WO2007037190A1 - 放熱配線基板とその製造方法と放熱配線基板を用いた電気機器 - Google Patents

放熱配線基板とその製造方法と放熱配線基板を用いた電気機器 Download PDF

Info

Publication number
WO2007037190A1
WO2007037190A1 PCT/JP2006/318927 JP2006318927W WO2007037190A1 WO 2007037190 A1 WO2007037190 A1 WO 2007037190A1 JP 2006318927 W JP2006318927 W JP 2006318927W WO 2007037190 A1 WO2007037190 A1 WO 2007037190A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
heat dissipation
circuit pattern
heat
resin
Prior art date
Application number
PCT/JP2006/318927
Other languages
English (en)
French (fr)
Inventor
Tetsuya Tsumura
Hiroharu Nishiyama
Etsuo Tsujimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06810495A priority Critical patent/EP1909324A4/en
Priority to JP2007537601A priority patent/JP4725581B2/ja
Priority to CN2006800352606A priority patent/CN101273453B/zh
Priority to US12/065,915 priority patent/US8263870B2/en
Publication of WO2007037190A1 publication Critical patent/WO2007037190A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path

Definitions

  • Radiation wiring board manufacturing method thereof, and electrical equipment using the radiation wiring board
  • the present invention relates to a heat dissipation wiring board, a method for manufacturing the same, and an electric device using the heat dissipation wiring board.
  • LEDs have a characteristic that the amount of light emission decreases when the temperature rises too much, and heat dissipation is indispensable for increasing the amount of light emission.
  • As a technology to increase the heat dissipation of LEDs it is known to mount LEDs on a metal substrate and diffuse heat from the backside of the LEDs.
  • FIG. 10 is a perspective view showing an example of a conventional heat dissipation wiring board.
  • the lead frame 202 is embedded in the resin 204.
  • LED206 etc. will be mounted on this.
  • the heat radiation of the LED 206 is transmitted to the heat sink 208 via the resin 204.
  • heat is radiated through the lead frame 202 and the heat radiating plate 208.
  • Such technical capabilities are described in, for example, JP-A-2001-57408.
  • the pattern width is limited to 0.5 mm, and it is extremely difficult to reduce the pattern width to 0.3 mm or 0.4 mm when the thickness is 0.5 mm.
  • the lead frame 202 has a thin thickness of 0.2 mm and 0.1 mm. The force that needs to be done Such a thickness (or cross-sectional area) cannot handle the large currents that drive the LED206.
  • the conventional configuration requires a large current of 100A (A is an ampere and a unit of current) to drive the LED 206, and further includes a lead frame 202 to dissipate the LED 206.
  • A is an ampere and a unit of current
  • the lead frame 202 In the wiring board, as the lead frame 202 has been further increased in thickness, the pattern of the lead frame 202 becomes sparse, and it is difficult to mount the semiconductor circuit components for driving the LED 206 on the same board. Had a point.
  • the present invention solves the above problems and provides a heat dissipation wiring board capable of mounting fine components such as semiconductors and chip components on the same substrate while further supporting high current and high heat dissipation. To do.
  • a circuit pattern having a metal wiring board force partially reduced in thickness is attached to or embedded in an insulating resin board mixed with a filler.
  • the heat dissipation wiring board of the present invention uses a circuit pattern that has a partially thinned metal wiring board, so that even if a heat-generating electronic component such as an LED is mounted on a thin part, the heat dissipation wiring board is thin. Because heat is transferred to the thick part that is integrated with the part, it can be efficiently dissipated. wear.
  • thick parts are applied to parts that require high current and heat dissipation, such as LEDs
  • thin parts are applied to parts that require high-density surface mounting of circuit components such as semiconductors and chip parts.
  • LEDs can be modularized and unitized, enabling product miniaturization and cost reduction.
  • FIG. 1A is a perspective view of a heat dissipation wiring board according to Embodiment 1 of the present invention.
  • FIG. 1B is a partially cutaway perspective view of the heat dissipation wiring board according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the heat dissipation wiring board in the first embodiment.
  • FIG. 3A is a perspective view for explaining a state before pressing in a process for producing a different thickness lead frame.
  • FIG. 3B is a perspective view for explaining the state after pressing in the process of making the lead frame with different thickness.
  • FIG. 4 is a perspective view showing the relationship between the lead frame with different thickness and the heat sink.
  • Fig. 5 is a cross-sectional view showing a state in which the resin constituting the composite resin plate is filled.
  • FIG. 6 is a perspective view for explaining a position where components are mounted on a heat dissipation wiring board.
  • FIG. 7 is a perspective view showing a state in which each component is mounted on a heat dissipation wiring board.
  • FIG. 8 is a perspective view of FIG. 7 viewed from another direction.
  • FIG. 9 is a perspective view showing a heat dissipation wiring board in the fourth embodiment.
  • FIG. 10 is a perspective view showing an example of a conventional heat dissipation wiring board.
  • Embodiment 1 will be described with reference to the drawings.
  • FIG. 1A is a perspective view of an LED mounted on a heat dissipation wiring board in Embodiment 1
  • FIG. 1B is a partial cross-sectional view of FIG. 1A.
  • a high heat generation and large current element such as the LED 102 is mounted on the different thickness lead frame 100 used as a circuit pattern.
  • a control IC 104 for controlling the LED 102 and a chip component 106 are also mounted on the same different thickness lead frame 100.
  • the different thickness lead frame 100 is integrated with a heat radiating plate 110 disposed on the lower surface of the composite resin plate 108 via a composite resin plate 108.
  • This heat sink 110 has different thickness
  • the frame 100 is attached to the composite resin board 108 in a non-conductive state.
  • the terminal electrodes for mounting such as the LED 102 and the control IC 104 are not shown. It goes without saying that the LED102, control IC104, etc. in Fig. 1A and Fig.IB can be mounted more precisely by surface mounting.
  • the hatched portion is a partial cross section of the heat dissipation wiring board in the first embodiment.
  • the different thickness lead frame 100 has a thick part and a thin part. Conventional lead frames are made with a uniform thickness.
  • the lead frame 100 is used in combination with different thickness lead frames 100 that are the same plate but partially changed in thickness.
  • the different thickness lead frame 100 is embedded in the composite resin plate 108, and the upper surface of the composite resin plate 108 and the upper surface of the different thickness lead frame 100 are substantially flush with each other and integrated with the heat sink 110. Yes.
  • FIG. 2 is an enlarged cross-sectional view of the heat dissipation wiring board in the first embodiment.
  • the different thickness lead frame 100 includes a thick part 112 and a thin part 114.
  • adjacent lead frames 100 are arranged so that the thin portions 114 of the respective lead frames 100 face each other, and these thin portions 114 have substantially the same thickness.
  • the thickness of the thin portion 114 may differ between adjacent lead frames 100. In that case, if the mounting is made so that the thickness is larger and the heat generation part of the electronic component is opposed, the miniaturization of the wiring pattern and the high heat dissipation can be realized at the same time.
  • the composite resin board 108 is composed of a filler 118 and a resin 116.
  • the filler 118 is preferably an inorganic filler.
  • inorganic filler Al O
  • the heat dissipation can be improved by using a glass, but the coefficient of linear thermal expansion can be increased by using MgO.
  • the dielectric constant can be reduced by using SiO, and the linear thermal expansion coefficient can be reduced by using BN.
  • An arrow 120 is an angle of a step between the thick portion 112 and the thin portion 114, and is an angle from a vertical plane.
  • the angle indicated by the arrow 120 is preferably 0 ° or more and 45 ° or less, and is preferably 0 ° or more and 30 ° or less.
  • the bottom is more desirable.
  • the angle shown by arrow 120 should be around 5 degrees (preferably 3 to 10 degrees, or even 5 to 7 degrees), so that a stable thickness dimension (and minimum residual) can be obtained from a single plate.
  • the strained lead frame 100 having the thick portion 112 and the thin portion 114 simultaneously can be manufactured.
  • the material of the different thickness lead frame 100 is preferably composed mainly of copper. This is because copper has excellent thermal conductivity and conductivity.
  • the copper content is 99.90% or more and less than 99.99%, and a very small amount (0.02% to 0.05%) of oxygen.
  • Tough pitch copper containing was used as the copper material for the different thickness leadframe 100.
  • This tough pitch copper is excellent in thermal conductivity and conductivity, and also contains oxygen, for example, it has a lower hardness (hardness: 87HB or lower) than oxygen-free copper (hardness: 112HB or lower). Excellent processability with Scaroe.
  • soft copper may be used in some cases, and heat conductivity and conductivity are given priority over workability! /, In which case oxygen-free copper is used. If you use it.
  • the soft temperature of the copper material can be increased to 400 ° C.
  • the lead frame 100 shown in Fig. 1A and Fig. IB using Sn-free copper (Cu> 99.96wt%) was manufactured.
  • distortion occurred in the portion 114 (further, the connection portion between the thin portion 114 and the thick portion 112).
  • the softness point of the material was as low as about 200 ° C, so reliability tests after mounting components (soldering) and after LED mounting (repetitive heating and cooling) Etc.), there was a possibility of deformation.
  • the softening temperature can also be increased by adding Ni, Si, Zn, P, or the like.
  • Ni is 0.1 to 5 wt%
  • Si is 0.0 to 2 wt%
  • Zn is 0.1 to 5 wt%
  • P is 0.005 to 0.1 wt%.
  • These elements can be used alone or in combination within this range to increase the soft spot of the copper material. If the amount added is less than the ratio described here, the softening point raising effect may be low. In addition, if the ratio is larger than described here, there is a possibility of affecting the conductivity.
  • Fe it is desirable to be not less than 0.1 wt% and not more than 5 wt%, and in the case of Cr, 0.05 wt% to not more than lwt%.
  • the tensile strength of the copper alloy is desirably 600 NZmm 2 or less. If the material has a tensile strength exceeding 600N Zmm 2 , the workability of the lead frame 100 with different thickness may be affected. In addition, such a material having high tensile strength tends to increase its electric resistance, so that it may not be suitable for high current applications such as the LED 102 used in the first embodiment. On the other hand, a material with a tensile strength of 600 NZmm 2 or less is suitable for high current applications such as LEDs used in Embodiment 1 because of its high Cu content and high conductivity. Since it is soft, it has excellent workability and is suitable for high current applications such as LED102 used in Embodiment 1.
  • solderability is improved in advance on the surface of the different thickness lead frame 100 exposed from the composite resin board 108 (the surface on which the LED 102, the control IC 104, and the chip component 106 are mounted).
  • the solder layer and the tin layer it is possible to improve the component mounting on the different thickness lead frame 100 and to prevent the wiring from cracking. It is desirable that no solder layer be formed on the surface (or embedded surface) of the different thickness lead frame 100 that contacts the composite resin plate 108.
  • solder layer or a tin layer When a solder layer or a tin layer is formed on the surface in contact with the composite resin board 108 in this way, this layer softens during soldering, and the adhesion (or bonding) between the different thickness lead frame 100 and the composite resin board 108 is achieved. Strength). In FIGS. 1A, 1B, and 2, the solder layer and the tin layer are not shown.
  • the inorganic filler has a substantially spherical shape and a diameter of 0.1 to 100 ⁇ m, but the particle size is small.
  • the inorganic filler is a mixture of two types of Al 2 O having an average particle size of 3 micron and an average particle size of 12 microns. This big and small 2
  • Al O can be filled at a high concentration up to nearly 90% by weight.
  • the thermal conductivity of the composite resin board 108 is about 5 WZmK. If the filling rate of Filler 118 is less than 70% by weight, the thermal conductivity may decrease. In addition, if the filling rate (or content) of the filler 118 exceeds 95% by weight, the moldability of the uncured composite resin board 108 may be affected. It affects the adhesion of the frame 100 (for example, when the different thickness lead frame 100 is embedded in the composite resin board 108 or pasted on its surface), and the fine wiring part formed in the thin part 114 May affect the sneak in.
  • thermosetting insulating resin contains at least one kind of resin among epoxy resin, phenol resin and cyanate resin. These resins are excellent in heat resistance and electrical insulation.
  • the thickness of the insulator made of the composite resin board 108 is reduced, the heat generated in the LED 102 attached to the different thickness lead frame 100 can be easily transferred to the heat sink 110, but conversely, the insulation breakdown voltage is a problem. If it is too thick, the thermal resistance will increase, so it is sufficient to set the optimal thickness in consideration of the withstand voltage and thermal resistance.
  • the metal heat radiating plate 110 be made of aluminum, copper, or an alloy power mainly composed of aluminum, copper, or the like, which has good thermal conductivity.
  • the thickness of the heat sink 110 is lmm.
  • the heat sink 110 is not just a plate-like one, but in order to improve heat dissipation, a heat radiating fin is formed on the surface opposite to the surface on which the composite resin plate 108 is laminated to increase the surface area. You may do it.
  • Linear expansion coefficient of the heat radiating wiring board is set to 8 X 10 _6 / ° C ⁇ 20 X 10 _6 / ° C, by approximating the linear expansion coefficient of the heat radiating plate 110 and LED 102, can be reduced warpage and distortion of the entire substrate. In addition, when mounting these parts on the surface, matching the coefficients of thermal expansion with each other is also important in terms of reliability. [0031] Further, the thickness of the thick portion 112 of the different thickness lead frame 100 is 0.3 mm or more and 1. Omm or less (more preferably 0.4 mm or more and 0.8 mm or less).
  • the thickness of the thin portion 114 of the different thickness lead frame 100 is preferably 0.05 mm or more and 0.3 mm or less. If the thickness of the thin portion 114 is less than 0.05 mm, pressing may be difficult. On the other hand, if the thickness of the thin portion 114 exceeds 0.3 mm, pattern miniaturization is affected at the time of punching with a press. In the different thickness lead frame 100, the thickness difference between the thick portion 112 and the thin portion 114 may be 0.1 mm or more and 0.7 mm or less.
  • the thickness difference is less than 0.1 mm, the effect of changing the thickness may not be obtained. If the thickness difference exceeds 0.7 mm, the processing accuracy may be affected when one sheet is roll-formed (or punched-out). In this way, for example, when the thick portion 112 is 0.5 mm thick and the thin portion 114 is 0.2 mm, the thick portion 112 can be thinned to a pattern width of 0.5 mm by die processing or pressing. In addition, the pattern width can be further expanded by using methods such as etching, laser processing, cutting I ”, and electric discharge. When processing with a laser, if the processed surface is rough, an anchor effect for the composite resin board 108 can be obtained.
  • the thin portion 114 can be molded with a width of 0.2 mm between the patterns.
  • the mold may be added once, or may be divided into multiple times (including hoop outer shape processing).
  • a wiring circuit can be formed by irradiating the thin portion 114 with laser or etching.
  • the wavelength is shorter and the pulse width is shorter than when the thin portion 112 is thinned.
  • Circuit patterns can be formed with high accuracy.
  • An example of such a laser is an SHG laser. This laser has a short wavelength of half of infrared light (532nm) and high copper absorptance, so cutting can be performed in a short time and thermal degradation of the processed part can be further reduced.
  • the gap width of the pattern is not less than 0.1 Olmm and not more than 0.1 mm, and if the thin portion 114 has a thickness of 0.2 mm, the pattern The gap width can be easily formed between 0.03 mm and 0.2 mm, and the machining accuracy is in the range of -0.005 mm force + 0. Olmm.
  • the processed surface can have a tapered structure, and if a resin having a wide opening diameter is filled, the resin can be easily filled between minute circuit patterns, and the electrical insulation can be improved.
  • the heat generating component such as the LED 102
  • the thick portion 112 it is possible to cope with a large current such as 100A, and the heat generating surface also has the thick portion 112, and further the composite resin. Heat can be radiated through the plate 108 and the heat radiating plate 110.
  • the control IC 104 and the chip component 106 of the LED 102 can be mounted on the thin portion 114.
  • the LED 102 may be mounted on the thin portion 114 on which a fine wiring circuit pattern is formed. Also in this case, heat is quickly transmitted from the thin portion 114 toward the thick portion 112 integrated with the thin portion 114, and heat can be efficiently radiated, and the brightness of the LED 102 can be improved.
  • the area of the upper surface of the different thickness lead frame 100 (metal wiring board) that becomes the thick portion 112 is made larger than the area of the upper surface of the different thickness lead frame 100 that becomes the thin portion 114, thereby increasing the heat. Can be easily diffused, and the heat dissipation effect can be enhanced.
  • the thick portion 112 becomes the side surface of the different thickness lead frame 100 (circuit pattern) in which the thick portion 112 is thinned so that the cross section becomes a trapezoid.
  • the surface connecting from the thick part 112 to the thick part 112 may be formed of a slope and processed so that the cross section is substantially triangular.
  • the circuit pattern can be miniaturized, and the thin portion 114 of the different thickness lead frame 100 can be reduced as much as possible, and high heat dissipation can be realized in response to a large current. .
  • the surface connecting the thin portion 114 to the thick portion 112 which is the side surface of the different thickness lead frame 100, is configured by a curved surface that spreads outward from the thin portion 114 to the thick portion 112. Effectively disperses the stress when the resin filled under the thin portion 114 thermally expands. And the thermal reliability can be improved.
  • a circuit pattern is formed by punching out substantially the center of the thin portion 114, but this punched portion is biased to one of the different thickness lead frames 100. May be.
  • the areas of the upper surfaces of the opposed thin portions 114 of the adjacent different thickness lead frames 100 have different structures.
  • adjacent different thickness lead frames 100 have a force V arranged so that the thin portions 114 of the different thickness lead frames 100 face each other, and one of the different thickness lead frames 100 is displaced.
  • the thin portion 114 of the other lead frame 100 and the thick portion 112 of the other different thickness lead frame 100 may face each other. In this case, if mounting is performed so that the heat generating portion of the electronic component faces the thick portion 112, it is possible to simultaneously improve heat dissipation and make the pattern finer.
  • the light emitting module can also be applied to power supply units and inverters used in PDPs, DC-DC converters, high-current electric devices for in-vehicle use, etc., improving heat dissipation on the thick part 112
  • Power transistors such as power transistors, power choke coils, and power semiconductors that are required to be mounted, and control ICs and signal ICs that require high-density mounting are mounted on the thin-walled portion 114. Integrated 'downsizing' can be realized.
  • examples of the element mounted on the thick portion 112 include a laser element having high heat generation.
  • examples of the element mounted on the thin portion 114 include a diode that requires a fine pattern.
  • FIG. 3A As a second embodiment, an example of a method for manufacturing a heat dissipation wiring board using different thickness lead frames will be described with reference to FIGS. 3A, 3B, 4, and 5.
  • FIG. 3A As a second embodiment, an example of a method for manufacturing a heat dissipation wiring board using different thickness lead frames will be described with reference to FIGS. 3A, 3B, 4, and 5.
  • FIG. 3A As a second embodiment, an example of a method for manufacturing a heat dissipation wiring board using different thickness lead frames will be described with reference to FIGS. 3A, 3B, 4, and 5.
  • FIGS. 3A and 3B are perspective views illustrating the production of the different thickness lead frame 100.
  • FIG. 3A shows the state of the copper material 122 before pressing
  • FIG. 3B shows the state of the copper material 122 after pressing. Indicates a state.
  • a copper material 122 is a continuous deformed copper strip formed of a thin plate mainly made of copper, for example, by roll molding or the like.
  • this copper The material 122 is molded into a predetermined shape by pressing.
  • burrs generated during pressing can be released to the front side (further, the effect of the air-permeable dirt preventing film 124 of FIG. 5 described later can be enhanced), so that the processing accuracy can be increased. Further, deformation at the thick part 112 and the thin part 114 can be reduced.
  • FIG. 4 is a perspective view showing the relationship between the different thickness lead frame and the heat sink.
  • 124A is an auxiliary line, and indicates that in the next step, the space constituting the auxiliary line 124A is filled with the resin constituting the composite resin plate 108.
  • the adjacent thin portion 112 has a wide pattern width (for example, a thickness of 0.5 mm and a pattern width of 0.5 mm). (Thickness 0.1 mm and pattern width 0.1 mm) It can be seen that it is easy to use for signal applications.
  • Fig. 5 shows a view from the direction of arrow 120A.
  • FIG. 5 is a cross-sectional view showing a state in which the resin constituting the composite resin board 108 is filled, and corresponds to the observation of the directional force indicated by the arrow 120A in FIG.
  • a filler for composite resin board 108 made of at least filler 118 having an inorganic powder power and insulating resin 116 is set between heat sink 110 and lead frame 100 having a different thickness.
  • pressing is performed using a press (heating press, vacuum heating press or the like) in the direction of arrow 120b.
  • a breathable antifouling film 124 is attached to the surface of the different thickness lead frame 100.
  • the breathable antifouling film 124 to the gap between the different thickness lead frames 100 (for example, the stepped portion between the thick portion 112 and the thin portion 114 or the thin portion 114 having a fine pitch) at the time of pressing. Is less likely to remain. If air remains, it can escape through the breathable antifouling film 124.
  • the arrow 120a illustrates how air escapes during pressing. If air remains in these parts, voids (voids) are generated in the 108 part of the composite resin board. This affects the thermal conductivity in these parts, and the lead frame 100 and the heat sink 110 with different thicknesses. It may affect the insulation of the product.
  • the resin for the composite resin board 108 can be surely circulated to all corners of the different thickness lead frame 100 without generating air remaining.
  • the breathable dirt preventing film 124 a film in which an adhesive is thinly applied to a nonwoven fabric can be used.
  • the burr 126 is a force generated when the copper material 122 is pulled out by a mold.
  • the burr 126 is vented during pressing. This prevents the resin for the composite resin board 108 from flowing into the surface of the lead frame 100 with different thickness by biting into the anti-fouling film 124.
  • the thin portion 114 of the different thickness lead frame 100 is formed with a fine pitch.
  • the mounting surface the control IC 104 or the chip
  • the resin for the composite resin board 108 can be prevented from wrapping around the surface on which the component 106 is solder-mounted.
  • thermosetting resin can be used as the resin for the composite resin board 108.
  • 120 ° C has a time of 10 minutes or more. Therefore, in order to shorten this time and increase productivity, a pregel agent is mixed.
  • the pregel agent is a thermoplastic resin powder that functions to absorb and expand the liquid component of the uncured thermosetting insulating resin so that the uncured insulating resin becomes a gel.
  • the pregel agent acts at a temperature of 120 ° C for about 1 minute, and can be made sufficiently hard to be removed from the mold, thereby increasing productivity.
  • FIG. 6 is a perspective view for explaining the positions where components are mounted on the heat dissipation wiring board.
  • the thick part 112 of the lead frame 100 with different thickness is excellent in large current and heat dissipation, and this part becomes the large current heat dissipation part 128, and a power component 134 such as an LED is mounted. Is desirable.
  • the thin part 114 of the different thickness lead frame 100 is capable of forming a complicated wiring, and is optimal as the signal circuit part 130 and is suitable for mounting the control component 132.
  • FIG. 7 is a perspective view showing a state in which each component is mounted. As shown in FIG. 7, by disposing a power component 134 that requires a large amount of heat, such as an LED, on the thick portion 112 and the control component 132 on the thin portion 114, the circuits can be brought closer to each other. Cost reduction and downsizing are possible.
  • a power component 134 that requires a large amount of heat such as an LED
  • FIG. 8 is a perspective view seen from another direction. As shown in FIG. 8, it can be seen that the wiring thickness of the thin portion 114 forming the different thickness lead frame 100 is thinner than that of the thick portion 112, but the wiring rule is fine.
  • FIG. 9 is a perspective view showing an example of a heat dissipation wiring board in the fourth embodiment.
  • FIG. 9 shows an example in which an electronic component requiring high current and high heat dissipation, which is a feature of the present invention, and a general surface mount electronic component are simultaneously mounted.
  • the different thickness lead frame 100 can be formed in a U-shape (or a bridge shape). With such a shape, the heat dissipation wiring board can be mounted on another circuit board (the other circuit board is not shown in FIG. 9), and between the other circuit board and the heat dissipation wiring board. A gap can be provided to transfer heat from the heat dissipation wiring board to other circuit boards. Further, as shown in FIG. 9, another component 140 can be mounted in this gap.
  • the different thickness lead frame 100 has a substantially rectangular cross section. By making it a substantially square shape, a large current can flow at the maximum density in a limited area. Also, the different thickness lead frame 100 needs to be in contact with the composite resin board 108 on at least one side thereof. In addition, the heat transfer efficiency from the different thickness lead frame 100 to the composite grease plate 108 can be increased by contacting the three sides of the different thickness lead frame 100 with the composite grease plate 108. Adhesiveness of the resin board 108 Can be increased. In particular, in the thin part 114 of the lead frame 100 with different thickness, as the wiring pattern becomes finer, the contact area with the composite resin board 108 relatively decreases, so that the three surfaces are in contact with the composite resin board 108. It is desirable to make it. The remaining one surface is exposed from the composite resin board 108 as shown in FIGS. 7, 8, etc., so that the mounting strength can be increased.
  • the copper material 122 is formed into a different thickness lead frame 100 by a mechanical cage, a long thin metal coil of 10m to 100m can be continuously cared.
  • the composite resin board 108 is bitten (or anchored). Can be increased.
  • the different thickness lead frame 100 it is possible to realize a heat dissipation wiring board capable of forming the thin portion 114 as a fine pattern. Also, by attaching the different thickness lead frame 100 on the composite resin board 108, only one surface of the different thickness lead frame 100 having a substantially rectangular cross section may be in contact with the composite resin board 108. it can.
  • the composite resin plate 108 is formed on the three surfaces of the substantially rectangular cross section of the different thickness lead frame 100. Can improve heat dissipation and bondability.
  • a part of the thin portion 114 of the different thickness lead frame 100 can be locally formed in a fine pattern, and various surfaces can be formed.
  • Mounting components can be mounted at high density.
  • the handleability at the time of processing is improved by having the thick portion 112.
  • the thickness of the circuit pattern can be formed with two or more different thicknesses, so that a heat dissipation wiring board that can achieve both high current and fine pattern can be obtained. Can be provided.
  • the circuit pattern can be made both large current and fine pattern. Can be provided at low cost.
  • the lead frame 100 with different thickness can be manufactured by reducing the thickness of a part of the conductive metal plate by pressing with a press and a mold, it is possible to achieve both high current and fine patterning.
  • a wiring board can be provided.
  • the thin portion 114 that forms the thin portion 114 constituting the different thickness lead frame 100 is punched out using a press and a die to form a fine pattern, thereby achieving both a large current and fine turnover.
  • a heat dissipation wiring board that can be provided can be provided.
  • the thin portion 114 constituting the different thickness lead frame 100 is formed as a fine pattern by etching, laser processing, or wire discharge molding, heat dissipation capable of achieving both high current and fine patterning is achieved.
  • a wiring board can be provided.
  • a part of the lead frame 100 with a different thickness is used as a circuit pattern, and a part of the circuit pattern projects to the outside of the substrate to form a heat radiating part according to the present invention, thereby providing a heat radiating function. , Heat dissipation, large current and fine pattern can be achieved.
  • the overhanging pattern has the function of a terminal, it is possible to achieve both heat dissipation, large current, and fine patterning.
  • a part of the lead frame 100 having a different thickness is formed as an overhanging pattern, and the pattern having the function of the overhanging terminal is bent to mount the board with the buoyancy of the mother board. High current, fine pattern, and excellent mountability.
  • heat-dissipation, large current, and fine patterning can be achieved by heat-integrating different thickness lead frames with partially different thicknesses using a resin added with filler and a press. It is possible to manufacture a heat dissipation wiring board excellent in the manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 従来のLED等の大電流と放熱性が要求される電子部品を、他の一般の電子部品と同一の基板上に実装することが難しかった点を改善することを目的とする。そのために、部分的に厚みを異ならせた異厚リードフレームを用い、その肉厚部にはLED等の大電流と放熱性が要求される特殊な電子部品を実装し、また肉薄部はファインピッチな配線とし、一般電子部品を高密度実装する。そしてこれにより、高放熱や大電流が要求される電子部品のユニット化もしくはモジュール化に対応できるようになる。

Description

明 細 書
放熱配線基板とその製造方法と放熱配線基板を用いた電気機器 技術分野
[0001] 本発明は放熱配線基板とその製造方法と放熱配線基板を用いた電気機器に関す るものである。
背景技術
[0002] 近年、電子機器の高性能化、小型化の要求に伴い、電子部品の高密度、高機能 化が一層要求されている。そのため、電子部品の小型化、高機能化、高実装化によ り、電子部品の温度上昇が大きな問題となり、電子部品の放熱を高める方法が重要 となっている。以下、発熱が課題となる電子部品として LEDを例にして説明する。
[0003] 電子部品の中でも LEDは温度が上がりすぎると発光量が減少するという特性があり 、発光量を上げるためには放熱が不可欠である。 LEDの放熱を高める技術として、 L EDを金属基板に装着し、 LEDの背面力ゝら熱を拡散する方法が知られて ヽる。
[0004] 図 10は、従来の放熱配線基板の一例を示す斜視図である。図 10において、リード フレーム 202は、榭脂 204の中に埋め込まれている。そして、この上に LED206等が 実装されることになる。ここで LED206の放熱は、榭脂 204を介して放熱板 208に伝 わる。こうして放熱は、リードフレーム 202や放熱板 208を介して行われることになる。 このような技術力、例えば特開 2001— 57408号公報に記載されている。
[0005] ここで、 LED206を多数個実装して駆動する場合、例えば 30A〜150Aといった大 電流が要求される。こうした大電流に対応するには、リードフレーム 202の厚み(断面 積)を大きくする必要があり、結果的にリードフレーム 202の高肉厚化が必要となる。 し力 リードフレーム 202を厚くした場合、リードフレーム 202をより微細な配線形状に プレスカ卩ェすることが難しくなる。具体的にはリードフレーム 202をプレスカ卩ェする際 、その微細化は、肉厚程度が限界である。つまり肉厚 0. 5mmの場合、パターン幅は 0. 5mmが限界であり、肉厚 0. 5mmでパターン幅を 0. 3mm、 0. 4mmといった微 細化を行うことは極めて難しい。一般的なプリント配線回路のようなパターン幅を 0. 2 mm, 0. 1mmとするためには、リードフレーム 202の厚みを 0. 2mm, 0. 1mmと薄く する必要がある力 こうした厚み (あるいは断面積)では、 LED206を駆動するための 大電流に対応できない。
[0006] 一方、ユーザー側からは、 LED206に対して高度な制御回路を有して用途に応じ た発光状態を実現したいというニーズがある。こうした場合、 LED206の周りに LED2 06の制御回路及び制御用半導体を実装する必要がある。しかし、従来の高放熱基 板では、リードフレーム 202から構成された回路パターンは、大電流対応の疎なパタ ーンであり、半導体等を実装する密なパターンを形成できな力つた。そのため LED2 06の周辺回路を同じ基板の上に表面実装することができず、他の基板に別途実装 されていた。
[0007] 特に最近ニーズの多い各種バックライトや照明用の場合、複数個の LED206が配 列されてなるアレイ状の LED206を電子回路によって高度に制御する必要があり、 低コスト化、コンパクトィ匕の面から、大電流と放熱が要求される LED206等の発熱電 子部品と、一般回路部品を同一基板に実装することが望まれていた。
[0008] また、上記従来の構成では、 LED206を駆動するために 100A(Aはアンペアで、 電流の単位)といった大電流が必要で、更に、 LED206を放熱するためには、リード フレーム 202からなる配線基板では、リードフレーム 202の更なる高肉厚化が進めら れた結果、リードフレーム 202のパターンが疎となり、 LED206の駆動用の半導体回 路部品を同じ基板に実装することが難しいという問題点を有していた。
発明の開示
[0009] 本発明は上記問題点を解決するもので、大電流対応と高放熱性化を更に進めると 共に、半導体やチップ部品といった微細な部品も同じ基板に実装可能な放熱配線基 板を提供するものである。
[0010] また、上記課題を解決するために、部分的に厚みを薄くした金属配線板力もなる回 路パターンを、フィラーを混鍊した絶縁性を有する榭脂板に貼り付ける、もしくは埋め 込むものである。
[0011] 上記構成により、本発明の放熱配線基板は、部分的に厚みを薄くした金属配線板 力 なる回路パターンを用いることで、肉薄部に LED等の発熱電子部品を実装して も、肉薄部と一体となっている肉厚部へ熱が伝わるため、効率よく放熱させることがで きる。あるいは LED等の大電流と放熱性が要求される部分には肉厚部を適用し、半 導体やチップ部品といった回路部品を高密度に表面実装することが要求される部分 には肉薄部を適用した場合は、 LED等のように数十 A〜100A以上の大電流を流す ことは肉厚部分で対応でき、またその肉厚を利用して LEDを効率的に冷却できる。 更に肉薄部を利用して LED等を制御する半導体部品等を LED等の近傍に高密度 実装できる。こうして一つの放熱配線基板に LED等とその周辺回路部品等を実装で きるため、例えば LEDのモジュール化やユニットィ匕が可能となり、製品の小型化、低 コストィ匕が可能となる。
図面の簡単な説明
[0012] [図 1A]図 1Aは本発明の実施の形態 1の放熱配線基板の斜視図である。
[図 1B]図 1Bは本発明の実施の形態 1の放熱配線基板の一部切欠斜視図である。
[図 2]図 2は実施の形態 1における放熱配線基板の拡大断面図である。
[図 3A]図 3Aは異厚リードフレームを作る工程でのプレス前の様子を説明する斜視図 である。
[図 3B]図 3Bは異厚リードフレームを作る工程でのプレス後の様子を説明する斜視図 である。
[図 4]図 4は異厚リードフレームと放熱板の関係を示す斜視図である。
[図 5]図 5はコンポジット榭脂板を構成する榭脂を充填する様子を示す断面図である
[図 6]図 6は放熱配線基板に部品を実装する位置を説明する斜視図である。
[図 7]図 7は放熱配線基板にそれぞれの部品を実装した様子を示す斜視図である。
[図 8]図 8は図 7を別の方向から見た斜視図である。
[図 9]図 9は実施の形態 4における放熱配線基板を示す斜視図である。
[図 10]図 10は従来の放熱配線基板の一例を示す斜視図である。
符号の説明
[0013] 100 異厚リードフレーム
102 LED
104 制御用 IC 106 チップ部品
108 コンポジット榭脂板
110 放熱板
112 肉厚部
114 肉薄部
116 樹脂
118 フィラー
122 銅素材
124 通気性汚れ防止フィルム
126 バリ
128 大電流放熱部
130 信号回路部
132 制御部品
134 パワー部品
136 端子電極
138 放熱フィン
140 別の部品
発明を実施するための最良の形態
[0014] 以下、実施の形態を用いて、本発明について、図面を参照しながら説明する。
[0015] (実施の形態 1)
実施の形態 1について、図を用いて説明する。
[0016] 図 1Aは実施の形態 1における放熱配線基板に LEDを実装した状態の斜視図、図 1Bは図 1Aの部分断面図である。
[0017] 図 1Aにおいて、回路パターンとして用いた異厚リードフレーム 100の上には、 LED 102のような高発熱、大電流素子が実装される。また LED102の制御用の制御用 IC 104やチップ部品 106も同じ異厚リードフレーム 100の上に実装される。また異厚リ ードフレーム 100は、コンポジット榭脂板 108を介して、このコンポジット榭脂板 108の 下面に配置されている放熱板 110と一体ィ匕されている。この放熱板 110は、異厚リー ドフレーム 100とは非導通状態でコンポジット榭脂板 108に貼り付けられたものである 。なお LED102や制御用 IC104等の実装用の端子電極は、図示していない。また 図 1A、図 IBにおいて LED102や制御用 IC104等を表面実装することで、より緻密 ィ匕できることは 、うまでもな 、。
[0018] 図 1Bにおいて、斜線部は実施の形態 1における放熱配線基板の部分断面である。
図 1Bより、異厚リードフレーム 100は、部分的に厚い部分と薄い部分があることが判 る。従来のリードフレームは一様な厚みで作られている。一方、本実施の形態 1の放 熱配線基板では、リードフレームとして、同一板でありながら部分的に厚みを変化さ せてなる異厚リードフレーム 100を組み合わせて用いることになる。そして異厚リード フレーム 100は、コンポジット榭脂板 108に埋め込まれ、コンポジット榭脂板 108の上 面と異厚リードフレーム 100の上面とが略面一となつて、放熱板 110と一体化されて いる。
[0019] 次に図 2を用いて更に詳しく説明する。図 2は実施の形態 1における放熱配線基板 の拡大断面図である。図 2に示すように、異厚リードフレーム 100は、肉厚部 112と肉 薄部 114から構成されている。そして本実施の形態では、隣接するリードフレーム 10 0は、それぞれのリードフレーム 100の肉薄部 114が対向するように配置され、これら の肉薄部 114はほぼ同じ厚みとした。なお、肉薄部 114の厚みは隣接するリードフレ ーム 100相互で異なって 、てもよ 、。その場合は厚みの大き 、方と電子部品の発熱 部分とが対向するように実装すれば、配線パターンの微細化と高放熱性とを同時に 実現することができる。
[0020] またコンポジット榭脂板 108は、フィラー 118と榭脂 116力 構成されている。なおフ イラ一 118としては、無機フィラーが望ましい。無機フィラーとしては、 Al O
2 3、 MgO、
SiO、 BN及び A1Nから選ばれる少なくとも一つを含むことが望ましい。なお無機フィ
2
ラーを用いると、放熱性を高められるが、特に MgOを用いると線熱膨張係数を大きく できる。また SiOを用いると誘電率を小さくでき、 BNを用いると線熱膨張係数を小さ
2
くでさる。
[0021] また矢印 120は、肉厚部 112と肉薄部 114の段差の角度であり、垂直面からの角 度である。矢印 120に示す角度は、 0度以上 45度以下が望ましぐ 0度以上 30度以 下がより望ましい。生産性と寸法安定性に優れた圧延方法を用いる場合、 0度未満を 実現することは困難である。また 45度より大きくした場合、その制御が難しくなる。そ のため矢印 120に示す角度は、 5度前後(望ましくは 3度から 10度、更にはあるいは 5 度から 7度)にすることで一枚の板から、安定した厚み寸法 (及び最小の残留ひずみ) で、肉厚部 112と肉薄部 114を同時に有する異厚リードフレーム 100を製造できる。
[0022] なお異厚リードフレーム 100の材質としては、銅を主体とするものが望ましい。これ は銅が熱伝導性と導電率が共に優れているためである。またこの場合、異厚リードフ レーム 100となる銅素材として、本実施の形態では銅の含有率が 99. 90%以上 99. 99%未満で微量 (0. 02%〜0. 05%)の酸素を含むタフピッチ銅を用いた。このタフ ピッチ銅は熱伝導性および導電性に優れる上に、酸素を含むことで例えば無酸素銅 (硬さ 112HB以下)と比較して硬度が低くなり(硬さ 87HB以下)、レーザ加工ゃプレ スカロェなどによる加工性に優れている。なお、熱伝導性や導電性よりも加工性を優先 して向上させた 、場合は軟銅を用いればよく、加工性よりも熱伝導性および導電性 を優先した!/、場合は無酸素銅を用いればょ 、。
[0023] また上記銅素材には、銅以外の添加剤を加えることが望ましい。例えば Cu+Snの 銅素材を用いることができる。 Snの場合、例えば Snを 0. lwt%以上 0. 15wt%未 満添加することで、銅素材の軟ィ匕温度を 400°Cまで高められる。比較のため Sn無し の銅(Cu> 99. 96wt%)を用いて、図 1A、図 IBに示す異厚リードフレーム 100を 作製したところ、導電率は高いが、出来上がった放熱配線基板において特に肉薄部 114 (更に肉薄部 114と肉厚部 112の接続部分)で歪が発生する場合があった。そこ で詳細に調べたところ、その材料の軟ィ匕点が 200°C程度と低いため、後の部品実装 時 (半田付け時)や、 LEDの実装後の信頼性試験 (発熱 Z冷却の繰り返し等)におい て変形する可能性があることが予想された。
[0024] 一方、 Cu+Sn> 99. 96wt%の銅素材を用いた場合、部品実装や LEDによる発 熱の影響は特に受けな力つた。また半田付け性やダイボンド性にも影響が無力つた。 そこでこの材料の軟ィ匕点を測定したところ、 400°Cであることが判った。このように、銅 を主体として、いくつかの元素を添加することが望ましい。銅に添加する元素として、 Zrの場合、 0. 015wt%以上 0. 15wt%未満の範囲が望ましい。添加量が 0. 015w t%未満の場合、軟ィ匕温度の上昇効果が少ない場合がある。また添加量が 0. 15wt %より多いと電気特性に影響を与える場合がある。また、 Ni、 Si、 Zn、 P等を添加する ことでも軟化温度を高くできる。この場合、 Niは 0. lwt%以上 5wt%未満、 Siは 0. 0 lwt%以上 2wt%以下、 Znは 0. lwt%以上 5wt%未満、 Pは 0. 005wt%以上 0. lwt%未満が望ましい。そしてこれらの元素は、この範囲で単独、もしくは複数を添 加することで、銅素材の軟ィ匕点を高くできる。なお添加量がここで記載した割合より少 ない場合、軟化点上昇効果が低い場合がある。またここで記載した割合より多い場合 、導電率への影響の可能性がある。同様に、 Feの場合 0. lwt%以上 5wt%以下、 Crの場合 0. 05wt%以上 lwt%以下が望ましい。これらの元素の場合も前述の元素 と同様である。
[0025] なお銅合金の引張り強度は、 600NZmm2以下が望ましい。引張り強度が 600N Zmm2を超える材料の場合、異厚リードフレーム 100の加工性に影響を与える場合 がある。またこうした引っ張り強度の高い材料は、その電気抵抗が増加する傾向にあ るため、実施の形態 1で用いるような LED102等の大電流用途には向かない場合が ある。一方、引張り強度が 600NZmm2以下の材料は、 Cuの含有率が高ぐ導電率 が高いため実施の形態 1で用いるような LED等の大電流用途には向いている。また 柔らかいため、加工性にも優れており、実施の形態 1で用いるような LED102等の大 電流用途に適切である。
[0026] なお異厚リードフレーム 100の、コンポジット榭脂板 108から露出している面(LED 102や制御用 IC104、チップ部品 106の実装された面)に、予め半田付け性を改善 するように半田層や錫層を形成しておくことで、異厚リードフレーム 100への部品実 装性を高められると共に、配線の鲭び防止が可能となる。なお異厚リードフレーム 10 0のコンポジット榭脂板 108に接する面 (もしくは埋め込まれた面)には、半田層は形 成しないことが望ましい。このようにコンポジット榭脂板 108と接する面に半田層や錫 層を形成すると、半田付け時にこの層が柔ら力べなり、異厚リードフレーム 100とコン ポジット榭脂板 108の接着性 (もしくは結合強度)に影響を与える場合がある。なお図 1A、図 1B、図 2において、半田層や錫層は図示していない。
[0027] なお無機フイラ一は略球形状で、その直径は 0. 1-100 μ mであるが、粒径が小さ いほど榭脂 116への充填率を向上できる。そのためコンポジット榭脂板 108における 無機フィラーの充填量 (もしくは含有率)は、熱伝導率を上げるために 70〜95重量% と高濃度に充填している。特に、本実施の形態では、無機フイラ一は、平均粒径 3ミク ロンと平均粒径 12ミクロンの 2種類の Al Oを混合したものを用いている。この大小 2
2 3
種類の粒径の Al Oを用いることによって、大きな粒径の Al Oの隙間に小さな粒径
2 3 2 3
の Al Oを充填できるので、 Al Oを 90重量%近くまで高濃度に充填できるものであ
2 3 2 3
る。この結果、コンポジット榭脂板 108の熱伝導率は 5WZmK程度となる。なおフイラ 一 118の充填率が 70重量%未満の場合、熱伝導性が低下する場合がある。またフィ ラー 118の充填率 (もしくは含有率)が 95重量%を超えると、未硬化前のコンポジット 榭脂板 108の成型性に影響を与える場合があり、コンポジット榭脂板 108と異厚リー ドフレーム 100の接着性 (例えば、異厚リードフレーム 100をコンポジット榭脂板 108 に埋め込んだ場合や、その表面に貼り付けた場合)に影響を与え、肉薄部 114に形 成された微細な配線部分への回り込みに影響を与える可能性がある。
[0028] なお熱硬化性の絶縁榭脂は、エポキシ榭脂、フエノール榭脂およびシァネート榭脂 の内、少なくとも 1種類の榭脂を含んでいる。これらの榭脂は耐熱性や電気絶縁性に 優れている。
[0029] なおコンポジット榭脂板 108からなる絶縁体の厚さは、薄くすれば、異厚リードフレ ーム 100に装着した LED102に生じる熱を放熱板 110に伝えやすいが、逆に絶縁 耐圧が問題となり、厚すぎると、熱抵抗が大きくなるので、絶縁耐圧と熱抵抗を考慮し て最適な厚さに設定すれば良 、。
[0030] 金属製の放熱板 110としては、熱伝導の良いアルミニウム、銅またはそれらを主成 分とする合金力もできていることが望ましい。特に、本実施の形態では、放熱板 110 の厚みを lmmとしている。また、放熱板 110としては、単なる板状のものだけでなぐ より放熱性を高めるため、コンポジット榭脂板 108を積層した面とは反対側の面に、 表面積を広げるために放熱フィン部を形成しても良い。放熱配線基板の線膨張係数 は 8 X 10_6/°C〜20 X 10_6/°Cとしており、放熱板 110や LED102の線膨張係数 に近づけることにより、基板全体の反りや歪みを小さくできる。またこれらの部品を表 面実装する際、互いに熱膨張係数をマッチングさせることは信頼性的にも重要となる [0031] また異厚リードフレーム 100の肉厚部 112の厚みは 0. 3mm以上 1. Omm以下(更 に望ましくは 0. 4mm以上、 0. 8mm以下)が望ましい。これは LED102を制御する には大電流(例えば 30A〜150Aであり、これは駆動する LED102の数によって更 に増加する場合もある)が必要であるためである。また異厚リードフレーム 100の肉薄 部 114の厚みは 0. 05mm以上 0. 3mm以下が望ましい。肉薄部 114の厚みが 0. 0 5mm未満の場合、プレスが難しくなる場合がある。また肉薄部 114の厚みが 0. 3m mを超えると、プレスによる打ち抜き時にパターンの微細化が影響を受ける。なお異 厚リードフレーム 100は、肉厚部 112と肉薄部 114の厚み差が 0. 1mm以上 0. 7m m以下あれば良い。厚み差が 0. 1mm未満の場合、厚みを変えている効果が得られ ない場合がある。また厚み差が 0. 7mmを超えると、一枚の板をロール成型 (あるい は抜き成型)する際に、その加工精度が影響を受ける可能性がある。このようにして、 例えば肉厚部 112を 0. 5mm厚、肉薄部 114を 0. 2mmとした場合、肉厚部 112を 金型加工またはプレスによってパターン幅 0. 5mmに薄肉化できる。その他、エッチ ング、レーザ加工、切肖 I』、放電カ卩ェなどの手法を用いると、さらにパターン幅を広げる ことができる。レーザで加工する場合は、加工面を粗面とすれば、コンポジット榭脂板 108に対するアンカー効果が得られる。
[0032] さらに、肉薄部 114はパターンの隙間の幅 0. 2mmに金型加工できる。なお金型加 ェは一度で行っても良いし、複数回(フープの外形加工他も含む)に分けても良い。 その他、上記肉薄部 114にレーザを照射したり、エッチングしたりすることによって、 配線回路を形成することもできる。レーザを用いて肉薄部 114を形成する場合、肉厚 部 112を薄肉化する時よりも波長が短ぐパルス幅も短 、レーザを用いることによって 、金属配線板の熱変質を抑制し、微細な回路パターンを高精度に形成することがで きる。このようなレーザとしては、 SHGレーザが挙げられる。このレーザは波長が赤外 光の半分(532nm)と短ぐ銅の吸収率が高いため、切断が短時間で行え、加工部 の熱変質をより低減することができる。レーザで加工する場合は、加工面に酸化膜を 形成することができ、微細な回路パターン間の電気絶縁性を向上させることができる [0033] なお、上記の SHGレーザを用いると、厚み 0. 1mmの肉薄部 114ならばパターン の隙間幅を 0. Olmm以上 0. 1mm以下、厚み 0. 2mmの肉薄部 114ならばパター ンの隙間幅を 0. 03mm以上 0. 2mm以下に容易に形成することができ、加工精度も -0. 005mm力ら + 0. Olmmの範囲となる。なお、レーザを用いると、レーザの入 射部から加工の端部(レーザの出射部)に向けて徐々に開口径が狭くなるようにカロェ することができる。すなわち、加工面をテーパ構造とすることができ、開口径の広い方 力 榭脂を充填すれば、微細な回路パターン間において樹脂が充填しやすくなり、 電気絶縁性を向上させることができる。
[0034] こうして LED102のような発熱部品は上記の肉厚部 112に実装することで、例えば 100Aのような大電流に対応でき、更にその発熱面も肉厚部 112を、更にコンポジッ ト榭脂板 108や放熱板 110を介して放熱できる。同時に LED102の制御用 IC104 やチップ部品 106等は、肉薄部 114に実装できる。
[0035] また LED102を非常に微細な配線回路上に実装する必要がある時は、微細な配 線回路パターンが形成された肉薄部 114上に LED102を実装してもよい。この場合 も、肉薄部 114からこの肉薄部 114と一体となっている肉厚部 112に向けて熱がすば やく伝わり、効率よく放熱することができ、 LED102の輝度を向上させることができる。 この時、肉厚部 112となる異厚リードフレーム 100 (金属配線板)の上面の面積は、肉 薄部 114となる異厚リードフレーム 100の上面の面積よりも大きくしておくことによって 、熱が拡散しやすくなり、放熱効果を高めることができる。
[0036] なお、本実施の形態では図 2に示すように、肉厚部 112を、断面が台形になるよう に薄肉化した力 異厚リードフレーム 100 (回路パターン)の側面となる肉薄部 114か ら肉厚部 112までを繋ぐ面を斜面で構成し、断面が略三角になるように加工してもよ い。この場合は、回路パターンの微細化を実現するとともに、異厚リードフレーム 100 の肉薄部 114において、厚みの薄い部分を極力少なくすることができ、大電流対応 で高放熱性を実現することができる。
[0037] また、異厚リードフレーム 100の側面となる肉薄部 114から肉厚部 112までを繋ぐ 面を、肉薄部 114から肉厚部 112に向力つて外方に広がる湾曲面で構成する場合 は、肉薄部 114の下方に充填した榭脂が熱膨張した時の応力を効率よく分散するこ とができ、熱信頼性を向上させることができる。
[0038] さらに本実施の形態では、図 2に示すように、肉薄部 114の略中央を打ち抜いて回 路パターンを形成したが、この打ち抜く部分はいずれか一方の異厚リードフレーム 10 0に偏っても良い。この場合、隣接する異厚リードフレーム 100の対向する肉薄部 11 4の上面の面積は、相互に異なる構造となる。この時、肉薄部 114の面積が小さい方 に電子部品の発熱部分が対向するように実装すれば、熱はすぐに肉厚部 112へとつ ながるため放熱性を向上させることができる。
[0039] なお、本実施の形態では、隣接する異厚リードフレーム 100は、それぞれの異厚リ ードフレーム 100の肉薄部 114が対向するように配置した力 V、ずれか一方の異厚リ ードフレーム 100の肉薄部 114と他方の異厚リードフレーム 100の肉厚部 112とが対 向するように配置してもよい。この場合、電子部品の発熱部分が肉厚部 112と対向す るように実装すれば、放熱性の向上とパターンの微細化とを同時に実現することがで きる。
[0040] また発光モジュール以外にも、 PDPなどに用いる電源ユニットやインバータ、 DC— DCコンバータ、車載用の大電流電気機器などにも応用が可能で、肉厚部 112上に 、放熱性の向上が要求されるパワートランジスタ、パワーチョークコイル、パワー半導 体などのパワー素子を実装し、肉薄部 114上に高密度実装が要求される制御用 IC、 信号用 ICなどを実装することでモジュールの一体化'小型化が実現できる。
[0041] さらに肉厚部 112上に実装する素子としては、発熱性の高いレーザ素子なども挙げ られる。また、肉薄部 114上に実装する素子としては、微細パターンが要求されるダ ィオードなども挙げられる。
[0042] (実施の形態 2)
以下、実施の形態 2として、異厚リードフレームを用いた放熱配線基板の製造方法 の一例について、図 3A、図 3B、図 4、図 5を用いて説明する。
[0043] 図 3A、図 3Bは異厚リードフレーム 100を作る様子を説明する斜視図であり、図 3A はプレスする前の銅素材 122の状態を示し、図 3Bはプレス後の銅素材 122の状態を 示している。図 3Aにおいて、銅素材 122は、例えばロール成型等によって、銅を主 体とする薄板を連続的な異形銅条としたものである。次に図 3Bに示すように、この銅 素材 122をプレスによって所定形状に成型する。ここでプレスは、裏面側から表側( 図 3Bでは下側力 上側)に行うことが望ましい。こうすることで、プレス時に発生する バリを表面側に逃がせる(更に後述する図 5の通気性汚れ防止フィルム 124の効果も 高められる)ため、加工精度を高められる。また肉厚部 112、肉薄部 114での変形も 少なくできる。
[0044] 図 4は異厚リードフレームと放熱板の関係を示す斜視図である。図 4において、 124 Aは補助線であり、次の工程で、補助線 124Aで示す空間にコンポジット榭脂板 108 を構成する榭脂が充填されることを示している。また図 4より、隣接する肉厚部 112の パターン幅は広く(例えば、肉厚 0. 5mmでパターン幅 0. 5mm)大電流用途に、隣 接する肉薄部 114のパターン幅が狭く(例えば、肉厚 0. 1mmでパターン幅 0. lmm )信号用途に使いやすくなっていることが判る。すなわち、本実施の形態では、大電 流対応かつ微細パターンを実現する為、肉厚部 112の厚み対肉薄部 114のパター ンの隙間幅の比が 1対 1未満に形成されている。次に矢印 120Aの方向から見た図 を図 5に示す。
[0045] 図 5は、コンポジット榭脂板 108を構成する榭脂を充填する様子を示す断面図であ り、図 4の矢印 120Aの方向力も観察したものに相当する。図 5において、少なくとも 無機系の粉力もなるフィラー 118と、絶縁性の榭脂 116からなるコンポジット榭脂板 1 08用の榭脂を、放熱板 110と異厚リードフレーム 100の間にセットする。そして矢印 1 20bの方向にプレス (加熱プレス、あるいは真空加熱プレス等)機を用いて、プレスす る。この際、異厚リードフレーム 100の表面に通気性汚れ防止フィルム 124を貼り付 けておく。ここで通気性汚れ防止フィルム 124を貼り付けておくことで、プレス時に異 厚リードフレーム 100の隙間(例えば肉厚部 112と肉薄部 114の段差部や、ファイン ピッチとなる肉薄部 114)に空気が残りにくくなる。もし空気が残っても、通気性汚れ 防止フィルム 124を介して逃げることができる。ここで矢印 120aは、プレス時に空気 が逃げる様子を図示したものである。こうした部分に空気が残った場合、コンポジット 榭脂板 108部分の中にボイド (空隙)を発生させてしま ヽ、こうした部分での熱伝導性 に影響を与え、異厚リードフレーム 100と放熱板 110の絶縁性に影響を与える場合 がある。また予めコンポジット榭脂板 108用の榭脂は、図 5に示すように、丸型 (あるい は蒲鋅型、台形、円柱、球状)にしておくことが望ましい。こうした形状とすることで、 異厚リードフレーム 100の隅々まで、空気残りを発生させることなくコンポジット榭脂板 108用の榭脂を確実に回り込ませることができる。なお、通気性汚れ防止フィルム 12 4としては、不織布に粘着剤を薄く塗布したようなものを使うことができる。
[0046] またバリ 126は、銅素材 122を金型で抜いたときに発生したものである力 このバリ 126の方向を通気性汚れ防止フィルム 124側にしておくことで、プレス時にバリ 126 が通気性汚れ防止フィルム 124に食い込み、異厚リードフレーム 100表面へのコンポ ジット榭脂板 108用の樹脂の流れ込みを防止できる。特に実施の形態 2では、異厚リ ードフレーム 100の肉薄部 114は、ファインピッチで形成されているため、このノ リ 12 6を利用することで、肉薄部 114の実装面 (制御用 IC104やチップ部品 106が半田 実装される面)にコンポジット榭脂板 108用の樹脂が回り込むことを防ぐことができる。
[0047] なおコンポジット榭脂板 108用の榭脂として、熱硬化性榭脂を使うことができる。例 えば、未硬化の熱硬化性榭脂を金型から取り出すに十分な硬さに硬化させるには 1 20°Cで 10分以上の時間を有する。そこでこの時間を短縮して生産性を上げるため にプレゲル剤を混ぜる。プレゲル剤は、熱可塑性榭脂パウダーであり、未硬化の熱 硬化性の絶縁樹脂の液状成分を吸収して膨張し、未硬化の絶縁樹脂がゲルとなるよ うに作用する働きをする。プレゲル剤は 120°Cの温度では 1分程度で作用し、金型か ら取り出すに十分な硬さにすることができるため生産性を上げることができる。
[0048] (実施の形態 3)
以下、実施の形態 3として、放熱配線基板への各種電子部品の最適実装の一例に ついて、図 6〜図 8を用いて説明する。図 6は、放熱配線基板に部品を実装する位置 を説明する斜視図である。
[0049] 図 6において、異厚リードフレーム 100の肉厚部 112は、大電流と放熱性に優れて おり、この部分が大電流放熱部 128となり、 LEDのようなパワー部品 134を実装する ことが望ましい。一方、異厚リードフレーム 100の肉薄部 114は、細力べ複雑な配線を 形成できるため、信号回路部 130として最適であり、制御部品 132の実装に向いて いる。
[0050] なお図 6の異厚リードフレーム 100の表面(部品実装面)にはニッケル下地の錫め つき処理が施されている。このように、半田付けのために、錫めつきや半田めつきを行 うことができる。
[0051] 図 7は、それぞれの部品を実装した様子を示す斜視図である。図 7に示すように、 L ED等の放熱ゃ大電流の要求されるパワー部品 134を肉厚部 112に、制御部品 132 を肉薄部 114に実装することで、互いに回路を近づけることができ、コストダウンと小 型化が可能となる。
[0052] また図 8は別の方向から見た斜視図である。図 8に示すように、異厚リードフレーム 1 00を形成する肉薄部 114の配線厚みは、肉厚部 112に比べて薄い反面、その配線 ルールは細力べ微細であることが判る。
[0053] (実施の形態 4)
以下、実施の形態 4として、放熱配線基板の放熱性を高めた一例について、図 9を 用いて説明する。図 9は実施の形態 4における放熱配線基板の一例を示す斜視図で ある。図 9において、本発明の特徴である大電流と高放熱が要求される電子部品と、 一般の表面実装電子部品を同時に実装した例を示す。
[0054] 図 9のように、異厚リードフレーム 100の一部を折り曲げて端子電極 136とし、この 部分に放熱フィン 138等を取り付けることで、更に本発明の放熱配線基板の放熱性 を高めることができる。また図 9に示すように、異厚リードフレーム 100をコの字 (もしく はブリッジ状)に形成することができる。このような形状とすることで、放熱配線基板を 他の回路基板(図 9で他の回路基板は図示していない)の上に実装できると共に、他 の回路基板と放熱配線基板との間に隙間を設けることができ、放熱配線基板の熱を 他の回路基板に伝えに《できる。更に図 9に示すように、この隙間に他の部品 140 を実装することちできる。
[0055] なお異厚リードフレーム 100は、その断面が略四角形であることが望ましい。略四 角形とすることで限られた面積で、最大の密度で大電流を流すことができる。また異 厚リードフレーム 100は、その一面以上がコンポジット榭脂板 108と接していることが 必要である。また異厚リードフレーム 100の 3面をコンポジット榭脂板 108と接すること で、異厚リードフレーム 100からコンポジット榭脂板 108への熱伝導効率を高めること ができ、更に異厚リードフレーム 100とコンポジット榭脂板 108の密着性 (剥がれにく さ)を高めることができる。特に異厚リードフレーム 100の肉薄部 114では、その配線 ノターンが微細化するにつれて、相対的にコンポジット榭脂板 108との接触面積が 低下するため、その 3面をコンポジット榭脂板 108と接するようにすることが望ましい。 そして残り 1面を図 7、図 8等で示すようにコンポジット榭脂板 108から露出するように することで、その実装強度を高められる。
[0056] なお銅素材 122を機械カ卩ェにて異厚リードフレーム 100の形状にする場合、 10m 〜 100mといった長尺の金属薄板コイルを連続的にカ卩ェすることができる。この加工 の際、異厚リードフレーム 100の部品実装面でない側(つまりコンポジット榭脂板 108 と接する面)の表面を粗く(表面を粗面化)することが望ましい。このように少なくともコ ンポジット榭脂板 108と接する面を粗面化することで、異厚リードフレーム 100を更に 微細パターン化した場合に、コンポジット榭脂板 108との喰い付き(あるいはアンカー 効果)を高めることができる。
[0057] 以上のように無機セラミック等のフィラーを混鍊した絶縁性を有する榭脂板に貼り付 けられ、基板を形成している回路パターンの肉厚の一部が他の部分よりも薄い異厚リ ードフレーム 100を用いることで、肉薄部 114を更にファインパターンとして形成でき る放熱配線基板を実現できる。またコンポジット榭脂板 108の上に異厚リードフレー ム 100を貼り付けることで、略四角形の断面を有する異厚リードフレーム 100の 1面の みをコンポジット榭脂板 108と接するものとすることもできる。
[0058] またフィラー 118を混鍊した絶縁性を有するコンポジット榭脂板 108に異厚リードフ レーム 100を埋め込むことで、異厚リードフレーム 100の略四角形の断面の 3面をコ ンポジット榭脂板 108と接することができ、その放熱性や接合性を高めることができる
[0059] また異厚リードフレーム 100の肉薄部 114の厚みを薄くすることで、異厚リードフレ ーム 100の一部の肉薄部 114を局所的にファインパターンに形成することができ、各 種表面実装部品を高密度に実装できることになる。
[0060] また異厚リードフレーム 100を用いることで、回路パターンが厚さ 0. 05mm以上の 導電性金属板を加工する際にも、肉厚部 112を有することで加工時の取り扱い性を 高めると共に、大電流化とファインパターンィ匕を両立できる放熱配線基板を提供でき る。
[0061] また異厚リードフレーム 100を用いることで、回路パターンの肉厚が異なる 2以上の 厚さで形成することができるため、大電流化とファインパターンィ匕を両立できる放熱配 線基板を提供できる。
[0062] また異厚リードフレーム 100の成型をローラーによる圧延工程にて異なる肉厚の形 成された導電性金属板を加工して行うことで、回路パターンを大電流化とファインパ ターン化の両方に対応できる放熱配線基板を安価に提供できる。
[0063] また異厚リードフレーム 100を、導電性金属板の一部をプレス及び金型を用いてカロ 圧し、薄肉化することで作製できるため、大電流化とファインパターンィ匕を両立できる 放熱配線基板を提供できる。
[0064] また異厚リードフレーム 100を構成する肉薄部 114となる薄肉の部分をプレス及び 金型を用いて打ち抜 、てファインパターンとして形成することで、大電流化とファイン ノ ターンィ匕を両立できる放熱配線基板を提供できる。
[0065] また異厚リードフレーム 100を構成する肉薄部 114の部分をエッチングあるいはレ 一ザ一加工あるいはワイヤー放電カ卩ェによりファインパターンとして形成することで大 電流化とファインパターン化を両立できる放熱配線基板を提供できる。
[0066] また異厚リードフレーム 100の一部を回路パターンとして、その回路パターンの一 部が基板の外側にも張り出し、本発明に係る放熱部を構成し、これに放熱機能を持 たせることで、放熱性と大電流化とファインパターンィ匕を両立できる。
[0067] また異厚リードフレーム 100の一部を張り出したパターンとし、この張り出したパター ンが端子の機能を有して ヽることで、放熱性と大電流化とファインパターン化を両立 できる。
[0068] また異厚リードフレーム 100の一部を張り出したパターンとし、この張り出したパター ンの少なくとも片面に削りだし加工などを用いて放熱フィンを形成することで、放熱性 と大電流化とファインパターンィ匕を両立できる。
[0069] また張り出したパターンの少なくとも片面以上に放熱フィンを貼り付けることで、放熱 性と大電流化とファインパターンィ匕を両立できる。
[0070] またエポキシを主剤とした榭脂に Al O、 MgO、 SiO、 BN、 A1N、 SiC、 ZnOのフ イラ一を少なくとも 1種類含有するコンポジット榭脂板を用いることで、放熱性と大電流 ィ匕とファインパターン化を両立できる。
[0071] また前記フィラーを 70〜95重量%含有することで、放熱性と大電流化とファインパ ターンィ匕を両立できる。
[0072] また異厚リードフレーム 100の一部を張り出したパターンとし、この張り出した端子 の機能を有しているパターンを曲げて基板をマザ一基板力も浮力せて実装すること で、放熱性と大電流化とファインパターンィ匕と、実装性に優れたものとできる。
[0073] また部分的に厚みを異ならせてなる異厚リードフレームを、フィラーが添加された榭 脂とプレスを用いて、加熱一体化することで、放熱性と大電流化とファインパターンィ匕 に優れた放熱配線基板を安価に製造することができる。
産業上の利用可能性
[0074] 以上のように本発明の放熱配線基板とその製造方法を用いることで、 LED等の大 電流で高放熱が必要とされる各種電子部品と、それを駆動させるための周辺回路部 品を同一基板上に隣接して実装できるため、これら回路のユニット化、モジュールィ匕 が可能となり、製品の小型化、高性能化、低コスト化に貢献することができる。従って 、その産業上の利用可能性は極めて高い。

Claims

請求の範囲
[1] 金属配線板力 なる回路パターンと、
フィラーを混鍊した絶縁性を有する榭脂板と、
放熱板とを備え、
前記回路パターンは前記榭脂板の一面側に貼り付けられ、
前記放熱板は前記榭脂板の他面側に貼り付けられ、
前記回路パターンの一部の肉厚が他の部分よりも薄いことを特徴とする放熱配線基 板。
[2] 金属配線板力 なる回路パターンと、
フィラーを混鍊した絶縁性を有する榭脂板と、
放熱板とを備え、
前記回路パターンは前記榭脂板に埋め込まれ、
前記放熱板は前記回路パターンとは非導通状態で前記榭脂板に貼り付けられ、 前記回路パターンの一部の肉厚が他の部分よりも薄いことを特徴とする放熱配線基 板。
[3] 前記回路パターンを構成する前記金属配線板は、厚さ 0. 05mm以上 2. Omm以下 の導電性金属板を薄く加工したものである請求項 1または 2のいずれ力 1項に記載の 放熱配線基板。
[4] 前記回路パターンを構成する前記金属配線板は、同一板に異なる 2以上の厚みを 有する請求項 1または 2のいずれか 1項に記載の放熱配線基板。
[5] 隣接する前記回路パターンは、
それぞれの回路パターンの肉薄部が対向するように配置され、
これらの肉薄部の厚みは相互に異なっている請求項 1または 2のいずれか 1項に記 載の放熱配線基板。
[6] 隣接する前記回路パターンは、
それぞれの回路パターンの肉薄部が対向するように配置され、
これらの肉薄部となる前記回路パターンの上面の面積は、
相互に異なっている請求項 1または 2のいずれ力 1項に記載の放熱配線基板。
[7] 隣接する前記回路パターンは、
いずれか一方の回路パターンの肉薄部と他方の回路パターンの肉厚部とが対向す るように配置されて 、る請求項 1または 2の 、ずれか 1項に記載の放熱配線基板。
[8] 前記回路パターンの側面となる肉薄部から肉厚部までを繋ぐ面は、
斜面である請求項 1または 2のいずれ力 1項に記載の放熱配線基板。
[9] 前記回路パターンの側面となる肉薄部から肉厚部までを繋ぐ面は、
湾曲面である請求項 1または 2のいずれ力 1項に記載の放熱配線基板。
[10] 肉厚部となる前記回路パターンの上面の面積は、
肉薄部となる前記回路パターンの上面の面積よりも大き 、請求項 1または 2の 、ずれ 力 1項に記載の放熱配線基板。
[11] 前記回路パターンの一部が前記榭脂板より張り出し、放熱部を構成する請求項 1ま たは 2の 、ずれか 1項に記載の放熱配線基板。
[12] 前記榭脂板より張り出した前記回路パターンの一部が、端子を構成する請求項 1また は 2の 、ずれか 1項に記載の放熱配線基板。
[13] 前記榭脂板より張り出した前記回路パターンの一部が、放熱フィンを構成する請求項
1または 2のいずれか 1項に記載の放熱配線基板。
[14] 前記榭脂板より張り出した前記回路パターンの一部に、放熱フィンを取り付けた請求 項 1または 2のいずれか 1項に記載の放熱配線基板。
[15] 前記榭脂板より張り出した前記回路パターンの一部を柱として、マザ一基板力 浮く 構造を有する請求項 1または 2のいずれか 1項に記載の放熱配線基板。
[16] 前記榭脂板は、エポキシを主剤とした樹脂に Al O、 MgO、 SiO、 BN、 A1N、 SiC、
2 3 2
ZnOのフイラ一を少なくとも 1種類以上含有するコンポジット榭脂板である請求項 1ま たは 2の 、ずれか 1項に記載の放熱配線基板。
[17] 前記榭脂板は、エポキシを主剤とした樹脂に Al O、 MgO、 SiO、 BN、 A1N、 SiC、
2 3 2
ZnOのフイラ一を少なくとも 1種類以上含有するコンポジット榭脂板であり、 前記フィラーの添力卩量は 70重量%以上 95重量%以下である請求項 1または 2のい ずれか 1項に記載の放熱配線基板。
[18] 前記金属配線板は、 タフピッチ銅である請求項 1または 2のいずれか 1項に記載の放熱配線基板。
[19] 請求項 1または 2のいずれか 1項に記載の放熱配線基板の前記回路パターンの肉厚 部上には、
前記回路パターンの肉薄部上に実装された素子よりも発熱性の高い素子が実装され ている電気機器。
[20] 請求項 1または 2のいずれか 1項に記載の放熱配線基板の前記回路パターンの肉厚 部上には、
レーザ素子、 LED,パワートランジスタ、パワーチョークコイル、パワー半導体の少な くとも 、ずれか一つが実装され、
前記回路パターンの肉薄部上には、
制御用 IC、信号用 IC、ダイオード、微小 LEDの少なくともいずれか一つが実装され ている電気機器。
[21] 部分的に厚みを異ならせてなる金属配線板を、フィラーが添加された榭脂とプレスを 用いて、加熱一体化する放熱配線基板の製造方法。
[22] 回路パターンを構成する前記金属配線板は、ローラーによる圧延工程にて異なる肉 厚に形成されたことを特徴とする請求項 21に記載の放熱配線基板の製造方法。
[23] 前記金属配線板の一部を、プレス加工、金型成形、エッチング、レーザ加工、切削、 放電加工のいずれか一つの方法で薄肉化したことを特徴とする請求項 21に記載の 放熱配線基板の製造方法。
[24] 前記金属配線板の薄肉の部分をプレスまたは金型を用いて打ち抜いてファインバタ ーンを形成したことを特徴とする請求項 21に記載の放熱配線基板の製造方法。
[25] 前記金属配線板の薄肉の部分をエッチングあるいはレーザカ卩ェあるいはワイヤー放 電加工により配線回路を形成したことを特徴とする請求項 21に記載の放熱配線基板 の製造方法。
PCT/JP2006/318927 2005-09-27 2006-09-25 放熱配線基板とその製造方法と放熱配線基板を用いた電気機器 WO2007037190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06810495A EP1909324A4 (en) 2005-09-27 2006-09-25 THERMAL DISSIPATION WIRING BOARD, ITS MANUFACTURING METHOD AND ELECTRICAL DEVICE EMPLOYING THE SAME
JP2007537601A JP4725581B2 (ja) 2005-09-27 2006-09-25 放熱配線基板とそれを用いた電気機器
CN2006800352606A CN101273453B (zh) 2005-09-27 2006-09-25 散热布线板及其制造方法以及使用有散热布线板的电气设备
US12/065,915 US8263870B2 (en) 2005-09-27 2006-09-25 Heat dissipating wiring board, method for manufacturing same, and electric device using heat dissipating wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005279728 2005-09-27
JP2005-279728 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037190A1 true WO2007037190A1 (ja) 2007-04-05

Family

ID=37899617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318927 WO2007037190A1 (ja) 2005-09-27 2006-09-25 放熱配線基板とその製造方法と放熱配線基板を用いた電気機器

Country Status (5)

Country Link
US (1) US8263870B2 (ja)
EP (1) EP1909324A4 (ja)
JP (1) JP4725581B2 (ja)
CN (1) CN101273453B (ja)
WO (1) WO2007037190A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034529B1 (en) * 2007-09-04 2016-04-13 Seoul Semiconductor Co., Ltd. Light emitting diode package having heat dissipating slugs
JPWO2014021427A1 (ja) * 2012-08-02 2016-07-21 学校法人早稲田大学 金属ベースプリント配線板
US9445503B2 (en) 2011-07-25 2016-09-13 Osram Gmbh Carrier device, electrical device having a carrier device and method for producing same
JP2019041110A (ja) * 2014-11-20 2019-03-14 日本精工株式会社 電子部品搭載用放熱基板
JP2019511128A (ja) * 2016-05-17 2019-04-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 電気デバイスを備えるアセンブリ

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004011A (ja) * 2008-05-19 2010-01-07 Panasonic Corp 半導体装置及び半導体装置の製造方法
CA2726173C (en) * 2008-05-29 2016-02-23 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board
US8120055B2 (en) * 2009-04-20 2012-02-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light source
EP2461654A4 (en) * 2009-07-27 2015-05-20 Toyota Jidoshokki Kk WIRING SUBSTRATE AND METHOD FOR MANUFACTURING THE WIRING SUBSTRATE
TWI434405B (zh) * 2011-06-07 2014-04-11 Univ Nat Chiao Tung 具有積體電路與發光二極體之異質整合結構及其製作方法
JP5940799B2 (ja) * 2011-11-22 2016-06-29 新光電気工業株式会社 電子部品搭載用パッケージ及び電子部品パッケージ並びにそれらの製造方法
TWM441212U (en) * 2012-04-12 2012-11-11 Jin-Huan Ni New plasticized ceramic heat dissipation module
JP6539956B2 (ja) * 2014-08-08 2019-07-10 株式会社カネカ リードフレーム、樹脂成型体、表面実装型電子部品、表面実装型発光装置、及びリードフレーム製造方法
EP3223308A4 (en) * 2014-11-20 2018-08-29 NSK Ltd. Heat dissipation substrate for mounting electric component
CN104900792B (zh) * 2015-06-02 2017-12-01 南通苏禾车灯配件有限公司 散热导通led尾灯引线框架及其生产工艺
DE102016220553A1 (de) * 2016-10-20 2018-04-26 Robert Bosch Gmbh Leistungsmodul
KR102283906B1 (ko) * 2019-12-27 2021-07-29 이종은 반도체용 방열기판 및 그 제조 방법
TWI716075B (zh) * 2019-08-19 2021-01-11 尼克森微電子股份有限公司 功率模組
TWI726427B (zh) * 2019-09-27 2021-05-01 友達光電股份有限公司 元件基板
EP4036966A1 (en) * 2021-02-02 2022-08-03 Hitachi Energy Switzerland AG Metal substrate structure and method of manufacturing a metal substrate structure for a semiconductor power module and semiconductor power module
EP4057338A1 (en) 2021-03-10 2022-09-14 Hitachi Energy Switzerland AG Metal substrate structure and method of manufacturing a metal substrate structure for a semiconductor power module and semiconductor power module
CN113232383B (zh) * 2021-05-25 2022-04-15 武汉理工大学 一种ptfe复合介质基板及其制备方法
CN114730747B (zh) * 2022-02-22 2023-04-04 香港应用科技研究院有限公司 带有冷却翅片的热增强型中介层的电源转换器封装结构
US11749591B1 (en) 2022-02-22 2023-09-05 Hong Kong Applied Science and Technology Research Institute Company Limited Power converter package with thermally enhanced interposers to cooling fins

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139555A (ja) * 1984-07-31 1986-02-25 Toshiba Corp 放熱板付樹脂封止形半導体装置
JPH09102571A (ja) * 1995-10-03 1997-04-15 Mitsubishi Electric Corp 電力用半導体装置の製造方法およびリードフレーム
JPH09139461A (ja) * 1995-11-15 1997-05-27 Mitsubishi Electric Corp 半導体パワーモジュール
JP2001057408A (ja) 1999-06-09 2001-02-27 Matsushita Electric Ind Co Ltd パワーモジュールとその製造方法
JP2001148456A (ja) * 1999-09-10 2001-05-29 Matsushita Electronics Industry Corp リードフレーム及びそれを用いた樹脂パッケージと光電子装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830726B2 (ja) * 2000-04-26 2006-10-11 松下電器産業株式会社 熱伝導基板とその製造方法およびパワーモジュール
JP2002250826A (ja) * 2001-02-22 2002-09-06 Nec Corp チップ、チップの製造方法およびチップ収容モジュール
JP3768920B2 (ja) * 2001-06-07 2006-04-19 松下電器産業株式会社 回路基板の製造方法およびその回路基板を用いた電力変換モジュール
JP3879452B2 (ja) * 2001-07-23 2007-02-14 松下電器産業株式会社 樹脂封止型半導体装置およびその製造方法
US6903447B2 (en) * 2002-05-09 2005-06-07 M/A-Com, Inc. Apparatus, methods and articles of manufacture for packaging an integrated circuit with internal matching
TWI309962B (en) * 2004-02-24 2009-05-11 Sanyo Electric Co Circuit device and menufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139555A (ja) * 1984-07-31 1986-02-25 Toshiba Corp 放熱板付樹脂封止形半導体装置
JPH09102571A (ja) * 1995-10-03 1997-04-15 Mitsubishi Electric Corp 電力用半導体装置の製造方法およびリードフレーム
JPH09139461A (ja) * 1995-11-15 1997-05-27 Mitsubishi Electric Corp 半導体パワーモジュール
JP2001057408A (ja) 1999-06-09 2001-02-27 Matsushita Electric Ind Co Ltd パワーモジュールとその製造方法
JP2001148456A (ja) * 1999-09-10 2001-05-29 Matsushita Electronics Industry Corp リードフレーム及びそれを用いた樹脂パッケージと光電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1909324A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034529B1 (en) * 2007-09-04 2016-04-13 Seoul Semiconductor Co., Ltd. Light emitting diode package having heat dissipating slugs
US9445503B2 (en) 2011-07-25 2016-09-13 Osram Gmbh Carrier device, electrical device having a carrier device and method for producing same
JPWO2014021427A1 (ja) * 2012-08-02 2016-07-21 学校法人早稲田大学 金属ベースプリント配線板
JP2019041110A (ja) * 2014-11-20 2019-03-14 日本精工株式会社 電子部品搭載用放熱基板
JP2019511128A (ja) * 2016-05-17 2019-04-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 電気デバイスを備えるアセンブリ
US10637206B2 (en) 2016-05-17 2020-04-28 Osram Oled Gmbh Assembly comprising an electric component
US11177628B2 (en) 2016-05-17 2021-11-16 Osram Oled Gmbh Assembly comprising an electric component

Also Published As

Publication number Publication date
EP1909324A1 (en) 2008-04-09
JPWO2007037190A1 (ja) 2009-04-09
EP1909324A4 (en) 2012-09-26
JP4725581B2 (ja) 2011-07-13
CN101273453A (zh) 2008-09-24
CN101273453B (zh) 2012-09-26
US8263870B2 (en) 2012-09-11
US20090266584A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4725581B2 (ja) 放熱配線基板とそれを用いた電気機器
JP4821854B2 (ja) 放熱配線基板
JP2007214246A (ja) 放熱配線基板とその製造方法
JP2008140954A (ja) 放熱配線基板とその製造方法並びにこれを用いた発光モジュール
JP5446302B2 (ja) 放熱板とモジュール
JPWO2013069232A1 (ja) 配線板とそれを用いた発光装置及びそれらの製造方法
JP2008021819A (ja) 熱伝導基板とその製造方法及び電源ユニット及び電子機器
JP2008192787A (ja) 熱伝導基板とこれを用いた回路モジュールとその製造方法
JP6031642B2 (ja) パワーモジュールとその製造方法
JP2008218617A (ja) 放熱基板及びこれを用いた回路モジュール
JP2008198921A (ja) モジュール部品及びその製造方法
JP2008098493A (ja) 熱伝導基板とその製造方法及び回路モジュール
JP2008205344A (ja) 熱伝導基板とその製造方法及びこれを用いた回路モジュール
JP2008124243A (ja) 熱伝導基板とその製造方法及び回路モジュール
JP4635977B2 (ja) 放熱性配線基板
JP2008227334A (ja) 放熱配線基板
JP2009194277A (ja) 放熱基板とその製造方法
JP2005072382A (ja) 放熱用リードフレーム基板及びその製造方法並びに半導体装置
JP2007227489A (ja) 放熱基板及びその製造方法並びにそれを用いた発光モジュール
JP2008098488A (ja) 熱伝導基板とその製造方法
JP2009218254A (ja) 回路モジュールとその製造方法
JP2008235321A (ja) 熱伝導基板とその製造方法及びこれを用いた回路モジュール
JP5061669B2 (ja) 放熱配線基板
JP2008140979A (ja) パッケージ型半導体装置
JP2008066360A (ja) 放熱性配線基板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035260.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537601

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006810495

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12065915

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE