JPS63143705A - Transparent conducting coat liquid composition and base material having transparent conducting film - Google Patents

Transparent conducting coat liquid composition and base material having transparent conducting film

Info

Publication number
JPS63143705A
JPS63143705A JP28892386A JP28892386A JPS63143705A JP S63143705 A JPS63143705 A JP S63143705A JP 28892386 A JP28892386 A JP 28892386A JP 28892386 A JP28892386 A JP 28892386A JP S63143705 A JPS63143705 A JP S63143705A
Authority
JP
Japan
Prior art keywords
tin oxide
liquid composition
conductive
zro
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28892386A
Other languages
Japanese (ja)
Other versions
JPH054763B2 (en
Inventor
護郎 佐藤
通郎 小松
俊晴 平井
三原 恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP28892386A priority Critical patent/JPS63143705A/en
Publication of JPS63143705A publication Critical patent/JPS63143705A/en
Publication of JPH054763B2 publication Critical patent/JPH054763B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硝子又はプラスチック等の透明基材に対し基
材の持つ透明性を損わずに耐擦傷性・耐久性に優れギラ
ツキのない導電性被膜を低温で形成させる透明導電性塗
布液組成物及びそれを用いて透明導電性被膜を形成した
透明基材に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing transparent substrates such as glass or plastic that has excellent scratch resistance and durability without impairing the transparency of the substrate and is free from glare. The present invention relates to a transparent conductive coating liquid composition that forms a conductive film at low temperatures, and a transparent substrate on which a transparent conductive film is formed using the composition.

〔従来の技術] 硝子又はプラスチックは、透明性に特に優れ九基材であ
るため表示機器の材料、例えばブラウン管(ORT )
・液晶ディスプレイ(LCD)基板・ショーウィンドー
等に多用されている。
[Prior Art] Glass or plastic has particularly good transparency and is a base material, so it is used as a material for display devices, such as cathode ray tubes (ORT).
- Widely used for liquid crystal display (LCD) substrates, show windows, etc.

しかし、硝子又はプラスチック自体は絶縁体で表面に静
電気を帯びやすいためゴミ・ホコリが付いて映像を見ず
らくしていた。又LCD等のエレクトロディスプレイは
、その静電気で誤動作を起こす事があった。硝子又はプ
ラスチックに導電性を持九せ帯電防止を施す方法として
は、■溶剤に導電性粉末とバインダー樹脂とを分散した
導電性塗料を塗布する方法、■塩化錫や錫アルコキシド
等の有機錫をスプレーする方法、■PVD法・cvD法
等の気相法(以上電子導電性)、■界面活性剤・シリコ
ンアルコキシド等をスプレーする方法(イオン導電性)
がある。
However, glass or plastic itself is an insulator and tends to accumulate static electricity on its surface, making it difficult to view images due to the accumulation of dirt and dust. Furthermore, electrostatic displays such as LCDs sometimes malfunction due to static electricity. Methods for making glass or plastic conductive and preventing static electricity include: ■ Applying conductive paint containing conductive powder and binder resin dispersed in a solvent; ■ Applying organic tin such as tin chloride or tin alkoxide. Spraying method, ■ Gas phase method such as PVD method or CVD method (electronic conductivity), ■ Spraying method with surfactant, silicon alkoxide, etc. (ion conductivity)
There is.

ところが電子導電性のものは導電性は充分だが、■では
透明性・耐擦傷性・耐溶剤性(バインダー樹脂が溶剤に
侵され塗膜表面が白化する)・耐水性(膜が剥がれる)
が悪く、■・■では透明性は良いが、耐酸性・耐アルカ
リ性・耐水性(以上三項目とも膜が剥げる)が悪く、ま
念被膜を形成する物質自体の屈折率が高くさらに被膜表
面が平滑な九めにギラツキ感がらって映像が見すらい。
However, electronically conductive materials have sufficient conductivity, but in ■, they have poor transparency, scratch resistance, solvent resistance (the binder resin is attacked by solvents and the coating surface turns white), and water resistance (the film peels off).
For ■ and ■, the transparency is good, but the acid resistance, alkali resistance, and water resistance (the film peels off in all three) are poor, and the material that forms the film itself has a high refractive index, and the film surface is The smooth 9th corner gives off a glare that makes the video even more interesting to look at.

さらに■ではパッシベーション膜を併用しないと焼成時
に硝子中のアルカリイオンが膜中に移動して導電性を低
下させなり、焼成温度が500℃以下の場合には、耐ア
ルカリ性が低下して導電性が悪くなる。またガス(液滴
)の悪臭・腐蝕性・爆発性で作業環境に問題がらり、■
では耐擦傷性が悪いうえにコストが高く、基材が曲面を
持ったり大面積のものでは大形の装置を必要とした。イ
オン導電性の■は、温度・湿度等の環境により導電性が
変化し、耐擦傷性・耐アルカリ性(膜が溶解する)・耐
水性(剥げる)が悪かった。
Furthermore, if a passivation film is not used in conjunction with ■, the alkali ions in the glass will move into the film during firing, reducing the conductivity.If the firing temperature is below 500°C, the alkali resistance will decrease and the conductivity will decrease. Deteriorate. In addition, the foul odor, corrosiveness, and explosiveness of the gas (droplets) pose problems to the work environment.■
However, it has poor scratch resistance and is expensive, and requires large equipment if the base material has a curved surface or a large area. The conductivity of the ionic conductive material (■) changed depending on the environment such as temperature and humidity, and its scratch resistance, alkali resistance (the film melted), and water resistance (peeled off) were poor.

〔発明が解決しようとする問題点コ 本発明は、上記の様な従来技術に伴う問題点を解決しよ
うとするものであって、硝子又はプラスチック等(以下
硝子等と言う。)の透明基材に対し基材の持つ透明性を
損わずに耐擦傷性及び耐酸性・耐アルカリ性−耐溶剤性
・耐水性(以上4点を以下耐久性と言う)に優れギラツ
キのない導電性被膜を低温で形成する透明導電性塗布液
組成物及びこれを塗布、硬化させて得られる透明導電性
液@を有する透明基材を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention attempts to solve the problems associated with the prior art as described above. In contrast, a non-glare conductive coating with excellent scratch resistance, acid resistance, alkali resistance, solvent resistance, and water resistance (hereinafter referred to as durability) without impairing the transparency of the base material is produced at low temperatures. The object of the present invention is to provide a transparent substrate having a transparent conductive coating composition formed by the method and a transparent conductive liquid obtained by coating and curing the same.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明は、ジルコニウムのオキシ酸塩と非沈降性シリカ
及び導電性酸化錫コロイドを水と成長防止剤及び希釈剤
に均一分散させて、硝子等の透明基材に対し基材の持つ
透明性を損わずに耐擦傷性・耐久性に優れギラツキのな
い導電性被膜を低温で形成する透明導電性塗布液組成物
及びこれを塗布、硬化させて得られる透明導電性被膜を
有する透明基材である。
The present invention improves the transparency of transparent substrates such as glass by uniformly dispersing zirconium oxyacid, non-precipitating silica, and conductive tin oxide colloid in water, a growth inhibitor, and a diluent. A transparent conductive coating liquid composition that forms a non-glare conductive film with excellent scratch resistance and durability without damage at low temperatures, and a transparent substrate having a transparent conductive film obtained by applying and curing the same. be.

本発明では、ジルコニウムのオキシ酸塩から得られるジ
ルコニアと非沈降性シリカから得られるシリカとの混合
物をマトリックスとし、そのマトリックス中に導電性酸
化錫コロイドを分散させることで、導電性を持った透明
被膜を形成する透明導電性塗布液組成物である。被膜の
ギラツキは、その被膜の反射率に依存している。
In the present invention, a mixture of zirconia obtained from zirconium oxyacid salt and silica obtained from non-precipitated silica is used as a matrix, and conductive tin oxide colloid is dispersed in the matrix, thereby creating a transparent and conductive material. This is a transparent conductive coating liquid composition that forms a film. The glare of a coating depends on the reflectance of the coating.

被膜の反射率はその屈折率及び表面の形状に因って決り
、更に屈折率は被膜を構成する物質及び被膜の密度に依
存する。従って反射率を下げるには、屈折率の小さな物
質だけを用いるか、あるいは屈折率の大きな物質では屈
折率の小さな物質と混合するか又は被膜の密度を下げれ
ば良い。次に被膜表面の形状は、平滑性が高くなると反
射率も高くなるので平滑性を低下させてやれば良いが、
平滑性が低下しすぎると被膜の透明性も同時に低下して
しまう。従って本発明では、被膜のギラツキをなくすた
めにジルコニア(屈折率2.2)にシリカ(屈折率t、
S)を混合してマトリックス自体の屈折率を低下させ、
さらに被膜を多孔性にしてその見かけの屈折率を低下さ
せ、その上透明性を低下させない程度に被膜表面を凹凸
にしてギラツキをなくしている。ところが一般に被膜が
多孔性になると平滑な被膜に比べその表面積が増す念め
耐久性が悪くなる。耐久性の強い物質には、ジルコニア
があるが、一般にジルコンアルコキシドラ用いてジルコ
ニアの被膜を得ている。ところが、ジルコンアルコキシ
ドは、加水分解速度が速い念めにその速度を制御するこ
とが困難であり、塗布液として透明基材に塗布し念際、
湿度の影響を受は易く湿度によって被膜の性状が左右さ
れ一定性状を有する被膜を連続的に得ることは難しい。
The reflectance of a coating depends on its refractive index and the shape of its surface, which in turn depends on the material that makes up the coating and the density of the coating. Therefore, in order to lower the reflectance, only a substance with a small refractive index should be used, or a substance with a large refractive index should be mixed with a substance with a small refractive index, or the density of the coating should be reduced. Next, regarding the shape of the coating surface, the higher the smoothness, the higher the reflectance, so it is better to reduce the smoothness.
If the smoothness decreases too much, the transparency of the film will also decrease at the same time. Therefore, in the present invention, zirconia (refractive index 2.2) and silica (refractive index t,
S) to lower the refractive index of the matrix itself,
Furthermore, the film is made porous to lower its apparent refractive index, and the surface of the film is made uneven to the extent that transparency is not reduced to eliminate glare. However, in general, when a coating becomes porous, its surface area increases compared to a smooth coating, and its durability deteriorates. Zirconia is a highly durable material, but zirconia coatings are generally obtained using zircon alkoxide. However, zircon alkoxide has a fast hydrolysis rate, and it is difficult to control the rate, so it is difficult to control the hydrolysis rate before applying it to a transparent substrate as a coating liquid.
It is easily influenced by humidity, and the properties of the coating are influenced by the humidity, making it difficult to continuously obtain a coating with constant properties.

又微量の水分で加水分解するため塗布液を長期保存でき
ない。さらにジルコンアルコキシドは、高価なため工業
製品の原料としてはコスト高となる。本発明ではジルコ
ニウム塩el用することによって従来の問題点を解決し
たものである。
Furthermore, since it is hydrolyzed by a small amount of water, the coating solution cannot be stored for a long period of time. Furthermore, zircon alkoxide is expensive, so it is expensive to use as a raw material for industrial products. The present invention solves the conventional problems by using zirconium salt el.

本発明に係るジルコニウム塩は、オキシ酸塩が用いられ
、特にオキシ塩化ジルコニウム・オキシ硝酸ジルコニウ
ムがよい。
As the zirconium salt according to the present invention, an oxyacid salt is used, and zirconium oxychloride and zirconium oxynitrate are particularly preferred.

ジルコニウムのオキシ酸塩を水溶液の形で、硝子等の基
材に塗布しても前記水溶液がはじかれて被膜ができない
。これはジルコニウムのオキシ酸塩の造膜性が低いのと
基板に対する前記水溶液の表面張力が高いために起るが
、ます造膜性を向上させるために非沈降性シリカを加え
た。表面張力を低下させるには、表面張力の低い有機溶
媒を混合するか又は混合した後に水の一部を系内から脱
水する必要がある。しかし、通常の有機溶剤では、水が
少なくなるとジルコニウムのオキシ酸塩及び非沈降性シ
リカが不安定になり、分解してゲル化を起こしたシ重合
を促進することがある。本発明においては、種々の有機
溶剤のなかから上記の様なジルコニウムのオキシ酸塩及
び非沈降性シリカの分解・ゲル化等を防止し成長防止剤
となり得る有機溶剤について検討し念結果、ジルコニウ
ムのオキシ酸塩と非沈降性シリカ及び導電性酸化錫コロ
イドの混合水溶液に特定の有機溶剤を混合するか、又は
混合した後に水の一部を系内から脱水することによって
上記の問題点の解決を見出だした。
Even when a zirconium oxyacid salt is applied in the form of an aqueous solution to a base material such as glass, the aqueous solution is repelled and no film is formed. This is caused by the low film-forming properties of the zirconium oxyacid salt and the high surface tension of the aqueous solution with respect to the substrate, but in order to further improve the film-forming property, non-precipitating silica was added. In order to lower the surface tension, it is necessary to mix an organic solvent with a low surface tension, or to remove part of the water from the system after mixing. However, with ordinary organic solvents, when the amount of water is reduced, the zirconium oxyacid salt and the non-precipitated silica become unstable, and may promote silica polymerization which decomposes and causes gelation. In the present invention, we investigated organic solvents that can act as growth inhibitors and prevent the decomposition and gelation of zirconium oxy-acid salts and non-precipitated silica from among various organic solvents. The above problems can be solved by mixing a specific organic solvent with a mixed aqueous solution of oxyacid, non-precipitating silica, and conductive tin oxide colloid, or by dehydrating part of the water from the system after mixing. I found a headline.

この様にして調製した塗布液組成物は、この有機溶剤が
成長防止剤として作用するため、水が少なくなってもジ
ルコニウムのオキシ酸塩及び非沈降性シリカのゲル化や
重合が起こらず安定であり、又、同時に造膜性を向上さ
せ塗布液組成物の表面張力を低下させることができる。
The coating liquid composition prepared in this way is stable even when the water content is low because the zirconium oxyacid salt and non-precipitating silica do not gel or polymerize because the organic solvent acts as a growth inhibitor. At the same time, it is possible to improve film-forming properties and reduce the surface tension of the coating composition.

更に希釈剤で希釈して基材に塗布したとき、希釈剤と水
及び一部の成長防止剤が蒸発しても、残りの成長防止剤
によりジルコニウムのオキシ酸塩及び非沈降性シリカの
分解・ゲル化及び重合が抑えられ、その後残りの成長防
止剤が徐々に蒸発していく時点で、ジルコニウムのオキ
シ酸塩と非沈降性シリカの重合が起こって破膜が形成さ
れる。造膜性が非沈降性シリカによって向上されるのは
、おそらく成長防止剤が徐々に蒸発していく時に非沈降
性シリカの持つ水If 2Sによってジルコニウムのオ
キシ酸塩との重合が促進されるためではないかと思われ
る。
Furthermore, when diluted with a diluent and applied to a substrate, even if the diluent, water, and some of the growth inhibitor evaporate, the remaining growth inhibitor decomposes and decomposes the zirconium oxyacid and non-precipitating silica. When gelation and polymerization are suppressed and the remaining growth inhibitor gradually evaporates, polymerization of the zirconium oxyacid salt and non-precipitable silica occurs and a ruptured membrane is formed. The reason why the film-forming property is improved by non-precipitating silica is probably that when the growth inhibitor gradually evaporates, the water If 2S of non-precipitating silica promotes the polymerization of zirconium with the oxyacid salt. I think so.

本発明に係る導電性酸化錫コロイドとは、酸化錫または
異種元素をドープした酸化錫あるいはこの両者が、水ま
念は有機溶媒中に分散されてなるコロイドでちり、これ
は、本出願人が先に出願し之「酸化錫ゾル及び酸化錫ゾ
ルの製造方法」(特願昭61−75283号)の発明に
よって得られる導電性酸化錫コロイドである2゜コロイ
ド粒子の粒子径はその平均粒径がa、01〜α1μmの
範囲にあるものが良い。101μm未満では被膜を多孔
性にできず、111μmを越えると得られる被膜の曇価
(以下ヘーズと言う)が高くなって基材の透明性を損ね
る。ただし平均粒径が11μm以下であってもα1μm
i越える粒子が多く含まれていると被膜のヘーズが高く
なって基材の透明性を低下させるので、好ましくはコロ
イドの全粒子の60係以上がα1μm以下の粒径の粒子
で占められるものが良い。
The conductive tin oxide colloid according to the present invention is a colloid in which tin oxide, tin oxide doped with a different element, or both are dispersed in an organic solvent. The particle size of the 2° colloidal particles, which are conductive tin oxide colloids obtained by the previously filed invention of “Tin Oxide Sol and Method for Producing Tin Oxide Sol” (Japanese Patent Application No. 75283/1983), is the average particle size. It is preferable that α is in the range of 01 to α1 μm. If it is less than 101 μm, the film cannot be made porous, and if it exceeds 111 μm, the haze value (hereinafter referred to as haze) of the resulting film becomes high, impairing the transparency of the substrate. However, even if the average particle size is 11μm or less, α1μm
If a large number of particles exceeding 1 μm are included, the haze of the film will increase and the transparency of the substrate will be reduced. Therefore, it is preferable to use a colloid in which a factor of 60 or more of the total particles is occupied by particles with a particle size of α1 μm or less. good.

本発明に係る非沈降性シリカとは、珪酸アルカリ水溶液
をイオン交換法あるいは透析法等の方法でアルカリと水
素を交換することによって得られるものであって、2.
 Owtl (SiO1換算)水溶液を250,0OO
G、1時間で遠心沈降させ念際、沈降物が水溶液中の全
SiO! に対して30重量部、好ましくは10重量部
以下のものである。好ましくは、本出願人が先に出願し
た「コーティング用非沈降性シリカ組成物及びその製造
法」(特願昭61−187835号)の発明によって得
られる非沈降性シリカが用いられる。この様にして得ら
れる非沈降性シリカは、本来不安定でコロイド粒子が生
成されたりゲル化し易いが、塗布液組成物中の成長防止
剤によって安定化される。さらにこの非沈降性シリカは
、ジルコニウムのオキシ酸塩と混合してもゲル化するこ
とはなく、又ジルコニウムのオキシ酸塩をもゲル化させ
ない。
The non-precipitable silica according to the present invention is obtained by exchanging alkali and hydrogen in an aqueous alkali silicate solution by a method such as an ion exchange method or a dialysis method, and 2.
Owtl (SiO1 equivalent) aqueous solution 250,0OO
G. Centrifugal sedimentation for 1 hour, just in case, the precipitate is all SiO in the aqueous solution! 30 parts by weight, preferably 10 parts by weight or less. Preferably, non-sedimenting silica obtained by the invention of "Non-sedimenting silica composition for coating and method for producing the same" (Japanese Patent Application No. 187835/1983) previously filed by the present applicant is used. The non-sedimented silica obtained in this manner is inherently unstable and tends to form colloidal particles or gel, but is stabilized by the growth inhibitor in the coating composition. Furthermore, this non-precipitating silica does not gel when mixed with zirconium oxyacid salts, nor does it gel zirconium oxyacid salts.

本発明に係る成長防止剤としては、ジルコニウムのオキ
シ塩及び非沈降性シリカをゲル化させないもの、あるい
は重合を促進させないもので、好ましくは、N−メチル
−2−ピロリドン、N、Nジメチルホルムアミド、モル
ホリン、エチレングリコールモノメチルエーテル、エチ
レングリコールモノエチルエーテル、エチレングリコー
ル等、及びそれらの誘導体を一種又は二種以上組合わせ
て使用できる。
The growth inhibitor according to the present invention is one that does not cause gelation of zirconium oxysalt and non-precipitating silica, or one that does not promote polymerization, and is preferably N-methyl-2-pyrrolidone, N,N dimethylformamide, Morpholine, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol, etc., and their derivatives can be used singly or in combination of two or more.

本発明に係る希釈剤は、ジルコニウムのオキシ酸塩及び
非沈降性シリカをゲル化させ々いものであればよく、例
えばメタノール、エタノール、n−7”ロバノール、1
−7’ロバノール、n−ブタノール、1−ブタノール、
t−ブタノール等のアルコール、酢酸メチルエステル、
酢酸エチルエステル等の酸性エステル、ジエチルエーテ
ル等のエーテル、アセトン等の一種又は二種以上組合わ
せて使用できる。
The diluent according to the present invention may be any diluent that easily gels the zirconium oxyacid salt and the non-precipitating silica, such as methanol, ethanol, n-7'' lovanol, 1
-7' lovanol, n-butanol, 1-butanol,
Alcohols such as t-butanol, acetic acid methyl ester,
One or a combination of two or more of acid esters such as acetic acid ethyl ester, ethers such as diethyl ether, and acetone can be used.

Zr01・ SiO!・導電性酸化錫コロイド・水分・
成長防止剤・希釈剤の組成比は、第一に、成長防止剤は
、ZrO2とSiOfi の合計に対するmob比とし
て、1≦(成長防止剤)/(zro意十sio、)≦2
5が良い。好ましくは2以上にする。
Zr01・SiO!・Conductive tin oxide colloid ・Moisture ・
The composition ratio of the growth inhibitor/diluent is as follows: First, the growth inhibitor is a mob ratio to the total of ZrO2 and SiOfi, and is 1≦(growth inhibitor)/(zro i sio,) ≦2.
5 is good. Preferably the number is 2 or more.

1未満では塗布液のポットライフ(使用可能期間)が短
くなり、長期保存ができない。25を越えると塗布液組
成物を塗布し、硬化させていく際に硬化が不均一になっ
て被膜の耐久性が悪くなる。第二に、水分は、 Zr0
1  との重量比において、CL1≦J O/ Z r
 O!≦40≦40の条件を満念した上で、塗布液組成
物の全体重量(以下全体重量と言う)に対してs o 
wt1以下が良い。(11未満ではジルコニウムのオキ
シ酸塩のゲル化が起り、重量比が40、あるいは全体重
量の5 Q wt96を越えると成長防止剤の効果が無
くなり、透明基材上で塗布液組成物のはじきが起こるか
らである。第三に、ZrO2と5102と導電性酸化錫
コロイドとの合計重量は全体重量に対して、11〜20
 wtlが好ましく、塗布液の長期保存性の上では、α
1〜10wt%が良い。
If it is less than 1, the pot life (usable period) of the coating solution will be shortened, and long-term storage will not be possible. If it exceeds 25, when the coating liquid composition is applied and cured, the curing becomes uneven and the durability of the coating deteriorates. Second, water is Zr0
1, CL1≦J O/Z r
O! After satisfying the condition of ≦40≦40, s o
Wt1 or less is good. (If the weight ratio is less than 11, gelation of the zirconium oxyacid salt will occur, and if the weight ratio exceeds 40 or 5Qwt96 of the total weight, the growth inhibitor will be ineffective and the coating composition will be repelled on the transparent substrate.) Third, the total weight of ZrO2, 5102, and conductive tin oxide colloid is 11 to 20% of the total weight.
Wtl is preferable, and α
1 to 10 wt% is good.

2 o wtlを越えると塗布液の安定性が悪くなシ容
易にゲル化するからである。
This is because if it exceeds 2 o wtl, the stability of the coating solution will be poor and it will easily gel.

第四に、導電性酸化錫コロイドとジルコニウムのオキシ
酸塩と非沈降性シリカとの割合いは、1≦(導電性酸化
錫コロイド) / (ZrO*+5iO1)≦5(重量
比)が良い。1未溝では被膜の導電性が悪くなったり、
又被膜が多孔性にならず、5を越えると被膜の密着性が
低下する。第五に、非沈降性シリカとジルコニウムのオ
キシ酸塩の割合いは、α05≦SiOH/ Zr01≦
1(重量比)が良い。105未満では被膜の密着性が悪
くなり、1を越えると被膜の耐久性が悪くなるからであ
る。
Fourth, the ratio of conductive tin oxide colloid, zirconium oxyacid salt, and non-precipitating silica is preferably 1≦(conductive tin oxide colloid)/(ZrO*+5iO1)≦5 (weight ratio). If there are no grooves, the conductivity of the coating will deteriorate,
Further, the film does not become porous, and when the number exceeds 5, the adhesion of the film decreases. Fifth, the ratio of non-precipitating silica and zirconium oxyaltate is α05≦SiOH/Zr01≦
1 (weight ratio) is good. This is because if it is less than 105, the adhesion of the film will be poor, and if it exceeds 1, the durability of the film will be poor.

希釈剤は、本発明の透明導電性塗布液組成物を塗工法に
合せた粘度あるいは希望する膜厚となる様に添加すれば
良い。
The diluent may be added so that the transparent conductive coating composition of the present invention has a viscosity suited to the coating method or a desired film thickness.

本発明の透明導電性塗布液組成物の展進方法は、特に限
定しないが好ましい方法として、予めジルコニウムのオ
キシ酸塩と非沈降性シリカ及び導電性酸化錫コロイドが
水及び成長防止剤に分散された混合液から水の一部を脱
水し、又は脱水せずに希釈剤を添加すればよく、水を脱
水するには蒸溜法又は限外デ過法が使用できる。
The method for spreading the transparent conductive coating composition of the present invention is not particularly limited, but is preferably carried out by dispersing zirconium oxyacid, non-precipitating silica, and conductive tin oxide colloid in water and a growth inhibitor in advance. A portion of the water may be dehydrated from the mixed solution, or a diluent may be added without dehydration, and a distillation method or an ultrafiltration method can be used to dehydrate the water.

本発明に係る透明sM1.性塗布液塗布液組成物子等の
基材に従来公知の塗工法、例えばスピンナー法、バーコ
ード法、ディップ法、スプレー法、ロールコート法、印
刷法等の方法によって塗工され、次いで乾燥すれば耐久
性及び機械強度の良い被膜が得られるが、さらに耐久性
及び機械強度の高い塗膜が必要な用途にf′1300℃
以上で基材のガラス転移点以下の温度で焼成すれば良い
Transparent sM1 according to the present invention. The coating liquid composition is applied to a substrate by a conventionally known coating method such as a spinner method, a barcode method, a dip method, a spray method, a roll coating method, a printing method, etc., and then dried. For applications that require coatings with even higher durability and mechanical strength, f'1300°C can be used.
The above-mentioned firing may be performed at a temperature below the glass transition point of the base material.

この様にして得られる被膜は全光線透過率(TI;)9
0鳴以上、ヘーズ(H)が5以下なので透明基材の透明
性を損わず、表面抵抗が106〜109Ω/α2 であ
るため帯電防止効果に優れ、又ギラツキが防止されてい
る。また酸、アルカリに侵されず、水、塩水に耐え密着
性に優れ被膜の変化が無い。
The film obtained in this way has a total light transmittance (TI) of 9
Since the haze (H) is 0 or more and the haze (H) is 5 or less, the transparency of the transparent substrate is not impaired, and the surface resistance is 10 6 to 10 9 Ω/α 2 , which has an excellent antistatic effect and prevents glare. In addition, it is not attacked by acids and alkalis, and has excellent adhesion with water and salt water, with no change in the film.

透明基材としては、硝子板及びCRT等の硝子加工品あ
るいはポリエチレンテレフタレート、ポリカーボネート
、ポリ(メタ)アクリノート等のシート及びその加工品
が適している。なお、有色基材に塗布するときには基材
の色調を変化させずに被膜を形成することができる。
Suitable transparent substrates include processed glass products such as glass plates and CRTs, sheets of polyethylene terephthalate, polycarbonate, and poly(meth)acrylate, and processed products thereof. In addition, when coating on a colored base material, a film can be formed without changing the color tone of the base material.

本発明の導電性塗布液組成物を用いて得られた導電性硝
子又はプラスチックは、帯電防止用ディスプVイパネル
、コピー硝子、計器表示パネル、透明デジタイザー、テ
レライティングターミナル等への適用が可能である。
The conductive glass or plastic obtained using the conductive coating liquid composition of the present invention can be applied to antistatic display panels, copy glass, instrument display panels, transparent digitizers, telewriting terminals, etc. .

以下、本発明を実施例により説明するが、本発明はこれ
ら実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

〔実施例] 実施例1 錫酸カリウム318tと吐酒石5a4fとを、水686
?に溶解して原料液を調製し虎。50℃に加温されて攪
拌下にあるtooorの水に、前記の原料液を硝酸とと
もに12時間かけて添加し、系内をpaasに保持して
加水分解させてゾル液を得な。このゾル液からコロイド
粒子ftF別し、洗浄して副生塩を除去し穴径粒子を乾
燥し、空気中350℃で3時間焼成し、さらに空気中6
50℃で2時間焼成して微粉末を得た。得られた粉末4
00fを水酸化カリウム水溶液1600 t (KO1
140を含有)中に加え、この混合液を30℃に保持し
ながらサンドミルで3時間攪拌しながら導電性酸化錫コ
ロイドを得念。次いでこの導電性酸化錫コロイドをイオ
ン交換樹脂で処理することにより、脱アルカリされた導
電性酸化錫コロイドを得た(導電性ゾル液)。この脱ア
ルカリされ念導電性酸化錫コロイドは沈澱物を含まず、
固形分濃度は20wt4であって、コロイド粒子の平均
粒径はCL07μmであった。そして11μm以下の粒
子の量は、全粒子の87%であった。S10!  とし
て5wt4の珪酸ナトリウム(51op/ 1321.
Q=3 mo1/mol ) 2000 fを15℃に
保持したまま水素型イオン交換樹脂カラム中に空間速度
8v=5で通過させた(非沈降性シリカ液)。この非沈
降性シリカ液のうち50tと導電性ゾル液のうち50f
に、N−メチル−2−ピロリドンを20fとZr01 
に換算して25 wt%オキシ塩化ジルコニウム水溶液
を10tとMeOH/ Bud)!(重量比1/1)1
70tを添加し十分混合して透明導電性塗布液組成物を
得な。
[Example] Example 1 318t of potassium stannate and 5a4f of tartarite were mixed with 686t of water.
? Prepare the raw material solution by dissolving the tiger. Add the above raw material solution together with nitric acid over 12 hours to too much water heated to 50°C and stirred, and hydrolyze while maintaining the system at paas to obtain a sol solution. Colloidal particles ftF are separated from this sol solution, washed to remove by-product salts, and the pore size particles are dried, calcined in air at 350°C for 3 hours, and then heated in air for 6 hours.
A fine powder was obtained by firing at 50° C. for 2 hours. Obtained powder 4
00f in potassium hydroxide aqueous solution 1600 t (KO1
The conductive tin oxide colloid was obtained by stirring the mixture in a sand mill for 3 hours while maintaining the mixture at 30°C. Next, this conductive tin oxide colloid was treated with an ion exchange resin to obtain a dealkalized conductive tin oxide colloid (conductive sol liquid). This dealkalized, electroconductive tin oxide colloid does not contain precipitates,
The solid content concentration was 20 wt4, and the average particle size of the colloid particles was CL07 μm. The amount of particles of 11 μm or less was 87% of the total particles. S10! as 5wt4 sodium silicate (51op/1321.
Q=3 mol/mol) 2000 f was passed through a hydrogen type ion exchange resin column at a space velocity of 8v=5 while being maintained at 15°C (non-precipitating silica liquid). 50t of this non-precipitating silica liquid and 50f of the conductive sol liquid
Then, N-methyl-2-pyrrolidone was added to 20f and Zr01
10 tons of 25 wt% zirconium oxychloride aqueous solution and MeOH/Bud)! (weight ratio 1/1) 1
Add 70t and mix thoroughly to obtain a transparent conductive coating composition.

実施例2 実施例1で得られた非沈降性シリカ液を502と導電性
ゾル液を200 f!Ic%N−メチル−2−ピロリド
ン10SFとZrO2に換算して25wt%オキシ塩化
゛ジルコニウム水溶液を4ofとMeoH/ 1iXt
oa (重量比1/ 1 ) 1400 fを添加し十
分分散して透明導電性塗布液組成物を得た。
Example 2 The non-precipitating silica liquid obtained in Example 1 was mixed with 502 f! and the conductive sol liquid was mixed with 200 f! Ic% N-methyl-2-pyrrolidone 10SF and 25wt% zirconium oxychloride aqueous solution in terms of ZrO2 with 4of and MeoH/1iXt
1400 f of oa (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition.

実施例3 N−メチル−2−ピロリドン10fとMeOH/BuO
H(重量比1/1)380?に代えた以外は実施例1と
同一条件で透明導電性塗布液組成物を得た。
Example 3 N-methyl-2-pyrrolidone 10f and MeOH/BuO
H (weight ratio 1/1) 380? A transparent conductive coating liquid composition was obtained under the same conditions as in Example 1 except that .

実施例4 実施例1で得られ念非沈降性シリカ液を5Ofと導電性
ゾル液を220tに、N−メチル−b−ピロリドン11
0fとZr01 に換算して25 wt%オキシ塩化ジ
ルコニウム水溶液を1002とMaOH/ ]!:2O
H(重量比1/1)345Fを添加し十分分散して透明
導電性塗布液組成物を得な。
Example 4 5Of of non-sedimentable silica liquid obtained in Example 1, 220t of conductive sol liquid, 11 of N-methyl-b-pyrrolidone
In terms of 0f and Zr01, 25 wt% zirconium oxychloride aqueous solution is 1002 and MaOH/ ]! :2O
Add H345F (weight ratio 1/1) and sufficiently disperse it to obtain a transparent conductive coating composition.

実施例5 実施例1で得られた非沈降性シリカ液を5゜rと導電性
ゾル液を10ofに、N、Nilジメチルホルムアミド
150tとZrO2に換算して25wt4オキシ硝酸ジ
ルコニウム水溶液3otを均−混合後、ローターリ−エ
バポレーターにて減圧しながら80℃に加熱して水を1
35を滴量させた。この液を冷却しさらにMsOH/ 
BuOH(重量比1 / 1 ) 405 fを添加し
十分分散して透明導電性塗布液組成物を得た。
Example 5 The non-sedimenting silica solution obtained in Example 1 was uniformly mixed at 5°r, the conductive sol solution at 10of, 150t of N, Nil dimethylformamide, and 3ot of a 25wt4 zirconium oxynitrate aqueous solution in terms of ZrO2. After that, heat the water to 80°C while reducing the pressure using a rotary evaporator.
35 was dispensed. This liquid was cooled and further added with MsOH/
405 f of BuOH (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition.

実施例6 エチレンクリコールモノメチルエーテル20tに代えた
以外は実施列1と同一条件で透明導電性塗布液組成物を
得意。
Example 6 A transparent conductive coating liquid composition was produced under the same conditions as Example 1 except that 20 tons of ethylene glycol monomethyl ether was used.

実流1317 モルホリン2Qfに代え念以外は実施列1と同一条件で
透明導電性塗布液組成物を得た。
Actual Stream 1317 A transparent conductive coating liquid composition was obtained under the same conditions as in Example 1 except that morpholine 2Qf was used.

比較列1 実施例1で得られた非沈降性シリカ液を2001と導電
性ゾル液を125fに、N−メチル−2−ピロリドン5
0?とZrO倉  に換算して25wt%オキシ塩化ジ
ルコニウム水溶液10fを均−混合後、ローターリーエ
バポレーターニテ減圧しながら80℃に加熱して水12
10 f滴量させた。この液を冷却しさらにMeOH/
 BuOH(重量比1/1)1075?を添加し十分分
散して透明導電性塗布液組成物を得意。
Comparison row 1 The non-precipitating silica liquid obtained in Example 1 was used as 2001, the conductive sol liquid was used as 125f, and N-methyl-2-pyrrolidone 5
0? After uniformly mixing 10 f of a 25 wt% zirconium oxychloride aqueous solution in terms of ZrO, the mixture was heated to 80°C under reduced pressure using a rotary evaporator, and water was heated to 12
A 10 f drop volume was used. This liquid was cooled and further MeOH/
BuOH (weight ratio 1/1) 1075? We are good at creating transparent conductive coating liquid compositions by adding and sufficiently dispersing.

比較例2 実施例1で得られた非沈降性シリカ液を1002と導電
性ゾル液を25fに、N−メチル−2−ピロリドン40
fとZr01 に換算して25wt*オキシ塩化ジルフ
ニ9ム水溶液を20?とMeOB / BuOlll 
(重量比1/1)115fを添加し十分分散して透明導
電性塗布液組成物を得た。
Comparative Example 2 The non-precipitating silica liquid obtained in Example 1 was added to 1002, the conductive sol liquid was added to 25f, and N-methyl-2-pyrrolidone was added to 40.
In terms of f and Zr01, 25wt* 20? and MeOB/BuOll
(weight ratio 1/1) 115f was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition.

比較例3 実施例1で得られた非沈降性シリカを1002と導電性
ゾル液を35ofに、N−メチル−2−ピロリドン40
9とZrO2に換算して25wt1オキシ硝酸ジルコニ
ウム水溶液20Fを均−混合後、ローターリ−エバポ−
ターにて減圧しながら80℃に加熱して水を2502溜
出させた。この液を冷却しさらにMeOll / Bu
OH(重量比1/1)1340Fを添加し十分分散して
透明導電性塗布液組成物を得意。
Comparative Example 3 Non-precipitating silica obtained in Example 1 was mixed with 1002, conductive sol liquid was mixed with 35of, N-methyl-2-pyrrolidone was mixed with 40% of N-methyl-2-pyrrolidone.
After homogeneously mixing 9 and 25wt1 zirconium oxynitrate aqueous solution 20F in terms of ZrO2, rotary evaporation
The mixture was heated to 80° C. under reduced pressure in a tank, and 2,502 ml of water was distilled out. This liquid was cooled and further MeOll/Bu
OH (weight ratio 1/1) 1340F is added and sufficiently dispersed to create a transparent conductive coating liquid composition.

比較例4 実施gAJ1で得られ念非沈降性シリカ液を5002と
導電性ゾル液のうち500fに、N−メチル−2−ピロ
リドン6fとZr01 に換算して25wt%オキシ硝
酸ジルコニウム水溶液100fを均−混合後、ローター
リ−エバポ−ターにて減圧しながら80℃に加熱して水
を9001溜出させ九ところゲル化した。
Comparative Example 4 5002 of the non-sedimentable silica solution obtained in Example AJ1 and 500f of the conductive sol solution were mixed with 6f of N-methyl-2-pyrrolidone and 100f of a 25wt% zirconium oxynitrate aqueous solution in terms of Zr01. After mixing, the mixture was heated to 80 DEG C. under reduced pressure using a rotary evaporator to distill out 9,000 liters of water and gelatinize nine portions.

比較例5 実施例1で得られ念非沈降性シリカ液を10ofと導電
性ゾル液を1002に、N−メチル−2−ピロリドン2
51とZr0g に換算して5wt1オキシ塩化ジルコ
ニウム水溶液を1001とMeO)I / BuOH(
重量比1/1)75fを添加し十分分散して透明導電性
塗布液組成物を得た。
Comparative Example 5 10 of the non-sedimentable silica solution obtained in Example 1, 1002 of the conductive sol solution, 2 of N-methyl-2-pyrrolidone
51 and Zr0g, 5wt1 zirconium oxychloride aqueous solution is converted to 1001 and MeO)I/BuOH(
75f (weight ratio 1/1) was added and sufficiently dispersed to obtain a transparent conductive coating liquid composition.

実施例及び比較例の液組成及び組成比を表−1に示しな
Table 1 shows the liquid compositions and composition ratios of Examples and Comparative Examples.

実施例1〜5・比較例1〜五5で得られた塗布液組成物
を硝子板に、実施例6,7で得られ念透明導電性塗布液
組成物をアクリル板にスピンナーを使用し2000 r
、p、m、で塗布した。硝子板は、110℃10分間乾
燥後、300℃30分間焼成し、アクリル板は110℃
30分間乾燥して被膜を得な。
The coating liquid compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 55 were applied to a glass plate, and the transparent conductive coating liquid compositions obtained in Examples 6 and 7 were applied to an acrylic plate using a spinner. r
, p, m. The glass plate was dried at 110°C for 10 minutes and then fired at 300°C for 30 minutes, and the acrylic plate was dried at 110°C.
Dry for 30 minutes to obtain a film.

なお、60℃に保持する14インチブラウン管用パネル
にスプレーの供給空気圧入〇 kg/1wo”で、実施
gAU1で得られ念透明導電性塗布液組成物を20−ス
プレー塗布した。その後110℃10分間乾燥し、45
0℃30分間焼成して被膜を得た。これを実施例1′と
する。
In addition, 20 times of the transparent conductive coating liquid composition obtained in Example GAU1 was spray-coated on a 14-inch cathode ray tube panel maintained at 60°C by supplying air at a pressure of 0 kg/1WO'' at 110°C for 10 minutes. Dry, 45
A film was obtained by firing at 0°C for 30 minutes. This will be referred to as Example 1'.

得られた被膜について下記の評価を行った。The obtained film was evaluated as follows.

結果を表−2,3に示す。The results are shown in Tables 2 and 3.

■透明性:全光線透過率(Tt)およびヘーズ(H)を
ヘーズコンピューター(ス ガ試験機製)で測定し念。
■Transparency: Total light transmittance (Tt) and haze (H) were measured using a haze computer (manufactured by Suga Test Instruments).

■光沢度:J工8K 7105−81  の光沢度の測
定法において測定角度60°で光沢度(G) を評価した。
■ Glossiness: Glossiness (G) was evaluated at a measurement angle of 60° according to the glossiness measurement method of J-K 8K 7105-81.

■密着性:市販の12−幅のセロテープの一部を被膜に
貼り付け、残りを被膜に対 して直角に保ち、瞬間的に引き剥が し、硝子上の被膜の有無を目視し念。
■Adhesion: Attach a portion of commercially available 12-width cellophane tape to the film, hold the rest at right angles to the film, peel it off instantly, and visually inspect the presence or absence of the film on the glass.

■硬 度:J工5DO202−71の鉛筆硬度テストで
測定した。
■Hardness: Measured using the J-Tech 5DO202-71 pencil hardness test.

0表面抵抗:電極セル(YHP製)で測定した。0 Surface resistance: Measured with an electrode cell (manufactured by YHP).

■耐久性:下記4!g1類の液に漬けた後、密着性(■
と同じ)評価し、試験前後の光 沢度・表面抵抗(■・■と同じ)を 、比較した。
■Durability: 4 below! After soaking in liquid of type g1, the adhesion (■
The glossiness and surface resistance (same as ■ and ■) before and after the test were compared.

1)15vt%アンモニア水に室温で 120時間。1) In 15vt% ammonia water at room temperature 120 hours.

2)  10 wt(j Na06 水溶液に室温で1
20時間。
2) 10 wt(j Na06 aqueous solution at room temperature
20 hours.

3)煮沸している水の中に30分間。3) Submerge in boiling water for 30 minutes.

4)50wt%O酢酸水溶液中に室温 で120時間。4) At room temperature in 50 wt% O acetic acid aqueous solution. 120 hours.

〔発明の効果〕    ゛ 本発明は上記構成を採用することにより、硝子等の透明
基材に対し基材の透明性を損うことなく耐久性、機械的
強度、密着性に優れた導電性被膜を低温で形成させる事
ができる。また、本発明の塗布液組成物のポットライフ
(使用可能期間)は、室温、暗所中で3ケ月以上である
[Effects of the Invention] By adopting the above configuration, the present invention provides a conductive coating that has excellent durability, mechanical strength, and adhesion to transparent substrates such as glass without impairing the transparency of the substrate. can be formed at low temperatures. Further, the pot life (usable period) of the coating liquid composition of the present invention is 3 months or more at room temperature in a dark place.

なお、透明導電性被膜を有する基材に表面平滑性が要求
されたり、表面摩擦係数を小さくしたいときには、本発
明による被膜上にポリエステル、アクリル、シリコーン
、ポリプロピレン、ポリエチレン、ボリスチVン、エボ
ヤシ等の樹脂あるいはシリカ等の無機物の透明保護膜を
設けることができる。
In addition, when surface smoothness is required for a base material having a transparent conductive coating, or when it is desired to reduce the surface friction coefficient, polyester, acrylic, silicone, polypropylene, polyethylene, volistine, evoir, etc. may be applied to the coating according to the present invention. A transparent protective film made of resin or inorganic material such as silica can be provided.

Claims (1)

【特許請求の範囲】 (1)ジルコニウムのオキシ酸塩と非沈降性シリカと導
電性酸化錫コロイドを水と成長防止剤と希釈剤とからな
る分散媒中に均一分散した事を特徴とする透明導電性塗
布液組成物。 (2)成長防止剤として、N−メチル−2−ピロリドン
、N、Nジメチルホルムアミド、モルホリン、エチレン
グリコールモノメチルエーテル、エチレングリコールモ
ノエチルエーテル、エチレングリコール及びそれらの誘
導体の中の一種又は二種以上組合せて使用する事を特徴
とする特許請求の範囲第一項記載の透明導電性塗布液組
成物。 (3)導電性酸化錫粉末及び/又は異種元素をドープし
た導電性酸化錫粉末を、酸水溶液又はアルカリ水溶液中
で加熱処理して得られる導電性酸化錫コロイドを使用す
る事を特徴とする特許請求の範囲第一項又は第二項記載
の透明導電性塗布液組成物。 (4)ジルコニウムのオキシ酸塩をZrO_2に換算し
、非沈降性シリカをSiO_2に換算し、導電性酸化錫
コロイド、水分、成長防止剤及び希釈剤との組成比を、 1≦(成長防止剤)/(ZrO_2+SiO_2)≦2
5(mol比) 0.1≦H_2O/ZrO_2≦40(重量比) H_2O/(塗布液組成物の全体重量)≦0.5(重量
比) 0.001≦(ZrO_2+SiO_2+導電性酸化錫
コロイド)/(塗布液組成物の全体重量)≦0.2(重
量比) 1≦(導電性酸化錫コロイド)/(ZrO_2+SiO
_2)≦5(重量比) 0.05≦SiO_2/ZrO_2≦1(重量比) とする事を特徴とする特許請求の範囲第一項又は第二項
又は第三項に記載の透明導電性塗布液組成物。 (5)ジルコニウムのオキシ酸塩と非沈降性シリカと導
電性酸化錫コロイドを水と成長防止剤と希釈剤とからな
る分散媒中に均一に分散した塗布液を基材に塗布後、硬
化させてなる透明導電性被膜を有する基材。
[Scope of Claims] (1) A transparent product characterized by uniformly dispersing zirconium oxyacid, non-precipitating silica, and conductive tin oxide colloid in a dispersion medium consisting of water, a growth inhibitor, and a diluent. Conductive coating liquid composition. (2) As a growth inhibitor, one or a combination of two or more of N-methyl-2-pyrrolidone, N,N dimethylformamide, morpholine, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol, and their derivatives. The transparent conductive coating liquid composition according to claim 1, which is used in the present invention. (3) A patent characterized by the use of a conductive tin oxide colloid obtained by heat-treating conductive tin oxide powder and/or conductive tin oxide powder doped with a different element in an acid aqueous solution or an alkaline aqueous solution. A transparent conductive coating liquid composition according to claim 1 or 2. (4) Convert zirconium oxyacid to ZrO_2, convert non-precipitated silica to SiO_2, and set the composition ratio of conductive tin oxide colloid, moisture, growth inhibitor, and diluent to 1≦(growth inhibitor )/(ZrO_2+SiO_2)≦2
5 (mol ratio) 0.1≦H_2O/ZrO_2≦40 (weight ratio) H_2O/(total weight of coating liquid composition)≦0.5 (weight ratio) 0.001≦(ZrO_2+SiO_2+conductive tin oxide colloid)/ (Total weight of coating liquid composition)≦0.2 (weight ratio) 1≦(conductive tin oxide colloid)/(ZrO_2+SiO
_2)≦5 (weight ratio) 0.05≦SiO_2/ZrO_2≦1 (weight ratio) The transparent conductive coating according to claim 1, 2, or 3, characterized in that liquid composition. (5) A coating solution in which zirconium oxyacid, non-precipitating silica, and conductive tin oxide colloid are uniformly dispersed in a dispersion medium consisting of water, a growth inhibitor, and a diluent is applied to the substrate and then cured. A base material with a transparent conductive coating.
JP28892386A 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film Granted JPS63143705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28892386A JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28892386A JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Publications (2)

Publication Number Publication Date
JPS63143705A true JPS63143705A (en) 1988-06-16
JPH054763B2 JPH054763B2 (en) 1993-01-20

Family

ID=17736548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28892386A Granted JPS63143705A (en) 1986-12-05 1986-12-05 Transparent conducting coat liquid composition and base material having transparent conducting film

Country Status (1)

Country Link
JP (1) JPS63143705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585819A1 (en) * 1992-08-31 1994-03-09 Sumitomo Cement Co. Ltd. Anti-static/antireflection coating for a cathode ray tube
KR100275798B1 (en) * 1991-06-07 2001-01-15 이데이 노부유끼 Cathode ray tube and its antireflection film forming method and coating liquid and its coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276759A (en) * 1985-05-31 1986-12-06 Ube Ind Ltd Die device for die casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276759A (en) * 1985-05-31 1986-12-06 Ube Ind Ltd Die device for die casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275798B1 (en) * 1991-06-07 2001-01-15 이데이 노부유끼 Cathode ray tube and its antireflection film forming method and coating liquid and its coating method
EP0585819A1 (en) * 1992-08-31 1994-03-09 Sumitomo Cement Co. Ltd. Anti-static/antireflection coating for a cathode ray tube

Also Published As

Publication number Publication date
JPH054763B2 (en) 1993-01-20

Similar Documents

Publication Publication Date Title
TWI395796B (en) Composition for formation of transparent film and laminated transparent film
US5085888A (en) Method for forming thin mgf2 film and low-reflection film
US5273828A (en) Coating liquids for forming conductive coatings
JPS63143705A (en) Transparent conducting coat liquid composition and base material having transparent conducting film
KR102656789B1 (en) Paint composition and optical components for forming hard coat layer
KR20210122548A (en) Inorganic oxide nanoparticle dispersion composition with high transparency
JPS63143706A (en) Transparent conducting coat liquid composition and base material having transparent conducting film
JPH09217055A (en) Production of transparent electroconductive solution
JP5837292B2 (en) Composition for forming transparent conductive film, transparent conductive film, and antireflection film
JPS63131408A (en) Transparent conducting coat liquid composition and transparent base material
US5256484A (en) Substrate having a transparent coating thereon
JP3233758B2 (en) Antistatic coating composition for plastics
JPS63193971A (en) Transparent electrically conductive film
JPS61183365A (en) Paint for reflection preventing layer and manufacture
JP4586496B2 (en) Laminate with conductive layer
TW202003724A (en) Inorganic oxide dispersion having high transparency
JP3970375B2 (en) Binder for metal oxide sol
JPH0465384B2 (en)
JPH06299090A (en) Antistatic coating composition for plastics
KR20000050673A (en) Compositon for forming a spray layer and transparent conductive film employing spray layer manufactured by using the same
JPH0798911B2 (en) Coating liquid for conductive film formation
JPS63130674A (en) Coating fluid composition
JPH06228500A (en) Antistatic and antireflecting film and coating for forming thereof
US5270072A (en) Coating liquids for forming conductive coatings
WO2020129306A1 (en) Zirconium-containing alcohol solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees