JPH054763B2 - - Google Patents

Info

Publication number
JPH054763B2
JPH054763B2 JP61288923A JP28892386A JPH054763B2 JP H054763 B2 JPH054763 B2 JP H054763B2 JP 61288923 A JP61288923 A JP 61288923A JP 28892386 A JP28892386 A JP 28892386A JP H054763 B2 JPH054763 B2 JP H054763B2
Authority
JP
Japan
Prior art keywords
coating
tin oxide
conductive
zro
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61288923A
Other languages
Japanese (ja)
Other versions
JPS63143705A (en
Inventor
Goro Sato
Michio Komatsu
Toshiharu Hirai
Keiichi Mihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP28892386A priority Critical patent/JPS63143705A/en
Publication of JPS63143705A publication Critical patent/JPS63143705A/en
Publication of JPH054763B2 publication Critical patent/JPH054763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本明は、硝子又はプラスチツク等の透明基材に
対し基材の持つ透明性を損なわずに耐擦傷性・耐
久性に優れギラツキのない導電性被膜を低温で形
成させる透明導電性塗布液組成物及びそれを用い
て導電性被膜を形成した透明基材に関する。 [従来の技術] 硝子又はプラスチツクは、透明性に特に優れた
基材であるため表示機器の材料、例えばブラウン
管(CRT)・液晶デイスプレイ(LCD)基板・シ
ユーウインドー等に多用されている。しかし、硝
子又はプラスチツク自体は絶縁体で表面に静電気
を帯びやすいためゴミ・ホコリが付いて映像を見
ずらくしていた。又LCD等のエレクトロデイス
プレイは、その静電気で誤動作を起こすことがあ
つた。硝子又はプラスチツクに導電性を持たせ帯
電防止を施す方法としては、溶剤に導電性粉末
とバインダー樹脂とを分散した導電性塗料を塗布
する方法、塩化錫や錫アルコキシド等の有機錫
をスプレーする方法、PVD法・CVD法等の気
相法(以上電子導電性)、界面活性剤・シリコ
ンアルコキシド等をスプレーする方法(イオン導
電性)がある。ところが電子導電性のものは導電
性は充分だが、では透明性・耐擦傷性・耐溶剤
性(バインダー樹脂が溶剤に侵かれ塗膜表面が白
化する)・耐水性(膜が剥がれる)が悪く、・
では透明性は良いが、耐酸性・耐アルカリ性・
耐水性(以上3項目とも膜が剥げる)が悪く、又
被膜を形成する物質自体の屈折率が高くさらに被
膜表面が平滑なためにギラツキ感があつて映像が
見ずらい。さらにではパツシペーシン膜を併用
しないと焼成時に硝子中のアルカリイオンが膜に
移動して導電性を低下させたり、焼成温度が500
℃以下の場合には、耐アルカリ性が低下して導電
性が悪くなる。又ガス(液滴)の悪臭・腐蝕性・
爆発性で作業環境が問題であり、では耐擦傷性
が悪いうえにコストが高く、基材が曲面を持つた
り大面積のものでは体形の装置を必要とした。イ
オン導電性のは、温度・湿度の環境により導電
性が変化し、耐擦傷性・耐アルカリ性(膜が溶解
する)・耐水性(剥げる)が悪かつた。 [発明が解決しようとする問題点] 本発明は、上記のような従来技術に伴う問題点
を解決しようとするものであつて、硝子又はプラ
スチツク等(以下硝子等と言う)の透明基材に対
し基材の持つ透明性を損わずに耐擦傷性及び耐酸
性・耐アルカリ性・耐溶剤性・耐水性(以上4点
を以下耐久性と言う)に優れギラツキのない導電
性被膜を低温で形成する透明導電性塗布液組成物
及びこれを塗布、硬化させて得られる透明導電性
被膜をする透明基材を提供しようとするものであ
る。 [問題点を解決するための手段] 本発明は、ジルコニウムのオキシ塩と非沈降性
シリカ及び導電性酸化錫コロイドを水と成長防止
剤及び希釈剤に均一分散させて、硝子等の透明基
材に対し基材の持つ透明性を損わずに耐擦傷性・
耐久性に優れギラスツキのない導電性被膜を低温
で形成する透明導電性塗布液組成物及びこれを塗
布、硬化させて得られる透明導電性被膜を有する
透明基材である。 本明では、ジルコニウムのオキシ塩から得られ
るジルコニアと非沈降性シリカから得られるシリ
カとの混合物をマトリツクスとし、そのマトリツ
クスに導電性酸化錫コロイド粒子を分散させるこ
とで、導電性を持つた透明被膜を形成する透明導
電性塗布液組成物である。被膜のギラツキは、そ
の被膜の反射率に依存している。被膜の反射率は
その屈折率及び表面の形状に因つて決り、更に屈
折率は被膜を構成する物質及び被膜の密度に依存
する。従つて反射率を下げるには、屈折率の小さ
な物質だけを用いるか、あるいは屈折率の大きな
物質では屈折率の小さな物質と混合するか又は被
膜の密度を下げれば良い。次に被膜表面の形状
は、平滑性が高くなると反射率も高くなるので平
滑性を低下させてやれば良いが、平滑性が低下し
すぎると被膜の透明性も同時に低下してしまう。
従つて本明では、被膜のギラツキをなくすために
ジルコニア(屈折率2.2)にシリカ(屈折率1.5)
を混合してマトリツクス自体の屈折率を低下さ
せ、更に被膜を多孔性にしてその見かけの屈折率
を低下させ、その上透明性を低下させない程度に
被膜表面を凹凸にしてギラツキをなくしている。
ところが一般に被膜が多孔性になると平滑な被膜
に比べてその表面積が増すため耐久性が悪くな
る。耐久性の強い物質には、ジルコニアがある
が、一般にジルコニウムアルキシドを用いてジル
コニアの被膜を得ている。ところが、ジルコニウ
ムアルコキシドは、加水分解速度が速いためにそ
の速度を制御することが困難であり、塗布液とし
て透明基材に塗布した際、湿度の影響を受け易く
湿度によつて被膜の性状が左右され一定性状を有
する被膜を連続的に得ることは難しい。又微量の
水分で加水分解するため塗布液を長期保存できな
い。さらにジルコニウムアルコキシドは、高価な
ため工業製品の原料としてはコスト高となる。本
発明ではジルコニウム塩を使用することによつて
従来の問題点を解決したものである。 本発明に係るジルコニウム塩は、オキシ塩が用
いられ、特にオキシ塩化ジルコニウム・オキシ硝
酸ジルコニウムがよい。 ジルコニウムのオキシ塩を水溶液の形で、硝子
等の基材に塗布しても前記水溶液がはじかれて被
膜ができない。これはジルコニウムのオキシ塩の
造膜性が低いのと基板に対する前記水溶液の表面
張力が高いために起るが、まず造膜性を向上させ
るために非沈降性シリカを加えた。表面張力を低
下させるには、表面張力の低い有機溶媒を混合す
るか又は混合した後に水の一部を系内から脱水す
る必要がある。しかし、通常の有機溶剤では、水
が少なくなるとジルコニウムのオキシ塩及び非沈
降性シリカが不安定になり、分解してゲル化を起
こしたり重合を促進することがある。本発明にお
いては、種々の有機溶剤のなかから上記のような
ジルコニウムのオキシ塩及び非沈降性シリカの分
解・ゲル化等を防止し成長防止剤となり得る有機
溶剤について検討した結果、ジルコニウムのオキ
シ塩と非沈降性シリカ及び導電性酸化錫コロイド
粒子の混合水溶液に特定の有機溶剤を混合する
か、又は混合した後に水の一部を系内から脱水す
ることによつて上記の問題点の解決を見出だし
た。このようにして調製した塗布液組成物は、こ
の有機溶剤が成長防止剤として作用するため、水
が少なくなつてもジルコニウムのオキシ塩及び非
沈降性シリカのゲル化や重合が起こらず安定であ
り、又、同時に造膜性を向上させ塗布液組成物の
表面張力を低下させることができる。さらに希釈
剤で希釈して基材に塗布したとき、希釈剤と水及
び一部の成長防止剤が蒸発して、残りの成長防止
剤によりジルコニウムのオキシ塩及び非沈降性シ
リカの分解・ゲル化及び重合が抑えられ、その後
残りの成長防止剤が徐々に蒸発していく時点で、
ジルコニウムのオキシ塩と非沈降性シリカの重合
が起こつて被膜が形成される。造膜性が非沈降性
シリカによつて向上されるのは、おそらく成長防
止剤が徐々に蒸発していく時に非沈降性シリカの
持つ水酸基によつてジルコニウムのオキシ塩との
重合が促進されるためではないかと思われる。 本発明に係る導電性酸化錫コロイド粒子とは、
酸化錫又は異種元素をドープした酸化錫あるいは
この両者が、水又は有機溶媒中に分散されてなる
コロイド粒子であり、これは、本出願人が先に出
願した「酸化錫ゾル及び酸化錫ゾルの製造方法」
(特願昭61−75283号)の発明によつて得られる導
電性酸化錫コロイド粒子である。コロイド粒子の
粒子径はその平均粒径が0.01〜0.1μmの範囲にあ
るものが良い。0.01μm未満では被膜を多孔性に
できず、0.1μmを越えると得られる被膜の曇価
(以下ヘーズと言う)が高くなつて基材のの透明
性を損ねる。ただし平均粒径が0.1μm以下であつ
ても0.1μmを越える粒子が多く含まれていると被
膜のヘーズが高くなつて基材の透明性を低下させ
るので、好ましくはコロイド中の全粒子の60%以
上が0.1μm以下の粒径の粒子で占められるものが
良い。 本発明に係る非沈降性シリカとは、珪酸アルカ
リ水溶液をイオン交換法あるいは透析法等の方法
でアルカリと水素を交換することによつて得られ
るものであつて、20wt%(SiO2換算)水溶液を
250000G、1時間で遠心沈降させた際、沈降物が
水溶液中の全SiO2に対して30重量部、好ましく
は10重量部以下のものである。好ましくは、本出
願人が先に出願した「コーテイング用非沈降性シ
リカ組成物及びその製造法」(特願昭61−187835
号)の発明によつて得られる非沈降性シリカが用
いられる。このようにして得られる非沈降性シリ
カは、本来不安定でコロイド粒子が生成されたリ
ゲル化し易いが、塗布液組成物の成長防止剤によ
つて安定化される。さらにこの非沈降性シリカ
は、ジルコニウムのオキシ塩と混合してもゲル化
することはなく、又ジルコニウムのオキシ塩をも
ゲル化させない。 本発明に係る成長防止剤としては、ジルコニウ
ムのオキシ塩及び非沈降性シリカをゲル化させな
いもの、あるいは重合を促進させないもので、好
ましくは、N−メチル−2−ピロリドン、N,N
ジメチルホルムアミド、モルホリン、エチレング
リコールモノメチルエーテル、エチレングリコー
ルモノエチルエーテル、エチレングリコール等及
びそれらの誘導体を一種又は二種以上組合わめて
使用できる。 本発明にに係る希釈剤は、ジルコニウムのオキ
シ塩及び非沈降性シリカをゲル化させないもので
あれば良く、例えばメタノール、エタノール、n
−プロパノール、i−プロパノール、n−ブタノ
ール、i−ブタノール、t−ブタノール等のアル
コール、酢酸メチルエステル、酢酸エチルエステ
ル等の酸性エステル、ジエチルエーテル等のエー
テル、アセトン等のケトンの一種又は二種以上組
合わめて使用できる。 ZrO2・SiO2・導電性酸化錫コロイド粒子・水
分・成長防止剤・希釈剤の組成比は、第一に、成
長防止剤は、ZrO2とSiO2の合計に対するmol比
として、1≦(成長防止剤)/ZrO2+SiO2)≦25
が良い。好ましくは2以上にする。1未満では塗
布液のポツトライフ(使用可能期間)が短くな
り、長期保存ができない。25を越えると塗布液組
成物を塗布し、硬化させていく際に硬化が不均一
になつて被膜の耐久性が悪くなる。第二に、水分
は、ZrO2との重量比において、0.1≦H2O/ZrO2
≦40の条件を満たした上で、塗布液組成物の全体
重量(以下全体重量と言う)に対して50wt%以
下が良い。0.1未満ではジルコニウムのオキシ塩
のゲル化が起り、重量比が40、あるいは全体重量
の50wt%を越えると成長防止剤の効果がなくな
り、透明基材上で塗布液組成物のはじきが起こる
からである。第三に、ZrO2とSiO2と導電性酸化
錫コロイドとの合計重量は全体重量に対して、
0.1〜20wt%が好ましく、塗布液の長期保存性の
上では、0.1〜10wt%が良い。20wt%を越えると
塗布液の安定性が悪くなり容易にゲル化するから
である。 第四に、導電性酸化錫コロイド粒子とジルコニ
ウムのオキシ塩と非沈降性シリカとの割合いは、
1≦(導電性酸化錫コロイド粒子)/(ZrO2
SiO2)≦5(重量比)が良い。1未満では被膜の
導電性が悪くなつたり、又被膜が多孔性になら
ず、5を越えると被膜の密着性が低下する。第五
に、非沈降性シリカとジルコニウムのオキシ塩の
割合いは、0.05≦SiO2/ZrO2≦1(重量比)が良
い。0.05未満では被膜の密着性が悪くなり、一を
越えると被膜の耐久性が悪くなるからである。 希釈剤は、本発明の透明導電性塗布液組成物を
塗工法に合せた粘度あるいは希望する膜厚となる
ように添加すれば良い。 本明の透明導電性塗布液組成物の製造方法は、
特に限定しないが好ましい方法として、予めジル
コニウムのオキシ塩と非沈降性シリカ及び導電性
酸化錫コロイド粒子が水及び成長防止剤に分散さ
れた混合液から水の一部を脱水し、又は脱水せず
に希釈剤を添加すれば良く、水を脱水するには蒸
溜法又は限外濾過法が使用できる。 本発明に係る透明導電性塗布液組成物は、硝子
等の基材に従来公知の塗工法、例えばスピンナー
法、バーコード法、デイツプ法、スプレー法、ロ
ールコート法、印刷法等の方法によつて塗工さ
れ、次いで乾燥すれば耐久性及び機械強度の良い
被膜が得られるが、さらに耐久性及び機械強度の
高い塗膜が必要な用途には300℃以上で基材のガ
ラス転移点以下の温度で焼成すれば良い。 このようにして得られる被膜は全光線透過率
(Tt)90%以上、ヘーズ(H)が5以下なので透過基
材の透明性を損わず、表面抵抗が104〜109Ω/□
であるため帯電防止効果に優れ、又ギラツキが防
止されている。又酸、アルカリに侵されず、水、
塩水に耐え密着性に優れ被膜の変化がない。 透明基材としては、硝子板及びCRT等の硝子
加工品あるいはポリエチレンテレフタレート、ポ
リカーボネート、ポリ(メタ)アクリレート等の
シート及びその加工品が適している。なお、有色
基材に塗布するときには基材の色調を変化させず
に被膜を形成することができる。 本明の導電性塗布液組成物を用いて得られた導
電性硝子又はプラスチツクは、帯電防止用デイス
プレイパネル、コピー硝子、計器表示パネル、透
明デジタイザー、テレライテイングターミナル等
への適用が可能である。 以下、本発明を実施例により説明するが、本明
はこれら実施例に限定されるものではない。 [実施例] 実施例 1 錫酸カリウム316gと吐酒石38.4gとを、水686
gに溶解して原料液を調製した。50℃に加温され
て撹拌下にある1000gの水に、前記の原料液を硝
酸とともに12時間かけて添加し、系内をPH8.5に
保持して加水分解させてゾルを得た。このゾルか
らコロイド粒子を濾別し、洗浄して副生塩を除去
した後粒子を乾燥し、空気中350℃で3時間焼成
し、さらに空気中650℃で2時間焼成して微粉末
を得た。得られた粉末400gを水酸化カリウム水
溶液1600g(KOH40g含有)に加え、の混合液
を30℃に保持しながらサンドミルで3時間撹拌し
ながら導電性酸化錫コロイドを得た。次いでこの
導電性酸化錫コロイドをイオン交換樹脂で処理す
ることにより、脱アルカリされた導電性酸化錫コ
ロイドを得た(導電性ゾル)。ここの脱アルカリ
された導電性酸化錫コロイドは沈澱物を含まず、
固形分濃度は20wt%であつて、コロイド粒子の
平均粒径は0.07μmであつた。そして0.1μm以下
の粒子の量は、全粒子の87%であつた。SiO2
して5wt%の珪酸ナトリウム(SiO2/Na2O=
3mol/mol)2000gを15℃に保持したまま水素
型イオン交換樹脂カラム中に空間速度SV=5で
通過させた(非沈降性シリカ液)。この非沈降性
シリカ液のうち50gと導電性ゾルうち50gに、N
−メチル−2−ピロリドンを20gとZrO2に換算
して25wt%オキシ塩化ジルコニウム水溶液を10
gとMeOH/BuOH(重量比1/1)170gを添
加し十分混合して透明導電性塗布液組成物を得
た。 実施例 2 実施例1で得得られた非沈降性シリカ液を50g
と導電性ゾルを200gに、N−メチル−2−ピロ
リドン10gとZrO2に換算して25wt%オキシ塩化
ジルコニウム水溶液を40gとMeOH/EtOH(重
量比1/1)1400gを添加し十分分散して透明導
電性塗布液組成物を得た。 実施例 3 N−メチル−2−ピロリドン10gとMeOH/
BuOH(重量比1/1)380gに代えた以外は実施
例1と同一条件で透明導電性塗布液組成物を得
た。 実施例 4 実施例1で得られた非沈降性シリカ液を50gと
導電性ゾルを220gに、N−メチル−2−ピロリ
ドン110gとZrO2に換算して25wt%オキシ塩化ジ
ルコニウム水溶液を100gとMeOH/EtOH(重量
比1/1)345gを添加し十分分散して透明導電
性塗布液組成物を得た。 実施例 5 実施例1で得られた非沈降性シリカ液を50gと
導電性ゾルを100gに、N,Nジメチルホルムア
ミド150gとZrO2に換算して25wt%オキシ硝酸ジ
ルコニウム水溶液を30gを均一混合後、ローター
リーエバポレーターにて減圧しながら80℃に加熱
して水を135g溜出させた。この液を冷却しさら
にMeOH/BuOH(重量比1/1)405gを添加
し十分分散して透明導電性塗布液組成物を得た。 実施例 6 エチレングリコールモノメチルエーテル20gに
代えた以外は実施例1と同一条件で透明導電性塗
布液組成物を得た。 実施例 7 モルホリン20gに代えた以外は実施例1と同一
条件で透明導電性塗布液組成物を得た。 比較例 1 実施例1で得られた非沈降性シリカ液を200g
と導電性ゾルを125gに、N−メチル−2−ピロ
リドン50gとZrO2に換算して25wt%オキシ塩ジ
ルコニウム水溶液10gを均一混合後、ローターリ
ーエバポレーターにて減圧しながら80℃に加熱し
て水を210g溜出させた。この液を冷却しさらに
MeOH/BuOH(重量比1/1)1075gを添加し
十分分散して透明導電性塗布液組成物を得た。 比較例 2 実施例1で得られた非沈降性シリカ液を100g
を導電性ゾルを25gに、N−メチル−2−ピロリ
ドン40gとZrO2に換算して25wt%オキシ塩化ジ
ルコニウム水溶液を20gとMeOH/BuOH(重量
比1/1)115gを添加し十分分散して透明導電
性塗布液組成物を得た。 比較例 3 実施例1で得られた非沈降性シリカ液を100g
と導電性ゾルを350gに、N−メチル−2−ピロ
リドン40gとZrO2に換算して25wt%オキシ硝酸
ジルコニウム水溶液20gを均一混合後、ローター
リーエバポレーターにて減圧しながら80℃に加熱
して水を250g溜出させた。この液を冷却しさら
にMeOH/BuOH(重量比1/1)1340gを添加
し十分分散して透明導電性塗布液組成物を得た。 比較例 4 実施例1で得られた非沈降性シリカ液を500g
を導電性ゾルのうち500gに、N−メチル−2−
ピロリドン6gとZrO2に換算して25wt%オキシ
硝酸ジルコニウム水溶液100gを均一混合後、ロ
ーターリーエバポレーターにて減圧しながら80℃
に加熱して水を900g溜出させたところゲル化し
た。 比較例 5 実施例1で得られた非沈降性シリカ液を100g
と導電性ゾルを100gに、N−メチル−2−ピロ
リドン25gとZrO2に換算して5wt%オキシ塩化ジ
ルコニウム水溶液を100gとMeOH/BuOH(重
量比1/1)75gを添加し十分分散して透明導電
性塗布液組成物を得た。 実施例及び比較例の液組成物及び組成比を表−
1に示した。 実施例1〜5、比較例1〜3、5で得られた塗
布液組成物を硝子板に、実施例6、7で得られた
透明導電性塗布液組成物をアクリル板にスピンナ
ーを使用し2000r.p.mで塗布した。硝子板は、110
℃10分間乾燥後、300℃30分間焼成し、アクリル
板は110℃30分間乾燥して被膜を得た。 なお、60℃に保持する14インチブラウン管用パ
ネルにスプレーの供給空気圧1.5Kg/cm2で、実施
例1で得られた透明導電性塗布液組成物を20ml/
分でスプレーした。その後110℃10分間乾燥し、
450℃30分間焼成して被膜を得た。これを実施例
1′とする。 得られた皮膜について下記の評価を行つた。結
果を表−2、3に示す。 透明性:全光線透過率(Tt)及びヘーズ(H)
をヘーズコンピユーター(スガ試験機製)で測
定した。 光沢度:JISK 7105−81の光沢度の測定法に
おいて測定角度60゜で光沢度(G)を評価した。 密着性:市販の12mm幅のセロテープの一部を
被膜に貼り付け、残りを被膜に対して直角に保
ち、瞬間的に引き剥がし、硝子上の被膜の有無
を目視した。 硬度:JISDO 202−71の鉛筆硬度テストで
測定した。 表面抵抗:硝子板及びアクリル板は電極セル
(YHP製)で測定した。 また、14インチパネルはハイレスタ(三菱油
化製)で測定した。 耐久性:下記4種類の液に漬けた後、密着性
(と同じ)評価し、試験前後の光沢度・表面
抵抗(・と同じ)を比較した。 (1) 15wt%アンモニア水に室温で120時間。 (2) 10wt%Nacl水溶液に室温で120時間。 (3) 煮沸している水の中に30分間。 (4) 50wt%の酢酸水溶液中に室温で120時間。 [発明の効果] 本発明は上記構成を採用することにより、硝子
等の透明基材に対し基材の透明性を損うことなく
耐久性、機械的強度、密着性に優れた導電性被膜
を低温で形成させることがでる。又、本発明の塗
布液組成物のポツトライフ(使用可能期間)は、
室温、暗所中で3ケ月以上である。 なお、透明導電性被膜を有する基材に表面平滑
性が要求されたり、表面摩擦係数を小さくしたい
ときには、本発明による被膜上にポリエステル、
アクリル、シリコーン、ポリプロピレン、ポリエ
チレン、ポリスチレン、エポキシ等の樹脂あるい
はシリカ等の無機物の透明保護膜を設けることが
できる。
[Industrial Application Field] The present invention forms a non-glare conductive film with excellent scratch resistance and durability on a transparent substrate such as glass or plastic at a low temperature without impairing the transparency of the substrate. The present invention relates to a transparent conductive coating liquid composition and a transparent substrate on which a conductive film is formed using the same. [Prior Art] Glass or plastic is a base material with particularly excellent transparency, and is therefore widely used as a material for display devices, such as cathode ray tubes (CRTs), liquid crystal display (LCD) substrates, and display windows. However, glass or plastic itself is an insulator and tends to accumulate static electricity on its surface, making it difficult to view images due to the accumulation of dirt and dust. Furthermore, electrostatic displays such as LCDs sometimes malfunction due to static electricity. Methods of making glass or plastic conductive and preventing static electricity include applying a conductive paint containing conductive powder and binder resin dispersed in a solvent, and spraying organic tin such as tin chloride or tin alkoxide. , vapor phase methods such as PVD and CVD (electronic conductivity), and methods of spraying surfactants, silicon alkoxide, etc. (ionic conductivity). However, although electronically conductive materials have sufficient conductivity, they have poor transparency, scratch resistance, solvent resistance (the binder resin is attacked by solvents and the coating surface turns white), and water resistance (the film peels off).・
The transparency is good, but the acid resistance, alkali resistance,
The water resistance is poor (the film peels off in all three cases), and the material that forms the film itself has a high refractive index, and the film surface is smooth, creating a glare that makes it difficult to see the image. Furthermore, if a Patsushipacin membrane is not used in combination, the alkali ions in the glass will migrate to the membrane during firing, reducing the conductivity, or the firing temperature will exceed 500°C.
If the temperature is below 0.degree. C., the alkali resistance decreases and the conductivity deteriorates. Also, the odor and corrosiveness of gas (droplets)
Explosiveness poses problems in the working environment, and in addition to poor abrasion resistance, the cost is high, and if the base material has a curved surface or a large area, a body-shaped device is required. The conductivity of ion conductive materials changes depending on the temperature and humidity environment, and their scratch resistance, alkali resistance (the film dissolves), and water resistance (peeling off) are poor. [Problems to be Solved by the Invention] The present invention attempts to solve the above-mentioned problems associated with the prior art. On the other hand, a non-glare conductive coating with excellent scratch resistance, acid resistance, alkali resistance, solvent resistance, and water resistance (hereinafter referred to as durability) without impairing the transparency of the base material can be produced at low temperatures. The object of the present invention is to provide a transparent conductive coating liquid composition to be formed and a transparent base material on which a transparent conductive coating obtained by coating and curing the same is formed. [Means for Solving the Problems] The present invention involves uniformly dispersing a zirconium oxysalt, non-precipitating silica, and conductive tin oxide colloid in water, a growth inhibitor, and a diluent to form a transparent substrate such as glass. scratch resistance and scratch resistance without impairing the transparency of the base material.
A transparent conductive coating liquid composition that forms a highly durable and non-glare conductive film at low temperatures, and a transparent substrate having a transparent conductive film obtained by coating and curing the same. In the present invention, a matrix is made of a mixture of zirconia obtained from a zirconium oxysalt and silica obtained from a non-precipitated silica, and conductive tin oxide colloidal particles are dispersed in the matrix to form a transparent coating with conductivity. This is a transparent conductive coating liquid composition that forms a transparent conductive coating composition. The glare of a coating depends on the reflectance of the coating. The reflectance of a coating is determined by its refractive index and the shape of its surface, which in turn depends on the material that makes up the coating and the density of the coating. Therefore, in order to lower the reflectance, it is sufficient to use only a substance with a low refractive index, or to mix a substance with a high refractive index with a substance with a low refractive index, or to reduce the density of the coating. Next, regarding the shape of the coating surface, the higher the smoothness, the higher the reflectance, so it is best to reduce the smoothness, but if the smoothness decreases too much, the transparency of the coating will also decrease at the same time.
Therefore, in the present invention, silica (refractive index 1.5) is added to zirconia (refractive index 2.2) to eliminate glare from the coating.
The refractive index of the matrix itself is lowered by mixing these materials, the coating is made porous to lower its apparent refractive index, and the surface of the coating is made uneven to the extent that transparency is not reduced to eliminate glare.
However, in general, when a coating becomes porous, its surface area increases compared to a smooth coating, resulting in poor durability. Zirconia is a highly durable material, and zirconia coatings are generally obtained using zirconium alkoxide. However, since zirconium alkoxide has a fast hydrolysis rate, it is difficult to control the rate, and when it is applied as a coating liquid to a transparent substrate, it is easily affected by humidity, and the properties of the film vary depending on the humidity. It is difficult to continuously obtain a film with constant properties. Furthermore, since it is hydrolyzed by a small amount of water, the coating solution cannot be stored for a long period of time. Furthermore, zirconium alkoxide is expensive and therefore costs high as a raw material for industrial products. The present invention solves the conventional problems by using a zirconium salt. As the zirconium salt according to the present invention, an oxy salt is used, and zirconium oxychloride and zirconium oxynitrate are particularly preferred. Even if a zirconium oxysalt is applied in the form of an aqueous solution to a substrate such as glass, the aqueous solution is repelled and no film is formed. This is caused by the low film-forming properties of the zirconium oxysalt and the high surface tension of the aqueous solution with respect to the substrate. First, non-precipitating silica was added to improve the film-forming properties. In order to lower the surface tension, it is necessary to mix an organic solvent with a low surface tension, or to remove part of the water from the system after mixing. However, with ordinary organic solvents, zirconium oxysalts and non-precipitated silica become unstable when the water content decreases, and may decompose to cause gelation or promote polymerization. In the present invention, as a result of examining the above-mentioned zirconium oxysalts and organic solvents that can act as growth inhibitors by preventing the decomposition and gelation of non-precipitated silica, we have selected zirconium oxysalts from among various organic solvents. The above problems can be solved by mixing a specific organic solvent with a mixed aqueous solution of non-sedimentable silica and conductive tin oxide colloidal particles, or by dehydrating part of the water from the system after mixing. I found a headline. The coating liquid composition prepared in this manner is stable even when the water content is low because the zirconium oxysalt and non-precipitating silica do not gel or polymerize because the organic solvent acts as a growth inhibitor. Moreover, at the same time, it is possible to improve film-forming properties and reduce the surface tension of the coating liquid composition. When it is further diluted with a diluent and applied to the substrate, the diluent, water and some of the growth inhibitors evaporate, and the remaining growth inhibitor decomposes and gels the zirconium oxysalt and non-precipitating silica. and when polymerization is suppressed and the remaining growth inhibitor gradually evaporates,
Polymerization of the zirconium oxysalt and non-precipitating silica occurs to form a film. The reason why the film-forming property is improved by non-precipitated silica is probably that when the growth inhibitor gradually evaporates, the hydroxyl groups of non-precipitated silica promote polymerization with zirconium oxysalt. I think it's for a reason. The conductive tin oxide colloid particles according to the present invention are:
These are colloidal particles in which tin oxide, tin oxide doped with a different element, or both are dispersed in water or an organic solvent. Production method"
These are conductive tin oxide colloidal particles obtained by the invention of (Japanese Patent Application No. 61-75283). The average particle size of the colloidal particles is preferably in the range of 0.01 to 0.1 μm. If it is less than 0.01 μm, the film cannot be made porous, and if it exceeds 0.1 μm, the resulting film will have a high haze value (hereinafter referred to as haze), impairing the transparency of the substrate. However, even if the average particle size is 0.1 μm or less, if there are many particles exceeding 0.1 μm, the haze of the coating will increase and the transparency of the substrate will decrease. It is preferable that at least % is occupied by particles with a particle size of 0.1 μm or less. The non-precipitating silica according to the present invention is obtained by exchanging alkali and hydrogen in an aqueous alkali silicate solution by a method such as an ion exchange method or a dialysis method. of
When centrifuged at 250,000 G for 1 hour, the amount of precipitate is 30 parts by weight, preferably 10 parts by weight or less, based on the total SiO 2 in the aqueous solution. Preferably, "Non-precipitating silica composition for coating and method for producing the same" previously filed by the present applicant (Japanese Patent Application No. 187835/1983)
The non-precipitating silica obtained by the invention of No. 1) is used. The non-sedimented silica thus obtained is inherently unstable and prone to regelation in which colloidal particles are produced, but is stabilized by the growth inhibitor in the coating composition. Furthermore, this non-precipitating silica does not gel when mixed with zirconium oxysalts, nor does it gel zirconium oxysalts. The growth inhibitor according to the present invention is one that does not gel zirconium oxysalt and non-precipitated silica or does not promote polymerization, preferably N-methyl-2-pyrrolidone, N,N
Dimethylformamide, morpholine, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol, etc., and their derivatives can be used singly or in combination of two or more. The diluent according to the present invention may be any diluent that does not cause gelation of the zirconium oxysalt and non-precipitating silica, such as methanol, ethanol, n
- One or more alcohols such as propanol, i-propanol, n-butanol, i-butanol, and t-butanol, acidic esters such as methyl acetate and ethyl acetate, ethers such as diethyl ether, and ketones such as acetone. Can be used in combination. The composition ratio of ZrO 2 , SiO 2 , conductive tin oxide colloidal particles, moisture, growth inhibitor, and diluent is as follows: First, the growth inhibitor is 1≦( as a molar ratio to the total of ZrO 2 and SiO 2 Growth inhibitor)/ZrO 2 +SiO 2 )≦25
is good. Preferably the number is 2 or more. If it is less than 1, the pot life (usable period) of the coating solution will be shortened and it cannot be stored for a long time. If it exceeds 25, when the coating liquid composition is applied and cured, the curing becomes uneven and the durability of the coating deteriorates. Second, water has a weight ratio of 0.1≦H 2 O/ZrO 2 to ZrO 2 .
After satisfying the condition of ≦40, it is preferably 50 wt% or less based on the total weight of the coating liquid composition (hereinafter referred to as the total weight). If it is less than 0.1, gelation of the zirconium oxysalt will occur, and if the weight ratio exceeds 40 or 50 wt% of the total weight, the growth inhibitor will be ineffective and the coating composition will be repelled on the transparent substrate. be. Thirdly, the total weight of ZrO 2 , SiO 2 and conductive tin oxide colloid is relative to the total weight,
It is preferably 0.1 to 20 wt%, and 0.1 to 10 wt% is good in terms of long-term storage stability of the coating solution. This is because if it exceeds 20 wt%, the stability of the coating solution deteriorates and it easily gels. Fourth, the ratio of conductive tin oxide colloidal particles, zirconium oxysalt, and non-precipitating silica,
1≦(conductive tin oxide colloidal particles)/(ZrO 2 +
SiO 2 )≦5 (weight ratio) is preferable. If it is less than 1, the conductivity of the film will be poor or the film will not become porous, and if it exceeds 5, the adhesion of the film will be reduced. Fifth, the ratio of non-precipitating silica to zirconium oxysalt is preferably 0.05≦SiO 2 /ZrO 2 ≦1 (weight ratio). This is because if it is less than 0.05, the adhesion of the film will be poor, and if it exceeds 1, the durability of the film will be poor. The diluent may be added so that the transparent conductive coating composition of the present invention has a viscosity suited to the coating method or a desired film thickness. The method for producing the transparent conductive coating liquid composition of the present invention includes:
As a preferred but not particularly limited method, a portion of the water is dehydrated from a mixed solution in which zirconium oxysalt, non-precipitating silica, and conductive tin oxide colloidal particles are dispersed in water and a growth inhibitor, or without dehydration. A diluent may be added to the water, and a distillation method or an ultrafiltration method can be used to dehydrate the water. The transparent conductive coating composition of the present invention can be applied to a substrate such as glass by a conventionally known coating method, such as a spinner method, a barcode method, a dip method, a spray method, a roll coating method, or a printing method. A film with good durability and mechanical strength can be obtained by applying the coating with a 300°C or higher temperature and below the glass transition point of the base material. It should be fired at a certain temperature. The film obtained in this way has a total light transmittance (T t ) of 90% or more and a haze (H) of 5 or less, so it does not impair the transparency of the transparent substrate and has a surface resistance of 10 4 to 10 9 Ω/□
Therefore, it has an excellent antistatic effect and prevents glare. Also, it is not affected by acids and alkalis, and is resistant to water,
It can withstand salt water and has excellent adhesion, with no change in the film. Suitable transparent substrates include processed glass products such as glass plates and CRTs, sheets of polyethylene terephthalate, polycarbonate, poly(meth)acrylate, etc., and processed products thereof. Note that when applied to a colored substrate, a film can be formed without changing the color tone of the substrate. The conductive glass or plastic obtained using the conductive coating liquid composition of the present invention can be applied to antistatic display panels, copy glass, instrument display panels, transparent digitizers, telewriting terminals, etc. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. [Example] Example 1 316 g of potassium stannate and 38.4 g of tartarite were mixed with 686 g of water.
A raw material solution was prepared by dissolving it in g. The above raw material solution was added over 12 hours together with nitric acid to 1000 g of water heated to 50° C. and stirred, and the system was hydrolyzed while maintaining the pH at 8.5 to obtain a sol. Colloidal particles were filtered from this sol, washed to remove by-product salts, and then dried, calcined in air at 350℃ for 3 hours, and further calcined in air at 650℃ for 2 hours to obtain a fine powder. Ta. 400 g of the obtained powder was added to 1600 g of an aqueous potassium hydroxide solution (containing 40 g of KOH), and the mixture was stirred in a sand mill for 3 hours while maintaining the mixture at 30° C. to obtain a conductive tin oxide colloid. Next, this conductive tin oxide colloid was treated with an ion exchange resin to obtain a dealkalized conductive tin oxide colloid (conductive sol). The dealkalized conductive tin oxide colloid here does not contain precipitates,
The solid content concentration was 20 wt%, and the average particle size of the colloid particles was 0.07 μm. The amount of particles of 0.1 μm or less was 87% of the total particles. 5wt% sodium silicate as SiO 2 (SiO 2 /Na 2 O=
3 mol/mol) was passed through a hydrogen type ion exchange resin column at a space velocity of SV=5 while maintaining the temperature at 15°C (non-precipitating silica liquid). 50g of this non-precipitating silica liquid and 50g of the conductive sol are
-20g of methyl-2-pyrrolidone and 10g of 25wt% zirconium oxychloride aqueous solution converted to ZrO2
g and 170 g of MeOH/BuOH (weight ratio 1/1) were added and thoroughly mixed to obtain a transparent conductive coating liquid composition. Example 2 50g of the non-sedimentable silica liquid obtained in Example 1
To 200 g of the conductive sol, add 10 g of N-methyl-2-pyrrolidone, 40 g of a 25 wt% zirconium oxychloride aqueous solution in terms of ZrO 2 and 1400 g of MeOH/EtOH (weight ratio 1/1) and disperse thoroughly. A transparent conductive coating liquid composition was obtained. Example 3 10g of N-methyl-2-pyrrolidone and MeOH/
A transparent conductive coating liquid composition was obtained under the same conditions as in Example 1 except that 380 g of BuOH (weight ratio 1/1) was used. Example 4 50 g of the non-precipitating silica liquid obtained in Example 1, 220 g of conductive sol, 110 g of N-methyl-2-pyrrolidone, 100 g of 25 wt% zirconium oxychloride aqueous solution in terms of ZrO 2 and MeOH /EtOH (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating composition. Example 5 After homogeneously mixing 50 g of the non-precipitating silica liquid obtained in Example 1, 100 g of the conductive sol, 150 g of N,N dimethylformamide, and 30 g of a 25 wt% zirconium oxynitrate aqueous solution in terms of ZrO 2 The mixture was heated to 80° C. under reduced pressure using a rotary evaporator, and 135 g of water was distilled out. This liquid was cooled, and 405 g of MeOH/BuOH (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition. Example 6 A transparent conductive coating liquid composition was obtained under the same conditions as in Example 1 except that 20 g of ethylene glycol monomethyl ether was used. Example 7 A transparent conductive coating liquid composition was obtained under the same conditions as in Example 1 except that morpholine was replaced with 20 g. Comparative Example 1 200g of non-sedimentable silica liquid obtained in Example 1
After homogeneously mixing 125 g of conductive sol, 50 g of N-methyl-2-pyrrolidone, and 10 g of a 25 wt% oxysalt zirconium aqueous solution in terms of ZrO 2 , the mixture was heated to 80°C under reduced pressure using a rotary evaporator and water was added. 210g of was distilled out. Cool this liquid and further
1075 g of MeOH/BuOH (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating composition. Comparative Example 2 100g of non-sedimentable silica liquid obtained in Example 1
Add 25 g of conductive sol, 40 g of N-methyl-2-pyrrolidone, 20 g of 25 wt% zirconium oxychloride aqueous solution in terms of ZrO 2 and 115 g of MeOH/BuOH (weight ratio 1/1) and disperse thoroughly. A transparent conductive coating liquid composition was obtained. Comparative Example 3 100g of the non-precipitating silica liquid obtained in Example 1
After homogeneously mixing 350 g of conductive sol, 40 g of N-methyl-2-pyrrolidone, and 20 g of a 25 wt% zirconium oxynitrate aqueous solution in terms of ZrO 2 , the mixture was heated to 80°C under reduced pressure using a rotary evaporator and water was added. 250g was distilled out. This liquid was cooled, and 1340 g of MeOH/BuOH (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition. Comparative Example 4 500g of non-sedimentable silica liquid obtained in Example 1
to 500g of the conductive sol, N-methyl-2-
After uniformly mixing 6 g of pyrrolidone and 100 g of a 25 wt% zirconium oxynitrate aqueous solution in terms of ZrO 2 , the mixture was heated to 80°C under reduced pressure using a rotary evaporator.
When heated to 900g to distill out 900g of water, it turned into a gel. Comparative Example 5 100g of non-sedimentable silica liquid obtained in Example 1
To 100 g of the conductive sol, add 25 g of N-methyl-2-pyrrolidone, 100 g of a 5 wt% zirconium oxychloride aqueous solution in terms of ZrO 2 and 75 g of MeOH/BuOH (weight ratio 1/1) and disperse thoroughly. A transparent conductive coating liquid composition was obtained. The liquid compositions and composition ratios of Examples and Comparative Examples are shown below.
Shown in 1. Using a spinner, the coating liquid compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 3 and 5 were applied to a glass plate, and the transparent conductive coating liquid compositions obtained in Examples 6 and 7 were applied to an acrylic plate. It was applied at 2000r.pm. The glass plate is 110
After drying at 110°C for 10 minutes, it was fired at 300°C for 30 minutes, and the acrylic plate was dried at 110°C for 30 minutes to obtain a coating. In addition, 20ml/20ml of the transparent conductive coating composition obtained in Example 1 was sprayed onto a 14-inch cathode ray tube panel maintained at 60°C at a spray supply air pressure of 1.5Kg/ cm2 .
Sprayed in minutes. Then dry at 110℃ for 10 minutes.
A film was obtained by firing at 450°C for 30 minutes. Example of this
Let it be 1′. The obtained film was evaluated as follows. The results are shown in Tables 2 and 3. Transparency: total light transmittance (T t ) and haze (H)
was measured using a haze computer (manufactured by Suga Test Instruments). Glossiness: Glossiness (G) was evaluated at a measurement angle of 60° according to the glossiness measurement method of JISK 7105-81. Adhesion: A part of commercially available cellophane tape with a width of 12 mm was attached to the film, the rest was held at right angles to the film, and it was instantly peeled off, and the presence or absence of the film on the glass was visually observed. Hardness: Measured using JISDO 202-71 pencil hardness test. Surface resistance: The glass plate and acrylic plate were measured using an electrode cell (manufactured by YHP). In addition, the 14-inch panel was measured using Hiresta (manufactured by Mitsubishi Yuka). Durability: After soaking in the following four types of liquids, adhesion (same as) was evaluated, and gloss and surface resistance (same as .) were compared before and after the test. (1) 120 hours at room temperature in 15wt% ammonia water. (2) 120 hours at room temperature in 10wt% NaCl aqueous solution. (3) Place in boiling water for 30 minutes. (4) 120 hours at room temperature in 50 wt% acetic acid aqueous solution. [Effects of the Invention] By adopting the above configuration, the present invention can provide a conductive coating with excellent durability, mechanical strength, and adhesion to transparent substrates such as glass without impairing the transparency of the substrate. It can be formed at low temperatures. Furthermore, the pot life (usable period) of the coating liquid composition of the present invention is as follows:
Stored at room temperature in the dark for 3 months or more. In addition, when surface smoothness is required for a base material having a transparent conductive coating, or when it is desired to reduce the surface friction coefficient, polyester,
A transparent protective film made of a resin such as acrylic, silicone, polypropylene, polyethylene, polystyrene, or epoxy, or an inorganic material such as silica can be provided.

【表】【table】

【表】【table】

【表】 密着性:被膜が剥がれなければ○、
剥がれれば×とした。比較例
5は、透明導電性塗布液組成物がはじ
かれて被膜が得られなかつた。
[Table] Adhesion: ○ if the film does not peel off;
If it peeled off, it was marked as ×. Comparative example
In No. 5, the transparent conductive coating liquid composition was repelled and no film was obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ジルコニウムのオキシ塩と非沈降性シリカと
導電性酸化錫コロイド粒子を水と成長防止剤と希
釈剤とからなる分散媒中に均一分散したことを特
徴とする透明導電性塗布液組成物。 2 成長防止剤として、N−メチル−2−ピロリ
ドン、N,Nジメチルホルムアミド、モルホリ
ン、エチレングリコールモノメチルエーテル、エ
チレングリコールモノエチルエーテル、エチレン
グリコール及びそれらの誘導体の中の一種又は二
種以上組合せて使用することを特徴とする特許請
求の範囲第1項記載の透明導電性塗布液組成物。 3 導電性酸化錫粉末及び/又は異種元素をドー
プした導電性酸化錫粉末を、酸水溶液又はアルカ
リ水溶液中で加水処理して得られる導電性酸化錫
コロイド粒子を使用することを特徴とする特許請
求の範囲第1項又は第2項記載の透明導電性塗布
液組成物。 4 ジルコニウムのオキシ塩をZrO2に換算し、
非沈降性シリカをSiO2に換算し、導電性酸化錫
コロイド粒子、水分、成長防止剤及び希釈剤との
組成物を、 1≦(成長防止剤)/(ZrO2+SiO2)≦25(mol
比) 0.1≦H2O/ZrO2≦40(重量比) H2O/(塗布液組成物の全体重量)≦0.5(重量
比) 0.001≦(ZrO2+SiO2導電性酸化錫コロイド粒
子)/(塗布液組成物の全体重量)≦0.2(重量
比) 1≦(導電性酸化錫コロイド粒子)/(ZrO2
SiO2)≦5(重量比) 0.05≦SiO2/ZrO2≦1(重量比) とすることを特徴とする特許請求の範囲第1項又
は第2項又は第3項記載の透明導電性塗布液組成
物。 5 ジルコニウムのオキシ塩と非沈降性シリカと
導電性酸化錫コロイドを水と成長防止剤と希釈剤
とからなる分散媒中に均一に分散した塗布液を基
材に塗布後、硬化させてなる透明導電性被膜を有
する基材。
[Claims] 1. A transparent conductive material characterized by uniformly dispersing a zirconium oxysalt, non-precipitating silica, and conductive tin oxide colloidal particles in a dispersion medium consisting of water, a growth inhibitor, and a diluent. Coating liquid composition. 2. As a growth inhibitor, use one type or a combination of two or more of N-methyl-2-pyrrolidone, N,N dimethylformamide, morpholine, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol, and their derivatives. The transparent conductive coating composition according to claim 1, characterized in that: 3. A patent claim characterized in that conductive tin oxide colloidal particles obtained by hydrotreating conductive tin oxide powder and/or conductive tin oxide powder doped with a different element in an acid aqueous solution or an alkaline aqueous solution are used. The transparent conductive coating liquid composition according to item 1 or 2. 4 Convert zirconium oxysalt to ZrO 2 ,
Non-precipitated silica is converted to SiO 2 and the composition of conductive tin oxide colloidal particles, water, growth inhibitor and diluent is calculated as follows: 1≦(growth inhibitor)/(ZrO 2 +SiO 2 )≦25 (mol)
ratio) 0.1≦H 2 O / ZrO 2 ≦40 (weight ratio) H 2 O / (total weight of coating liquid composition) ≦0.5 (weight ratio) 0.001≦ (ZrO 2 + SiO 2 conductive tin oxide colloidal particles) / (Total weight of coating liquid composition)≦0.2 (weight ratio) 1≦(conductive tin oxide colloidal particles)/(ZrO 2 +
The transparent conductive coating according to claim 1, 2 or 3, characterized in that SiO 2 )≦5 (weight ratio) 0.05≦SiO 2 /ZrO 2 ≦1 (weight ratio) liquid composition. 5 A transparent coating made by coating a substrate with a coating solution in which zirconium oxysalt, non-precipitating silica, and conductive tin oxide colloid are uniformly dispersed in a dispersion medium consisting of water, a growth inhibitor, and a diluent, and then hardening the coating solution. A base material having a conductive coating.
JP28892386A 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film Granted JPS63143705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28892386A JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28892386A JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Publications (2)

Publication Number Publication Date
JPS63143705A JPS63143705A (en) 1988-06-16
JPH054763B2 true JPH054763B2 (en) 1993-01-20

Family

ID=17736548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28892386A Granted JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Country Status (1)

Country Link
JP (1) JPS63143705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299034A (en) * 1991-06-07 1993-11-12 Sony Corp Cathode-ray tube and application liquid for display plane thereof
DE69309814T2 (en) * 1992-08-31 1997-10-16 Sumitomo Cement Co Antireflective and antistatic clothing layer for an electron beam tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276759A (en) * 1985-05-31 1986-12-06 Ube Ind Ltd Die device for die casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276759A (en) * 1985-05-31 1986-12-06 Ube Ind Ltd Die device for die casting

Also Published As

Publication number Publication date
JPS63143705A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
JPH11228183A (en) Hydrophilic base material and its production
WO2010018852A1 (en) Coating compositions and articles with formed coating films
US5085888A (en) Method for forming thin mgf2 film and low-reflection film
US5273828A (en) Coating liquids for forming conductive coatings
WO2007040257A1 (en) Article provided with organic-inorganic composite film and method for producing same
JPH054763B2 (en)
KR102656789B1 (en) Paint composition and optical components for forming hard coat layer
JPH01261469A (en) Transparent conductive coating film
US4619704A (en) Composition for forming a transparent conductive film
JPS63143706A (en) Transparent conducting coat liquid composition and base material having transparent conducting film
JPH0465384B2 (en)
US5256484A (en) Substrate having a transparent coating thereon
JPH0625578A (en) Ink for forming thin film
JPH1160281A (en) Photocatalyst glass and its production
JPS63193971A (en) Transparent electrically conductive film
JP3233758B2 (en) Antistatic coating composition for plastics
JPS63131408A (en) Transparent conducting coat liquid composition and transparent base material
JPH06299090A (en) Antistatic coating composition for plastics
JPS63130674A (en) Coating fluid composition
KR20000050673A (en) Compositon for forming a spray layer and transparent conductive film employing spray layer manufactured by using the same
JPH0798911B2 (en) Coating liquid for conductive film formation
US5270072A (en) Coating liquids for forming conductive coatings
JP4901080B2 (en) Conductive coating composition and transparent conductive film using the same
JPS63218350A (en) Antireflecting light-transmitting board having electricity inhibiting property
JPH11189435A (en) Production of glass substrate with light transmitting colored film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees