WO2007037241A1 - ずり測定方法及びその装置 - Google Patents

ずり測定方法及びその装置 Download PDF

Info

Publication number
WO2007037241A1
WO2007037241A1 PCT/JP2006/319103 JP2006319103W WO2007037241A1 WO 2007037241 A1 WO2007037241 A1 WO 2007037241A1 JP 2006319103 W JP2006319103 W JP 2006319103W WO 2007037241 A1 WO2007037241 A1 WO 2007037241A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
shear
resonance
twin
curve
Prior art date
Application number
PCT/JP2006/319103
Other languages
English (en)
French (fr)
Inventor
Kazue Kurihara
Hiroshi Sakuma
Masashi Mizukami
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to CN2006800361588A priority Critical patent/CN101278184B/zh
Priority to US12/088,046 priority patent/US7845231B2/en
Priority to JP2007537629A priority patent/JP4615568B2/ja
Priority to EP06810594.9A priority patent/EP1942331A4/en
Publication of WO2007037241A1 publication Critical patent/WO2007037241A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing

Definitions

  • the present invention relates to a shear measurement method and apparatus capable of performing a desired measurement between two solid surfaces or a thin film between them, whether transparent or opaque, and more specifically, ( 1) Quick, simple, general-purpose and precise resonance shear measurement method and apparatus for measuring easily changing film thickness and highly volatile liquid film, etc. (2) Distance between surfaces by twin-pass interference method
  • the present invention relates to a measuring method and apparatus for measuring shear stress between a liquid thin film 'liquid crystal thin film' and a polymer adsorbing layer, etc., by changing the distance between two solid surfaces at a nanometer level by measurement.
  • Knowing the shear response of a sample (liquid 'liquid crystal', etc.) sandwiched between solid surfaces along with the change in film thickness at the nanometer level means that the friction between the solid surfaces and the orientation of the liquid crystal molecules Important in understanding and control.
  • the surface of one side is vibrated in the horizontal direction to give shear to the sample, and the response is monitored near the resonance frequency.
  • a plot of this shear response as a function of frequency is the resonance curve.
  • the resonance frequency and the height of the resonance peak are sensitive to the physical properties of the sample between the solid surfaces, and are also resistant to vibration noise from outside the measuring device.
  • Patent Document 1 proposes a precise shear stress measuring device.
  • Patent Document 1 Japanese Patent No. 3032152
  • Non-patent document 1 Liquid crystal 6th issue 1 p34-41 2002 [0005] (2) Second, the inventor of the present application has already proposed a precision shear stress measurement device capable of measuring a rheological behavior in a nanometer-scale minute space with high accuracy (see Patent Document 2 below). See).
  • Patent Document 2 Japanese Patent No. 3032152
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-108603
  • the twin-pass surface force measuring device measures the force acting on the upper and lower surfaces, and cannot measure shear.
  • An object of the present invention is to provide a shear measurement method and apparatus capable of performing desired measurement regardless of whether the sample is transparent or opaque.
  • the first object of the present invention is to obtain a resonance shear curve by Fourier-transforming the vibration attenuation curve of one side surface of a sample in the measurement of the shear response of the sample. It is to provide a resonance shear measurement method capable of performing measurement.
  • the second object of the present invention is to perform accurate shear stress measurement using a twin-pass method that can measure the distance between substrates when the substrate or the sample is opaque. The purpose is to provide a twin-pass type shear stress measurement method and apparatus capable of performing the same.
  • the present invention provides
  • the input signal U is driven horizontally by the resonance shear measurement unit.
  • the output signal u is input to the resonance shear measurement device, and the resonance shear measurement unit solid
  • the input signal U is driven horizontally by the resonance shear measurement unit.
  • the vibration on one side of the sample is detected as an output signal u with a displacement meter.
  • the input signal U together with the output signal U is input to the resonance shear measuring device,
  • a resonance shear measurement method for measuring a shear response of the sample of the resonance shear measurement unit together with a change in film thickness comprising: Fourier transforming a vibration attenuation curve of one surface of the sample to obtain a resonance shear curve.
  • the sample is a thin film.
  • the sample is a liquid.
  • the sample has a nano-sized thickness.
  • the resonance shear curve is a frequency characteristic of a shear response of the sample.
  • a waveform generator a power source connected to the waveform generator, a resonance shear measurement unit connected to the power source and receiving an input signal U, and connected to the resonance shear measurement unit
  • a resonance shear measuring device that is out in, a time measuring unit, a Fourier transform unit connected to the time measuring unit and the displacement meter, an amplitude spectrum generating unit connected to the Fourier transform unit, and an amplitude (u Zu ) Standard part and resonance shear curve creation part, and further, the waveform generator and resonance out in
  • twin-pass type shear stress measurement method laser light is irradiated to a mirror attached to the bottom surface of the lower surface holder of the sample, and the distance between the surfaces of the sample is displaced from the phase change of the reflected light from the mirror It is characterized in that the shear stress of the sample is measured by combining the twin-pass surface distance measurement method for measuring the sample and the measurement method for measuring the viscoelasticity and frictional / lubricating characteristics of the sample by the resonance curve force.
  • a twin-pass type shear stress measuring device a precision shearing device for horizontally displacing the upper surface holder of the sample, and a displacement meter for detecting the horizontal displacement of the upper surface holder of the sample
  • a lower surface fixing unit of the sample which has a plate panel force holding a lower surface holding body of the sample at the tip and a mirror disposed on the bottom surface of the lower surface holding body, and the lower surface fixing unit
  • the viscoelasticity and friction'lubricating characteristics of the sample are measured based on a resonance curve of the sample.
  • the sample is a transparent sample or an opaque sample.
  • the sample is a liquid thin film.
  • the sample is a liquid crystal thin film.
  • the sample is an adsorption layer chemistry modified film such as a polymer surfactant. To do.
  • FIG. 1 is a schematic diagram of a resonance shear measurement system showing an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a resonance shear measurement unit of the resonance shear measurement system according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a partial configuration of a resonance shear measurement unit of a resonance shear measurement system showing a modification of the present invention.
  • FIG. 4 is a resonance shear measurement flowchart showing an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a damped vibration of the surface on one side when a sample is set in the resonance shear measurement unit according to the present invention and measured.
  • FIG. 6 is a diagram showing a resonance shear curve obtained by Fourier transform of the damped vibration shown in FIG. 5 according to the present invention and each curve obtained by a conventional method.
  • FIG. 7 is a schematic view of a twin-pass type shear stress measuring apparatus showing another embodiment of the present invention.
  • FIG. 8 is a schematic view of a sample used for showing an application example of a twin-pass type shear stress measuring apparatus showing another embodiment of the present invention.
  • FIG. 9 is a chemical formula of liquid crystal (4-cyano-4-hexyl biphenyl, 6CB) as a sample sandwiched between mica surfaces according to another example of the present invention.
  • FIG. 10 shows a liquid crystal (4 cyano-4 hexyl biph) as a sample showing another embodiment of the present invention.
  • FIG. 6 is a diagram showing the results of measuring enyl, 6CB) with the twin-pass type shear stress measuring device of the present invention.
  • the first resonance shear measuring method and apparatus of the present invention measure the resonance shear of the input signal U.
  • the output signal u out is input to the resonance shear measurement device, and the shear response of the sample sandwiched between the solid surfaces of the resonance shear measurement unit is measured along with the change in film thickness. Then, the vibration attenuation curve on one surface of the sample is Fourier transformed to obtain a resonance shear curve.
  • a second twin-pass type shear stress measuring device of the present invention includes a precision shear device that horizontally displaces the upper surface of a sample, and a displacement meter that detects the displacement of the upper surface of the sample in the horizontal direction.
  • the lower surface fixing unit of the sample which is a plate panel force provided with a mirror disposed on the bottom surface, holding the lower surface of the sample at the tip, and the lower surface of the sample A by driving the lower surface fixing unit A driving device that drives the surface up and down, and a twin-pass inter-surface distance measurement unit that measures the distance between the upper surface of the sample A and the lower surface of the sample based on the phase change of the reflected light from the mirror; Measure the viscoelastic and tribological properties of the sample for each distance between the upper surface of the sample and the lower surface of the sample.
  • FIG. 1 is a schematic diagram of a resonance shear measurement system showing an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an example of the resonance shear measurement unit.
  • 1 is a waveform generator
  • 2 is a power source connected to the waveform generator
  • 3 is connected to a power source 2
  • an input voltage U as an input signal
  • Resonance shear measurement unit to which in is input, 4 is a displacement meter connected to the resonance shear measurement unit 3, for example, a capacitance displacement meter, 5 is connected to the capacitance displacement meter 4 and the power source 2, and the output signal
  • This is a resonance shear measurement device to which the output voltage U and the input voltage U are input.
  • the resonance shear measuring device 5 includes a time measuring unit 5A, a Fourier transform unit 5B, and an amplitude spectrum generating unit 5C. Amplitude (U ZU) standard part (U ( ⁇ ) and U standard part) 5D and resonance shear curve creation out in in out
  • Part 5E power also becomes.
  • 6 is a personal computer (PC) 6 connected to the resonance shear measuring device 5, and this personal computer (PC) 6 is connected to the waveform generator 1! Note that a strain gauge may be used as the displacement meter.
  • 10 is a resonance shear measurement unit (corresponding to resonance shear measurement unit 3 in FIG. 1)
  • 11 is a cantilever
  • 12 is a disk holder
  • 13 is white light
  • 14 is fixed on the disk holder 12.
  • the lower substrate, 15 is a four-part piezo element as a horizontal drive unit that drives the upper surface in the horizontal direction
  • 16 is an upper substrate fixed to the bottom of the four-part piezo element
  • 17 supports the four-part piezo element 15 It is a panel board.
  • 18 is a capacitance displacement meter (probe) that measures the horizontal displacement ⁇ X of the plate panel 17 (corresponding to the capacitance displacement meter 4 in Fig. 1)
  • 19 is a sample (solid, liquid) that is subject to shear response measurement. , Liquid crystal, etc.).
  • the liquid may be a variety of solutions including a two-component or more micelle colloidal dispersion system consisting of only a single component.
  • a motor may be used as the horizontal
  • FIG. 3 is a schematic diagram of a partial configuration of a resonance shear measurement unit of the resonance shear measurement system showing a modification of the present invention.
  • the substrates themselves are samples 21 and 22, and the friction between the sample (substrate) 21 and the sample (substrate) 22 does not hold the sample between the substrates as shown in FIG. Lubrication) is measured.
  • FIG. 4 is a flowchart of the resonance shear measurement.
  • step S4 Get the output voltage U and elapsed time (step S4).
  • step S5 Perform Fourier transform
  • the horizontal axis represents elapsed time
  • the vertical axis represents vibration amplitude
  • is the angular frequency
  • F (co) is the obtained Fourier spectrum
  • f (t) is the damped oscillation
  • t is the time.
  • FIG. 6 is a diagram showing a resonance shear curve obtained by Fourier transform of the damped vibration shown in FIG. 5 according to the present invention and each curve obtained by a conventional method.
  • the horizontal axis represents the frequency of the surface on one side of the sample, and the vertical axis represents the vibration amplitude.
  • the conventional method is a method of measuring the response of one side surface to each vibration frequency point by point.
  • Figure 6 shows that the present invention can measure well the response of one side of the surface to frequency and continuously measures the response of one side of the sample to a wide range of vibration frequencies in a short time.
  • a sample solid, liquid, liquid crystal, etc.
  • the strength of the bond with can be evaluated. It is also possible to measure the friction (lubrication) characteristics of each other with the substrate itself as a sample and no sample in between.
  • the surface can be modified by adsorption or chemical modification [LB (Langmuir Brochette) modification].
  • the frequency response of the sample can be measured by vibrating the surface of one side not only in the horizontal direction but also in the direction perpendicular to the surface.
  • twin-pass type shear stress measurement according to another embodiment of the present invention will be described.
  • FIG. 7 is a schematic diagram of a twin-pass type shear stress measuring apparatus showing an embodiment of the present invention.
  • 31 is a resonance shear measurement unit
  • 32 is a four-divided piezo element that drives the upper surface in the horizontal direction
  • 33 is a plate panel that supports the four-divided piezo element 32
  • 34 is a horizontal plate panel 33.
  • a capacitance displacement meter (probe) 35 for measuring the directional displacement ⁇ X is an upper substrate fixed to the bottom of the four-divided piezo element 3 2.
  • the unit 40 for fixing the lower surface holder 42 of the sample A holds the lower surface holder 42 of the sample A at the tip of the plate panel 41, and a mirror on the lower surface of the lower surface holder 42. 43 is arranged.
  • the base of the panel panel 41 is provided with a drive device (for example, a motor (not shown)) that drives the panel panel 41 up and down.
  • 51 is a twin-pass inter-surface distance measuring device, which includes a laser light source 52, a diffraction grating 53 that receives laser light from the laser light source 52 and separates it into measurement light and reference light, and the diffraction grating Piezo element 54 for adjusting 53, lens 55 for receiving light from diffraction grating 53, fixed mirror 56 for receiving reference light as a part of the laser light, and reference light reflected by this fixed mirror 56 And a diffraction grating 57 that receives the measurement light reflected by the mirror 43 provided on the bottom surface of the lower surface holder 52 of the sample A through the lens 55 again, and a photodiode 58 that receives the light from the diffraction grating 57, And a personal computer 59 connected to the piezo element 54 and the photodiode 58.
  • the change in the distance between the surfaces sandwiching the sample A is measured by the twin-pass surface distance measuring device 51, and the upper surface of the sample A is attached to the precision shear resonance measurement unit 31.
  • the viscoelasticity and friction 'lubrication characteristics of the sample it is possible to accurately measure shear stress.
  • FIG. 8 is a schematic diagram of a sample used to show an application example of the twin-pass type shear stress measuring device of the present invention
  • Fig. 9 shows a liquid crystal (4-cyano-4-hexyl biphenyl, 6CB) as the sample.
  • FIG. 10 is a diagram showing a resonance curve obtained by measuring a liquid crystal (4-cyano-4-hexyl biphenyl, 6CB) as a sample with the twin-pass type shear stress measuring apparatus of the present invention.
  • mica 62 and 63 are arranged above and below a liquid crystal (4-cyano-4-hexyl biphenyl, 6CB) 61 as a sample. That is, the liquid crystal 61 as a sample is disposed between the mica 62 as the upper substrate 35 and the mica 63 as the lower surface holder 42.
  • the horizontal axis is the angular frequency (s- 1 ) of the upper surface of the sample
  • the vertical axis is the input voltage (U) to the piezoelectric element of the precision shear resonance measurement unit and measured with a capacitance displacement meter.
  • the solid line next to the distance between the sample surfaces indicates the resonance peak at that distance.
  • the distance between the surfaces was defined as Onm where the distance between the surfaces did not change when the lower surface holder was driven upward by the driving device. As the distance between the surfaces changed, the resonance curve changed. There are multiple Onm peaks when the distance between the surfaces is constant and the load changes.
  • a sample liquid, solid, liquid crystal, etc.
  • the viscoelasticity change, friction 'lubrication characteristics of the sample and the sample and solid substrate are changed while changing the thickness.
  • the strength of the bond with can be evaluated. It is also possible to measure the friction (lubrication) characteristics of each other without using a sample as a sample.
  • the surface can be modified by adsorption or chemical modification [LB (Langmuir-Projet method)].
  • the distance between the surfaces can be measured, and the viscoelasticity and frictional / lubricating characteristics of the sample can be measured at each distance.
  • the first resonance shear measuring method of the present invention is particularly suitable for simple and accurate measurement of the properties of a liquid thin film having a nanometer-level thickness between solid surfaces.
  • the second twin-pass type shear stress measuring device of the present invention is a twin-pass type shear stress measuring device capable of performing precise shear stress measurement using a twin-pass method for measuring the distance between opaque substrates. Like the first resonance shear measurement method, it is suitable for simple and accurate measurement of the properties of a liquid thin film having a nanometer-level thickness between solid surfaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

 試料のせん断応答の測定において、試料の片側表面の振動の減衰曲線をフーリエ変換し、共振ずり曲線を得ることにより、その簡便な短時間測定を行うことができる共振ずり測定方法を提供する。  入力信号Uinを共振ずり測定ユニットの水平駆動部に入力し、該共振ずり測定ユニットにおける固体表面に挟まれた試料の片側表面の振動を変位計で出力信号Uoutとして検出し、前記入力信号Uinとともに、前記出力信号Uoutを共振ずり計測装置に入力し、前記共振ずり測定ユニットの固体表面に挟まれた試料のせん断応答を膜厚の変化と共に計測する共振ずり測定方法であって、前記試料の片側表面の振動の減衰曲線をフーリエ変換部(5B)でフーリエ変換し、共振ずり曲線を得る。  また、不透明基板間の距離を測定できるツインパス法を用いて精密なずり応力測定を行うことができるツインパス型ずり応力測定装置を提供する。

Description

明 細 書
ずり測定方法及びその装置
技術分野
[0001] 本発明は、透明または不透明のいずれであっても 2つの固体表面間あるいはその 間の薄膜について所望の測定ができるずり測定方法及びその装置に係り、より具体 的には、特に、(1)容易に厚みが変化する膜や揮発性の高い液体膜などの測定を行 う迅速、簡便、汎用かつ精密な共振ずり測定方法及びその装置、(2)ツインパス型干 渉法による表面間距離計測により、ナノメートルレベルで二つの固体表面の間隔を 変え、間に挟んだ液体薄膜'液晶薄膜'高分子吸着層などとの間のずり応力を測定 する測定方法及びその装置に関するものである。
背景技術
[0002] (1)まず第 1に、
固体表面に挟まれた試料 (液体'液晶など)のせん断応答をナノメートルレベルの 膜厚の変化と共に知ることは、固体表面間の摩擦'潤滑および液体'液晶分子の配 向 ·構造ィ匕の理解及び制御において重要である。試料のせん断応答を測定する共 振ずり測定は、片側表面を水平方向に振動させて試料にせん断を与え、その応答を 共振周波数付近でモニターするものである。このせん断応答を周波数の関数として プロットしたものが共振曲線となる。共振周波数および共振ピークの高さは固体表面 間の試料の物性に敏感で、測定装置外部からの振動ノイズにも強 、。
[0003] 従来、固体表面に挟まれた試料のせん断応答を精密に知るために、共振周波数付 近で周波数を変えながら試料のせん断応答を測定し、周波数に対してプロットした共 振ずり曲線を得ることが行われてきた。このような技術は、例えば、下記非特許文献 1 に開示されている。
[0004] また、本願発明者による提案である精密ずり応力測定装置 (下記特許文献 1)が提 案されている。
特許文献 1:特許第 3032152号公報
非特許文献 1 :液晶 第 6卷 第 1号 p34-41 2002 [0005] (2)第 2に、本願発明者は、既にナノメートルスケールの微小空間でのレオロジ一挙 動を高精度に測定可能な精密ずり応力測定装置を提案している(下記特許文献 2参 照)。
[0006] また、光が透過不能な試料であっても試料間の表面力を高い精度で測定することが できる表面力測定装置及びその方法を提案して!/、る (下記特許文献 3参照)。
特許文献 2:特許第 3032152号公報
特許文献 3:特開 2001— 108603号公報
発明の開示
[0007] し力しながら、上記(1)の従来の技術は、振動周波数を変化させながら共振周波数 付近で試料のせん断応答を測定するため、試料の膜厚を長時間一定に保つことが 必要であり、容易に厚みが変化する膜や揮発性の高い液体薄膜の測定は困難であ るといった問題があった。
[0008] また、上記 (2)の従来の技術としては、表面間距離を分解能 0. 1ナノメートルで測 定しながら表面に挟まれた試料の粘弾性および摩擦'潤滑特性を測定するためには 、等色次数干渉縞 (FECO)を用いた光干渉法による表面間距離測定とずり共振測 定装置を組み合わせる手法がとられて 、る。この手法は表面を透過した光を用いる ため、基板および基板表面に挟まれた試料は光透過性のものに限られている。特に 基板は実用的にはほぼ雲母に限られており、試験的にもサファイアやガラスの薄片( 厚み 2 μ m程度)が基板に用いられて 、るのみである。
[0009] また、ツインパス型表面力測定装置 (上記特許文献 3)は、上下表面にはたらく力を 測定するものであって、ずり測定ができない。
[0010] 本発明は、試料が透明または不透明のいずれであっても所望の測定ができるずり 測定方法及びその装置を提供することを目的とする。
[0011] より具体的に述べると、
本発明の第 1の目的は、上記状況に鑑み、試料のせん断応答の測定において、試 料の片側表面の振動の減衰曲線をフーリエ変換し、共振ずり曲線を得ることにより、 その簡便な短時間測定を行うことができる共振ずり測定方法を提供することにありま す。 [0012] また、本発明の第 2の目的は、上記状況に鑑み、基板あるいは試料が不透明であ る場合に基板間の距離が測定できるツインパス法を用いて、精密なずり応力測定を 行うことができるツインパス型ずり応力測定方法及びその装置を提供することにありま す。
[0013] 本願発明は、上記目的を達成するために、
〔1〕共振ずり測定方法において、入力信号 Uを共振ずり測定ユニットの水平駆動
in
部に入力し、この共振ずり測定ユニットにおける固体表面に挟まれた試料に対してそ の片側表面の振動を変位計で出力信号 U として検出し、前記入力信号 Uとともに
out in
、前記出力信号 u を共振ずり計測装置に入力し、前記共振ずり測定ユニットの固体
out
表面に挟まれた試料のせん断応答を膜厚の変化と共に計測する共振ずり測定方法 であって、前記試料の片側表面の振動の減衰曲線をフーリエ変換し、共振ずり曲線 を得ることを特徴とする。
[0014] 〔2〕共振ずり測定方法において、入力信号 Uを共振ずり測定ユニットの水平駆動
in
部に入力し、固体表面間に試料を挟まず固体表面そのものを試料とし、この共振ずり 測定ユニットにおける試料の片側表面の振動を変位計で出力信号 u として検出し
out
、前記入力信号 Uとともに、前記出力信号 U を共振ずり計測装置に入力し、前記
in out
共振ずり測定ユニットの前記試料のせん断応答を膜厚の変化と共に計測する共振ず り測定方法であって、前記試料の片側表面の振動の減衰曲線をフーリエ変換し、共 振ずり曲線を得ることを特徴とする。
[0015] 〔3〕上記〔1〕記載の共振ずり測定方法にぉ 、て、前記試料が薄膜であることを特徴 とする。
[0016] 〔4〕上記〔1〕記載の共振ずり測定方法にお!、て、前記試料が液体であることを特徴 とする。
[0017] 〔5〕上記〔1〕記載の共振ずり測定方法において、前記試料が液晶であることを特徴 とする。
[0018] 〔6〕上記〔1〕記載の共振ずり測定方法において、前記試料がナノサイズの厚さであ ることを特徴とする。
[0019] 〔7〕上記〔1〕又は〔2〕記載の共振ずり測定方法にお!、て、前記試料の表面を吸着 ゃィ匕学修飾法により修飾することを特徴とする。
[0020] 〔8〕上記〔1〕又は〔2〕記載の共振ずり測定方法において、前記共振ずり曲線は前 記試料のせん断応答の周波数特性であることを特徴とする。
[0021] 〔9〕波形発生器と、該波形発生器に接続される電源と、該電源に接続され、入力信 号 Uが入力される共振ずり測定ユニットと、該共振ずり測定ユニットに接続される変 in
位計と、該変位計及び前記電源に接続され、出力信号 U 及び入力信号 Uが入力
out in される共振ずり測定装置であって、計時部と、この計時部と前記変位計に接続される フーリエ変換部と、このフーリエ変換部に接続される振幅スペクトル生成部と、振幅( u Zu )の規格部と、共振ずり曲線作成部とを備え、更に前記波形発生器と共振 out in
ずり測定装置とに接続されるコンピュータとを具備することを特徴とする。
[0022] 〔10〕ツインパス型ずり応力測定方法において、レーザー光を試料の下部表面保持 体の底面に取り付けたミラーに照射し、前記ミラーからの反射光の位相変化から前記 試料の表面間距離変位を測定するツインパス表面間距離測定法と前記試料の粘弾 性および摩擦'潤滑特性を共振曲線力 測定する測定法とを組み合わせ、試料のず り応力を測定することを特徴とする。
[0023] 〔11〕ツインパス型ずり応力測定装置において、試料の上部表面保持体を水平方 向に変位させる精密ずり装置と、前記試料の上部表面保持体の水平方向への変位 を検出する変位計と、先端に前記試料の下部表面保持体を保持するとともに前記下 部表面保持体の底面に配置されるミラーを備えた板パネ力 なる前記試料の下部表 面固定ユニットと、この下部表面固定ユニットを駆動して前記試料の下部表面保持体 を上下に駆動する駆動装置と、前記ミラーにレーザー光を照射し、前記ミラーからの 反射光の位相変化に基づいて前記試料の上部表面と前記試料の下部表面間の距 離を測定するツインパス表面間距離測定ユニットを備え、前記試料の上部表面と前 記試料の下部表面間の距離ごとの前記試料の粘弾性および摩擦'潤滑特性を測定 することを特徴とする。
[0024] 〔12〕上記〔11〕記載のツインパス型ずり応力測定装置において、前記試料の共振 曲線に基づいて前記試料の粘弾性および摩擦'潤滑特性を測定することを特徴とす る。 [0025] 〔13〕上記〔11〕又は〔12〕記載のツインパス型ずり応力測定装置において、前記試 料が透明試料又は不透明試料であることを特徴とする。
[0026] 〔14〕上記〔11〕又は〔12〕記載のツインパス型ずり応力測定装置において、前記試 料が液体薄膜であることを特徴とする。
[0027] 〔15〕上記〔11〕又は〔12〕記載のツインパス型ずり応力測定装置において、前記試 料が液晶薄膜であることを特徴とする。
[0028] 〔16〕上記〔11〕又は〔12〕記載のツインパス型ずり応力測定装置において、前記試 料が高分子'界面活性剤などの吸着層ゃィ匕学修飾膜であることを特徴とする。
[0029] 〔17〕上記〔11〕又は〔12〕記載のツインパス型ずり応力測定装置において、前記試 料の上部表面保持体及び下部表面保持体の一方あるいは両方が不透明基板であ ることを特徴とする。
図面の簡単な説明
[0030] [図 1]本発明の実施例を示す共振ずり測定システムの模式図である。
[図 2]本発明の実施例を示す共振ずり測定システムの共振ずり測定ユニットの一例を 示す模式図である。
[図 3]本発明の変形例を示す共振ずり測定システムの共振ずり測定ユニットの部分構 成模式図である。
[図 4]本発明の実施例を示す共振ずり測定フローチャートである。
[図 5]本発明にかかる共振ずり測定ユニットに試料をセットして測定した場合の片側 表面の減衰振動例を示す図である。
[図 6]図 5に示す減衰振動を本発明のフーリエ変換して得られた共振ずり曲線と従来 の方法で得られたそれぞれの曲線を示す図である。
[図 7]本発明の他の実施例を示すツインパス型ずり応力測定装置の模式図である。
[図 8]本発明の他の実施例を示すツインパス型ずり応力測定装置の適用例を示すた めに用いた試料の模式図である。
[図 9]本発明の他の実施例の雲母表面に挟んだ試料としての液晶(4— cyano— 4— hexyl biphenyl, 6CB)の化学式である。
[図 10]本発明の他の実施例を示す試料としての液晶(4 cyano— 4 hexyl biph enyl, 6CB)を本発明のツインパス型ずり応力測定装置で測定した結果を示す図で ある。
発明を実施するための最良の形態
[0031] 本発明の第 1の共振ずり測定方法及びその装置は、入力信号 Uを共振ずり測定
in
ユニットのピエゾ素子に入力し、この共振ずり測定ユニットにおける固体表面に挟ま れた試料の片側表面の振動を変位計で出力信号 U として検出し、前記入力信号 U
out
inとともに、前記出力信号 u outを共振ずり計測装置に入力し、前記共振ずり測定ュニ ットの固体表面に挟まれた試料のせん断応答を膜厚の変化と共に計測する共振ずり 測定方法であって、前記試料の片側表面の振動の減衰曲線をフーリエ変換し、共振 ずり曲線を得るようにしたものである。
[0032] 本発明の第 2のツインパス型ずり応力測定装置は、試料の上部表面を水平方向に 変位させる精密ずり装置と、この試料の上部表面の水平方向への変位を検出する変 位計と、先端に前記試料の下部表面を保持するとともにその底面に配置されるミラー を備えた板パネ力 なる前記試料の下部表面固定ユニットと、この下部表面固定ュ ニットを駆動して前記試料 Aの下部表面を上下に駆動する駆動装置と、前記ミラーか らの反射光の位相変化に基づいて前記試料 Aの上部表面と前記試料の下部表面間 の距離を測定するツインパス表面間距離測定ユニットを備え、前記試料の上部表面 と前記試料の下部表面間の距離ごとの前記試料の粘弾性および摩擦'潤滑特性を 測定する。
実施例
[0033] 以下、本発明の実施の形態について詳細に説明する。
[0034] 図 1は本発明の実施例を示す共振ずり測定システムの模式図、図 2はその共振ずり 測定ユニットの一例を示す模式図である。この図において、 1は波形発生器、 2は波 形発生器 1に接続される電源、 3は電源 2に接続され、入力信号としての入力電圧 U
in が入力される共振ずり測定ユニット、 4は共振ずり測定ユニット 3に接続される変位計 、例えば、静電容量変位計、 5は静電容量変位計 4及び電源 2に接続され、出力信 号としての出力電圧 U 及び入力電圧 Uが入力される共振ずり計測装置であり、こ
out in
の共振ずり計測装置 5は計時部 5Aとフーリエ変換部 5Bと振幅スペクトル生成部 5Cと 振幅 (U ZU )の規格部〔U ( ω )及び U での規格化部〕 5Dと共振ずり曲線作成 out in in out
部 5E力もなる。 6は共振ずり計測装置 5に接続されるパーソナルコンピュータ(PC) 6 、このパーソナルコンピュータ(PC) 6は波形発生器 1に接続されるようになって!/、る。 なお、上記した変位計としてはひずみゲージを用いるようにしてもょ 、。
[0035] 図 2において、 10は共振ずり測定ユニット(図 1では共振ずり測定ユニット 3に対応) 、 11はカンチレバー、 12はディスクホルダ、 13は白色光、 14はディスクホルダ 12上 に固定される下部基板、 15は上部表面を水平方向に駆動する水平駆動部としての 4 分割ピエゾ素子、 16はその 4分割ピエゾ素子 15の底部に固定される上部基板、 17 は 4分割ピエゾ素子 15を支持する板パネである。 18は板パネ 17の水平方向変位 Δ Xを計測する静電容量変位計 (プローブ)(図 1における静電容量変位計 4に対応)、 19はせん断応答の測定対象となる試料(固体、液体、液晶など)である。なお、ここで 、液体は、単成分だけでなぐ 2成分以上のミセルゃコロイド分散系を含む様々な溶 液であってもよい。なお、上記した水平駆動部としてはモーターを用いるようにしても よい。
[0036] 図 3は本発明の変形例を示す共振ずり測定システムの共振ずり測定ユニットの部分 構成模式図である。
[0037] この例では、基板そのものを試料 21, 22とし、図 2に示すように基板間に試料を挟 むことなく、試料 (基板) 21と試料 (基板) 22との互 ヽの摩擦 (潤滑)特性を測定するこ とちでさる。
[0038] 図 4はその共振ずり測定フローチャートである。
(1)まず、図 1に示した振幅電圧 Uの正弦波 (角周波数 ω )をピエゾ素子(図 2の 4分
in
割ピエゾ素子 15)に入力する (ステップ Sl)。
(2)出力電圧 U ( ω )を取得する (ステップ S 2)。
out
(3)入力電圧 Uをストップする (ステップ S3)。
in
(4)出力電圧 U と経過時間を取得する (ステップ S4)。
out
(5)フーリエ変換を行う(ステップ S5)。
(6)振幅スペクトルを出力する (ステップ S6)。
(7)出力電圧 U ( ω )および入力電圧 Uで規格化を行う (ステップ S7)。
out in (8)共振ずり曲線を出力する (ステップ S8)。
[0039] 上記した共振ずり測定ユニットに試料をセットして測定すると、試料の片側表面の減 衰振動は図 5のような曲線を描く。
[0040] ここで横軸は経過時間、縦軸が振動の振幅を示す。この減衰振動に以下の式で表 されるフーリエ変換
[0041] [数 1]
Figure imgf000010_0001
[0042] を行い、その振幅スペクトルを取ることにより、共振ずり曲線を得る。ここで ωは角振 動数、 F ( co )は得られたフーリエスペクトル、 f (t)は減衰振動、 tは時間を示す。
[0043] 以下に共振ずり曲線を本発明の共振ずり測定方法で測定した結果と従来の方法に より得られた結果を示す。
[0044] 図 6に図 5に示す減衰振動を本発明のフーリエ変換して得られた共振ずり曲線と従 来の方法で得られたそれぞれの曲線を示す図である。
[0045] 横軸は試料の片側表面の振動数、縦軸は振動振幅を示し、ずり測定ユニットのピ ェゾに与えた入力電圧 (U )と静電容量計で測定された出力電圧 (U )の比で表さ
IN OUT
れる。従来の方法は、各振動周波数に対する片側表面の応答を一点ずつ測定する 手法である。図 6は本発明が周波数に対する片側表面の応答をよく測定することがで き、短時間で広い範囲の振動周波数に対する試料の片側表面の応答を連続的に測 定する手法であることを示して 、る。
[0046] なお、本発明によれば、試料(固体、液体、液晶など)を 2つの固体基板間に挟み、 その厚みを変えながら、試料の粘弾性変化、摩擦'潤滑特性や試料と固体基板との 結合の強さなどを評価することができる。また、基板そのものを試料とし、間に試料を 挟むことなぐ互いの摩擦 (潤滑)特性を測定することもできる。また、その表面を吸着 や化学修飾法〔LB (ラングミュア ·ブロシェット)修飾法〕などにより修飾することもでき る。また、片側表面を水平方向に振動させるだけではなぐ表面に垂直方向に振動さ せて試料の周波数応答を測定することもできる。
[0047] 本発明によれば、従来技術のように各振動周波数におけるせん断応答を 1つずつ 測定する必要性がなぐ短時間で共振ずり曲線を簡便に、し力も正確に測定すること ができる。
[0048] 次に、本発明の他の実施例のツインパス型ずり応力測定について説明する。
[0049] 図 7は本発明の実施例を示すツインパス型ずり応力測定装置の模式図である。
[0050] この図において、 31は共振ずり測定ユニット、 32は上部表面を水平方向に駆動す る 4分割ピエゾ素子、 33は 4分割ピエゾ素子 32を支持する板パネ、 34は板パネ 33の 水平方向変位 Δ Xを計測する静電容量変位計 (プローブ)、 35は 4分割ピエゾ素子 3 2の底部に固定される上部基板である。
[0051] また、試料 Aの下部表面保持体 42を固定するユニット 40は、板パネ 41の先端に試 料 Aの下部表面保持体 42を保持し、その下部表面保持体 42の下面にはミラー 43が 配置されている。一方、板パネ 41の基部にはその板パネ 41を上下に駆動する駆動 装置〔例えば、モータ(図示なし)〕を備えている。
[0052] さらに、 51はツインパス表面間距離測定装置であり、レーザー光源 52と、このレー ザ一光源 52からのレーザー光を受けて計測光と基準光に分離する回折格子 53と、 その回折格子 53を調整するピエゾ素子 54と、回折格子 53からの光を受けるレンズ 5 5と、そのレーザー光の一部である基準光を受ける固定ミラー 56と、この固定ミラー 5 6で反射される基準光及び、試料 Aの下部表面保持体 52の底面に設けられたミラー 43で反射される計測光を再びレンズ 55を介して受ける回折格子 57と、この回折格子 57からの光を受けるフォトダイオード 58と、ピエゾ素子 54とフォトダイオード 58に接 続されるパーソナルコンピュータ 59とを備えて 、る。
[0053] このように構成したので、試料 Aを挟んだ表面間の距離の変化はツインパス表面間 距離測定装置 51で測定し、試料 Aの上部表面は精密ずり共振測定ユニット 31に取 り付け、試料の粘弾性および摩擦'潤滑特性を測定し、これにより、精密にずり応力 測定を行うことができる。
[0054] 図 8は本発明のツインパス型ずり応力測定装置の適用例を示すために用いた試料 の模式図、図 9はその試料としての液晶(4— cyano—4—hexyl biphenyl, 6CB) の化学式、図 10はその試料としての液晶(4— cyano—4—hexyl biphenyl, 6CB )を本発明のツインパス型ずり応力測定装置で測定した共振曲線を示す図である。 [0055] 図 8に示すように、試料としての液晶(4— cyano—4—hexyl biphenyl, 6CB) 61 の上下に雲母 62, 63を配置する。つまり、上部基板 35としての雲母 62と下部表面 保持体 42としての雲母 63との間に試料としての液晶 61が挟まれるように配置されて いる。
[0056] その雲母表面に挟んだ試料としての液晶(4— cyano— 4— hexyl biphenyl, 6C
B)の化学式は図 9の通りである。
[0057] 図 10において、横軸は試料上部の表面の角振動数 (s—1)、縦軸は精密ずり共振測 定ユニットのピエゾ素子に対する入力電圧 (U )と静電容量変位計で測定された出
in
力電圧 (U )の比を示す図である。試料としての液晶を測定した結果に加えて、試
out
料としての液晶を挟まずに保持体の表面を離した状態で測定した結果〔空気中 (分 離側)〕と保持体の表面を接触させて測定した結果〔空気中 (雲母 雲母接触)〕を比 較のために描 、た。試料の表面間距離の横の実線はその距離での共振ピークを示 す。ここで、表面間距離は下部表面保持体を駆動装置で上方に駆動した際に表面 間距離が変化しな力つた点を Onmと定義した。表面間距離が変化するにしたがって 、共振曲線の変化が見られた。 Onmのピークが複数あるのは、表面間距離が一定で 、負荷が変化した場合を示す。
[0058] なお、本発明によれば、試料 (液体、固体、液晶など)を 2つの固体基板間に挟み、 その厚みを変えながら、試料の粘弾性変化、摩擦'潤滑特性や試料と固体基板との 結合の強さなどを評価することができる。また、基板そのものを試料とし、基板間に試 料を挟むことなぐ互いの摩擦 (潤滑)特性を測定することもできる。また、その表面を 吸着や化学修飾法〔LB (ラングミュア ·プロジェット法)〕などにより修飾することもでき る。
[0059] また、レーザーの反射光を用いるため光が基板及び試料を透過する必要性がなく
、不透明基板および不透明試料を使用した場合でも表面間距離を測定し、各距離で 試料の粘弾性および摩擦'潤滑特性を測定することができる。
[0060] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
産業上の利用可能性 [0061] 本発明の第 1の共振ずり測定方法は、特に、固体表面間のナノメートルレベルの厚 みを持つ液体薄膜の物性の簡便で正確な計測に好適である。
[0062] 本発明の第 2のツインパス型ずり応力測定装置は、不透明基板間の距離を測定す るためのツインパス法を用いて精密なずり応力測定を行うことができるツインパス型ず り応力測定装置として利用可能であり、第 1の共振ずり測定方法同様に、固体表面 間のナノメートルレベルの厚みを持つ液体薄膜の物性の簡便で正確な計測に好適 である。

Claims

請求の範囲
[1] 入力信号 uを共振ずり測定ユニットの水平駆動部に入力し、該共振ずり測定ュニ
in
ットにおける固体表面に挟まれた試料に対してその片側表面の振動を変位計で出力 信号 U として検出し、前記入力信号 Uとともに、前記出力信号 U を共振ずり計測 out in out 装置に入力し、前記共振ずり測定ユニットの固体表面に挟まれた試料のせん断応答 を膜厚の変化と共に計測する共振ずり測定方法であって、前記試料の片側表面の 振動の減衰曲線をフーリエ変換し、共振ずり曲線を得ることを特徴とする共振ずり測 定方法。
[2] 入力信号 U
inを共振ずり測定ユニットの水平駆動部に入力し、固体表面間に試料を 挟まず固体表面そのものを試料とし、該共振ずり測定ユニットにおける試料の片側表 面の振動を変位計で出力信号 U として検出し、前記入力信号 Uとともに、前記出
out in
力信号 u を共振ずり計測装置に入力し、前記共振ずり測定ユニットの前記試料の
out
せん断応答を膜厚の変化と共に計測する共振ずり測定方法であって、前記試料の 片側表面の振動の減衰曲線をフーリエ変換し、共振ずり曲線を得ることを特徴とする 共振ずり測定方法。
[3] 請求項 1記載の共振ずり測定方法にお!、て、前記試料が薄膜であることを特徴とす る共振ずり測定方法。
[4] 請求項 1記載の共振ずり測定方法にぉ 、て、前記試料が液体であることを特徴とす る共振ずり測定方法。
[5] 請求項 1記載の共振ずり測定方法にお!、て、前記試料が液晶であることを特徴とす る共振ずり測定方法。
[6] 請求項 1記載の共振ずり測定方法において、前記試料がナノサイズの厚さであるこ とを特徴とする共振ずり測定方法。
[7] 請求項 1又は 2記載の共振ずり測定方法にお 、て、前記試料の表面を吸着や化学 修飾法により修飾することを特徴とする共振ずり測定方法。
[8] 請求項 1又は 2記載の共振ずり測定方法において、前記共振ずり曲線は前記試料 のせん断応答の周波数特性であることを特徴とする共振ずり測定方法。
[9] 波形発生器と、該波形発生器に接続される電源と、該電源に接続され、入力信号 uが入力される共振ずり測定ユニットと、該共振ずり測定ユニットに接続される変位 in
計と、該変位計及び前記電源に接続され、出力信号 u 及び入力信号 Uが入力さ
out in
れる共振ずり測定装置であって、
(a)計時部と、
(b)該計時部と前記変位計に接続されるフーリエ変換部と、
(c)該フーリエ変換部に接続される振幅スペクトル生成部と、
(d)振幅 (U /U )の規格部と、
out in
(e)共振ずり曲線作成部とを備え、
(f)更に前記波形発生器と共振ずり測定装置とに接続されるコンピュータとを具備す ることを特徴とする共振ずり測定装置。
[10] レーザー光を試料の下部表面保持体の底面に取り付けたミラーに照射し、前記ミラ 一からの反射光の位相変化力 前記試料の表面間距離変位を測定するツインパス 表面間距離測定法と前記試料の粘弾性および摩擦 ·潤滑特性を共振曲線力 測定 する測定法とを組み合わせ、試料のずり応力を測定することを特徴とするツインノ ス 型ずり応力測定方法。
[11] (a)試料の上部表面保持体を水平方向に変位させる精密ずり装置と、
(b)前記試料の上部表面保持体の水平方向への変位を検出する変位計と、
(c)先端に前記試料の下部表面保持体を保持するとともに前記下部表面保持体の 底面に配置されるミラーを備えた板パネ力もなる前記試料の下部表面固定ユニットと
(d)該下部表面固定ユニットを駆動して前記試料の下部表面保持体を上下に駆動 する駆動装置と、
(e)前記ミラーにレーザー光を照射し、前記ミラーからの反射光の位相変化に基づい て前記試料の上部表面と前記試料の下部表面間の距離を測定するツインパス表面 間距離測定ユニットを備え、
(f)前記試料の上部表面と前記試料の下部表面間の距離ごとの前記試料の粘弾性 および摩擦'潤滑特性を測定することを特徴とするツインパス型ずり応力測定装置。
[12] 請求項 11記載のツインパス型ずり応力測定装置において、前記試料の共振曲線 に基づいて前記試料の粘弾性および摩擦'潤滑特性を測定することを特徴とするッ インパス型ずり応力測定装置。
[13] 請求項 11又は 12記載のツインパス型ずり応力測定装置において、前記試料が透 明試料又は不透明試料であることを特徴とするツインノ ス型ずり応力測定装置。
[14] 請求項 11又は 12記載のツインパス型ずり応力測定装置において、前記試料が液 体薄膜であることを特徴とするツインパス型ずり応力測定装置。
[15] 請求項 11又は 12記載のツインパス型ずり応力測定装置において、前記試料が液 晶薄膜であることを特徴とするツインパス型ずり応力測定装置。
[16] 請求項 11又は 12記載のツインパス型ずり応力測定装置において、前記試料が高 分子 ·界面活性剤などの吸着層ゃィ匕学修飾膜であることを特徴とするツインパス型ず り応力測定装置。
[17] 請求項 11又は 12記載のツインパス型ずり応力測定装置において、前記試料の上 部表面保持体及び下部表面保持体の一方、あるいは両方が不透明基板であること を特徴とするツインパス型ずり応力測定装置。
PCT/JP2006/319103 2005-09-28 2006-09-27 ずり測定方法及びその装置 WO2007037241A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800361588A CN101278184B (zh) 2005-09-28 2006-09-27 切变测定方法及其装置
US12/088,046 US7845231B2 (en) 2005-09-28 2006-09-27 Shear measuring method and its device
JP2007537629A JP4615568B2 (ja) 2005-09-28 2006-09-27 ずり測定方法及びその装置
EP06810594.9A EP1942331A4 (en) 2005-09-28 2006-09-27 MEASURING METHOD AND DEVICE THEREFOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-282768 2005-09-28
JP2005-282769 2005-09-28
JP2005282769 2005-09-28
JP2005282768 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037241A1 true WO2007037241A1 (ja) 2007-04-05

Family

ID=37899665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319103 WO2007037241A1 (ja) 2005-09-28 2006-09-27 ずり測定方法及びその装置

Country Status (5)

Country Link
US (1) US7845231B2 (ja)
EP (1) EP1942331A4 (ja)
JP (1) JP4615568B2 (ja)
CN (2) CN102374967B (ja)
WO (1) WO2007037241A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007708A (ja) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology 薄膜状液体の粘度特性測定装置
WO2020194734A1 (ja) * 2019-03-28 2020-10-01 国立大学法人東北大学 共振ずり測定装置
WO2021124713A1 (ja) * 2019-12-18 2021-06-24 国立大学法人東北大学 粘度計及び粘度測定方法
JP2022090116A (ja) * 2019-03-28 2022-06-16 国立大学法人東北大学 共振ずり測定装置
JP7477171B2 (ja) 2021-02-09 2024-05-01 国立大学法人東北大学 共振ずり測定装置及びその使用方法、並びに粘度計及びその使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221499B (zh) * 2011-03-29 2012-10-03 天津大学 一种用于纳、微米级薄膜材料拉伸测试的对中加载装置
JP2020066682A (ja) * 2018-10-25 2020-04-30 出光興産株式会社 潤滑油基油、潤滑油組成物、及び潤滑油組成物の使用方法
CN114371124B (zh) * 2022-01-14 2024-01-12 安徽理工大学 一种基于微悬臂梁的液滴附着力检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173142A (en) * 1977-07-22 1979-11-06 Werner Heinz Rotary viscometer
JPS61132840A (ja) * 1984-11-30 1986-06-20 Shimadzu Corp 粘度測定装置
JPS6347602A (ja) * 1986-08-14 1988-02-29 Omron Tateisi Electronics Co 導波型光変位センサ
JPS63135808A (ja) * 1986-11-27 1988-06-08 Inoue Japax Res Inc 測長器
JPH06117824A (ja) * 1992-10-08 1994-04-28 Topcon Corp 非接触光学式の二面間距離測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826552B2 (ja) * 1977-11-30 1983-06-03 新日本製鐵株式会社 捩り振動による内部摩擦測定装置
US5052228A (en) * 1986-11-19 1991-10-01 Massachusetts Institute Of Technology Shear stress measuring device
JP3032152B2 (ja) * 1996-03-25 2000-04-10 科学技術振興事業団 精密ずり応力測定装置
DE19733114C2 (de) * 1997-07-31 1999-08-05 Max Planck Gesellschaft Verfahren und Vorrichtung zur Erfassung rheologischer Materialeigenschaften
JP3933823B2 (ja) * 1999-10-14 2007-06-20 独立行政法人科学技術振興機構 表面力測定装置及びその方法
CN1149394C (zh) * 2000-03-17 2004-05-12 中山大学 一种液体膜的切变波共振吸收谱仪
US6484567B1 (en) * 2000-08-03 2002-11-26 Symyx Technologies, Inc. Rheometer for rapidly measuring small quantity samples
CN100402995C (zh) * 2001-11-02 2008-07-16 中山大学 管型液体和软物质切变波共振吸收谱仪
AU2002950831A0 (en) * 2002-08-16 2002-09-12 Gbc Scientific Equipment Pty Ltd Rheometer
US7418876B2 (en) * 2003-05-21 2008-09-02 Armstrong William D Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow
US7451666B2 (en) * 2006-01-13 2008-11-18 Jr Johanson, Inc. Apparatus and test procedure for measuring the cohesive, adhesive, and frictional properties of bulk granular solids
FR2902879B1 (fr) * 2006-06-22 2008-10-10 Michelin Soc Tech Rheometre orthogonal
GB0703004D0 (en) * 2007-02-15 2007-03-28 Uws Ventures Ltd Apparatus and method for measuring rheological properties of blood

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173142A (en) * 1977-07-22 1979-11-06 Werner Heinz Rotary viscometer
JPS61132840A (ja) * 1984-11-30 1986-06-20 Shimadzu Corp 粘度測定装置
JPS6347602A (ja) * 1986-08-14 1988-02-29 Omron Tateisi Electronics Co 導波型光変位センサ
JPS63135808A (ja) * 1986-11-27 1988-06-08 Inoue Japax Res Inc 測長器
JPH06117824A (ja) * 1992-10-08 1994-04-28 Topcon Corp 非接触光学式の二面間距離測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIZUKAMI M. AND KURIHARA K.: "Nono Kyoshin Zuri Sokuteiho ni yoru Nano Usumaku no Masatsu Nendansei Hyoka", DAI 56 KAI DIVISIONAL MEETING ON COLLOID AND INTERFACE CHEMISTRY KOEN YOSHISHU, 22 August 2003 (2003-08-22), pages 235, XP003011017 *
See also references of EP1942331A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007708A (ja) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology 薄膜状液体の粘度特性測定装置
JP7318996B2 (ja) 2019-03-28 2023-08-01 国立大学法人東北大学 共振ずり測定装置
JPWO2020194734A1 (ja) * 2019-03-28 2021-10-14 国立大学法人東北大学 共振ずり測定装置
CN113614508A (zh) * 2019-03-28 2021-11-05 国立大学法人东北大学 共振切变测定装置
JP2022090116A (ja) * 2019-03-28 2022-06-16 国立大学法人東北大学 共振ずり測定装置
JP7244958B2 (ja) 2019-03-28 2023-03-23 国立大学法人東北大学 共振ずり測定装置
WO2020194734A1 (ja) * 2019-03-28 2020-10-01 国立大学法人東北大学 共振ずり測定装置
US11927517B2 (en) 2019-03-28 2024-03-12 Tohoku University Resonance shear measurement device
WO2021124713A1 (ja) * 2019-12-18 2021-06-24 国立大学法人東北大学 粘度計及び粘度測定方法
JPWO2021124713A1 (ja) * 2019-12-18 2021-06-24
JP7154660B2 (ja) 2019-12-18 2022-10-18 国立大学法人東北大学 粘度計及び粘度測定方法
US11761872B2 (en) 2019-12-18 2023-09-19 Tohoku University Viscometer and method for measuring viscosity
JP7477171B2 (ja) 2021-02-09 2024-05-01 国立大学法人東北大学 共振ずり測定装置及びその使用方法、並びに粘度計及びその使用方法

Also Published As

Publication number Publication date
US7845231B2 (en) 2010-12-07
EP1942331A1 (en) 2008-07-09
CN101278184A (zh) 2008-10-01
JPWO2007037241A1 (ja) 2009-04-09
CN102374967A (zh) 2012-03-14
JP4615568B2 (ja) 2011-01-19
EP1942331A4 (en) 2015-09-02
US20090145231A1 (en) 2009-06-11
CN102374967B (zh) 2014-11-05
CN101278184B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4615568B2 (ja) ずり測定方法及びその装置
US7584653B2 (en) System for wide frequency dynamic nanomechanical analysis
Wagner et al. Noncontact method for calibration of lateral forces in scanning force microscopy
CN114966119B (zh) 经由原子力显微镜进行纳米级动态力学分析(afm-ndma)
Hernando et al. Simulation and laser vibrometry characterization of piezoelectric AlN thin films
US20220390345A1 (en) Rheometer
JP4427654B2 (ja) 膜厚測定装置および膜厚測定方法
Bircher et al. Influence of squeeze-film damping on higher-mode microcantilever vibrations in liquid
Szoszkiewicz et al. Adhesion hysteresis and friction at nanometer and micrometer lengths
US11927517B2 (en) Resonance shear measurement device
Seo et al. Gas flows near solids coated with thin water films
Hwu et al. High-performance spinning device for DVD-based micromechanical signal transduction
Poik et al. Efficient demodulation for measuring the amplitude of mechanical oscillations
Lübben et al. Nanoscale high-frequency contact mechanics using an AFM tip and a quartz crystal resonator
JP7318996B2 (ja) 共振ずり測定装置
Choudhary Improvements to a Thermally Actuated MEMS Viscosity Sensor
JP4895379B2 (ja) レバー加振機構及び走査型プローブ顕微鏡
Bhushan et al. Atomic force microscopy with lateral modulation
Chen et al. Measurement of high-bandwidth nanonewton forces in a low-compliance configuration
Huang et al. Interferometry for Piezoelectric Materials and Thin Films
Todorovic et al. Photothermal Study of Free and Forced Elastic Vibrations of Microcantilevers
JP2006078219A (ja) 走査プローブ顕微鏡を用いた物性情報の測定方法、カンチレバー及び走査プローブ顕微鏡
Dual et al. Experimental Characterization of Ultrasonic Particle Manipulation Devices
Varol Numerical simulation of nano scanning in tapping mode afm under Q control
Crocker Measurement of the Young's modulus of Hexoloy silicon carbide thin films using nanoindentation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036158.8

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537629

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12088046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810594

Country of ref document: EP