WO2007040105A1 - T細胞集団の製造方法 - Google Patents

T細胞集団の製造方法 Download PDF

Info

Publication number
WO2007040105A1
WO2007040105A1 PCT/JP2006/319105 JP2006319105W WO2007040105A1 WO 2007040105 A1 WO2007040105 A1 WO 2007040105A1 JP 2006319105 W JP2006319105 W JP 2006319105W WO 2007040105 A1 WO2007040105 A1 WO 2007040105A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
culture
cell population
cell
group
Prior art date
Application number
PCT/JP2006/319105
Other languages
English (en)
French (fr)
Inventor
Tatsuji Enoki
Akiko Kato
Nobuko Muraki
Mitsuko Ideno
Takahiro Marui
Hiroaki Sagawa
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Priority to JP2007538714A priority Critical patent/JP5156382B2/ja
Priority to EP06810596A priority patent/EP1939278A4/en
Priority to AU2006298188A priority patent/AU2006298188B2/en
Priority to US11/992,661 priority patent/US20100068192A1/en
Priority to EA200800996A priority patent/EA016168B1/ru
Priority to CA002623735A priority patent/CA2623735A1/en
Priority to CN2006800441169A priority patent/CN101400785B/zh
Priority to KR1020087010395A priority patent/KR101408565B1/ko
Publication of WO2007040105A1 publication Critical patent/WO2007040105A1/ja
Priority to HK09108701.4A priority patent/HK1130509A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46434Antigens related to induction of tolerance to non-self
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46449Melanoma antigens
    • A61K39/464491Melan-A/MART
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464499Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/58Adhesion molecules, e.g. ICAM, VCAM, CD18 (ligand), CD11 (ligand), CD49 (ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a method for producing a T cell population useful in the medical field.
  • B lymphocytes B cells
  • T lymphocytes T cells
  • T cells The majority of T cells are CD4 T cells having a CD (Cluster of Differentiation) 4 marker and CD8 T cells having a CD8 marker in the periphery.
  • CD4T cells The majority of CD4T cells are called helper T cells (hereinafter referred to as T), which assists in antibody production and provides various types of relief.
  • Thl type or Th2 type which have different types of site force-in produced by antigen stimulation.
  • the majority of CD8 T cells are cytotoxic T cells that exhibit cytotoxic activity upon antigen stimulation [Tc: cytotoxic T lymphocytes, also known as killer T cells, hereinafter referred to as CTLs. ]
  • immunotherapy has recently attracted attention as the fourth treatment method after surgery, chemotherapy, and radiation therapy in the pathology of cancer. Since immunotherapy uses the immunity inherent in humans, it is said that the physical burden on patients is light compared to other treatment methods.
  • CTLs and peripheral blood lymphocytes, etc. induced outside the body, therapy for transferring lymphokine-active cells, NKT cells, ⁇ cells, etc. obtained by various methods of expansion, antigens in the body Known are cell-cell transfer therapy, peptide vaccine therapy, and Thl cell therapy, which are expected to induce specific CTLs, as well as immune gene therapy that introduces genes that can be expected to have various effects in these cells and transfers them into the body. Be beaten!
  • Fibronectin exists in the blood of animals, on the surface of cultured cells, and in the extracellular matrix of tissues. It is a huge glycoprotein with a molecular weight of 250,000 and is known to have various functions. The domain structure is divided into seven parts (see Fig. 1 below), and the amino acid sequence contains three types of similar sequences. ing. Three types of similar sequences are called type I, type II, and type ⁇ ⁇ . Of these, type ⁇ is composed of 71-96 amino acid residues, and the concordance rate of these amino acid residues is 17- 40%.
  • III-8, III-9 and III-10 The power of 14 type III sequences in fibronectin, of which 8th, 9th and 10th (hereinafter referred to as III-8, III-9 and III-10, respectively) are cell binding domains,
  • the 12th, 13th, and 14th (hereinafter referred to as III-12, III13, and III-14, respectively) are contained in the heparin-binding domain.
  • III-10 contains a very active activation antigen (VLA) -5 binding region, and this core sequence is RGDS.
  • VLA very active activation antigen
  • IIICS exists on the C-terminal side of the binding domain.
  • III CS has a region called CS-1 that has binding activity to VLA-4, which has a capacity of 25 amino acids (for example, Non-Patent Documents 1 to 3).
  • lymphokine-active cells derived from expanded CTLs and peripheral blood lymphocytes derived from outside the body by the action of IL-2 and anti-CD3 antibodies are transferred to V ⁇ .
  • problems such as maintaining much cytotoxic activity when expanding antigen-specific CTLs induced outside the body, or how efficiently lymphocytes can be expanded outside the body, fibronectin and its fragments can be used.
  • the effects of use have already been studied by the present inventors (for example, Patent Documents 1 to 3).
  • T lymphocytes used for immunotherapy have been administered naive T cells or central memory T cells that are more indeterminate than effector T cells that have already been terminally separated.
  • naive T cells or central memory T cells that are more indeterminate than effector T cells that have already been terminally separated.
  • rod-like cell transfer therapy and peptide vaccine therapy that are expected to induce antigen-specific CTL in the body, for example, naive T that can be induced by CTL in patients with advanced cancer Because there are few cells, sufficient effects are often not expected.
  • Non-Patent Literature l Deane F. Momer, published in 1988, FIBRONECTIN, ACA DEMIC PRESS INC., Pl-8
  • Non-Patent Document 2 Kimizuka F. and 8 others, Biochem., 1991, Vol. 110, No. 2, p284-291
  • Non-Patent Document 3 Hanenberg H. and 5 others, Human Gene Therapy, 1997, Vo 1. 8, No. 18, p2193-2206
  • Non-Patent Document 4 Gattinoni L. and 9 others, J. Clin. Invest. 2005, Vol. 115, No. 6, P1616-1626
  • Non-Patent Document 5 Benigni F and 10 others, Immunol. 2005, Vol. 175, No. 2, P739-748
  • Patent Document 1 International Publication No. 03Z016511 Pamphlet
  • Patent Document 2 Pamphlet of International Publication No. 03Z080817
  • Patent Document 3 International Publication No. 2005Z019450 Pamphlet
  • An object of the present invention is to provide a method for producing a T cell population effective for administration to a living body.
  • a first invention of the present invention expresses CD45RA, comprising a step of culturing a cell population containing T cells in the presence of fibronectin, a fragment thereof or a mixture thereof, And a method for producing a T cell population that expresses at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28.
  • examples of the total culture days including the culturing step include 4 to 14 days.
  • the culture in the presence of fibronectin, a fragment thereof or a mixture thereof is exemplified at least at the beginning of the culture, and the culture is preferably performed for at least one day.
  • the step of culturing in the presence of hive mouth nectin, a fragment thereof or a mixture thereof is carried out in the presence of CD3 ligand.
  • the CD3 ligand include anti-CD3 antibodies.
  • the fibronectin fragment comprises at least one amino acid sequence represented by SEQ ID NOs: 1 to 8 in the sequence listing. It is a polypeptide (m) or a polypeptide comprising at least one amino acid sequence in which one or more amino acids are substituted, deleted, inserted or added in any one of the above amino acid sequences.
  • a polypeptide (n) having a function equivalent to that of the polypeptide (m) is exemplified.
  • fibronectin fragments include polypeptides comprising any of the amino acid sequences represented by SEQ ID NOs: 1 to 3 and 5 to 8 in the sequence listing.
  • a production method including the step of separating cells expressing at least one selected from the group consisting of CD45RA, CD62L, CCR7, CD27 and CD28.
  • a production method further including the step of introducing a foreign gene into a cell population is exemplified.
  • a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, a lentivirus vector, or a simian virus vector can be used for introducing a foreign gene.
  • At least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 which is obtained by the method of the first aspect of the present invention and expresses CD45RA. It relates to T cell populations that are expressed.
  • the third invention of the present invention expresses CD45RA obtained by the first invention of the present invention, and expresses at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28.
  • the present invention relates to a medicine containing a T cell population as an active ingredient.
  • the subject is selected from the group consisting of CD62L, CCR7, CD27 and CD28 that expresses an effective amount of CD45RA obtained by the method of the first invention of the present invention.
  • the present invention also relates to a method for treating or preventing a disease comprising the step of administering a T cell population expressing at least one of the above.
  • a fifth invention of the present invention is selected from the group consisting of CD62L, CCR7, CD27, and CD28, which is obtained by the method of the first invention of the present invention for the manufacture of a medicament, and which expresses CD45RA.
  • the sixth invention of the present invention comprises at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28, which is obtained by the method of the first invention of the present invention and expresses CD45RA.
  • the present invention relates to a method for producing a T cell population.
  • a seventh invention of the present invention relates to a T cell population obtained by the method of the sixth invention of the present invention.
  • the eighth invention of the present invention relates to a medicament comprising, as an active ingredient, a T cell population obtained by the method of the sixth invention of the present invention.
  • the ninth invention of the present invention relates to a method for treating or preventing a disease comprising the step of administering to a subject an effective amount of a T cell population obtained by the method of the sixth invention of the present invention.
  • the tenth invention of the present invention relates to the use of the T cell population obtained by the method of the sixth invention of the present invention for the manufacture of a medicament.
  • the eleventh invention of the present invention is a small molecule selected from the group consisting of (a) CD45RA obtained by the method of the first invention of the present invention and consisting of CD62L, CCR7, CD27 and CD28.
  • a pharmaceutical comprising a preparation containing at least one selected stimulator as an active ingredient, wherein the preparation comprises two separate preparations to be administered simultaneously or separately.
  • a twelfth aspect of the present invention relates to a method for treating a disease, which comprises the following steps (a) and (b).
  • the production method of the present invention provides a T cell population that expresses CD45RA and expresses at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28.
  • the cell population obtained by the production method is used to treat diseases by cell therapy in which the ratio of T cells expressing CD45RA and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 is high. Very useful.
  • the present invention includes a step of culturing in the presence of fibronectin, a fragment thereof or a mixture thereof (hereinafter sometimes referred to as an active ingredient of the present invention), thereby expressing CD45RA and CD62L
  • the present inventors have found that a cell population containing a high proportion of T cells expressing at least one selected from the group consisting of CCR7, CD27 and CD28 can be obtained, and has been completed.
  • the T cell population expressing CD45RA and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 expresses CD45RA
  • the high ratio here means that CD45 in the T cell population obtained by culturing in the presence of the active ingredient of the present invention when culturing was carried out under the same conditions except for the presence or absence of the active ingredient of the present invention.
  • the ratio of T cells that express RA and express at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28 is higher than that in the absence of the active ingredient of the present invention.
  • the T cell population is preferably 5% or more, more preferably 10% or more higher than that in the absence of the active ingredient of the present invention.
  • the proportion of T cells that express CD45RA and express at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 in the resulting cell population depends on various environmental factors such as peripheral blood mononuclear Since it varies depending on individual differences and physical condition of humans supplying cells used for the production of T cells such as spheres (PBMC), it is not possible to specify the above ⁇ high ratio '' by numerical values. Is possible.
  • the T cell population obtained by the production method of the present invention means a population containing T cells, and cells other than T cells, such as NK cells. Other lymphocytes such as vesicles and blood cell components other than lymphocyte
  • the fibronectin and fragments thereof described herein may be either naturally occurring or artificially synthesized. Fibronectin and fragments thereof are described, for example, in Ruoslahti E. et al. (Ruoslahti E., et al., J. Biol. Chem. -7281 (1981)], it can be produced in substantially pure form from naturally occurring substances. As used herein, the substantially pure fib mouthctin or fibronectin fragment described herein essentially contains other proteins that are naturally present with fibronectin. Means no. The above fibronectin and fragments thereof can be used in the present invention singly or as a mixture of plural kinds.
  • fibronectin is known to have many splicing variants, any variant may be used as the fibronectin as long as it exhibits the desired effect of the present invention. be able to.
  • plasma-derived hive mouth nectin lacks the region called ED-B that exists upstream of the cell-binding domain, and the region called ED-A that exists between the cell-binding domain and the heparin-binding domain. It is known that! /, However, such plasma-derived fibronectin can also be used in the present invention.
  • Fibronectin fragments that can be used in the present invention, as well as useful information regarding the preparation of the fragments, are described in Kimika F. et al. [13 ⁇ 41 ⁇ (1111 ⁇ F., et al., Journal 'Ob' Biochemistry ( J. Biochem.), 110, 284-291 (1991)], Cornbright AR et al. [13 ⁇ 41: 111 ⁇ 111 AR, et al., EMBO Journal (EMBO J.), IV, 7 , 1755-1759 (1985)], and Sekiguchi K. 3 ⁇ 4 [Sekiguchi K., et al., Biochemistry, No. 25, No. 17, 4936-494 1 (1986)], etc.
  • Genbank Accession No. NM 0 02026, NP 1 002017 for the nucleic acid sequence encoding fibronectin or the amino acid sequence of fibronectin.
  • fibronectin fragments include, for example, III-8 (amino acid sequence represented by SEQ ID NO: 1 in the sequence listing), ⁇ -9 (amino acid sequence represented by SEQ ID NO: 2 in the sequence listing) ), III-10 (amino acid sequence represented by SEQ ID NO: 3 in the sequence listing), ⁇ —11 (amino acid sequence represented by SEQ ID NO: 4 in the sequence listing), III 12 (represented by SEQ ID NO: 5 in the sequence listing) Amino acid sequence), ⁇ —13 (amino acid sequence represented by SEQ ID NO: 6 in the sequence listing), ⁇ —14 (amino acid sequence represented by SEQ ID NO: 7 in the sequence listing), and CS—1 (sequence listing)
  • a polypeptide (m) comprising at least one amino acid sequence constituting any region of the amino acid sequence represented by SEQ ID NO: 8 (see Fig.
  • amino acid sequence comprising at least one comprising at polypeptides, Poribe peptide having the same function as the polypeptide (m) (n) is illustrated.
  • the number of amino acids is 20 to 1000 force, more preferably 100 to 800 force.
  • the term “multiple” is a concept including several pieces, 2 to 12 pieces are preferred, 2 to 10 pieces are more preferred, and 2 to 8 pieces are more preferred. It is the same.
  • the fragment those having cell adhesion activity and Z or hen binding activity can be preferably used.
  • the cell adhesion activity can be examined by assessing the binding between the fragment used in the present invention (its cell binding domain) and the cell using a known method.
  • such methods include the method of Williams D. A. et al. [Williams D. A., et al., Nature, 352, 438-441 (199 1)].
  • This method is a method for measuring the binding of cells to a fragment immobilized on a culture plate.
  • the heparin binding activity can be examined by assessing the binding of the fragment used in the present invention (its heparin binding domain) to heparin using a known method.
  • fibronectin fragments include C274 (amino acid sequence represented by SEQ ID NO: 9 in the sequence listing), H-271 (amino acid sequence represented by SEQ ID NO: 10 in the sequence listing), H-2 96 (amino acid sequence represented by SEQ ID NO: 11 in the sequence listing), CH-271 (amino acid sequence represented by SEQ ID NO: 12 in the sequence listing), CH-296 (amino acid sequence represented by SEQ ID NO: 13 in the sequence listing) Column), C—CS1 (amino acid sequence represented by SEQ ID NO: 14 in the Sequence Listing), and CH—296N a (amino acid sequence represented by SEQ ID NO: 15 in the Sequence Listing). Chido is exemplified.
  • Each fragment of CH-271, CH-296, CH-296Na, C-274, and C-CS1 is a polypeptide having a cell-binding domain having an activity of binding to VLA-5.
  • C-CS1, H-296, CH-296, and CH-296Na are polypeptides having CS-1 having an activity of binding to VLA-4.
  • H-271, H-296, CH-271, CH-296 and CH-296Na are polypeptides having a heparin-binding domain.
  • CH-296Na is a polypeptide containing from cell binding domain to C S 1 in fibronectin derived from plasma.
  • a fragment in which each of the above domains is modified can also be used.
  • the heparin-binding domain of fibronectin is composed of three type III sequences ( ⁇ -12, III-13, 1 11-14).
  • a fragment containing a heterogen binding domain from which one or two of the type III sequences have been deleted can also be used in the present invention.
  • a cell binding site of fibronectin VLA-5 binding region, Prol239 to Serl515) and one type III sequence CHV-89 (amino acid sequence represented by SEQ ID NO: 16 in the sequence listing), CHV—90 (amino acid sequence represented by SEQ ID NO: 17 in the Sequence Listing), CHV—92 (amino acid sequence represented by SEQ ID NO: 18 in the Sequence Listing), or CHV that is a fragment obtained by combining two ⁇ -type sequences — 179 (amino acid sequence represented by SEQ ID NO: 19 in the Sequence Listing), CHV—181 (amino acid sequence represented by SEQ ID NO: 20 in the Sequence Listing).
  • CHV-89, CHV-90, and CHV-92 contain III-13, 111-14, and III-12, respectively, CHV-179 contains III-13 and III-14, and CHV-181 contains III-12. And III—1 3 respectively.
  • a fragment in which an amino acid is further added to each of the above fragments can also be used in the present invention.
  • the fragment can be produced, for example, by adding a desired amino acid to each of the above fragments.
  • H—275—Cys SEQ ID NO: 21 Is a fragment having a heparin binding domain of fibronectin and a cysteine residue at the C-terminal.
  • the fragment used in the present invention has a function equivalent to that of the fragment containing at least a part of the amino acid sequence of the natural fibronectin exemplified above as long as the desired effect of the present invention is obtained. It may be composed of a polypeptide having an amino acid sequence having substitution, deletion, insertion or addition of one or more amino acids in the amino acid sequence of the polypeptide constituting the fragment.
  • amino acid substitution and the like are preferably such that the physical and physical properties of the polypeptide can be changed within a range in which the function of the original polypeptide can be maintained.
  • substitution etc. of amino acids the nature (e.g., hydrophobic, hydrophilic, electrostatic load, P K, etc.) peculiar to a polypeptide that substantially conservative range that does not change is preferably a.
  • amino acid substitutions are: 1. Glycine, alanine; 2. Norin, isoleucine, leucine; 3. Aspartic acid, glutamic acid, asparagine, glutamine; 4. Serine, threonine; 5.
  • Lysine arginine
  • amino acid deletions, additions, and insertions are those of amino acids with properties similar to those around the target site in the polypeptide. Deletions, additions and insertions within the range that does not substantially change the properties are preferred.
  • the fragment used in the present invention is obtained by genetic engineering, for example, when producing Escherichia coli or the like as a host, methionine at the heel end is affected by the influence of methionine beptidase derived from Escherichia coli.
  • Such polypeptides may also be used in the present invention although they may be deleted. That is, polypeptides lacking the methionine at the terminus of the polypeptides described in SEQ ID NOs: 15 and 21 in the sequence listing can also be suitably used in the present invention.
  • the amino acid substitution or the like may be naturally occurring due to interspecies or individual differences, or may be artificially induced. Artificial induction is not particularly limited as long as it can be performed by a known method.
  • one or more bases are substituted in a nucleic acid encoding the above-mentioned region derived from natural fibronectin or a predetermined fragment by a known method. Make a given nucleic acid, deleted, added or inserted, and use it to A polypeptide comprising an amino acid sequence having a function equivalent to that of the above fibronectin or a predetermined fragment and having a substitution in the amino acid sequence of the polypeptide constituting the fragment or the like can be produced.
  • “having an equivalent function” refers to a group that expresses CD45RA in a T cell population obtained using a polypeptide and is composed of CD62L, CCR7, CD27, and CD28.
  • the ratio of T cells expressing at least one of the more selected is higher than the T cell population obtained in the absence of the control polypeptide.
  • the above action can be appropriately confirmed according to the methods described in Examples 1, 2, and 6 described later.
  • those having cell adhesion activity and z or heparin binding activity are preferred, and those having a CS-1 domain are also preferred.
  • Cell adhesion activity and amino acid binding activity can be evaluated according to the above-described method for measuring activity.
  • fragment comprising a polypeptide having an amino acid substitution or the like
  • a fragment in which one or more amino acids are inserted as a linker between two different domains can also be used in the present invention.
  • fibronectin is also a polypeptide having an amino acid sequence having one or more amino acid substitutions, deletions, insertions or additions in the amino acid sequence of the polypeptide, similar to the above fragment, Ratio of T cells expressing CD45RA in a T cell population obtained using the polypeptide and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 Polypeptides that are higher than the T cell population obtained in the absence of tides can be used in the present invention.
  • the fibronectin or fragment thereof used in the present invention is equivalent to the natural fibronectin exemplified above and a fragment containing at least a part of its amino acid sequence as long as the desired effect of the present invention is obtained.
  • a polypeptide having 50% or more homology with the amino acid sequence of the polypeptide constituting the fibronectin or a fragment thereof having a unique function preferably a polypeptide having 70% or more homology, more preferably 90%
  • a polypeptide having the above homology, more preferably 95% or less Peptides having the above homology can be used.
  • DNASIS Pro Ver. 2.6 manufactured by Takara Bio Inc.
  • fibronectin fragments most preferably used include ⁇ -8 (amino acid sequence represented by SEQ ID NO: 1 in the sequence listing) and III 9 (sequence listing in the sequence listing) in the amino acid sequence.
  • Amino acid sequence represented by number 2) ⁇ —10 (amino acid sequence represented by SEQ ID NO: 3 in the sequence listing), ⁇ —12 (amino acid sequence represented by SEQ ID NO: 5 in the sequence listing), ⁇ —13 ( Amino acid sequence represented by SEQ ID NO: 6 in the sequence listing), ⁇ —14 (amino acid sequence represented by SEQ ID NO: 7 in the sequence listing) and CS—1 (amino acid sequence represented by SEQ ID NO: 8 in the sequence listing).
  • Fragments containing all of them that is, polypeptides containing a heparin-binding domain, a cell-binding domain, and CS-1, and more preferably having the same function as CH-296 or CH-296 described above
  • Polypeptides containing a heparin-binding domain, a cell-binding domain, and CS-1 make up poly Examples thereof include a polypeptide having an amino acid sequence having substitution, deletion, insertion or addition of one or more amino acids in the amino acid sequence of the peptide.
  • the fibronectin polypeptide suitably used in the present invention has H-296, CH-271, H-271, C-CS1, or a function equivalent to these as shown in Example 18.
  • the fibronectin fragment described in the present specification is produced as a recombinant fibronectin fragment from a gene recombinant based on, for example, the description in US Pat. No. 5,198,423.
  • the C-274 (SEQ ID NO: 9) fragment can be obtained by the method described in US Pat. No. 5,102,988. Furthermore, the C—CS1 (SEQ ID NO: 14) fragment can be obtained by the method described in Japanese Patent No. 3104178.
  • the above fragments of CHV-89 (SEQ ID NO: 16), CHV-90 (SEQ ID NO: 17), and CHV-179 (SEQ ID NO: 19) are disclosed in Japanese Patent No. 2729712. It can be obtained by the method described in the specification.
  • the CHV-181 (SEQ ID NO: 20) fragment can be obtained according to the method described in WO 97Z18318 pamphlet.
  • For the CHV-92 (SEQ ID NO: 18) fragment refer to Japanese Patent No. 2729712 and the pamphlet of International Publication No. 97Z18318. Based on the plasmids described in those documents, the plasmid was routinely constructed. The plasmid can be used for genetic engineering.
  • FERM BP-2264 Escherichia coli carrying a plasmid encoding H-271; deposit date 19 Jan. 30, 1989
  • FERM BP-2800 Escherichia coli carrying a plasmid encoding CH-296; deposit date 12 May 1989
  • FERM BP-2799 E. coli carrying a plasmid encoding CH-271; deposit date 12 May 1989
  • FERM BP—7420 E. coli harboring a plasmid encoding H—296; deposit date 19 May 12 12
  • FERM BP— 1915 Escherichia coli carrying a plasmid encoding C— 274; date of deposit 19 June 1888
  • FERM BP— 5723 Escherichia coli carrying a plasmid encoding C—CS1; deposit date 1 March 5th, 990
  • FERM BP—10073 (plasmid encoding CH—296Na; date of deposit, July 2, 2004)
  • FERM P—12182 E. coli carrying a plasmid encoding CHV—89; deposit date 8 April 1991
  • E. coli harboring a plasmid encoding FERM P-12183 (CHV-179; date of deposit 1991 April 8th).
  • fibronectin is a large glycoprotein, it is not always easy to prepare and use a protein of natural origin from an industrial and pharmaceutical standpoint.
  • fibronectin is a multifunctional protein, it may be caused by inconvenience due to a region different from the region that is effective for the method of the present invention depending on the situation of its use. From these, in the present invention, from the viewpoint of availability, ease of handling, and safety, it is preferable to use a fibronectin fragment, more preferably a recombinant fibronectin fragment obtained as described above. It is preferable to do. Also, from the viewpoint of realizing a high expansion culture rate, it is preferable to use the aforementioned fibronectin fragment.
  • the molecular weight of the fibronectin fragment used in the present invention is not particularly limited, but is preferably 1 to 200 kD, more preferably 5 to 190 kD, and further preferably 10 to 180 kD.
  • the molecular weight can be determined, for example, by SDS-polyacrylamide gel electrophoresis.
  • amino acid sequence of the polypeptide constituting the fibronectin fragment of the present invention the amino acid sequence portion other than the amino acid sequence of the polypeptide constituting the naturally derived fibronectin fragment is the desired effect of the present invention. It is optional as long as it does not inhibit the expression of, and is not particularly limited.
  • the present invention expresses CD45RA and T cells expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28, preferably expressing CD45RA and from the group consisting of CD62L and CCR7.
  • This is a method for producing a cell population containing a high ratio of T cells expressing at least one selected.
  • the method of the present invention comprises the step of culturing a cell population containing T cells in the presence of the aforementioned fibronectin, a fragment thereof or a mixture thereof.
  • CD45RA, CD62L, CCR7, CD27, and CD28 are all cell surface antigen markers for lymphocytes, and are known to be expressed in undifferentiated cells such as naive T cells. That is, it is contained in a high ratio in the cell population obtained by the production method of the present invention.
  • T cells that express CD45RA and express at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28 can be differentiated into memory T cells according to the phenotype of the cell surface antigen marker. Can be classified as undifferentiated cells, that is, na ⁇ ve T-like cells.
  • naive T cells are in vivo survival when administered to a living body, cell proliferation effect, tumor accumulation effect, tumor-specific effector cell production rate It is described that it is useful in the field of cell therapy.
  • the T cell population obtained by the production method of the present invention produces a large amount of IL-2 by stimulation with anti-CD3 antibody or anti-CD28 antibody as shown in Example 3 described later. Become activated T cells.
  • the T cell population obtained by the production method of the present invention reacts with chemokine CCL21 and exhibits chemotaxis, so that it has the ability to migrate to lymph nodes. It also has.
  • CTL having antigen-specific cytotoxic activity is induced by applying antigen stimulation to the T cell population.
  • the T cell population is in the presence or absence of a small amount of IL-2 compared to a T cell population produced in the absence of fibronectin, a fragment thereof or a mixture thereof. Since survival in the presence is high, survival in vivo is expected to be high.
  • Example 11 described below when the T cell population obtained by the production method of the present invention is administered to NODZscid mice, the T cell population produced in the absence of fibronectin, a fragment thereof or a mixture thereof is used. Compared to administration, T cells have a higher engraftment rate in the spleen and a higher survival rate.
  • the administered T cell population also induces a GVHD response.
  • the T cell population obtained by the production method of the present invention has not only a phenotype of cell surface antigen markers, but also functions suitable for use in the field of cell medicine possessed by naive T cells. RU
  • T cell population obtained by the process of separating the cell population that expresses the phenotype is compared with naive T cells obtained from PBMC and T cells showing the same phenotype obtained in the absence of the active ingredient of the present invention. Therefore, the cytotoxic activity of induced CTL is high and the specific antigen recognition ability is also high.
  • the T cell population obtained by such a separation procedure has a significant increase in cytotoxic activity when separated into CTL compared to normal na ⁇ ve T cells. It is a cell population comprising a novel naive T-like cell with more effective characteristics different from naive T cells.
  • the high therapeutic effect of the T cell population obtained by the production method of the present invention as described above is expected in the same way for both CD8 + and CD4 + naive T-like cells. Furthermore, as described in the above-mentioned Patent Document 2, it is possible to achieve a very high proliferation rate by expanding T cells in the presence of fibronectin, a fragment thereof or a mixture thereof.
  • the T cell population obtained by the method of the invention is very suitable for use in the field of cell medicine.
  • Examples of the cell population containing T cells used in the production method of the present invention include PBMC, naive T cells, memory T cells, hematopoietic stem cells, cord blood mononuclear cells and the like.
  • any blood cell can be used in the present invention.
  • These cells may be any of those obtained by collecting vitality, or those obtained through in vitro culture, for example, those obtained by directly or cryopreserving the T cell population obtained by the method of the present invention. it can.
  • the cell force used in the production of the above-mentioned T cell population obtained by vital force a cell population obtained through various separation operations, for example, a cell such as PBMC is obtained by separating into CD8 + or CD4 + cells.
  • any of the specified cell populations can also be used.
  • a material containing the above cells for example, blood such as peripheral blood and umbilical cord blood, a material obtained by removing components such as red blood cells and plasma from blood, bone marrow fluid, etc. is used. can do.
  • the total number of culture days is 4 to 14 days. That is, when the total number of culture days is 4 to 14 days, T cells expressing CD45RA and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 in the obtained T cell population For use in the field of cellular medicine Very suitable. If the total number of culture days is less than 4 days, it will not be possible to obtain a satisfactory number of cells for use in general immunotherapy. In the present invention, the total number of culture days is preferably 5 to 14 days, more preferably 7 to 14 days.
  • the culture is performed in the presence of the active ingredient of the present invention at least at an initial stage during the entire culture period. It is preferable that the culture is carried out in the presence of the active ingredient of the present invention at least at the start of the culture.
  • the culture in the presence of the active ingredient of the present invention may be the entire period during the culture period or may be an arbitrary partial period. That is, the present invention is included in the present invention as long as the process is included in a part of the T cell production process.
  • the culture in the presence of the active ingredient of the present invention is preferably carried out at least at least 1 day, more preferably at least 3 days, even more preferably at least 4 days.
  • the concentration of fibronectin, a fragment thereof, or a mixture thereof in the culture is not particularly limited.
  • 0.001-500 ⁇ g / mL, particularly 0.01-500 ⁇ m. gZmL is preferred.
  • fibronectin a fragment thereof, or a mixture thereof is used from the viewpoint of effectively stimulating the TCR-CD3 complex of T cells and proliferating the cells. It is preferable to perform the culture in the presence of CD3 ligand! / ,.
  • the CD3 ligand is not particularly limited as long as it is a substance having binding activity to CD3.
  • an anti-CD3 antibody is exemplified, and an anti-CD3 monoclonal antibody is particularly preferably exemplified.
  • OKT3 is exemplified.
  • the concentration of CD3 ligand in the medium is not particularly limited.
  • an anti-CD3 monoclonal antibody for example, 0.0.OOl ⁇ lOO.ug / mL, particularly 0.01 to: LOO / z gZmL force is suitable. is there.
  • a costimulation can be introduced by adding other costimulation factors such as CD28 ligand.
  • costimulation factors such as CD28 ligand.
  • CD28 ligand for example, anti-CD28 antibody, CD80, B7-1, B7-2 and the like are exemplified.
  • the medium used in the method for producing a T cell population of the present invention is not particularly limited, and a known medium prepared by mixing components necessary for expansion culture of T cells can be used.
  • a commercially available medium can be appropriately selected and used.
  • These media are In addition to the original constituents, it may contain cytosines, suitable proteins, and other components.
  • the cytodynamic ins include IL-2, IL-7, IL-12, IFN-y and the like, and a medium containing IL2 is preferably used.
  • the concentration of IL 2 in the medium is not particularly limited, and is preferably 0.01 to 1 ⁇ 10 5 U / mL, more preferably 0.1 to 1 ⁇ 10 4 UZmL, for example.
  • suitable proteins include anti-IL-4 antibodies.
  • lymphocyte stimulating factors such as lectins can be added.
  • the concentration of the component in the medium is not particularly limited as long as a desired effect is obtained.
  • serum or plasma can be added to the medium.
  • the amount added to these media is not particularly limited, but is 0 to 20% by volume, and the amount of serum or plasma used can be changed according to the culture stage.
  • the serum or plasma concentration can be decreased in stages.
  • the origin of serum or plasma may be either self (meaning that the origin is the same as the cell being cultured) or non-self (meaning that the origin is different from the cell being cultured), Preferably, self-derived ones can be used from the viewpoint of safety.
  • the T cell population of the present invention is usually produced in a medium containing a predetermined component in the presence of the active ingredient of the present invention.
  • the number of cells at the start of the culture used in the present invention is not particularly limited. For example, it is preferably lcellZmL to l ⁇ 10 8 cells / mL, more preferably lcell / mL to 5 ⁇ 10 7. cells / mL, more preferably it is exemplified lcell / mL ⁇ 2 X 10 7 Ce llsZmL .
  • the conditions used for normal cell culture can be used. For example, culture under conditions of 37 ° C, 5% CO, etc.
  • the cell culture solution can be diluted at an appropriate time interval by adding a fresh medium.
  • the power for exchanging the medium or the cell culture equipment can be exchanged.
  • the cell culture equipment used in the method for producing a T cell population of the present invention is not particularly limited.
  • a petri dish, a flask, a nog, a large culture tank, a bioreactor, etc. may be used. it can.
  • NOGG CO gas permeable bag for cell culture
  • a large culture tank can be used. Cultivation should be performed in either open or closed systems. It is preferable to culture in a closed system from the viewpoint of the safety of the obtained T cells.
  • the active ingredient of the present invention CD3 ligand, other costimulatory factors, suitable proteins contained in the above-mentioned medium, cytosines, and other ingredients can be dissolved and coexisted in the medium.
  • a suitable solid phase eg cell culture equipment such as petri dishes, flasks, bags, etc. (including both open and closed systems), or cell culture carriers such as beads, membranes, slide glass, etc. You may use it.
  • the material of the solid phase is not particularly limited as long as it can be used for cell culture.
  • the ratio is the same as the desired concentration when the component is dissolved in the medium.
  • the amount of the component to be immobilized is not particularly limited as long as a desired effect is obtained.
  • the carrier is used by immersing it in a culture medium in a cell culture equipment during cell culture.
  • the component is immobilized on the carrier, when the carrier is placed in the medium, it is placed in the equipment so that the ratio is the same as the desired concentration when the component is dissolved in the medium.
  • the amount of immobilization of the component is not particularly limited as long as a desired effect is obtained.
  • the method for immobilizing the active ingredient of the present invention, CD3 ligand, and other costimulatory factors on the solid phase is not particularly limited.
  • these substances may be immobilized in a suitable buffer solution in the solid phase. It is possible to fix it by insulting it.
  • the immobilization of the fibronectin fragment to the solid phase can also be carried out by the methods described in WO97Z18318 pamphlet and WO00Z09168 pamphlet.
  • T cell population is obtained by the method of the present invention, and then the T cell population and the solid phase are separated.
  • the active ingredient and the T cell population are separated from each other and prevent the active ingredient and the like from being mixed into the T cell population.
  • the production method of the present invention comprises a T cell obtained by culturing in the presence of the active ingredient of the present invention.
  • the cell population may further comprise a step of separating a T cell population expressing at least one selected from the group consisting of CD45RA, CD62L, CCR7, CD27 and CD28. That is, as described above, the T cell population obtained by culturing in the presence of the active ingredient of the present invention expresses CD45RA at a high ratio and at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28. Separation of cells that express at least one surface antigen marker selected from the group consisting of CD45RA, CD62L, CCR7, CD27 and CD28.
  • the T cells to be isolated are not particularly limited, but examples include cells expressing CD45RA, preferably expressing CD45RA and selected from the group consisting of CD62L, CCR7, CD27 and CD28. Examples include cells expressing at least one, more preferably cells expressing CD45RA and CD62L, and cells expressing CD45RA and CCR7.
  • the separation operation is not particularly limited. For example, separation can be performed by a known method using a cell sorter, magnetic beads, a column, or the like. For example, separation of cells expressing CD45RA and CCR7 can be performed as described in Example 3- (3) below.
  • the T cells produced by the method of the present invention can be cloned and maintained as stable T cells.
  • a new ⁇ cell population can be obtained.
  • an antigen-specific CTL can be produced by applying antigen stimulation or the like by a known method, for example, the same method as in Examples 5 to 8 described later.
  • the T cell population obtained by the method of the present invention expresses at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28, which expresses undifferentiated T cells, CD45RA as described above.
  • T cells having cytotoxic activity are also included in the T cell population.
  • the cytotoxic activity of the T cell population can be evaluated by a known in vitro test, the T cell population obtained by the present invention is an undifferentiated naive T-like as described above. Since the cells are contained in a high ratio, the ⁇ cell population obtained by the production method of the present invention does not necessarily exhibit high cytotoxic activity in such an evaluation system.
  • the disease to which the T cell population produced by the method of the present invention is administered is not particularly limited.
  • cancer leukemia, malignant tumor, hepatitis, viruses such as influenza and HIV, bacteria, fungi
  • infectious diseases caused by the disease include tuberculosis, MRSA, VRE, and deep mycosis.
  • a foreign gene is further introduced as described later, an effect is expected for various gene diseases.
  • the T cell population produced by the method of the present invention can also be used for donor lymphocyte infusion for the purpose of bone marrow transplantation, prevention of infection after irradiation, and remission of relapsed leukemia.
  • the present invention expresses CD45RA obtained by the method for producing a T cell population of the present invention, and expresses at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28.
  • a T cell population is provided.
  • the present invention also provides a medicament (therapeutic agent) containing the T cell population as an active ingredient.
  • the therapeutic agent containing the T cell population is suitable for use in immunotherapy.
  • immunotherapy T cells suitable for treatment of a patient are administered to a patient by an administration method such as intravenous, arterial, subcutaneous, or intraperitoneal injection.
  • the therapeutic agent is very useful for use in the aforementioned diseases and donor lymphocyte infusion.
  • the therapeutic agent is in accordance with a known method in the pharmaceutical field, for example, using the T cell population prepared by the method of the present invention as an active ingredient, a known organic or inorganic carrier suitable for parenteral administration, excipient, stable It can be mixed with pills and prepared as infusions or injections.
  • a known organic or inorganic carrier suitable for parenteral administration, excipient, stable It can be mixed with pills and prepared as infusions or injections.
  • the content of the T cell population of the present invention in the therapeutic agent, the dosage of the therapeutic agent, and various conditions relating to the therapeutic agent can be determined as appropriate according to known immunotherapy.
  • the content of the T cell population of the present invention in medicine is not particularly limited, but for example, preferably 1 X 10 3 to 1 X 10'ells / mL, more preferably 1 X 10 4 to Examples are 1 ⁇ 10 10 cells / mL, more preferably 1 ⁇ 10 5 to 1 ⁇ 10 9 cells / mL.
  • the dose of the medicament of the present invention is not particularly limited. For example, it is preferably 1 X 10 6 to 1 X 10 12 cells / day, more preferably 1 X 10 7 to Examples are 5 X lOUcells / day, more preferably 1 X 10 8 to 2 X lC ⁇ cellsZ days.
  • immunotherapy with the therapeutic agent is used in combination with known drug administration, radiotherapy, and surgical treatment. Say it with a word.
  • the method for producing a T cell population of the present invention can further include a step of introducing a foreign gene into the sputum cells. That is, the present invention provides, as one aspect thereof, a method for producing a sputum cell population that further includes a step of introducing a foreign gene into the sputum cell.
  • the term “foreign gene” refers to a gene that is artificially introduced into a target cell for gene transfer, and includes those derived from the same species as the target cell for gene transfer.
  • the means for introducing a foreign gene there are no particular limitations on the means for introducing a foreign gene, and an appropriate one can be selected and used by a known gene introduction method.
  • the process of gene transfer can be performed at any time during the production of the sputum cell population.
  • the ability to be performed simultaneously with, during, or after the production of the sore cell population is also suitable from the viewpoint of work efficiency.
  • the viral vector is not particularly limited, and is usually a known winores betater used in gene transfer methods, for example, retro winores betater, lentiwinores vector, adenovirus vector, adeno-associated virus vector, Simian virus vectors, silkworm your virus vectors, Sendai virus vectors, etc. are used.
  • a retrovirus vector an adenovirus vector, an adeno-associated virus vector, a lentivirus vector or a simian virus vector is used.
  • the above-mentioned virus vector those lacking the replication ability are preferable so that they cannot self-replicate in infected cells.
  • a substance that improves gene transfer efficiency such as RetroNectin (registered trademark, manufactured by Takarabio Co., Ltd.) can also be used during gene transfer.
  • the retrovirus vector and the lentivirus vector are stably inserted into the chromosomal DNA of the cell into which the vector is introduced, and the foreign gene is stably integrated. It is used for gene therapy and other purposes. Since the vector has high infection efficiency with respect to dividing and proliferating cells, it is suitable for gene introduction in the production process of the present invention.
  • the method for gene transfer without using a viral vector is not limited to the present invention.
  • a method using a carrier such as ribosome or ligand-polylysine, a calcium phosphate method, an electopore position method, The particle gun method can be used.
  • a foreign gene incorporated into plasmid DNA, linear DNA or RNA is introduced.
  • the foreign gene introduced into the T cell there are no particular limitations on the foreign gene introduced into the T cell, and any gene desired to be introduced into the cell can be selected. As such a gene
  • antisense nucleic acids eg, enzymes, cytodynamics, receptors, etc.
  • siRNA small interfering RNA
  • ribozyme coding can be used.
  • an appropriate gene that enables selection of the transfected cells may be introduced simultaneously.
  • the foreign gene can be used by inserting it into a vector or a plasmid so that it can be expressed under the control of an appropriate promoter, for example.
  • an appropriate promoter for example.
  • other regulatory elements cooperating with the promoter and transcription initiation site for example, an enhancer sequence or a terminator sequence may be present in the vector.
  • an enhancer sequence or a terminator sequence may be present in the vector.
  • each base sequence on both sides of the desired target insertion site of the gene in the chromosome is homologous.
  • An exogenous gene may be arranged between flanking sequences consisting of the nucleotide sequences.
  • the foreign gene to be introduced may be a natural gene, an artificially produced gene, or a DNA molecule having a different origin and bound by a known means such as ligation. Furthermore, it may have a sequence in which a mutation is introduced into a natural sequence according to the purpose.
  • a gene encoding an enzyme related to resistance to a drug used for treatment of a patient such as cancer is introduced into a T cell to impart drug resistance to the T cell.
  • a combination of immunotherapy and drug therapy Therefore, a higher therapeutic effect can be obtained.
  • drug resistance genes include multidrug resistance genes.
  • a gene that confers sensitivity to a specific drug can be introduced into T cells to impart sensitivity to the drug.
  • T cells after transplantation into a living body can be removed by administration of the drug.
  • An example of a gene that confers sensitivity to a drug is a thymidine kinase gene.
  • genes to be introduced include a gene encoding TCR that recognizes the surface antigen of the target cell, an antigen recognition site of an antibody against the surface antigen of the target cell, and an intracellular region of TCR (CD3 Etc.) and the like.
  • the present invention also provides a method for treating or preventing a disease, comprising administering to a subject an effective amount of a T cell population obtained by the aforementioned method.
  • the subject is not particularly limited, but preferably refers to a patient having a disease as described above, to which a T cell population produced by the method of the present invention is administered.
  • an effective amount means that when the T cell population is administered to the subject, treatment or treatment is performed compared to a subject not administered with the T cell population.
  • the specific effective amount is appropriately set according to the administration form, administration method, purpose of use and age, weight, symptom, etc. of the subject.
  • the administration method is not limited. For example, it may be administered by drip, injection or the like, as in the case of the above-mentioned medicine.
  • the present invention also provides the use of the aforementioned T cell population for the manufacture of a medicament.
  • the method for producing the medicament is performed in the same manner as the aforementioned medicament.
  • the disease to which the drug is administered is not particularly limited, but is the same as the aforementioned drug.
  • the present invention provides a T cell that expresses CD45RA and expresses at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28 obtained by the production method of the present invention described above. From the group consisting of cells capable of presenting antigens to the population, cells presented with antigens, cells capable of producing antigens, CD3 ligands, CD28 ligands, cytoforce-ins, chemokines and cytokines At least one stimulator selected By applying the stimulation, an activated ⁇ cell population can be produced. Furthermore, the present invention provides a ⁇ cell population obtained by the above production method.
  • the activated T cell population obtained in this way can be used as an active ingredient of a medicine in the same manner as the T cell population obtained by the production method described above.
  • the stimulation by the stimulating factor is not particularly limited as long as the T cell population obtained by the above-described production method of the present invention is activated by the stimulating factor, but for example, by the production method of the present invention. It is exemplified that the culture is carried out in the coexistence of the obtained ⁇ cell population and the stimulating factor.
  • a cell having an ability to present an antigen is not particularly limited as long as it is a cell generally used as an antigen-presenting cell.
  • a rod-shaped cell, a ⁇ ⁇ ⁇ cell, a single cell can be used.
  • Examples include spheres, sputum cells, sputum cells, macrophages, fibroblasts, Langerhans cells, and cell populations containing at least one of these cells.
  • Particularly preferred are spider cells, ⁇ cells, Examples are sputum cells, sputum cells, monocytes, macrophages, and cell populations containing at least one of these cells.
  • the origin of the cell having the ability to present the antigen may be either self or non-self for the patient to be administered, but the self-derived one is preferably used.
  • a cell having an ability to present an antigen means a cell having an ability to present an antigen but not presenting an antigen.
  • the antigen-presented cell is a cell in which an appropriate antigen is artificially added to a cell having the ability to present the antigen, or already collected when collected from a living body. It can also be used to present and shift cells.
  • the cell on which the antigen is presented can be produced and used in the same manner as described in Example 5- (5) below.
  • “cells having the ability to present an antigen” are not included in the meaning of the phrase “cells presented with an antigen”.
  • the antigen is not particularly limited as long as the peptide is presented on the antigen-presenting cell and can be recognized by the cell and can efficiently activate the cell, for example, the peptide And glycopeptide, tumor cell extract, tumor cell sonication product and tumor cell hydrothermal treatment product, virus, bacteria, protein and the like.
  • CD3 ligand and CD28 ligand the CD3 ligand described above is used.
  • Doya CD28 ligand is exemplified.
  • CD45RA obtained by the above-described production method of the present invention is expressed, and at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28 is expressed.
  • cyto force-in is not particularly limited as long as it acts on T cells and can be activated.
  • IL-2, IFN-y, TGF- ⁇ , IL 15, IL-7, IFN- ⁇ , IL-12, CD40L, IL-27, etc. are exemplified, and the viewpoint power to enhance cellular immunity is particularly preferably exemplified by IL-2, IFN- ⁇ , IL-12 .
  • the chemokine is not particularly limited as long as it acts on T cells and exhibits migration activity.
  • RANTES, CCL21, MIP1 a, MIP1 ⁇ , CCL19, CX CL12, IP-10 MIG is exemplified.
  • the cell having the ability to produce cytokines is not particularly limited as long as it has the ability to produce the above-mentioned cytokines.
  • Thl cells are preferably used from the viewpoint of enhancing the activity.
  • the T cell population obtained by the production method of the present invention described above is undifferentiated and subjected to antigen stimulation! /, Because it contains a high ratio of naive T-like cells, the stimulation used here As a factor, it is particularly preferable to use a cell having an ability to present an antigen, a cell on which an antigen is presented, and Z or an antigen. For example, as shown in Examples 5— (5), 6— (8), 7— (2), 8— (1), 14 (7) and 15— (2) described later, the production of the present invention described above is performed.
  • antigen stimulation to the T cell population obtained by the method, it is possible to induce useful antigen-specific CTLs with extremely high cytotoxic activity and high antigen recognition ability.
  • the culture can be performed in the presence of the aforementioned fibronectin, a fragment thereof, a mixture thereof, or a known component used for T cell culture.
  • the T cell population produced in this way is a highly useful T cell population with a high therapeutic effect.
  • the present invention also provides a method for treating or preventing a disease, comprising administering to a subject an effective amount of an activated T cell population obtained by the aforementioned method.
  • this departure Ming also provides the use of the aforementioned activated T cell population for the manufacture of a medicament.
  • the method for producing the medicament is performed in the same manner as the aforementioned medicament.
  • the disease to which the drug is administered is not particularly limited, but is the same as the aforementioned drug.
  • the present invention provides (a) a CD45RA obtained by the production method of the present invention described above and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28.
  • a pharmaceutical comprising a formulation containing at least one selected stimulator as an active ingredient, wherein the formulation is contained as two separate formulations administered simultaneously or separately.
  • those that can give antigen stimulation that is, those that can be used as vaccines, for example, cells capable of presenting antigens, cells that present antigens, antigens, CD3 ligands, CD28 ligands, sites Cell force having the ability to produce force-in, chemokine and cyto force-in At least one selected from the group consisting of cells capable of presenting a preferred antigen, a cell presented with an antigen, or an antigen It is preferably used according to the invention.
  • the T cell population that expresses (45) CD45RA obtained by the production method of the present invention and expresses at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28 in the medicament is an active ingredient
  • the content, dosage, and mode of administration of a T cell population that expresses CD45RA in the drug and expresses at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28 are, in particular, although there is no limitation, for example, it can be the same as the pharmaceutical containing the T cell population obtained by the production method of the present invention described above.
  • a cell capable of presenting an antigen, an antigen-presented cell, an antigen, a CD3 ligand, a CD28 ligand, a cyto force-in, a chemokine, and a cytokin in the medicament are produced.
  • a preparation containing, as an active ingredient, at least one stimulating factor selected from the group consisting of capable cell forces for example, a preparation prepared by combining the stimulating factor with an appropriate carrier can be used.
  • a cell having an ability to present an antigen a cell having an antigen presented, an antigen, a CD3 ligand, a CD28 ligand, a cyto force in, a chemokine and a cell force having an ability to produce a site force in are selected from the group consisting of As a specific example of at least one stimulation factor, for example, those exemplified above can be used.
  • a cell having the ability to present an antigen as a stimulating factor a cell on which an antigen is presented
  • the cells When cells having the ability to produce an antigen or cytodynamic in are used, the cells can be formulated in combination with an appropriate infusion or injection pharmaceutical carrier, although there is no particular limitation. Moreover, when using an antigen peptide, although there is no limitation, it can combine with a suitable adjuvant. When cytokine chemokine is used, it can be formulated so as to be incorporated into ribosomes by a known method.
  • the content of the stimulating factor in the preparation can be appropriately selected depending on the type of the stimulating factor to be used, and is not particularly limited. For example, cells having the ability to present an antigen as the stimulating factor, antigen presentation When using cells that have been made or have the ability to produce cyto force-in
  • the administration form of the stimulating factor can be appropriately selected depending on the type of the stimulating factor used, and is not particularly limited.
  • intravenous administration, intraarterial administration, subcutaneous administration, intraperitoneal administration, oral administration, etc. Be administered.
  • the dose is not particularly limited as long as it is an amount effective for treating or ameliorating a patient's disease.
  • a cell having the ability to present an antigen is administered, for example, it is preferably used.
  • 1 X 10 3 to 1 X 10 cells / day more preferably 1 X 10 3 to 1 X 10 10 cells / day, more preferably 1 X 10 4 to 1 X 10 9 cells / day Is administered, for example, preferably from 0.001 to 100 mg / day, more preferably from 0.003 to 30 mgZ day, particularly preferably from 0.01 to: LOmgZ day.
  • administration of the preparation (b) for example, it is preferable to administer, as a preparation (b), a combination of cells capable of presenting an antigen and an antigen.
  • a combination of cells capable of presenting an antigen and an antigen For example, it is preferable to administer the cells in combination with antigenic peptides.
  • the contents and doses of the cells having the ability to present the antigen and the antigen in the preparation can be carried out as described above.
  • the administration of the preparation (a) and the preparation (b) in the medicine is a force that is administered to the patient at the same time or separately.
  • the preparation (a) and the preparation (b) are administered as an infusion
  • an embodiment in which these preparations are mixed and administered to a patient before administration is included in the present invention.
  • “separately” means that the preparation (a) and the preparation (b) are administered separately in terms of time.
  • the administration interval between the preparation (a) and the preparation (b) There is no particular limitation as long as the stimulation of the stimulating factor contained in the preparation (b) can be applied to the T cell population contained in the preparation (a) in the body, but preferably (a) It is preferable to administer the preparation (b) after administering the preparation. There are no particular restrictions on the number of doses, and the dose can be administered once or divided into several doses.
  • the present invention provides (a) a CD45RA obtained by the production method of the present invention described above and expressing at least one selected from the group consisting of CD62L, CCR7, CD27 and CD28.
  • Administering a cell population to a patient and (b) producing cells capable of presenting an antigen, cells presented with an antigen, antigen, CD3 ligand, CD28 ligand, cytoforce-in, chemokine, and cytoforce-in
  • a method of treating a disease comprising the step of administering to a patient at least one stimulating factor selected from the group consisting of the cellular forces having the ability to act.
  • the treatment method can exhibit an extremely high therapeutic effect.
  • a stimulating factor those that can provide antigen stimulation, that is, those that can be used as vaccines, for example, cells that have the ability to present antigen, cells that present antigen, antigen, CD3 ligand, CD28 At least one selected from the group consisting of a ligand, a cytodynamic force, a chemokine, and a cellular force capable of producing a cytodynamic force can present a preferred antigen.
  • a cell having capacity, a cell on which an antigen is presented, or an antigen is preferably used according to the present invention.
  • the step of administering the T cell population obtained by the method of the present invention to a patient is not particularly limited, but for example, the same administration as the above-mentioned pharmaceutical administration method
  • the dosage and administration form can be adopted.
  • cells having the ability to present antigen, cells presented with antigen, antigen, CD3 ligand, CD28 ligand, cytokine, chemokine and cell force capable of producing cyto force-in The step of administering the selected at least one stimulating factor to the patient is not particularly limited, and can be carried out, for example, by adopting the same dosage and administration form as those of the aforementioned medicament.
  • the administration interval between the step (a) and the step (b) can be performed in the same manner as the preparation containing the preparation (a) and the preparation (b) described above. There is no particular limitation as long as the stimulation of the stimulating factor administered in the step (b) can be applied to the T cell population administered in the step (a), but it is performed simultaneously or separately. Preferably, the administration step (b) is preferably performed after the administration step (a).
  • the number of doses is not particularly limited, and can be administered once or divided into several times.
  • the blood sample was diluted 2-fold with phosphate buffered saline (hereinafter referred to as PBS) and Ficoll-paque (Amersham Bioscience)
  • PBS phosphate buffered saline
  • Ficoll-paque Amersham Bioscience
  • the product was overlaid on the product and centrifuged at 600 ⁇ g for 20 minutes.
  • Terminal blood mononuclear cells hereinafter referred to as PBMC
  • the collected PBM C is a stock solution consisting of 90% FBS (Cambrex) ZlO% DMSO (Sigma)!
  • HSA human serum albumin
  • CP Suspended in a stock solution consisting of an equal mixture of 1 (manufactured by Kyokuto Yakuhin Co., Ltd.) and RPMI1640 medium (manufactured by Sigma) and stored in liquid nitrogen. Store these PBMCs in a 37 ° C water bath for T cell expansion. After rapid thawing and washing with RPMI1640 medium containing 10 / z gZmL DNase (Calbiochem), the number of viable cells was calculated by trypan blue staining method and used for each experiment.
  • HSA human serum albumin
  • Anti-human CD3 antibody and CH-296 fragment were immobilized on the culture equipment used in the following experiments. Specifically, 1.9 mL of PBS containing anti-human CD3 antibody (manufactured by Janssen Pharma) (final concentration 5 / z gZmL) was added to a 12-well cell culture plate (Betaton Dickinson). At this time, CH-296 was added to the CH-296 addition group so as to have a final concentration (25 / z gZmL).
  • Example 1- (1) Prepared in Example 1- (1) so that AIM-V containing 1% HumanAB serum (Cambrex) (Invitrogen, hereinafter abbreviated as 1% AIM-V) was 1 ⁇ 10 6 cellsZmL.
  • 1% AIM-V HumanAB serum
  • the cell solution was added with 2 mL LZ well, and 1 mL Zwell was added to each cell solution.
  • IL-2 Proleukin: manufactured by Chiron
  • Example 1 Cells prepared at each culture date and time in Example 1 (3) were washed with PBS and PBS containing 1% bovine serum albumin (Sigma, hereinafter referred to as 1% BSAZPBS). The cells were suspended in 1% BSAZPBS, and FITC-labeled mouse IgG 1ZRD1-labeled mouse IgG 1ZPC5-labeled mouse IgG 1 (manufactured by Beckman Coulter) was added as a negative control. Similarly, FITC-labeled mouse anti-human CD62L antibody (manufactured by Sigma) ZRD1-labeled mouse anti-human CD45RA antibody (manufactured by Beckman Coulter) was added.
  • BSA bovine serum albumin
  • Example 1 After preparing the cell solution by suspending the PBMC prepared in Example 1 (1) so that it becomes 1 X 10 6 cells ZmL in AIM-V containing 3% Human AB serum (hereinafter abbreviated as 3% AIM-V)
  • Example 1 add 3% AIM-V to the anti-human CD3 antibody-immobilized plate prepared in (2) or anti-human CD3 antibody and CH-296-immobilized plate with 2 mL Zwell, and The cell fluid was added in lmLZ wells. IL-2 was added to a final concentration of lOOOUZmL, and these plates were cultured at 37 ° C in 5% CO (culture day 0). On the 4th day
  • IL-2 was added to each group to a final concentration of 500 UZmL.
  • the number of viable cells was counted by the trypan blue staining method, and the expansion culture rate was calculated by comparison with the number of cells at the start of culture. The results are shown in Table 3.
  • Serum concentration (%) Number of days of culture Magnification rate (magnification) Control (C H-2 9 6 non-immobilized) 3 ⁇ 1 ⁇ 0.0 5 1 4 days X 2 7 6
  • Example 2 Cells prepared in (1) were washed with PBS and 1% BSAZPBS. The cells were suspended in PBS containing 1% BSA, and FITC-labeled mouse IgG1 / R D1-labeled mouse IgGlZPC5-labeled mouse IgGl + ECD-labeled mouse IgGl (manufactured by Beckman Coulter, Inc.) was added as a negative control. Similarly, RD1-labeled mouse anti-human CD45RA antibody ZFITC-labeled mouse anti-human CCR7 antibody (manufactured by R & D Systems) ZECD-labeled mouse anti-human CD8 antibody (manufactured by Beckman Coulter) was added.
  • CD 8 Spider cells (CD 4+ T cells) CD 45 RA— CCR 7 + T cells (%) Control (CH—296 unfixed) 9.7
  • Example 3 Analysis of cytoforce-in productivity of CD45RA + CCR7 + T cells and CD45RA-CCR7-T cells in a T cell population expanded using CH-296
  • Example 1 After suspending PBMC prepared in 1 (1) and preparing a cell solution, anti-human CD3 antibody-immobilized plate prepared in Example 1 1 (2), or anti-human CD3 antibody and CH-296 immobilized 0.5% GT-T503 was added to the cell with 0.5 mL Zwell, and the above cell solution was added to each lmLZ well. IL-2 was added to a final concentration of lOOOUZmL, and these plates were cultured at 37 ° C in 5% CO (culture day 0). On day 4 of culture start
  • CH-296 group As shown in Table 6, in the group using CH-296 fixed in the initial stage of T cell population expansion culture (hereinafter referred to as CH-296 group), T The expansion rate of the cell population was high.
  • Example 3- (1) The cells prepared in Example 3- (1) were stained with each antibody and analyzed in the same manner as in Example 1-1 (4). However, antibody combinations were performed as follows. Specifically, FIT C-labeled mouse IgG1 / RD1-labeled mouse IgG1 ZPC5-labeled mouse IgG1 and RD1-labeled mouse anti-human CD45RA antibody ZFITC-labeled mouse anti-human CCR7 antibody was stained. These were analyzed with a flow cytometer, and the ratio of CD45RA + CCR7 + T cells was calculated. The results are shown in Table 7.
  • Example 3- After the cells prepared in (1) were stained by the same method as in Example 2- (2), the cells were washed with 1% BSAZPBS and suspended in GT-T503 medium. These cells were transferred to CD8RA + CCR7 + T cells and CD45RA ⁇ CCR7 ⁇ T cells using CD8RA + CCR, which is the majority of CD4 + T cells. The cells were sorted into 7+ T cells and CD45RA-CCR7-T cells. The same stained cells before sorting are subjected to flow cytometry, and the CD8 + T cell region and CD The cells were classified into 8_T cell regions, and the percentage of CD45RA + CCR7 + T cells was calculated for each cell population. The results are shown in Table 8 and Table 9.
  • CD 45 RA 'CCR 7+ T cells (3 ⁇ 4;)
  • Anti-human CD3 antibody and anti-human CD28 antibody were immobilized on the culture equipment used in the following experiments. That is, add 96 L of acetate buffer ( ⁇ 5.3) containing anti-human CD3 antibody (2 gZmL) to a 96-well cell culture plate (Betaton Dickinson), and add anti-human CD 28 antibody (Dako). 80 ⁇ L of acetate buffer containing 20 ⁇ g / mL was added. The final concentration of anti-human CD3 antibody was 1 ⁇ g / mL, and the final concentration of anti-human CD28 antibody was 10 ⁇ g ZmL. These culture devices were incubated at room temperature for 5 hours and then stored at 4 ° C until use. Immediately before use, the buffer solution containing these antibody was removed by aspiration, and each well was washed twice with PBS and once with GT-T503 medium for the experiment.
  • Naive T cells and central memory T cells are known to produce a large amount of IL-2 when antigen-stimulated in the body.
  • effector memory T cells produce a large amount of IFN- ⁇ and IL-4 upon antigen stimulation.
  • Example 3 In (3) In order to confirm whether or not each of the obtained cell fractions maintained these functions, the ability to produce cyto force when stimulated with anti-CD3 antibody and anti-CD28 antibody was measured.
  • Example 3 Each cell population obtained in (3) was collected and then suspended in 0.5% GT-T503 to count the number of cells.
  • Example 3 Cells were added to each well so as to be 2 ⁇ 10 5 cells / 0.2 mL on the anti-human CD3 antibody and anti-human CD28 antibody-fixed antibody plate prepared in (4), and 37 ° C. in 5% CO. At C
  • Example 3- (3) in the CH-296 group, the CD 45RA + CCR7 + T cell ratio was higher V than in the control group, and the results were obtained.
  • the CD45RA + CCR7 + T cell population retains its properties as a naive T-like cell
  • the CD45RA + CCR7 + T cells and CD45RA-CCR7- T cells isolated after expansion were expanded. Site power in productivity was evaluated.
  • IL-2 and IFN-y are produced using ELISA Development Kit (R & D Systems), and IL-4 is produced by READY-SET-GO! Measurement was performed using Human Interleukin-4 (manufactured by eBioscience).
  • Table 10 and Table 11 show the results of each site force-in production in the control group and the CH-296 group, respectively. 1
  • T cells CD45RA CCR 7 Spider cells 104. 9 1229. 0 430. 8
  • CD 8 "CD 45 R ⁇ + CCR 7 + ⁇ cells 1 5; ⁇ 9.4 1 07. 9 1 13. 9
  • T cells CD 45 KA "CCR 7 ⁇ cells 61 1. 0 587. 5 727. 3 [0139] As shown in Tables 10 and 11, IL-2 production was also confirmed in the control group and the CH-296 group. In both groups, CD8-T cells produced more than CD8 + T cells, and CD45 RA + CCR7 + T cells produced more than CD45RA-CCR7-T cells. From this, it was shown that the CD45RA + CCR7 + T cell population obtained by T cell population expansion culture has properties as na ⁇ ve T-like cells.
  • IFN- ⁇ and IL-4 are produced predominantly in CD45RA-CCR7-T cells in the control group and CH-296 group, and the CD45RA-CCR7-T cell population maintains the effector memory function. It was suggested to be a group.
  • Example 1 Performed in the same manner as in (2). However, PBS containing anti-human CD3 antibody (final concentration 5 ⁇ g / mL) was added in an amount of 0.45 mL each.
  • CH-296 group T cells were compared with the control group.
  • the expansion rate of the population was high.
  • Example 4 The cells prepared in (1) (2) were treated in the same manner as in Example 3-(2) using the CD45RA + CC The ratio of R7 + T cells was calculated. The results are shown in Table 13.
  • CCR7 positive cells such as naive T cells and central memory T cells react to the chemokine CCL21 and show chemotaxis. This is an important event for these cells to migrate from blood vessels to lymph nodes, and it was confirmed that the cells obtained after expansion culture had chemotaxis to CCL21.
  • reaction medium RPMI164 0 medium (hereinafter referred to as reaction medium) containing 0.5% BSA to give 5 ⁇ 10 6 cellsZmL. .
  • Example 4 Performed in the same manner as in (1).
  • Example 4 Performed in the same manner as in (2). The results of the expansion culture rate are shown in Table 15.
  • Example 5 Cells prepared in (2) were stained with each antibody and analyzed in the same manner as in Example 1— (4). However, antibody combinations were performed as follows. Specifically, FI TC-labeled mouse IgGlZRDl-labeled mouse IgGl (all manufactured by Dako), RD1-labeled mouse anti-human CD45RA antibody ZFITC-labeled mouse anti-human CCR7 antibody and RD1-labeled mouse anti-human CD45RA antibody ZFITC-labeled mouse anti-human CD62L antibody (this Thereafter, the anti-human CD62 L antibody was stained with eBioscience. These were analyzed by a flow cytometer, and the ratio of CD45RA + CCR7 +, CD45RA + CD62L + T cells was calculated. The results are shown in Table 16. [0156] [Table 16] Table 1 6
  • the CH-296 group showed a high value for any cell surface marker as compared to the control group.
  • Example 5 Cultured 14th day cells prepared in (2) were suspended in a stock solution consisting of an equal mixture of CP-1 and RPMI1640 medium containing 90% FBSZlO% DMSO or 8% HSA, and liquid nitrogen Saved in. When CTL is induced, these preserved cultured cells are rapidly thawed in a 37 ° C water bath, washed with RPMI1640 medium containing 10 / z gZmL DNase, and the number of viable cells is calculated by trypan blue staining method and used for each experiment. did.
  • Example 5 Using the cells prepared in (4), anti-tumor-associated antigen (Melanoma antigen ecologized by Tcells, MART-1) -specific CTL was induced. Induction of anti-tumor-associated antigen (MART-1) -specific CTL is performed by the method of Prebanski M. et al. [Plebanski M. et al., Eur. J. Immunol., 25th, No. 6, 1783-1787. Page (1995)] was partially modified.
  • PBMC prepared in Example 1 1 (1) was used as an antigen-presenting cell, and 40 g / mL of melanoma antigen MART-1-derived epitope peptide (the melanoma antigen MART described in SEQ ID NO: 22 in the Sequence Listing) was used as the antigen peptide.
  • 1 HLA-A2. 1 binding 3 ⁇ 4 peptide) and 3 ⁇ g / mL ⁇ -microglobulin (Scrips)
  • RPMI1640 medium (hereinafter abbreviated as 5HRPMI) containing 5% Human AB serum, 0. ImM NEAA mixture ⁇ ImM Sodium pyru vate, 2 mM L-glutamine (all manufactured by Cambrex), 100 gZmL streptomycin (Meiji Seika Co., Ltd.) ) In a 5% CO incubator at 37 ° C for 2 hours. After incubation, X
  • Example 5- (4) the cultured cells prepared in Example 5- (4) were suspended in 5HRP Ml to 2 ⁇ 10 6 cellsZmL, and 0.5 mLZ was added to a 24-well cell culture plate (Betaton Dickinson). Ye Added in portions. Add 0.5 mLZ of antigen-presenting cells prepared by the above method to each well, and add IL-7 (R & D Systems) and KLH (Calbiochem) to a final concentration of 25 ngZmL, 5 The mixture was added to give gZmL. 5% CO in the plate
  • Responder cells cultured for 1 week are suspended in 5HRPMI so as to obtain 1.8 to 2.0 X 10 6 cellsZmL.
  • 5HRPMI 0.5 mLZ well was added to each tube, and IL-7 was added at a final concentration of 25 ngZmL, followed by re-stimulation.
  • 1 mL of 5HRPMI containing 60 U / mL IL-2 was added to each well.
  • day 11 of culture after suspending the cells in each well, divide each half into 2 wells, add 5 mL of 5HRPMI containing 60 U / mL IL-2 to each well, and culture until 15 days. Continued feeding.
  • Example 5 On the 7th and 14th day after the start of culture, the number of viable cells was measured by the trypan blue staining method on the cells obtained in (5). Was calculated. The results are shown in Table 17.
  • Example 5 The cytotoxic activity of CTL 15 days after the start of induction prepared in (5) was determined by measuring the cytotoxic activity using Calcein-AM [Lichtenfels R. et al. ), J. Immunol. Methods, No. 172, No. 2, pp. 227-239 (1994)].
  • the HLA-A2.1-retaining cell line T2 cells ATCC CRL-1992
  • Calcein-AM Dojindo Laboratories
  • the cells were washed with a medium not containing Calcein-AM and then used as Calcein-labeled target cells.
  • Calcein-labeled target cells were mixed with 30 times the amount of K562 cells (Human Science Research Resource Bank JCRB0019) to prepare cells for measuring cytotoxic activity.
  • K562 cells were used to eliminate non-specific damage activity by NK cells mixed in responder cells.
  • Example 5 Using CTL prepared in (5) as effector cells, serially dilute with 5HRPMI to 3 ⁇ 10 5 to 3 ⁇ 10 6 cells / mL, and add 100 to each well of a 96-well cell culture plate. Aliquots of ⁇ LZ wells were added, and 100 LZ wells were added to the cells for measuring cytotoxic activity prepared so that the Calcein-labeled target cells were 1 X 1C ZmL. At this time, the ratio of the effector cells (E) to the Calcein-labeled target cells (T) was shown as the EZT ratio, and the EZT ratios 30, 10, and 3 were measured. Centrifuge the plate containing the cell suspension at 400 8 minutes for 1 minute, and incubate at 37 ° C for 4 hours in a 5% CO incubator.
  • the minimum release amount is only for cytotoxic activity measurement cells This is the amount of calcein released from the contained well, and the amount of spontaneous release of calcein from calcein-labeled target cells.
  • the maximum released amount indicates the amount of Calcein released when the cells are completely destroyed by adding 0.1% surfactant Triton X-100 (manufactured by Nacalai Tester) to the cells for measuring cytotoxic activity! .
  • the results of the cytotoxic activity measurement are shown in Table 18.
  • Example 6 Induction of Allogeneic MLR and anti-MART-1 CTL in expanded cell populations using a gas-permeable culture bag after initial stimulation of CH-296
  • Anti-human CD3 antibody and CH-296 were immobilized on the culture equipment used in the following experiments. Specifically, 9 mL of PBS containing anti-human CD3 antibody (final concentration 5 g / mL) was added to each 75 cm 2 cell culture flask (Betaton Dickinson). At this time, CH-296 was added to the CH-296 addition group so that the final concentration (25 gZmL) was obtained.
  • CH- 296 group 6
  • CH- 296 group 6
  • Example 6 Cells prepared in (2) were stained with each antibody and analyzed in the same manner as in Example 1— (4). However, antibody combinations were performed as follows.
  • CD45 RA + CD 28 + T cells 36.9% 6 3.0%
  • the CH-296 group showed higher values for all cell surface markers than the control group.
  • CD27 and CD28 are known to have a high expression rate in undifferentiated cells such as na ⁇ ve T cells. Even when analyzed with these markers, T- It became clear that the na ⁇ ve T-like cell population ratio in the cell population was increased.
  • Example 6 Allogeneic MLR was performed using the cells prepared in (2). That is, Example 1— PBMC derived from an Allogeneic donor (non-self donor: a donor different from the donor used in Example 6-(2)) prepared by the same method as (1) was irradiated with X-rays (0.88C / kg), and 5 HRPMI was prepared to 2 ⁇ 10 6 cells / mL (Stimulator cell). On the other hand, the cultured cells prepared in Example 6- (2) were suspended in 5HRPMI at 2 ⁇ 10 6 cells / mL (Responder cell). Stimulator cells and Responder cells prepared on 24-well cell culture plates were added to each 0.5 mL Z well. A final concentration of 500 for each well After adding IL-2 to UZmL, plate at 37 ° C in a 5% CO incubator.
  • Example 6 On the 7th and 10th day after the start of culture, the number of viable cells was measured by the trypan blue staining method, and the expanded culture rate was compared with the number of cells at the start of the culture. Was calculated. The results are shown in Table 21.
  • Example 6 The cytotoxic activity of the cells on day 10 after the start of induction prepared in (4) was performed in the same manner as in Example 5- (7). However, as target cells at this time, autologous PBMCs or non-self PBMCs blasted with Phytohemagglutin in (hereinafter abbreviated as PHA) for 10 days were used as force lusein-labeled target cells. When measuring the cytotoxic activity, 30 times the amount of K562 cells and force-labeled target cells were mixed. The results of cytotoxic activity measurement are shown in Table 22.
  • PHA Phytohemagglutin in
  • Example 6 Cultured 14th day cells prepared in (2) were frozen in the same manner as in Example 5— (4).
  • Example 6 The cultured cells prepared in (7) were suspended in 5HRPMI to 1 ⁇ 10 6 cells / mL, and 5HRPMI 1mL containing 60UZmL of IL-2 was added to each well on the second day of culture.
  • the responder cells are suspended in 5HRPMI so that the responder cells become 0.3 to 1.3X10 6 cellsZmL, and the antigen-presenting cells become 1.6X10 6 ce UsZmL, and the culture starts.
  • 5HRPMI lmL containing 60UZmL of IL-2 was added to each well.
  • cells in each well were suspended and divided into two wells in half.
  • 5HRP MI 1mL containing 60UZmL IL 2 was added to each well. [0188] (9) Measurement of cytotoxic activity
  • Example 7 Anti-MART-1CTL induction from expanded cultured cell-derived CD45RA + CCR7 + CD8 + T cells and CD45RA—CCR7—CD8 + T cells
  • Example 1 After staining the cells prepared in (1) and Example 6— (7) by the same method as in Example 2— (2), the cells were washed with 1% BSAZPBS, and IMDM medium (Invitrogene) In the product). The cells were subjected to a high-speed cell sorter Moflo, and the CD45RA + CCR7 + CD8 + fraction and the CD45RA-CCR7-CD8 + fraction were each isolated to obtain a fraction having a purity of 92 to 99%.
  • IMDM medium Invitrogene
  • Example 7 Using the cells prepared in (1), antitumor-related effects were obtained in the same manner as in Example 6 (8). Antigen (MART-1) -specific CTL was induced and the culture was continued for 13 days. However, changes were made in the following points. 5HRPMI containing 60U / mL IL-2 on the 2nd day after the start of culture, in which 0.25mL each of the culture start cells and antigen-presenting cells were added to 48-well culture plates (Betaton's Dickinson). 5 mL was added to each well, and 4 days after the start of culture, half of the culture supernatant was removed, and 0.5 mL containing 60 UZmL of IL-2 was added to each well.
  • 5HRPMI containing 60U / mL IL-2 on the 2nd day after the start of culture, in which 0.25mL each of the culture start cells and antigen-presenting cells were added to 48-well culture plates (Betaton's Dickinson). 5 mL was added to
  • Example 7 On the cells obtained in (2), the number of viable cells was measured by trypan blue staining on the 13th day after the start of culture, and the expansion culture rate was calculated by comparison with the number of cells at the start of culture. The results are shown in Table 24.
  • CD45RA + CCR7 + CD 8 isolated from cultured cells (hereinafter referred to as CH-296 group) using culture equipment with CH-296 fixed in the early stage of T cell population expansion culture.
  • CH-296 group CD45RA + CCR7 + CD 8 isolated from cultured cells (hereinafter referred to as CH-296 group) using culture equipment with CH-296 fixed in the early stage of T cell population expansion culture.
  • the expansion rate of the CTL population was higher than that in the control group.
  • a larger CTL population can be obtained by inducing CTL from CD45RA + CCR7 + T cells contained in a high proportion of cultured cells using CH-296 fixed in the early stage of T cell population expansion culture. It became clear that it would be obtained.
  • Example 7 The cytotoxic activity of CTL 13 days after the start of induction prepared in (2) was performed in the same manner as in Example 5- (7).
  • Table 25 shows the results of the cytotoxic activity measurement.
  • Example 6- (8) Using the cells prepared in Example 1- (1) and 6- (7), induction of anti-tumor associated antigen (MART-1) -specific CTL was performed in the same manner as in Example 6- (8). Continued for 14 days
  • Example 8 The antigen recognition ability of CTL prepared on day 14 after initiation of induction prepared in (1) was determined by the method of Valmori D et al .; Valmori D. et al., J. Immunol., Vol. 160, vol. : 1758 (1998)] was partially modified. That is, T2 cells were suspended in RPMI 1640 medium containing 5% FBS so as to be 1 ⁇ 10 6 cells ZmL, and then Calcein-AM was added to a final concentration of 25 M, followed by incubation at 37 ° C. for 1 hour. The cells after incubation were washed with a medium not containing Calcein-AM, and then adjusted to 2 ⁇ 10 5 cells / mL.
  • Calcein labeled target cells 9 50 LZ wells were dispensed into each well of a 6-well cell culture plate. 5HRPMI containing 0-20 IX M antigenic peptide (melanoma antigen MART-1-derived epitope peptide) was added to each well containing 50 to 50 L / z LZ. 5% CO
  • Example 8 Adjusted with 5HRPMI so that the CTL prepared in (1) was 6 ⁇ 10 6 cells / mL as effector cells, and then added 50 / x LZ wells to each well on the plate. Centrifuge the plate containing the cell suspension at 400 X g for 1 minute, then in a 5% CO incubator
  • Acetate buffer ( ⁇ 5.3) was used to immobilize the anti-human CD3 antibody and CH-296 fragment, and diluted about 14 times on the 4th day after the start of culture. to that upright 2 culture flask, except that the culture after 8 days was diluted to approximately twice, and transferred to that dilution 6. 3 ml made a 25 cm 2 culture flask, example 3 I went according to (1). The results are shown in Table 27.
  • CH-296 group the group in which the culture equipment in which the CH-296 fragment was immobilized was fixed in the initial stage of T cell population expansion culture was compared with the control group. A high expansion culture rate was obtained.
  • Example 9 Cells prepared in (1) were stained with each antibody and analyzed in the same manner as in Example 1— (4). However, antibody combinations were performed as follows. That is, staining was performed with FITC-labeled mouse IgG1 ZRD1-labeled mouse IgG1 ZPC5-labeled mouse IgG1 and FITC-labeled mouse anti-human CCR7 antibody ZRD1-labeled mouse anti-human CD45RA antibody ZPC5-labeled mouse anti-human CD62L antibody. These were analyzed by a flow cytometer, and the ratio of CD45RA + CCR7 +, CD45RA + CD62L + T cells was calculated. The results are shown in Table 28 and Table 29.
  • Example 9 The cells after expansion culture obtained in (1) (1) were prepared to 2 ⁇ 10 6 cells Z mL using 5HRPMI, and 0.5 mL Zwell was added to each 24-well cell culture plate.
  • autologous PBMC prepared in Example 1- (1) was suspended in 5HRPMI, irradiated with X-rays (0.9 OCZkg), and again prepared to 2X10 6 cellsZmL using 5HRPMI (referred to as feeder cells).
  • feeder cells were added to the above-mentioned 24-well cell culture plate in 0.5 mLZ wells and cultured at 37 ° C for 7 days in a 5% CO incubator. During this time, IL-2 etc.
  • Example 9 1 (3) The cells obtained in Example 9 1 (3) were collected and stained according to the protocol of Annexin V / 7AAD kit (manufactured by Beckman Coulter, Inc.) in order to measure apoptotic cells. The cells were subjected to flow cytometry, and the ratio of Annex inV + 7AAD + cells, ie, cells that had undergone apoptosis, was calculated for each cell population. The results are shown in Table 30.
  • CH-2 96 44.9 Based on the results in Table 30, AnnexinV + 7AAD + cells were compared with the control group in the group in which CH-296 was fixed in the initial stage of expansion of the T cell population compared to the control group. The population was low and the percentage of apoptotic cells was shown to be low. In other words, by using the CH-296 fragment for expansion of T cell populations, for example, even in an environment with low IL-2, It was revealed that high cells can proliferate preferentially.
  • Mouse CH-296 represented by SEQ ID NO: 23 in the sequence listing was designed from a mouse fibronectin fragment based on the sequence of human CH-296, and a plasmid was constructed according to a conventional method. Obtained engineeringly. That is, E. coli HB101 carrying the plasmid was cultured and induced for expression. Thereafter, the cells were crushed to prepare a crude protein, and then the target protein was purified with a cation exchange column, an anion exchange column, and a gel filtration column, aseptically filtered, and stored at 80 ° C until use.
  • IMC carcinoma (hereinafter referred to as IMC) was transplanted into the abdominal cavity of a female CDF mouse (manufactured by SLC Japan) to make ascites and transplanted to another mouse every 7 days. Ascites fluid on the 7th day after subculture was collected, washed with PBS, and suspended in PBS to 5 ⁇ 10 7 cells / mL. 0.1 mL of this cell suspension was transplanted subcutaneously into the right flank of CDF mice to form solid tumors. After 21 days, the spleen was removed and ground in a RPMI 1640 medium using a glass slide.
  • RPMI1640 media Seven RPMI1640 media were collected in a tube, collected as a tube, 45 mL, left on ice for 5 minutes, and transferred to a new tube through a 40-m cell strainer (Betaton Dickinsson). After centrifugation, remove the supernatant and suspend in 2 mL of ACK buffer (0.15 M NH 4 Cl, 0.01 M KHCO, 0. OlmM Na EDTA, pH 7.4) for hemolysis.
  • ACK buffer 0.15 M NH 4 Cl, 0.01 M KHCO, 0. OlmM Na EDTA, pH 7.4
  • RPMI 1640 medium was added so that the cell suspension became 50 mL. After centrifugation, the supernatant was removed, suspended in 10 mL of RPMI1640 medium, and transferred to a new tube through a cell strainer. Add RPMI1640 medium to a cell suspension strength of Om L, centrifuge and remove the supernatant, then suspend and use in an equal volume of RPMI1640 medium and CP-1 containing 8% HSA. Until stored in liquid nitrogen.
  • Incubation equipment used in the following experiments includes anti-mouse CD3 antibody and mouse CH-296 Fixed.
  • mouse CH-296 prepared in Example 10- (1) was added to a final concentration of 25 ⁇ g ZmL, and further incubated at room temperature for 5 hours.
  • the acetate buffer containing antibody / mouse CH-296 was aspirated and removed from the culture equipment, and each well was washed twice with PBS and once with RPMI 1640 medium for the experiment.
  • Example 10 The spleen lymphocytes prepared in (2) were purified using nylon fiber to increase the purity of lymphocytes.
  • a 10 mL syringe manufactured by Terumo
  • nylon fiber manufactured by Wako Pure Chemical Industries
  • This column was equilibrated with RPMI1640 medium containing 10% FBS (Dainippon Pharmaceutical Co., Ltd.) and incubated at 37 ° C for 1 hour in a 5% CO incubator.
  • Example 10 Prepared in (2)
  • mRPMI medium RPMI1640 medium
  • Example 10 After suspending the lymphocytes prepared in (4), add mRPMI medium to the anti-mouse CD3 antibody and mouse CH-296 immobilized plate prepared in Example 10- (3) at 0.7 mL Zwell. Each cell solution was added with 0.5 mL Zwell and cultured at 37 ° C in a 5% CO incubator (culture 0
  • Example 10 A 6-week-old female CDF mouse was transplanted under the anesthesia under the right flank skin in the same manner as in Example 10- (2).
  • Example 10 The cells prepared in (5) were suspended in PBS so as to be 3 ⁇ 10 8 cells ZmL, and 0.1 mL was administered from the tail vein (day 0 of administration). On day 0 of administration, mouse IL-2 (3 ⁇ 10 4 UZ0.2 mL) was administered into the abdominal cavity for 4 consecutive days. As a control, a group not administered with expanded cells was set. The size of the tumor was expressed as a tumor area (cm 2 ) by measuring the major axis and minor axis periodically until 21 days after IMC transplantation. The result is shown in figure 2.
  • Figure 2 shows the number of days and tumor size after transplanting IMC.
  • the black triangle indicates the control group and the black circle indicates the T cell administration group. As shown in FIG. 2, it was confirmed that tumor formation was significantly suppressed in the group administered with cells cultured in the presence of CH-296 (T cell administration group
  • the culture equipment was changed. Specifically, 21 mL of PBS containing anti-human CD3 antibody (final concentration 5 ⁇ g / mL) was added to a 175 cm 2 culture flask (Betaton Dickinson). At this time, CH-296 was added to the CH-296 supplemented caro group to a final concentration of 25 gZmL and incubated at room temperature for 5 hours. Immediately before use, PBS containing the antibody 'CH-296 was aspirated and removed, and each flask was washed twice with PBS and once with RPMI medium. Fresh PBMCs were also prepared for 54 mL blood collection from healthy human donors.
  • NODZscid mice manufactured by CLEA Japan, Inc. 8 weeks old, 10 females were weighed and divided into 4 groups.
  • the group configuration in this example was as follows.
  • Group B PBL + Feeder 1 "h Human IL 2 + Anti-Asialo GM 1 Antibody
  • Group C Cells after expanded culture (CH-296 non-immobilized) + Feeder + Hi HL-2 + Anti-ash mouth GM1
  • Group D Cells after expansion (CH-296 immobilized) + Feeder + Human IL-2 + Anti-asharo GM1
  • Anti-asharo GM1 antibody treatment is known to remove NK cells and enhance human cell engraftment in NODZscid mice. The day before administration of the expanded cells, anti-asharo G
  • SA supplemented water Abbreviated as SA supplemented water
  • Example 11 Expanded cultured cells cryopreserved in (1) and the same donor prepared in the same manner as in Example 1— (1) PBMC were rapidly thawed in a 37 ° C. water bath. Peripheral blood lymphocyte concentration (hereinafter referred to as PBL) concentration was calculated assuming that the CD3-positive cell ratio in PBMC was 70%.
  • PBL Peripheral blood lymphocyte concentration
  • As a solvent use 4% HS A saline solution, and use 0.5 X 10 7 cells / mouse with a part of PBL as feeder, and 1.0 x 10 8 cells / mouse after PBL and expanded culture. Mice were suspended in a solvent to obtain the required number of cells, and used as cells for administration. Prior to cell administration, all mice were irradiated with X-rays (0.090 CZkg), and the prepared cells were administered intraperitoneally in the order of group A force in the order of 0.3 mL.
  • the H-HL-2 used during T-cell expansion culture was prepared with 0.4% HSA-enriched diet so that it became 2 X 10 4 UZ mice, and administration of the cells was completed in Example 11- (4) Mouse force 0.2 mL was administered intraperitoneally. Human IL-2 was administered four times, once a day from the day of cell administration.
  • Body weight was measured at appropriate intervals from the administration day to the 21st day. As a result, in group B that received PBL, the body weight decreased on the 8th day, and one died on the 13th day. In the other groups, all died without dying until day 21. Looking at the rate of weight loss, in Group A and Group C, there was a change, but on the 21st day the initial weight was maintained, and in Group D there was a slight decrease. In the Xeno-GVHD response with weight loss as an indicator, PBL showed a dominant response, indicating that expanded cells in CH-296 fixed condition were more effective than those in non-fixed condition .
  • the spleen was removed at the time of necropsy on the 21st day after the start of cell administration, and the ratio of human CD3-positive cells in the spleen was analyzed by flow cytometry.
  • group B one mouse died on the 13th day, so the mouse removed the spleen immediately after death, and the other mouse was necropsied on the 13th day and the spleen was removed.
  • the excised spleen was ground with a slide glass, filtered with nylon mesh, and centrifuged. The supernatant was removed, hemolyzed with ACK buffer, and washed with RPMI 1640 medium to prepare cells.
  • FITC-labeled mouse anti-human CD3 antibody (Dako) was used.
  • the CD3 positive rate in splenocytes in group B analyzed on day 13 was approximately 70%, and 21 It was about 59% in group D analyzed on the day.
  • the positive rate was less than 1% in group A and several percent in group C. From this, it was found that the expanded cultured cells under CH-296 fixed condition had a higher survival rate in the spleen compared to the non-fixed condition and were maintained for 21 days.
  • Example 12 Expansion of lymphocytes supplemented with IL-2, IL12, IFN- ⁇ , and anti-IL-4 antibodies
  • Example 1 Performed in the same manner as (2). However, ACD-A solution ( ⁇ 5.0) was used to immobilize the anti-human CD3 antibody and CH-296 fragment, and the amount of ACD- ⁇ solution added to the 12-well cell culture plate was changed to 0.45 mL.
  • Example 12 Anti-human prepared in Example 12— (1) after suspending PBMC prepared in Example 1— (1) to 0.5% GT—T503 at 0.25 ⁇ 10 6 cells / mL Add 0.5% GT-T503 to the CD3 antibody-fixed antibody plate or anti-human CD3 antibody and CH-296 immobilized plate with 0.5 mL LZ well, and add 1 mL of cell solution to each cell solution. The plates were cultivated and cultured at 37 ° C in 5% CO (culture day 0). On day 4 of culture start, add 0.5% of the culture solution for each group.
  • IL-12 (R & D Systems) 50UZmL, IFN- ⁇ (R & D Systems) 20ngZmL, anti-HIML-4 antibody (Betaton Dickinson) (Manufactured)
  • the final concentration of 2 gZmL was added, and on the 7th and 11th days of culture, each cyto-in antibody was added to the newly added medium so as to achieve the above final concentration.
  • the number of viable cells was counted by trypan blue staining, and the expansion culture rate was calculated by comparison with the number of cells at the start of culture. Result The results are shown in Table 31.
  • Example 12 Cells prepared in (2) were stained with each antibody in the same manner as in Example 1— (4) and analyzed. However, antibody combinations were performed as follows. Specifically, as a negative control, FITC-labeled mouse IgGlZRDl-labeled mouse IgGlZPC5-labeled mouse IgGl + ECD-labeled mouse IgGl, RD1-labeled mouse anti-human CD45RA antibody ZF ITC-labeled mouse anti-human CCR7 antibody ZECD-labeled mouse anti-human CD4 antibody ZPC5-labeled mouse anti-human CD8 Antibody or RD1-labeled mouse anti-human CD45RA antibody ZFITC-labeled mouse anti-human CD62L antibody ZECD-labeled mouse anti-human CD4 antibody ZPC5-labeled mouse anti-human CD8 antibody was used for staining.
  • the cells were subjected to flow cytometry, and the ratio of CD45RA + CCR7 + T cells and CD45RA + CD62L + T cells in the entire T cell region, CD8 + T cell region or CD4 + T cell region was calculated. The results are shown in Table 32.
  • Table 32 in the group using the culture vessel in which the CH-296 fragment was fixed, the ⁇ during culture was compared with the control group. CD45RA + CCR7 + T cells in cells The population and CD45RA + CD62L + T cell population gave high results. From the above, in cultures in which IL 2, IL 12, IFN- ⁇ , and anti-human IL-4 antibodies were added to GT T503 medium, the CD45R of sputum cells can be obtained by coexisting the CH-296 fragment in the early stage of expansion culture. It was revealed that the sputum cell population can be expanded while increasing the A + CCR7 + or CD45RA + CD62L + T cell population ratio.
  • Example 13 Freshly isolated PBMC Kachin et al. CH-296 Allogeneic MLR of cell population expanded using gas permeable culture bag after initial stimulation
  • PBMC was separated from the collected blood in the same manner as in Example 1- (1).
  • the number of cells of the collected PBMC was calculated by Triban Blue and Turku staining method (Turku Solution, Nakarai Tester), and used for each experiment without being cryopreserved.
  • Example 6 Performed in the same manner as in (1).
  • Example 13- (2) Suspend the PBMC prepared in Example 13- (1) to 0.5 ⁇ 10 6 cellsZmL in 5% autologous plasma GT—T503, prepare the cell solution, and then prepare in Example 13- (2). 0.5% GT-T503 was added to the anti-human CD3 antibody-immobilized flask or anti-human CD3 antibody and CH-296-immobilized flask, and the cell solution was added to each 9 mLZ flask. IL-2 was added to a final concentration of lOOOUZmL, and these flasks were cultured at 37 ° C in 5% CO (culture day 0). On day 4 of culture, 21 mL of each group of culture broth
  • CH- 296 group 6
  • CH- 296 group 6
  • Example 13 Cells prepared in (3) were stained with each antibody and analyzed in the same manner as in Example 6— (3). The results are shown in Table 34.
  • CD 28 + CD 2 7 Spider cells 6 5. 54% 7 6. 42%
  • the CH-296 group showed a high value for any cell surface marker as compared to the control group.
  • Example 13 Cells on the 14th day of culture prepared in (3) were cryopreserved and thawed in the same manner as in Example 5- (4) and used for each experiment.
  • Allogeneic MLR was performed in the same manner as in Example 6 (4) using the cells prepared in (5). However, the following points were changed. Stimulator cell and Responder cell concentration adjusted to 1 or 2 X 10 6 cells / mL, and after suspending cells in each tool on the 5th day of culture, halve each into 2 wells , 5HRPMI 1mL containing 100 OUZmL IL-2 was added to each well, and the culture was continued until day 7.
  • Example 13 On the 7th day after the start of culture, the number of viable cells was counted by trypan blue staining on the cells obtained in (6), and the expansion culture rate was calculated by comparison with the number of cells at the start of culture. The results are shown in Table 35.
  • Example 13 The cytotoxic activity of the cells on day 7 after the start of induction prepared in (6) was carried out in the same manner as in Example 6-(6). However, autologous PBMC or non-self PBMC blasted with PHA for 7 days as target cells at this time were used as force lusein-labeled target cells. When measuring cytotoxic activity, 30 times the amount of K562 cells was mixed with force lucein-labeled target cells. The EZT ratio was set to 90-3. The results of the cytotoxic activity measurement are shown in Table 36.
  • allogeneic MLR provides a cell population with a stronger alloantigen-specific cytotoxic activity in cultured cells using CH-296 fixed in the initial stage of T cell population expansion culture. It became.
  • Example 14 Induction of Allogeneic MLR and anti-MART-1 CTL in expanded cell population using gas-permeable culture bag during initial stimulation of CH-296 and subsequent culture
  • Anti-human CD3 antibody and CH-296 were immobilized on the culture equipment used in the following experiments. That is, a gas permeable culture bag (culture area 75 cm 2 , manufactured by Takara Bio Co., Ltd., product code
  • KB620 was supplemented with 9 mL of PBS containing anti-human CD3 antibody (final concentration 5 ⁇ g / mL). At this time, the same amount of PBS containing anti-human CD3 antibody (final concentration 5 / z gZmL) and CH-296 final concentration (25 ⁇ g / mL) was added to the CH-296 addition group.
  • Example 13- (3) The same procedure as in Example 13- (3) was used except that the bag prepared in Example 14- (1) was used instead of the culture flask as the culture equipment during CH-296 stimulation. After starting culture
  • CH-296 As shown in Table 37, during initial stimulation with CH-296 and subsequent culture using a gas-permeable culture bag, CH-296 was fixed in the early stage of expanded cell population expansion. In the group using the culture equipment (hereinafter referred to as CH-296 group), the expansion rate of the sputum cell population was higher than that in the control group.
  • Example 14 Cells prepared in (2) were stained with each antibody and analyzed in the same manner as in Example 6— (3). The results are shown in Table 38.
  • the CH-296 group showed a high value for any cell surface marker as compared to the control group.
  • Example 14 The cytotoxic activity of the cells 10 days after the start of induction prepared in (1) was performed in the same manner as in Example 6- (6), except that an EZT ratio of 90 was newly set. . Table 39 shows the results of the measurement of cytotoxic activity.
  • Non-self P I I A 9 0 6 5. 0 5 7 2. 7 3 Blast cells 3 0 4 4. 9 2 6 1. 4 3
  • Example 14 Cultured day 14 cells prepared in (2) were cryopreserved and thawed in the same manner as in Example 5— (4) and used for each experiment.
  • Example 1- (1) and 14- (6) induction of anti-tumor-associated antigen (MART-1) -specific CTL was performed in the same manner as in Example 5- (5). The culture was continued for 14 days. However, the following points were changed. Responder cells are suspended in 5HRPMI at 1 X 10 6 cells / mL, and 0.5 mL Zwell is added to each 24-well cell culture plate. On the third day after the start of culture, half of the culture supernatant was removed, 5H RPMI containing 1mL of 60U / mL IL-2 was added to each well, and after 1 week, the cultured cells were added to 1.5-3. the OX10 6 cells ZmL, including antigen-presenting cells was adjusted to 1.
  • OX10 6 cellsZmL that was added Caro by 0.5MLZwell, after removing the culture supernatant half after 10 days of culture, the IL- 2 of 60U / mL 5HR PMI lmL was added to each well.
  • Example 14-1 Measurement of the cytotoxic activity of CTL on the 14th day after the start of induction prepared in Example 14-1 (7) was performed in the same manner as in Example 6- (9). The results of the cytotoxic activity measurement are shown in Table 40.
  • Example 15 Cells derived from CD45RA + CCR7 + CD8 + T cells and CD45RA-CCR7-CD8 + T cells derived from expanded cells using gas-permeable culture bags during initial stimulation of CH-296 and subsequent culture Anti-MART— 1CTL induction
  • Example 1 (1) and Example 14 (6) were separated into CD45RA + CCR7 + CD8 + and CD45RA + CCR7-CD8 + fractions in the same manner as in Example 7- (1). Each was isolated to obtain a fraction having a purity of 93% to 99%.
  • Example 7- (1) The cells prepared in Example 1 (1) and Example 14 (6) were separated into CD45RA + CCR7 + CD8 + and CD45RA + CCR7-CD8 + fractions in the same manner as in Example 7- (1). Each was isolated to obtain a fraction having a purity of 93% to 99%.
  • MART-1 anti-tumor-associated antigen
  • Example 15 Using the cells prepared in (1), induction of anti-tumor-associated antigen (MART-1) -specific CTL was carried out in the same manner as in Example 14— (7), and the culture was continued for 14 days. However, the following points were changed. Responder cells were suspended in 5 HRPMI to 1 X 10 6 cells ZmL, and 0.25 mL Zwell was added to each 48-well cell culture plate. On the first day of culture, 5 HRPMI0 containing 60 U / mL IL-2 5 mL was added to each well, half of the culture supernatant was removed on the 3rd day of culture, and 60 U / mL IL-2 was contained. 5 HRPMIO. 5 mL was added to each well, and 1 week.
  • MART-1 anti-tumor-associated antigen
  • culture cells were adjusted to 0.2 to 1.7 X 10 6 cellsZmL, antigen-presenting cells were adjusted to 1.OX 10 6 cellsZmL, and 0.5 mLZwell was added to each 24-well cell culture plate. On the 10th day after starting, half of the culture supernatant was removed, and then 5 mL of 5HRPMI containing 60 U / mL IL-2 was added to each well.
  • Example 15 On the 14th day after the start of culture, the number of viable cells was measured by trypan blue staining for the cells obtained in (2), and the expanded culture rate was calculated by comparison with the number of cells at the start of culture. It was. The results are shown in Table 41.
  • CD45RA + CCR7 + CD 8 isolated from cultured cells (hereinafter referred to as CH-296 group) using culture equipment with CH-296 fixed in the early stage of T cell population expansion culture.
  • CH-296 group the expanded culture rate of the CTL population was higher than that in the control group.
  • a larger CTL population can be obtained by inducing CTL from CD45RA + CCR7 + T cells contained in a high proportion of cultured cells using CH-296 fixed in the early stage of T cell population expansion culture. It became clear that it was obtained.
  • Example 15 The cytotoxic activity of CTL 14 days after the start of induction prepared in (2) was the same as in Example 6- (9) except that the E / T ratio was set to 30-3. went. The results of the cytotoxic activity measurement are shown in Table 42.
  • Example 14- (7) anti-tumor-associated antigen (MART-1) -specific CTL was induced in the same manner as in Example 14- (7). The culture was continued for days.
  • MART-1 anti-tumor-associated antigen
  • Example 16 The antigen recognition ability of CTL 15 days after initiation of induction prepared in (1) was -Measured in the same manner as (2). Table 43 shows the results of antigen recognition ability measurement. The antigen recognition ability was expressed as the relative value of the cytotoxic activity at each additional peptide concentration when the cytotoxic activity when the peptide concentration added to the target cell was 10 ⁇ 10 was taken as 100.
  • Example 17 Evaluation of cytoforce-in productivity of cell-derived CD45RA + CCR7 + T cells expanded using a gas-permeable culture bag during initial stimulation and subsequent culture of CH-296
  • Example 14 Cells prepared in one (6) were stained and sorted in the same manner as in Example 3- (3).
  • Example 17 Suspend each cell population obtained in (1) in 0.5% GT-T503, and add cells to each panel to 2 ⁇ 10 5 cells / 0.2 mL on the prepared plate. And cultured at 37 ° C in 5% CO. 24 hours later
  • CD45RA + T cells and CD8-T cells were dominant in IL-2 production in CD45RA + CCR7 + T cells.
  • the CD45RA + CCR 7+ T cell population of frozen cells bag-cultured with CH-296 was used as naive T-like cells. It was shown to have the nature of
  • Example 4 Performed in the same manner as in (1). However, the CH-296 fragment was not used. Instead, the H-296, CH-271, H-271, and C-CS1 fragments at the final concentration (25 ⁇ g / mL) were used for the fragment-added column. It added so that it might become.
  • Example 18 The proportion of CD45RA + CCR7 + T cells on day 9 of culture was calculated for the cells prepared in (2) in the same manner as in Example 3— (2). The results are shown in Table 46.
  • the CD45RA + CCR7 + T cell population was higher in the T cell population in culture than in the control group.
  • the present invention provides a method for producing a T cell population.
  • This method is suitable for immunotherapy, for example, as a T cell population that contains a high ratio of T cells that express CD45RA and express at least one selected from the group consisting of CD62L, CCR7, CD27, and CD28. used. Therefore, the method of the present invention is expected to make a great contribution to the medical field.
  • Fig. 1 is a schematic diagram showing the domain structure of fibronectin. [2] It is a figure showing the tumor formation inhibitory effect of mice by T cell administration. Sequence listing free text

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 T細胞を含有する細胞集団をフィブロネクチン、そのフラグメントまたはそれらの混合物の存在下で培養する工程を包含することを特徴とする、CD45RAを発現し、かつCD62L、CCR7、CD27およびCD28からなる群より選択される少なくとも1つを発現するT細胞集団の製造方法。

Description

明 細 書
T細胞集団の製造方法
技術分野
[0001] 本発明は、医療分野において有用な T細胞集団を製造する方法に関する。
背景技術
[0002] 生体は主として免疫応答により異物から守られており、免疫システムはさまざまな細 胞とそれが作り出す可溶性の因子によって成り立つている。なかでも中心的な役割を 果たしているのが白血球、特にリンパ球である。このリンパ球は Bリンパ球(以下、 B細 胞と記載することがある)と Tリンパ球 (以下、 T細胞と記載することがある)という 2種類 の主要なタイプに分けられ、いずれも抗原を特異的に認識し、これに作用して生体を 防御する。
[0003] T細胞は、末梢では CD (Cluster of Differentiation) 4マーカーを有する CD4 T細胞と CD8マーカーを有する CD8T細胞が大部分を占める。 CD4T細胞の大部 分は、ヘルパー T細胞(以下、 Tと記載する)と呼ばれ、抗体産生の補助や種々の免
H
疫応答の誘導に関与し、抗原刺激により産生するサイト力インの種類が異なる Thl型 あるいは Th2型に分ィ匕する。 CD8T細胞の大部分は、抗原刺激により細胞傷害活性 を示す細胞傷害性 T細胞 [Tc :細胞傷害性 Tリンパ球(cytotoxic T lymphocyte )、別名:キラー T細胞、以下、 CTLと記載することがある]に分ィ匕する。
[0004] 例えば、癌の病態にお!ヽて、外科手術、化学療法、放射線療法に次ぐ第 4の治療 法として、免疫療法が近年関心を集めている。免疫療法は本来ヒトが有する免疫力を 利用するため、患者への肉体的負担が他の治療法と比べて軽いと言われている。免 疫療法には体外で誘導した CTLや末梢血リンパ球等力 種々の方法で拡大培養し て得られるリンフォカイン活性ィ匕細胞、 NKT細胞、 γ δ Τ細胞などを移入する療法、 体内での抗原特異的 CTLの誘導を期待する榭状細胞移入療法やペプチドワクチン 療法、 Thl細胞療法、さらにこれら細胞に種々の効果を期待できる遺伝子を体外で 導入して体内に移入する免疫遺伝子治療法などが知られて!/ヽる。
[0005] フイブロネクチンは動物の血液中、培養細胞表面、組織の細胞外マトリックスに存 在する分子量 25万の巨大な糖タンパク質であり、多彩な機能を持つことが知られて いる。そのドメイン構造は 7つに分けられており(以下、第 1図参照)、またそのアミノ酸 配列中には 3種類の類似の配列が含まれており、これら各配列の繰返しで全体が構 成されている。 3種類の類似の配列は I型、 II型、 ΙΠ型と呼ばれ、このうち、 ΙΠ型は 71 〜96個のアミノ酸残基で構成されており、これらのアミノ酸残基の一致率は 17〜40 %である。フイブロネクチン中には 14の III型の配列が存在する力 そのうち、 8番目、 9番目、 10番目(以下、それぞれ III— 8、 III— 9、 III— 10と称する)は細胞結合ドメイ ンに、また 12番目、 13番目、 14番目(以下、それぞれ III— 12、 III 13、 III— 14と 称する)はへパリン結合ドメインに含有されている。また、 III— 10には VL A (very la te activation antigen)— 5結合領域が含まれており、このコア配列は RGDSであ る。また、へノ^ン結合ドメインの C末端側には IIICSと呼ばれる領域が存在する。 III CSには 25アミノ酸力もなる VLA— 4に対して結合活性を有する CS— 1と呼ばれる領 域が存在する (例えば、非特許文献 1〜3)。
[0006] 免疫療法の中で、体外で誘導した CTLや末梢血リンパ球等から IL 2と抗 CD3抗 体の作用により拡大培養して得られるリンフォカイン活性ィ匕細胞を移入する療法にお Vヽて、体外で誘導した抗原特異的 CTLを拡大培養する際に細胞傷害活性を ヽかに 維持するか、リンパ球を体外でいかに効率よく拡大培養できるか等の問題について は、フイブロネクチンやそのフラグメントを使用することによる効果が、既に本発明者ら により検討されてきた (例えば、特許文献 1〜3)。
[0007] 近年、免疫療法に使用される Tリンパ球は、すでに終末分ィ匕したエフヱクタ一 T細 胞よりも、より未分ィ匕な状態のナイーブ T細胞やセントラルメモリー T細胞を投与した 方が、生体への投与においてはるかに高い治療効果が期待できることが報告されて いる(例えば非特許文献 4、 5)。さらに、体内での抗原特異的 CTLの誘導を期待す る榭状細胞移入療法やペプチドワクチン療法などにぉ 、ても、例えば癌が進行した 患者の体内では CTLに誘導されうる元となるナイーブ T細胞が少ないと考えられるた め、充分な効果が期待できないことが多い。
非特許文献 l : Deane F. Momer著, 1988年発行, FIBRONECTIN, ACA DEMIC PRESS INC. , Pl〜8 非特許文献 2 :Kimizuka F. 他 8名, Biochem. , 1991年, Vol. 110, No. 2, p284- 291
非特許文献 3 :Hanenberg H. 他 5名, Human Gene Therapy, 1997年, Vo 1. 8, No. 18, p2193 - 2206
非特許文献 4: Gattinoni L. 他 9名, J. Clin. Invest. 2005年, Vol. 115, N o. 6, P1616〜1626
非特許文献 5 : Benigni F 他 10名, Immunol. 2005年, Vol. 175, No. 2, P739〜748
特許文献 1:国際公開第 03Z016511号パンフレット
特許文献 2 :国際公開第 03Z080817号パンフレット
特許文献 3:国際公開第 2005Z019450号パンフレット
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、生体への投与に有効な T細胞集団の製造方法を提供することに ある。
課題を解決するための手段
[0009] 本発明の第 1の発明は、 T細胞を含有する細胞集団をフイブロネクチン、そのフラグ メントまたはそれらの混合物の存在下で培養する工程を包含することを特徴とする、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択 される少なくとも 1つを発現する T細胞集団の製造方法に関する。本発明の第 1の発 明において、培養する工程を含む総培養日数としては 4〜14日間が例示される。ま た、フイブロネクチン、そのフラグメントまたはそれらの混合物の存在下での培養は、 少なくとも培養開始時において実施されることが例示され、さらに当該培養は、少なく とも 1日以上実施されることが好ましい。また、本発明の第 1の発明において、フイブ口 ネクチン、そのフラグメントまたはそれらの混合物の存在下で培養する工程は、 CD3 リガンドの存在下で実施されることが例示される。また、 CD3リガンドとしては、抗 CD 3抗体が例示される。本発明の第 1の発明において、フイブロネクチンのフラグメントと しては、配列表の配列番号 1〜8で表されるアミノ酸配列を少なくとも 1つ含んでなる ポリペプチド (m)であるか、または前記 、ずれかのアミノ酸配列にお 、て 1もしくは複 数個のアミノ酸が置換、欠失、挿入もしくは付加したアミノ酸配列を少なくとも 1つ含ん でなるポリペプチドであって、前記ポリペプチド (m)と同等な機能を有するポリべプチ ド (n)が例示される。また、フイブロネクチンのフラグメントとしては、配列表の配列番 号 1〜3及び 5〜8で表されるアミノ酸配列のいずれもを含むポリペプチドが例示され る。また、本発明の第 1の発明において、さらに、 CD45RA、 CD62L、 CCR7、 CD2 7および CD28からなる群より選択される少なくとも 1つを発現する細胞を分離するェ 程を包含する製造方法も例示される。さらに本発明の第 1の発明においては、さらに 細胞集団に外来遺伝子を導入する工程を包含する製造方法も例示される。当該製 造方法において、外来遺伝子の導入にはレトロウイルスベクター、アデノウイルスべク ター、アデノ随伴ウィルスベクター、レンチウィルスベクターまたはシミアンウィルスべ クタ一が使用できる。
[0010] 本発明の第 2の発明は、本発明の第 1の発明の方法により得られる、 CD45RAを 発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なく とも 1つを発現する T細胞集団に関する。
[0011] 本発明の第 3の発明は、本発明の第 1の発明により得られる、 CD45RAを発現し、 力つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを 発現する T細胞集団を有効成分として含有する医薬に関する。
[0012] 本発明の第 4の発明は、被験体に、有効量の本発明の第 1の発明の方法により得 られる、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群 より選択される少なくとも 1つを発現する T細胞集団を投与する工程を含む疾患の治 療方法又は予防方法に関する。
[0013] 本発明の第 5の発明は、医薬の製造のための、本発明の第 1の発明の方法により 得られる、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる 群より選択される少なくとも 1つを発現する T細胞集団の使用に関する。
[0014] 本発明の第 6の発明は、本発明の第 1の発明の方法により得られる、 CD45RAを 発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なく とも 1つを発現する T細胞集団に対して、抗原を提示しうる能力を有する細胞、抗原 の提示された細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン、ケモカインお よびサイト力インを産生する能力を有する細胞力 なる群より選択される少なくとも 1つ の刺激因子により刺激を与える工程を含むことを特徴とする T細胞集団の製造方法 に関する。
[0015] 本発明の第 7の発明は、本発明の第 6の発明の方法により得られる T細胞集団に関 する。
[0016] 本発明の第 8の発明は、本発明の第 6の発明の方法により得られる T細胞集団を有 効成分として含有する医薬に関する。
[0017] 本発明の第 9の発明は、被験体に、有効量の本発明の第 6の発明の方法により得 られる T細胞集団を投与する工程を含む疾患の治療方法又は予防方法に関する。
[0018] 本発明の第 10の発明は、医薬の製造のための、本発明の第 6の発明の方法により 得られる T細胞集団の使用に関する。
[0019] 本発明の第 11の発明は、(a)本発明の第 1の発明の方法により得られる、 CD45R Aを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少 なくとも 1つを発現する T細胞集団を有効成分として含有する製剤、及び
(b)抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 CD3リガン ド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する能力を有す る細胞からなる群より選択される少なくとも 1つの刺激因子を有効成分として含有する 製剤、を含む医薬であって、当該製剤は同時にまたは別々に投与される 2つの別々 の製剤として含有される医薬に関する。
[0020] 本発明の第 12の発明は、下記 (a)及び (b)の工程を含むことを特徴とする疾患の 治療方法に関する。
(a)本発明の第 1の発明の方法により得られる、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発現する T細 胞集団を患者に投与する工程、
(b)抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 CD3リガン ド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する能力を有す る細胞力 なる群より選択される少なくとも 1つの刺激因子を患者に投与する工程。 発明の効果
[0021] 本発明の製造方法により、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27およ び CD28からなる群より選択される少なくとも 1つを発現する T細胞集団が提供される 。当該製造方法により得られる細胞集団は、 CD45RAを発現し、かつ CD62L、 CC R7、 CD27および CD28からなる群より選択される少なくとも 1つを発現する T細胞の 比率が高ぐ細胞医療による疾患の治療に極めて有用である。
発明を実施するための最良の形態
[0022] 本発明は、フイブロネクチン、そのフラグメントまたはそれらの混合物(以下、本発明 の有効成分と称することがある)の存在下で培養する工程を含有することにより、 CD 45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択され る少なくとも 1つを発現する T細胞が高比率に含まれている細胞集団が得られることを 見出し、完成するに至ったものである。
[0023] なお、本明細書において、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27およ び CD28からなる群より選択される少なくとも 1つを発現する T細胞集団とは、 CD45 RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される 少なくとも 1つを発現する T細胞を高比率に含む T細胞集団を意味する。また、ここで 高比率とは、本発明の有効成分の有無以外は同等の条件で培養を実施した場合に 、本発明の有効成分の存在下における培養により得られた T細胞集団中の、 CD45 RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される 少なくとも 1つを発現する T細胞比率が、本発明の有効成分の非存在下の場合と比 較して高いことを意味する。好適には本発明の有効成分の非存在下の場合と比較し て 5%以上、より好ましくは 10%以上高い T細胞集団であることが好ましい。得られる 細胞集団中の、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28力 らなる群より選択される少なくとも 1つを発現する T細胞の比率は、種々の環境要因、 例えば末梢血単核球 (PBMC)等の T細胞の製造に使用される細胞を供給するヒト の個人差や体調などによって変動するものであることから、上記の「高比率」を一概に 数値によって規定することは不可能である。また、本発明の製造方法により得られる T細胞集団は、 T細胞を含む集団のことを意味し、 T細胞以外の細胞、例えば NK細 胞等のその他のリンパ球やリンパ球以外の血球系成分が含まれていても良い。
[0024] 以下、本発明を具体的に説明する。
[0025] (1)本発明に使用されるフイブロネクチン、およびそのフラグメント
本明細書中に記載のフイブロネクチンおよびそのフラグメントは、天然力 得られた もの、または人為的に合成されたもののいずれでもよい。フイブロネクチンおよびその フラグメントは、例えば、ルオスラーティ E.ら〔Ruoslahti E. , et al.、ジャーナ ル 'ォブ 'バイオロジカル 'ケミストリー (J. Biol. Chem. )、第 256卷、第 14号、第 7277〜7281頁( 1981)〕の開示に基づき、天然起源の物質から実質的に純粋な形 態で製造することができる。ここで、本明細書に記載された実質的に純粋なフイブ口 ネクチンまたはフイブロネクチンフラグメントとは、これらが天然にお 、てフイブロネク チンと一緒に存在する他のタンパク質を本質的に含有していないことを意味する。上 記のフイブロネクチンおよびそのフラグメントは、それぞれ単独で、もしくは複数の種 類のものを混合して本発明に使用することができる。
[0026] なお、フイブロネクチンは多くのスプライシングバリアントの存在が知られているが、 本発明に使用されるフイブロネクチンとしては、本発明の所望の効果を発現するもの であれば、いずれのバリアントも使用することができる。例えば、血漿由来のフイブ口 ネクチンの場合、細胞結合ドメインの上流に存在する ED— Bと呼ばれる領域、細胞 結合ドメインとへパリン結合ドメインの間に存在する ED— Aと呼ばれる領域が欠失し て!、ることが知られて!/、るが、このような血漿由来のフイブロネクチンも本発明に使用 することができる。
[0027] 本発明に使用できるフイブロネクチンフラグメント、ならびに該フラグメントの調製に 関する有用な情報は、キミヅカ F.ら〔1¾1^(1111^ F. , et al.、ジャーナル'ォブ 'バイオケミストリー (J. Biochem. )、第 110卷、 284〜291頁(1991)〕、コーンブ リット A. R.ら〔1¾1:111^111 A. R. , et al. 、 EMBO ジャーナル(EMBO J . )、第 4卷、第 7号、 1755〜1759 (1985)〕、およびセキグチ K. ¾ [Sekiguchi K. , et al. 、ノィォケミストリー(Biochemistry)、第 25卷、第 17号、 4936〜494 1 (1986)〕等より得ることができる。また、フイブロネクチンをコードする核酸配列又は フイブロネクチンのアミノ酸配列については、 Genbank Accession No. NM 0 02026、 NP一 002017に開示されている。
[0028] 本発明において、フイブロネクチンフラグメントとしては、例えば、 III— 8 (配列表の 配列番号 1で表されるアミノ酸配列)、 ΠΙ— 9 (配列表の配列番号 2で表されるアミノ酸 配列)、 III- 10 (配列表の配列番号 3で表されるアミノ酸配列)、 ΙΠ— 11 (配列表の 配列番号 4で表されるアミノ酸配列)、 III 12 (配列表の配列番号 5で表されるァミノ 酸配列)、 ΠΙ— 13 (配列表の配列番号 6で表されるアミノ酸配列)、 ΠΙ— 14 (配列表 の配列番号 7で表されるアミノ酸配列)、および CS— 1 (配列表の配列番号 8で表さ れるアミノ酸配列)のいずれかの領域を構成するアミノ酸配列を少なくとも 1つ含んで なるポリペプチド (m) (第 1図参照)や、前記いずれかのアミノ酸配列において 1もしく は複数個のアミノ酸が置換、欠失、挿入もしくは付加したアミノ酸配列を少なくとも 1つ 含んでなるポリペプチドであって、前記ポリペプチド (m)と同等な機能を有するポリべ プチド (n)が例示される。フラグメントの長さとしては、例えば、アミノ酸の数として 20 〜1000力 子ましく、 100〜800力より好ましい。なお、本明細書において、複数個と は数個を含む概念であり、 2〜12個が好ましぐ 2〜10個がより好ましぐ 2〜8個がさ らに好ましぐ以下においても同様である。
[0029] また、当該フラグメントとしては、細胞接着活性および Zまたはへノ^ン結合活性を 有するものが好適に使用できる。細胞接着活性は、本発明で使用されるフラグメント( その細胞結合ドメイン)と細胞との結合を公知の方法を使用してアツセィすることによ り調べることができる。例えば、このような方法には、ウイリアムズ D. A.らの方法〔W illiams D. A. , et al.、ネイチヤー(Nature)、第 352卷、第 438〜441頁(199 1)〕が含まれる。当該方法は、培養プレートに固定ィ匕したフラグメントに対する細胞の 結合を測定する方法である。また、へパリン結合活性は、本発明に使用されるフラグ メント(そのへパリン結合ドメイン)とへパリンとの結合を公知の方法を使用してアツセィ することにより調べることができる。例えば、上記のウイリアムズ D. A.らの方法にお いて、細胞に換えてへノ《リン、例えば標識へノ リンを使用することにより、同様の方法 でフラグメントとへノ リンとの結合の評価を行うことができる。
[0030] さらにフイブロネクチンのフラグメントとしては、 C 274 (配列表の配列番号 9で表さ れるアミノ酸配列)、 H- 271 (配列表の配列番号 10で表されるアミノ酸配列)、 H— 2 96 (配列表の配列番号 11で表されるアミノ酸配列)、 CH— 271 (配列表の配列番号 12で表されるアミノ酸配列)、 CH— 296 (配列表の配列番号 13で表されるアミノ酸配 列)、 C— CS1 (配列表の配列番号 14で表されるアミノ酸配列)、および CH— 296N a (配列表の配列番号 15で表されるアミノ酸配列)力もなる群より選択されるポリぺプ チドが例示される。
[0031] 上記の CH— 271、 CH— 296、 CH— 296Na、 C— 274、 C— CS1の各フラグメン トは VLA— 5に結合する活性を有する細胞結合ドメインを有するポリペプチドである。 また、 C— CS1、 H— 296、 CH— 296、 CH— 296Naは VLA— 4に結合する活性を 有する CS— 1を有するポリペプチドである。さらに、 H— 271、 H— 296、 CH— 271 、 CH— 296および CH— 296Naはへパリン結合ドメインを有するポリペプチドである 。なお、 CH— 296Naは血漿由来のフイブロネクチンにおける細胞結合ドメインから C S 1までを含むポリペプチドである。
[0032] 本発明においては、上記の各ドメインが改変されたフラグメントも使用することがで きる。フイブロネクチンのへパリン結合ドメインは 3つの III型配列(ΠΙ—12、 III- 13, 1 11- 14)によって構成されている。前記 III型配列のうちの一つもしくは二つを欠失し たへノ^ン結合ドメインを含むフラグメントも本発明に使用することが可能である。例え ば、フイブロネクチンの細胞結合部位 (VLA— 5結合領域、 Prol239〜Serl515)と 一つの III型配列とが結合したフラグメントである CHV— 89 (配列表の配列番号 16で 表されるアミノ酸配列)、 CHV— 90 (配列表の配列番号 17で表されるアミノ酸配列) 、 CHV— 92 (配列表の配列番号 18で表されるアミノ酸配列)、あるいは二つの ΠΙ型 配列とが結合したフラグメントである CHV— 179 (配列表の配列番号 19で表されるァ ミノ酸配列)、 CHV— 181 (配列表の配列番号 20で表されるアミノ酸配列)が例示さ れる。 CHV— 89、 CHV— 90、 CHV— 92はそれぞれ III— 13、 111—14、 III— 12を 含むものであり、 CHV— 179は III— 13と III— 14を、 CHV— 181は III— 12と III— 1 3をそれぞれ含んでいる。
[0033] また、上記の各フラグメントにさらにアミノ酸を付加したフラグメントも本発明に使用 することができる。当該フラグメントは、例えば、上記各フラグメントに所望のアミノ酸を 付加することにより製造可能である。例えば、 H— 275— Cys (配列表の配列番号 21 で表されるアミノ酸配列)は、フイブロネクチンのへパリン結合ドメインを有し、かつ C末 端にシスティン残基を有するフラグメントである。
[0034] なお、本発明に使用されるフラグメントとしては、本発明の所望の効果が得られる限 り、上記に例示した天然のフイブロネクチンのアミノ酸配列の少なくとも一部を含むフ ラグメントと同等な機能を有する、当該フラグメントを構成するポリペプチドのアミノ酸 配列に 1もしくは複数個のアミノ酸の置換、欠失、挿入もしくは付加を有するアミノ酸 配列を有するポリペプチドからなるものであってもよい。
[0035] アミノ酸の置換等は、本来のポリペプチドの機能が維持され得る範囲内で該ポリべ プチドの物理ィ匕学的性状等を変化させ得る程度のものであるのが好ま 、。例えば、 アミノ酸の置換等は、本来のポリペプチドの持つ性質 (例えば、疎水性、親水性、電 荷、 PK等)を実質的に変化させない範囲の保存的なものが好ましい。例えば、ァミノ 酸の置換は、 1.グリシン、ァラニン; 2. ノ リン、イソロイシン、ロイシン; 3.ァスパラギン 酸、グルタミン酸、ァスパラギン、グルタミン; 4.セリン、スレオ-ン; 5.リジン、アルギ ニン; 6.フエ-ルァラニン、チロシンの各グループ内での置換であり、アミノ酸の欠失 、付加、挿入は、ポリペプチドにおけるそれらの対象部位周辺の性質に類似した性 質を有するアミノ酸の、対象部位周辺の性質を実質的に変化させない範囲での欠失 、付加、挿入が好ましい。
[0036] なお、本発明に使用されるフラグメントを遺伝子工学的に取得した場合、例えば大 腸菌などを宿主として製造する場合は、大腸菌由来のメチォニンべプチダーゼ等の 影響により、 Ν末端のメチォニンが欠失される場合があるが、このようなポリペプチドも 本発明において使用することができる。すなわち、配列表の配列番号 15および 21に 記載のポリペプチドの Ν末端のメチォニンが欠失したポリペプチドも本発明にお 、て は好適に使用できる。
[0037] アミノ酸の置換等は種間や個体差に起因して天然に生ずるものであってもよぐま た、人工的に誘発されたものであってもよい。人工的な誘発は公知の方法により行え ばよぐ特に限定はないが、例えば、公知の手法により、天然のフイブロネクチン由来 の前記領域や所定のフラグメントをコードする核酸において 1もしくは複数個の塩基 が置換、欠失、付加もしくは挿入された所定の核酸を作製し、それを使用して、天然 のフイブロネクチン由来の前記領域や所定のフラグメントと同等な機能を有する、当 該フラグメント等を構成するポリペプチドのアミノ酸配列に置換等を有するアミノ酸配 列を含むポリペプチドを製造することができる。
[0038] また、本明細書において「同等な機能を有する」とは、ポリペプチドを使用して得ら れる T細胞集団中の CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD2 8からなる群より選択される少なくとも 1つを発現する T細胞の比率が、比較対照のポ リペプチドの非存在下で得られる T細胞集団よりも高 ヽことを ヽぅ。前記作用は後述 の実施例 1、 2、 6に記載の方法等に準じて適宜確認することができる。また、アミノ酸 の置換等を有するポリペプチドからなるフラグメントとしては、細胞接着活性および z またはへパリン結合活性を有するものが好適であり、また CS— 1ドメインを有するもの も好適である。細胞接着活性およびへノ リン結合活性は、それらの前記活性測定方 法に準じて評価することができる。
[0039] アミノ酸の置換等を有するポリペプチドからなるフラグメントとして、例えば、 2つの異 なるドメイン間にリンカ一として 1以上のアミノ酸が挿入されたフラグメントも本発明に 使用することができる。
[0040] なお、フイブロネクチンについても、上記のフラグメントと同様、そのポリペプチドの アミノ酸配列に 1もしくは複数個のアミノ酸の置換、欠失、挿入もしくは付加を有する アミノ酸配列を有するポリペプチドであって、当該ポリペプチドを使用して得られる T 細胞集団中の CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28から なる群より選択される少なくとも 1つを発現する T細胞の比率力 比較対照のポリぺプ チドの非存在下で得られる T細胞集団よりも高 、ポリペプチドを、本発明にお 、て使 用することができる。
[0041] また、本発明に使用されるフイブロネクチンまたはそのフラグメントとしては、本発明 の所望の効果が得られる限り、上記に例示した天然のフイブロネクチンやそのァミノ 酸配列の少なくとも 1部を含むフラグメントと同等な機能を有する、当該フイブロネクチ ンまたはそのフラグメントを構成するポリペプチドのアミノ酸配列と 50%以上のホモ口 ジーを有するポリペプチド、好ましくは 70%以上のホモロジ一を有するポリペプチド、 より好ましくは 90%以上のホモロジ一を有するポリペプチド、さらに好ましくは 95%以 上のホモロジ一を有するペプチドが使用できる。なお、ホモロジ一の算出には、例え ば DNASIS Pro Ver. 2. 6 (タカラバイオ (株)製)を用いることができる。
[0042] なお、本発明において、最も好適に使用されるフイブロネクチンのフラグメントとして は、アミノ酸配列中に ΠΙ— 8 (配列表の配列番号 1で表されるアミノ酸配列)、 III 9 ( 配列表の配列番号 2で表されるアミノ酸配列)、 ΙΠ— 10 (配列表の配列番号 3で表さ れるアミノ酸配列)、 ΠΙ— 12 (配列表の配列番号 5で表されるアミノ酸配列)、 ΙΠ— 13 (配列表の配列番号 6で表されるアミノ酸配列)、 ΙΠ— 14 (配列表の配列番号 7で表 されるアミノ酸配列)および CS— 1 (配列表の配列番号 8で表されるアミノ酸配列)の すべてを含む、すなわちへノ リン結合ドメイン、細胞結合ドメインおよび CS— 1を含 むポリペプチドが挙げられ、さらに好適には前述の CH— 296、もしくは CH— 296と 同等な機能を有する、当該フラグメントを構成するポリペプチドのアミノ酸配列に 1もし くは複数個のアミノ酸の置換、欠失、挿入もしくは付加を有するアミノ酸配列を有する ポリペプチドが挙げられる。その他、本発明において好適に使用されるフイブロネク チンのポリペプチドとしては、実施例 18に示すとおり、 H— 296、 CH— 271、 H— 27 1、 C— CS1、もしくはこれらと同等な機能を有する、当該フラグメントを構成するポリ ペプチドのアミノ酸配列に 1もしくは複数個のアミノ酸の置換、欠失、挿入もしくは付 加を有するアミノ酸配列を有するポリペプチドが挙げられる。
[0043] 本明細書中に記載のフイブロネクチンフラグメントは、例えば、米国特許第 5, 198, 423号明細書の記載に基づいて遺伝子組換え体より組換えフイブロネクチンフラグン メントとして製造することもできる。例えば、上記の H— 271 (配列番号 10)、 H— 296 (配列番号 11)、 CH— 271 (配列番号 12)、 CH— 296 (配列番号 13)の各フラグメ ントならびにこれらを取得する方法は当該特許明細書に詳細に記載されて 、る。また 、 CH— 296Na (配列番号 15)とその製造方法については国際公開第 2005Z019 450号パンフレットに記載されている。また、上記の C— 274 (配列番号 9)フラグメント は米国特許第 5, 102, 988号明細書に記載された方法により得ることができる。さら に、 C— CS1 (配列番号 14)フラグメントは日本特許第 3104178号明細書に記載さ れた方法により得ることができる。上記 CHV—89 (配列番号 16)、 CHV—90 (配列 番号 17)、 CHV— 179 (配列番号 19)の各フラグメントは、 日本特許第 2729712号 明細書に記載された方法により得ることができる。また、 CHV— 181 (配列番号 20) フラグメントは国際公開第 97Z18318号パンフレットに記載された方法に準じて得る ことができる。 CHV— 92 (配列番号 18)フラグメントは、 日本特許第 2729712号明 細書および国際公開第 97Z18318号パンフレットを参照し、それらの文献に記載さ れたプラスミドに基づ 、て定型的にプラスミドを構築し、該プラスミドを用いて遺伝子 工学的に取得することができる。
これらのフラグメントまたはこれらフラグメントから定型的に誘導できるフラグメントは 、〒 305— 8566日本国茨城県つくば巿東 1丁目 1番地 1中央第 6 独立行政法人 産業技術総合研究所 特許生物寄託センターに下記受託番号のもとで寄託された 微生物を用いて製造する、あるいは各微生物の保持するプラスミドを公知の方法によ り改変すること〖こより製造することちでさる;
FERM BP— 2264 (H— 271をコードするプラスミドを保有する大腸菌;寄託日 19 89年 1月 30曰)、
FERM BP— 2800 (CH— 296をコードするプラスミドを保有する大腸菌;寄託日 1989年 5月 12曰)、
FERM BP— 2799 (CH— 271をコードするプラスミドを保有する大腸菌;寄託日 1989年 5月 12曰)、
FERM BP— 7420 (H— 296をコードするプラスミドを保有する大腸菌;寄託日 19 89年 5月 12曰)、
FERM BP— 1915 (C— 274をコードするプラスミドを保有する大腸菌;寄託日 19 88年 6月 17曰)、
FERM BP— 5723 (C— CS1をコードするプラスミドを保有する大腸菌;寄託日 1 990年 3月 5曰)、
FERM BP— 10073 (CH— 296Naをコードするプラスミド;寄託日 2004年 7月 2 3曰)
FERM P— 12182 (CHV— 89をコードするプラスミドを保有する大腸菌;寄託日 1991年 4月 8曰)、
FERM P— 12183 (CHV— 179をコードするプラスミドを保有する大腸菌;寄託日 1991年 4月 8曰)。
[0045] フイブロネクチンは巨大な糖タンパク質であるため、天然起源のタンパク質を調製し て使用することは産業上および医薬品製造上、必ずしも容易ではない。また、フイブ ロネクチンは多機能タンパク質であることから、その使用の状況によっては、本発明の 方法に効果を示す領域とは異なる領域に起因する不都合が起こることも考えられる。 これらのことから、本発明においては、入手、取り扱いの容易さ、安全面の観点から、 好適にはフイブロネクチンフラグメント、さらに好適には前記のようにして得られる組み 換えフイブロネクチンフラグメントを使用することが好ましい。また、高い拡大培養率を 実現するという観点からも、前述のフイブロネクチンフラグメントを使用することが好ま しい。また、本発明に使用されるフイブロネクチンフラグメントの分子量としては、特に 限定はないが、好適には l〜200kD、より好適には 5〜190kD、さらに好適には 10 〜180kDである。当該分子量は、例えば、 SDS—ポリアクリルアミドゲル電気泳動に より柳』定することができる。
[0046] なお、本発明のフイブロネクチンフラグメントを構成するポリペプチドのアミノ酸配列 において、天然由来のフイブロネクチンフラグメントを構成するポリペプチドのアミノ酸 配列以外のアミノ酸配列部分は、本発明の所望の効果の発現を阻害しな!、限り任意 であり、特に限定されるものではない。
[0047] (2) T細胞集団の製造方法
以下、本発明の T細胞集団の製造方法について具体的に説明する。本発明は CD 45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択され る少なくとも 1つを発現する T細胞、好ましくは CD45RAを発現し、かつ CD62Lおよ び CCR7からなる群より選択される少なくとも 1つを発現する T細胞を高比率に含有 する細胞集団を製造する方法である。本発明の方法は、前述のフイブロネクチン、そ のフラグメントまたはそれらの混合物の存在下で T細胞を含有する細胞集団を培養 する工程を含有することを特徴とする。
[0048] CD45RA、 CD62L、 CCR7、 CD27、 CD28は!、ずれもリンパ球の細胞表面抗原 マーカーであり、ナイーブ T細胞のような未分ィヒな細胞において発現することが知ら れている。すなわち、本発明の製造方法により得られる細胞集団に高比率に含まれ る、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より 選択される少なくとも 1つを発現する T細胞は、細胞表面抗原マーカーの表現型から すれば、メモリー T細胞に分化する前の未分化の細胞、すなわちナイーブ T様細胞と して分類できる。前述の非特許文献 4および 5に記載のとおり、ナイーブ T細胞は生 体に投与した際の生体内での生存率、細胞増殖効果、腫瘍への集積効果、腫瘍特 異的エフェクター細胞の産生率が高ぐ細胞医療分野において有用であることが記 載されている。
[0049] さらに、本発明の製造方法により得られる T細胞集団は、後述の実施例 3に示すと おり、抗 CD3抗体ゃ抗 CD28抗体によって刺激を与えることにより、 IL— 2を多く産 生する活性化された T細胞となる。また、後述の実施例 4に示すとおり、本発明の製 造方法により得られる T細胞集団は、ケモカインである CCL21に対して反応し、走ィ匕 性を示すことから、リンパ節への移行能をも有する。また、後述の実施例 5〜8に示す とおり、当該 T細胞集団に対して抗原刺激を負荷することにより抗原特異的細胞傷害 活性を有する CTLが誘導される。さらに、後述の実施例 9に示すとおり、当該 T細胞 集団は、フイブロネクチン、そのフラグメントまたはそれらの混合物の非存在下で製造 された T細胞集団と比較して、少量の IL— 2存在下あるいは非存在下での生存性が 高いことから、生体内での生存性も高いことが予想される。実際に、後述の実施例 11 では、本発明の製造方法により得られる T細胞集団を NODZscidマウスに投与した 場合、フイブロネクチン、そのフラグメントまたはそれらの混合物の非存在下で製造さ れた T細胞集団を投与した場合と比較して、 T細胞の脾臓への生着率が高く生存率 も高いことが示されており、さらにこの実施例では投与した T細胞集団は GVHD反応 も引き起こすことから、高い細胞傷害活性を有する細胞が誘導されることも示されて いる。これらのことから、本発明の製造方法により得られる T細胞集団は、細胞表面抗 原マーカーの表現型のみではなく、ナイーブ T細胞の有する細胞医療分野への使用 に適した機能をも有して 、る。
[0050] し力しながら、驚くべきことに、実施例 7— (4)、 8— (2)、 15- (4)および 16— (2) で示されるように、上記方法により製造される T細胞集団から、さらに、後述の CD45 RA、 CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つ を発現する細胞集団を分離する工程を施して得られる T細胞集団は、 PBMCから得 られるナイーブ T細胞や本発明の有効成分の非存在下で得られる同様の表現型を 示す T細胞と比較して、誘導される CTLの細胞傷害活性が高ぐまた特異的抗原認 識能力も高い。すなわち、このような分離操作を施して得られる T細胞集団は、 CTL に分ィ匕した際の細胞傷害活性が、通常のナイーブ T細胞と比較して有意に高ぐこの 点にお 1ヽてナイーブ T細胞とは異なる、より効果的な特徴を有する新規なナイーブ T 様細胞を含む細胞集団である。
[0051] 上記のような本発明の製造方法により得られる T細胞集団の高い治療効果は CD8 +、 CD4+のいずれのナイーブ T様細胞でも同様に期待される。さらに、前述の特許 文献 2に記載のとおり、フイブロネクチン、そのフラグメント又はそれらの混合物の存在 下に T細胞の拡大培養を行うことにより、非常に高い増殖率を実現することができるこ とから、本発明の方法により得られる T細胞集団は細胞医療分野への使用に極めて 適している。
[0052] 本発明の製造方法に使用される、 T細胞を含有する細胞集団としては、 PBMC、ナ ィーブ T細胞、メモリー T細胞、造血幹細胞、臍帯血単核球等が例示される。また、血 球系細胞であれば本発明に使用できる。これらの細胞は生体力も採取されたもの、 あるいは生体外での培養を経て得られたもの、例えば本発明の方法により得られた T 細胞集団をそのままもしくは凍結保存したもののいずれも使用することができる。また 、例えば生体力 得られた上記の T細胞集団の製造に使用される細胞力 種々の分 離操作を経て得られた細胞集団、例えば、 PBMC等の細胞を CD8+もしくは CD4+ 細胞に分離して得られたいずれかの細胞集団を使用することもできる。なお、本発明 の T細胞集団の製造方法では、前記細胞を含有する材料、例えば、末梢血液、臍帯 血等の血液や、血液から赤血球や血漿等の成分を除去したもの、骨髄液等を使用 することができる。
[0053] 本発明の T細胞集団の製造方法は、好適には総培養日数を 4〜14日間とすること が好ましい。すなわち、総培養日数が 4〜14日間である場合、得られる T細胞集団中 の、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より 選択される少なくとも 1つを発現する T細胞の比率が高ぐ細胞医療分野への使用に 極めて適している。なお、総培養日数が 4日未満の場合は、一般的な免疫療法に使 用するには満足のできる細胞数を得ることができない。本発明において、総培養日数 としては、より好適には 5〜14日間、さらに好適には 7〜14日間が好ましい。
[0054] 本発明の T細胞集団の製造方法において、特に好適には全培養期間中の少なくと も初期段階において本発明の有効成分の存在下に培養を実施することが好適であり 、より好適には少なくとも培養開始時に本発明の有効成分の存在下での培養を実施 していることが好ましい。なお、本発明の有効成分の存在下での培養は培養期間中 の全期間であってもよぐまた任意の一部の期間であってもよい。すなわち、 T細胞の 製造工程の一部に前記工程を含むものであれば本発明に包含される。好適には本 発明の有効成分の存在下での培養を、培養開始時力 少なくとも 1日以上、より好ま しくは 3日以上、さらに好ましくは 4日以上実施することが好ましい。
[0055] 本発明にお 、て、フイブロネクチン、そのフラグメント、またはそれらの混合物の培養 中の濃度としては、特に限定はなぐ例えば 0. 001-500 ^ g/mL,特に 0. 01〜5 00 μ gZmLが好適である。
[0056] 本発明にお 、ては、 T細胞の TCR— CD3複合体への刺激を効果的に行な 、、細 胞を増殖させるという観点から、フイブロネクチン、そのフラグメント、またはそれらの混 合物の存在下での培養を、 CD3リガンドの存在下で行うことが好まし!/、。
[0057] 本発明において、 CD3リガンドとしては、 CD3に結合活性を有する物質であれば 特に限定はないが、例えば抗 CD3抗体が例示され、特に好適には抗 CD3モノクロ ーナル抗体が例示され、例えば OKT3が例示される。 CD3リガンドの培地中の濃度 としては、特に限定はなぐ例えば抗 CD3モノクローナル抗体を使用する場合は、例 えば 0. OOl^lOO .u g/mL,特に 0. 01〜: LOO /z gZmL力好適である。
[0058] また、本発明においては、必要に応じて CD28リガンド等のその他の副刺激因子を 添カロして副刺激を導入することもできる。例えば、抗 CD28抗体、 CD80、 B7—l、 B 7— 2等が例示される。
[0059] 本発明の T細胞集団の製造方法において使用される培地は、特に限定はなぐ T 細胞の拡大培養に必要な成分を混合して作製された公知の培地を使用することがで き、たとえば市販の培地を適宜選択して使用することができる。これらの培地はその 本来の構成成分以外にサイト力イン類、適当なタンパク質、その他の成分を含んでい てもよい。サイト力イン類としては、例えば IL— 2、 IL— 7、 IL—12、 IFN— y等が例 示され、好適には、 IL 2を含有する培地が使用される。 IL 2の培地中の濃度とし ては、特に限定はないが、例えば、好適には 0. 01〜1 X 105U/mL、より好適には 0. 1〜1 X 104UZmLである。また、適当なタンパク質としては、例えば抗 IL— 4抗 体が例示される。また、この他、レクチン等のリンパ球刺激因子を添加することもでき る。当該成分の培地中の濃度は、所望の効果が得られれば特に限定されるものでは ない。
[0060] さらに、培養においては、培地中に血清や血漿を添加することもできる。これらの培 地中への添加量は特に限定はないが、 0容量%〜20容量%が例示され、また培養 段階に応じて使用する血清や血漿の量を変更することができる。例えば、血清又は 血漿濃度を段階的に減らして使用することもできる。なお、血清又は血漿の由来とし ては、自己(培養する細胞と由来が同じであることを意味する)もしくは非自己(培養 する細胞と由来が異なることを意味する)の 、ずれでも良いが、好適には安全性の観 点から自己由来のものが使用できる。
[0061] 本発明の T細胞集団の製造は、通常、本発明の前記有効成分の存在下に、所定 の成分を含む培地中で行なわれる。本発明にお ヽて使用される培養開始時の細胞 数としては、特に限定はないが、例えば好適には lcellZmL〜l X 108cells/mL, より好適には lcell/mL〜5 X 107cells/mL、さらに好適には lcell/mL〜2 X 10 7CellsZmLが例示される。また、培養条件に特に限定はなぐ通常の細胞培養に使 用される条件を使用することができる。例えば、 37°C、 5%CO等の条件で培養する
2
ことができる。また、適当な時間間隔で細胞培養液を新鮮な培地を加えて希釈する 力 培地を交換する力 もしくは細胞培養用器材を交換することができる。
[0062] 本発明の T細胞集団の製造方法において使用される細胞培養用器材としては、特 に限定はないが、例えば、シャーレ、フラスコ、ノッグ、大型培養槽、バイオリアクター 等を使用することができる。なお、ノッグとしては、細胞培養用 COガス透過性バッグ
2
を使用することができる。また、工業的に大量の τ細胞を製造する場合には、大型培 養槽を使用することができる。また、培養は開放系、閉鎖系のいずれでも実施するこ とができる力 好適には得られる T細胞の安全性の観点から閉鎖系で培養を行うこと が好ましい。
[0063] なお、本発明の有効成分や CD3リガンド、その他の副刺激因子、上記培地中に含 まれる適当なタンパク質、サイト力イン類、その他の成分は培地中に溶解して共存さ せる他、適切な固相、例えばシャーレ、フラスコ、バッグ等の細胞培養用器材(開放 系のもの、および閉鎖系のもののいずれをも含む)、またはビーズ、メンブレン、スライ ドガラス等の細胞培養用担体に固定ィ匕して使用してもよい。それらの固相の材質は 細胞培養に使用可能なものであれば特に限定されるものではない。該成分を、例え ば、前記器材に固定ィ匕する場合、培地を該器材に入れた際に、該成分を培地中に 溶解して用いる場合の所望の濃度と同様の割合となるように、器材に入れる培地量 に対して各成分の一定量を固定ィ匕するのが好適であるが、当該成分の固定化量は 所望の効果が得られれば特に限定されるものではない。前記担体は、細胞培養時に 細胞培養用器材中の培養液に浸漬して使用される。前記成分を前記担体に固定ィ匕 する場合、該担体を培地に入れた際に、該成分を培地中に溶解して用いる場合の所 望の濃度と同様の割合となるように、器材に入れる培地量に対して各成分の一定量 を固定化するのが好適であるが、当該成分の固定ィヒ量は所望の効果が得られれば 特に限定されるものではない。
[0064] 本発明の有効成分や CD3リガンド、その他の副刺激因子の固相への固定ィヒ方法 としては、特に限定はないが、例えば、適当な緩衝液の中でこれらの物質を固相と接 虫させること〖こより固定ィ匕することができる。
[0065] また、フイブロネクチンのフラグメントの固相への固定ィ匕については、国際公開第 97 Z18318号パンフレット、ならびに国際公開第 00Z09168号パンフレットに記載の 方法によっても固定ィ匕を実施することができる。
[0066] 前記の種々の成分や、本発明の有効成分を固相に固定ィ匕しておけば、本発明の 方法により T細胞集団を得た後、該 T細胞集団と固相とを分離するのみで、有効成分 等と該 T細胞集団とを容易に分離することができ、該 T細胞集団への有効成分等の 混入を防ぐことができる。
[0067] また、本発明の製造方法は、本発明の有効成分の存在下で培養して得られた T細 胞集団を、さらに、 CD45RA、 CD62L、 CCR7、 CD27および CD28からなる群より 選択される少なくとも 1つを発現する T細胞集団を分離する工程を包含することもでき る。すなわち、前述のとおり本発明の有効成分の存在下で培養して得られた T細胞 集団には高比率に CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28 力 なる群より選択される少なくとも 1つを発現する T細胞が含有されていることから、 さらに CD45RA、 CD62L、 CCR7、 CD27及び CD28からなる群より選択される少 なくとも 1つの表面抗原マーカーを発現する細胞の分離操作を実施することにより、よ り効率的にナイーブ T様細胞もしくはナイーブ T様細胞をさらに高含有する T細胞集 団を取得することが出来る。この場合、分離される T細胞としては、特に限定はないが 、例えば CD45RAを発現する細胞が例示され、好適には CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発現 する細胞、より好適には CD45RAおよび CD62Lを発現する細胞、 CD45RAおよび CCR7を発現する細胞が例示される。分離操作としては、特に限定はないが、例えば セルソーター、磁気ビーズ、カラム等を用いて公知の手法で分離することが出来る。 例えば、 CD45RAおよび CCR7を発現する細胞を分離する場合は、後述の実施例 3- (3)に記載のとおり実施することができる。
[0068] また、本発明の方法により製造された T細胞をクローンィ匕することにより、安定した T 細胞として維持することもできる。また、本発明の方法により得られた T細胞集団を用 いて、さらに本発明の方法や公知の方法により培養することで新たに τ細胞集団を得 ることもできる。また、本発明の方法により得られた T細胞集団を用いて、公知の方法 、例えば後述の実施例 5〜8と同様の方法により抗原刺激等を加えることで抗原特異 的な CTLを製造することちでさる。
[0069] 本発明の方法により得られる T細胞集団には、前述のとおり未分化な T細胞である CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択 される少なくとも 1つを発現する T細胞を高比率に含有して 、る力 培養に用いられる 細胞の種類によっては当該 T細胞集団中に細胞傷害活性を有する T細胞も含まれて いる。当該 T細胞集団の細胞傷害活性は公知の in vitroでの試験により評価するこ ともできるが、本発明により得られる T細胞集団は前述のとおり未分ィ匕なナイーブ T様 細胞を高比率に含むことから、本発明の製造方法により得られる τ細胞集団はこのよ うな評価系にお 、て必ずしも高 、細胞傷害活性を示すものではな 、。
[0070] 本発明の方法により製造される T細胞集団を投与される疾患としては、特に限定は ないが、例えば、癌、白血病、悪性腫瘍、肝炎や、インフルエンザ、 HIV等のウィルス 、細菌、真菌が原因となる感染性疾患、例えば結核、 MRSA、 VRE、深在性真菌症 が例示される。また、後述のようにさらに外来遺伝子を導入した場合は、各種遺伝子 疾患に対しても効果が期待される。また、本発明の方法により製造される T細胞集団 は、骨髄移植や放射線照射後の感染症予防、再発白血病の寛解を目的としたドナ 一リンパ球輸注等にも利用できる。
[0071] さらに本発明は、上記の本発明の T細胞集団の製造方法で得られた CD45RAを 発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なく とも 1つを発現する T細胞集団を提供する。また、本発明は、当該 T細胞集団を有効 成分として含有する医薬 (治療剤)を提供する。当該 T細胞集団を含有する前記治療 剤は免疫療法への使用に適している。免疫療法においては、患者の治療に適した T 細胞が、例えば注射や点滴による静脈、動脈、皮下、腹腔内等の投与方法によって 患者に投与される。当該治療剤は前述の疾患やドナーリンパ球輸注での使用にお いて非常に有用である。当該治療剤は製薬分野で公知の方法に従い、例えば、本 発明の方法により調製された当該 T細胞集団を有効成分として、公知の非経口投与 に適した有機または無機の担体、賦形剤、安定剤等と混合し、点滴剤、注射剤として 調製できる。なお、治療剤における本発明の T細胞集団の含有量、治療剤の投与量 、当該治療剤に関する諸条件は公知の免疫療法に従って適宜、決定できる。例えば 、医薬における本発明の T細胞集団の含有量としては、特に限定はないが、例えば、 好適には 1 X 103〜1 X lO'^ells/mL,より好適には 1 X 104〜1 X 1010cells/mL 、さらに好適には 1 X 105〜1 X 109cells/mLが例示される。また、本発明の医薬の 投与量としては、特に限定はないが、例えば、成人一日あたり、好適には 1 X 106〜1 X 1012cells/日、より好ましくは、 1 X 107〜5 X lOUcells/日、さらに好ましくは 1 X 108〜2 X lC^cellsZ日が例示される。さらに、当該治療剤による免疫療法と、公知 の薬剤投与による薬剤治療や放射線治療、外科的手術による治療との併用を行なう ことちでさる。
[0072] 本発明の T細胞集団の製造方法にぉ ヽて、当該 Τ細胞に外来遺伝子を導入する 工程をさらに包含することができる。すなわち、本発明は、その一態様として、 Τ細胞 に外来遺伝子を導入する工程をさらに含む Τ細胞集団の製造方法を提供する。なお 、「外来遺伝子」とは、遺伝子導入対象の Τ細胞に人為的に導入される遺伝子のこと を意味し、遺伝子導入対象の Τ細胞と同種由来のものも包含される。
[0073] 本発明の Τ細胞の製造方法を行うことにより、培養される Τ細胞の増殖能が増強さ れるが、本発明の Τ細胞の製造方法を、遺伝子の導入工程と組み合わせることにより 、遺伝子の導入効率の上昇が期待される。
[0074] 外来遺伝子の導入手段には特に限定はなぐ公知の遺伝子導入方法により適切な ものを選択して使用することができる。遺伝子導入の工程は、 Τ細胞集団の製造の際 、任意の時点で実施することができる。例えば、前記 Τ細胞集団の製造と同時もしく は途中で、あるいは該工程の後に実施するの力 作業効率の観点力も好適である。
[0075] 前記の遺伝子導入方法としては、ウィルスベクターを使用する方法、該ベクターを 使用しな 、方法の 、ずれもが本発明に使用できる。それらの方法の詳細にっ 、ては すでに多くの文献が公表されて 、る。
[0076] 前記ウィルスベクターには特に限定はなぐ通常、遺伝子導入方法に使用される公 知のウイノレスベタター、例えば、レトロウイノレスベタター、レンチウイノレスベクター、ァ デノウィルスベクター、アデノ随伴ウィルスベクター、シミアンウィルスベクター、ヮクシ ユアウィルスベクターまたはセンダイウィルスベクター等が使用される。特に好適には 、ウィルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、アデノ 随伴ウィルスベクター、レンチウィルスベクターまたはシミアンウィルスベクターが使用 される。上記ウィルスベクターとしては、感染した細胞中で自己複製できないように複 製能を欠損させたものが好適である。また、遺伝子導入の際にレトロネクチン (登録商 標、タカラバィォ社製)などの遺伝子導入効率を向上させる物質を用いることもできる
[0077] レトロウイルスベクターならびにレンチウィルスベクターは、当該ベクターが導入され る細胞の染色体 DNA中に該ベクターに挿入されて!、る外来遺伝子を安定に組み込 むことができ、遺伝子治療等の目的に使用されている。当該ベクターは分裂、増殖中 の細胞に対する感染効率が高 、ことから、本発明における製造の工程にぉ 、て遺伝 子導入を行うのに好適である。
[0078] ウィルスベクターを使用しない遺伝子導入方法としては、本発明を限定するもので はないが、例えば、リボソーム、リガンドーポリリジンなどの担体を使用する方法やリン 酸カルシウム法、エレクト口ポレーシヨン法、パーティクルガン法などを使用することが できる。この場合にはプラスミド DNA、直鎖状 DNAや RNAに組み込まれた外来遺 伝子が導入される。
[0079] 本発明において T細胞に導入される外来遺伝子には特に限定はなぐ前記細胞に 導入することが望まれる任意の遺伝子を選ぶことができる。このような遺伝子としては
、例えば、タンパク質 (例えば、酵素、サイト力イン類、レセプター類等)をコードするも のの他、アンチセンス核酸や siRNA (small interfering RNA)、リボザィムをコー ドするものが使用できる。また、遺伝子導入された細胞の選択を可能にする適当なマ 一力一遺伝子を同時に導入してもよい。
[0080] 前記の外来遺伝子は、例えば、適当なプロモーターの制御下に発現されるようにべ クタ一やプラスミド等に挿入して使用することができる。また、効率のよい遺伝子の転 写を達成するために、プロモーターや転写開始部位と協同する他の調節要素、例え ば、ェンハンサー配列やターミネータ一配列がベクター内に存在していてもよい。ま た、外来遺伝子を相同組換えにより導入対象の T細胞の染色体へ挿入することを目 的として、例えば、該染色体における該遺伝子の所望の標的挿入部位の両側にある 塩基配列に各々相同性を有する塩基配列からなるフランキング配列の間に外来遺 伝子を配置させてもよい。導入される外来遺伝子は天然のものでも、または人工的に 作製されたものでもよぐあるいは起源を異にする DNA分子がライゲーシヨン等の公 知の手段によって結合されたものであってもよい。さらに、その目的に応じて天然の 配列に変異が導入された配列を有するものであってもよい。
[0081] 本発明の方法によれば、例えば、癌等の患者の治療に使用される薬剤に対する耐 性に関連する酵素をコードする遺伝子を T細胞に導入して該 T細胞に薬剤耐性を付 与することができる。そのような T細胞を用いれば、免疫療法と薬剤療法とを組み合わ せることができ、従って、より高い治療効果を得ることが可能となる。薬剤耐性遺伝子 としては、例えば、多剤而性遺伝子(multidrug resistance gene)が例示される。
[0082] 一方、前記の態様とは逆に、特定の薬剤に対する感受性を付与するような遺伝子 を T細胞に導入して、該薬剤に対する感受性を付与することもできる。かかる場合、 生体に移植した後の T細胞を当該薬剤の投与によって除去することが可能となる。薬 剤に対する感受性を付与する遺伝子としては、例えば、チミジンキナーゼ遺伝子が 例示される。
[0083] その他、導入する遺伝子としては、標的細胞の表面抗原を認識する TCRをコード する遺伝子や、標的細胞の表面抗原に対する抗体の抗原認識部位を有し、かつ TC Rの細胞内領域 (CD3等)を含むキメラレセプターをコードする遺伝子が例示される。
[0084] 本発明はまた、被験体に、有効量の前述の方法により得られる T細胞集団を投与 することを含む、疾患の治療方法又は予防方法を提供する。本明細書中において被 験体とは、特に限定はないが、好ましくは本発明の方法により製造される T細胞集団 を投与される前述に記載するような疾患の患者を示す。
[0085] また、本明細書中にぉ 、て有効量とは、前記 T細胞集団を上記被験体に投与した 場合に、該 T細胞集団を投与していない被験体と比較して、治療もしくは予防効果を 発揮する該 T細胞集団の量である。具体的な有効量としては、投与形態、投与方法 、使用目的および被験体の年齢、体重、症状等によって適宜設定され一定ではない 力 好ましくは、上記の医薬と同様にすればよい。投与方法にも限定はなぐ例えば、 上記の医薬と同様に、点滴や注射等により投与すればよい。
[0086] また、本発明は、医薬の製造のための前述の T細胞集団の使用も提供される。当 該医薬の製造方法は前述の医薬と同様に行われる。また、当該医薬の投与される疾 患についても、特に限定はないが、前述の医薬と同様である。
[0087] また、本発明は、前述の本発明の製造方法により得られる、 CD45RAを発現し、か つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発 現する T細胞集団に対して、抗原を提示しうる能力を有する細胞、抗原の提示された 細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン、ケモカインおよびサイトカイ ンを産生する能力を有する細胞力 なる群より選択される少なくとも 1つの刺激因子 により刺激を与えることにより、活性化された τ細胞集団を製造することができる。さら に本発明は、前記の製造方法で得られた τ細胞集団を提供する。このようにして得ら れる活性化された T細胞集団は、前述の製造方法により得られる T細胞集団と同様 に医薬の有効成分として使用できる。ここで刺激因子による刺激とは、刺激因子によ り前述の本発明の製造方法により得られる T細胞集団が活性化されるものであれば 特に限定はないが、例えば、本発明の製造方法により得られる τ細胞集団と刺激因 子の共存下で培養を実施することが例示される。
[0088] 本明細書において、抗原を提示しうる能力を有する細胞としては、一般に抗原提示 細胞として使用される細胞であれば特に限定はないが、例えば、榭状細胞、 γ δ Τ 細胞、単球、 Β細胞、 Τ細胞、マクロファージ、線維芽細胞、ランゲルハンス細胞、こ れらのうちの少なくとも 1種の細胞を含む細胞集団が例示され、特に好適には、榭状 細胞、 Ί δ Τ細胞、 Τ細胞、 Β細胞、単球、マクロファージ、これらのうちの少なくとも 1 種の細胞を含む細胞集団が例示される。また、当該抗原を提示しうる能力を有する 細胞の由来としては、投与される患者にとって、自己、非自己のいずれでも良いが、 自己由来のものが好適に使用される。なお、本明細書において、抗原を提示しうる能 力を有する細胞とは、抗原を提示しうる能力を有するが、抗原を提示していない細胞 を意味する。
[0089] 本明細書において、抗原の提示された細胞としては、前記抗原を提示しうる能力を 有する細胞に人為的に適当な抗原が付加された細胞、もしくは生体より採取した際 に既に抗原を提示して 、る細胞の 、ずれもを使用することができる。抗原の提示され た細胞は、後述の実施例 5— (5)に記載の方法と同様に製造し、使用することもでき る。なお、本明細書において、「抗原の提示された細胞」との文言の意味において、「 抗原を提示しうる能力を有する細胞」は包含されるものではない。
[0090] 本明細書において、抗原としては、抗原提示細胞上にペプチドが提示され、 Τ細胞 により認識され Τ細胞を効率よく活性ィ匕できるものであれば特に限定はな 、が、例え ばペプチド、糖ペプチド、腫瘍細胞抽出物、腫瘍細胞超音波処理物および腫瘍細 胞熱水処理物、ウィルス、細菌、タンパク質等が例示される。
[0091] また、ここで CD3リガンド、 CD28リガンドの具体例としては、前述された CD3リガン ドゃ CD28リガンドが例示される。なお、後述の実施例 3のように前述の本発明の製 造方法で得られる、 CD45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28 カゝらなる群より選択される少なくとも 1つを発現する T細胞集団に対して、抗 CD3抗体 および抗 CD28抗体による共刺激を与えることで、サイト力イン産生能を有する活性 ィ匕されたリンパ球集団を製造することができる。
[0092] 本明細書において、サイト力インとは、 T細胞に作用し活性ィ匕できるものであれば特 に限定はないが、例えば IL— 2、 IFN- y、 TGF— β、 IL 15、 IL— 7、 IFN— α、 IL—12、 CD40L、 IL— 27等が例示され、細胞性免疫を増強させる観点力 特に好 適には、 IL— 2、 IFN - γ、 IL 12が例示される。
[0093] 本明細書において、ケモカインとは、 T細胞に作用し遊走活性を示すものであれば 特に限定はないが、例えば RANTES、 CCL21、 MIP1 a、 MIP1 β、 CCL19、 CX CL12、 IP— 10、 MIGが例示される。
[0094] 本明細書にぉ 、て、サイト力インを産生する能力を有する細胞としては、前述のサイ トカインを産生しうる能力を有する細胞であれば特に限定はないが、例えば、細胞性 免疫を増強させるという観点からは Thl細胞が好適に使用される。
[0095] また、前述の本発明の製造方法により得られる T細胞集団は未分化で抗原刺激を 受けて!/、な 、ナイーブ T様細胞を高比率に含有することから、ここで用いられる刺激 因子としては、特に好適には抗原を提示しうる能力を有する細胞、抗原の提示された 細胞、および Zまたは抗原を使用することが好ましい。例えば後述の実施例 5— (5) 、 6—(8)、 7—(2)、 8— (1)、 14 (7)および 15— (2)に示すように、前述の本発明 の製造方法により得られる T細胞集団に対して抗原刺激を負荷することで、極めて細 胞傷害活性が高ぐ抗原認識能も高い有用な抗原特異的 CTLを誘導することができ る。また、当該培養は上記刺激因子の他、前述のフイブロネクチン、そのフラグメント またはそれらの混合物や、 T細胞の培養に使用される公知成分の存在下で培養を実 施することができる。このようにして製造された T細胞集団は、治療効果が高く極めて 有用な T細胞集団となる。
[0096] 本発明はまた、被験体に、有効量の前述の方法により得られる活性化された T細胞 集団を投与することを含む、疾患の治療方法又は予防方法を提供する。また、本発 明は、医薬の製造のための前述の活性化された T細胞集団の使用も提供される。当 該医薬の製造方法は前述の医薬と同様に行われる。また、当該医薬の投与される疾 患についても、特に限定はないが、前述の医薬と同様である。
[0097] さらに、本発明は、(a)前述の本発明の製造方法により得られる、 CD45RAを発現 し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1 つを発現する T細胞集団を有効成分として含有する製剤、及び
(b)抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 CD3リガン ド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する能力を有す る細胞からなる群より選択される少なくとも 1つの刺激因子を有効成分として含有する 製剤、を含む医薬であって、当該製剤は同時にまたは別々に投与される 2つの別々 の製剤として含有される医薬が提供される。前述するとおり、本発明の方法により得ら れる T細胞集団はナイーブ T様細胞を高比率に含むことから、当該 T細胞集団と同時 に、又は別々にこれらの刺激因子を患者に投与することで、投与される T細胞集団の 効果を最大限に発揮することができ、より高い疾患の治療効果を発現することができ る。ここで刺激因子としては、抗原刺激を与えうるもの、すなわちワクチンとして使用し うるもの、例えば、抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原 、 CD3リガンド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生す る能力を有する細胞力 なる群より選択される少なくとも一つが好ましぐ抗原を提示 しうる能力を有する細胞、抗原の提示された細胞、又は抗原が本発明により好適に 使用される。
[0098] 当該医薬中の(a)本発明の製造方法で得られる CD45RAを発現し、かつ CD62L 、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発現する T 細胞集団を有効成分として含有する製剤は、前述の当該 T細胞集団を有効成分とし て含有する医薬と同様に製造、製剤化することができる。また当該医薬中の CD45R Aを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少 なくとも 1つを発現する T細胞集団の含有量や投与量、投与形態としては、特に限定 はないが、例えば前述の本発明の製造方法で得られる T細胞集団を含有する医薬と 同様にすることができる。 [0099] また、当該医薬中の、(b)抗原を提示しうる能力を有する細胞、抗原の提示された 細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン、ケモカインおよびサイトカイ ンを産生する能力を有する細胞力 なる群より選択される少なくとも 1つの刺激因子を 有効成分として含有する製剤としては、例えば当該刺激因子を適当な担体と組み合 わせて製剤化したものを使用することができる。また、抗原を提示しうる能力を有する 細胞、抗原の提示された細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン、ケ モカインおよびサイト力インを産生する能力を有する細胞力 なる群より選択される少 なくとも 1つの刺激因子の具体例としては、例えば、前述に例示されるものを使用する ことができる。
[0100] 例えば刺激因子として抗原を提示しうる能力を有する細胞、抗原の提示された細胞
、抗原またはサイト力インを産生する能力を有する細胞を使用する場合、特に限定は ないが、適切な点滴用もしくは注射用の医薬担体と組み合わせて製剤化することが できる。また、抗原ペプチドを使用する場合、特に限定はないが、適当なアジュバント と組み合わせることができる。また、サイトカインゃケモカインを使用する場合は、公知 の方法でリボソーム中に組み込むように製剤化することもできる。また、当該刺激因子 の製剤中の含有量としては、使用される刺激因子の種類によって適宜選択でき、特 に限定はないが、例えば刺激因子として抗原を提示しうる能力を有する細胞、抗原 の提示された細胞もしくはサイト力インを産生する能力を有する細胞を使用する場合
、例えば好適には 1 X 103〜1 X 109cells/mL、より好適には 1 X 103〜1 X 108cell s/m さらに好適には 1 X 104〜1 X 107cellsZmLが例示される。また、当該刺激 因子の投与形態としては、使用される刺激因子の種類によって適宜選択でき、特に 限定はないが、例えば静脈内投与、動脈内投与、皮下投与、腹腔内投与、経口投 与等により投与される。投与量としては、患者の疾患を治療又は改善するのに有効な 量であれば特に限定はな!/、が、例えば抗原を提示する能力を有する細胞を投与す る場合は、例えば、好適には 1 X 103〜1 X 10 cells/日、より好適には 1 X 103〜1 X 1010cells/日、さらに好適には 1 X 104〜1 X 109cells/日力 また抗原ペプチド を投与する場合は、例えば、好適には 0. 001〜100mg/日、より好適には 0. 003 〜30mgZ日、特に好適には 0. 01〜: LOmgZ日が例示される。 [0101] なお、(b)の製剤の投与の好適な例としては、例えば抗原を提示しうる能力を有す る細胞と抗原を組み合わせて (b)の製剤として投与することが好ましい。例えば、榭 状細胞と抗原ペプチドを組み合わせて投与することが好ましい。この場合、抗原を提 示しうる能力を有する細胞や抗原の製剤中の含有量や投与量については前述のと おり実施することができる。
[0102] また、当該医薬における (a)の製剤と (b)の製剤の投与は、同時にまたは別々に患 者に投与されるものである力 ここで「同時に」とは時間的に同時に、別々の製剤とし て患者へ投与することや、患者への投与前に (a)の製剤と (b)の製剤を混合して投与 することを意味する。例えば、(a)の製剤および (b)の製剤を点滴剤として投与する場 合は、投与前にこれらの製剤を混合して患者に投与するような態様が本発明に包含 される。また、「別々に」とは、時間的に別々に (a)の製剤と (b)の製剤を投与すること を意味し、(a)製剤と (b)の製剤の投与間隔については、患者体内で (a)の製剤に含 まれる T細胞集団に対して、 (b)の製剤に含まれる刺激因子の刺激が加えられるもの であれば特に限定はないが、好適には、(a)の製剤を投与した後、(b)の製剤を投与 することが好ましい。また投与回数についても特に限定はなくそれぞれ 1回もしくは数 回に分けて投与することができる。
[0103] また、本発明は、(a)前述の本発明の製造方法により得られる、 CD45RAを発現し 、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つ を発現する T細胞集団を患者に投与する工程、及び (b)抗原を提示しうる能力を有 する細胞、抗原の提示された細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン 、ケモカインおよびサイト力インを産生する能力を有する細胞力 なる群より選択され る少なくとも 1つの刺激因子を患者に投与する工程、を含む疾患の治療方法も提供 する。
[0104] 当該治療方法は、前述するとおり、極めて高い治療効果を発揮することができる。こ こで刺激因子としては、抗原刺激を与えうるもの、すなわちワクチンとして使用しうるも の、例えば、抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 C D3リガンド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する會 力を有する細胞力 なる群より選択される少なくとも 1つが好ましぐ抗原を提示しうる 能力を有する細胞、抗原の提示された細胞、又は抗原が本発明により好適に使用さ れる。
[0105] 当該治療方法において、(a)本発明の方法により得られた T細胞集団を患者に投 与する工程としては、特に限定はないが、例えば前述の医薬の投与方法と同様の投 与量、投与形態を採用して実施することができる。また、(b)抗原を提示しうる能力を 有する細胞、抗原の提示された細胞、抗原、 CD3リガンド、 CD28リガンド、サイトカイ ン、ケモカインおよびサイト力インを産生する能力を有する細胞力 なる群より選択さ れる少なくとも 1つの刺激因子を患者に投与する工程についても、特に限定はないが 、例えば前述の医薬と同様の投与量、投与形態を採用して実施することができる。
[0106] また、前記 (a)の工程と (b)の工程の投与間隔については、前述の(a)の製剤と (b) の製剤を含む医薬と同様に行うことができ、すなわち患者体内で (a)の工程により投 与される T細胞集団に対して (b)の工程により投与される刺激因子の刺激が加えられ るものであれば特に限定はないが、同時に、もしくは別々に行うことができ、好適には 、(a)の投与工程の後、(b)の投与工程を行うことが好ましい。また投与回数について も特に限定はなくそれぞれ 1回もしくは数回に分けて投与することができる。
実施例
[0107] 以下、実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらの記 載に何ら限定されるものではな 、。
[0108] 実施例 1 CD45RA+CD62L+T細胞の解析
(1) PBMCの分離および保存
インフォームド 'コンセントの得られたヒト健常人ドナーより成分採血を実施後、採血 液をリン酸緩衝生理食塩水(以下、 PBSと記載)で 2倍希釈し、 Ficoll— paque (アマ シャムバイオサイエンス社製)上に重層して 600 X gで 20分間遠心した。中間層の末 梢血単核球細胞(以下、 PBMCと記載)をピペットで回収、洗浄した。採取した PBM Cは 90%FBS (Cambrex社製) ZlO%DMSO (シグマ社製)からなる保存液ある!/ヽ は 8%ヒト血清アルブミン (Baxter社製、以下、 HSAと記載)を含む CP— 1 (極東製 薬社製)と RPMI1640培地 (シグマ社製)の等量混合液カゝらなる保存液に懸濁し、液 体窒素中にて保存した。 T細胞拡大培養時にはこれら保存 PBMCを 37°C水浴中に て急速融解し、 10 /z gZmL DNase (カルビオケム社製)を含む RPMI1640培地 で洗浄後、トリパンブルー染色法にて生細胞数を算出して各実験に供した。
[0109] (2)抗ヒト CD3抗体および CH— 296フラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD3抗体および CH— 296フラグメントを 固定ィ匕した。すなわち 12穴細胞培養プレート (ベタトン'ディッキンソン社製)に抗ヒト CD3抗体(ヤンセンファーマ社製)(終濃度 5 /z gZmL)を含む PBSを 1. 9mLずつ 添加した。この時、 CH— 296添加群には CH— 296を終濃度(25 /z gZmL)となる ように添加した。
[0110] これらの培養器材を室温で 5時間インキュベート後、使用時まで 4°Cに保存した。使 用直前にはこれらの培養器材力も抗体 'CH— 296を含む PBSを吸引除去後、各ゥ エルを PBSで 2回、 RPMI1640培地で 1回洗浄し各実験に供した。
[0111] (3) T細胞集団の拡大培養
1 %HumanAB型血清(Cambrex社製)を含む AIM—V (インビトロジェン社製、以 下 1%AIM— Vと略す)に 1 X 106cellsZmLとなるように実施例 1— (1)で調製した P BMCを懸濁し細胞液を調製後、実施例 1— (2)で調製した抗ヒト CD3抗体固定ィ匕プ レート、または抗ヒト CD3抗体および CH— 296固定化プレートに 1%AIM—Vを 2m LZゥエルで添カ卩しておき、上記細胞液を lmLZゥエルずつ添カ卩した。終濃度 1000 U/mLとなるように IL - 2 (プロロイキン:カイロン社製)を添加し、これらのプレートを 5%CO中 37°Cで培養した (培養 0日目)。培養開始 4日目以降は、 1%AIM— Vを
2
用いて何も固定ィ匕を行っていない新しい 12. 5cm2細胞培養フラスコ(ベタトン'ディッ キンソン社製)に継代を行い、終濃度 500UZmLの IL— 2を添加した (培養液量 6m D oすなわち、培養開始後 4曰目に ίま 0. 05 Χ 106cells/mL、 7曰目に ίま 0. 1 X 10 6cells/mL、 10日目には 0. 15 X 106cells/mLで継代を行った。培養開始後 7、 1 0、 14日目にトリパンブルー染色法にて生細胞数を計測し、培養開始時の細胞数と 比較して拡大培養率を算出した。結果を表 1に示す。
[0112] [表 1] 表 1
拡大率 (倍率)
培養 7円目 培養 1 0□冃 培 * 1 4日冃 対照 (CII- 29 6非固定化) X 1 4 X 2 57 X 249 1
CH - 2 9 6 X 38 X 3 1 5 X 4 38 7
[0113] 表 1に示されるように、 T細胞拡大培養初期に CH— 296を固定ィ匕した培養器材を 使用した群にお!ヽては、対照群に比較してどの培養時点でも T細胞集団の拡大培養 率が高かった。
[0114] (4)各培養日時での CD45RA+CD62L+T細胞の解析
実施例 1 (3)の各培養日時で調製した細胞を PBS、 1%牛血清アルブミン (シグ マ社製、以下、 BSAと記載)を含む PBS (以下、 1%BSAZPBSと記載)で洗浄した 。細胞を 1%BSAZPBS中に懸濁し、ネガティブコントロールとして FITC標識マウス IgG 1ZRD1標識マウス IgG 1ZPC5標識マウス IgG 1 (ベックマンコールター社製) を添加した。同様に FITC標識マウス抗ヒト CD62L抗体 (シグマ社製) ZRD1標識マ ウス抗ヒト CD45RA抗体(ベックマンコールター社製)を添カ卩した。各々の抗体を添 加後、氷上で 30分インキュベートした。インキュベート後、細胞を 1%BSAZPBSで 洗浄し、再度 PBSに懸濁した。この細胞をフローサイトメトリー(Cytomics FC500: ベックマンコールター社製)に供し、 CD45RA+CD62L+T細胞の割合を算出した。 結果を表 2に示す。
[0115] [表 2] 表 2
CD 45 RA + CD 62 L + T細胞割合 (%)
培養 7日目 培養 1 0 H B 培養 14日目 対照 (CH- 296非固定化) 29. 1 3 9. 8 37. 5
C H- - 2 9 6 48. 9 7 3. 8 5 1. 3
[0116] 表 2に示されるように、 CH— 296フラグメントを固定ィ匕した培養容器を使用した群に おいては、対照群と比較して、培養中の T細胞における CD45RA+CD62L+T細胞 集団が培養 7日目、 10日目、 14日目のいずれにおいても高い結果が得られた。これ らの結果から拡大培養初期に CH - 296フラグメントを共存させることにより、 7〜 14 日間までの拡大培養で T細胞集団の CD45RA+CD62L+T細胞集団比率を高くし ながら T細胞を拡大培養できることが明らかとなった。 [0117] 実施例 2 CD45RA+CCR7+T細胞の解析
(1)T細胞集団の拡大培養
3%HumanAB型血清を含む AIM—V (以下 3%AIM—Vと略す)に 1 X 106cells ZmLとなるように実施例 1一(1)で調製した PBMCを懸濁し細胞液を調製後、実施 例 1— (2)で調製した抗ヒト CD3抗体固定ィ匕プレート、または抗ヒト CD3抗体および CH—296固定化プレートに 3%AIM—Vを 2mLZゥエルで添カ卩しておき、上記細 胞液を lmLZゥエルずつ添カ卩した。終濃度 lOOOUZmLとなるように IL— 2を添カロし 、これらのプレートを 5%CO中 37°Cで培養した (培養 0日目)。培養開始 4日目に、
2
各群とも 0. 075 X 106cells/mLとなるように l%HumanAB型血清を含む AIM— Vにより希釈し (液量 6mL)、培養液を何も固定ィ匕していない 12. 5cm2細胞培養フラ スコに移し、終濃度 500UZmLとなるように IL— 2を添カ卩した。血清濃度は、 30mL 採血より得られた PBMCを培地 10Lで培養することを想定して決定した。培養を継続 し、 7日目には各群とも 0. 25 X 106cells/mLとなるように、 0. 05%HumanAB型 血清を含む AIM— Vを用いて希釈した培養液 (液量 12. 6mL)を何も固定ィ匕してい ない新しい 25cm2細胞培養フラスコ(ベタトン'ディッキンソン社製)を立てたものに移 した。いずれも終濃度 500UZmLとなるように IL— 2を添加した。培養開始後 11日 目には、 7日目と同じ血清濃度の HumanAB型血清を含む AIM—Vを用いて 1. 04 X 106cellsZmLとなるように細胞液を希釈し (液量 12. 6mL)、何も固定ィ匕していな V、新し 、25cm2細胞培養フラスコを立てたものにそれぞれ移した。各群にぉ 、て終 濃度 500UZmLとなるように IL— 2を添加した。培養開始後 14日目にトリパンブル 一染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算 出した。結果を表 3に示す。
[0118] [表 3] 表 3
血清濃度 (%) 培養日数 拡大率 (倍率) 対照 ( C H - 2 9 6非固定化) 3→1→0 . 0 5 1 4日間 X 2 7 6
C I I - 2 9 6 3→ 1→0 . 0 5 1 4日間 X 6 8 8
[0119] 表 3に示されるように、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器 材を使用した群においては、対照群に比較して τ細胞の拡大培養率が高い。現在ま でに、 CH— 296フラグメントは T細胞拡大培養時に好適に使用されることが明らかと されている力 当該実施例において CH— 296フラグメントは 14日間 T細胞拡大培養 時にも好適に使用されることが明らかとなった。
[0120] (2)培養後の CD8+T細胞および CD8—T細胞サブセットにおける CD45RA+CCR7 +T細胞の解析
実施例 2— (1)で調製した細胞を PBS、 1%BSAZPBSで洗浄した。細胞を 1%B SAを含む PBS中に懸濁し、ネガティブコントロールとして FITC標識マウス IgGl/R D1標識マウス IgGlZPC5標識マウス IgGl +ECD標識マウス IgGl (ベックマンコ 一ルター社製)を添カ卩した。同様に、 RD1標識マウス抗ヒト CD45RA抗体 ZFITC標 識マウス抗ヒト CCR7抗体 (R&D Systems社製) ZECD標識マウス抗ヒト CD8抗 体 (ベックマンコールター社製)を添加した。各々の抗体を添加後、氷上で 30分間ィ ンキュペートした。途中、 10分毎に緩やかに攪拌を行った。インキュベート後、細胞を 1%BSAZPBSで洗浄し、再度 PBSに懸濁した。この細胞をフローサイトメトリーに 供し、 CD8の染色性により CD8+T細胞領域と CD8—T細胞領域に分類した。各々の 細胞集団について、 CD45RA+CCR7+T細胞の割合を算出した。結果を表 4およ び表 5に示す。
[0121] [表 4] 表 4
CD 8 '—Τ細胞 CD45 RA + C CR 7+T細胞 (%)
対照 (CH— 29 6非固定化) 1 1. 9
CH- 2 9 6 3 7. 4
[0122] [表 5] 表 5
CD 8— Τ細胞 (CD 4+T細胞) CD 45 RA— CCR 7 +T細胞 (%) 対照 (CH— 296非固定化) 9. 7
C H - 296 3 5. 0 表 4に示されるように、 CH— 296フラグメントを固定ィ匕した培養容器を使用した群に おいては、対照群と比較して、培養中の T細胞における CD45RA+CCR7+T細胞集 団が高い結果が得られた。この現象は CD8—T細胞、すなわちその大半力 CD4+T 細胞である細胞集団にっ ヽて解析した場合でも同様であった (表 5)。これらの結果 力も 14日間の拡大培養初期に CH— 296フラグメントを共存させることにより、 T細胞 の CD45RA+CCR7+T細胞集団比率を高めながら T細胞集団を拡大培養すること が可能であることが明ら力となった。
[0124] 実施例 3 CH— 296を用いて拡大培養した T細胞集団中の CD45RA+CCR7+T細 胞および CD45RA—CCR7—T細胞のサイト力イン産生性の解析
(1)T細胞集団の拡大培養
0. 5%HumanAB型血清および 0. 2%HSAを含む GT— T503培地(タカラバイ ォ社製、以下 0. 5%GT—T503と記載)に 0. 25 X 106cells/mLとなるように実施 例 1一(1)で調製した PBMCを懸濁し細胞液を調製後、実施例 1一(2)で調製した 抗ヒト CD3抗体固定化プレート、または抗ヒト CD3抗体および CH— 296固定化プレ ートに 0. 5%GT— T503を 0. 5mLZゥエルで添カ卩しておき、上記細胞液を lmLZ ゥエルずつ添カ卩した。終濃度 lOOOUZmLとなるように IL— 2を添カ卩し、これらのプレ ートを 5%CO中 37°Cで培養した (培養 0日目)。培養開始 4日目に、各群の培養液
2
を 0. 5%GT— T503を用いて約 8倍になるように希釈し、希釈液 6mLを何も固定ィ匕 していない 12. 5cm2細胞培養フラスコに移し、終濃度 500UZmLとなるように IL— 2を添カ卩した。培養を継続し、 7日目には各群の培養液を 0. 5%GT— T503を用い て約 4. 2倍希釈し、希釈液 12. 6mLを何も固定ィ匕していない新しい 25cm2細胞培 養フラスコを立てたものに移した。 、ずれも終濃度 500UZmLとなるように IL— 2を 添カ卩した。培養開始後 10日目には、 0. 2%HSAを含む GT— T503培地を用いて、 各群の細胞培養液を約 2倍希釈し、何も固定ィ匕して 、な 、新 、25cm2細胞培養フ ラスコを立てたものに希釈液 12. 6mLをそれぞれ移した。各群において終濃度 500 UZmLとなるように IL— 2を添加した。培養開始後 14日目にトリパンブルー染色法 にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。結 果を表 6に示す。
[0125] [表 6] 表 6
拡大率 (倍率)
対照 (C H— 2 9 6非固定化) X 1 7 2
C H - 2 9 6 X 5 8 1
[0126] 表 6に示されるように、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器 材を使用した群(以下 CH— 296群)においては、対照群に比較して T細胞集団の拡 大培養率が高力つた。
[0127] (2) CD45RA+CCR7+T細胞の解析
実施例 3—(1)で調製した細胞を実施例 1一(4)と同様の方法により各抗体で染色し 解析を行った。ただし、抗体の組み合わせは以下のとおりで行った。すなわち、 FIT C標識マウス IgG 1 /RD 1標識マウス IgG 1 ZPC 5標識マウス IgG 1および RD 1標識 マウス抗ヒト CD45RA抗体 ZFITC標識マウス抗ヒト CCR7抗体で染色を行った。こ れらをフローサイトメーターにより解析し、 CD45RA+CCR7+T細胞の割合を算出し た。結果を表 7に示す。
[0128] [表 7] 表 7
C D 4 5 R A + C C R 7 1 T細胞 (%)
対照 ( C H - 2 9 6非固定化) 2 1 . 2
C H - 2 9 6 6 3 . 7
[0129] 表 7に示されるように、 CH— 296群においては、対照群と比較して、培養中の T細 胞集団における CD45RA+CCR7+T細胞集団が高い結果が得られた。
[0130] (3)T細胞集団拡大培養後の細胞からの CD45RA+CCR7+T細胞と CD45RA—C CR7—T細胞の単離
実施例 3— (1)で調製した細胞を実施例 2— (2)と同様の方法により染色した後、 細胞を 1%BSAZPBSで洗浄し、 GT—T503培地に懸濁した。この細胞を Moflo ( Dako社製)にて CD8+T細胞の CD45RA+CCR7+T細胞と CD45RA—CCR7—T 細胞に、同様に CD8—T細胞、すなわちその大半が CD4+T細胞の CD45RA+CCR 7+T細胞と CD45RA—CCR7—T細胞にソーティングした。また同じソーティング前の 染色細胞をフローサイトメトリーに供し、 CD8の染色性により CD8+T細胞領域と CD 8_T細胞領域に分類し、各々の細胞集団について、 CD45RA+CCR7+T細胞の割 合を算出した。結果を表 8および表 9に示す。
[表 8] 表 8 C D 8 +T細胞
CD 45 R A + C C R 7十 Τ細胞 (%)
対照 (CH- 2 96非固定化) 1 5. 9
CH - 2 96 52. 6
[0132] [表 9] 表 9 CD 8 T細胞 (CD 4+T細胞)
CD 45 RA' CCR 7+T細胞 (¾;)
対照 (CH - 2 9 6非固定化) 5. 4
CII - 296 34. 0
[0133] 表 8に示されるように、 CD8「T細胞について CH— 296群においては、対照群と比 較して、培養後の Τ細胞集団における CD45RA+CCR7+T細胞集団の割合が高い 結果が得られた。この現象は CD8—T細胞、すなわちその大半力 SCD4+T細胞である 細胞集団にっ 、て解析した場合でも同様であった (表 9)。
[0134] (4)抗ヒト CD3抗体および抗ヒト CD28抗体の固定化
以下の実験で使用する培養器材に抗ヒト CD3抗体および抗ヒト CD28抗体を固定 した。すなわち 96穴細胞培養プレート (ベタトン'ディッキンソン社製)に抗ヒト CD3抗 体(2 gZmL)を含む酢酸緩衝液 (ρΗ5.3)を 80 Lずつ添カ卩し、さらに抗ヒト CD 28抗体 (Dako社製) (20 μ g/mL)を含む酢酸緩衝液を 80 μ Lずつ添カ卩した。抗ヒ ト CD3抗体は終濃度 1 μ g/mL,抗ヒト CD28抗体は終濃度 10 μ gZmLとなるよう にした。これらの培養器材を室温で 5時間インキュベート後、使用時まで 4°Cに保存し た。使用直前にこれらの器材力 抗体を含む酢酸緩衝液を吸引除去後、各ゥエルを PBSで 2回、 GT—T503培地で 1回洗浄し実験に供した。
[0135] (5)細胞の刺激
ナイーブ T細胞やセントラルメモリー T細胞は体内で抗原刺激を受けたときに、 IL— 2を多く産生することが知られている。また、エフェクターメモリー T細胞は抗原刺激を 受けたときに IFN— γや IL— 4を多く産生することが知られている。実施例 3— (3)で 得られた各細胞画分がこれらの機能を維持して 、るか確認するために、抗 CD3抗体 および抗 CD28抗体で刺激したときのサイト力イン産生能を測定した。実施例 3— (3) で得られた各細胞集団を回収後、 0.5%GT— T503に懸濁し細胞数を計測した。 実施例 3— (4)で調製した抗ヒト CD3抗体および抗ヒト CD28抗体固定ィ匕プレートに 2X105cells/0.2mLとなるように細胞を各ゥエルに添カ卩し、 5%CO中 37°Cにて
2
培養した。 24時間後培養上清を回収し、 ELISA法によるサイト力イン測定実験に供 した。
[0136] (6) ELISA法によるサイト力イン産生の測定
実施例 3—(3)で示されたように、 CH— 296群においては、対照群と比較して CD 45RA+CCR7+T細胞比率が高 V、結果が得られた。この CD45RA+CCR7+T細胞 集団がナイーブ T様細胞としての性質を維持してレ、るか確かめるために、 T細胞集団 拡大培養後に分離した CD45RA+CCR7+T細胞と CD45RA—CCR7— T細胞のサ イト力イン産生性を評価した。 IL— 2、 IFN- yの産生は、 ELISA Development Kit(R&D Systems社製)を使用し、また IL— 4の産生は READY— SET— GO! Human Interleukin—4(eBioscience社製)を使用し測定を行った。対照群お よび CH— 296群における各サイト力イン産生の結果をそれぞれ表 10および表 11に 示す。 ョ 1
[0137] [表 10] • 表 1 0
対照 (CH - 296非固定化) I L - 2 I FN— r
(pg/mL) (pg/mL)
CD 8 + CD45RA' CCR 7 + T細胞 286. 7 568. 0 30. 5
T細胞 CD45RA CCR 7 — Τ細胞 104. 9 1229. 0 430. 8
CD 8" C D 45 R Λ + C C R 7 + τ細胞 1 5 ;Ϊ 9. 4 1 07. 9 1 13. 9
T細胞 CD45RA-CC 7 Τ細胞 877. 0 1 200. 0 1004. 0
[0138] [表 11] 表 1 1
CH— 296固定化 I FN - T
(pg/mL)
C D 8 + CD45RA+ C C R 7 + T細胞 174. 4 251. 3 <0
T細胞 C D 45 R A~ C C R 7 — Ί'細胞 44. 9 ― 526. 3 58. 1
C D 8 - C D 45 R A + C C K 7 + T細胞 丄 958. 2 144. 3 20. 3
T細胞 C D 45 K A" C C R 7 Τ細胞 61 1. 0 587. 5 727. 3 [0139] 表 10、 11に示されるように、対照群および CH— 296群においても、 IL— 2の産生 が確認された。いずれの群においても CD8—T細胞が CD8+T細胞より、また CD45 RA+CCR7+T細胞が CD45RA—CCR7—T細胞より産生量が多かった。このことから 、 T細胞集団拡大培養で得られた CD45RA+CCR7+T細胞集団はナイーブ T様細 胞としての性質を持つことが示された。一方、 IFN— γおよび IL— 4については、対 照群および CH— 296群においても CD45RA—CCR7—T細胞に優位に産生され、 CD45RA—CCR7—T細胞集団がエフェクターメモリー機能を維持している集団であ ることが示唆された。
[0140] 実施例 4 CH— 296を用いて拡大培養した T細胞集団の走ィ匕性の解析
(1)抗ヒト CD3抗体および CH— 296フラグメント固定化
実施例 1— (2)と同様の方法で行った。ただし、抗ヒト CD3抗体 (終濃度 5 μ g/mL )を含む PBSは 0. 45mLずつ添カ卩した。
(2) T細胞集団の拡大培養
培養開始 4日目で、約 14倍になるように希釈し、希釈液 10mLを 25cm2細胞培養 フラスコ(コ一-ング社製)を立てたものに、培養開始 8日目では約 2倍に希釈し希釈 液 10mLを 25cm2細胞培養フラスコ(コ一-ング社製)を立てたものに、培養開始 11 日目では 0. 2%HSAを含む GT— T503培地を各フラスコに、 10mL添カ卩したこと以 外は実施例 3— (1)に準じて行った。拡大培養率の結果を表 12に示す。
[0141] [表 12] 表 1 2
拡大率 (倍率)
対照 ( C H - 2 9 6非固定化) X 4 1 4
C H - 2 9 6 X 6 4 6
[0142] 表 12に示されるように、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養 器材を使用した群(以下 CH— 296群)においては、対照群に比較して T細胞集団の 拡大培養率が高力つた。
[0143] (3) CD45RA+CCR7+T細胞の解析
実施例 4一(2)で調製した細胞を実施例 3—(2)と同様の方法で、 CD45RA+CC R7+T細胞の割合を算出した。結果を表 13に示す。
[0144] [表 13] 表 1 3
じ 13 4 5 R A + C C R 7 + T細胞 (%)
対照 ( C H - 2 9 6非固定化) 3 1 . 5
C II - 2 9 6 5 6 - 8
[0145] 表 13に示されるように、 CH— 296群においては、対照群と比較して、培養中の T 細胞集団における CD45RA+CCR7+T細胞集団が高い結果が得られた。
[0146] (4)走ィ匕性の解析
CH— 296群においては対照群と比較して CD45RA+CCR7+T細胞集団比率が 高!、結果が得られて!/、る。ナイーブ T細胞やセントラルメモリー T細胞などの CCR7 陽性細胞はケモカイン CCL21に対して反応し、走化性を示す。これは、これらの細 胞が血管からリンパ節へ移行するのに重要なイベントであり、拡大培養後に得られた 細胞が CCL21に対する走ィ匕性を有するカゝ確認した。実施例 4— (2)で得られた細胞 を遠心し上清を除去後、 5 X 106cellsZmLとなるように 0. 5%BSA含有 RPMI164 0培地(以下反応培地と表記)に懸濁した。トランスゥ ルプレー HTranswell Poly carbonate 24well 5 m pore size、コ一-ング社製)の下層に終濃度 1 gZ mL CCL21 (R&D Systems社製)を含む反応培地 600 μ Lを添カ卩し、上層に調 整した細胞懸濁液 100 Lを添加した。 37°Cで 2時間培養後の下層に移動した細胞 数および上層に残って!/、る細胞数を測定した。走ィ匕した細胞の割合は以下の式(1)
[0147] [数 1] 走化した細胞の割合 (%) = (下層に移動した細胞数 ÷ (上層に残っている細胞数 + 下層に移動した細胞数) ) X 1 0 0
[0148] により算出した。この結果を表 14に示す,
[0149] [表 14] 表 1 4
走化した細胞の割台 ( % )
対照 (C H— 2 9 6非固定化) 4 3 . 2
C H - 2 9 6 5 8 . 8
[0150] 表 14に示されるように対照群および CH— 296群の!/、ずれにお 、ても CCL21に反 応し走ィ匕性を示した細胞が確認された力 その割合は CH— 296群が高力つた。す なわち、 T細胞集団の拡大培養時に CH— 296を用いることで、リンパ節への移行能 を持つ細胞が多く得られることが明らかとなった。
[0151] 実施例 5 CH— 296を用いて拡大培養した細胞集団カゝらの抗 MART— 1 CTLの 誘導
(1)抗ヒト CD3抗体および CH— 296フラグメント固定化
実施例 4— (1)と同様の方法で行なった。
[0152] (2) T細胞集団の拡大培養
実施例 4— (2)と同様の方法で行なった。拡大培養率の結果を表 15に示す。
[0153] [表 15] 表 1 5
拡大率 (倍率)
対照 ( C H - 2 9 6非固定化) X 1 8 9
C H - 2 9 6 X 3 8 7
[0154] 表 15に示すように拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した群
(以下、 CH— 296群)においては、対照群に比較して拡大培養率が高力つた。
[0155] (3) CD45RA+CCR7+、 CD45RA+CD62L+T細胞の解析
実施例 5— (2)で調製した細胞を実施例 1— (4)と同様の方法により各抗体で染色 し解析を行った。ただし、抗体の組み合わせは以下のとおりで行った。すなわち、 FI TC標識マウス IgGlZRDl標識マウス IgGl (いずれも Dako社製)、 RD1標識マウ ス抗ヒト CD45RA抗体 ZFITC標識マウス抗ヒト CCR7抗体および RD1標識マウス 抗ヒト CD45RA抗体 ZFITC標識マウス抗ヒト CD62L抗体(これ以降、抗ヒト CD62 L抗体は eBioscience社製)により染色を行った。これらをフローサイトメーターにより 解析し、 CD45RA+CCR7+、 CD45RA+CD62L+T細胞の割合を算出した。結果 を表 16に示す。 [0156] [表 16] 表 1 6
対照 (C H— 2 9 6非固定化) C H一 2 9 6
C D 4 5 R A + C D 6 2 L + T細胞 (¾;) 6 0 . 2 7 6 . 9
C D 4 5 R A + C C R 7 + T細胞 (! ¾ ) 4 7 . 1 7 5 . 0
[0157] 表 16に示されるように、 CH— 296群においては対照群と比較して、いずれの細胞 表面マーカーにお 、ても高 、値を示した。
[0158] (4)培養細胞の保存
実施例 5— (2)で調製した培養 14日目の細胞は 90%FBSZlO%DMSOまたは 8 %HSAを含む CP— 1と RPMI1640培地の等量混合液からなる保存液に懸濁し、液 体窒素中にて保存した。 CTL誘導時にはこれら保存培養細胞を 37°C水浴中にて急 速融解し、 10 /z gZmL DNaseを含む RPMI1640培地で洗浄後、トリパンブルー 染色法にて生細胞数を算出して各実験に供した。
[0159] (5)抗腫瘍関連抗原 (MART— 1)特異的 CTLの誘導
実施例 5— (4)で調製した細胞を用い、抗腫瘍関連抗原 (Melanoma antigen r ecognized by Tcells, MART— 1)特異的 CTLの誘導を行った。抗腫瘍関連抗 原 (MART— 1)特異的 CTLの誘導はプレバンスキー M.らの方法〔Plebanski M. et al. 、 Eur. J. Immunol.、第 25卷、第 6号、第 1783〜1787頁(1995)〕を 一部改変して実施した。すなわち抗原提示細胞として実施例 1一(1)で調製した PB MCを用い、抗原ペプチドとして 40 g/mLのメラノーマ抗原 MART— 1由来ェピト ープペプチド(配列表の配列番号 22に記載のメラノーマ抗原 MART— 1由来 HLA -A2. 1結合 ¾ペプチド)および 3 μ g/mLの β マイクログロブリン(Scrips社製)を
2
含む 5%HumanAB型血清、 0. ImM NEAA mixtureゝ ImM Sodium pyru vate、 2mM L—グルタミン(全て Cambrex社製)、 100 gZmL硫酸ストレプトマイ シン(明治製菓社製)を含む RPMI1640培地(以下 5HRPMIと略す)中で、 37°Cで 2時間 5%COインキュベーター内にてインキュベートした。インキュベート終了後、 X
2
線照射(1. 42CZkg)し、 5HRPMIで 3〜4 X 106cells/mLになるように調製した。
[0160] 一方、実施例 5— (4)で調製した培養細胞を 2 X 106cellsZmLとなるように 5HRP Mlに懸濁し、 24穴細胞培養プレート(ベタトン'ディッキンソン社製)に 0. 5mLZゥェ ルずつ添加した。各ゥエルに上記方法により調製した抗原提示細胞を 0. 5mLZゥェ ルずつ添カ卩し、 IL- 7 (R&D Systems社製)および KLH (カルビオケム社製)をそ れぞれ終濃度 25ngZmL、 5 gZmLとなるように添カ卩した。プレートを 5%COイン
2 キュベータ一中で 37°Cで培養した。培養開始後 1日目に 60UZmLの IL— 2を含む 5HRPMI lmLを各ゥエルに添加した。培養開始後 4日目には培養上清を半分除去 後、 60U/mLの IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩した。また、 7日目 に上記と同様にして抗原提示細胞を調製した後、 X線照射(1. 42C/kg)し、 4 X 10 6cellsZmLになるように調製し、新しい 24穴細胞培養プレートに 0. 5mLZゥエルず つ添力!]した。
[0161] 1週間培養したレスポンダー細胞(一部の細胞は細胞傷害活性測定用にそのまま 培養継続)を 1. 8〜2. 0 X 106cellsZmLとなるように 5HRPMIに懸濁、同様のプレ ートに 0. 5mLZゥエルずつ添カ卩し、さらに終濃度 25ngZmLの IL— 7を加えて再刺 激した。培養開始 8日目に、 60U/mLの IL— 2を含む 5HRPMI lmLを各ゥエルに 添加した。培養開始 11日目には各ゥエル内の細胞を懸濁後、半量ずつ 2ゥエルに分 け、 60U/mLの IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩し、 15日目まで培 養を継続した。
[0162] (6)拡大培養率の測定
実施例 5— (5)で得られた細胞について培養開始後 7日目、 14日目にトリパンブル 一染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算 出した。結果を表 17に示す。
[0163] [表 17] 表 1 7
培養日数 対照 (C H— 2 9 6非固定化) C H— 2 9 6
7□目 X I . 5 X 1 . 9
1 4曰目 X 6 . ϋ X 8 . 4 表 17に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群に 比較して CTL集団の拡大培養率が高カゝつた。すなわち、 T細胞集団拡大培養初期 に CH— 296を固定ィ匕した培養器材を使用した培養細胞力も CTL誘導を行うことで より多くの CTL集団を得られることが明ら力となった。 [0165] (7)細胞傷害活性の測定
実施例 5— (5)で調製した誘導開始後 15日目の CTLの細胞傷害活性は、 Calcei n— AMを用いた細胞傷害活性測定法〔リヒテンフェルズ R.ら(Lichtenfels R. et al. )、J. Immunol. Methods、第 172卷、第 2号、第 227〜239頁(1994)〕に て評価した。すなわちー晚ェピトープペプチドと共培養ある ヽはェピトープペプチド 非存在下で培養した HLA— A2. 1保持細胞株 T2細胞(ATCC CRL— 1992)を 1 X 106cells/mLとなるよう 5%FBSを含む RPMI1640培地に懸濁後、終濃度 25 μ Μとなるように Calcein— AM (同仁ィ匕学研究所社製)を添加し、 37°Cで 1時間培養 した。細胞を Calcein— AMを含まない培地にて洗浄後、 Calcein標識標的細胞とし た。 Calcein標識標的細胞は 30倍量の K562細胞(ヒューマンサイエンス研究資源 バンク JCRB0019)と混合し、細胞傷害活性測定用細胞とした。なお、 K562細胞 はレスポンダー細胞中に混入する NK細胞による非特異的傷害活性を排除するため に用いた。
[0166] 実施例 5— (5)で調製した CTLをエフェクター細胞として 3 X 105〜3 X 106cells/ mLとなるように 5HRPMIで段階希釈後、 96穴細胞培養プレートの各ゥエルに 100 μ LZゥエルずつ分注しておき、これらに Calcein標識標的細胞が 1 X lC ZmLとな るように調製した細胞傷害活性測定用細胞を 100 LZゥエルずつ添加した。この際 、 Calcein標識標的細胞 (T)に対するエフェクター細胞 (E)の比を EZT比として示し 、 EZT比 30、 10、 3について測定を行った。上記細胞懸濁液の入ったプレートを 40 0 8で1分間遠心後、 5%COインキュベーター内で 37°Cで 4時間インキュベートし
2
た。その後、各ゥエル力も培養上清 100 /z Lを採取し、蛍光プレートリーダー(ベルト 一ルド社製)(励起 485nmZ測定 538または 535nm)によって培養上清中に放出さ れた Calcein量を測定した。「特異的細胞傷害活性 (%)」は以下の式(2):
[0167] [数 2] 特異的細胞傷害活性 (%) =
ί (各ゥエルの測定値一最小放出量) / (最大放出量一最小放出量) } X 1 0 0
[0168] にしたがって算出した。上式において最小放出量は細胞傷害活性測定用細胞のみ 含有するゥエルの Calcein放出量であり、 Calcein標識標的細胞からの Calcein自然 放出量を示す。また、最大放出量は細胞傷害活性測定用細胞に 0.1%界面活性剤 Triton X— 100 (ナカライテスタ社製)をカ卩えて細胞を完全破壊した際の Calcein放 出量を示して!/、る。細胞傷害活性測定の結果を表 18に示す。
[表 18]
XI 8
標的細胞 E/T 細胞傷害活性 (%)
対照 (CH - 296非固定化) CH- 296
T 2 30 <0 <0
1 0 <0 <0
3 <0 <0
T 2 +MA T- 1ぺプチド 30 6 2. 0 87 - 2
1 0 29. 1 60. 丄
3 9. 2 26. 3
[0170] 表 18に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群に 比較して CTL集団の特異的細胞傷害活性が高力つた。すなわち、 T細胞集団拡大 培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞は、特異的細胞 傷害活性がより高い CTL集団に誘導されうることが明らかとなった。
[0171] 実施例 6 CH— 296の初期刺激後ガス透過性培養バッグを用い拡大培養した細胞 集団の Allogeneic MLRおよび抗 MART— 1 CTLの誘導
(1)抗ヒト CD3抗体および CH— 296フラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD3抗体および CH— 296を固定ィ匕した 。すなわち 75cm2細胞培養フラスコ(ベタトン'ディッキンソン社製)に抗ヒト CD3抗体 (終濃度 5 g/mL)を含む PBSを 9mLずつ添カ卩した。この時、 CH— 296添加群に は CH— 296を終濃度(25 gZmL)となるように添カ卩した。
[0172] これらの培養器材を室温で 5時間インキュベート後、使用時まで 4°Cに保存した。使 用直前にはこれらの培養器材力も抗体 'CH— 296を含む PBSを吸引除去後、各フ ラスコを PBSで 2回、 RPMI培地で 1回洗浄し各実験に供した。
[0173] (2) T細胞集団の拡大培養
0.5%GT— T503に 0.5X106cells/mLとなるように実施例 1— (1)で調製した PBMCを懸濁し細胞液を調製後、実施例 6— (1)で調製した抗ヒト CD3抗体固定ィ匕 フラスコ、または抗ヒト CD3抗体および CH— 296固定化フラスコに 0. 5%GT— T50 3を 21mLZフラスコ添カ卩しておき、上記細胞液を 9mLZフラスコずつ添カ卩した。終 濃度 1000U/mLとなるように IL— 2を添カ卩し、これらのフラスコを 5%CO中 37°Cで
2 培養した (培養 0日目)。培養開始 4日目に、各群の培養液のうち 14mLおよび 0. 5 %GT-T503 186mLを何も固定化して!/ヽな!、ガス透過性培養バッグ(200cm2、 タカラバィォ社製、商品コード KB610)に移し変えた。さらに終濃度 500U/mLと なるように IL— 2を添カ卩した。培養を継続し、 8日目には各群の培養液 lOOmLを除去 、 lOOmLをバッグ中に残し、 0. 5%GT— T503を用いて 2倍希釈し、バッグ内の細 胞希釈液を 200mLとした。 、ずれも終濃度 500UZmLとなるように IL 2を添カロし た。培養開始後 11日目には、 0. 2%HSAを含む GT— T503培地を 200mL添カロし 、各群の細胞培養液を 2倍希釈した。さらに各群において終濃度 500UZmLとなる ように IL— 2を添加した。培養開始後 14日目にトリパンブルー染色法にて生細胞数 を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。この結果を表 19 に示す。
[0174] [表 19]
¾
拡大率 (倍率)
対照 ( C H 2 9 6非固定化) X 2 2 5
C H - 2 9 6 X 3 3 3
[0175] 表 19に示されるように、ガス透過性培養バッグを用いた培養に際しても、 T細胞集 団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した群 (以下、 CH— 29 6群)においては、対照群に比較して T細胞集団の拡大培養率が高力つた。
[0176] (3)ガス透過性培養バッグで培養した T細胞集団における CD45RA+CCR7+、 CD 45RA+CD62L+、 CD45RA+CD27+、 CD45RA+CD28+、 CD27+CD28+、 C D45RA+CCR7+CD62L+T細胞の解析
実施例 6— (2)で調製した細胞を実施例 1— (4)と同様の方法により各抗体で染色 し解析を行った。ただし、抗体の組み合わせは以下のとおりで行った。すなわち、 FI TC標識マウス IgG 1ZRD 1標識マウス IgG 1 ZPC5標識マウス IgG 1、 RDl標識マウ ス抗ヒト CD45RA抗体 ZFITC標識マウス抗ヒト CCR7抗体、 RD1標識マウス抗ヒト CD45RA抗体 ZPC5標識マウス抗ヒト CD62L抗体(ベックマンコールター社製)、 R D1標識マウス抗ヒト CD45RA抗体 ZFITC標識マウス抗ヒト CD28抗体(eBioscien ce社製)、 RD1標識マウス抗ヒト CD45RA抗体 ZPC5標識マウス抗ヒト CD27抗体( ベックマンコールター社製)および RD1標識マウス抗ヒト CD45RA抗体 ZFITC標識 マウス抗ヒト CCR7抗体 ZPC5標識マウス抗ヒト CD62L抗体により染色を行った。こ れらをフローサイトメーターにより解析し、 CD45RA+CCR7+、 CD45RA+CD62L+ 、 CD45RA+CD27+、 CD45RA+CD28+、 CD27+CD28+、 CD45RA+CCR7+ CD62L+T細胞の割合を算出した。結果を表 20に示す。
[0177] [表 20] 表 20
対照 CH- 2 9 6 (CH - 296非固定化)
CD 45 RA+CC R 7 +T細胞 24. 4 % 49. 0 %
CD45 RA ' CD 62 L+T細胞 40. 2 % 6 0 - 2 %
CD45 RA + CD 28 +T細胞 36. 9 % 6 3. 0 %
CD 45 RA + CD 2 7 +T細胞 46. 3 % 6 3. 丄 %
CD 28 + CD 2 7 +T細胞 58. 9 % 7 2. 1 %
CD 45 RA+CCR 7 CD 62 L+T細胞 2 3. 0 % 47. 3 %
[0178] 表 20に示されるように、 CH— 296群においては対照群と比較して、いずれの細胞 表面マーカーにおいても高い値を示した。 CD27や CD28はナイーブ T細胞などの 未分ィ匕細胞において発現率が高いことが知られており、これらのマーカーで解析して も、培養初期に CH— 296を作用させることで培養中の T細胞集団におけるナイーブ T様細胞集団比率を高くすることが明らかとなった。
[0179] (4) Allogeneic MLR
実施例 6— (2)で調製した細胞を用い、 Allogeneic MLRを行った。すなわち実 施例 1— (1)と同様の方法で調製した Allogeneic donor (非自己ドナー:実施例 6 - (2)で使用したドナーとは異なるドナー)由来の PBMCを X線照射 (0.88C/kg) し、 5HRPMIで 2 X106cells/mLになるように調製した(Stimulator cell)。一方 、実施例 6— (2)で調製した培養細胞を 2X 106cells/mLとなるように 5HRPMIに 懸濁した(Responder cell)。 24穴細胞培養プレートに調製した Stimulator cell および Responder cellを各 0.5mLZゥエルずつ添カ卩した。各ゥエルに終濃度 500 UZmLとなるように IL— 2を添カ卩後、プレートを 5%COインキュベータ一中で 37°C
2
で培養した。培養開始後 3日目に lOOOUZmLの IL— 2を含む 5HRPMI lmLを各 ゥエルに添加した。培養開始後 5日目には培養上清を半分除去後、 lOOOUZmLの IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩した。 7日目には各ゥエル内の細胞を 懸濁後、半量ずつ 2ゥエルに分け、 lOOOU/mLの IL— 2を含む 5HRPMI lmLを 各ゥエルに添加し、 10日目まで培養を継続した。
[0180] (5)拡大培養率の測定
実施例 6— (4)で得られた細胞について培養開始後 7日目、 10日目にトリパンブル 一染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算 出した。結果を表 21に示す。
[0181] [表 21] 教 2 1
培養日数 S t i m u 1 a t o r R e s p o n d e r c e l l
c e l l d o n o r 対照 (C H ― 2 9 6非固定化) C I I - 2 9 6
7曰目 A X 1 . 7 x 2 . 7
B X 1 . 6 X 2 . 7
1 0曰 B A X 1 . 8 X 3 . 0
B X 2 . 1 x 2 . 7
[0182] 表 21に示されるように、 CH— 296群を用いて Allogeneic MLRを行った場合に は、対照群に比較して反応後の拡大培養率が高かった。すなわち、 T細胞集団拡大 培養初期に CH - 296を固定ィ匕した培養器材を使用した培養細胞を用いて Allogen eic MLRを行うと、より多くのァロ抗原認識細胞が増殖することが明ら力となった。
[0183] (6)細胞傷害活性の測定
実施例 6—(4)で調製した誘導開始後 10日目の細胞の細胞傷害活性は、実施例 5 - (7)と同様の方法で行った。ただし、この際の標的細胞として Phytohemagglutin in (以下 PHAと略す)で 10日間幼若化 (ブラスト)させた自己 PBMCまたは非自己 P BMCを力ルセイン標識標的細胞とした。細胞傷害活性測定時には 30倍量の K562 細胞と力ルセイン標識標的細胞を混合した。細胞傷害活性測定の結果を表 22に示 す。
[0184] [表 22] 表 22
S t i mu l a t o r 標的細胞 ト: ZT 細胞傷害活性 (%)' c e l l d o n o r 対照 CH— 296
(CH- 296非固定化)
A 非自 ciPHA 30
ブラス卜細胞 10
3
■——■■ B P H A 30
ブラスト細胞 10
3
B ― " ΐ ΞΡ HA 30
Figure imgf000050_0001
[0185] 表 22に示されるように、 CH— 296群から Allogeneic MLRを行った場合には、対 照群に比較して反応後のァロ抗原特異的細胞傷害活性が高力つた。すなわち、 T細 胞集団拡大培養初期に CH— 296を固定ィ匕した培養 < V V器材を使用した培養細胞にお いては、 Allogeneic MLRによりァロ抗原特異的細胞傷害活性がより強い細胞集 団を得られることが明らかとなった。
[0186] (7)培養細胞の保存
実施例 6— (2)で調製した培養 14日目の細胞は実施例 5— (4)と同様の方法で凍
<<< 結保存,融解し、各実験に供した。
[0187] (8)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 1— (1)および 6— (7)で調製した細胞を用い、実施例 5— (5)と同様の方法 で抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導を行 ヽ、 13日間培養継続した 。ただし、以下の点について変更を行った。実施例 6— (7)で調製した培養細胞を 1 X 106cells/mLとなるように 5HRPMIに懸濁した点、培養開始 2日目に 60UZmL の IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩した点、培養開始 6日目にレスポン ダー細胞を 0.3〜1.3X106cellsZmLとなるように、抗原提示細胞を 1.6X106ce UsZmLとなるように 5HRPMIに懸濁した点および、培養開始 7日目に、 60UZmL の IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩し、培養開始日 10日目には各ゥェ ル内の細胞を懸濁後、半量ずつ 2ゥエルに分け、 60UZmLの IL 2を含む 5HRP MI lmLを各ゥエルに添カ卩した点。 [0188] (9)細胞傷害活性の測定
実施例 6— (8)で調製した誘導開始後 13日目の CTLの細胞傷害活性の測定は、
EZT比 90を新たに設定したこと以外は、実施例 5— (7)と同様の方法で行った。細 胞傷害活性測定の結果を表 23に示す。
[0189] [表 23] 表 2 3
標的細胞 E / T 細胞傷害活性 ( % )
P B M C 対照 C H - 2 9 6
( C H— 2 9 6非固定化)
T 2 9 0 3 0 . 9 6 N . T . N . T
8 0 9 . 1 3 2 3 . 0 4 1 5 . 7 8
1 0 2 . 4 2 9 . 6 3 1 0 . 5 6
3 1 . 9 4 3 . 0 6 3 . 6 2
T 2 + 9 0 5 9 . 4 9 N . T . N . T
M A R T - 1 3 0 4 1 . 3 7 2 5 . 4 6 8 7 . 5 3 ぺプチド 1 0 2 5 . 2 9 8 . 8 5 7 7 . 2 1
3 7 . 7 B 1 1 . 2 6 5 6 . 1 8
N . T . :試験せず
[0190] 表 23に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群お よび PBMC群と比較して CTL集団の特異的細胞傷害活性が高力つた。すなわち、 T 細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞は 、特異的細胞傷害活性がより高い CTL集団に誘導されうることが明らかとなった。
[0191] 実施例 7 拡大培養細胞由来 CD45RA+CCR7+CD8+T細胞および CD45RA—C CR7—CD8+T細胞からの抗 MART— 1CTL誘導
(D CD45RA+CCR7+CD8+T細胞および CD45RA—CCR7—CD8+T細胞の単 離
実施例 1— (1)および実施例 6— (7)で調製した細胞を実施例 2— (2)と同様の方 法により染色後、 1%BSAZPBSで細胞を洗浄し、 IMDM培地 (インビトロジヱン社 製)に懸濁した。この細胞を高速セルソーター Mofloに供し、 CD45RA+CCR7+C D8+画分および CD45RA—CCR7—CD8+画分をそれぞれ単離し、純度 92〜99% の画分を得た。
[0192] (2)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 7— (1)で調製した細胞を用い、実施例 6— (8)と同様の方法で抗腫瘍関連 抗原 (MART— 1)特異的 CTLの誘導を行い、 13日間培養継続した。ただし、以下 の点にっ ヽて変更を行った。培養開始時に培養開始細胞および抗原提示細胞を 0. 25mLずつ 48穴培養プレート(ベタトン'ディッキンソン社製)に添加した点、培養開 始後 2日目に 60U/mLの IL— 2を含む 5HRPMI 0. 5mLを各ゥエルに添カロ、培養 開始後 4日目には培養上清を半分除去後、 60UZmLの IL— 2を含む 5HRPMI 0 . 5mLを各ゥエルに添カ卩した点。
[0193] (3)拡大培養率の測定
実施例 7— (2)で得られた細胞について培養開始後 13曰目にトリパンブルー染色 法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。 結果を表 24に示す。
[0194] [表 24] 表 2 4
培養開始細胞 拡大培 *率
対照 C H - 2 9 6
( C H - 2 9 6非固定化)
C D 4 5 R A + C C R 7 + C D 8 + T細胞 X I . 2 X 7 . 8
C D 4 5 R A " C C R 7 - C D 8 + T細胞 X 0 . 8 X 1 . 9
[0195] 表 24に示されるように、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養 器材を使用した培養細胞(以下 CH— 296群)から単離した CD45RA+CCR7+CD 8+T細胞を用いて誘導した CTL集団においては、対照群に比較して CTL集団の拡 大培養率が高力つた。すなわち、 T細胞集団拡大培養初期に CH— 296を固定ィ匕し た培養器材を使用した培養細胞に高比率に含まれる CD45RA+CCR7+T細胞から CTL誘導を行うことでより多くの CTL集団を得られることが明らカゝとなった。
[0196] (4)細胞傷害活性の測定
実施例 7— (2)で調製した誘導開始後 13日目の CTLの細胞傷害活性は、実施例 5- (7)と同様の方法で行った。細胞傷害活性測定の結果を表 25に示す。
[0197] [表 25] 培養開始細胞 標的細胞 ΕΤΤ ― 細胞傷害活性
Figure imgf000053_0001
[0198] 表 25に示されるように、 CH— 296群から単離した CD45RA+CCR7+CD8+T細 胞を用いて誘導した CTL集団においては、対照群および PBMC群と比較して CTL 集団の特異的細胞傷害活性が高力つた。さらには、 CD45RA— CCR7— CD8+T細 胞を用いて誘導した CTL集団と比較しても、特異的細胞傷害活性が高力 た。すな わち、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養 細胞に高率に含まれる CD45RA+CCR7+T細胞は、特異的細胞傷害活性がより高 い CTL集団に誘導されうることが明ら力となった。
[0199] 実施例 8 CTLの抗原認識能測定
(1)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 1— (1)および 6— (7)で調製した細胞を用い、実施例 6— (8)と同様の方法 で抗腫瘍関連抗原 (MART— 1)特異的 CTLの誘導を行 Vヽ、 14日間培養継続した
[0200] (2)抗原認識能の測定
実施例 8— (1)で調製した誘導開始後 14日目の CTLの抗原認識能は、 Valmori Dらの方法!; Valmori D. et al. , J. Immunol.、第 160巻、第 1750〜: 1758頁 (1998)〕を一部改変して実施した。すなわち T2細胞を 1 X 106cellsZmLとなるよう 5%FBSを含む RPMI1640培地に懸濁後、終濃度 25 Mとなるように Calcein— A Mを添加し、 37°Cで 1時間培養した。インキュベート後の細胞を Calcein— AMを含 まない培地にて洗浄後、 2 X 105cells/mLに調製した。 Calcein標識標的細胞を 9 6穴細胞培養プレートの各ゥエルに 50 LZゥエルずつ分注した。これら細胞の入つ たゥエルに 0〜20 IX Mの抗原ペプチド (メラノーマ抗原 MART— 1由来ェピトープぺ プチド)を含む 5HRPMIを 50 /z LZゥエルずつ添加した。上記プレートを 5%COィ
2 ンキュベータ一内で 37°Cで 1時間インキュベートした。インキュベート後の各ゥエルに 30倍量の K562細胞を含む細胞懸濁液(6 X 106cellsZmLに調整)を 50 μ L/ゥェ ルずつ添カ卩した。
[0201] 実施例 8—(1)で調製した CTLをエフェクター細胞として 6 X 106cells/mLとなる ように 5HRPMIで調整後、プレートの各ゥエルに 50 /x LZゥエルずつ添加した。上記 細胞懸濁液の入ったプレートを 400 X gで 1分間遠心後、 5%COインキュベーター
2
内で 37°Cで 4時間インキュベートした。その後、各ゥエルから培養上清 100 ^u Lを採 取し、蛍光プレートリーダー(485nmZ535nm)によって培養上清中に放出された C alcein量を測定した。「特異的細胞傷害活性 (%)」は先述の式 (2)にしたがって算出 した。抗原認識能測定の結果を表 26に示す。抗原認識能は標的細胞に付加したぺ プチド濃度が 10 ;ζ Mの時の細胞傷害活性を 100とした場合の、各付加ペプチド濃 度における細胞傷害活性の相対値として表記した。
[0202] [表 26] 表 2 6
標的細胞に付加した —付加べプチド 1—0;/ Μの時の細胞傷害活性に対する相対値 ぺプ 'チド終濃度 P B M C 対照 C H ― 2 9 6
( P. M) ( C H一 2 9 6非固定化)
1 0 . 0 1 0 0 1 0 0 1 0 0
1 . 0 1 2 4 . 3 6 7 4 . 3 9 9 1 . 4 4
0 . 1 7 2 . 5 4 6 7 . 5 9 8 7 . 0 2
0 . 0 1 7 2 . 7 7 5 7 . 3 4 7 8 . 8 8
0 . 0 0 1 2 9 . 6 3 3 6 . 8 3 7 4 . 3
0 . 0 0 0 1 1 8 . 3 9 9 . 8 4 1 . 7 2
0 1 6 . 4 5 . 6 9 5 • 1 6
[0203] 表 26に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群お よび PBMC群と比較してより低濃度の抗原ペプチドを付加された標的細胞までも殺 傷しており、 CTL集団の特異的抗原認識能力が高カゝつた。すなわち、 T細胞集団拡 大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞は、より特異的 抗原認識能力が高い CTL集団に誘導されうることが明らかとなった。 [0204] 実施例 9 CH— 296を用いた T細胞集団拡大培養の細胞集団の生存性試験 (1)Τ細胞集団の拡大培養
抗ヒト CD3抗体および CH— 296フラグメントの固定ィ匕に酢酸緩衝液 (ρΗ5. 3)を 用いたこと、培養開始 4日目で約 14倍になるように希釈し、希釈液 6. 3mlを 25cm2 培養フラスコを立てたものに、培養開始 8日目では約 2倍になるように希釈し、希釈液 6. 3mlを 25cm2培養フラスコを立てたものに移したこと以外は、実施例 3— (1)に準 じて行った。結果を表 27に示す。
[0205] [表 27] 表 2 7
拡大率 (倍率)
対照 ( C H - 2 9 6非固定化) X 2 7 7
C H - 2 9 6 X 3 4 4
[0206] 表 27に示されるように、 T細胞集団拡大培養初期に CH— 296フラグメントを固定 化した培養器材を固定ィ匕した群 (以下、 CH— 296群)は、対照群と比較して高い拡 大培養率が得られた。
[0207] (2) CD45RA+CCR7+T細胞、 CD45RA+CD62L+T細胞の解析
実施例 9— (1)で調製した細胞を実施例 1— (4)と同様の方法により各抗体で染色 し解析を行った。ただし、抗体の組み合わせは以下のとおりで行った。すなわち、 FI TC標識マウス IgG 1 ZRD 1標識マウス IgG 1 ZPC5標識マウス IgG 1および FITC標 識マウス抗ヒト CCR7抗体 ZRD1標識マウス抗ヒト CD45RA抗体 ZPC5標識マウス 抗ヒト CD62L抗体により染色を行った。これらをフローサイトメーターにより解析し、 C D45RA+CCR7+、 CD45RA+CD62L+T細胞の割合を算出した。結果を表 28、表 29に示す。
[0208] [表 28]
¾ 2 8
C D 4 5 R A十 C C R 7 T細胞 (%)
対照 ( C H - 2 9 6非固定化) 2 7 . 2
C I- 1 — 2 9 6 6 0 . 5
[0209] [表 29] 表 2 9
CD45 RA + CD 62 L + T細胞 (%) 対照 (CH— 2 9 6非固定化) 7 1. 3
CH - 29 6 84. 0
[0210] 表 28、表 29の結果より、 CH— 296群においては、対照群と比較して、 CD45RA CCR7+T細胞集団、 CD45RA+CD62L+T細胞集団が高い結果が得られた。
[0211] (3) (1)の細胞の Feeder細胞を用いた培養
実施例 9一(1)で得られた拡大培養後の細胞を 5HRPMIを用いて 2X 106cellsZ mLとなるように調製し、 24穴細胞培養プレートに 0.5mLZゥエルずつ添カ卩した。ま た、実施例 1— (1)で調製した自己 PBMCを 5HRPMIに懸濁した後 X線照射 (0.9 OCZkg)し、再度 5HRPMIを用いて 2X 106cellsZmLに調製した(Feeder細胞と する)。この Feeder細胞を上述の 24穴細胞培養プレートに 0.5mLZゥエルずつ添 加し、 5%COインキュベーター内で 37°Cで 7日間培養を行った。この間、 IL— 2など
2
のサイト力インは一切添加せず培養した。
[0212] (4)AnnexinV+7AAD+細胞の解析
実施例 9一(3)で得られた細胞を回収し、アポトーシスを起こした細胞を測定するた めに、 AnnexinV/7AADキット(ベックマンコールター社製)のプロトコルに従って 染色した。この細胞をフローサイトメトリーに供し、各々の細胞集団について、 Annex inV+7AAD+細胞すなわちアポトーシスを起こした細胞の割合を算出した。結果を 表 30に示す。
[0213] [表 30] 表 30
An n e X i nV+7 AAD+細胞 (%〕
対照 (CH— 29 6非固定化) 57. 6
CH- 2 96 44. 9 表 30の結果より、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を 固定ィ匕した群においては、対照群と比較して、 AnnexinV+7AAD+細胞集団が低く 、アポトーシス細胞の割合が低いことが示された。つまり、 T細胞集団の拡大培養に C H— 296フラグメントを用いることにより、例えば、 IL— 2が少ない環境下でも生存性 が高い細胞を優位に増殖できることが明らかとなった。
[0215] 実施例 10 マウス同系腫瘍モデルを用いた移入 T細胞の効果の検討
CH— 296を用いて拡大培養した T細胞の腫瘍に対する効果を確認するために、 マウス同系腫瘍モデルを用いて試験を行った。
[0216] (1)マウス CH— 296の調製
配列表の配列番号 23で示すマウス CH— 296は、ヒト CH— 296の配列を元にマウ スフイブロネクチンフラグメントより設計し、常法に従 、プラスミドを構築して該プラスミ ドを用いて遺伝子工学的に取得した。すなわち、該プラスミドを保有する大腸菌 HB1 01を培養、発現誘導した。その後、菌体を破砕し粗タンパク質を調製後、陽イオン交 換カラム、陰イオン交換カラム、ゲルろ過カラムにより目的のタンパク質を精製し無菌 ろ過後、 80°Cで使用するまで保存した。
[0217] (2)担がんマウス力 の脾臓リンパ球の調製
雌の CDFマウス(日本エスエルシー社製)の腹腔に IMC carcinoma (以下 IMC と記載)を移植し、腹水を作り、 7日ごとに別のマウスに移植して継代した。継代して 7 日目の腹水を採取し、 PBSで洗浄後 5 X 107cells/mLとなるように PBSに懸濁した 。この細胞懸濁液 0. lmLを CDFマウスの右側腹部皮下に移植し、固形腫瘍を形 成させた。 21日後、脾臓を摘出し RPMI1640培地中でスライドガラスを用いてすり つぶした。 RPMI1640培地を用いて 7匹分まとめてチューブに回収し 45mLとして氷 上に 5分間静置後、新しいチューブに 40 mセルストレーナ一(ベタトン'ディツキンソ ン社製)を通して移した。遠心後上清を除去し溶血操作として ACKバッファー (0. 15 M NH Cl、 0. 01M KHCO、 0. OlmM Na EDTA、 pH7. 4) 2mLに懸濁し、
4 3 2
さらに ACKバッファー 2mLを添カ卩し懸濁後 RPMI 1640培地を細胞懸濁液が 50mL になるように添カ卩した。遠心後上清を除去し RPMI1640培地 10mLに懸濁し新しい チューブにセルストレーナ一を通して移した。 RPMI1640培地を細胞懸濁液力 Om Lとなるように添加後、遠心し上清を除去した後、 RPMI1640培地と 8%HSAを含む CP— 1とを等量混合したものに懸濁し、使用するまで液体窒素中で保存した。
[0218] (3)抗マウス CD3抗体およびマウス CH— 296フラグメントの固定化
以下の実験で使用する培養器材に抗マウス CD3抗体およびマウス CH— 296フラ グメントを固定ィ匕した。すなわち、 24穴細胞培養プレートに抗マウス CD3抗体 (R& D Systems社製)(終濃度 14 μ g/mL)を含む酢酸緩衝液 (pH5. 3)を 400 μ Lず つ添加し、 4°Cで終夜インキュベートした。その後、実施例 10— (1)で調製したマウス CH— 296を終濃度 25 μ gZmLとなるように添カ卩し、さらに 5時間室温でインキュべ ートした。使用直前には培養器材から抗体 ·マウス CH— 296を含む酢酸バッファー を吸引除去後、各ゥエルを PBSで 2回、 RPMI 1640培地で 1回洗浄し実験に供した
[0219] (4)脾臓リンパ球のナイロンファイバーによる精製
実施例 10— (2)で調製した脾臓リンパ球をリンパ球の純度を上げるためにナイロン ファイバーを用いて精製を行った。 10mLのシリンジ (テルモ社製)に 0. 6gのナイロン ファイバー (和光純薬社製)を充填し、 PBSで平衡ィ匕した後、 121°Cで 20分滅菌した 。このカラムを 10%FBS (大日本製薬社製)含有 RPMI1640培地で平衡ィ匕させ、 5 %COインキュベーターで 37°Cで 1時間インキュベートした。実施例 10— (2)で調製
2
した脾臓リンパ球を 2 X 108cellsを超えないように 10%FBS含有 RPMI1640培地 2 〜3mLに懸濁し、カラムにアプライ後、 5%COインキュベーターで 37°Cで 1時間ィ
2
ンキュペートした。予め 37°Cに保温してぉ 、た 10%FBS含有 RPMI 1640培地 15m Lをカラムに添加し溶出された細胞を回収した。
[0220] (5)マウス T細胞集団の拡大培養
10%FBS、 0. ImM NEAA mixture, ImM Sodium pyruvate, 50 ^ M 2— mercaptoethanol (ナカライテスタ社製)含有 RPMI1640培地(以下、 mRPMI 培地と記載)に 1. 5 X 106cellsZmLとなるように実施例 10— (4)で調製したリンパ 球を懸濁後、実施例 10—(3)で調製した抗マウス CD3抗体およびマウス CH— 296 固定化プレートに mRPMI培地を 0. 7mLZゥエルで添加しておき、上記細胞液を 0 . 5mLZゥエルずつ添カ卩し、 5%COインキュベータ一中で 37°Cで培養した (培養 0
2
日目)。培養 2日目に細胞を 1 X 105cells/mLとなるように mRPMI培地を用いて希 釈し、何も固定ィ匕していない新しい 75cm2細胞培養フラスコに全量を移した。この際 、終濃度 lOOUZmLとなるようにマウス IL— 2 (R&D Systems社製)を、また終濃 度 10ng/mLとなるようにマウス IL— 7 (R&D Systems社製)を添カ卩した。培養 5 日目には細胞を 1. 5 X 106cellsZmLとなるようにしたほかは培養 2日目と同様に継 代を行った。培養 7日目に細胞を回収し以下の同系腫瘍モデルでの試験に供与した
[0221] (6) CDF—IMCの同系腫瘍モデルにおける移入 T細胞集団の腫瘍拒絶作用の評 価
6週齢の雌の CDFマウスに麻酔下で IMCを実施例 10— (2)と同様に右側腹部皮 下に移植した。実施例 10— (5)で調製した細胞は 3 X 108cellsZmLとなるように PB Sに懸濁し、尾静脈より 0. ImL投与した (投与 0日目)。投与 0日目力ら 4日間連続で 腹腔にマウス IL— 2 (3 X 104UZ0. 2mL)を投与した。対照として拡大培養した細胞 を投与しない群を設定した。腫瘍の大きさは IMC移植後 21日まで、定期的に長径と 短径を測定し腫瘍面積 (cm2)として表した。結果を図 2に示す。図 2は IMCを移植し て力もの日数と腫瘍の大きさを示したものであり、黒三角は対照群を、黒丸は T細胞 投与群を示す。図 2に示すように CH— 296存在下培養した細胞を投与した群 (T細 胞投与群)で有意に腫瘍の形成が抑制されることが認められた。
[0222] 実施例 11 CH— 296を用いて拡大培養したヒト T細胞集団の NODZscidマウスに おける GVHD誘導による評価
(1)T細胞集団の拡大培養
大量に細胞を調製するために、培養器材を変更した。すなわち、 175cm2培養フラ スコ(ベタトン'ディキンソン社製)に抗ヒト CD3抗体 (終濃度 5 μ g/mL)を含む PBS を 21mL添カロした。この時、 CH— 296添カロ群には CH— 296を終濃度 25 gZmL となるように添加し、室温で 5時間インキュベートした。使用直前にこれらの培養器材 力も抗体 'CH— 296を含む PBSを吸引除去後、各フラスコを PBSで 2回、 RPMI培 地で 1回洗浄した。新鮮 PBMCは、ヒト健常人ドナーより 54mL採血力も調製した。 0 . 5%自己血漿および 0. 2%HSAを含む GT— T503培地(以下、 0. 5%自己血漿 GT— T503と記載)に 0. 5 X 106cells/mLとなるように PBMCを懸濁し、調製した 抗 CD3抗体固定化フラスコ、または抗 CD3抗体および CH— 296固定化フラスコに 21mLずつ添カ卩し、 IL— 2を終濃度 1000U/mLとなるように添カ卩した。これらのフラ スコを 5%CO中 37°Cで培養を開始した (培養 0日目)。翌日、 0. 5%自己血漿 GT T503を 49mLずつフラスコにカロえ、加えた培地量に対して終濃度 lOOOUZmL となるように IL— 2を添カ卩した。培養開始 4日目に、各群の培養液のうち 42mLと 0. 5 %自己血漿 GT—T503 158mLを何も固定化されていないガス透過性培養バッグ (600cm2,タカラバィォ社製、商品コード KB610)に移し変えた。さらに終濃度 50 OU/mLとなるように IL— 2を添カ卩し培養を続けた。培養開始 6日目には、 0. 5%自 己血漿 GT—T503を 400mLと IL— 2を終濃度 500UZmLとなるように添カ卩した(6 OOmL培養)。 2日後、 600mL培養のうち半量の培養液を抜き取り、同じ量の 0. 5% 自己血漿 GT— T503と IL— 2 (終濃度 500UZmL)を添加した (培養 8日目)。培養 開始 11日目には、 0. 2%HSAを含む GT— T503培地を 600mL、および IL— 2を 終濃度 500UZmLとなるように添加し 14日目まで培養を継続した。培養後の細胞は 8%HSAを含む CP— 1と RPMI1640培地の等量混合液からなる保存液に懸濁して 、使用時まで液体窒素中に保存した。
[0223] (2)群分け
細胞投与の前日に、 NODZscidマウス(日本クレア社製) 8週齢、雌 10匹の体重を 測定し 4群に群分けを行った。本実施例における群構成は以下のとおりにした。 A群:溶媒 +フィーダ一 +ヒト IL 2 +抗ァシァロ GM 1抗体
B群: PBL +フィーダ一" hヒト IL 2 +抗ァシァロ GM 1抗体
C群:拡大培養後の細胞 (CH - 296非固定化) +フィーダ一 +ヒ HL— 2 +抗ァシァ 口 GM1
D群:拡大培養後の細胞 (CH - 296固定化) +フィーダ一 +ヒト IL— 2 +抗ァシァロ GM1
A群および B群は n= 2、 C群および D群は n= 3とした。
[0224] (3)抗ァシァロ GM1抗体の投与
抗ァシァロ GM1抗体処理は NODZscidマウスにおいて NK細胞を除去しヒト細胞 の生着を高めることが知られている。拡大培養した細胞の投与前日に、抗ァシァロ G
Ml抗体 (和光純薬社製)20 Lを 0. 4%HSAを含む生理食塩水(以下、 0. 4%H
SA加生食水と略す)に希釈し、 0. 4mL腹腔内に投与した。
[0225] (4)投与細胞の調製と投与 実施例 11— (1)で凍結保存した拡大培養細胞および実施例 1— (1)と同様の方法 で調製した同じドナーの凍結保存 PBMCを 37°C水浴中にて急速融解した。末梢血 リンパ球 (以下、 PBLと記載)濃度は、 PBMC中の CD3陽性細胞率を 70%として算 出した。溶媒は 4%HS A加生食水を使用し、 PBLの一部をフィーダ一として 0. 5 X 1 07cells/マウスを、また PBLおよび拡大培養後の細胞は 1. 0 X 108cells/マウスを それぞれ必要細胞数になるよう溶媒に懸濁し投与用の細胞とした。細胞投与前にす ベてのマウスを X線照射(0. 090CZkg)し、準備した細胞を A群力も順番に 0. 3mL 腹腔内に投与した。
[0226] (5)ヒト IL 2の投与
T細胞拡大培養時に使用したヒ HL— 2を、 2 X 104UZマウスになるように 0. 4%H SA加生食水で調製し、実施例 11— (4)で細胞の投与が終わったマウス力 腹腔内 に 0. 2mL投与した。ヒト IL— 2は、細胞投与日から 1日 1回で連続 4回投与した。
[0227] (6)細胞投与後のマウス体重の推移
体重の測定は投与日から 21日目まで適当な間隔で行った。その結果、 PBLを投 与した B群では、 8日目力 体重減少が見られ、 13日目に 1匹死亡した。その他の群 では 21日目まで死亡せず全例生存した。体重減少率を見ると、 A群および C群では 途中変動したものの 21日目では始めの体重を維持、 D群でやや減少傾向が見られ た。体重減少を指標とする Xeno— GVHD反応において、 PBLで優位に反応が認め られ、 CH— 296固定ィ匕条件での拡大培養細胞が非固定ィ匕条件のそれより有効であ ると示された。
[0228] (7)脾臓中ヒト T細胞の生着
B群以外の群は細胞投与開始 21日目の剖検時に脾臓を摘出し、脾臓中ヒト CD3 陽性細胞の割合をフローサイトメトリーにて解析した。 B群は 13日目に 1匹が死亡した ので、このマウスは死亡直後の脾臓を摘出し、残り 1匹も 13日目に剖検し脾臓を摘出 した。摘出した脾臓は、スライドグラスですりつぶした後、ナイロンメッシュろ過し遠心 操作を行った。上清を除去し ACKバッファーで溶血後、 RPMI 1640培地で洗浄し 細胞を調製した。染色は FITC標識マウス抗ヒト CD3抗体 (Dako社製)を用いた。そ の結果、 13日目で解析した B群で脾細胞中に占める CD3陽性率は約 70%、また 21 日目で解析した D群で約 59%を示した。 A群では 1%未満、また C群でも数%の陽性 率であった。このことから、 CH— 296固定ィ匕条件での拡大培養細胞は、非固定化条 件に比較して脾臓での生着率が高く 21日間維持されることが分力つた。
[0229] 実施例 12 IL— 2、 IL 12、 IFN— γ、抗 IL— 4抗体を添カ卩したリンパ球の拡大培 養
(1)抗ヒト CD3抗体および CH— 296フラグメント固定化
実施例 1— (2)と同様に行った。ただし、抗ヒト CD3抗体と CH— 296フラグメントの 固定化に ACD—A液 (ρΗ5. 0)を用い、 12穴細胞培養プレートへの ACD— Α液添 加量を 0. 45mLに変更した。
[0230] (2) GT— T503培地を使用した T細胞集団の拡大培養
0. 5%GT— T503に 0. 25 X 106cells/mLとなるように実施例 1— (1)で調製し た PBMCを懸濁後、実施例 12— (1)で調製した抗ヒト CD3抗体固定ィ匕プレート、ま たは抗ヒト CD3抗体および CH— 296固定化プレートに 0. 5%GT— T503を 0. 5m LZゥエルで添カ卩しておき、細胞液を lmLZゥエルずつ添カ卩し、これらのプレートを 5 %CO中 37°Cで培養した (培養 0日目)。培養開始 4日目に、各群の培養液を 0. 5
2
%GT— T503を用いて約 14倍になるように希釈し、希釈液 6. 3mLを何も固定ィ匕し ていない 25cm2細胞培養フラスコを立てたものに移した。培養を継続し、 7日目には 各群の培養液を 0. 5%GT— T503を用いて約 2倍希釈し、希釈液 6. 3mLを何も固 定化して!/ヽな 、新 ヽ 25cm2細胞培養フラスコを立てたものに移した。培養開始後 1 1日目には、 0. 2%HSAを含む GT— T503培地を用いて、各群の細胞培養液を約 2倍希釈し、何も固定ィ匕して ヽな 、新 、25cm2細胞培養フラスコを立てたものに希 釈液 12. 6mLをそれぞれ移した。なお、 IL— 2は培養 0日目力も終濃度 lOOUZmL となるように添カ卩した。また、 IL— 2以外のものについては、培養 4日目に IL— 12 (R &D Systems社製) 50UZmL、 IFN- γ (R&D Systems社製) 20ngZmL、抗 ヒ ML—4抗体 (ベタトン'ディッキンソン社製) 2 gZmLの終濃度となるように添加し 、培養 7日目と 11日目においては新しく添加する培地に対して上述の終濃度となる ように各サイト力イン'抗体を添加した。培養開始後 14日目にトリパンブルー染色法 にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。結 果を表 31に示す。
[0231] [表 31] 表 3 1
拡大率 (倍率)
対照 (CH - 296非固定化) X 388
CH- 2 9 6 X 4 1 6
[0232] 表 31に示されるように、 T細胞拡大培養初期に CH— 296を固定ィ匕した培養器材を 使用した群において、対照群に比較して T細胞集団の拡大培養率が高力つた。
[0233] (3)CD45RA+CCR7+T細胞、 CD45RA+CD62L+T細胞の解析
実施例 12— (2)で調製した細胞を実施例 1— (4)と同様の方法により各抗体で染 色し、解析を行った。ただし、抗体の組み合わせは以下のとおりで行った。すなわち 、ネガティブコントロールとして FITC標識マウス IgGlZRDl標識マウス IgGlZPC5 標識マウス IgGl +ECD標識マウス IgGl、 RD1標識マウス抗ヒト CD45RA抗体 ZF ITC標識マウス抗ヒト CCR7抗体 ZECD標識マウス抗ヒト CD4抗体 ZPC5標識マウ ス抗ヒト CD8抗体あるいは RD1標識マウス抗ヒト CD45RA抗体 ZFITC標識マウス 抗ヒト CD62L抗体 ZECD標識マウス抗ヒト CD4抗体 ZPC5標識マウス抗ヒト CD8 抗体により染色を行った。この細胞をフローサイトメトリーに供し、 T細胞領域全体、 C D8+T細胞領域あるいは CD4+T細胞領域中の CD45RA+CCR7+T細胞、 CD45 RA+CD62L+T細胞の割合を算出した。結果を表 32に示す。
[0234] [表 32] 表 32
C D 4 5 R Α + CD 45 R Α +
C C R 7 + CD 6 2 L +
Τ細胞 (%) T細胞 (%)
T細胞全体 対照 (CH- 2 96非固定化) 1 3 . 8 2 5. 8
CH - 2 9 6 40 . 2 5 8. 4
CD 8 +T細胞 対照 (CII- 2 96非固定化) 1 7 . 1 3 3. 4
CH - 2 9 6 47 . 4 6 9. 7
CD 4 +T細胞 対照 (CH- 2 96非固定化) 7 . 7 1 1. 6
CH - 2 9 6 2 1 . 8 2 5 - 0 表 32に示されるように、 CH— 296フラグメントを固定ィ匕した培養容器を使用した群 においては、対照群と比較して、培養中の Τ細胞における CD45RA+CCR7+T細胞 集団および CD45RA+CD62L+T細胞集団が高い結果が得られた。以上より、 GT T503培地に IL 2、 IL 12、 IFN— γ、抗ヒト IL— 4抗体を添カ卩した培養におい て、拡大培養初期に CH— 296フラグメントを共存させることにより、 Τ細胞の CD45R A+CCR7+あるいは CD45RA+CD62L+T細胞集団比率を高くしながら Τ細胞集団 を拡大培養することが可能であることが明らかとなった。
[0236] 実施例 13 新鮮分離 PBMCカゝら CH— 296初期刺激後にガス透過性培養バッグを 用いて拡大培養した細胞集団の Allogeneic MLR
(1)新鮮血からの PBMCの分離
インフォームド 'コンセントの得られたヒト健常人ドナーより 50mL採血を実施後、採 血液から実施例 1— (1)と同様の方法で PBMCを分離した。採取した PBMCをトリバ ンブルーおよびチュルク染色法 (チュルク液 ナカライテスタ製)により細胞数を算出 し、凍結保存せずにそのまま各実験に供した。
[0237] (2)抗ヒト CD3抗体および CH— 296フラグメント固定化
実施例 6— (1)と同様の方法で行った。
[0238] (3) T細胞集団の拡大培養
0. 5%自己血漿 GT—T503に 0. 5 X 106cellsZmLとなるように実施例 13—(1) で調製した PBMCを懸濁し細胞液を調製後、実施例 13— (2)で調製した抗ヒト CD3 抗体固定化フラスコ、または抗ヒト CD3抗体および CH— 296固定化フラスコに 0. 5 %GT—T503を 21mLZフラスコ添カ卩しておき、上記細胞液を 9mLZフラスコずつ 添加した。終濃度 lOOOUZmLとなるように IL— 2を添カ卩し、これらのフラスコを 5%C O中 37°Cで培養した (培養 0日目)。培養開始 4日目に、各群の培養液のうち 21mL
2
および 0. 5%自己血漿 GT— T503 279mLを何も固定化していないガス透過性培 養バッグ(300cm2、タカラバィォ社製、商品コード KB610)に移し変えた。さらに終 濃度 500U/mLとなるように IL 2を添加した。培養を継続し、 8日目には各群の培 養液 150mLを除去、 150mLをバッグ中に残し、 0. 5%自己血漿 GT— T503を用 いて 2倍希釈し、ノ ッグ内の細胞希釈液を 300mLとした。いずれも終濃度 500UZ mLとなるように IL— 2を添カロした。培養開始後 11日目には、 0. 2%HSAを含む GT — T503培地を 300mL添カ卩し、各群の細胞培養液を 2倍希釈した。さらに各群にお いて終濃度 500UZmLとなるように IL— 2を添加した。培養開始後 14日目にトリパン ブルー染色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率 を算出した。この結果を表 33に示す。
[表 33]
S33
拡大率 (倍率)
対照 (CH- 2 9 6非固定化) X 8 8 5
CH- - 2 9 6 X 1 2 7 1
[0240] 表 33に示されるように、ガス透過性培養バッグを用いた培養に際しても、 T細胞集 団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した群 (以下、 CH— 29 6群)においては、対照群に比較して T細胞集団の拡大培養率が高力つた。
[0241] (4)ガス透過性培養バッグで培養した T細胞集団における CD45RA+CCR7+、 CD 45RA+CD62L+、 CD45RA+CD27+、 CD45RA+CD28+、 CD27+CD28+、 C D45RA+CCR7+CD62L+T細胞の解析
実施例 13— (3)で調製した細胞を実施例 6— (3)と同様の方法により各抗体で染 色し解析を行った。結果を表 34に示す。
[0242] [表 34] 表 34
対照 C Η- 296 (CH — 2 96非固定化)
CD45 RA+CD 62 L+T細胞 7 7. 1 5 % 8 5. 2 1 %
CD 45 RA + C CR 7 +T細胞 50. 46 % 6 0. 1 7 %
C D 45 R A+C D 28 +T細胞 6 5. 94 % 7 2. 88 %
CD4 5 RA + CD 2 7+T細胞 70. 9 3 % 8 5. 8 9 %
CD 28+CD 2 7— Τ細胞 6 5. 54 % 7 6. 42 %
CD45 RA + C CR 7 + CD 6 2 L 1 Τ細胞 50. 0 5 ¾ 59. 32 %
[0243] 表 34に示されるように、 CH— 296群においては対照群と比較して、いずれの細胞 表面マーカーにお 、ても高 、値を示した。
[0244] (5)培養細胞の保存
実施例 13— (3)で調製した培養 14日目の細胞は実施例 5— (4)と同様の方法で 凍結保存,融解し、各実験に供した。
[0245] (6) Allogeneic MLR 実施例 13— (5)で調製した細胞を用いて Allogeneic MLRを実施例 6— (4)と同 様の方法で行った。ただし、以下の点について変更を行った。 Stimulator cellおよ び Responder cellの細胞濃度を 1または 2 X 106cells/mLになるように調製した 点および、培養 5日目に各ゥヱル内の細胞を懸濁後、半量ずつ 2ゥエルに分け、 100 OUZmLの IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩し、 7日目まで培養を継 続した点。
[0246] (7)拡大培養率の測定
実施例 13— (6)で得られた細胞について培養開始後 7日目にトリパンブルー染色 法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出した。 結果を表 35に示す。
[0247] [表 35] 表 3 5
培養□数 培養開始時播種細胞数 R e s p o n d e r c ( ϊ 1 1
e e l 1 / w e 1 1 対照 (C H— 2 9 6非固定化) C H - 2 9 6
7曰目 0 . 5 X 1 0 R X 1 . 2 9 X 2 . 2 4
1 . 0 X 1 0 6 X 2 . 2 9 X 3 . 7 2
[0248] 表 35に示されるように、 CH— 296群を用いて Allogeneic MLRを行った場合に は、対照群に比較して反応後の拡大培養率が高かった。すなわち、 T細胞集団拡大 培養初期に CH - 296を固定ィ匕した培養器材を使用した培養細胞を用いて Allogen eic MLRを行うと、より多くのァロ抗原認識細胞が増殖することが明ら力となった。
[0249] (8)細胞傷害活性の測定
実施例 13— (6)で調製した誘導開始後 7日目の細胞の細胞傷害活性は、実施例 6 - (6)と同様の方法で行った。ただし、この際の標的細胞として PHAで 7日間幼若化 (ブラスト)させた自己 PBMCまたは非自己 PBMCを力ルセイン標識標的細胞とした 。細胞傷害活性測定時には 30倍量の K562細胞と力ルセイン標識標的細胞を混合 した。 EZT比を 90〜3に設定した。細胞傷害活性測定の結果を表 36に示す。
[0250] [表 36] 表 3 6
開始時播種細胞数 標的細胞 E /T 細胞傷害活性 (! ¾ ) c e 1 1 /w c 1 1 対照 C H— 2 9 6
( C H— 2 9 6非固定化)
0 . 5 X 1 0 8 非自己 Ρ ΗΛ 9 0
プラスト細胞 3 0
1 0
3
自己 F H A 9 0
ブラスト細胞 3 0
1 0 <
3
ϊ'·:■'■■■'·■■■ o x ϊ■·—■' ο■■■■■ 6 IFSBP HA ■ 9 0
ブラスト細胞 3 0
1 0
3
" E P H A 9 0
ブラスト細胞 3 0
1 0 1
3 <
< < V <
[0251] 表 36に示されるように、 CH— 296群から Allogeneic MLRを行った場合には、対 照群に比較して反応後のァロ抗原特異的細胞傷害活性が高力つた。
すなわち、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した 培養細胞においては、 Allogeneic MLRによりァロ抗原特異的細胞傷害活性がよ り強い細胞集団を得られることが明らかとなった。
[0252] 実施例 14 CH— 296の初期刺激時およびその後の培養時にガス透過性培養バッ グを用い拡大培養した細胞集団の Allogeneic MLRおよび抗 MART— 1 CTLの 誘導
(1)抗ヒト CD3抗体および CH— 296フラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD3抗体および CH— 296を固定ィ匕した 。すなわちガス透過性培養バッグ (培養面積 75cm2、タカラバィォ社製、商品コード
KB620)に抗ヒト CD3抗体(終濃度 5 μ g/mL)を含む PBSを 9mLずつ添カ卩した 。この時、 CH— 296添加群には抗ヒト CD3抗体(終濃度 5 /z gZmL)および CH— 2 96を終濃度(25 μ g/mL)を含む PBSを同量添カ卩した。
[0253] これらの培養器材を室温で 5時間インキュベート後、使用時まで室温に保存した。
使用直前にはこれらの培養器材から抗体 · CH - 296を含む PBSをシリンジで除去 後、各バッグを PBSで 2回、 RPMI培地で 1回洗浄し各実験に供した。 [0254] (2) T細胞集団の拡大培養
CH— 296刺激時の培養器材として、培養フラスコではなく実施例 14— (1)で調製 したバッグを用いたこと以外は、実施例 13— (3)と同様の方法で行った。培養開始後
14日目の結果を表 37に示す。
[0255] [表 37] 拡大率 (倍率)
対照 (CH— 296非固定化) X 500
CH— 296 X 9 6 7
[0256] 表 37に示されるように、 CH— 296での初期刺激時およびその後の培養時にガス 透過性培養バッグを用いた培養に際しても、 Τ細胞集団拡大培養初期に CH— 296 を固定ィ匕した培養器材を使用した群(以下、 CH— 296群)においては、対照群に比 較して Τ細胞集団の拡大培養率が高カゝつた。
[0257] (3) CH— 296での初期刺激時およびその後の培養時にガス透過性培養バッグで培 養した Τ細胞集団における CD45RA+CCR7+ CD45RA+CD62L+ CD45RA+ CD27+ CD45RA+CD28+ CD27+CD28+ CD45RA+CCR7+CD62L+T細 胞の解析
実施例 14— (2)で調製した細胞を実施例 6— (3)と同様の方法により各抗体で染 色し解析を行った。結果を表 38に示す。
[0258] [表 38] 対照
( C 11 - 296非固定化)
CD 45 RA+CD 62 L + T細胞 7 1. 7 3 % 8 5. 0 3 %
CD 45 RA + CC 7 +T細胞 47. 49 % 6 7. 46 %
CD 45 RA + CD 28+T細胞 5 9. 8 1 % 7 9. 83 %
CD 45 RA + CD 2 7 Τ細胞 64. 69 % 8 5. 3 7 %
CD 28 CD 2 7 +T細胞 5 9. 99 % 82. 1 5 %
CD 45 R A + C C R 7 +CD 62 L + T細胞 46. 14 ¾ 6 5. 94 %
[0259] 表 38に示されるように、 CH— 296群においては対照群と比較して、いずれの細胞 表面マーカーにお 、ても高 、値を示した。
[0260] (4) Allogeneic MLR 実施例 14— (2)で調製した細胞を用い、実施例 6— (4)と同様の方法で Allogene ic MLRを行った。
[0261] (5)細胞傷害活性の測定
実施例 14一(4)で調製した誘導開始後 10日目の細胞の細胞傷害活性は、 EZT 比 90を新たに設定したこと以外は、実施例 6— (6)と同様の方法で行った。細胞傷 害活性測定の結果を表 39に示す。
[0262] [表 39] 表 3 9
標的細胞 E / T 細胞傷害活性 (%)
対照 C H - 2 9 6
( C H ― 2 9 6非固定化)
非自己 P I I A 9 0 6 5 . 0 5 7 2 . 7 3 ブラスト細胞 3 0 4 4 . 9 2 6 1 . 4 3
1 0 2 1 . 8 1 3 7 . 2
3 7 . 2 3 1 7 . 9 9
自己 P H A 9 0 0 . 6 9 0 . 1 7 ブラスト細胞 3 0 < 0 < 0
1 0 < 0 < 0
3 < 0 < 0
[0263] 表 39に示されるように、 CH— 296群から Allogeneic MLRを行った場合には、対 照群に比較して反応後のァロ抗原特異的細胞傷害活性が高力つた。すなわち、 T細 胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞にお いては、 Allogeneic MLRによりァロ抗原特異的細胞傷害活性がより強い細胞集 団を得られることが明らかとなった。
[0264] (6)培養細胞の保存
実施例 14— (2)で調製した培養 14日目の細胞は実施例 5— (4)と同様の方法で 凍結保存,融解し、各実験に供した。
[0265] (7)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 1— (1)および 14— (6)で調製した細胞を用い、実施例 5— (5)と同様の方 法で抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導を行 ヽ、 14日間培養継続し た。ただし、以下の点について変更を行った。 Responder cellを 1 X 106cells/m Lとなるように 5HRPMIに懸濁し、 24穴細胞培養プレートに 0. 5mLZゥエルずつ添 カロした点、培養開始 3日目に培養上清を半分除去後、 60U/mLの IL— 2を含む 5H RPMI lmLを各ゥエルに添カ卩した点、 1週間後に培養細胞を 1.5〜3. OX106cells ZmLに、抗原提示細胞を 1. OX106cellsZmLに調整し、 0.5mLZwellずつ添カロ した点、培養開始 10日目に培養上清を半分除去後、 60U/mLの IL— 2を含む 5HR PMI lmLを各ゥエルに添カ卩した点。
[0266] (8)細胞傷害活性の測定
実施例 14一(7)で調製した誘導開始後 14日目の CTLの細胞傷害活性の測定は 、実施例 6— (9)と同様の方法で行った。細胞傷害活性測定の結果を表 40に示す。
[0267] [表 40] 表 40
標的細胞 細胞傷害活性 (%)
P BMC 対照 CH- 2 96
(CH - 2 96非固定化)
T 2 90 3. 9 2 <0 ぐ 0
3 0 <0 <0 <0
1 0 <0 <0 <0
3 <0 <0 <0
T 2 + 9 0 59. 8 6 6 1 - 55 6 5. 5 9
M A R T - 1 30 6 1. 7 8 56. 2 1 64. 6 6 ぺプチド 1 0 44. 2 1 43. 64 5 1. 7 9
3 7. 2 6 20. 36 2 7. 0 6
[0268] 表 40に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群お よび PBMC群と比較して CTL集団の特異的細胞傷害活性が高力つた。すなわち、 T 細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞は 、特異的細胞傷害活性がより高い CTL集団に誘導されうることが明らかとなった。
[0269] 実施例 15 CH— 296の初期刺激時およびその後の培養時にガス透過性培養バッ グを用い拡大培養した細胞由来 CD45RA+CCR7+CD8+T細胞および CD45RA —CCR7—CD8+T細胞からの抗 MART— 1CTL誘導
(DCD45RA+CCR7+CD8+T細胞および CD45RA—CCR7—CD8+T細胞の単 離
実施例 1一(1)および実施例 14一(6)で調製した細胞を実施例 7—(1)と同様の方 法により CD45RA+CCR7+CD8+画分および CD45RA—CCR7—CD8+画分をそ れぞれ単離し、純度 93%〜99%の画分を得た。 [0270] (2)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 15— (1)で調製した細胞を用い、実施例 14— (7)と同様の方法で抗腫瘍 関連抗原 (MART- 1)特異的 CTLの誘導を行 ヽ、 14日間培養継続した。ただし、 以下の点について変更を行った。 Responder cellを 1 X 106cellsZmLとなるように 5HRPMIに懸濁し、 48穴細胞培養プレートにそれぞれ 0. 25mLZゥエルずつ添カロ した点、培養開始 1日目に 60U/mLの IL— 2を含む 5HRPMI0. 5mLを各ゥエルに 添加した点、培養開始 3日目に培養上清を半分除去後、 60U/mLの IL— 2を含む 5 HRPMIO. 5mLを各ゥエルに添カ卩した点、および 1週間後に培養細胞を 0. 2〜1. 7 X 106cellsZmLに、抗原提示細胞を 1. O X 106cellsZmLに調整し、 24穴細胞培 養プレートにそれぞれ 0. 5mLZwellずつ添カ卩した点、培養開始 10日目に培養上 清を半分除去後、 60U/mLの IL— 2を含む 5HRPMI lmLを各ゥエルに添カ卩した点
[0271] (3)拡大培養率の測定
実施例 15— (2)で得られた細胞について培養開始後 14日目にトリパンブルー染 色法にて生細胞数を計測し、培養開始時の細胞数と比較して拡大培養率を算出し た。結果を表 41に示す。
[0272] [表 41] 表 4 1
培養開始細胞 拡大培養率
対照 C H - 2 9 6
C C H - 2 9 6非固定化)
C D 4 5 R A + C C R 7 - C D 8 + T細胞 X 2 . 3 6 X 5 . 3 8
C D 4 5 R A - - C C R 7 " C D 8 + Τ細胞 X 3 - 1 4 t X 4 . 9 6
[0273] 表 41に示されるように、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養 器材を使用した培養細胞(以下 CH— 296群)から単離した CD45RA+CCR7+CD 8+T細胞を用いて誘導した CTL集団においては、対照群に比較して CTL集団の拡 大培養率が高カゝつた。すなわち、 T細胞集団拡大培養初期に CH— 296を固定ィ匕し た培養器材を使用した培養細胞に高比率に含まれる CD45RA+CCR7+T細胞から CTL誘導を行うことでより多くの CTL集団を得られることが明らかとなった。 [0274] (4)細胞傷害活性の測定
実施例 15— (2)で調製した誘導開始後 14日目の CTLの細胞傷害活性は、 E/T 比を 30〜3に設定したこと以外は実施例 6— (9)と同様の方法で行った。細胞傷害 活性測定の結果を表 42に示す。
[0275] [表 42] 表 42
培養開始細胞 標的細胞 E/T 細胞傷害活性 (! ¾)
PBMC 対照 (CH— 2 CH- 29
96非固定化) 6
CD45 RA+ T 2
C C R 7 1
CD 8 +T細胞
T 2 +MART— 1
ぺプチド
CD45 RA- T 2 一 V < Vく ν< V <
C C R 7 - CD 8+T細胞
Τ 2 +MART - 1
ペプチド
<< << Ν Ν
ο ο ο ο
N. T. :試験せず Τ Τ
[0276] 表 42に示されるように、 CH— 296群から単離した CD45RA+CCR7+CD8+T細 胞を用いて誘導した CTL集団においては、対照群および PBMC群と一比 V< << < <<く 3較して CTL 集団の特異的細胞傷害活性が高力つた。さらには、 CD45RA—CCR7—CD8+T細 胞を用いて誘導した CTL集団と比較しても、特異的細胞傷害活性が高力つた。すな わち、 T細胞集団拡大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養 細胞に高率に含まれる CD45RA+CCR7+T細胞は、特異的細胞傷害活性がより高 い CTL集団に誘導されうることが明らかとなった。
[0277] 実施例 16 CTLの抗原認識能測定
(1)抗腫瘍関連抗原 (MART- 1)特異的 CTLの誘導
実施例 1— (1)および 14— (6)で調製した細胞を用い、実施例 14— (7)と同様の 方法で抗腫瘍関連抗原 (MART— 1)特異的 CTLの誘導を行い、 15日間培養継続 した。
[0278] (2)抗原認識能の測定
実施例 16— (1)で調製した誘導開始後 15日目の CTLの抗原認識能は、実施例 8 - (2)と同様の方法で測定した。抗原認識能測定の結果を表 43に示す。抗原認識 能は標的細胞に付加したペプチド濃度が 10 μ Μの時の細胞傷害活性を 100とした 場合の、各付加ペプチド濃度における細胞傷害活性の相対値として表記した。
[表 43] 表 4 3
¥1勺細胞に付加した 付加ぺプチド 1 0 Μの時の細胞傷害活性に対する相対値
ぺプチド終濃度 P B M C 対照 C I- 1— 2 9 6
( M M ) ( C H— 2 9 6非固定化)
<
[0280] 表 43に示されるように、 CH— 296群力も誘導した CTL集団においては、対照群お よび PBMC群と比較してより低濃度の抗原ペプチドを付加された標的細胞までも殺 傷しており、 CTL集団の特異的抗原認識能力が高カゝつた。すなわち、 T細胞集団拡 大培養初期に CH— 296を固定ィ匕した培養器材を使用した培養細胞は、より特異的 抗原認識能力が高い CTL集団に誘導されうることが明らかとなった。
[0281] 実施例 17 CH— 296の初期刺激時およびその後の培養時にガス透過性培養バッ グを用い拡大培養した細胞由来 CD45RA+CCR7+T細胞のサイト力イン産生性の 評価
(D CD45RA+CCR7+T細胞と CD45RA—CCR7—T細胞の単離
実施例 14一(6)で調製した細胞を実施例 3—(3)と同様の方法で染色およびソー ティングをした。
[0282] (2)抗ヒト CD3抗体および抗ヒト CD28抗体の固定化と細胞の刺激
単離した細胞を刺激するために実施例 3—(4)の方法と同様に培養プレートに抗ヒ ト CD3抗体および抗ヒト CD28抗体の固定ィ匕を行った。実施例 17— (1)で得られた 各細胞集団を 0. 5%GT—T503に懸濁し、調製したプレートに 2 X 105cells/0. 2 mLとなるように細胞を各ゥヱルに添加し、 5%CO中 37°Cにて培養した。 24時間後
2
培養上清を回収し、 ELISA法によるサイト力イン測定実験に供した。 [0283] (3) ELISA法による IL 2産生の測定
臨床でのリンパ球拡大培養には閉鎖系で培養できるガス透過性培養バッグが使用 されている。実施例 14においてバッグを用いて拡大培養した際にも、 CH— 296群に ぉ 、ては、対照群と比較して CD45RA+CCR7+T細胞集団割合が高 、結果が得ら れた。この CD45RA+CCR7+T細胞集団がナイーブ T様細胞としての性質を維持し ているか確かめるために、実施例 3— (6)と同様に CD45RA+CCR7+T細胞と CD4 5RA—CCR7—T細胞の IL— 2産生性を評価した。結果を表 44に示す。
[0284] [表 44] 表 4 4
C H - 2 9 6固定化 I L - 2
( g /m L )
C D 8 + T細胞 C D 4 5 R A + + T細胞 3 4 7 . 2
C D 4 5 R A " — T細胞 < 0
C 8 — T細胞 C D 4 5 R A + C C R 7 ÷ T細胞 1 6 8 6 . 7
C 0 4 B R A " C C R 7 _ T細胞 2 1 5 . 6
[0285] 表 44に示されるように、 CD8+T細胞および CD8—T細胞とも、 CD45RA+CCR7+ T細胞での IL— 2産生が優位であった。既に実施例 3— (6)でも示されたように、本 実施例にぉ 、ても、 CH— 296を用いてバッグ培養した凍結細胞の CD45RA+CCR 7+T細胞集団はナイーブ T様細胞としての性質を持つことが示された。
[0286] 実施例 18 H— 296、 CH— 271、 H—271、 C— CS1を用いて拡大培養した T細胞 集団中の CD45RA+CCR7+T細胞の解析
(1)抗ヒト CD3抗体および H— 296、 CH— 271、 H— 271、 C— CS1フラグメント固 定化
実施例 4— (1)と同様の方法で行った。ただし、 CH— 296フラグメントは用いず、フ ラグメント添カ卩群には代わりに H— 296、 CH— 271、 H— 271、 C— CS1の各フラグ メントを終濃度(25 μ g/mL)となるように添加した。
[0287] (2) T細胞集団の拡大培養
培養開始 4日目で、約 14倍になるように希釈し、希釈液 10mLを 25cm2細胞培養 フラスコ(コ一-ング社製)を立てたものに移したこと、 7日目の継代操作を行っていな いこと以外は実施例 3— (1)に準じて行い、 9日間培養継続した。培養開始 8日目の 拡大培養率の結果を表 45に示す。
[0288] [表 45] 表 45
拡大率 (倍率)
対照 〈CH— 296非固定化) X 207
Figure imgf000075_0001
[0289] 表 45に示されるように、 T細胞集団拡大培養初期に H— 296、 CH— 271、 H— 27 1、 C— CS1を固定ィ匕した培養器材を使用した群(以下フラグメント群)においては、 対照群に比較して T細胞集団の拡大培養率が高力つた。
[0290] (3)CD45RA+CCR7+T細胞の解析
実施例 18— (2)で調製した細胞を実施例 3— (2)と同様の方法で、培養開始 9日 目の CD45RA+CCR7+T細胞の割合を算出した。結果を表 46に示す。
[0291] [表 46] 表 4 G
CD 45 RA+C CR 7+T細胞 )
対照 (CII - 2 96非固定化) 38. 7
H- 2 96 58. 1 5
CH- 27 1 S 6. 3
11- 2 7 1 49. 75
C-CS 1 44. 79
[0292] 表 46に示されるように、フラグメント群において、対照群と比較して、培養中の T細 胞集団における CD45RA+CCR7+T細胞集団が高い結果が得られた。
産業上の利用可能性
[0293] 本発明により、 T細胞集団の製造方法が提供される。当該方法は CD45RAを発現 し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1 つを発現する T細胞を高比率に含有する T細胞集団として、例えば、免疫療法に好 適に使用される。従って、本発明の方法は、医療分野への多大な貢献が期待される 図面の簡単な説明
[0294] [図 1]フイブロネクチンのドメイン構造を示す模式図である 圆 2]T細胞投与によるマウスの腫瘍形成抑制作用を示す図である。 配列表フリーテキスト
SEQ ID NO 1 ; Partial region of nbronectin named ΙΠ— 8.
SEQ ID NO 2 ; Partial region of nbronectin named ΙΠ— 9.
SEQ ID NO 3 ; Partial region of nbronectin named ΙΠ— 10.
SEQ ID NO 4; Partial region of nbronectin named III—丄丄.
SEQ ID NO 5 ; Partial region of nbronectin named 111-12.
SEQ ID NO 6 ; Partial region of nbronectin named ΙΠ— 13.
SEQ ID NO 7 ; Partial region of nbronectin named ΙΠ— 14.
SEQ ID NO 8 ; Partial region of nbronectin named CS— 1.
SEQ ID NO 9 ; Fibronectin fragment named C-274.
SEQ ID NO 10 ; Fibronectin fragment named H-271.
SEQ ID NO 11 ; Fibronectin fragment named H— 29b.
SEQ ID NO 12 ; Fibronectin fragment named CH— 271.
SEQ ID NO 13 ; Fibronectin fragment named CH— 296.
SEQ ID NO 14 ; Fibronectin fragment named C— C .
SEQ ID NO 15 ; Fibronectin fragment named CH— 296Na.
SEQ ID NO 16 ; Fibronectin fragment named CHV— 89.
SEQ ID NO 17 ; Fibronectin fragment named CHV— 90.
SEQ ID NO 18 ; Fibronectin fragment named CHV— 92.
SEQ ID NO 19 ; Fibronectin fragment named CHV— 179.
SEQ ID NO 20 ; Fibronectin fragment named CHV— 181.
SEQ ID NO 21 ; Fibronectin fragment named H— 275— Cys.
SEQ ID NO 22 ; epitope peptide derived from melanoma antigen MART
SEQ ID NO 23 ; mouse Fibronectin fragment named CH— 296.

Claims

請求の範囲
[I] τ細胞を含有する細胞集団をフイブロネクチン、そのフラグメントまたはそれらの混 合物の存在下で培養する工程を包含することを特徴とする、 CD45RAを発現し、か つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発 現する T細胞集団の製造方法。
[2] 培養する工程を含む総培養日数力 〜14日間である請求項 1記載の製造方法。
[3] フイブロネクチン、そのフラグメントまたはそれらの混合物の存在下での培養力 少 なくとも培養開始時において実施される請求項 1又は 2記載の製造方法。
[4] フイブロネクチン、そのフラグメントまたはそれらの混合物の存在下での培養力 少 なくとも 1日以上実施されることを特徴とする請求項 3記載の製造方法。
[5] フイブロネクチン、そのフラグメントまたはそれらの混合物の存在下で培養する工程 力 CD3リガンドの存在下で実施される請求項 1〜4いずれか 1項に記載の製造方 法。
[6] CD3リガンドが抗 CD3抗体である請求項 5記載の製造方法。
[7] フイブロネクチンのフラグメントが、配列表の配列番号 1〜8で表されるアミノ酸配列 を少なくとも 1つ含んでなるポリペプチド (m)である力、または前記 、ずれかのアミノ 酸配列において 1もしくは複数個のアミノ酸が置換、欠失、挿入もしくは付加したアミ ノ酸配列を少なくとも 1つ含んでなるポリペプチドであって、前記ポリペプチド (m)と同 等な機能を有するポリペプチド (n)である請求項 1〜6 、ずれか 1項に記載の製造方 法。
[8] フイブロネクチンのフラグメントが、配列表の配列番号 1〜3及び 5〜8で表されるァ ミノ酸配列のいずれもを含むポリペプチドである請求項 7記載の方法。
[9] さらに、 CD45RA、 CD62L、 CCR7、 CD27および CD28からなる群より選択され る少なくとも 1つを発現する細胞集団を分離する工程を包含する、請求項 1〜8いず れか 1項に記載の製造方法。
[10] さらに細胞集団に外来遺伝子を導入する工程を包含する請求項 1〜9いずれか 1 項に記載の製造方法。
[II] 外来遺伝子をレトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウィルス ベクター、レンチウィルスベクターまたはシミアンウィルスベクターを用いて導入する 請求項 10記載の製造方法。
[12] 請求項 1〜: L 1いずれ力 1項に記載の方法により得られる、 CD45RAを発現し、か つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発 現する T細胞集団。
[13] 請求項 1〜: L 1いずれ力 1項に記載の方法により得られる、 CD45RAを発現し、か つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発 現する T細胞集団を有効成分として含有する医薬。
[14] 被験体に、有効量の請求項 1〜: L 1いずれか 1項に記載の方法により得られる、 CD 45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択され る少なくとも 1つを発現する T細胞集団を投与する工程を含む疾患の治療方法又は 予防方法。
[15] 医薬の製造のための、請求項 1〜: L 1いずれか 1項に記載の方法により得られる、 C D45RAを発現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択さ れる少なくとも 1つを発現する T細胞集団の使用。
[16] 請求項 1〜: L 1いずれ力 1項に記載の方法により得られる、 CD45RAを発現し、か つ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発 現する T細胞集団に対して、抗原を提示しうる能力を有する細胞、抗原の提示された 細胞、抗原、 CD3リガンド、 CD28リガンド、サイト力イン、ケモカインおよびサイトカイ ンを産生する能力を有する細胞力 なる群より選択される少なくとも 1つの刺激因子 により刺激を与える工程を含むことを特徴とする T細胞集団の製造方法。
[17] 請求項 16記載の方法により得られる T細胞集団。
[18] 請求項 16記載の方法により得られる T細胞集団を有効成分として含有する医薬。
[19] 被験体に、有効量の請求項 16記載の方法により得られる T細胞集団を投与するェ 程を含む疾患の治療方法又は予防方法。
[20] 医薬の製造のための、請求項 16記載の方法により得られる T細胞集団の使用。
[21] (a)請求項 1〜: L 1いずれか 1項に記載の製造方法により得られる、 CD45RAを発 現し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1つを発現する T細胞集団を有効成分として含有する製剤、及び
(b)抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 CD3リガン ド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する能力を有す る細胞からなる群より選択される少なくとも 1つの刺激因子を有効成分として含有する 製剤、
を含む医薬であって、当該製剤は同時にまたは別々に投与される 2つの別々の製剤 として含有される医薬。
下記 (a)及び (b)の工程を含むことを特徴とする疾患の治療方法、
(a)請求項 1〜: L 1いずれか 1項に記載の製造方法により得られる、 CD45RAを発現 し、かつ CD62L、 CCR7、 CD27および CD28からなる群より選択される少なくとも 1 つを発現する T細胞集団を患者に投与する工程、
(b)抗原を提示しうる能力を有する細胞、抗原の提示された細胞、抗原、 CD3リガン ド、 CD28リガンド、サイト力イン、ケモカインおよびサイト力インを産生する能力を有す る細胞力 なる群より選択される少なくとも 1つの刺激因子を患者に投与する工程。
PCT/JP2006/319105 2005-09-30 2006-09-27 T細胞集団の製造方法 WO2007040105A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007538714A JP5156382B2 (ja) 2005-09-30 2006-09-27 T細胞集団の製造方法
EP06810596A EP1939278A4 (en) 2005-09-30 2006-09-27 METHOD FOR PRODUCING A T CELL POPULATION
AU2006298188A AU2006298188B2 (en) 2005-09-30 2006-09-27 Method for production of T cell population
US11/992,661 US20100068192A1 (en) 2005-09-30 2006-09-27 Method for Production of T Cell Population
EA200800996A EA016168B1 (ru) 2005-09-30 2006-09-27 Способ получения т-клеточной популяции и ее применение
CA002623735A CA2623735A1 (en) 2005-09-30 2006-09-27 Method for production of t cell population
CN2006800441169A CN101400785B (zh) 2005-09-30 2006-09-27 T细胞群的制备方法
KR1020087010395A KR101408565B1 (ko) 2005-09-30 2006-09-27 T 세포 집단의 제조 방법
HK09108701.4A HK1130509A1 (en) 2005-09-30 2009-09-23 Method for production of t cell population t

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005288983 2005-09-30
JP2005-288983 2005-09-30
JP2006-102103 2006-04-03
JP2006102103 2006-04-03
JP2006-196950 2006-07-19
JP2006196950 2006-07-19
JP2006241773 2006-09-06
JP2006-241773 2006-09-06

Publications (1)

Publication Number Publication Date
WO2007040105A1 true WO2007040105A1 (ja) 2007-04-12

Family

ID=37906148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319105 WO2007040105A1 (ja) 2005-09-30 2006-09-27 T細胞集団の製造方法

Country Status (11)

Country Link
US (1) US20100068192A1 (ja)
EP (1) EP1939278A4 (ja)
JP (1) JP5156382B2 (ja)
KR (1) KR101408565B1 (ja)
CN (1) CN101400785B (ja)
AU (1) AU2006298188B2 (ja)
CA (1) CA2623735A1 (ja)
EA (1) EA016168B1 (ja)
HK (1) HK1130509A1 (ja)
TW (1) TW200741001A (ja)
WO (1) WO2007040105A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142300A1 (ja) * 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法
WO2008143255A1 (ja) * 2007-05-22 2008-11-27 Takara Bio Inc. 細胞集団の製造方法
WO2008143014A1 (ja) * 2007-05-11 2008-11-27 Takara Bio Inc. がん治療剤
JP2010527606A (ja) * 2007-05-23 2010-08-19 サンガモ バイオサイエンシーズ, インコーポレイテッド 導入遺伝子の発現を増強するための方法および組成物
WO2020032179A1 (ja) * 2018-08-10 2020-02-13 国立大学法人京都大学 Cd3陽性細胞の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485139B2 (ja) * 2008-03-27 2014-05-07 タカラバイオ株式会社 遺伝子導入細胞の製造方法
CN101706507B (zh) * 2009-07-27 2013-05-01 浙江大学 用异硫氰酸荧光素标记的抗人cd45ra单抗的应用
CN101831434B (zh) * 2009-07-27 2012-05-09 浙江大学 抗人cd45ra鼠免疫球蛋白可变区基因及用途
US9062287B2 (en) 2009-09-11 2015-06-23 Takara Bio Inc. Process for production of natural killer cells
WO2013126712A1 (en) 2012-02-22 2013-08-29 The Trustees Of The University Of Pennsylvania Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer
CN108498532B (zh) 2012-05-09 2021-07-23 坎泰克斯制药股份有限公司 骨髓抑制的治疗
DK2981607T3 (da) * 2013-04-03 2020-11-16 Memorial Sloan Kettering Cancer Center Effektiv generering af tumormålrettede t-celler afledt af pluripotente stamceller
WO2016133907A1 (en) * 2015-02-17 2016-08-25 Cantex Pharmaceuticals, Inc. Adoptive cell transfer methods
WO2016133910A1 (en) 2015-02-17 2016-08-25 Cantex Pharmaceuticals, Inc. Treatment of cancers and hematopoietic stem cell disorders privileged by cxcl12-cxcr4 interaction
EP3091032A1 (en) * 2015-05-08 2016-11-09 Miltenyi Biotec GmbH Humanized antibody or fragment thereof specific for cd3
MA45488A (fr) * 2015-10-22 2018-08-29 Juno Therapeutics Gmbh Procédés, kits et appareil de culture de cellules
ES2957890T3 (es) 2016-04-08 2024-01-29 Univ Emory Métodos de tratamiento del cáncer y las enfermedades infecciosas mediante terapias celulares
WO2017214939A1 (zh) * 2016-06-16 2017-12-21 毛侃琅 提升 ccr7 基因表达水平的慢病毒表达载体及其应用
SG11202102654UA (en) * 2018-09-19 2021-04-29 Fujifilm Cellular Dynamics Inc Protein l for activation and expansion of chimeric antigen receptor-modified immune cells
WO2020102701A1 (en) * 2018-11-16 2020-05-22 Rapa Therapeutics, Llc Methods for the manufacture of th1/tc1 phenotype t cells
CN118786208A (zh) * 2022-02-16 2024-10-15 加拿大干细胞技术公司 用于扩增淋巴细胞的组合物和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102988A (en) 1988-06-30 1992-04-07 Takara Shuzo Co., Ltd. Polypeptide with cell-spreading activity
US5198423A (en) 1989-05-26 1993-03-30 Takara Shuzo Co., Ltd. Functional polypeptide containing a cell binding domain and a heparin binding domain of fibronectin
WO1997018318A1 (en) 1995-11-13 1997-05-22 Takara Shuzo Co., Ltd. Method for gene introduction into target cells by retrovirus
JP2729712B2 (ja) 1991-04-23 1998-03-18 寳酒造株式会社 機能性ポリペプチド
WO2000009168A1 (en) 1998-08-11 2000-02-24 The United States Of America, Represented By Department Of Health And Human Services A method of transducing mammalian cells, and products related thereto
JP3104178B2 (ja) 1990-03-30 2000-10-30 寶酒造株式会社 機能性ポリペプチド
WO2003016511A1 (en) 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes
WO2003080817A1 (en) 2002-03-25 2003-10-02 Takara Bio Inc. Process for producing cytotoxic lymphocyte
WO2004018667A1 (ja) * 2002-08-26 2004-03-04 Kirin Beer Kabushiki Kaisha ペプチド及びこれを含む医薬
WO2005019450A1 (ja) 2003-08-22 2005-03-03 Takara Bio Inc. 細胞傷害性リンパ球の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188959A (en) * 1989-09-28 1993-02-23 Trustees Of Tufts College Extracellular matrix protein adherent t cells
US6821778B1 (en) * 1993-12-01 2004-11-23 The Board Of Trustees Of Leland Stanford Junior University Methods for using dendritic cells to activate gamma/delta-T cell receptor-positive T cells
DE4412794A1 (de) * 1994-04-14 1995-12-14 Univ Ludwigs Albert Verfahren zur Herstellung von dendritischen Zellen, so erhaltene Zellen und Behälter zur Durchführung dieses Verfahrens
US5827642A (en) * 1994-08-31 1998-10-27 Fred Hutchinson Cancer Research Center Rapid expansion method ("REM") for in vitro propagation of T lymphocytes
US7067318B2 (en) * 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
US6692964B1 (en) * 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
EP0824594B1 (en) * 1995-05-04 2005-04-06 The United States of America as Representend by The Secretary of the Navy Improved methods for transfecting t cells
US6734014B1 (en) * 1996-02-08 2004-05-11 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for transforming dendritic cells and activating T cells
US6316257B1 (en) * 1996-03-04 2001-11-13 Targeted Genetics Corporation Modified rapid expansion methods (“modified-REM”) for in vitro propagation of T lymphocytes
TWI239352B (en) * 1997-07-23 2005-09-11 Takara Bio Inc Gene transfer method with the use of serum-free medium
KR100674140B1 (ko) * 1999-03-23 2007-01-26 다카라 바이오 가부시키가이샤 유전자 치료제
KR20020010206A (ko) * 2000-07-27 2002-02-04 이시우 인터루킨 12와 보조활성인자 b7.1 유전자를 함유하는dna 벡터 및 이벡터가 도입된 항암 세포백신
US7816134B2 (en) * 2000-08-16 2010-10-19 Takara Bio Inc. Method of extensive culture of antigen-specific cytotoxic T cells
EP1401495A4 (en) * 2001-06-01 2005-11-23 Xcyte Therapies Inc T CELL-INDUCED TISSUE PARA- TURE AND REGENERATION
US7745140B2 (en) * 2002-01-03 2010-06-29 The Trustees Of The University Of Pennsylvania Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool
US20080227504A1 (en) * 2007-03-15 2008-09-18 Shih-Yang Chan Ceramic casing device for mobile handset

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102988A (en) 1988-06-30 1992-04-07 Takara Shuzo Co., Ltd. Polypeptide with cell-spreading activity
US5198423A (en) 1989-05-26 1993-03-30 Takara Shuzo Co., Ltd. Functional polypeptide containing a cell binding domain and a heparin binding domain of fibronectin
JP3104178B2 (ja) 1990-03-30 2000-10-30 寶酒造株式会社 機能性ポリペプチド
JP2729712B2 (ja) 1991-04-23 1998-03-18 寳酒造株式会社 機能性ポリペプチド
WO1997018318A1 (en) 1995-11-13 1997-05-22 Takara Shuzo Co., Ltd. Method for gene introduction into target cells by retrovirus
WO2000009168A1 (en) 1998-08-11 2000-02-24 The United States Of America, Represented By Department Of Health And Human Services A method of transducing mammalian cells, and products related thereto
WO2003016511A1 (en) 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes
WO2003080817A1 (en) 2002-03-25 2003-10-02 Takara Bio Inc. Process for producing cytotoxic lymphocyte
WO2004018667A1 (ja) * 2002-08-26 2004-03-04 Kirin Beer Kabushiki Kaisha ペプチド及びこれを含む医薬
WO2005019450A1 (ja) 2003-08-22 2005-03-03 Takara Bio Inc. 細胞傷害性リンパ球の製造方法

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
BENIGNI F, J. IMMUNOL., vol. 175, no. 2, 2005, pages 739 - 748
DARDALHON V. ET AL.: "Highly efficient gene transfer in naive human T cells with a murine leukemia virus-based vector", BLOOD, vol. 96, no. 3, 2000, pages 885 - 893, XP003011564 *
DAVIS L.S. ET AL.: "Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules", J. IMMUNOL., vol. 145, no. 3, 1990, pages 785 - 793, XP002381603 *
ESCHERICHIA COLI, 12 May 1989 (1989-05-12)
ESCHERICHIA COLI, 17 June 1988 (1988-06-17)
ESCHERICHIA COLI, 30 January 1989 (1989-01-30)
ESCHERICHIA COLI, 5 March 1990 (1990-03-05)
ESCHERICHIA COLI, 8 April 1991 (1991-04-08)
ESCHERICHIA COLI, August 1991 (1991-08-01)
GATTINONI L. ET AL.: "Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells", J. CLIN. INVEST., vol. 115, no. 6, June 2005 (2005-06-01), pages 1616 - 1626, XP003011560 *
GATTINONI L., J. CLIN. INVEST., vol. 115, no. 6, 2005, pages 1616 - 1626
HALVORSON M.J. ET AL.: "alpha4 and alpha5 integrins costimulate the CD3-dependent proliferation of fetal thymocytes", CELL IMMUNOL., vol. 189, no. 1, 1998, pages 1 - 9, XP003002658 *
HANENBERG H. FIVE, HUMAN GENE THERAPY, vol. 8, no. 18, 1997, pages 2193 - 2206
IDENO M. ET AL.: "RetroNectin o Kumiawaseta T Saibo Kakudai Baiyo (II): Kakudai Baiyo sareta T Saibo Shudan wa NaiveT-yo Saibo no Hiritsu ga Takaku, Takai Kogen Ninshikino o Hakki", DAI 65 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 28 August 2006 (2006-08-28), pages 330, P-708, XP003011559 *
IDENO M. ET AL.: "Soshikitai Human Fibronectin Fragment Shigeki ni yoru Kasseika CTL no Tairyo Expansion-ho", DAI 62 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 2003, pages 175, 2144-OA, XP003011567 *
KIMIDUKA F. ET AL., BIOCHEM., vol. 110, 1991, pages 284 - 291
KIMIZUKA F., J. BIOCHEM., vol. 110, no. 2, 1991, pages 284 - 291
KORNBRIHTT A. R. ET AL., EMBO J., vol. 4, no. 7, 1985, pages 1755 - 1759
LICHTENFELS R. ET AL., J. IMMUNOL., vol. 172, no. 2, 1994, pages 227 - 239
MATSUYAMA T. ET AL.: "Activation of CD4 cells by fibronectin and anti-CD3 antibody. A synergistic effect mediated by the VLA-5 fibronectin receptor complex", J. EXP. MED., vol. 170, no. 4, 1989, pages 1133 - 1148, XP003011562 *
MURAKI N. ET AL.: "RetroNectin o Kumiawaseta T Saibo Kakudai Baiyo (I): Kakudai Baiyo ga Anteika shi, NaiveT-yo Saibo ga Kohiritsu de Zoshoku (T cell expansion using RetroNectin (I): Useful method to expand Tcells, characterized by high portion of NaiveT-like cells)", DAI 65 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 28 August 2006 (2006-08-28), pages 330, P-707, XP003011558 *
PLASMID ENCODING, 23 July 2004 (2004-07-23)
PLEBANSKI M. ET AL., EUR. J. IMMUNOL, vol. 25, no. 6, 1995, pages 1783 - 1787
RIDDELL S.R. ET AL.: "The use of anti-CD3 and anti-CD28 monolocnal antibodies to clone and expand human antigen-specific T cells", J. IMMUNOL. METHODS, vol. 128, no. 2, 1990, pages 189 - 201, XP003011565 *
RUOSLAHTI E. ET AL., J. BIOL. CHEM., vol. 256, no. 14, 1981, pages 7277 - 7281
SAGAWA H. ET AL.: "Ko-CD3 Kotai no RetroNectin o Kumiawaseru Koto ni yoru LAK Saibo Inyu Ryoho no Kairyo", DAI 62 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 2003, pages 438, 2624-PP, XP003011566 *
See also references of EP1939278A4
SEKIGUCHI K. ET AL., BIOCHEMISTRY, vol. 25, no. 17, 1986, pages 4936 - 4941
SIMON M.M. ET AL.: "The outer surface lipoprotein A of Borrelia burgdorferi provides direct and indirect augmenting/co-stimulatory signals for the activation of CD4+ and CD8+ T cells", IMMUNOL. LETT., vol. 46, no. 3, 1995, pages 137 - 142, XP003011563 *
STURM A. ET AL.: "Dual function of the extracellular matrix: stimulatory for cell cycle progression of naive T cells and antiapoptotic for tissue-derived memory T cells", J. IMMUNOL., vol. 173, no. 6, 2004, pages 3889 - 3900, XP003011561 *
VALMORI D. ET AL., J. IMMUNOL., vol. 160, 1998, pages 1750 - 1758
WILLIAMS D. A. ET AL., NATURE, vol. 352, 1991, pages 438 - 441

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142300A1 (ja) * 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法
US8216837B2 (en) 2006-06-09 2012-07-10 Takara Bio Inc. Method of producing lymphocytes
WO2008143014A1 (ja) * 2007-05-11 2008-11-27 Takara Bio Inc. がん治療剤
JPWO2008143014A1 (ja) * 2007-05-11 2010-08-05 タカラバイオ株式会社 がん治療剤
WO2008143255A1 (ja) * 2007-05-22 2008-11-27 Takara Bio Inc. 細胞集団の製造方法
JPWO2008143255A1 (ja) * 2007-05-22 2010-08-12 タカラバイオ株式会社 細胞集団の製造方法
JP2010527606A (ja) * 2007-05-23 2010-08-19 サンガモ バイオサイエンシーズ, インコーポレイテッド 導入遺伝子の発現を増強するための方法および組成物
WO2020032179A1 (ja) * 2018-08-10 2020-02-13 国立大学法人京都大学 Cd3陽性細胞の製造方法
JPWO2020032179A1 (ja) * 2018-08-10 2021-08-26 国立大学法人京都大学 Cd3陽性細胞の製造方法
JP7382603B2 (ja) 2018-08-10 2023-11-17 国立大学法人京都大学 Cd3陽性細胞の製造方法

Also Published As

Publication number Publication date
JPWO2007040105A1 (ja) 2009-04-16
JP5156382B2 (ja) 2013-03-06
HK1130509A1 (en) 2009-12-31
EP1939278A4 (en) 2009-06-03
US20100068192A1 (en) 2010-03-18
AU2006298188B2 (en) 2012-03-15
EA016168B1 (ru) 2012-02-28
EP1939278A1 (en) 2008-07-02
CA2623735A1 (en) 2007-04-12
KR101408565B1 (ko) 2014-06-17
EA200800996A1 (ru) 2008-08-29
KR20080056266A (ko) 2008-06-20
CN101400785B (zh) 2013-09-25
TW200741001A (en) 2007-11-01
CN101400785A (zh) 2009-04-01
AU2006298188A1 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5156382B2 (ja) T細胞集団の製造方法
US8975070B2 (en) Process for producing cytotoxic lymphocyte
US8765469B2 (en) Method of producing lymphocytes
JP5805089B2 (ja) 細胞集団の製造方法
WO2011024791A1 (ja) レチノイン酸存在下でのt細胞集団の製造方法
JPWO2007142300A1 (ja) リンパ球の製造方法
JP4741906B2 (ja) リンパ球の製造方法
JP5485139B2 (ja) 遺伝子導入細胞の製造方法
JPWO2008143255A1 (ja) 細胞集団の製造方法
JP2010099022A (ja) リンパ球の製造方法
JP2010063455A (ja) リンパ球の製造方法
JP2010094123A (ja) リンパ球の製造方法
MX2008004225A (es) Metodo para la produccion de una poblacion de celulas t

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044116.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2623735

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11992661

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/004225

Country of ref document: MX

Ref document number: 2006810596

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006298188

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087010395

Country of ref document: KR

Ref document number: 200800996

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2006298188

Country of ref document: AU

Date of ref document: 20060927

Kind code of ref document: A