes, methods of making the same, and uses thereof
JP2003277537A (en) * 2002-03-27 2003-10-02 Gunze Ltd Transparent moisture-resistant gas barrier film
JP2005035810A (en) * 2003-07-15 2005-02-10 Mikuni Color Ltd Zero-dimensional or one-dimensional carbon structure dispersion
JP2005139269A (en) * 2003-11-05 2005-06-02 Toppan Forms Co Ltd Internal antistatic agent
JP2005163035A (en) * 2003-11-14 2005-06-23 Aica Kogyo Co Ltd Hard coating agent and hard coated film prepared by using the agent
JP2005264132A (en) * 2004-02-17 2005-09-29 Teijin Chem Ltd Polycarbonate resin composition
JP2005241600A (en) * 2004-02-27 2005-09-08 Mitsubishi Rayon Co Ltd Method for evaluating physical property of carbon nanotube
JP2005263935A (en) * 2004-03-17 2005-09-29 Jsr Corp Liquid state curable composition, cured film and laminated material for static prevention

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279986A3 (en) * 2006-06-30 2012-07-25 Cardinal CG Company Carbon nanotube coating technology
JPWO2012128332A1 (en) * 2011-03-24 2014-07-24 旭硝子株式会社 Liquid composition, method for producing the same, and glass article
JP5942983B2 (en) * 2011-03-24 2016-06-29 旭硝子株式会社 Liquid composition, method for producing the same, and glass article
US9725355B2 (en) 2011-03-24 2017-08-08 Asahi Glass Company, Limited Liquid composition and its production process, and glass article
JP2013216971A (en) * 2012-03-02 2013-10-24 Rohm & Haas Electronic Materials Llc Composite of carbon black and metal
JPWO2015170695A1 (en) * 2014-05-08 2017-04-20 富士フイルム株式会社 Insulation film for windows, insulation glass for windows, building materials, windows, buildings and vehicles
CN104880745A (en) * 2015-06-11 2015-09-02 丹阳市精通眼镜技术创新服务中心有限公司 Carbon nanotube transparent antistatic resin lens and production method thereof
CN107434360A (en) * 2017-08-25 2017-12-05 福耀玻璃工业集团股份有限公司 A kind of super hydrophilic dose, preparation method and super hydrophilic glass for vehicle window

Also Published As

Publication number Publication date
JPWO2007040257A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US7749606B2 (en) Article with organic-inorganic composite film and process for producing the same
JP6319732B2 (en) Inorganic oxide coating
WO2007040257A1 (en) Article provided with organic-inorganic composite film and method for producing same
JP2007242286A (en) Substrate with film, its manufacturing method, and substrate with transparent conductive film, and light-emitting element
JP2008213206A (en) Transparent article with antibacterial film and antibacterial film forming solution
JP5886363B2 (en) Articles with organic-inorganic composite film formed
JP2007125537A (en) Method for manufacturing article having organic-inorganic composite film
JP5041695B2 (en) Antistatic film-forming composition
JP2007099571A (en) Transparent article formed with infrared ray cutting film and its producing method
US20070289493A1 (en) Transparent article with infrared shielding film
US8039111B2 (en) Article with organic-inorganic composite film
KR100420049B1 (en) A composition for a protective layer of a transparent conductive layer and a method of preparing a protective layer using the same
JP2006111850A (en) Solution for forming silica-based film
JP2006111851A (en) Solution for forming silica-based film
CN1938152A (en) Article with silica-based film and process for producing the same
WO2007040256A1 (en) Resin article and method for producing same
JPH054763B2 (en)
JP2002264246A (en) Gas barrier film
JPH08304604A (en) Production of laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007538794

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811282

Country of ref document: EP

Kind code of ref document: A1