WO2007040026A1 - 固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池 - Google Patents

固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池 Download PDF

Info

Publication number
WO2007040026A1
WO2007040026A1 PCT/JP2006/318201 JP2006318201W WO2007040026A1 WO 2007040026 A1 WO2007040026 A1 WO 2007040026A1 JP 2006318201 W JP2006318201 W JP 2006318201W WO 2007040026 A1 WO2007040026 A1 WO 2007040026A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid acid
acid salt
salt electrolyte
electrolyte
fuel cell
Prior art date
Application number
PCT/JP2006/318201
Other languages
English (en)
French (fr)
Inventor
Kazumasa Honda
Masayuki Chikatu
Yoshio Akimune
Mitsugu Yamanaka
Makoto Uchiyama
Masaharu Hatano
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Nissan Motor Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Nissan Motor Co., Ltd filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US11/992,818 priority Critical patent/US20090130499A1/en
Priority to EP06810108A priority patent/EP1956618A1/en
Publication of WO2007040026A1 publication Critical patent/WO2007040026A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to activation of a solid acid salt electrolyte used in a large-capacity capacitor and a fuel cell.
  • the surface of the solid acid salt electrolyte is applied in a specific temperature range.
  • the present invention also relates to a method for activating a solid acid salt electrolyte that improves proton conductivity in a solid acid electrolyte by keeping it in a high-humidity atmosphere, a large-capacity capacitor using the same, and a fuel cell.
  • a fuel cell is a system that generates electricity by a chemical reaction between hydrogen and oxygen. Since the reaction product is only water in principle, there is great expectation as an energy source with a small load on the global environment. The development of practical technology for fuel cells has become an urgent social requirement against the background of this growing global recognition. The Ministry of Economy, Trade and Industry's new industry creation strategy “Action Program for Creating New Industries” (2004 (June), the first of four important issues.
  • the preferred operating temperature of the fuel cell is considered to be 100 ° C or higher, particularly 120 ° C or higher, from the viewpoints of energy efficiency and waste heat utilization.
  • a solid acid salt typified by cesium hydrogen sulfate is attracting attention as an electrolyte material that satisfies this temperature condition (see Non-Patent Document 1).
  • cesium hydrogen sulfate undergoes a structural phase transition above 143 ° C and changes to a solid state with high proton conductivity called the superproton conduction phase.
  • this state of the superprotonic conduction phase is obtained. Driving is possible.
  • Non-patent literature l Nature, vol.410, pp.910-913 (2001)
  • Non-Patent Document 2 J. Mater. Sci. Lett., Vol.16, pp.2011-2016 (1981)
  • Non-Patent Document 3 Solid State Ionics, vol.l36-137, pp.229-241 (2000)
  • Non-Patent Document 4 Nature, vol.410, pp.910-913 (2001)
  • a solid acid salt electrolyte fuel cell is used as an in-vehicle power source, for example, it is difficult to use it as a power source at a temperature around room temperature at the time of starting. Therefore, in order to put a solid acid salt electrolyte into practical use, a superprotonic conduction phase (a superprotonic conduction phase is a solid state with a proton conductivity of 10- / cm or more (non-patent It is necessary to develop technology to develop high proton conductivity even below the phase transition temperature to Ref. 4)).
  • the present inventors have conducted intensive research and studied the atmosphere of solid acid salt V.
  • the hydrogen sulfate cesium solution has a strength of about 80 ° C.
  • the 10 ° C force is also 80 ° C, and the surface of the solid acid electrolyte is controlled within the range of 10% to 100%.
  • the cation of the solid acid salt electrolyte is an alkali metal ion.
  • N-um ion, hydrogen ion, and anion can be composed of oxoacid anion.
  • the solid acid salt electrolyte is cesium hydrogen sulfate (CsHSO) or
  • a solid acid salt electrolyte that is cesium dihydrogen phosphate (CsH 3 PO 4) can be used.
  • the present invention is a large-capacity capacitor using a solid acid salt electrolyte that is solid at room temperature and having a cation and anion force. It is one of the large-capacity capacitors that improves proton conductivity in solid acid electrolytes by forcing the surface of the solid acid electrolytes of the pascitor to maintain humidity in the range of 10% to 100%.
  • the present invention uses a solid acid salt electrolyte that is cesium hydrogen sulfate (CsHSO) or cesium dihydrogen phosphate (CsH PO) as the solid acid salt electrolyte of the large-capacity capacitor.
  • CsHSO cesium hydrogen sulfate
  • CsH PO cesium dihydrogen phosphate
  • a moisture retaining material can be placed near the solid acid salt electrolyte of the large capacity capacitor.
  • the present invention relates to a fuel cell using a solid acid salt electrolyte consisting of a cation and an anion, and the surface of the solid acid electrolyte of the fuel cell at a temperature of 10 ° C to 80 ° C.
  • This is a fuel cell that improves proton conductivity in the solid acid salt electrolyte by forcibly maintaining the value in the range of 10% to 100%.
  • the present invention is a cesium hydrogen sulfate (CsHSO) or solid acid salt electrolyte for a fuel cell.
  • CsHSO cesium hydrogen sulfate
  • solid acid salt electrolyte for a fuel cell.
  • CsH 3 PO 4 may be a solid acid salt electrolyte that is cesium dihydrogen phosphate (CsH 3 PO 4).
  • the moisture retaining material can be placed near the solid acid salt electrolyte of the fuel cell.
  • the power generation performance of a type of large capacity capacitor using a solid acid salt electrolyte or a fuel cell using a solid acid salt electrolyte can be dramatically improved.
  • the solid acid salt electrolyte used in the present invention is an inorganic solid acid salt, and the following can be written as ⁇ ⁇ ( ⁇ ).
  • M is a cation.
  • Metal ions such as Cs 2+ and Rb 2+ are mainly used, and may be (NH) + or (H 0) +.
  • H is water
  • Elemental (ion) may be used.
  • a typical example of an anion is an anion (xo) z of oxoacid. Also, (SO) 2 —, (PO) 3 —,
  • Examples of reported proton conduction include CsHSO,
  • a solid acid salt electrolyte is placed in a container capable of high humidification by humidity control, and a steam atmosphere To be exposed to. Alternatively, the humidity is controlled and a gas containing high-concentration water vapor is sent into the solid acid salt electrolyte.
  • the temperature of the solid acid salt electrolyte is set to 10 ° C. to 80 ° C. Even if the temperature is outside this range, there is no effect at all. It was found that it is difficult to generate high humidity at a temperature of 80 ° C or higher, which is a small amount.
  • the solid acid salt electrolyte activation method for improving the proton conductivity in the solid acid salt electrolyte of the present invention includes a conventionally known electrolyte in a large-capacity capacitor and a conventionally known electrolyte in a fuel cell. Therefore, it is possible to improve the characteristics of large capacity capacitors and fuel cells.
  • inorganic substances examples include zeolite, FSM-16 which is a kind of mesoporous material, activated carbon, silica gel, and the like.
  • organic substance is sodium polyacrylate.
  • Figure 1 shows a schematic diagram of the entire system.
  • the size of the sample pellets was 60 ° C to 180 ° C in the following way: 60 ⁇ 80 ⁇ 100 ⁇ 120 ⁇ 130 ⁇ 140 ⁇ 150 ⁇ 160 ⁇ 180 ° C, and finally 40 ° C and room temperature 25 ° C. It was measured. The temperature was measured with a thermocouple sensor placed near the sample. The flow rate of the wet gas was 230 to 240 ml / min. Drying The temperature of the water tank in the humidity generator that publishes and wets N gas depends on the sample temperature.
  • the water temperature was 35 ° C at a sample temperature of 25 ° C, 50 ° C at 40 ° C, and 70 at 60 to 180 ° C.
  • the results are shown in Fig. 2.
  • the conductivity values at 60 ° C and 80 ° C are comparable to those of the high-temperature superprotonic conduction phase.
  • the transition temperature to the superprotonic conducting phase was between 140 and 150 ° C in a dry atmosphere, and a clear difference was observed between 130 and 140 ° C in a force-humidity measurement.
  • FIG. 3 shows the results of electrical conductivity measurements in a dry N gas atmosphere.
  • Table 1 summarizes the specifications of the humidity generator HUM-1 used.
  • Temperature and humidity sensor Capacitive type, maximum operating temperature 100 degrees n c
  • Masuf 1 control port For dry gas. Wet gas (aquarium publishing gas) ffl, stand
  • the sample preparation method and measurement method are almost the same as for CsHSO.
  • the transition temperature to the mouth-ton conduction phase is 230 ° C, which is higher than 143 ° C of CsHSO.
  • Cesium dihydrogen phosphate (CsH PO) sample contains Mitsuwa Chemical's reagent powder (purity 99%
  • CsH PO pellets No.Ol
  • a dry N gas with a flow rate of 500 ml / min was introduced into the sample chamber to create a measurement atmosphere. Measurement temperature is
  • CsH PO is supposed to cause the following dehydration reaction.
  • a new sample pellet No. 02 (diameter 8.1 mm, thickness 3.4 mm, side area 86 mm 2 ) was prepared by attaching a Kapton film on the side of the pellet to be touched.
  • the conductivity was measured in the same dry N gas atmosphere as in Example 4.
  • Measurement temperature is from 50 ° C to 270 ° C
  • Pellet No. 02 after measurement of the dry atmosphere was observed. This is probably due to the thermal expansion of the pellets, but the side of the pellets to which the Kapton film had been attached was in a state in which the part that had been double-laminated by one round was peeled off. The pellet side of the part is dry N gas during measurement.
  • Silver paste was applied to the upper and lower surfaces to form electrodes.
  • N gas containing 70 ° C saturated water vapor produced by Rigaku's humidity generator HUM-1 was introduced into the sample chamber (flow rate 220 ml / mi
  • the measurement temperature was from 50 ° C to 270 ° C, and only the temperature rise was measured. The same temperature rise measurement was repeated three times, and the results for each number of times were compared. The result is shown in FIG.
  • a pellet (No. 04) with a diameter of 8.1 mm, a thickness of 3.4 mm, and a side area of 86 mm 2 was prepared, and silver paste was applied to the upper and lower surfaces to form electrodes.
  • the pellet temperature was maintained at 70 ° C, and the humidity of the N gas used as the sample atmosphere was controlled by a Rigaku humidity generator HUM-1 (flow rate: 200 to 500 ml / min). Relative humidity is 0 ⁇ 10 ⁇
  • the last measured value at each humidity was plotted. The same humidity change measurement was repeated for 3 days with the same sample pellet. Stored in dry N gas at night. In addition, remove the pellets for about 20 days.
  • the humidity was measured for the fourth time after being left in the sicator.
  • the humidity was measured for the fourth time. Compared to the third time, the conductivity power on the low humidity side decreased by more than an order of magnitude. This is probably because the sample pellet was dried.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】 超プロトン伝導相への相転移点以下の温度で固体酸塩のプロトン伝導度を向上させる固体酸塩型電解質の活性化方法を提供する。 【解決手段】 陽イオンと陰イオンからなる固体酸塩型電解質おいて、10°Cから80°Cで、固体酸塩型電解質の表面を、湿度を10%から100%の範囲に強制的に保つことにより、固体酸塩電解質中のプロトン伝導性を向上させる固体酸塩型電解質の活性化方法。    

Description

明 細 書
固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃 料電池
技術分野
[0001] 本発明は、大容量キャパシターや燃料電池に用いられている固体酸塩型電解質の 活性化に関し、固体酸塩型電解質おいて、特定の温度範囲で、固体酸塩型電解質 の表面を、高湿度雰囲気下に保つことにより、固体酸塩電解質中のプロトン伝導性を 向上させる固体酸塩型電解質の活性化方法及びこれを用いた大容量キャパシター 並びに燃料電池に関する。
背景技術
[0002] 燃料電池は水素と酸素の化学反応により発電を行なうシステムである。反応生成物 は原理的には水のみであるため、地球環境に与える負荷が小さいエネルギー源とし て大きな期待が寄せられている。このような世界的認識の高まりを背景として燃料電 池の実用化技術の開発が緊急の社会要請となっており、経済産業省新産業創造戦 略「新産業創出のためのアクションプログラム」(2004年 6月)においても重要 4課題の うち第 1番目に採りあげられている。
燃料電池開発のための重要な技術要素として、高いプロトン伝導能を持つ固体電解 質材料の開発がある。現在、主に実用ィ匕研究が進められているのは、パーフルォロ スルホン酸型陽イオン交換榭脂を用いた固体高分子電解質であるが、耐熱性などの 問題のため、作動温度の上限が 80°C程度までに限られるのが一般的である。
[0003] 一方、燃料電池の作動温度として好ましいのは、エネルギー効率、廃熱利用などの 観点から、 100°C以上、特に 120°C以上と考えられている。この温度条件を満たす電 解質材料として注目されて ヽるのが硫酸水素セシウムを代表とする固体酸塩である( 非特許文献 1参照)。
例えば、硫酸水素セシウムは 143°C付近以上で構造相転移を起こし、超プロトン伝導 相と呼ばれる高いプロトン伝導度を持つ固相状態に変化する。この超プロトン伝導相 の状態を固体電解質材料として利用することにより、好ましい作動状況での燃料電池 運転が可能となる。
この他にも、二硫酸水素三アンモニゥム((NH ) H(SO;) )、燐酸二水素硫酸水素ニセ
4 3 4 2
シゥム (Cs (HSO )(H PO》等、数種類の固体酸塩が同様の超プロトン伝導相を発現
2 4 2 4
することが報告されている (非特許文献 2、非特許文献 3参照)。
[0004] 非特許文献 l : Nature,vol.410, pp.910- 913 (2001)
非特許文献 2 : J. Mater. Sci.Lett., vol.16, pp.2011- 2016 (1981)
非特許文献 3 : Solid State Ionics,vol.l36- 137, pp.229- 241 (2000)
非特許文献 4 : Nature,vol.410, pp.910-913 (2001)
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、超プロトン伝導相へ転移する温度以下では固体酸塩のプロトン伝導度 は低ぐ燃料電池を効率よく動作させることが困難である。このことは、固体酸塩電解 質形燃料電池を例えば車載電源として用いた場合、始動時における室温付近の温 度では電源として利用することが困難であることを意味する。従って、固体酸塩形電 解質を実用化するためには、超プロトン伝導相(超プロトン伝導相とは、 10— /cm以 上のプロトン伝導度を持つ固体状態を 1ヽぅ(非特許文献 4参照) )への相転移温度以 下でも高いプロトン伝導度を発現させるための技術開発が必要である。
課題を解決するための手段
[0006] 上記目的を達成するために本発明者らは鋭意研究を重ね、固体酸塩の雰囲気につ V、て検討した結果、高湿度雰囲気下では室温付近力 80°C付近まで硫酸水素セシ ゥムのプロトン伝導度が飛躍的に増加する現象を発見した。この現象を利用して、湿 度制御を行うことにより超プロトン伝導相への相転移点以下で固体酸塩のプロトン伝 導度を向上させ得る技術を開発した。
すなわち、本発明は、陽イオンと陰イオンカゝらなる固体酸塩型電解質おいて、 10°C 力も 80°Cで、固体酸塩型電解質の表面を、湿度を 10%から 100%の範囲に強制的 に保つことにより、固体酸塩電解質中のプロトン伝導性を向上させる固体酸塩型電 解質の活性ィ匕方法である。
また、本発明において、固体酸塩型電解質の陽イオンが、アルカリ金属イオン、了 ンモ -ゥムイオン、水素イオン、であり、陰イオンが、ォキソ酸陰イオンカゝら構成するこ とがでさる。
さらに、本発明においては、固体酸塩型電解質が、硫酸水素セシウム (CsHSO )又は
4 リン酸二水素セシウム (CsH PO )である固体酸塩型電解質を用いることができる。
2 4
さらに、本発明は、陽イオンと陰イオン力もなる塩であり、常温で固体であるに固体 酸塩型電解質を用いた大容量キャパシターであって、 10°Cから 80°Cで、大容量キヤ パシターの固体酸塩型電解質の表面を、湿度を 10%から 100%の範囲に強制的に 保つことにより、固体酸塩電解質中のプロトン伝導性を向上させる大容量キャパシタ 一である。
ここで、本発明は大容量キャパシターの固体酸塩型電解質として、硫酸水素セシゥ ム (CsHSO )又はリン酸二水素セシウム(CsH PO )である固体酸塩型電解質を用いる
4 2 4
ことができる。また、水分保持物質を大容量キャパシターの固体酸塩型電解質の近く に置くことができる。
さらにまた、本発明は、陽イオンと陰イオンカゝらなる固体酸塩型電解質を用いた燃 料電池において、 10°Cから 80°Cで、燃料電池の固体酸塩型電解質の表面を、湿度 を 10%から 100%の範囲に強制的に保つことにより、固体酸塩電解質中のプロトン 伝導性を向上させる燃料電池である。
ここで本発明は燃料電池の固体酸塩型電解質として、硫酸水素セシウム (CsHSO )又
4 はリン酸二水素セシウム (CsH PO )である固体酸塩型電解質を用いることができる。
2 4
また、水分保持物質を燃料電池の固体酸塩型電解質の近くに置くことができる。 発明の効果
[0007] 本発明の活性化方法により、固体酸塩型電解質を用いるタイプの大容量キャパシタ 一や固体酸塩型電解質を用いるタイプの燃料電池の発電性能を飛躍的に高めるこ とが出来る。
図面の簡単な説明
[0008] [図 1]固体酸塩電解質材料の水蒸気雰囲気 ·温度制御およびプロトン伝導度測定装 置 [図 2]湿潤 Nガス雰囲気での CsHSOペレットの電気伝導率の温度変化
2 4
[図 3]乾燥 Nガス雰囲気での CsHSOペレットの伝導率の温度変化
2 4
[図 4]70°Cにおける相対湿度に対する CsHSOペレットの伝導率の変化
4
[図 5]CsH POペレット(No.01)の乾燥 Nガス雰囲気での温度変化
2 4 2
[図 6]CsH POペレット(Νο·01-Νο·02)の乾燥 Nガス雰囲気での温度変化(1回目)
2 4 2
[図 7]CsH POペレット(No.01-No.02)の乾燥 Nガス雰囲気での温度変化(2回目)
2 4 2
[図 8]CsH POペレット(Νο·01-Νο·02)の乾燥 Nガス雰囲気での温度変化(3回目)
2 4 2
[図 9]CsH POペレット(No.03)の湿潤 Nガス雰囲気での温度変化
2 4 2
[図 10]70°Cにおける相対湿度に対する CsH POペレット(Νο·04)の伝導率の変化
2 4
発明を実施するための最良の形態
[0009] 本発明で用いる固体酸塩形電解質は、無機固体酸塩であり、以下のようなものをい 組成式としては、 Μ Η (ΧΟ )と書くことができまる。
X y n z
Mは陽イオン。 K+,
Cs2+, Rb2+などの金属イオンが主であり、 (NH )+あるいは (H 0)+でも良い。また、 Hは水
4 3
素 (イオン)でも良い。
陰イオンとしては、代表的にはォキソ酸の陰イオン (xo )zを挙げることが出来る。 また、 (SO )2—, (PO )3—,
4 4
(SeO )2", (CIO )—,などがある。
4 4
プロトン伝導が報告されている例としては、 CsHSOの他に、
4
CsH PO ,ΚΗ PO ,KHSO ,ΝΗ HSO ,RbHSO ,CsHSeO ,Rb H(SeO ) ,
2 4 2 4 4 4 4 4 4 3 4 2
(NH ) H(SO ) ,
4 3 4 2
K H(SO ) ,H OC10など数多くある。
3 4 2 3 4
また、陰イオンを二種類以上含む、混酸タイプもあり、
Cs (HSO )(H PO ),
2 4 2 4
Cs (HSO ) [H (PI S )0 ]
3 4 2 2-x -x x 4
と 、つたものが知られて!/、る。
[0010] 湿度制御により高加湿が可能な容器中に固体酸塩形電解質を置き、水蒸気雰囲気 に暴露する。あるいは、湿度を制御し高濃度水蒸気を含んだ気体を固体酸塩形電解 質に送り込む。
本発明において、固体酸塩型電解質の温度を、 10°Cから 80°Cとするのは、この範囲 外の温度でも効果が全く無いわけではないが、 10°C以下であると水分の絶対量が少 なぐ 80°C以上では高湿度の発生が困難であることが判明した。
また、本発明において、固体酸塩型電解質の表面を、湿度を 10%から 100%の範囲 に強制的に保つことが必要である力 湿度を 10%以下では、効果がなぐ 100%以 上でも効果が変わらない。加湿装置としては、湿度を 10%から 100%の範囲に強制 的に保つことができれば何でも良いが、代表的には、湿度発生装置(リガク HUM-1) などを利用することができる。
また、本発明の固体酸塩電解質中のプロトン伝導性を向上させる固体酸塩型電解 質の活性ィ匕方法は、従来知られている大容量キャパシターにおける電解質、従来知 られている燃料電池における電解質にそのまま適用することが出来、大容量キャパシ ター及び燃料電池の特性を向上させることが出来る。
さらに、本発明において用いる水分保持物質としては、無機物でも、有機物でも、 水分を保持できる物質なら何でも良ぐ無機物としては、ゼォライト、メソポーラス材料 の一種である FSM-16、活性炭、シリカゲル等が挙げられ、有機物としては代表的に ポリアクリル酸ナトリウムが挙げられる。
実施例 1
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に 限定されるものではない。
(実施例)
市販の硫酸水素セシウム粉末 0.5g〜2.0gをピストン シリンダー型の金型に入れ、 手動油圧式プレスにより仮圧縮した後静水圧圧縮機により、または手動油圧式プレ スにより圧力 200〜600MPaで数十分間圧縮してペレットを作製した。紙やすりで表面 を研磨した後、電極となる導電性銀ペースト (藤倉化成ドータイト D-500)を塗布した。 試料には吸湿性があるので、作業は乾燥窒素ガスを流したグローブバッグ内で行つ た。この試料ペレットを、白金メッシュを用いた試料ホルダーに挟んだ。メッシュを用い たのは湿潤ガスを試料ペレットまで透過させるためである。導線にも白金を用い、メッ シュの支持体や導線のカバーには耐熱のためにセラミックスを用いた。また、インピ 一ダンス測定に影響がな 、ように締め付けネジは榭脂製を使用した。このホルダー に挟んだ試料ペレットを温度制御可能なオーブン(ァズワン DO-300FPA)に入れ、試 料温度を制御しながら LCRメータ(日置電機 3522 LCRノヽィテスタ)を用いて交流イン ピーダンス測定を行った。周波数掃引測定により複素インピーダンスプロットと呼ばれ る交流伝導度データを得た。湿潤雰囲気を作るためには、湿度発生装置 (リガク HU M-1)によって湿潤窒素ガスを作り出し、そのガスをオーブン内に導入して雰囲気制 御した。この装置は、室温から 70°Cまでで 10RH%〜90RH%の範囲で相対湿度をコ ントロールしたガスを供給することができる。ただし、 80°C以上の高温では高湿度の 発生が困難であった。
装置全体の模式図を図 1に示す。
実施例 2
(湿潤窒素ガス雰囲気での電気伝導率測定)
湿度発生装置により生成した湿潤 Nガスを試料室に導入しての伝導率変化測定を
2
行った。試料ペレットのサイズは、径カ .lmm、厚さが 3.4mm、側面積 86mm2である。 試料温度は、まず 60°Cから 180°Cまでで 60→80→100→120→130→140→150→160 →180°Cのように変化させ、最後に 40°C、室温 25°Cを測定した。温度は試料付近に置 いた熱電対型センサーで測定した。湿潤ガスの流量は、 230〜240ml/minとした。乾 燥 Nガスをパブリングさせて湿潤させる湿度発生装置内の水槽温度を試料温度に応
2
じて変化させ、試料温度 25°Cでは水槽温度 35°C、 40°Cでは 50°C、 60〜180°Cでは 70 でとした。その結果を図 2に示す。
複素インピーダンスプロットの実軸切片より得られる試料の抵抗値 R[W]より、次式を 使い電気伝導率 σ [S/cm]を求めた。 Aは試料の断面積、 Lは試料の厚さである。
[数 1] a = (R x A/L)_1 •室温力 80°Cまでは、乾燥雰囲気と比べて伝導率が大きく上昇する。
•特に 60°Cと 80°Cの伝導率の値は、高温超プロトン伝導相の伝導率に匹敵するもの となっている。
•100°Cから 140°Cでも、相対湿度が低いにも関わらず、明らかに伝導率が上昇してい る。
•一方、 150°C以上では大きな差が見られない。これは、雰囲気ガスの相対湿度が低 いため、ガス中の水分の試料への影響が小さいためと考えられる。
•超プロトン伝導相への転移温度は、乾燥雰囲気では 140〜150°Cの間である力 湿 潤雰囲気測定では 130〜140°Cの間で、明らかな違いが見られた。
比較のため乾燥 Nガス雰囲気での電気伝導率測定の結果を図 3に示す。
2
実施例 3
[0013] 試料の温度を 70°Cに保ち、相対湿度を変化させて伝導率を測定した。試料ペレット のサイズは、径が 14.8mm、厚さ力 l.9mmである。相対湿度は、 0→10→30→50→70→ 80%と変化させた。この相対湿度は、試料付近に置いたセンサーで測定した実測値 である。その結果を図 4に示す。
湿度の上昇と共に伝導率が急激に上昇することが確認された。相対湿度が 70%や 80 %での結果は、乾燥雰囲気での値に比べ 6桁大きぐこれは 143°C以上で出現する超 プロトン伝導相の伝導率に匹敵するものである。
また、参考のため、使用した湿度発生装置 HUM-1仕様を表 1にまとめる。
[0014]
[表 1] 水槽 SUS 製 内容積杓 300ml
水/皿 室温〜最高 70°C
チューブ 全長約 gOcra 保濯常用最 ft 80で
温湿度センサ— 容量型、最高使用温度 100度 nc
校正精度 灕度 ± 1.5¾RH (10- 5%RH)
漏度 i03"C
マスフ口一コント口一 : Dryガス用. Wetガス (水槽パブリングガス) ffl ,台
最大流量 Dryガス 500ml/ miir Weiガス 200mlZmin
湿度制御方式 PiD 制御方式
マスフローコントローラを *|爾し. Dr ガスと Wctガスの J!合比^を 調整
Figure imgf000010_0002
Figure imgf000010_0001
第 1表 制御出力と流量の関係
(7) 発生ガス 湿度範囲 室溢 (25で) 5¾RH-95¾RH
25-40X: 10«RH- 95XRH
60 10%RH-¾)% H
(8) 湿度安定性 投定値に到連後、 ±2 RH以内 (水槽に所定の水量がある場合)
(9) 装置外寸 l^ 285W 350DX 320H
{10) ユーティリティ AC100V ( ± 10%) 5A
氷 «水またはイオン交換水. 約 JOOmlZチャージ ガス 乾燥 «素でポンぺから供 ½されるものを使用して
ください,
0.03MPa «度に減圧し、 外 ft 6mmのパイブが 接 « 能な形で供給してください,
<Π) 環境条件 ;皿 E¾ 15-30 : (変動 ±2 c以内)
湿度 40- 70¾RH (ただし、結露しないこと) 次いで、リン酸二水素セシウム (CsH PO )の電気伝導率測定について具体例を示
2 4
す。試料調製方法、測定方法は CsHSOとほぼ同様であるが、 CsH POの場合、超プ
4 2 4
口トン伝導相への転移温度が 230°Cと、 CsHSOの 143°Cより高いので、測定温度範囲
4
を 270°Cまで拡げて測定した。 実施例 4
(リン酸二水素セシウム(CsH PO )の試料作製)
2 4
リン酸二水素セシウム (CsH PO )試料には、三津和化学薬品の試薬粉末 (純度 99%
2 4
以上)を用いた。手動油圧式プレスにより、粉末の CsH POを 6ton/cm2 (590MPa)の
2 4
圧力で圧縮し、径 8.1mm、厚さ 3.3mm、側面積 83mm2の CsH POペレット(No.Ol)を作
2 4
製した。ペレット上下面に銀ペースト (藤倉化成 ·ドータイト D-500)を塗り電極とした。 (乾燥窒素ガス雰囲気での電気伝導率測定)
リン酸水素セシウム CsH POペレットの室温から 270°Cまでの電気伝導率を、乾燥雰
2 4
囲気で測定した。
試料室に流量 500ml/minの乾燥 Nガスを導入し、測定雰囲気とした。測定温度は
2
室温から 270°Cまでで、昇温のみを測定した。
室温→50→80→110→140→160→180→200→220→230→250→270°Cと温度変化さ せ、各目的温度に設定したのち 10〜40分ほど待ち、インピーダンス値が安定したこと を確認してから交流インピーダンス測定を行った。同一の試料ペレットを用いて、同じ 昇温測定を 3回繰り返した。図 5に結果をまとめた。
昇温 1回目と 2回目の結果を見ると、 220°Cと 230°Cの間に電気伝導率の急激な上昇 がある。これは相転移により 230°C以上では CsH POが超プロトン伝導相となるため、
2 4
伝導率が高くなるものと考えられる。昇温回数ごとの結果を比べると、 1回目、 2回目、 3回目と、全体的に電気伝導率が下がっていくのが分かる。また、相転移前後での伝 導率の飛びが 1回目では 2桁程度なのに対し、 2回目では飛びが小さくなつており、さ らに 3回目では、飛びと言えるほどの上昇がなくなってしまっている。昇温測定を重ね るごとの伝導率の変化は、ペレット中の CsH POが乾燥雰囲気での昇温により脱水分
2 4
解を起こしたためと考えられる。
文献によると、 CsH POは次のような脱水反応を起こすとされている。
2 4
CsH PO→CsPO +H 0(g)
2 4 3 2
昇温 2回目では、それまでの昇温乾燥により、一部の CsH POが脱水分解を起こして
2 4
変質したために、伝導率が全体的に減少し、昇温 3回目ではさらに多くの割合の CsH POが変質してしまい、相転移での伝導率の飛びも見られなくなつたものと考えられ
2 4
る。
実施例 5
(リン酸二水素セシウム (CsH PO )にカプトンフィルムを貼り付けた試料作製)
2 4
実施例 4のペレット No.Olの測定結果より、 3度の乾燥雰囲気中での 270°Cまでの昇 温で、 CsH POが脱水分解を起こしている可能性があることが分力つた。雰囲気に接
2 4
触するペレット側面にカプトンフィルムを貼り付けた新たな試料ペレット No.02 (径 8.1m m、厚さ 3.4mm、側面積 86mm2)を作製した。
(乾燥窒素ガス雰囲気での電気伝導率測定)
実施例 4と同様の乾燥 Nガス雰囲気で伝導率測定を行った。
2
測定中は、流量 500ml/minの乾燥 Nガスを流した。測定温度は 50°Cから 270°Cまでで
2
、昇温のみを測定した。これも同じ測定を 3回繰り返した。図 6〜図 8に、ペレット No.Ol と No.02の測定結果を昇温回数ごとにプロットした。
乾燥雰囲気測定後のペレット No.02を観察した。ペレットの熱膨張が原因だと思わ れるが、カプトンフィルムを貼り付けたペレット側面は、 1周して二重に貼り合わせた部 分がはがれた状態になっていた。その部分のペレット側面は、測定中乾燥 Nガスの
2 影響を直接受けていたようで、測定後の No.Olの側面と同様に変色し、凹凸が生じて いた。それに対し、カブトンが最後まで貼り付いていた部分は、はがれた部分に比べ 変色や凹凸が少な力つた。
ペレット No.02でも、昇温回数を重ねていくと電気伝導率が全体的に下がっていくの は No.Olの結果と同様で、相転移温度以下での伝導率については No.Olの昇温 2回 目、 3回目の結果と No.02の 2回目、 3回目の結果に大きな差はない。し力し、 No.Olで は 2回目の昇温で相転移での伝導率の飛び力 回目に比べ明らかに小さくなつたの に対し、 No.02では昇温 2回目でも 1回目と同程度の 2桁の飛びがあることが分かる。 昇温 3回目で、 No.02の相転移での伝導率の飛びは 1桁程度に小さくなつた力 No.Ol の昇温 3回目では飛びが見られなくなつたことを考えれば、結果の違いは明らかであ る。
このペレット No.Olと No.02の結果の違いは、 CsH POの脱水分解の速さの違いによ るものと考えることができる。ペレット側面にカプトンを卷きつけることによって、側面が 乾燥雰囲気に直接触れることがなくなつたため、温度上昇による水分の離脱が抑えら れ、残存する CsH POの割合が増加したためと考えられる。雰囲気と触れる面をなん
2 4
らかの方法で保護することは、 CsH POの劣化を遅らせるのに有効な手段であると思
2 4
われる。 実施例 6
[0017] (リン酸二水素セシウム(CsH PO )の試料作製)
2 4
径 8.1mm、厚さ 3.35mm、側面積 86mm2の CsH POペレット(No.03)を作製し、ペレット
2 4
上下面に銀ペーストを塗り電極とした。
次に、湿潤雰囲気中での電気伝導率を測定した。 CsHSO
4の場合と同様、室温相 の、特に室温付近での伝導率向上効果を期待した。リガク製湿度発生装置 HUM-1 によって生成した 70°Cの飽和水蒸気を含む Nガスを試料室に導入し (流量 220ml/mi
2
n)、測定温度は 50°Cから 270°Cまでで、昇温のみを測定した。同じ昇温測定を 3回繰 り返し、回数ごとの結果を比較した。この結果を図 9に示す。
図 5と比較すると明らかなように、 50°Cから 160°C付近までで伝導率の上昇が見られ た。特に 50〜80°C付近では 4桁以上増加した。
乾燥雰囲気での昇温測定では、全体的に電気伝導率が下がっていくことから、昇温 2回目ですでに CsH POの脱水分解が始まっていたと考えられる。しかし湿潤窒素ガ
2 4
ス雰囲気での測定では、昇温 3回目まで伝導率が大きく下がるということがなぐほぼ 同様のふるまいを示す。これは、湿潤ガスにより水分を供給しているために、高温に しても CsH POが脱水分解をほとんど起こさなくなつているためと考えることができる。
2 4
実施例 7
[0018] (リン酸二水素セシウム(CsH PO )の試料作製)
2 4
径 8.1mm、厚さ 3.4mm、側面積 86mm2のペレット(No.04)を作製し、上下面に銀ペース トを塗り電極とした。
(湿潤窒素ガス雰囲気での電気伝導率測定: 70°C相対湿度変化) 温度一定のもとで相対湿度を変化させた場合の、 CsH POペレットの電気伝導率を
2 4
測定した。ペレットの温度を 70°Cに保持し、リガク製湿度発生装置 HUM-1により試料 雰囲気とする Nガスの湿度を制御した(流量 200〜500ml/min)。相対湿度は 0→10→
2
30→50→70→80%と変化させ、各湿度で 60〜90分保持し、 30分おきに伝導率測定 を行った。
各湿度で最後に測定した値をプロットした。同じ湿度変化測定を同一の試料ペレット で 3日間繰り返した。夜間は乾燥 Nガス中で保存した。さらに、ペレットを 20日間程デ
2
シケータ内に放置した後に湿度変化 4回目の測定を行った。
この結果を図 10に示す。
図 10において相対湿度変化測定の結果を比べてみると、湿度変化 4回とも、相対 湿度の上昇とともに電気伝導率が上昇し、湿度 80%では 10— 3S/cm近くの値まで上昇 することが分力ゝる。
また、湿度変化 3回目まで低湿度側の伝導率が回数ごとに徐々に上昇している。湿 度変化測定 1回が終わるごとに、室温まで戻して一晩乾燥 N
2ガスを流してペレットを 乾燥状態に置いた力 Nガス流量が小さ力 たためにペレットが乾燥しきらな力つた
2
可能性がある。
そこで、ペレットを 20日間ほどデシケータ内で室温 ·乾燥状態に置いた後、湿度変化 4回目の測定を行った。 3回目に比べ低湿度側の伝導率力 ^桁以上下がった。試料べ レットが乾燥したためと考えられる。
し力し、湿度変化させる前の初めの値までは下がらなかった。一度湿らせた CsH PO
2 4 は、室温の乾燥雰囲気に置いた状態では、なかなか乾燥しきらないものと考えられる
。なお、湿度変化 4回目の 80%における伝導率力 1〜3回目に比べてやや下がって 、るように見える。
湿潤雰囲気測定後の試料ペレットを観察したところ、ペレット側面が測定前に比べ ややざらついた感じになっていたが、大きな凹凸などはできておらず、測定前の円筒 形をほぼ保って 、た。ペレットは合計で 26時間ほど湿潤雰囲気にさらされて 、たわけ だが、これを見た限り、 CsH POは、湿潤雰囲気での安定性が比較的高いようである
2 4
。乾燥雰囲気測定では、数回の昇温だけで力なりの割合の CsH POが脱水分解を起 こしてしまうことを考え合わせると、水分の供給により高温での脱水分解に対する耐久 性が向上すると考えられる。
また、これらの結果を総合的に判断すると、デシケータで強制的に水分を除去する ことをやめるだけで、ある程度の水分は残存することが確認でき、湿潤ガスを直接供 給しなくても、水分保持物質をペレット近くに置くことにより、その物質力もの水分供給 によって、 CsHSO または CsH POの電気伝導率が上昇することが判った。
4 2 4
産業上の利用可能性
適切な加湿システムと組み合わせることにより、固体酸塩形電解質を用いた燃料電 池の実用化技術が提供される。電池始動時は加湿システムの補助により、高いプロト ン伝導能を発現させ電池反応を効率よく進行させる。反応開始後は反応熱により電 解質が加温され、超プロトン伝導相への転移を自発的に引き起すことができ、ェネル ギー効率 ·廃熱利用効率が高い温度領域での燃料電池運転が可能となる。産業上 の利用価値が高 、ものである。

Claims

請求の範囲
[1] 陽イオンと陰イオンカゝらなる固体酸塩型電解質おいて、 10°Cから 80°Cで、固体酸 塩型電解質の表面を、湿度を 10%から 100%の範囲に強制的に保つことにより、固 体酸塩電解質中のプロトン伝導性を向上させる固体酸塩型電解質の活性化方法。
[2] 固体酸塩型電解質の陽イオンが、アルカリ金属イオン、アンモ-ゥムイオン、水素ィ オン、であり、陰イオンが、ォキソ酸陰イオン力も構成された請求項 1に記載した固体 酸塩型電解質の活性化方法。
[3] 固体酸塩型電解質が、硫酸水素セシウム (CsHSO )又はリン酸二水素セシウム (CsH
4 2
PO )である固体酸塩型電解質を用いる請求項 1に記載した固体酸塩型電解質の活
4
性化方法。
[4] 陽イオンと陰イオン力もなる固体酸塩型電解質を用いた大容量キャパシターであって 、 10°Cから 80°Cで、大容量キャパシターの固体酸塩型電解質の表面を、湿度を 10 %から 100%の範囲に強制的に保つ装置により、固体酸塩電解質中のプロトン伝導 性を向上させることを特徴とする大容量キャパシター。
[5] 固体酸塩型電解質が、硫酸水素セシウム (CsHSO )又はリン酸二水素セシウム (CsH
4 2
PO )である固体酸塩型電解質を用いる請求項 4に記載した大容量キャパシター。
4
[6] 水分保持物質を大容量キャパシターの固体酸塩型電解質の近くに置くことを特徴と する請求項 4又は請求項 5に記載した大容量キャパシター。
[7] 陽イオンと陰イオン力もなる固体酸塩型電解質を用いた燃料電池であって、 10°Cか ら 80°Cで、燃料電池の固体酸塩型電解質の表面を、湿度を 10%から 100%の範囲 に強制的に保つ装置により、固体酸塩電解質中のプロトン伝導性を向上させることを 特徴とする燃料電池。
[8] 固体酸塩型電解質が、硫酸水素セシウム (CsHSO )又はリン酸二水素セシウム (CsH
4 2
PO )である固体酸塩型電解質を用いる請求項 7に記載した燃料電池。
4
[9] 水分保持物質を燃料電池の固体酸塩型電解質の近くに置くことを特徴とする請求項 7又は請求項 8に記載した燃料電池。
PCT/JP2006/318201 2005-09-30 2006-09-13 固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池 WO2007040026A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/992,818 US20090130499A1 (en) 2005-09-30 2006-09-13 Method for Activating Solid Acid Salt, High-Capacity Capacitor and Fuel Cell, Using Same
EP06810108A EP1956618A1 (en) 2005-09-30 2006-09-13 Method for activating solid acid salt, high-capacity capacitor using same, and fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005289265 2005-09-30
JP2005-289265 2005-09-30
JP2006-215563 2006-08-08
JP2006215563A JP2007123833A (ja) 2005-09-30 2006-08-08 固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池

Publications (1)

Publication Number Publication Date
WO2007040026A1 true WO2007040026A1 (ja) 2007-04-12

Family

ID=37906070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318201 WO2007040026A1 (ja) 2005-09-30 2006-09-13 固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池

Country Status (4)

Country Link
US (1) US20090130499A1 (ja)
EP (1) EP1956618A1 (ja)
JP (1) JP2007123833A (ja)
WO (1) WO2007040026A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278968A (ja) 2007-05-08 2008-11-20 Fujinon Corp 内視鏡用挿入補助具
CA2719585A1 (en) * 2008-03-24 2009-10-01 Sanyo Electric Co., Ltd. Membrane-electrode assembly, fuel cell, and fuel cell system
KR101883330B1 (ko) 2009-09-30 2018-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레독스 커패시터 및 그 제작 방법
KR101837103B1 (ko) * 2009-09-30 2018-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전기화학 커패시터
FR3056821B1 (fr) * 2016-09-29 2018-11-23 Paris Sciences Et Lettres - Quartier Latin Super-condensateur a electrolyte perfectionne

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176313A (ja) * 1993-12-21 1995-07-14 Mitsubishi Heavy Ind Ltd 燃料電池システム
JP2004537834A (ja) * 2001-08-01 2004-12-16 カリフォルニア・インスティテュート・オブ・テクノロジー 電気化学デバイスのための固体酸電解質

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468684B1 (en) * 1999-01-22 2002-10-22 California Institute Of Technology Proton conducting membrane using a solid acid
GB2412784B (en) * 2002-01-18 2006-08-23 Intelligent Energy Ltd Fuel cell oxygen removal and pre-conditioning system
US7183370B2 (en) * 2003-09-11 2007-02-27 Toyota Technical Center Usa, Inc Phosphonic-acid grafted hybrid inorganic-organic proton electrolyte membranes (PEMs)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176313A (ja) * 1993-12-21 1995-07-14 Mitsubishi Heavy Ind Ltd 燃料電池システム
JP2004537834A (ja) * 2001-08-01 2004-12-16 カリフォルニア・インスティテュート・オブ・テクノロジー 電気化学デバイスのための固体酸電解質

Also Published As

Publication number Publication date
JP2007123833A (ja) 2007-05-17
US20090130499A1 (en) 2009-05-21
EP1956618A1 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
Huang et al. Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for High‐Performance Lithium Storage
Su et al. Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors
Park et al. Capacitive deionization using a carbon electrode prepared with water-soluble poly (vinyl alcohol) binder
US3276910A (en) Ion transfer medium for electrochemical reaction apparatus
WO2007040026A1 (ja) 固体酸塩の活性化方法及びこれを用いた大容量キャパシター並びに燃料電池
CA2989329A1 (en) Water solvated glass/amorphous solid ionic conductors
Prikhno et al. Hybrid materials based on perfluorosulfonic acid membrane and functionalized carbon nanotubes: Synthesis, investigation and transport properties
Huang et al. H x MoO 3− y nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices
Lv et al. Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture
Virya et al. Na2SO4‐Polyacrylamide Electrolytes and Enabled Solid‐State Electrochemical Capacitors
Likitchatchawankun et al. Heat generation in all-solid-state supercapacitors with graphene electrodes and gel electrolytes
JP5083653B2 (ja) 電気化学的エネルギー変換デバイス用電解質体、これを用いた固体酸塩型電解質体の活性化方法及び大容量キャパシター並びに燃料電池
CN101629927A (zh) 多孔氧化铝膜湿敏传感器的制备方法
JP5167981B2 (ja) 電極材用活性炭および蓄電装置
JP4836172B2 (ja) 金属酸化物ナノポーラス材料からなるプロトン伝導体、同伝導体を用いた燃料電池の電解質又はプロトン伝導性デバイス及び同伝導体の製造方法
Lim et al. Hydrovoltaic electricity generator with hygroscopic materials: A review and new perspective
WO2007083835A1 (ja) リン酸塩金属含有複合体とそれからなる緻密体
Gromadskyi et al. Cyclic voltammetric study of tin hexacyanoferrate for aqueous battery applications
Awad Almofleh et al. The development of novel cost‐effective bio‐electrolyte with glycerol host for carbon‐based flexible supercapacitor applications
Khan Synthesis, characterization, thermal behaviour and transport properties of polyvinyl chloride based zirconium phosphate composite membrane
Yao et al. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption
Ghosh et al. Portable smart highly proton conductive all inorganic gel paste electrolyte with optimum phosphorous to silicon ratio for enhanced durable operation of a fuel cell
JP4844864B2 (ja) イオン伝導体及びエネルギーデバイス
Giraldo et al. Immersion enthalpy variation of surface-modified mineral activated carbon in lead (II) aqueous solution adsorption: the relation between immersion enthalpy and adsorption capacity
Zhu et al. In-situ electric swing adsorption enabling superior water vapor capture of salt-based carbon fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006810108

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11992818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE