WO2007037075A1 - Process for producing wiring board, and wiring board - Google Patents

Process for producing wiring board, and wiring board Download PDF

Info

Publication number
WO2007037075A1
WO2007037075A1 PCT/JP2006/316298 JP2006316298W WO2007037075A1 WO 2007037075 A1 WO2007037075 A1 WO 2007037075A1 JP 2006316298 W JP2006316298 W JP 2006316298W WO 2007037075 A1 WO2007037075 A1 WO 2007037075A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
wiring
insulating resin
wiring board
Prior art date
Application number
PCT/JP2006/316298
Other languages
French (fr)
Japanese (ja)
Inventor
Kaoru Ono
Mitsuhiro Watanabe
Original Assignee
Ain Co., Ltd.
Multi Inc.
Kanto Gakuin University Surface Engineering Resarch Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ain Co., Ltd., Multi Inc., Kanto Gakuin University Surface Engineering Resarch Institute filed Critical Ain Co., Ltd.
Priority to JP2007537548A priority Critical patent/JPWO2007037075A1/en
Publication of WO2007037075A1 publication Critical patent/WO2007037075A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0384Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs

Definitions

  • the present invention relates to a method for manufacturing a wiring board and a wiring board.
  • Patent Document 1 discloses a heat dissipation mechanism.
  • the heat dissipating mechanism is constituted by a cooling fan and through holes provided in the motherboard.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-40125 (abstract, etc.)
  • the wiring board there is used a wiring board formed by opening a hole in an insulating resin board and mating the inside with copper to connect wiring patterns formed on both surfaces of the insulating resin board.
  • through hole plating is performed in this way, flux components and the like may blow up from the back side of the wiring board to the front side through the through hole, and may adhere between parts or between the part and the wiring board.
  • surface-mount type electronic component elements have come to be used, and the space between components and wiring boards has become narrower.
  • An object of the present invention is to obtain a method of manufacturing a wiring board and a wiring board capable of efficiently radiating heat.
  • a method of manufacturing a wiring board according to the present invention includes a clad formed by laminating two or three kinds of metals including a conductive first metal and a second metal in two layers or three or more layers. The material is etched to form a column having a second metal on the first metal plate.
  • a step of forming an insulating resin layer by laminating an insulating resin material on the plate-like part so as to cover the columnar part, and a tip of the columnar part being exposed from the insulating resin layer. Forming a metal layer for a wiring layer made of a conductive metal connected to the columnar part on the side opposite to the plate-like part after polishing the surface of the insulating resin layer.
  • a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in two layers or three or more layers is used as an ethyne.
  • the columnar portion penetrating the insulating resin layer.
  • the columnar portion is electrically connected to the plate portion and the wiring layer on both sides of the insulating resin layer.
  • the columnar part functions as an interlayer wiring of the wiring board.
  • the interlayer wiring formed by etching the clad material can have a columnar structure having a height and a width. Columnar-structured interlayer wiring with height and width efficiently diffuses heat and functions as a heat sink. In addition, a large current can flow.
  • the interlayer wiring formed by etching the clad material is not mixed with impurities like the metal paste used for bump formation, but metal can be used.
  • the wiring board manufactured by this method can be provided with a heat sink function that allows a large current to flow and efficiently dissipates heat.
  • Another method for manufacturing a wiring board according to the present invention includes two or three or more kinds of metals including a conductive first metal and a second metal laminated in two layers or three or more layers. Etching the clad material to form a columnar portion having a second metal force on the plate-like portion of the first metal, and electrically conductive metal foil sandwiching the insulating grease material between the columnar portion. Pressing from the upper side until it comes into contact with the columnar part to form an insulating resin layer whose surface is covered with metal foil, and wiring made of a conductive metal connected to the columnar part after polishing the surface of the metal foil Forming a metal layer for the layer.
  • a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in two layers or three or more layers is used as an etchant.
  • the plate-like portion and the wiring layer are electrically connected to each other by the columnar portion formed by squeezing.
  • a wiring board having a columnar portion penetrating the insulating resin layer as an interlayer wiring can be formed.
  • the interlayer wiring formed by etching the clad material can have a columnar structure with height and width. It can function as a heat sink that diffuses heat efficiently, or it can pass a large current.
  • a wiring board having a heat sink function can be formed by flowing a large current.
  • the interlayer wiring formed by etching the clad material is not mixed with impurities like the metal paste used for bump formation, but metal can be used.
  • the wiring layer made of metal foil is pressed until it contacts the columnar part when forming the insulating resin layer, and metal is formed on the surface thereof.
  • the reliability of the electrical connection between the wiring layer and the columnar part using the metal foil is as high as the reliability of the electrical connection between the plate-like part and the columnar part that are integrated as a clad material. .
  • the first metal of the clad material is one or more metals selected from copper, silver, aluminum and alloys containing them
  • the second metal is selected from nickel, aluminum, tin and alloys containing them, and is one or more metals that can be selectively etched with the first metal. is there.
  • the second metal can be formed in a columnar shape while the first metal is in the form of a plate during etching.
  • the cladding material further has a three-layer structure in which the second metal is sandwiched between the first metals, and the columnar portion is etched twice. Thus, it is formed on the plate-shaped portion of the first metal.
  • the same first metal as that of the plate-like portion can be used for the columnar portion.
  • the method for producing a wiring board according to the present invention further includes a step of forming a wiring pattern by removing a part of the metal layer and the plate-like portion by an etching process after forming the metal layer. .
  • wiring patterns can be simultaneously formed on the wiring layers and the plate-like portions on both sides of the insulating resin layer. Since the plate-like part integrated with the columnar part as the clad material is used as the wiring layer, the bonding strength between the wiring layer and the columnar part is high.
  • a third method for manufacturing a wiring board according to the present invention uses a conductive second metal as a conductive first metal. Etching a clad material having a three-layer structure sandwiched between two metal layers to form a columnar portion made of the second metal and the first metal on the plate portion of the first metal, and an insulating grease material A step of forming an insulating resin layer on the plate-like portion so as to fill the periphery of the columnar portion; A step of forming a metal layer for a wiring layer made of a conductive metal, and a step of removing a part of the metal layer and the plate-like portion by etching to form a wiring layer as a wiring pattern.
  • the plate-like portion and the wiring layer are electrically connected by the columnar portion formed by etching the clad material. It is possible to form a wiring board having a columnar portion penetrating the insulating resin layer as an interlayer wiring.
  • the interlayer wiring formed by etching the clad material can have a columnar structure with a height and width, and can function as a heat sink for efficiently diffusing heat or can pass a large current.
  • a circuit board having a heat sink function can be formed by passing a large current.
  • impurities such as metal paste used for bump formation are mixed, and a metal that is not a waste can be used.
  • a wiring pattern can be simultaneously formed on the wiring layer and the plate-like portion on both sides of the insulating resin layer.
  • the metal of the metal layer is the first metal.
  • the wiring layers on both sides of the insulating resin layer and the metal of the plate-like portion can be aligned with the first metal.
  • the interlayer wiring formed by etching the clad material is not something mixed with impurities like the metal paste used for bump formation! / ⁇ , metal can be used. Therefore, by making this first metal a metal used for a general wiring board such as copper, a wiring board having the same electrical characteristics as a general wiring board can have a heat sink function. Can do.
  • the wiring board according to the present invention is an interlayer wiring that is manufactured by each of the manufacturing methods of the above-described invention and in which the columnar portion penetrates the insulating resin layer.
  • the interlayer wiring formed can have a columnar structure having a height and a width, and can function as a heat sink for efficiently diffusing heat or flow a large current.
  • a wiring board having a heat sink function can be formed by flowing a large current.
  • Another wiring board according to the present invention is formed of an insulating resin layer formed in a flat plate shape and a metal layer eroded by an etching process, and an interlayer wiring penetrating the insulating resin layer and insulating And a wiring layer made of a conductive metal disposed on the surface of the resin layer and connected to the interlayer wiring.
  • the interlayer wiring is formed by etching.
  • the interlayer wiring formed by etching can have a columnar structure having a height and a width, and can function as a heat sink that efficiently diffuses heat or allows a large current to flow.
  • a circuit board having a heat sink function can be formed by passing a large current.
  • another wiring board according to the present invention has an interlayer wiring force penetrating the insulating resin layer.
  • the width of one surface exposed from the insulating resin layer and the other surface The difference with the width is 1.5 to 2.5 times the height of the inter-layer self-alignment line.
  • the interlayer wiring is formed from the metal layer eroded by the etching process, the metal layer is eroded substantially uniformly in the height direction and the width direction of the interlayer wiring.
  • the difference between the width of one surface of the interlayer wiring exposed from the insulating resin layer and the width of the other surface is 1.5 to 2.5 times the height of the interlayer wiring.
  • another wiring board according to the present invention serves as a heat sink that uses at least a part of the interlayer wiring as a heat diffusion path, and functions as a current path. It is not.
  • the heat of the components mounted on the wiring board can be diffused by the wiring board.
  • FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention.
  • Figure 2 shows the first half of the manufacturing process for the double-sided wiring board shown in Figure 1 (until the production of the wiring board substrate).
  • FIG. 3 is a diagram showing the latter half of the flow of the manufacturing process of the double-sided wiring board of FIG. 1.
  • FIG. 4 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 4 (until the production of the wiring board base material).
  • Nickel layer (metal layer eroded by etching, second metal)
  • Insulated grease for build-up (insulated grease)
  • a double-sided wiring board having wiring patterns on both sides is taken as an example, and the manufacturing method of the wiring board is explained by taking the manufacturing method of the double-sided wiring board as an example.
  • FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention.
  • the double-sided wiring board has an insulating resin layer 1, a front surface wiring layer 2 as a wiring layer, an interlayer wiring 3, and a back surface wiring layer 4 as a wiring layer.
  • the heat sink 5 is formed by the front surface wiring layer 2, the interlayer wiring 3, and the back surface wiring layer 4.
  • the insulating resin layer 1 is formed by forming an insulating resin material into a flat plate shape.
  • insulating resin materials include paper phenol resin material, paper epoxy resin material, glass epoxy resin material, Tef port (Registered trademark) grease material.
  • the surface wiring layer 2 is a wiring layer formed on the surface of the insulating resin layer 1.
  • the surface wiring layer 2 is made of a conductive metal and has a two-layer structure of the same metal such as copper, silver, aluminum, or an alloy containing them.
  • the surface wiring layer 2 may be a layer having a different metal force. Three or more layers may be used.
  • the back wiring layer 4 is a wiring layer formed on the surface of the insulating resin layer 1.
  • the back wiring layer 4 is made of a conductive metal and has a two-layer structure of the same metal such as copper, silver, aluminum, or an alloy containing them.
  • the surface wiring layer 2 may be a layer having a different metal force. Three or more layers may be used.
  • the interlayer wiring 3 is disposed through the insulating resin layer 1.
  • Interlayer wiring 3 has a two-layer structure of different metals such as copper and nickel. In this way, nickel is used for only a part of the interlayer wiring 3 and other conductors are made of copper, so that the electrical characteristics of this wiring board are substantially the same as those of a general wiring board. Become.
  • FIG. 2 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 1 (until the production of the wiring board base material).
  • FIG. 3 is a diagram showing the latter half of the flow of the manufacturing process of the double-sided wiring board of FIG.
  • FIG. 2 (A) is a view showing a partial cross section of a clad material (composite material) used for manufacturing the double-sided wiring board of FIG.
  • the clad material has a three-layer structure in which copper layers 11 and 13 are laminated on both sides of a flat nickel layer 12.
  • the nickel layer 12 has a thickness of 2 micrometers.
  • the upper copper layer (hereinafter simply referred to as the upper copper layer) 13 of the nickel layer 12 which is an intermediate layer has a thickness of 400 micrometers.
  • the lower copper layer (hereinafter simply referred to as the lower copper layer) 11 of the nickel layer 12 has a thickness of 18 micrometers.
  • the upper copper layer 13 may have a thickness of about 500 micrometers.
  • the clad material is a laminate of dissimilar metals. When dissimilar metals are stacked, the surface of each metal is first mirror-finished by sputtering in a vacuum. Next, the clad material can be formed by sandwiching these dissimilar metals between rolls and pressing them with the pressure of the rolls. In addition, for example, the clad material may be formed by activating the mirror surface of each metal by plasma cleaning and pressing the activated dissimilar metal with a roll.
  • the through-hole pattern of the double-sided wiring board of FIG. 1 first, the through-hole pattern of the double-sided wiring board A resist layer 14 is formed on the surface of the upper copper layer 13 as shown in FIG. In FIG. 2B, two resist layers 14 are formed. Also, a resist layer 15 is formed on the back surface of the double-sided wiring board so as to cover the entire surface.
  • the resist layers 14 and 15 may be made of a metal that does not melt by the alkali etching process described later, such as tin. In addition, for example, a dry film such as photosensitive resin may be used.
  • the resist layer 15 can be omitted depending on the etching method.
  • alkali etching is performed.
  • an ammonia alkali solution is used.
  • Ammonia alkaline liquid does not melt nickel or tin.
  • the resist layers 14 and 15 are removed. Thereby, as shown in FIG. 2C, the portion of the upper copper layer 13 that is not covered with the resist layer 14 is etched by erosion.
  • FIG. 2 (C) the upper copper layer 13 is covered with the resist layer 14, and the portion is formed into two trapezoidal columnar shapes.
  • the nickel layer 12 is etched using a nickel remover as shown in Fig. 2 (D). As a result, a portion of the nickel layer 12 that is not covered with the upper copper layer 13 is etched. In FIG. 2 (D), the nickel layer 12 remains as the base of the upper portion of the upper copper layer 13 under the partial force below the two columnar portions of the upper copper layer 13.
  • the resist layers 14 and 15 may be peeled off simultaneously by this etching process. This reduces the number of processes by one.
  • the cross-sectional trapezoidal columnar portion 16 having nickel and copper power is formed on the lower copper layer 11 having a flat plate shape.
  • Nickel can be selectively etched with copper by alkaline etching.
  • the columnar portion 16 can be a conical columnar portion, a pyramidal columnar portion, or various columnar portions such as a columnar portion extending in a direction perpendicular to the paper surface of FIG.
  • erosion by the etchant proceeds from the top to the bottom of Fig. 2 (D) and in the same way in the horizontal direction. Therefore, the columnar portion 16 formed by etching has a smaller head (upper surface in FIG. 2D) than its bottom (lower surface in FIG. 2D).
  • Ye The width of the head portion of the columnar portion 16 formed by the pinching is narrower by an amount corresponding to about twice the height of the columnar portion than the width of the bottom portion.
  • Laminate insulating grease 17 After forming the clad material into the lower copper layer 11 having a flat plate shape and the columnar portion 16 also having nickel and copper force, as shown in FIG. 2 (E), for build-up as an insulating grease material Laminate insulating grease 17.
  • the insulating grease 17 for build-up is laminated to a thickness greater than the height of the columnar part 16.
  • An example of the insulating resin material 17 for buildup is epoxy resin. Laminate build-up insulating resin material 17 using liquid or sheet-like epoxy resin.
  • the surface of the resin is polished. As shown in FIG. 2 (F), the insulating grease material 17 for buildup is polished until the tip of the columnar portion 16 is exposed. Thereby, the insulating resin layer 1 is formed.
  • the surface flattened by the polishing is roughened, and then copper plating is performed.
  • the surface roughening may be performed at least with respect to the build-up insulating resin material 17 or may be performed by aligning the tips of the columnar portions 16.
  • the copper plating may be performed by, for example, an electrolytic plating method.
  • a copper layer 18 as a metal plating is laminated on the surface of the build-up insulating resin material 17 and the tip surface of the columnar portion 16.
  • the copper layer 18 formed by this plating is connected to the columnar portion 16.
  • the flat insulating resin layer 1 is in a state where both surfaces thereof are covered with a lower copper layer 11 having a plate shape and a copper layer 18 formed by copper plating.
  • the copper layers 11 and 18 on both sides of the insulating resin layer 1 are electrically connected by the columnar portions 16.
  • This substrate is also a kind of wiring board.
  • the wiring pattern forming process first, copper plating is executed. Thereby, as shown in FIG. 3 (A), copper plating 19 and 20 is made on the surfaces of the copper layers 11 and 18 on both sides, and the copper portion becomes thick. On both surfaces of the insulating resin layer 1, copper layers in which copper is made into two layers are formed.
  • the upper wiring layer of the insulating resin layer 1 is a metal layer for the surface wiring layer 2, and the lower wiring layer is This is a metal layer for the backside wiring layer 4.
  • this copper plating process is not necessary.
  • a resist layer 21 is formed on the front and back surfaces of the substrate in a pattern corresponding to the wiring pattern of the double-sided wiring board. , 22 is formed.
  • the resist layers 21 and 22 are peeled off.
  • the copper layers 11 and 19 and the copper layers 18 and 20 on both surfaces of the insulating resin layer 1 are formed as wiring patterns.
  • two wiring patterns are formed on the copper layers 18 and 20 on the front surface (upper side) of the insulating resin layer 1, and wiring patterns are formed on the copper layers 11 and 19 on the back surface.
  • the wiring pattern composed of the copper layers 18 and 20 on the surface of the insulating resin layer 1 and the wiring pattern of the copper layers 11 and 19 on the back surface are electrically connected by two columnar portions 16.
  • the double-sided wiring board shown in Fig. 1 is formed.
  • the copper layers 11, 19 on both sides of the insulating resin layer 1 and the wiring pattern force of the copper layers 18, 20 are electrically connected by the columnar portions 16.
  • Printed double-sided printed circuit boards can be manufactured.
  • the columnar portion 16 functions as an interlayer wiring 3 that connects the wiring patterns on both sides.
  • a resist for plating may be formed in a portion other than the wiring pattern portion from the base material state of the double-sided printed board shown in FIG. 2G, and copper plating may be applied in accordance with the wiring pattern.
  • a resist for etching is formed on the copper-plated wiring pattern portion, and the wiring pattern is left by performing an etching process. Finally, the etching resist is removed. You may make it form a double-sided printed circuit board by this method.
  • the manufacturing method of the first embodiment and the double-sided wiring board manufactured thereby have the following various characteristics.
  • a three-layer clad material in which nickel is sandwiched between copper is etched to form a copper plate
  • a columnar portion 16 is formed on the portion, and this columnar portion 16 is used as an interlayer wiring 3 that electrically connects the wiring layers 2 and 3 on both sides of the insulating resin layer 1.
  • the columnar portion 16 having a height of several hundred micrometers can be formed by adjusting the etching time.
  • the width of the resist layer 14 at the time of etching it can be formed into a shape having a width wider than a through hole used in a general wiring board.
  • the height of the columnar portion 16 is substantially uniform.
  • the columnar portion 16 can be made of a metal that is not mixed with impurities like the metal paste used for bump formation. When such impurities are mixed, the use of metal increases the reliability.
  • the interlayer wiring is formed by bumps or the like, it is necessary to repeatedly stack the bumps to form the final height of the interlayer wiring, or to form a bump.
  • a metal paste mixed with impurities should be used.
  • the interlayer wiring cannot be made of only metal.
  • the manufacturing method of the present embodiment and the double-sided wiring board formed therewith are not limited to these.
  • the columnar portion 16 composed of the nickel layer 12 and the upper copper layer 13 is a part of a member integrated as a clad material, and is formed on the plate-like copper layer 11. . Therefore, the unity of the three layers, that is, the three layers of copper, nickel, and copper, is very strong. Therefore, the bonding strength between the back surface wiring layer 4 composed of the plate-like lower copper layer 11 and the interlayer wiring 3 as the columnar portion 16 is high.
  • the columnar portion 16 as the interlayer wiring 3 is made of nickel only in a part thereof, and most of the columnar portion 16 is formed of copper.
  • the wiring layers 2 and 4 are made of copper. As a result, it has the same electrical characteristics as a general circuit board.
  • the wiring layers 2 and 4 and the interlayer wiring 3 have low resistance.
  • the columnar portion 16 can have a columnar structure having a height and a width. Further, by forming the columnar portion 16 with a columnar structure having a height and width, a large current can be passed through the interlayer wiring 3 or heat can be diffused by the interlayer wiring 3.
  • the interlayer wiring 3 capable of diffusing heat functions as a heat sink. The heat of the electronic components mounted on the surface wiring layer 2 is efficiently diffused to the back side of the mounting surface by the inter-layer wiring 3 and is efficiently radiated from the back side of the mounting surface (the back surface wiring layer 4).
  • the back wiring layer 4 may be the mounting surface.
  • a double-sided wiring board having the same electrical characteristics as a general wiring board can be used to pass a larger current than a general printed circuit board or to have a heat sink function. wear.
  • the interlayer wiring 3 may be used as a heat diffusion path, as illustrated as the wiring structure at the center of FIG. .
  • the heat sink since the heat sink is built into the double-sided wiring board itself, it is possible to avoid attaching a separate large heat sink to the electronic circuit element mounted on the double-sided wiring board.
  • a thin circuit board can be formed by taking advantage of the low profile of surface-mount type electronic circuit elements.
  • heat tends to stay between the surface-mount type electronic circuit element and the double-sided wiring board, but heat can be radiated efficiently by using this double-sided wiring board in the part where the heat stays. Therefore, such heat retention can be effectively suppressed.
  • FIG. 4 is a partial cross-sectional view of the double-sided wiring board according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 4 (until the production of the wiring board substrate). Note that the latter half of the manufacturing process for forming the wiring pattern on the base material is the same as that in FIG. Further, as in the first embodiment, in the latter half of the manufacturing process, after forming a resist for plating, a method of forming a wiring pattern can be employed.
  • the double-sided wiring board according to the second embodiment is similar to the double-sided wiring board shown in FIG. 1 in that the insulating resin layer 1, the surface wiring layer 2, the interlayer wiring 3 and the like. And back wiring layer 4.
  • the insulating resin layer 1, the front surface wiring layer 2, the interlayer wiring 3, and the back surface wiring layer 4 are the same as those in the first embodiment, and the description thereof will be omitted.
  • the surface wiring layer 2 has a three-layer structure of copper, and a portion of the surface wiring layer 2 that comes into contact with the interlayer wiring 3 is recessed by compression.
  • steps (A) to (D) are the same as the steps shown in FIGS. 2 (A) to (D), and a description thereof will be omitted.
  • the columnar portion 16 composed of the nickel layer 12 and the upper copper layer 13 is formed on the flat lower copper layer 11 by the etching process of the nickel layer 12 in FIG.
  • a plate-shaped lower copper layer 11, a nickel layer 12 and a columnar portion 16 made of an upper copper layer 13 are provided.
  • the pre-preder sheet 31 and the copper foil 32 are laminated.
  • the pre-preder sheet 31 is a sheet obtained by impregnating a sheet having glass fiber strength with an insulating resin material and drying it. This is a so-called B-stage seat.
  • a cushion material such as craft paper or a Teflon (registered trademark) plate is placed on the copper foil 32, and is pressed from above the cushion material with a hydraulic press or the like while sucking air. Thereby, the pre-preder sheet 31 is liquefied.
  • the copper foil 32 is in contact with the tip of the columnar portion 16, and further pressed as shown in FIG. 5 (F) until the portion of the copper foil 32 that contacts the tip of the columnar portion 16 is deformed. The portion of the copper foil 32 that comes into contact with the columnar portion 16 rises.
  • the insulating grease material 33 is filled between the copper foil 32 and the lower copper layer 11 having a flat plate shape without a gap. Further, the copper foil 32 is electrically connected to the columnar portion 16. The lower copper layer 11 and the copper foil 32 on both sides of the insulating grease 33 are electrically connected by the columnar portion 16.
  • the tip of the columnar part 16 may break through the copper foil 32. Further, the tip of the columnar portion 16 in the first embodiment is flat like a table. Therefore, the columnar part 16 may not be able to penetrate the pre-preder sheet 31. In such a case, a through-hole may be formed in a part corresponding to the columnar part 16 of the pre-preder sheet 31 in advance, and laminated with the copper foil 32 thereon. The size of the through hole formed at this time may be, for example, larger than the tip of the columnar portion 16. Thereby, even if the tip of the columnar part 16 has a table shape, the pre-preda sheet 31 can be penetrated by the columnar part 16.
  • the surface of the copper foil 32 is polished. Thereby, as shown in FIG. 5 (G), the surface of the copper foil 32 becomes flat. After flattening the surface of the copper foil 32, the surface flattened by polishing is roughened, and then copper plating is performed. For example, copper plating can be performed by the electrolytic plating method.
  • a copper layer 34 is laminated on the surface of the copper foil 32 as shown in FIG. 5 (H).
  • table A base material having a two-layer structure of copper that is, copper foil 32 and copper layer 34
  • a single-layer structure of copper having a lower surface made of lower copper layer 11 is formed.
  • the method for forming the double-sided wiring pattern on the substrate is the same as the step shown in FIG. 3 of Embodiment 1 or the other methods described above, and the description thereof is omitted.
  • the copper layers 32 and 34 on the front surface become the front surface wiring layer 2, and the lower copper layer 11 on the back surface becomes the back surface wiring layer 4.
  • the double-sided wiring board shown in FIG. 4 is formed.
  • each embodiment As a manufacturing technique for forming an interlayer wiring having a height of several hundred micrometers, there is a so-called buildup method.
  • this build-up method first, conductive paste is printed on the copper foil surface of each wiring board to form conical bumps, and then the insulating resin board is sandwiched between the conical bumps. A wiring board is formed. The bumps formed on each wiring board are thrust against the insulating resin board and come into contact with each other within the insulating resin board. Thereby, wiring boards are electrically connected.
  • the conical bump can also be formed by repeating plating and etching. However, repeating plating and etching is very time consuming and costly, which is disadvantageous in manufacturing compared to printing a conductive paste.
  • the bump needs to be formed in a conical shape in order to protrude from the insulating resin plate. For this reason, it is technically difficult to make the bump wide in the entire height direction. Therefore, with this build-up method, it is extremely difficult to form a wide interlayer wiring that efficiently diffuses heat, as in the above-described embodiments.
  • the wiring layers 2 and 4 on both surfaces of the insulating resin layer 1 are electrically connected by the columnar portions 16 as the interlayer wiring 3. Connected double-sided printed boards can be manufactured.
  • the pre-preda sheet 31 and the copper foil 32 are pressed onto the flat lower copper layer 11 on which the columnar portions 16 are formed, and the copper plating is further performed.
  • the wiring layers 2 and 4 and the interlayer wiring 3 are electrically connected.
  • Such a connection method between the wiring layers 2 and 4 and the interlayer wiring 3 has high bonding strength and high reliability. Therefore, as a double-sided wiring board, high reliability similar to that of a general wiring board can be ensured.
  • double-sided wiring with the same reliability and electrical characteristics as a general wiring board The board can be made to carry a larger current than a general printed circuit board or have a heat sink function.
  • the surface wiring layer 2 is formed using the copper foil 32.
  • the copper foil 32 has a uniform thickness. Further, since the columnar portions 16 are formed by etching, they are aligned at a uniform height. As a result, the thickness of the double-sided wiring board is substantially uniform. And because of the uniform surface thickness, it is possible to create a structure that efficiently releases heat in the use of a heat sink that requires complicated height adjustment with a countersink surface and a separate heat sink. This eliminates the need for a heat sink and an expensive countersink process, and can provide a high heat dissipation wiring board at a low price.
  • a clad material in which both surfaces of nickel are coated with copper is used as a starting material for forming a double-sided wiring board.
  • aluminum, tin, stainless steel, brass, or an alloy containing them may be used instead of nickel.
  • one surface of nickel is coated with copper, the other surface is silver or aluminum, or a clad material coated with an alloy containing them, or a clad material with both surfaces of aluminum coated with copper. May be.
  • a clad material having a two-layer structure in which one surface of nickel or aluminum is coated with copper, silver, aluminum, or an alloy containing them may be used as a starting material.
  • the columnar portion 16 may be formed of only copper or silver.
  • a double-sided wiring board in which the wiring layers 2 and 4 are formed on both sides of the insulating resin layer 1 is illustrated.
  • a single-sided wiring board in which a wiring layer (for example, wiring layer 4) is formed on one side of the insulating resin layer 1 or a multilayer substrate having three or more wiring layers is manufactured according to the present invention. It can be formed using a method.
  • the third wiring layer and the insulating resin layer on which the third wiring layer is laminated are, for example, a metal film and an insulating resin in a conventional multilayer wiring board. If it is formed with various manufacturing techniques to laminate materials.
  • interlayer wirings 3 may function only as a heat sink, not as a current path. Further, some interlayer wirings 3 may function as a heat sink and a current path, and other interlayer wirings 3 may function only as a heat sink. No current flows through the interlayer wiring 3 that functions only as a heat sink.
  • the surface wiring layer 2 may be formed by a physical vapor deposition method such as PVD, which is not performed by the force treatment performed by the plating process.
  • a clad material is used as a starting material, it is not possible to use a clad material.
  • a member with a conductive layer formed by plating or physical vapor deposition can be used as a starting material!
  • the present invention can be used for a wiring board on which an electronic component element is mounted and for manufacturing the wiring board.

Abstract

This invention provides a process for producing wiring board and a wiring board that can realize highly efficient heat radiation and the like. In the production process of a wiring board, a clad material comprising two or more layers of two or more types of metals including electrically conductive first and second metals stacked on top of each other is etched to form a columnar part (16) comprising a second metal (12) on a first metal plate part (11). Next, an insulating resin material is stacked on the plate part (11) for covering the columnar part (16) to form an insulating resin layer (17). The surface of the insulating resin layer (17) is then polished so that the front end of the columnar part (16) is exposed from the insulating resin layer (17). A metal layer (18) for a wiring layer formed of an electrically conductive metal connected to the columnar part (16) is provided on the columnar part (16) on its side remote from the plate part (11).

Description

明 細 書  Specification
配線板の製造方法および配線板  Wiring board manufacturing method and wiring board
技術分野  Technical field
[0001] 本発明は、配線板の製造方法および配線板に関する。  The present invention relates to a method for manufacturing a wiring board and a wiring board.
背景技術  Background art
[0002] 特許文献 1は、放熱機構を開示する。この放熱機構では、冷却ファンとマザ一ボー ドに設けられた貫通孔によって放熱機構を構成する。  Patent Document 1 discloses a heat dissipation mechanism. In this heat dissipating mechanism, the heat dissipating mechanism is constituted by a cooling fan and through holes provided in the motherboard.
[0003] 特許文献 1:特開 2004— 40125号公報(要約など) [0003] Patent Document 1: Japanese Patent Laid-Open No. 2004-40125 (abstract, etc.)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 配線板には、絶縁榭脂板に孔をあけ、この孔内を銅でメツキすることで、絶縁榭脂 板の両面に形成される配線パターンを接続するものが使用される。このようにスルー ホールメツキをした場合、スルーホールを介してフラックス成分等が配線板の裏面側 より表面側へ吹き上がり、部品の間や、部品と配線板との間に付着することがある。特 に、最近は、表面実装タイプの電子部品素子が使用されるようになってきており、部 品と配線板との間が狭くなつて ヽる。  [0004] As the wiring board, there is used a wiring board formed by opening a hole in an insulating resin board and mating the inside with copper to connect wiring patterns formed on both surfaces of the insulating resin board. When through hole plating is performed in this way, flux components and the like may blow up from the back side of the wiring board to the front side through the through hole, and may adhere between parts or between the part and the wiring board. In particular, recently, surface-mount type electronic component elements have come to be used, and the space between components and wiring boards has become narrower.
[0005] このように電子部品素子と配線板との間が狭くなつたり、部品と配線板との間に異物 が付着したりすると、電子部品素子の放熱が悪くなる。このため、電子部品素子には 、放熱のためにヒートシンクや冷却ファンを設ける必要が生じる。ヒートシンクや冷却 ファンを設けると、電子部品素子を低背の表面実装タイプにしても、実装のために必 要とするトータルの高さは、高くなつてしまう。  [0005] If the gap between the electronic component element and the wiring board becomes narrow as described above, or if foreign matter adheres between the component and the wiring board, the heat dissipation of the electronic component element becomes worse. For this reason, it is necessary to provide a heat sink or a cooling fan for heat dissipation in the electronic component element. If a heat sink or a cooling fan is provided, the total height required for mounting will be high even if the electronic component element is a low-profile surface mounting type.
[0006] 本発明は、効率良く熱を放熱したりすることが可能な配線板の製造方法および配線 板を得ることを目的とする。  [0006] An object of the present invention is to obtain a method of manufacturing a wiring board and a wiring board capable of efficiently radiating heat.
課題を解決するための手段  Means for solving the problem
[0007] 本発明に係る配線板の製造方法は、導電性の第一の金属および第二の金属を含 む 2種類あるいは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるクラッド 材をエッチングして、第一の金属の板状部上に第二の金属を有する柱状部を形成す る工程と、絶縁榭脂材を、柱状部を覆い尽くすように板状部の上に積層して絶縁榭 脂層を形成する工程と、柱状部の先端が絶縁榭脂層から露出するように絶縁榭脂層 の表面を研磨した後に、板状部とは反対側において柱状部と接続する導電性の金 属からなる配線層用の金属層を形成する工程と、を有するものである。 [0007] A method of manufacturing a wiring board according to the present invention includes a clad formed by laminating two or three kinds of metals including a conductive first metal and a second metal in two layers or three or more layers. The material is etched to form a column having a second metal on the first metal plate. A step of forming an insulating resin layer by laminating an insulating resin material on the plate-like part so as to cover the columnar part, and a tip of the columnar part being exposed from the insulating resin layer. Forming a metal layer for a wiring layer made of a conductive metal connected to the columnar part on the side opposite to the plate-like part after polishing the surface of the insulating resin layer.
[0008] この方法を採用すれば、導電性の第一の金属および第二の金属を含む 2種類ある いは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるクラッド材をエツチン グして、絶縁榭脂層を貫通する柱状部を形成することができる。し力も、その柱状部 は、絶縁榭脂層の両面において、板状部および配線層と電気的に接続される。柱状 部は、配線板の層間配線として機能する。  [0008] By adopting this method, a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in two layers or three or more layers is used as an ethyne. To form a columnar portion penetrating the insulating resin layer. Also, the columnar portion is electrically connected to the plate portion and the wiring layer on both sides of the insulating resin layer. The columnar part functions as an interlayer wiring of the wiring board.
[0009] また、クラッド材をエッチングすることで形成する層間配線は、高さおよび幅がある 柱状構造とすることができる。高さおよび幅がある柱状構造の層間配線は、効率良く 熱を拡散し、ヒートシンクとして機能する。また、大電流を流すことができる。また、クラ ッド材をエッチングすることで形成する層間配線には、バンプ形成に用いる金属ぺー ストのように不純物が混じって 、るものではな 、、金属を使用することができる。  [0009] Further, the interlayer wiring formed by etching the clad material can have a columnar structure having a height and a width. Columnar-structured interlayer wiring with height and width efficiently diffuses heat and functions as a heat sink. In addition, a large current can flow. In addition, the interlayer wiring formed by etching the clad material is not mixed with impurities like the metal paste used for bump formation, but metal can be used.
[0010] したがって、この方法で製造した配線板には、大電流を流すことができ、熱を効率 良く放熱するヒートシンク機能を持たせることができる。  Accordingly, the wiring board manufactured by this method can be provided with a heat sink function that allows a large current to flow and efficiently dissipates heat.
[0011] 本発明に係る他の配線板の製造方法は、導電性の第一の金属および第二の金属 を含む 2種類あるいは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるク ラッド材をエッチングして、第一の金属の板状部上に第二の金属力 なる柱状部を形 成する工程と、絶縁榭脂材を挟んで導電性の金属箔を、柱状部の上側から柱状部と 当接するまで押圧し、金属箔で表面が覆われた絶縁榭脂層を形成する工程と、金属 箔の表面を研磨した後に、柱状部と接続する導電性の金属からなる配線層用の金属 層を形成する工程と、を有するものである。  [0011] Another method for manufacturing a wiring board according to the present invention includes two or three or more kinds of metals including a conductive first metal and a second metal laminated in two layers or three or more layers. Etching the clad material to form a columnar portion having a second metal force on the plate-like portion of the first metal, and electrically conductive metal foil sandwiching the insulating grease material between the columnar portion. Pressing from the upper side until it comes into contact with the columnar part to form an insulating resin layer whose surface is covered with metal foil, and wiring made of a conductive metal connected to the columnar part after polishing the surface of the metal foil Forming a metal layer for the layer.
[0012] この方法を採用すれば、導電性の第一の金属および第二の金属を含む 2種類ある いは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるクラッド材をエツチン グして形成した柱状部により、板状部と配線層とが電気的に接続される。絶縁榭脂層 を貫通する柱状部を層間配線とする配線板を形成することができる。クラッド材をエツ チングすることで形成する層間配線は、高さおよび幅がある柱状構造とすることがで き、効率良く熱を拡散するヒートシンクとして機能したり、大電流を流したりすることが できる。大電流を流し、ヒートシンク機能を有する配線板を形成することができる。また 、クラッド材をエッチングすることで形成する層間配線には、バンプ形成に用いる金属 ペーストのように不純物が混じって 、るものではな 、、金属を使用することができる。 [0012] By adopting this method, a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in two layers or three or more layers is used as an etchant. The plate-like portion and the wiring layer are electrically connected to each other by the columnar portion formed by squeezing. A wiring board having a columnar portion penetrating the insulating resin layer as an interlayer wiring can be formed. The interlayer wiring formed by etching the clad material can have a columnar structure with height and width. It can function as a heat sink that diffuses heat efficiently, or it can pass a large current. A wiring board having a heat sink function can be formed by flowing a large current. In addition, the interlayer wiring formed by etching the clad material is not mixed with impurities like the metal paste used for bump formation, but metal can be used.
[0013] また、金属箔による配線層は、絶縁榭脂層を形成する際に柱状部と当接するまで 押圧され且つその表面に金属が形成される。金属箔による配線層と柱状部との電気 的な接続の信頼性は、クラッド材として一体化されて ヽた板状部と柱状部との電気的 な接続の信頼性と同等に高いものとなる。  [0013] Further, the wiring layer made of metal foil is pressed until it contacts the columnar part when forming the insulating resin layer, and metal is formed on the surface thereof. The reliability of the electrical connection between the wiring layer and the columnar part using the metal foil is as high as the reliability of the electrical connection between the plate-like part and the columnar part that are integrated as a clad material. .
[0014] 本発明に係る配線板の製造方法は、さらに、クラッド材の第一の金属が、銅、銀、ァ ルミニゥムおよびそれらを含む合金の中から選択された 1つ以上の金属とされ、第二 の金属が、ニッケル、アルミニウム、すずおよびそれらを含む合金の中から選択され、 且つ、第一の金属との間で選択的なエッチングが可能な 1つ以上の金属とされてい るものである。  [0014] In the method for manufacturing a wiring board according to the present invention, the first metal of the clad material is one or more metals selected from copper, silver, aluminum and alloys containing them, The second metal is selected from nickel, aluminum, tin and alloys containing them, and is one or more metals that can be selectively etched with the first metal. is there.
[0015] この方法を採用すれば、エッチングの際、第一の金属を板状としたまま、第二の金 属を柱状に形成することができる。  If this method is employed, the second metal can be formed in a columnar shape while the first metal is in the form of a plate during etching.
[0016] 本発明に係る配線板の製造方法は、さらに、クラッド材が、第二の金属を第一の金 属で挟んだ 3層構造のものであり、柱状部が、 2回のエッチング処理により、第一の金 属の板状部上に形成されるものである。 [0016] In the method for manufacturing a wiring board according to the present invention, the cladding material further has a three-layer structure in which the second metal is sandwiched between the first metals, and the columnar portion is etched twice. Thus, it is formed on the plate-shaped portion of the first metal.
[0017] この構成を採用すれば、柱状部に、板状部と同じ第一の金属を使用することができ る。 If this configuration is adopted, the same first metal as that of the plate-like portion can be used for the columnar portion.
[0018] 本発明に係る配線板の製造方法は、さらに、金属層を形成した後に、エッチング処 理によって金属層および板状部の一部を取り去り配線パターンを形成する工程を有 するものである。  [0018] The method for producing a wiring board according to the present invention further includes a step of forming a wiring pattern by removing a part of the metal layer and the plate-like portion by an etching process after forming the metal layer. .
[0019] この方法を採用すれば、絶縁榭脂層の両面の配線層および板状部に、配線パター ンを同時に形成することができる。し力も、予めクラッド材として柱状部と一体化されて いる板状部を配線層として使用するので、この配線層と柱状部との接合強度は高い  If this method is employed, wiring patterns can be simultaneously formed on the wiring layers and the plate-like portions on both sides of the insulating resin layer. Since the plate-like part integrated with the columnar part as the clad material is used as the wiring layer, the bonding strength between the wiring layer and the columnar part is high.
[0020] 本発明に係る第三の配線板の製造方法は、導電性の第二の金属を導電性の第一 の金属で挟んだ 3層構造のクラッド材をエッチングして、第一の金属の板状部上に第 二の金属および第一の金属からなる柱状部を形成する工程と、絶縁榭脂材を、柱状 部のまわりを埋めるように板状部の上に絶縁榭脂層を形成する工程と、絶縁榭脂層 上に形成され、板状部とは反対側にぉ ヽて柱状部と接続する導電性の金属からなる 配線層用の金属層を形成する工程と、エッチング処理によって金属層および板状部 の一部を取り去り、配線パターンとしての配線層を形成する工程と、を有するものであ る。 [0020] A third method for manufacturing a wiring board according to the present invention uses a conductive second metal as a conductive first metal. Etching a clad material having a three-layer structure sandwiched between two metal layers to form a columnar portion made of the second metal and the first metal on the plate portion of the first metal, and an insulating grease material A step of forming an insulating resin layer on the plate-like portion so as to fill the periphery of the columnar portion; A step of forming a metal layer for a wiring layer made of a conductive metal, and a step of removing a part of the metal layer and the plate-like portion by etching to form a wiring layer as a wiring pattern. The
[0021] この方法を採用すれば、クラッド材をエッチングして形成した柱状部により、板状部 と配線層とが電気的に接続される。絶縁榭脂層を貫通する柱状部を層間配線とする 配線板を形成することができる。クラッド材をエッチングすることで形成する層間配線 は、高さおよび幅がある柱状構造とすることができ、効率良く熱を拡散するヒートシン クとして機能したり、大電流を流したりすることができる。大電流を流し、ヒートシンク機 能を有する配線板を形成することができる。クラッド材をエッチングすることで形成す る層間配線には、バンプ形成に用いる金属ペーストのように不純物が混じって 、るも のではない、金属を使用することができる。また、絶縁榭脂層の両面の配線層および 板状部に、配線パターンを同時に形成することができる。  If this method is employed, the plate-like portion and the wiring layer are electrically connected by the columnar portion formed by etching the clad material. It is possible to form a wiring board having a columnar portion penetrating the insulating resin layer as an interlayer wiring. The interlayer wiring formed by etching the clad material can have a columnar structure with a height and width, and can function as a heat sink for efficiently diffusing heat or can pass a large current. A circuit board having a heat sink function can be formed by passing a large current. For the interlayer wiring formed by etching the clad material, impurities such as metal paste used for bump formation are mixed, and a metal that is not a waste can be used. Moreover, a wiring pattern can be simultaneously formed on the wiring layer and the plate-like portion on both sides of the insulating resin layer.
[0022] 本発明に係る配線板の製造方法は、さらに、金属層の金属が、第一の金属である ものである。  [0022] In the method for manufacturing a wiring board according to the present invention, the metal of the metal layer is the first metal.
[0023] この方法を採用すれば、絶縁榭脂層の両面の配線層と板状部の金属を、第一の金 属に揃えることができる。し力も、クラッド材をエッチングすることで形成する層間配線 には、バンプ形成に用いる金属ペーストのように不純物が混じって 、るものではな!/ヽ 、金属を使用することができる。したがって、この第一の金属をたとえば銅などの一般 的な配線板に使用される金属とすることで、一般的な配線板と同じ電気的特性を有 する配線板に、ヒートシンク機能を持たせることができる。  If this method is employed, the wiring layers on both sides of the insulating resin layer and the metal of the plate-like portion can be aligned with the first metal. However, the interlayer wiring formed by etching the clad material is not something mixed with impurities like the metal paste used for bump formation! / ヽ, metal can be used. Therefore, by making this first metal a metal used for a general wiring board such as copper, a wiring board having the same electrical characteristics as a general wiring board can have a heat sink function. Can do.
[0024] 本発明に係る配線板は、上述した発明の各製造方法により製造され、柱状部が絶 縁榭脂層を貫通する層間配線であるものである。  [0024] The wiring board according to the present invention is an interlayer wiring that is manufactured by each of the manufacturing methods of the above-described invention and in which the columnar portion penetrates the insulating resin layer.
[0025] この構成を採用すれば、クラッド材をエッチングすることで、絶縁榭脂層の両面の配 線層と板状部とを接続する層間配線を形成することができる。クラッド材をエッチング することで形成する層間配線は、高さおよび幅がある柱状構造とすることができ、効 率良く熱を拡散するヒートシンクとして機能したり、大電流を流したりすることができる 。大電流を流し、ヒートシンク機能を有する配線板を形成することができる。 By adopting this configuration, it is possible to form an interlayer wiring that connects the wiring layers on both sides of the insulating resin layer and the plate-like portion by etching the clad material. Etching clad material Thus, the interlayer wiring formed can have a columnar structure having a height and a width, and can function as a heat sink for efficiently diffusing heat or flow a large current. A wiring board having a heat sink function can be formed by flowing a large current.
[0026] 本発明に係る他の配線板は、平板形状に形成される絶縁榭脂層と、エッチング処 理により侵食された金属層から形成され、絶縁榭脂層を貫通する層間配線と、絶縁 榭脂層の表面に配設され、層間配線に接続される導電性の金属からなる配線層と、 を有するものである。  [0026] Another wiring board according to the present invention is formed of an insulating resin layer formed in a flat plate shape and a metal layer eroded by an etching process, and an interlayer wiring penetrating the insulating resin layer and insulating And a wiring layer made of a conductive metal disposed on the surface of the resin layer and connected to the interlayer wiring.
[0027] この構成を採用すれば、層間配線は、エッチングにより形成される。エッチングによ り形成される層間配線は、高さおよび幅がある柱状構造とすることができ、効率良く熱 を拡散するヒートシンクとして機能したり、大電流を流したりすることができる。大電流 を流し、ヒートシンク機能を有する配線板を形成することができる。  If this configuration is adopted, the interlayer wiring is formed by etching. The interlayer wiring formed by etching can have a columnar structure having a height and a width, and can function as a heat sink that efficiently diffuses heat or allows a large current to flow. A circuit board having a heat sink function can be formed by passing a large current.
[0028] 本発明に係る他の配線板は、上述した発明の構成に加えて、絶縁榭脂層を貫通す る層間配線力 絶縁榭脂層から露出する一方の面の幅と他方の面の幅との差が、層 間酉己線の高さの 1. 5〜2. 5倍であるものである。  [0028] In addition to the configuration of the invention described above, another wiring board according to the present invention has an interlayer wiring force penetrating the insulating resin layer. The width of one surface exposed from the insulating resin layer and the other surface The difference with the width is 1.5 to 2.5 times the height of the inter-layer self-alignment line.
[0029] エッチング処理により侵食される金属層から層間配線を形成するとき、その金属層 を、層間配線の高さ方向および幅方向において略均等に侵食される。その結果、層 間配線の、絶縁榭脂層から露出する一方の面の幅と他方の面の幅との差は、層間配 線の高さの 1. 5〜2. 5倍となる。  When the interlayer wiring is formed from the metal layer eroded by the etching process, the metal layer is eroded substantially uniformly in the height direction and the width direction of the interlayer wiring. As a result, the difference between the width of one surface of the interlayer wiring exposed from the insulating resin layer and the width of the other surface is 1.5 to 2.5 times the height of the interlayer wiring.
[0030] 本発明に係る他の配線板は、上述した発明の各構成に加えて、層間配線の中の少 なくとも一部を、熱の拡散路として利用するヒートシンクとし、電流路として機能させな いものである。  [0030] In addition to the components of the invention described above, another wiring board according to the present invention serves as a heat sink that uses at least a part of the interlayer wiring as a heat diffusion path, and functions as a current path. It is not.
[0031] この構成を採用すれば、配線板に実装される部品の熱を、配線板により拡散するこ とがでさる。  If this configuration is adopted, the heat of the components mounted on the wiring board can be diffused by the wiring board.
発明の効果  The invention's effect
[0032] 本発明では、効率良く熱を放熱したりすることができる。  [0032] In the present invention, heat can be radiated efficiently.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]図 1は、本発明の実施の形態 1に係る両面配線板の部分断面図である。 FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention.
[図 2]図 2は、図 1の両面配線板の製造工程の流れの前半 (配線板の基材作成まで) を示す図である。 [Figure 2] Figure 2 shows the first half of the manufacturing process for the double-sided wiring board shown in Figure 1 (until the production of the wiring board substrate). FIG.
[図 3]図 3は、図 1の両面配線板の製造工程の流れの後半を示す図である。  FIG. 3 is a diagram showing the latter half of the flow of the manufacturing process of the double-sided wiring board of FIG. 1.
[図 4]図 4は、本発明の実施の形態 2に係る両面配線板の部分断面図である。  FIG. 4 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 2 of the present invention.
[図 5]図 5は、図 4の両面配線板の製造工程の流れの前半 (配線板の基材作成まで) を示す図である。  FIG. 5 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 4 (until the production of the wiring board base material).
符号の説明  Explanation of symbols
[0034] 1 絶縁榭脂層 [0034] 1 Insulating resin layer
2 表面配線層(配線層)  2 Surface wiring layer (wiring layer)
3 層間配線  3 Interlayer wiring
4 裏面配線層(配線層)  4 Back wiring layer (wiring layer)
11 下側銅層(第一の金属、板状部)  11 Lower copper layer (first metal, plate-like part)
12 ニッケル層(エッチングにより侵食される金属層、第二の金属)  12 Nickel layer (metal layer eroded by etching, second metal)
13 上側銅層(エッチングにより侵食される金属層)  13 Upper copper layer (metal layer eroded by etching)
16 柱状部  16 Columnar part
17 ビルドアップ用絶縁榭脂材 (絶縁榭脂材)  17 Insulated grease for build-up (insulated grease)
18 銅層(金属メツキ)  18 Copper layer (metal plating)
33 絶縁榭脂材  33 Insulated grease
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、本発明に係る配線板の製造方法および配線板を、図面に基づ!/、て説明するHereinafter, a method for manufacturing a wiring board and a wiring board according to the present invention will be described based on the drawings!
。配線板は、両面に配線パターンが施される両面配線板を例とし、また、配線板の製 造方法は、その両面配線板の製造方法を例として説明する。 . As the wiring board, a double-sided wiring board having wiring patterns on both sides is taken as an example, and the manufacturing method of the wiring board is explained by taking the manufacturing method of the double-sided wiring board as an example.
[0036] 実施の形態 1. Embodiment 1.
図 1は、本発明の実施の形態 1に係る両面配線板の部分断面図である。両面配線 板は、絶縁榭脂層 1と、配線層としての表面配線層 2と、層間配線 3と、配線層として の裏面配線層 4と、を有する。また、表面配線層 2、層間配線 3および裏面配線層 4に より、ヒートシンク 5が形成される。  FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention. The double-sided wiring board has an insulating resin layer 1, a front surface wiring layer 2 as a wiring layer, an interlayer wiring 3, and a back surface wiring layer 4 as a wiring layer. The heat sink 5 is formed by the front surface wiring layer 2, the interlayer wiring 3, and the back surface wiring layer 4.
[0037] 絶縁榭脂層 1は、絶縁榭脂材を平板形状に形成したものである。絶縁榭脂材として は、たとえば紙フエノール榭脂材、紙エポキシ榭脂材、ガラスエポキシ榭脂材、テフ口 ン (登録商標)榭脂材などがある。 [0037] The insulating resin layer 1 is formed by forming an insulating resin material into a flat plate shape. Examples of insulating resin materials include paper phenol resin material, paper epoxy resin material, glass epoxy resin material, Tef port (Registered trademark) grease material.
[0038] 表面配線層 2は、絶縁榭脂層 1の表面に形成される配線層である。表面配線層 2は 、導電性の金属からなり、たとえば銅、銀、アルミニウムあるいはそれらを含む合金な どの同一金属の 2層構造を有する。なお、この表面配線層 2を異種金属力もなる層と してもよい。 3層以上の層としてもよい。  [0038] The surface wiring layer 2 is a wiring layer formed on the surface of the insulating resin layer 1. The surface wiring layer 2 is made of a conductive metal and has a two-layer structure of the same metal such as copper, silver, aluminum, or an alloy containing them. The surface wiring layer 2 may be a layer having a different metal force. Three or more layers may be used.
[0039] 裏面配線層 4は、絶縁榭脂層 1の表面に形成される配線層である。裏面配線層 4は 、導電性の金属からなり、たとえば銅、銀、アルミニウムあるいはそれらを含む合金な どの同一金属の 2層構造を有する。なお、この表面配線層 2を異種金属力もなる層と してもよい。 3層以上の層としてもよい。  The back wiring layer 4 is a wiring layer formed on the surface of the insulating resin layer 1. The back wiring layer 4 is made of a conductive metal and has a two-layer structure of the same metal such as copper, silver, aluminum, or an alloy containing them. The surface wiring layer 2 may be a layer having a different metal force. Three or more layers may be used.
[0040] 層間配線 3は、絶縁榭脂層 1を貫通させて配設される。層間配線 3は、たとえば銅 およびニッケルなどの異金属の 2層構造を有する。このように、層間配線 3の一部に のみニッケルを用いて、その他の導電体を銅で構成することで、この配線板の電気的 特性は、一般的な配線板と略同じ電気的特性となる。  The interlayer wiring 3 is disposed through the insulating resin layer 1. Interlayer wiring 3 has a two-layer structure of different metals such as copper and nickel. In this way, nickel is used for only a part of the interlayer wiring 3 and other conductors are made of copper, so that the electrical characteristics of this wiring board are substantially the same as those of a general wiring board. Become.
[0041] 図 2は、図 1の両面配線板の製造工程の流れの前半 (配線板の基材作成まで)を示 す図である。図 3は、図 1の両面配線板の製造工程の流れの後半を示す図である。  FIG. 2 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 1 (until the production of the wiring board base material). FIG. 3 is a diagram showing the latter half of the flow of the manufacturing process of the double-sided wiring board of FIG.
[0042] 図 2 (A)は、図 1の両面配線板の製造に使用するクラッド材 (複合材料)の部分断面 を示す図である。クラッド材は、平板形状のニッケル層 12の両面に、銅層 11, 13が 積層された 3層構造を有する。ニッケル層 12は、 2マイクロメートルの厚さを有する。 図 2 (A)において中間層であるニッケル層 12の上側の銅層(以下、単に上側銅層と 記載する。 ) 13は、 400マイクロメートルの厚さを有する。図 2 (A)においてニッケル層 12の下側の銅層(以下、単に下側銅層と記載する。) 11は、 18マイクロメートルの厚 さを有する。なお、上側銅層 13は、 500マイクロメートルの厚さ程度であってもよい。  FIG. 2 (A) is a view showing a partial cross section of a clad material (composite material) used for manufacturing the double-sided wiring board of FIG. The clad material has a three-layer structure in which copper layers 11 and 13 are laminated on both sides of a flat nickel layer 12. The nickel layer 12 has a thickness of 2 micrometers. In FIG. 2A, the upper copper layer (hereinafter simply referred to as the upper copper layer) 13 of the nickel layer 12 which is an intermediate layer has a thickness of 400 micrometers. In FIG. 2A, the lower copper layer (hereinafter simply referred to as the lower copper layer) 11 of the nickel layer 12 has a thickness of 18 micrometers. The upper copper layer 13 may have a thickness of about 500 micrometers.
[0043] なお、クラッド材は、異種金属を積層したものである。異種金属を積層する場合、ま ず、真空中でスパッタリングにより各金属の表面を鏡面加工する。次に、それら異種 金属をロールに挟み、ロールの圧力で圧着することで、クラッド材を形成することがで きる。この他にもたとえば、プラズマクリーニングにより各金属の鏡面表面を活性ィ匕し 、活性済みの異種金属をロールで圧着することで、クラッド材を形成してもよい。  [0043] The clad material is a laminate of dissimilar metals. When dissimilar metals are stacked, the surface of each metal is first mirror-finished by sputtering in a vacuum. Next, the clad material can be formed by sandwiching these dissimilar metals between rolls and pressing them with the pressure of the rolls. In addition, for example, the clad material may be formed by activating the mirror surface of each metal by plasma cleaning and pressing the activated dissimilar metal with a roll.
[0044] 図 1の両面配線板を製造するにあたって、まず、両面配線板のスルーホールパター ンに対応するパターンにて、図 2 (B)に示すように、上側銅層 13の表面にレジスト層 1 4を形成する。図 2 (B)では、 2つのレジスト層 14が形成されている。また、両面配線 板の裏面には、その一面全体を被覆するようにレジスト層 15を形成する。なお、レジ スト層 14, 15は、後述するアルカリエッチング処理により溶融しない金属、たとえばす ずなどを使用すればよい。この他にもたとえば、感光性榭脂などのドライフィルムを使 用してもよい。また、レジスト層 15は、エッチング処理の方法によっては設けないよう にすることができる。 In manufacturing the double-sided wiring board of FIG. 1, first, the through-hole pattern of the double-sided wiring board A resist layer 14 is formed on the surface of the upper copper layer 13 as shown in FIG. In FIG. 2B, two resist layers 14 are formed. Also, a resist layer 15 is formed on the back surface of the double-sided wiring board so as to cover the entire surface. The resist layers 14 and 15 may be made of a metal that does not melt by the alkali etching process described later, such as tin. In addition, for example, a dry film such as photosensitive resin may be used. The resist layer 15 can be omitted depending on the etching method.
[0045] 上側銅層 13および下側銅層 11の表面にレジスト層 14, 15を形成した後、アルカリ エッチングを実行する。アルカリエッチングでは、アンモニアアルカリ液を使用する。 アンモニアアルカリ液は、銅を溶融する力 ニッケルやすずを溶融しない。アンモニア アルカリ液による選択エッチング処理後に、レジスト層 14, 15を剥離する。これにより 、図 2 (C)に示すように、上側銅層 13の中の、レジスト層 14で被覆されていない部位 が侵食によりエッチングされる。図 2 (C)では、上側銅層 13は、レジスト層 14で被覆さ れて 、た部位が、 2つの台形柱形状に形成されて 、る。  [0045] After forming the resist layers 14 and 15 on the surfaces of the upper copper layer 13 and the lower copper layer 11, alkali etching is performed. In alkali etching, an ammonia alkali solution is used. Ammonia alkaline liquid does not melt nickel or tin. After selective etching with ammonia / alkaline, the resist layers 14 and 15 are removed. Thereby, as shown in FIG. 2C, the portion of the upper copper layer 13 that is not covered with the resist layer 14 is etched by erosion. In FIG. 2 (C), the upper copper layer 13 is covered with the resist layer 14, and the portion is formed into two trapezoidal columnar shapes.
[0046] アルカリエッチング処理およびレジスト層の剥離処理をした後、ニッケル剥離剤を使 用し、図 2 (D)に示すように、ニッケル層 12をエッチング処理する。これにより、ニッケ ル層 12の中の、上側銅層 13で被覆されていない部位がエッチングされる。図 2 (D) では、ニッケル層 12は、上側銅層 13の 2つの柱形状部の下側の部位力 上側銅層 1 3の土台として残る。なお、図 2 (B)で形成するレジスト層 14, 15としてニッケルを使 用した場合、このエッチング処理によりそのレジスト層 14, 15を同時に剥離するように してもよい。これにより、工程数を 1つ減らすことができる。  [0046] After the alkali etching treatment and the resist layer peeling treatment, the nickel layer 12 is etched using a nickel remover as shown in Fig. 2 (D). As a result, a portion of the nickel layer 12 that is not covered with the upper copper layer 13 is etched. In FIG. 2 (D), the nickel layer 12 remains as the base of the upper portion of the upper copper layer 13 under the partial force below the two columnar portions of the upper copper layer 13. When nickel is used for the resist layers 14 and 15 formed in FIG. 2B, the resist layers 14 and 15 may be peeled off simultaneously by this etching process. This reduces the number of processes by one.
[0047] 以上の処理により、平板形状の下側銅層 11の上に、ニッケルおよび銅力もなる断 面台形の柱状部 16が形成される。ニッケルは、アルカリエッチングにより銅との間で 選択的なエッチングが可能である。柱状部 16は、円錐状の柱状部としたり、角錐状 の柱状部としてり、図 2の紙面に垂直な方向に伸びる柱状部などの種々の柱状部と することができる。なお、エッチング液による侵食は、図 2 (D)の上から下側へ進むと ともに、横方向にも同様に進む。そのため、エッチングにより形成した柱状部 16は、 その底部(図 2 (D)で下側の面)よりその頭部(図 2 (D)で上側の面)が小さくなる。ェ ツチングにより形成した柱状部 16の頭部の幅は、その底部の幅よりも、柱状部の高さ の約 2倍に相当する分だけ狭くなる。 [0047] Through the above process, the cross-sectional trapezoidal columnar portion 16 having nickel and copper power is formed on the lower copper layer 11 having a flat plate shape. Nickel can be selectively etched with copper by alkaline etching. The columnar portion 16 can be a conical columnar portion, a pyramidal columnar portion, or various columnar portions such as a columnar portion extending in a direction perpendicular to the paper surface of FIG. In addition, erosion by the etchant proceeds from the top to the bottom of Fig. 2 (D) and in the same way in the horizontal direction. Therefore, the columnar portion 16 formed by etching has a smaller head (upper surface in FIG. 2D) than its bottom (lower surface in FIG. 2D). Ye The width of the head portion of the columnar portion 16 formed by the pinching is narrower by an amount corresponding to about twice the height of the columnar portion than the width of the bottom portion.
[0048] クラッド材を、平板形状の下側銅層 11とニッケルおよび銅力もなる柱状部 16とに形 成した後、図 2 (E)に示すように、絶縁榭脂材としてのビルドアップ用絶縁榭脂材 17 を積層する。ビルドアップ用絶縁榭脂材 17は、柱状部 16の高さ以上の厚さに積層す る。ビルドアップ用絶縁榭脂材 17には、たとえばエポキシ榭脂がある。液状あるいは シート状のエポキシ榭脂を用いて、ビルドアップ用絶縁榭脂材 17を積層する。  [0048] After forming the clad material into the lower copper layer 11 having a flat plate shape and the columnar portion 16 also having nickel and copper force, as shown in FIG. 2 (E), for build-up as an insulating grease material Laminate insulating grease 17. The insulating grease 17 for build-up is laminated to a thickness greater than the height of the columnar part 16. An example of the insulating resin material 17 for buildup is epoxy resin. Laminate build-up insulating resin material 17 using liquid or sheet-like epoxy resin.
[0049] ビルドアップ用絶縁榭脂材 17を積層し、硬化させた後、榭脂表面を研磨する。ビル ドアップ用絶縁榭脂材 17は、図 2 (F)に示すように、柱状部 16の先端が露出するま で研磨される。これにより、絶縁榭脂層 1が形成される。  [0049] After the build-up insulating resin material 17 is laminated and cured, the surface of the resin is polished. As shown in FIG. 2 (F), the insulating grease material 17 for buildup is polished until the tip of the columnar portion 16 is exposed. Thereby, the insulating resin layer 1 is formed.
[0050] 柱状部 16の先端が露出するまでビルドアップ用絶縁榭脂材 17を研磨した後、その 研磨により平らになった面を表面粗ィ匕した上で、銅メツキを実行する。表面粗化は、 少なくともビルドアップ用絶縁榭脂材 17につ 、て行うか、柱状部 16の先端を合わせ て行うようにしてもよい。銅メツキは、たとえば電解メツキ法で実施すればよい。  [0050] After the build-up insulating grease 17 is polished until the tip of the columnar portion 16 is exposed, the surface flattened by the polishing is roughened, and then copper plating is performed. The surface roughening may be performed at least with respect to the build-up insulating resin material 17 or may be performed by aligning the tips of the columnar portions 16. The copper plating may be performed by, for example, an electrolytic plating method.
[0051] これにより、ビルドアップ用絶縁榭脂材 17の表面および柱状部 16の先端表面には 、図 2 (G)に示すように、金属メツキとしての銅層 18が積層される。このメツキにより形 成される銅層 18は、柱状部 16と接続される。また、平らな絶縁榭脂層 1は、その両面 が板状となる下側銅層 11および銅メツキによって形成される銅層 18により被覆された 状態となる。絶縁榭脂層 1の両面の銅層 11, 18は、柱状部 16により電気的に接続さ れる。これにより、両面プリント基板を形成するための基材が形成される。この基材も 一種の配線板である。  As a result, as shown in FIG. 2G, a copper layer 18 as a metal plating is laminated on the surface of the build-up insulating resin material 17 and the tip surface of the columnar portion 16. The copper layer 18 formed by this plating is connected to the columnar portion 16. Further, the flat insulating resin layer 1 is in a state where both surfaces thereof are covered with a lower copper layer 11 having a plate shape and a copper layer 18 formed by copper plating. The copper layers 11 and 18 on both sides of the insulating resin layer 1 are electrically connected by the columnar portions 16. Thereby, the base material for forming a double-sided printed circuit board is formed. This substrate is also a kind of wiring board.
[0052] このように、絶縁榭脂層 1の両面の銅層 11, 18力 両面配線板のスルーホールパ ターンに対応する柱状部 16により接続された基材を形成した後、両面配線板の配線 パターンの形成処理に入る。  [0052] Thus, after forming the base material connected by the columnar portion 16 corresponding to the through-hole pattern of the double-sided wiring board, the copper layers 11 and 18 on both sides of the insulating resin layer 1, the double-sided wiring board The wiring pattern formation process starts.
[0053] 配線パターンの形成処理では、まず、銅メツキを実行する。これにより、図 3 (A)に 示すように、両面の銅層 11, 18の表面には、銅メツキ 19, 20がなされ、銅部分が厚く なる。絶縁榭脂層 1の両面には、銅が二層化された銅層がそれぞれ形成される。絶 縁榭脂層 1の上側の配線層は、表面配線層 2用の金属層となり、下側の配線層は、 裏面配線層 4用の金属層となる。なお、基材においてこの両面の銅層 11, 18の厚さ が十分である場合には、この銅メツキ工程は不要である。 In the wiring pattern forming process, first, copper plating is executed. Thereby, as shown in FIG. 3 (A), copper plating 19 and 20 is made on the surfaces of the copper layers 11 and 18 on both sides, and the copper portion becomes thick. On both surfaces of the insulating resin layer 1, copper layers in which copper is made into two layers are formed. The upper wiring layer of the insulating resin layer 1 is a metal layer for the surface wiring layer 2, and the lower wiring layer is This is a metal layer for the backside wiring layer 4. When the thickness of the copper layers 11 and 18 on both sides is sufficient in the base material, this copper plating process is not necessary.
[0054] 基材の両面に銅メツキ 19, 20をした後、図 3 (B)に示すように、両面配線板の配線 パターンに対応するパターンにて、基材の表面および裏面にレジスト層 21, 22を形 成する。 [0054] After copper plating 19, 20 on both sides of the substrate, as shown in Fig. 3 (B), a resist layer 21 is formed on the front and back surfaces of the substrate in a pattern corresponding to the wiring pattern of the double-sided wiring board. , 22 is formed.
[0055] 基材の表面および裏面に配線パターンに対応するレジスト層 21, 22を形成した後 、エッチング処理を実行する。これにより、図 3 (C)に示すように、両面の銅層 11, 19 および銅層 18, 20の中の、レジスト層 21, 22により被覆されている部位のみ力 基 材表面に残る。  [0055] After forming resist layers 21 and 22 corresponding to the wiring pattern on the front and back surfaces of the substrate, an etching process is performed. As a result, as shown in FIG. 3C, only the portions of the copper layers 11 and 19 and the copper layers 18 and 20 on both sides covered by the resist layers 21 and 22 remain on the surface of the force base material.
[0056] また、エッチング処理をした後、レジスト層 21, 22を剥離する。これにより、図 3 (D) に示すように、絶縁榭脂層 1の両面の銅層 11, 19および銅層 18, 20が、配線パター ンとして形成される。図 3 (D)では、絶縁榭脂層 1の表面(上側)の銅層 18, 20に、 2 つの配線パターンが形成され、裏面の銅層 11, 19に、配線パターンが形成される。 また、絶縁榭脂層 1の表面の銅層 18, 20からなる配線パターンと、裏面の銅層 11, 1 9の配線パターンとは、 2つの柱状部 16により、電気的に接続されている。図 1に示す 両面配線板が形成される。  [0056] After the etching process, the resist layers 21 and 22 are peeled off. As a result, as shown in FIG. 3D, the copper layers 11 and 19 and the copper layers 18 and 20 on both surfaces of the insulating resin layer 1 are formed as wiring patterns. In FIG. 3D, two wiring patterns are formed on the copper layers 18 and 20 on the front surface (upper side) of the insulating resin layer 1, and wiring patterns are formed on the copper layers 11 and 19 on the back surface. The wiring pattern composed of the copper layers 18 and 20 on the surface of the insulating resin layer 1 and the wiring pattern of the copper layers 11 and 19 on the back surface are electrically connected by two columnar portions 16. The double-sided wiring board shown in Fig. 1 is formed.
[0057] 以上のように、この実施の形態 1によれば、絶縁榭脂層 1の両面の銅層 11, 19およ び銅層 18, 20の配線パターン力 柱状部 16により電気的に接続された両面プリント 基板を製造することができる。柱状部 16は、両面の配線パターンを接続する層間配 線 3として機能する。  [0057] As described above, according to the first embodiment, the copper layers 11, 19 on both sides of the insulating resin layer 1 and the wiring pattern force of the copper layers 18, 20 are electrically connected by the columnar portions 16. Printed double-sided printed circuit boards can be manufactured. The columnar portion 16 functions as an interlayer wiring 3 that connects the wiring patterns on both sides.
[0058] なお、図 2 (G)に示す両面プリント基板の基材状態から、メツキ用のレジストを配線 パターン部分以外に形成し、配線パターンに合わせて銅メツキを施すようにしてもよ い。この場合、次に、銅メツキされた配線パターン部分にエッチング用のレジストを形 成し、エッチング処理することで、配線パターンを残す。そして、最後に、エッチング 用のレジストを除去する。この方法で両面プリント基板を形成するようにしてもよい。  Note that a resist for plating may be formed in a portion other than the wiring pattern portion from the base material state of the double-sided printed board shown in FIG. 2G, and copper plating may be applied in accordance with the wiring pattern. In this case, next, a resist for etching is formed on the copper-plated wiring pattern portion, and the wiring pattern is left by performing an etching process. Finally, the etching resist is removed. You may make it form a double-sided printed circuit board by this method.
[0059] また、この実施の形態 1の製造方法およびそれにより製造される両面配線板には、 以下のような各種の特徴を有する。  [0059] Further, the manufacturing method of the first embodiment and the double-sided wiring board manufactured thereby have the following various characteristics.
[0060] 第一に、ニッケルを銅で挟んだ 3層構造のクラッド材をエッチングして、銅製の板状 部上に柱状部 16を形成し、この柱状部 16を、絶縁榭脂層 1の両側の配線層 2, 3を 電気的に接続する層間配線 3として利用している。エッチングの場合、そのエツチン グ時間などを調整することで、数百マイクロメートルの高さの柱状部 16を形成すること ができる。し力も、エッチングの際のレジスト層 14の幅を調整することで、一般的な配 線板で使用されるスルーホールより幅がある形状に形成することができる。柱状部 16 の高さは、略均一になる。また、柱状部 16には、バンプ形成に用いる金属ペーストの ように不純物が混じっているものではない、金属を使用することができる。このような不 純物が混じって 、な 、金属を使用することで、信頼性も高くなる。 [0060] First, a three-layer clad material in which nickel is sandwiched between copper is etched to form a copper plate A columnar portion 16 is formed on the portion, and this columnar portion 16 is used as an interlayer wiring 3 that electrically connects the wiring layers 2 and 3 on both sides of the insulating resin layer 1. In the case of etching, the columnar portion 16 having a height of several hundred micrometers can be formed by adjusting the etching time. By adjusting the width of the resist layer 14 at the time of etching, it can be formed into a shape having a width wider than a through hole used in a general wiring board. The height of the columnar portion 16 is substantially uniform. The columnar portion 16 can be made of a metal that is not mixed with impurities like the metal paste used for bump formation. When such impurities are mixed, the use of metal increases the reliability.
[0061] これに対して、たとえば層間配線をバンプなどで形成する場合には、層間配線の最 終的な高さを得るためにバンプを繰り返し積層する必要があったり、そのパンプを形 成するための材料として不純物が混じった金属ペーストを使用したりしなければなら ない。このため、層間配線は、金属のみ力もなるものとすることはできない。本実施の 形態の製造方法およびそれで形成した両面配線板には、それらの制限がない。  [0061] On the other hand, for example, when the interlayer wiring is formed by bumps or the like, it is necessary to repeatedly stack the bumps to form the final height of the interlayer wiring, or to form a bump. For example, a metal paste mixed with impurities should be used. For this reason, the interlayer wiring cannot be made of only metal. The manufacturing method of the present embodiment and the double-sided wiring board formed therewith are not limited to these.
[0062] また、ニッケル層 12と上側銅層 13とからなる柱状部 16は、クラッド材として一体ィ匕さ れている部材の一部であり、板状の銅層 11の上に形成される。したがって、この三者 、すなわち銅、ニッケル、銅の三層の一体性はきわめて強い。よって、板状の下側銅 層 11からなる裏面配線層 4と、柱状部 16としての層間配線 3との接合強度は高 ヽ。  Further, the columnar portion 16 composed of the nickel layer 12 and the upper copper layer 13 is a part of a member integrated as a clad material, and is formed on the plate-like copper layer 11. . Therefore, the unity of the three layers, that is, the three layers of copper, nickel, and copper, is very strong. Therefore, the bonding strength between the back surface wiring layer 4 composed of the plate-like lower copper layer 11 and the interlayer wiring 3 as the columnar portion 16 is high.
[0063] また、層間配線 3としての柱状部 16は、その一部のみにニッケルが使用され、大部 分が銅で形成される。また、配線層 2, 4は、銅製である。その結果、一般的な配線板 と同様の電気的特性となる。配線層 2, 4および層間配線3は、低抵抗となる。 [0063] Further, the columnar portion 16 as the interlayer wiring 3 is made of nickel only in a part thereof, and most of the columnar portion 16 is formed of copper. The wiring layers 2 and 4 are made of copper. As a result, it has the same electrical characteristics as a general circuit board. The wiring layers 2 and 4 and the interlayer wiring 3 have low resistance.
[0064] また、柱状部 16を高さおよび幅のある柱状構造とすることができる。そして、柱状部 16を高さおよび幅のある柱状構造とすることで、層間配線 3に大電流を流したり、層 間配線 3により熱を拡散したりすることができる。熱を拡散することができる層間配線 3 は、ヒートシンクとして機能する。表面配線層 2に実装される電子部品の熱は、この層 間配線 3により効率良く実装面の裏側へ拡散し、実装面の裏側 (の裏面配線層 4)か ら効率良く放熱される。なお、裏面配線層 4を実装面としてもよい。  [0064] Further, the columnar portion 16 can have a columnar structure having a height and a width. Further, by forming the columnar portion 16 with a columnar structure having a height and width, a large current can be passed through the interlayer wiring 3 or heat can be diffused by the interlayer wiring 3. The interlayer wiring 3 capable of diffusing heat functions as a heat sink. The heat of the electronic components mounted on the surface wiring layer 2 is efficiently diffused to the back side of the mounting surface by the inter-layer wiring 3 and is efficiently radiated from the back side of the mounting surface (the back surface wiring layer 4). The back wiring layer 4 may be the mounting surface.
[0065] その結果、一般的な配線板と同等の電気的特性などを有する両面配線板に、一般 的なプリント基板以上の大電流を流したり、ヒートシンク機能を持たせたりすることがで きる。 [0065] As a result, a double-sided wiring board having the same electrical characteristics as a general wiring board can be used to pass a larger current than a general printed circuit board or to have a heat sink function. wear.
[0066] なお、両面配線板に、ヒートシンクを形成する場合、図 1の中央部の配線構造として 例示するように、層間配線 3の中の少なくとも一部を熱の拡散路として利用すればよ い。また、両面配線板自体にヒートシンクを内蔵しているので、両面配線板に実装さ れる電子回路素子に、別体の大きなヒートシンクを取り付けないで済ますことが可能と なる。表面実装タイプの電子回路素子の低背の特徴を生力して、薄い回路基板を形 成することができる。また、その表面実装タイプの電子回路素子と両面配線板との間 には熱が滞留しやすいが、その熱が滞留する部分にこの両面配線板を利用すること により熱を効率良く放熱することができるので、そのような熱の滞留を効果的に抑制 することができる。  [0066] When a heat sink is formed on the double-sided wiring board, at least a part of the interlayer wiring 3 may be used as a heat diffusion path, as illustrated as the wiring structure at the center of FIG. . In addition, since the heat sink is built into the double-sided wiring board itself, it is possible to avoid attaching a separate large heat sink to the electronic circuit element mounted on the double-sided wiring board. A thin circuit board can be formed by taking advantage of the low profile of surface-mount type electronic circuit elements. In addition, heat tends to stay between the surface-mount type electronic circuit element and the double-sided wiring board, but heat can be radiated efficiently by using this double-sided wiring board in the part where the heat stays. Therefore, such heat retention can be effectively suppressed.
[0067] 実施の形態 2.  [0067] Embodiment 2.
図 4は、本発明の実施の形態 2に係る両面配線板の部分断面図である。図 5は、図 4の両面配線板の製造工程の流れの前半 (配線板の基材作成まで)を示す図である 。なお、基材に配線パターンを形成する後半の製造工程は、実施の形態 1の図 3と同 様であり、図示を省略する。また、実施の形態 1と同様に、後半の製造工程では、メッ キ用レジストを形成した後、配線パターン状にメツキする方法も採用することができる  FIG. 4 is a partial cross-sectional view of the double-sided wiring board according to Embodiment 2 of the present invention. FIG. 5 is a diagram showing the first half of the manufacturing process of the double-sided wiring board shown in FIG. 4 (until the production of the wiring board substrate). Note that the latter half of the manufacturing process for forming the wiring pattern on the base material is the same as that in FIG. Further, as in the first embodiment, in the latter half of the manufacturing process, after forming a resist for plating, a method of forming a wiring pattern can be employed.
[0068] 図 4に示すように、実施の形態 2に係る両面配線板は、図 1に示す両面配線板と同 様に、絶縁榭脂層 1と、表面配線層 2と、層間配線 3と、裏面配線層 4と、を有する。絶 縁榭脂層 1、表面配線層 2、層間配線 3および裏面配線層 4は、実施の形態 1と同様 であり同一の符号を付して説明を省略する。但し、表面配線層 2は、銅の 3層構造で あり、その中の、層間配線 3と当接する部位が圧縮により窪んだ外形形状になってい る。 As shown in FIG. 4, the double-sided wiring board according to the second embodiment is similar to the double-sided wiring board shown in FIG. 1 in that the insulating resin layer 1, the surface wiring layer 2, the interlayer wiring 3 and the like. And back wiring layer 4. The insulating resin layer 1, the front surface wiring layer 2, the interlayer wiring 3, and the back surface wiring layer 4 are the same as those in the first embodiment, and the description thereof will be omitted. However, the surface wiring layer 2 has a three-layer structure of copper, and a portion of the surface wiring layer 2 that comes into contact with the interlayer wiring 3 is recessed by compression.
[0069] 次に、図 4の両面配線板の製造工程を、図 5に基づいて説明する。図 5において、( A)から (D)の工程は、図 2 (A)から (D)に示す工程と同一であり、説明を省略する。 図 5 (D)のニッケル層 12のエッチング処理により、平板形状の下側銅層 11の上に、 ニッケル層 12および上側銅層 13からなる柱状部 16が形成される。  Next, the manufacturing process of the double-sided wiring board of FIG. 4 will be described based on FIG. In FIG. 5, steps (A) to (D) are the same as the steps shown in FIGS. 2 (A) to (D), and a description thereof will be omitted. The columnar portion 16 composed of the nickel layer 12 and the upper copper layer 13 is formed on the flat lower copper layer 11 by the etching process of the nickel layer 12 in FIG.
[0070] 平板形状の下側銅層 11とニッケル層 12および上側銅層 13からなる柱状部 16とを 形成した後、図 5 (E)に示すように、プリプレダシート 31と、銅箔 32とを積層する。プリ プレダシート 31は、ガラス繊維力もなるシートに絶縁榭脂材を染み込ませ、乾燥した ものである。いわゆる Bステージのシートである。そして、銅箔 32の上に、たとえばクラ フト紙やテフロン (登録商標)板などのクッション材を載せ、空気を吸引しながら、その クッション材の上から油圧プレスなどで押圧する。これにより、プリプレダシート 31は液 状化する。 [0070] A plate-shaped lower copper layer 11, a nickel layer 12 and a columnar portion 16 made of an upper copper layer 13 are provided. After the formation, as shown in FIG. 5 (E), the pre-preder sheet 31 and the copper foil 32 are laminated. The pre-preder sheet 31 is a sheet obtained by impregnating a sheet having glass fiber strength with an insulating resin material and drying it. This is a so-called B-stage seat. Then, a cushion material such as craft paper or a Teflon (registered trademark) plate is placed on the copper foil 32, and is pressed from above the cushion material with a hydraulic press or the like while sucking air. Thereby, the pre-preder sheet 31 is liquefied.
[0071] 銅箔 32が柱状部 16の先端と当接し、さらに図 5 (F)に示すように、銅箔 32のこの柱 状部 16の先端と当接する部位が変形するまで、押圧する。銅箔 32の中、柱状部 16 と当接する部位は、盛り上がる。  [0071] The copper foil 32 is in contact with the tip of the columnar portion 16, and further pressed as shown in FIG. 5 (F) until the portion of the copper foil 32 that contacts the tip of the columnar portion 16 is deformed. The portion of the copper foil 32 that comes into contact with the columnar portion 16 rises.
[0072] このようにクッション材を用いて空気を吸引しながら押圧することで、銅箔 32と平板 形状の下側銅層 11との間に、絶縁榭脂材 33が隙間無く充填される。また、銅箔 32 は、柱状部 16と電気的に接続される。絶縁榭脂材 33の両面の下側銅層 11と銅箔 3 2は、柱状部 16により電気的に接続される。  [0072] By thus pressing the air while sucking air using the cushion material, the insulating grease material 33 is filled between the copper foil 32 and the lower copper layer 11 having a flat plate shape without a gap. Further, the copper foil 32 is electrically connected to the columnar portion 16. The lower copper layer 11 and the copper foil 32 on both sides of the insulating grease 33 are electrically connected by the columnar portion 16.
[0073] なお、図 5 (F)において、柱状部 16の先端は、銅箔 32を突き破つていてもよい。ま た、本実施の形態 1での柱状部 16は、その先端がテーブル状に平らである。そのた め、柱状部 16は、プリプレダシート 31を突き破ることができない可能性もある。そのよ うな場合には、事前に、プリプレダシート 31の柱状部 16に対応する部位に貫通孔を 形成し、その上で銅箔 32とともに積層するようにしてもよい。このときに形成する貫通 孔の大きさは、たとえば柱状部 16の先端以上の大きさとすればよい。これにより、柱 状部 16の先端がテーブル状であったとしても、柱状部 16によりプリプレダシート 31を 貫通させることができる。  In FIG. 5 (F), the tip of the columnar part 16 may break through the copper foil 32. Further, the tip of the columnar portion 16 in the first embodiment is flat like a table. Therefore, the columnar part 16 may not be able to penetrate the pre-preder sheet 31. In such a case, a through-hole may be formed in a part corresponding to the columnar part 16 of the pre-preder sheet 31 in advance, and laminated with the copper foil 32 thereon. The size of the through hole formed at this time may be, for example, larger than the tip of the columnar portion 16. Thereby, even if the tip of the columnar part 16 has a table shape, the pre-preda sheet 31 can be penetrated by the columnar part 16.
[0074] 柱状部 16の先端が銅箔 32に当接した状態のままで、液ィ匕した絶縁榭脂材 33を硬 化させる。これにより、絶縁榭脂層 1が形成される。  [0074] While the tip of the columnar part 16 is in contact with the copper foil 32, the liquid insulating resin material 33 is hardened. Thereby, the insulating resin layer 1 is formed.
[0075] 絶縁榭脂層 1を形成した後、銅箔 32の表面を研磨する。これにより、図 5 (G)に示 すように、銅箔 32の表面は、平らになる。銅箔 32の表面を平らにした後、その研磨に より平らになった面を表面粗ィ匕した上で、銅メツキを実行する。銅メツキは、たとえば 電解メツキ法で実施すればょ ヽ。  [0075] After the insulating resin layer 1 is formed, the surface of the copper foil 32 is polished. Thereby, as shown in FIG. 5 (G), the surface of the copper foil 32 becomes flat. After flattening the surface of the copper foil 32, the surface flattened by polishing is roughened, and then copper plating is performed. For example, copper plating can be performed by the electrolytic plating method.
[0076] これにより、銅箔 32の表面には、図 5 (H)に示すように、銅層 34が積層される。表 面が銅の 2層構造 (すなわち銅箔 32と銅層 34)で、裏面が下側銅層 11からなる銅の 一層構造である基材が形成される。基材に対する両面配線パターンの形成方法は、 実施の形態 1の図 3に示す工程または上述した他の方法と同一であり、その説明を 省略する。なお、表面の銅層 32, 34が、表面配線層 2となり、裏面の下側銅層 11が 、裏面配線層 4となる。これにより、図 4に示す両面配線板が形成される。 Thereby, a copper layer 34 is laminated on the surface of the copper foil 32 as shown in FIG. 5 (H). table A base material having a two-layer structure of copper (that is, copper foil 32 and copper layer 34) and a single-layer structure of copper having a lower surface made of lower copper layer 11 is formed. The method for forming the double-sided wiring pattern on the substrate is the same as the step shown in FIG. 3 of Embodiment 1 or the other methods described above, and the description thereof is omitted. The copper layers 32 and 34 on the front surface become the front surface wiring layer 2, and the lower copper layer 11 on the back surface becomes the back surface wiring layer 4. Thereby, the double-sided wiring board shown in FIG. 4 is formed.
[0077] なお、各実施の形態と同様に、数百マイクロメートルの高さのある層間配線を形成 する製造技術として、いわゆるビルドアップ法がある。このビルドアップ法では、まず、 各配線板の銅箔面に、導電性ペーストを印刷して円錐状のバンプを形成し、次に、 円錐状のバンプ同士で絶縁榭脂板を挟み込むことで、配線板を形成する。各配線板 に形成されたバンプは、絶縁榭脂板に突き立てられ、絶縁榭脂板内で互いに接触す る。これにより、配線板同士は電気的に接続される。なお、円錐状のバンプは、メツキ とエッチングとを繰り返すことで形成することもできる。ただし、メツキとエッチングとを 繰り返す場合、非常に時間とコストがかかり、導電性ペーストを印刷する場合に比べ て製造上不利である。 [0077] As in the case of each embodiment, as a manufacturing technique for forming an interlayer wiring having a height of several hundred micrometers, there is a so-called buildup method. In this build-up method, first, conductive paste is printed on the copper foil surface of each wiring board to form conical bumps, and then the insulating resin board is sandwiched between the conical bumps. A wiring board is formed. The bumps formed on each wiring board are thrust against the insulating resin board and come into contact with each other within the insulating resin board. Thereby, wiring boards are electrically connected. The conical bump can also be formed by repeating plating and etching. However, repeating plating and etching is very time consuming and costly, which is disadvantageous in manufacturing compared to printing a conductive paste.
[0078] し力しながら、このビルドアップ法では、バンプは、絶縁榭脂板に突き立てるために 円錐状に形成する必要がある。そのため、バンプをその高さ方向全体において幅広 とすることは、技術的に困難である。したがって、このビルドアップ法では、高さのある 層間配線は形成できる力 上述した各実施の形態のように、幅広で効率良く熱を拡 散する層間配線を形成することは極めて困難である。  However, in this build-up method, the bump needs to be formed in a conical shape in order to protrude from the insulating resin plate. For this reason, it is technically difficult to make the bump wide in the entire height direction. Therefore, with this build-up method, it is extremely difficult to form a wide interlayer wiring that efficiently diffuses heat, as in the above-described embodiments.
[0079] 以上のように、この実施の形態 2では、実施の形態 1と同様に、絶縁榭脂層 1の両面 の配線層 2, 4が、層間配線 3としての柱状部 16により電気的に接続された両面プリ ント板を製造することができる。  As described above, in the second embodiment, as in the first embodiment, the wiring layers 2 and 4 on both surfaces of the insulating resin layer 1 are electrically connected by the columnar portions 16 as the interlayer wiring 3. Connected double-sided printed boards can be manufactured.
[0080] また、この実施の形態 2の両面配線板では、柱状部 16が形成された平板状の下側 銅層 11の上に、プリプレダシート 31および銅箔 32を押圧し、さらに銅メツキ 34をする ことで、配線層 2, 4と層間配線 3とを電気的に接続している。このような配線層 2, 4と 層間配線 3との接続方法は、それらの接合強度が高ぐ高い信頼性がある。したがつ て、両面配線板として、一般的な配線板と同様の高い信頼性を確保することができる 。その結果、一般的な配線板と同等の信頼性および電気的特性を有する両面配線 板に、一般的なプリント基板以上の大電流を流したり、ヒートシンク機能を持たせたり することができる。 In the double-sided wiring board of the second embodiment, the pre-preda sheet 31 and the copper foil 32 are pressed onto the flat lower copper layer 11 on which the columnar portions 16 are formed, and the copper plating is further performed. By doing 34, the wiring layers 2 and 4 and the interlayer wiring 3 are electrically connected. Such a connection method between the wiring layers 2 and 4 and the interlayer wiring 3 has high bonding strength and high reliability. Therefore, as a double-sided wiring board, high reliability similar to that of a general wiring board can be ensured. As a result, double-sided wiring with the same reliability and electrical characteristics as a general wiring board The board can be made to carry a larger current than a general printed circuit board or have a heat sink function.
[0081] また、この実施の形態 2では、銅箔 32を用いて表面配線層 2を形成している。銅箔 32は、均一な厚みを有する。また、柱状部 16は、エッチングにより形成されているの で均一な高さに揃う。その結果、両面配線板の厚さは、略均一な厚さとなる。そして、 均一な表面厚みである事から、座繰り面と別体のヒートシンクで複雑な高さ調整が必 要であった放熱基板の用途で効率的に熱を逃がす構造が作成できると共に、別体 のヒートシンク及び高価な座繰りの工程を必要としなくなり、低価格にて高放熱配線 板を提供できる。  In Embodiment 2, the surface wiring layer 2 is formed using the copper foil 32. The copper foil 32 has a uniform thickness. Further, since the columnar portions 16 are formed by etching, they are aligned at a uniform height. As a result, the thickness of the double-sided wiring board is substantially uniform. And because of the uniform surface thickness, it is possible to create a structure that efficiently releases heat in the use of a heat sink that requires complicated height adjustment with a countersink surface and a separate heat sink. This eliminates the need for a heat sink and an expensive countersink process, and can provide a high heat dissipation wiring board at a low price.
[0082] 以上の各実施の形態は、本発明の好適な実施の形態の例であるが、本発明は、こ れに限定されるものではなぐ発明の要旨を逸脱しない範囲において種々の変形、 変更が可能である。  Each of the above embodiments is an example of a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications and changes can be made without departing from the scope of the invention. It can be changed.
[0083] たとえば、上記各実施の形態では、ニッケルの両面を銅で被覆したクラッド材 (複合 材料)を、両面配線板を形成するための出発材料として利用している。この他にもた とえば、ニッケルの替わりに、アルミニウム、すず、ステンレス、真鍮あるいはそれらを 含む合金などを使用しても良い。また、ニッケルの一方の面を銅で被覆し、他方の面 を銀あるいはアルミニウムある 、はそれらを含む合金で被覆したクラッド材ゃ、アルミ -ゥムの両面を銅で被覆したクラッド材などを使用してもよい。さらに他にもたとえば、 ニッケルやアルミニウムの一方の面を銅、銀、アルミニウムあるいはそれらを含む合金 で被覆した二層構造のクラッド材を出発材料として使用してもよ 、。この二層構造の クラッド材の場合、たとえば柱状部 16は、銅のみあるいは銀のみで形成すればよい。  For example, in each of the above embodiments, a clad material (composite material) in which both surfaces of nickel are coated with copper is used as a starting material for forming a double-sided wiring board. For example, aluminum, tin, stainless steel, brass, or an alloy containing them may be used instead of nickel. Also, one surface of nickel is coated with copper, the other surface is silver or aluminum, or a clad material coated with an alloy containing them, or a clad material with both surfaces of aluminum coated with copper. May be. In addition, for example, a clad material having a two-layer structure in which one surface of nickel or aluminum is coated with copper, silver, aluminum, or an alloy containing them may be used as a starting material. In the case of this two-layered clad material, for example, the columnar portion 16 may be formed of only copper or silver.
[0084] 上記各実施の形態では、絶縁榭脂層 1の両面に配線層 2, 4を形成した両面配線 板を例示している。この他にもたとえば、絶縁榭脂層 1の片面に配線層(たとえば配 線層 4)を形成する片面配線板や、 3つ以上の配線層を有する多層基板であっても、 本発明の製造方法を利用して形成することができる。 3つ以上の配線層を有する多 層基板において、 3層目の配線層およびその 3層目の配線層が積層される絶縁榭脂 層は、たとえば従前の多層配線板における金属膜および絶縁榭脂材を積層する各 種の製造技術で形成すればょ 、。 [0085] また、すべての層間配線 3を電流路としてではなぐヒートシンクとしてのみ機能させ てもよい。また、一部の層間配線 3をヒートシンクおよび電流路として機能させ、他の 層間配線 3をヒートシンクとしてのみ機能させるようにしてもよい。ヒートシンクとしての み機能させる層間配線 3には、電流が流れない。 In each of the above embodiments, a double-sided wiring board in which the wiring layers 2 and 4 are formed on both sides of the insulating resin layer 1 is illustrated. In addition to this, for example, even a single-sided wiring board in which a wiring layer (for example, wiring layer 4) is formed on one side of the insulating resin layer 1 or a multilayer substrate having three or more wiring layers is manufactured according to the present invention. It can be formed using a method. In a multi-layer board having three or more wiring layers, the third wiring layer and the insulating resin layer on which the third wiring layer is laminated are, for example, a metal film and an insulating resin in a conventional multilayer wiring board. If it is formed with various manufacturing techniques to laminate materials. [0085] In addition, all interlayer wirings 3 may function only as a heat sink, not as a current path. Further, some interlayer wirings 3 may function as a heat sink and a current path, and other interlayer wirings 3 may function only as a heat sink. No current flows through the interlayer wiring 3 that functions only as a heat sink.
[0086] また、表面配線層 2の形成は、メツキ処理にて行っている力 メツキ処理ではなぐ P VDなどの物理気相成長法を採用してもよい。さらに、出発材料としてクラッド材を使 用しているが、クラッド材ではなぐたとえば板状の上側銅層 13の片面にニッケル、銅 を物理気相成長法で積層した部材や、ニッケル層 12の両面にメツキや物理気相成 長法で導電層を形成した部材を、出発材料としてもよ!ヽ。  In addition, the surface wiring layer 2 may be formed by a physical vapor deposition method such as PVD, which is not performed by the force treatment performed by the plating process. In addition, although a clad material is used as a starting material, it is not possible to use a clad material. Alternatively, a member with a conductive layer formed by plating or physical vapor deposition can be used as a starting material!
産業上の利用可能性  Industrial applicability
[0087] 本発明では、電子部品素子を実装する配線板およびその製造に利用することがで きる。 The present invention can be used for a wiring board on which an electronic component element is mounted and for manufacturing the wiring board.

Claims

請求の範囲 The scope of the claims
[1] 導電性の第一の金属および第二の金属を含む 2種類あるいは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるクラッド材をエッチングして、第一の金属の板 状部上に第二の金属を有する柱状部を形成する工程と、  [1] A plate of the first metal by etching a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in two or more layers. Forming a columnar part having a second metal on the shaped part;
絶縁榭脂材を、上記柱状部を覆 、尽くすように上記板状部の上に積層して絶縁榭 脂層を形成する工程と、  A step of laminating an insulating resin material on the plate-like part so as to cover and exhaust the columnar part, and forming an insulating resin layer;
上記柱状部の先端が上記絶縁榭脂層から露出するように上記絶縁榭脂層の表面 を研磨した後に、上記板状部とは反対側において上記柱状部と接続する導電性の 金属からなる配線層用の金属層を形成する工程と、  After polishing the surface of the insulating resin layer so that the tip of the columnar part is exposed from the insulating resin layer, the wiring made of a conductive metal connected to the columnar part on the side opposite to the plate-like part Forming a metal layer for the layer;
を有することを特徴とする配線板の製造方法。  A method of manufacturing a wiring board, comprising:
[2] 導電性の第一の金属および第二の金属を含む 2種類あるいは 3種類以上の金属が 2層あるいは 3層以上に積層されてなるクラッド材をエッチングして、第一の金属の板 状部上に第二の金属からなる柱状部を形成する工程と、 [2] The first metal plate is formed by etching a clad material in which two or three or more kinds of metals including the first conductive metal and the second metal are laminated in two or three layers. Forming a columnar part made of the second metal on the shaped part;
絶縁榭脂材を挟んで導電性の金属箔を、上記柱状部の上側から上記柱状部と当 接するまで押圧し、上記金属箔で表面が覆われた絶縁榭脂層を形成する工程と、 上記金属箔の表面を研磨した後に、上記柱状部と接続する導電性の金属からなる 配線層用の金属層を形成する工程と、  A step of pressing an electrically conductive metal foil sandwiching an insulating resin material from the upper side of the columnar part until it comes into contact with the columnar part to form an insulating resin layer whose surface is covered with the metal foil; A step of forming a metal layer for a wiring layer made of a conductive metal connected to the columnar portion after polishing the surface of the metal foil;
を有することを特徴とする配線板の製造方法。  A method of manufacturing a wiring board, comprising:
[3] 前記クラッド材の前記第一の金属は、銅、銀、アルミニウムおよびそれらを含む合金 の中力 選択された 1つ以上の金属とされ、前記第二の金属は、ニッケル、アルミ-ゥ ム、すずおよびそれらを含む合金の中から選択され、且つ、前記第一の金属との間 で選択的なエッチングが可能な 1つ以上の金属とされていることを特徴とする請求項 1または 2記載の配線板の製造方法。 [3] The first metal of the clad material is one or more selected metals of copper, silver, aluminum, and alloys containing them, and the second metal is nickel, aluminum, or the like. Or at least one metal selected from the group consisting of tin, tin, and an alloy containing them, and capable of selective etching with the first metal. 2. A method for producing a wiring board according to 2.
[4] 前記クラッド材は、第二の金属を第一の金属で挟んだ 3層構造のものであり、 [4] The clad material has a three-layer structure in which a second metal is sandwiched between first metals,
前記柱状部は、 2回のエッチング処理により、第一の金属の板状部上に形成される ことを特徴とする請求項 1から 3の中のいずれか 1項記載の配線板の製造方法。  The method for manufacturing a wiring board according to any one of claims 1 to 3, wherein the columnar portion is formed on the first metal plate-like portion by performing an etching process twice.
[5] 前記金属層を形成した後に、エッチング処理によって前記金属層および前記板状 部の一部を取り去り配線パターンを形成する工程を有することを特徴とする請求項 1 から 4の中の 、ずれか 1項記載の配線板の製造方法。 5. The method according to claim 1, further comprising a step of forming a wiring pattern by removing a part of the metal layer and the plate-like portion by an etching process after forming the metal layer. 4. The method for producing a wiring board according to claim 1, wherein the deviation is from 1 to 4.
[6] 導電性の第二の金属を導電性の第一の金属で挟んだ 3層構造のクラッド材をエツ チングして、第一の金属の板状部上に第二の金属および第一の金属力 なる柱状 部を形成する工程と、 [6] A clad material having a three-layer structure in which a conductive second metal is sandwiched between conductive first metals is etched, and the second metal and the first metal are formed on the plate of the first metal. Forming a columnar portion that is a metal force of
絶縁榭脂材を、上記柱状部のまわりを埋めるように上記板状部の上に絶縁榭脂層 を形成する工程と、  Forming an insulating resin layer on the plate-like portion so that the insulating resin material is buried around the columnar portion;
上記絶縁榭脂層上に形成され、上記板状部とは反対側において上記柱状部と接 続する導電性の金属からなる配線層用の金属層を形成する工程と、  Forming a metal layer for a wiring layer made of a conductive metal formed on the insulating resin layer and connected to the columnar portion on the side opposite to the plate-shaped portion;
エッチング処理によって上記金属層および上記板状部の一部を取り去り、配線パタ ーンとしての配線層を形成する工程と、  A step of removing a part of the metal layer and the plate-like portion by etching to form a wiring layer as a wiring pattern;
を有することを特徴とする配線板の製造方法。  A method of manufacturing a wiring board, comprising:
[7] 前記金属層の金属は、前記第一の金属であることを特徴とする請求項 1から 6の中 の!、ずれか 1項記載の配線板の製造方法。 7. The method for manufacturing a wiring board according to claim 1, wherein the metal of the metal layer is the first metal.
[8] 請求項 1から請求項 7の中のいずれか 1項の製造方法により製造され、前記柱状部 が絶縁榭脂層を貫通する層間配線であることを特徴とする配線板。 [8] A wiring board manufactured by the manufacturing method according to any one of claims 1 to 7, wherein the columnar portion is an interlayer wiring penetrating an insulating resin layer.
[9] 平板形状に形成される絶縁榭脂層と、 [9] An insulating resin layer formed in a flat plate shape;
エッチング処理により侵食された金属層から形成され、上記絶縁榭脂層を貫通する 層間配線と、  An interlayer wiring formed from a metal layer eroded by the etching process and penetrating the insulating resin layer;
上記絶縁榭脂層の表面に配設され、上記層間配線に接続される導電性の金属か らなる配線層と、  A wiring layer made of a conductive metal disposed on the surface of the insulating resin layer and connected to the interlayer wiring;
を有することを特徴とする配線板。  A wiring board comprising:
[10] 前記絶縁榭脂層を貫通する層間配線は、前記絶縁榭脂層から露出する一方の面 の幅と他方の面の幅との差が、層間配線の高さの 1. 5〜2. 5倍であることを特徴とす る請求項 9記載の配線板。 [10] In the interlayer wiring penetrating the insulating resin layer, the difference between the width of one surface exposed from the insulating resin layer and the width of the other surface is 1.5-2 of the height of the interlayer wiring. 10. The wiring board according to claim 9, wherein the wiring board is 5 times.
[11] 前記層間配線の中の少なくとも一部を熱の拡散路として利用するヒートシンクとし、 電流路として機能させないことを特徴とする請求項 9または 10記載の配線板。 11. The wiring board according to claim 9, wherein at least a part of the interlayer wiring is a heat sink that is used as a heat diffusion path and does not function as a current path.
PCT/JP2006/316298 2005-09-27 2006-08-21 Process for producing wiring board, and wiring board WO2007037075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537548A JPWO2007037075A1 (en) 2005-09-27 2006-08-21 Wiring board manufacturing method and wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-279097 2005-09-27
JP2005279097 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037075A1 true WO2007037075A1 (en) 2007-04-05

Family

ID=37899509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316298 WO2007037075A1 (en) 2005-09-27 2006-08-21 Process for producing wiring board, and wiring board

Country Status (2)

Country Link
JP (1) JPWO2007037075A1 (en)
WO (1) WO2007037075A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
JP7442019B2 (en) 2020-11-10 2024-03-01 クゥアルコム・インコーポレイテッド Package with board-to-board gradient interconnect structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095913A (en) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd Printed wiring board and its manufacturing method
JP2004265930A (en) * 2003-02-13 2004-09-24 Daiwa Kogyo:Kk Multilayer wiring board and its manufacturing method
JP2005136361A (en) * 2003-10-09 2005-05-26 North:Kk Manufacturing method of wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095913A (en) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd Printed wiring board and its manufacturing method
JP2004265930A (en) * 2003-02-13 2004-09-24 Daiwa Kogyo:Kk Multilayer wiring board and its manufacturing method
JP2005136361A (en) * 2003-10-09 2005-05-26 North:Kk Manufacturing method of wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
JP7442019B2 (en) 2020-11-10 2024-03-01 クゥアルコム・インコーポレイテッド Package with board-to-board gradient interconnect structure

Also Published As

Publication number Publication date
JPWO2007037075A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
TWI336225B (en) Wiring board, multilayer wiring board, and method for manufacturing the same
JP2009088469A (en) Printed circuit board and manufacturing method of same
JPH1079579A (en) Printed circuit board and manufacturing method of printed circuit board
KR100782404B1 (en) Printed circuit board and manufacturing method thereof
JPH10303561A (en) Multi-layer wiring board and its manufacture
JP3474894B2 (en) Printed wiring board and manufacturing method thereof
JPH06350250A (en) Production of printed wiring board
WO2007037075A1 (en) Process for producing wiring board, and wiring board
WO2004073369A1 (en) Multilayer printed wiring board and process for producing the same
JP3609126B2 (en) Printed wiring board and method for producing printed wiring board manufacturing member
JP3862454B2 (en) Metal-based multilayer circuit board
WO2007058005A1 (en) Process for producing wiring board and wiring board
JPH08264939A (en) Manufacture of printed wiring board
CN110771270B (en) Substrate for mounting electronic component and method for manufacturing same
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2007035716A (en) Manufacturing method of printed circuit board
JPH06224561A (en) Heat dissipating structure printed board and its manufacture
JP2002374068A (en) Method for manufacturing multilayered printed circuit board
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP3549063B2 (en) Manufacturing method of printed wiring board
JP4389769B2 (en) Manufacturing method of flexible printed wiring board
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JPH0786749A (en) Manufacture of printed-wiring board
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4389750B2 (en) Manufacturing method of flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007537548

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06782852

Country of ref document: EP

Kind code of ref document: A1