JPH10303561A - Multi-layer wiring board and its manufacture - Google Patents

Multi-layer wiring board and its manufacture

Info

Publication number
JPH10303561A
JPH10303561A JP11239497A JP11239497A JPH10303561A JP H10303561 A JPH10303561 A JP H10303561A JP 11239497 A JP11239497 A JP 11239497A JP 11239497 A JP11239497 A JP 11239497A JP H10303561 A JPH10303561 A JP H10303561A
Authority
JP
Japan
Prior art keywords
interlayer connection
wiring
substrate
adhesive
connection terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11239497A
Other languages
Japanese (ja)
Inventor
Koji Tazaki
耕司 田崎
Itsuo Watanabe
伊津夫 渡辺
Tetsuya Hayashida
哲哉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11239497A priority Critical patent/JPH10303561A/en
Publication of JPH10303561A publication Critical patent/JPH10303561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs

Abstract

PROBLEM TO BE SOLVED: To simply connect layers and wiring electrically by laminating a board having wirings and layer connecting terminals which are higher than the wirings and a conductive layer having layer connecting terminals and wirings such that the layer connecting terminals of the board ate opposed to those of the conductive layer and by bringing the layer connecting terminals of the board in a continuity with those of the conductive layer. SOLUTION: Wirings 2 and connection terminals 3 are formed on a base board 1. A plated resist 4 is formed on the base board 1 such that only the connection terminals 3 are exposed. All openings of the plated resist 4 are plated with gold 5 such that the connection terminals 3 are raised above the wirings 2 and the plated resist 4 is removed. An adhesive 6 is arranged on the base board 1 and a built-up wiring 8 formed on a conductive supporting body 7 is arranged such that connection terminals 9 of the built-up side are opposed to the wiring of the base board 1 and are connected thereto in a predetermined manner and is heated and pressed on the adhesive 6 and is integrated with the base board 1. This can simply connect the layers and wirings electrically without forming a through hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板及び
その製造方法に関する。
The present invention relates to a multilayer wiring board and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、多層配線基板は、主に銅箔付きガ
ラス布エポキシ樹脂積層板または、銅箔付きガラス布ポ
リイミド樹脂積層板を材料とし、ドリル穴明け、スルー
ホールめっき、外層配線形成及び真空プレス機による加
熱圧着を繰り返す方法で製造をを行っている。図1に上
記方法で製造した多層配線基板の断面概略図を示す。こ
の方法では、ドリル穴明けによる直径100μm程度の
小径ビアホール形成が困難であるため、ビア径、ランド
径とも大きくなり、配線密度を増加することができな
い。また、層間接続をスルーホールめっきに行うため、
積層を2回、3回と行う多層配線基板においては、最外
層の導体厚みが初期の銅箔厚みと比較してめっき分だけ
厚くなり、微細配線の形成には不向きである。
2. Description of the Related Art Conventionally, a multilayer wiring board is mainly made of a glass cloth epoxy resin laminated board with copper foil or a glass cloth polyimide resin laminated board with copper foil as a material, and drilling, through-hole plating, outer layer wiring formation and the like. Manufacturing is performed by a method of repeating heating and pressing by a vacuum press machine. FIG. 1 shows a schematic sectional view of a multilayer wiring board manufactured by the above method. In this method, it is difficult to form a small-diameter via hole having a diameter of about 100 μm by drilling, so that both the via diameter and the land diameter increase, and the wiring density cannot be increased. In addition, in order to perform interlayer connection to through-hole plating,
In a multilayer wiring board in which lamination is performed twice or three times, the conductor thickness of the outermost layer is larger than the initial copper foil thickness by the amount of plating, and is not suitable for forming fine wiring.

【0003】これに対し、近年ではビルドアップ方式多
層配線基板が実用化されている。この方式は、1層毎に
配線及び層間接続用ビアホールを形成し順次重ねていく
もので、フォト法もしくはレーザ法に代表される小径穴
明け技術と微細配線を組み合わせることで、高密度な配
線基板を得ることができる。図2にフォト法を用いたビ
ルドアップ方式多層配線基板の断面概略図を示す。
On the other hand, in recent years, a build-up type multilayer wiring board has been put to practical use. In this method, wiring and via holes for interlayer connection are formed for each layer and are successively overlapped. By combining small-diameter drilling technology typified by a photo method or a laser method with fine wiring, a high-density wiring substrate is formed. Can be obtained. FIG. 2 is a schematic cross-sectional view of a build-up type multilayer wiring board using a photo method.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの方法
は、ビアホール内にめっきを施して電気的層間接続を得
るために、穴径が直径100μmあるいはそれ以下と小
さくなる程めっき析出性が低下し、接続信頼性の安定化
が困難になる。また、ビアホール部は凹型の形状となる
ため、ビルドアップ方式が幾層も重ねる際に、下層のビ
アホールの直上に上層のビアホールを形成することがで
きず、配線領域が減少する。さらに、表面層の凹型形状
は、半導体部品などを実装する際の制約となる可能性が
ある。本発明は、上記した従来技術の問題点を解決する
もので、高密度に層間接続及び配線が簡素な工程で形成
でき、安定した接続信頼性が得られる多層配線基板及び
その製造法を提供するものである。
However, in these methods, plating is performed in a via hole to obtain an electrical interlayer connection. Therefore, as the hole diameter decreases to 100 μm or less, the plating deposition property decreases. Therefore, it becomes difficult to stabilize the connection reliability. In addition, since the via hole portion has a concave shape, an upper via hole cannot be formed directly above the lower via hole when the build-up method overlaps several layers, and the wiring area is reduced. Further, the concave shape of the surface layer may be a constraint when mounting a semiconductor component or the like. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a multilayer wiring board which can be formed at high density with a simple process of interlayer connection and wiring, and which can obtain stable connection reliability, and a method of manufacturing the same. Things.

【0005】[0005]

【課題を解決するための手段】本願の第一の多層配線基
板は、配線及び前記配線より大きな高さを持つ層間接続
用端子が形成された基板と、前記基板の層間接続用端子
に対応した層間接続用端子及び配線が形成された導体層
とが、前記基板の層間接続用端子と前記導体層の層間接
続用端子を対向させて接着剤を介して積層一体化されて
いる共に、前記層間接続用端子間を電気的に導通してい
ることを特徴とする。
A first multilayer wiring board according to the present invention has a substrate on which a wiring and an interlayer connection terminal having a height higher than the wiring are formed, and a board corresponding to the interlayer connection terminal of the substrate. The conductor layer on which the interlayer connection terminal and the wiring are formed is laminated and integrated via an adhesive with the interlayer connection terminal of the substrate facing the interlayer connection terminal of the conductor layer, and the interlayer is formed. The connection terminals are electrically connected to each other.

【0006】本願の第二の多層配線基板は、配線及び前
記配線より大きな高さを持つ層間接続用端子が形成され
た導体層と、前記導体層の層間接続用端子に対応した層
間接続用端子及び配線が形成された基板とが、前記導体
層の層間接続用端子と前記基板の層間接続用端子を対向
させて接着剤を介して積層一体化されている共に、前記
層間接続用端子間を電気的に導通していることを特徴と
する。
A second multilayer wiring board according to the present invention includes a conductor layer on which a wiring and an interlayer connection terminal having a height higher than the wiring are formed, and an interlayer connection terminal corresponding to the interlayer connection terminal of the conductor layer. And the substrate on which the wiring is formed, the interlayer connection terminals of the conductor layer and the interlayer connection terminals of the substrate are laminated and integrated via an adhesive with the interlayer connection terminals facing each other. It is characterized by being electrically conductive.

【0007】本願の第一の多層配線基板の製造方法は、
次の工程3a〜3eを含むことを特徴とする。 3a.配線及び層間接続用端子の形成された基板を用意
する工程。 3b.前記基板の層間接続用端子に対応した層間接続用
端子及び配線を支持体上に形成する工程。 3c.前記基板の層間接続用端子を同一面内の配線より
高く形成する工程。 3d.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 3e.前記支持体を剥離除去する工程。
[0007] The first method for manufacturing a multilayer wiring board of the present application is as follows.
The method includes the following steps 3a to 3e. 3a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 3b. Forming an interlayer connection terminal and a wiring corresponding to the interlayer connection terminal of the substrate on a support. 3c. Forming an interlayer connection terminal of the substrate higher than a wiring in the same plane; 3d. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 3e. Removing and removing the support.

【0008】本願の第二の多層配線基板の製造方法は、
次の工程4a〜4eを含むことを特徴とする。 4a.配線及び層間接続用端子の形成された基板を用意
する工程。 4b.前記基板の層間接続用端子に対応した層間接続用
端子及び配線を支持体上に形成する工程。 4c.前記支持体上に形成された層間接続用端子を同一
面内の配線より高く形成する工程。 4d.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 4e.前記支持体を剥離除去する工程。
[0008] The second method of manufacturing a multilayer wiring board of the present application is as follows.
The method includes the following steps 4a to 4e. 4a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 4b. Forming an interlayer connection terminal and a wiring corresponding to the interlayer connection terminal of the substrate on a support. 4c. Forming an interlayer connection terminal formed on the support above a wiring in the same plane; 4d. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 4e. Removing and removing the support.

【0009】本願の第三の多層配線基板の製造方法は、
次の工程5a〜5eを含むことを特徴とする。 5a.配線及び層間接続用端子の形成された基板を用意
する工程。 5b.前記基板の層間接続用端子に対応した層間接続用
端子を支持体上に形成する工程 5c.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 5d.前記支持体を剥離除去する工程。 5e.前記支持体を剥離除去した面に、配線を形成する
工程。
[0009] The third method of manufacturing a multilayer wiring board of the present application is as follows.
The method includes the following steps 5a to 5e. 5a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 5b. Forming on the support a terminal for interlayer connection corresponding to the terminal for interlayer connection of the substrate 5c. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 5d. Removing and removing the support. 5e. Forming a wiring on the surface from which the support has been peeled off;

【0010】接着剤として、0.05〜30vol%の
導電粒子が分散されている異方性導電接着剤を使用する
ことができる。
As the adhesive, an anisotropic conductive adhesive in which conductive particles of 0.05 to 30 vol% are dispersed can be used.

【0011】[0011]

【発明の実施の形態】本発明では、ベースとなる配線基
板にビルドアップ方式で配線形成を行う際に、ベース基
板側配線板と、その上層に形成するビルドアップ配線及
びその支持体を、配線層が向かい合うように位置決め
し、接着剤を介して積層一体化する。その際に双方の配
線層に設けた、所定の接続を行うための端子のうち、少
なくとも一方の配線層において接続用端子を同層の配線
より高く形成しておくことで、配線間の絶縁性を保持し
たまま接続端子間のみで電気的接続が得られ、ビルドア
ップ方式の多層化が可能となる。接続用端子を配線より
高くするのはベース基板側、支持体に設けられたビルド
アップ側の何れでも、また、両方でも良い。他に、接続
用端子とビルドアップ配線を2段階に分けて形成する方
法として、支持体には接続用端子のみを形成し、積層一
体化及び支持体剥離除去後の表面に、端子に接続する所
定の配線を形成しても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, when wiring is formed on a wiring substrate serving as a base by a build-up method, a wiring board on a base substrate side, a build-up wiring formed on an upper layer thereof, and a support for the wiring board are formed. The layers are positioned so that they face each other, and the layers are integrated through an adhesive. At this time, of the terminals for making a predetermined connection provided on both wiring layers, the connection terminal is formed higher than the wiring of the same layer in at least one of the wiring layers, so that the insulation between the wirings is improved. , Electrical connection can be obtained only between the connection terminals, and the build-up system can be multilayered. The connection terminal may be higher than the wiring on either the base substrate side or the build-up side provided on the support, or both. Alternatively, as a method of forming the connection terminal and the build-up wiring in two steps, only the connection terminal is formed on the support, and the terminal is connected to the terminal on the surface after lamination integration and removal of the support. A predetermined wiring may be formed.

【0012】第一、二又は三の製造方法で得られる多層
配線基板を第一、二又は三の製造方法のそれぞれ3a、
4a、5aにおける配線及び層間接続用端子の形成され
た基板とし、3b、4b、5b以下の工程を行うことで
接着剤を介した接続層を複数層有する多層配線基板とす
ることができる。
[0012] The multilayer wiring board obtained by the first, second or third manufacturing method is connected to each of the first, second or third manufacturing method by 3a,
By performing the steps 3b, 4b, and 5b and below, it is possible to obtain a multi-layer wiring board having a plurality of connection layers via an adhesive by performing the steps 3b, 4b, and 5b and below.

【0013】以下、本発明を図面に基づいて詳細に説明
する。図3に、配線及び接続用端子を形成したベース基
板に、接着剤を用いてビルドアップ配線を形成する方法
を示す。図3(a)は、ベース基板1に配線2及び接続
用端子3を形成した図である。図3(b)は、接続用端
子部のみが露出するように、ベース基板上にめっきレジ
スト4を形成したものである。図3(c)は、めっきレ
ジストの開口部に、配線高さのばらつきを考慮した上
で、少なくともすべての接続用端子が配線より高くなる
ように、金属めっき5を施し、めっきレジストを剥離除
去した後の概略図である。金属めっき5は、Cu、N
i、Au、Agなどの導電性に優れた金属が望ましい。
また、Cu/Ni/Auのように複数の金属を組合せ、
多層構造にて形成しても良い。図3(d)は、ベース基
板上に接着剤6を配置し、さらに前もって導体支持体7
上に形成したビルドアップ配線8とビルドアップ側接続
用端子9がベース基板の配線に対向し、かつ所定の接続
が行えるように位置決めして配置した状態の概略図であ
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 3 shows a method of forming a build-up wiring using an adhesive on a base substrate on which wiring and connection terminals are formed. FIG. 3A is a diagram in which wiring 2 and connection terminals 3 are formed on a base substrate 1. FIG. 3B shows a plating resist 4 formed on a base substrate so that only the connection terminal portions are exposed. FIG. 3 (c) shows that the metal plating 5 is applied to the opening of the plating resist so that at least all the connection terminals are higher than the wiring, taking into account the variation in wiring height, and the plating resist is peeled off. FIG. Metal plating 5 is made of Cu, N
A metal having excellent conductivity such as i, Au, and Ag is desirable.
Also, a plurality of metals such as Cu / Ni / Au are combined,
It may be formed in a multilayer structure. FIG. 3D shows that the adhesive 6 is disposed on the base substrate, and the conductor support 7 is further provided in advance.
FIG. 4 is a schematic diagram showing a state in which a build-up wiring 8 and a build-up side connection terminal 9 formed above are opposed to the wiring of the base substrate and are positioned and arranged so as to perform a predetermined connection.

【0014】接着剤としては、フィルム状、液状を用い
ることができるが、フィルム状は液状のように塗布また
は印刷法で基板に形成するのではなく、配置するだけで
接着工程に入ることができ取扱性が容易であるだけでな
く、接続端子の高さを考慮した膜厚の制御が容易である
という特徴をもっており、好適である。接着剤として
は、熱可塑性高分子や熱、電子線、光などのエネルギー
によって硬化する架橋型高分子が用いられる。これらの
中でも耐熱性、接着性、耐湿性の観点から架橋型高分子
が好ましく、中でもエポキシ系樹脂、シアネートエステ
ル樹脂、イミド系樹脂が好ましい。また、これらの樹脂
に可撓性、フィルム形成性を付与する目的で熱可塑性高
分子を混合することができる。接着は、加熱、加圧によ
って行われるので、加熱時の接着剤の溶融粘度が高すぎ
ると接続端子間から接着剤が排除されず、電気的導通を
確保できないので、接着剤の接着加熱温度における溶融
粘度は、1000ポイズ以下にするのが好ましい。
The adhesive may be in the form of a film or a liquid, but the film can be put into the bonding step simply by arranging it instead of being formed on the substrate by coating or printing as in the case of a liquid. This is preferable because not only is it easy to handle, but it is easy to control the film thickness in consideration of the height of the connection terminal. As the adhesive, a thermoplastic polymer or a crosslinked polymer that is cured by energy such as heat, an electron beam, or light is used. Among these, a crosslinked polymer is preferable from the viewpoint of heat resistance, adhesiveness, and moisture resistance, and an epoxy resin, a cyanate ester resin, and an imide resin are particularly preferable. In addition, a thermoplastic polymer can be mixed with these resins for the purpose of imparting flexibility and film formability. Since the bonding is performed by heating and pressurizing, if the melt viscosity of the adhesive at the time of heating is too high, the adhesive is not removed from between the connection terminals and electrical conduction cannot be secured. The melt viscosity is preferably set to 1000 poise or less.

【0015】本発明の接着剤には、接続端子電極の高さ
ばらつきを吸収するために、異方導電性を積極的に付与
する目的で導電粒子を分散することもできる。以下、こ
れを異方性導電接着剤と呼ぶ。本発明において導電粒子
は、例えばAu、Ni、Cu、Wやはんだ等の金属粒子
またはこれらの金属粒子表面に金やパラジウムなどの薄
膜を、めっきや蒸着によって形成した金属粒子であり、
ポリスチレンなどの高分子の球状の核材にNi、Cu、
Au、はんだ等の導電層を設けた導電粒子を用いること
ができる。粒径は、基板の電極の最小の間隔よりも小さ
いことが必要で、電極の高さばらつきがあるため場合、
高さばらつきよりも大きいことが好ましく、1μm〜1
0μmが好ましい。また、接着剤に分散される導電粒子
量は、0.05〜30体積%であり、好ましくは0.2
〜15体積%である。
In the adhesive of the present invention, conductive particles can be dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb height variations of the connection terminal electrodes. Hereinafter, this is referred to as an anisotropic conductive adhesive. In the present invention, the conductive particles are, for example, metal particles such as Au, Ni, Cu, W or solder, or metal particles formed by plating or vapor-depositing a thin film such as gold or palladium on the surface of these metal particles,
Ni, Cu, Spherical core material of polymer such as polystyrene
Conductive particles provided with a conductive layer such as Au or solder can be used. The particle size must be smaller than the minimum distance between the electrodes on the substrate, and if there is a variation in the height of the electrodes,
It is preferable that the height is larger than the height variation.
0 μm is preferred. The amount of the conductive particles dispersed in the adhesive is 0.05 to 30% by volume, preferably 0.2 to 30% by volume.
~ 15% by volume.

【0016】図3(e)は、位置決めしたベース基板
と、接着剤及びビルドアップ配線とその支持体を加熱、
加圧し、積層一体化を行った図であり、続いて図3
(f)は、積層一体化した基板から、ビルドアップ配線
の支持体を剥離除去した図である。ビルドアップ配線を
保持するための導体支持体8は、リジッド性を持つ厚板
もしくはフィルム状のものとし、接着固定後の剥離除去
は、機械的に引き剥がす方法、もしくは化学的に剥離も
しくは溶解除去する方法がある。接続用端子が配線より
高いために、面内方向ではもとより高さ方向での配線間
の絶縁性も確保されている。
FIG. 3 (e) shows that the positioned base substrate, adhesive and build-up wiring and its support are heated,
FIG. 3 is a diagram in which pressure is applied to perform lamination integration, and FIG.
(F) is a diagram in which the support of the build-up wiring is separated and removed from the laminated and integrated substrate. The conductor support 8 for holding the build-up wiring is made of a rigid plate or a film having a rigid property, and the peeling and removal after bonding and fixing is performed by a mechanical peeling method, or by chemically peeling or dissolving and removing. There is a way to do that. Since the connection terminal is higher than the wiring, insulation between the wirings in the in-plane direction and also in the height direction is ensured.

【0017】図4(a)は、接着剤中に導電粒子10を
分散させたフィルム状の異方性導電接着剤11を示し、
この異方性導電接着剤を上記説明における接着剤として
用いた場合に得られる多層配線基板を図4(b)に示
す。さらに、異方性導電接着剤は、図4(a)に示すよ
うに、配線及び接続用端子周囲における接着剤の充填性
を良くするために、導電粒子を含む導電粒子分散層11
aと絶縁性材料からなる導電粒子無分散層11bの2層
構造を有するものでも良い。2層構造の有機異方性導電
接着剤を用いた場合の固定接着後の概略図を図5(b)
に示す。
FIG. 4A shows a film-like anisotropic conductive adhesive 11 in which conductive particles 10 are dispersed in an adhesive.
FIG. 4B shows a multilayer wiring board obtained when this anisotropic conductive adhesive is used as the adhesive in the above description. Further, as shown in FIG. 4 (a), the anisotropic conductive adhesive is used to improve the filling property of the adhesive around the wiring and the connection terminals, so that the conductive particle-dispersed layer 11 containing conductive particles can be used.
a and a conductive particle non-dispersion layer 11b made of an insulating material. FIG. 5 (b) is a schematic diagram after fixing and bonding when an organic anisotropic conductive adhesive having a two-layer structure is used.
Shown in

【0018】図6は、ベース基板側の配線及び接続用端
子を同じ高さに形成し、ビルドアップ配線を形成する支
持体上の接続用端子を配線より高くすることで、層間の
電気的接続を得る方法を示す。図6(a)は、ビルドア
ップ配線8の支持体7上に、接続用端子9が露出するよ
うにめっきレジストを形成し、金属めっき5を施した後
に、レジストを剥離除去した状態である。図6(b)に
配線2及び接続用端子3を前もって形成したベース基板
1と、ビルドアップ配線及び接続用端子を上記方法で形
成した導体支持体を、異方性導電接着剤11を間に介し
て配線が対向し、かつ所定の接続が行えるように位置決
めして積層一体化した後に、導体支持体を剥離除去した
図である。
FIG. 6 shows that the wiring on the base substrate and the connection terminals are formed at the same height, and the connection terminals on the support for forming the build-up wiring are higher than the wirings, so that the electrical connection between the layers is achieved. Here is how to get FIG. 6A shows a state in which a plating resist is formed on the support 7 of the build-up wiring 8 so that the connection terminals 9 are exposed, the metal plating 5 is applied, and the resist is peeled off. In FIG. 6B, the base substrate 1 on which the wiring 2 and the connection terminal 3 are formed in advance, and the conductor support on which the build-up wiring and the connection terminal are formed by the above-described method, are placed between an anisotropic conductive adhesive 11. FIG. 6 is a diagram in which conductors are separated and removed after positioning and lamination and integration so that wirings are opposed to each other and a predetermined connection can be performed.

【0019】図7は、図6に示した異方性導電接着剤を
用いて得たビルドアップ配線層を1層有する多層配線基
板をベース基板とし、続いて再度図6で示した接続方法
を用いることで、2層のビルドアップ配線を形成した図
である。本発明の製造方法により形成される層間ビア
は、下層のビアの直上にも、それ以外の任意の場所にも
形成可能である。このように接着剤を介した層間接続方
法を繰り返すことで、所望の層数のビルドアップ配線を
形成することができる。図8は、ベース基板に内層回路
13を有し、スルーホール接続102をした多層配線基
板12を用い、図3に示した方法でかつ接着剤には異方
性導電接着剤を用いて、ベース基板の両側にビルドアッ
プ配線層を形成した多層配線基板を示す。
FIG. 7 shows a multi-layer wiring board having one build-up wiring layer obtained by using the anisotropic conductive adhesive shown in FIG. 6 as a base substrate, and then the connection method shown in FIG. 6 again. FIG. 3 is a diagram in which a two-layer build-up wiring is formed by using the same. The interlayer via formed by the manufacturing method of the present invention can be formed immediately above the via in the lower layer or at any other location. By repeating the interlayer connection method via the adhesive as described above, a desired number of layers of build-up wiring can be formed. FIG. 8 shows a multi-layer wiring board 12 having an inner layer circuit 13 on a base board and through-hole connection 102, using the method shown in FIG. 3 and using an anisotropic conductive adhesive as an adhesive. 2 shows a multilayer wiring board having build-up wiring layers formed on both sides of the board.

【0020】図9は、図3に示した方法において、配線
及び接続用端子を形成した導体支持体をベース基板と
し、かつ接着剤には異方性導電接着剤を用いた場合に得
られる2層配線基板を示す。
FIG. 9 shows a structure obtained by using the conductor support on which the wiring and connection terminals are formed as a base substrate and using an anisotropic conductive adhesive as the adhesive in the method shown in FIG. 3 shows a layer wiring board.

【0021】[0021]

【実施例】【Example】

実施例1 図10に示すビルドアップ配線1層を含む多層配線基板
を、図3に示した方法で製作した。ガラス布エポキシ樹
脂基材で厚さ0.2mmの銅張積層板に、スルーホール
穴明け、スルーホールめっき、エッチング法による配線
形成を行い、作製した両面配線基板12をベース基板と
した。ベース基板の両面に厚さ40μmのフォトレジス
トフィルムをラミネートし、ビルドアップ側の層間接続
用端子部のみ露出するように所定の露光、現像工程を経
てレジストフィルムに直径100μmの開口部を形成し
た。次に、電解Cuめっきにより端子部に約30μmの
突起を形成し、さらに電解Niめっきを約5μm、電解
Auめっきを0.5μmの厚さで施した後に、レジスト
フィルムを剥離した。こうして得たベース配線基板に、
厚さ40μmの高分子量エポキシ樹脂を主体とする接着
フィルム6(180℃での溶融粘度:200ポイズ)を
温度100℃、圧力5kg/cm2 、加圧時間5秒の条
件で仮接着した。一方、導体支持体として用いる厚さ
0.5mmのSUS板上にフォトレジストフィルムをラ
ミネートし、フォトマスクを用いて露光した後、現像工
程を経て、所定のビルドアップ配線部を露出した。次
に、平均的な厚さが約25μmになるように電解Cuめ
っきを行い、続いてレジストフィルムを剥離して、ビル
ドアップ配線及び接続用端子を形成した。めっき配線の
表面は、異方性導電接着フィルムとの密着力を向上する
ために、酸化処理(黒化処理)をした後還元処理を行っ
た。なお、レジストフィルムが電解めっき中にSUS板
から剥離しないように、SUS板表面を前もって研磨紙
で適度に荒した。こうして得たビルドアップ配線付きS
US板を配線がベース基板の接着フィルム6に接する向
きで、かつ固定用ピンで位置決めして、温度180℃、
圧力30kgf/cm2 の条件で接着固定した。次に、
SUS板のみを機械的に剥離して製品を得た。
Example 1 A multilayer wiring board including one build-up wiring layer shown in FIG. 10 was manufactured by the method shown in FIG. A double-sided wiring board 12 produced was used as a base substrate by performing through-hole drilling, through-hole plating, and wiring formation on a copper-clad laminate having a thickness of 0.2 mm using a glass cloth epoxy resin base material. A photoresist film having a thickness of 40 μm was laminated on both surfaces of the base substrate, and an opening having a diameter of 100 μm was formed in the resist film through a predetermined exposure and development process so as to expose only the terminal portion for interlayer connection on the build-up side. Next, a projection of about 30 μm was formed on the terminal portion by electrolytic Cu plating, electrolytic Ni plating was applied to a thickness of about 5 μm, and electrolytic Au plating was applied to a thickness of 0.5 μm, and then the resist film was peeled off. On the base wiring board thus obtained,
An adhesive film 6 (melt viscosity at 180 ° C .: 200 poises) mainly composed of a high-molecular-weight epoxy resin having a thickness of 40 μm was temporarily bonded at a temperature of 100 ° C., a pressure of 5 kg / cm 2 , and a pressing time of 5 seconds. On the other hand, a photoresist film was laminated on a SUS plate having a thickness of 0.5 mm used as a conductor support and exposed using a photomask, and then a predetermined build-up wiring portion was exposed through a developing process. Next, electrolytic Cu plating was performed so that the average thickness became about 25 μm, and then the resist film was peeled off to form build-up wiring and connection terminals. The surface of the plated wiring was subjected to an oxidation treatment (blackening treatment) and then a reduction treatment in order to improve the adhesion to the anisotropic conductive adhesive film. Note that the surface of the SUS plate was appropriately roughened with abrasive paper in advance so that the resist film did not peel off from the SUS plate during electrolytic plating. S with built-up wiring thus obtained
The US plate is positioned in a direction in which the wiring is in contact with the adhesive film 6 of the base substrate, and is positioned with fixing pins.
The adhesive was fixed under the condition of a pressure of 30 kgf / cm 2 . next,
Only the SUS plate was mechanically peeled off to obtain a product.

【0022】実施例2 図11に示すビルドアップ配線1層を含む多層配線基板
を、以下の方法で製作した。実施例1に記載したのと同
じ方法で接続端子部に突起が形成されたベース基板配線
12を得た。このベース配線基板に、ポリスチレン系核
体(直径:5μm)10bの表面にAu層10aを形成
した導電粒子を5vol%分散した高分子量エポキシ樹
脂を主体とする接着フィルム11(厚さ40μm、18
0℃での溶融粘度:210ポイズ)を温度100℃、圧
力5kg/cm2 、加圧時間5秒の条件で仮接着した。
さらに、実施例1と同じ方法でSUS板上にビルドアッ
プ配線及び接続用端子を形成し、配線がベース基板の異
方性導電フィルムに接する向きで、かつ固定用ピンで位
置決めして、温度180℃、圧力30kgf/cm2
条件でベース配線基板と接着固定した。次に、SUS板
のみを機械的に剥離して製品を得た。
Example 2 A multilayer wiring board including one build-up wiring shown in FIG. 11 was manufactured by the following method. In the same manner as described in Example 1, a base substrate wiring 12 having a projection formed on the connection terminal portion was obtained. An adhesive film 11 (40 μm in thickness, 18 μm in thickness) composed mainly of a high molecular weight epoxy resin in which 5 vol% of conductive particles in which an Au layer 10 a is formed on the surface of a polystyrene core (diameter: 5 μm) 10 b is dispersed at 5 vol%.
The melt viscosity at 0 ° C .: 210 poise) was temporarily bonded at a temperature of 100 ° C., a pressure of 5 kg / cm 2 , and a pressing time of 5 seconds.
Further, build-up wiring and connection terminals were formed on the SUS plate in the same manner as in Example 1, and the wiring was positioned in the direction in which the wiring was in contact with the anisotropic conductive film of the base substrate and with the fixing pins. The substrate was bonded and fixed at a temperature of 30 ° C. and a pressure of 30 kgf / cm 2 . Next, only the SUS plate was mechanically peeled off to obtain a product.

【0023】実施例3 図12に示すビルドアップ配線1層を含む多層配線基板
を、以下の方法で製作した。実施例1に記載したのと同
じ方法で接続端子部に突起が形成されたベース基板配線
12を得た。このベース配線基板に、ニッケル粒子(直
径:5μm)10cを2vol%分散した高分子量エポ
キシ樹脂を主体とする接着フィルム11(厚さ40μ
m、180℃での溶融粘度:220ポイズ)を温度10
0℃、圧力5kg/cm2 、加圧時間5秒の条件で仮接
着した。さらに、実施例1と同じ方法でSUS板上にビ
ルドアップ配線及び接続用端子を形成し、配線がベース
基板の異方性導電フィルムに接する向きで、かつ固定用
ピンで位置決めして、温度180℃、圧力30kgf/
cm2 の条件でベース配線基板と接着固定した。次に、
SUS板のみを機械的に剥離して製品を得た。
Example 3 A multilayer wiring board including one layer of build-up wiring shown in FIG. 12 was manufactured by the following method. In the same manner as described in Example 1, a base substrate wiring 12 having a projection formed on the connection terminal portion was obtained. An adhesive film 11 (40 μm thick) mainly composed of a high-molecular-weight epoxy resin in which 2 vol% of nickel particles (diameter: 5 μm) 10c are dispersed on the base wiring board is provided.
m, melt viscosity at 180 ° C .: 220 poise) at a temperature of 10
Temporary bonding was performed under the conditions of 0 ° C., a pressure of 5 kg / cm 2 , and a pressing time of 5 seconds. Further, build-up wiring and connection terminals were formed on the SUS plate in the same manner as in Example 1, and the wiring was positioned in the direction in which the wiring was in contact with the anisotropic conductive film of the base substrate and with the fixing pins. ° C, pressure 30kgf /
It was bonded and fixed to the base wiring substrate under the condition of cm 2 . next,
Only the SUS plate was mechanically peeled off to obtain a product.

【0024】[0024]

【発明の効果】以上説明したように、本発明の多層配線
基板によれば、次の利点が達成される。 (1)スルーホールを形成することなく、電気的層間接
続が可能である。 (2)スルーホールランドが不要であり、かつビルドア
ップ方式で形成するビアホールを直上に重ねることがで
きるため、配線密度を向上できる。 (3)接続ビアの表面が平坦であるため、表面実装用端
子として用いることができる。
As described above, according to the multilayer wiring board of the present invention, the following advantages are achieved. (1) Electrical interlayer connection is possible without forming a through hole. (2) Through-hole lands are unnecessary, and via holes formed by the build-up method can be stacked directly above, so that the wiring density can be improved. (3) Since the surface of the connection via is flat, it can be used as a surface mounting terminal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のスルーホール接続方式多層配線基板の
断面図。
FIG. 1 is a cross-sectional view of a conventional through-hole connection type multilayer wiring board.

【図2】 従来のフォト法によるビルドアップ方式多層
配線基板の断面図。
FIG. 2 is a cross-sectional view of a conventional build-up type multilayer wiring board by a photo method.

【図3】 本発明の多層配線基板の製造工程を示す断面
図。
FIG. 3 is a cross-sectional view illustrating a manufacturing process of the multilayer wiring board of the present invention.

【図4】 本発明の異方性導電接着剤を用いた多層配線
基板の断面図。
FIG. 4 is a sectional view of a multilayer wiring board using the anisotropic conductive adhesive of the present invention.

【図5】 本発明の2層構造異方性導電接着剤を用いた
多層配線基板の断面図。
FIG. 5 is a sectional view of a multilayer wiring board using the two-layer anisotropic conductive adhesive of the present invention.

【図6】 本発明の多層配線基板の製造工程を説明する
断面図。
FIG. 6 is a cross-sectional view illustrating a manufacturing process of the multilayer wiring board of the present invention.

【図7】 本発明の異方性導電接着剤を用いた多層配線
基板の断面図。
FIG. 7 is a sectional view of a multilayer wiring board using the anisotropic conductive adhesive of the present invention.

【図8】 本発明の異方性導電接着剤を用いた多層配線
基板の断面図。
FIG. 8 is a sectional view of a multilayer wiring board using the anisotropic conductive adhesive of the present invention.

【図9】 本発明の異方性導電接着剤を用いた多層配線
基板の断面図。
FIG. 9 is a sectional view of a multilayer wiring board using the anisotropic conductive adhesive of the present invention.

【図10】 実施例1の多層配線基板の断面図。FIG. 10 is a sectional view of the multilayer wiring board according to the first embodiment.

【図11】 実施例2の多層配線基板の断面図。FIG. 11 is a sectional view of a multilayer wiring board according to a second embodiment.

【図12】 実施例3の多層配線基板の断面図。FIG. 12 is a sectional view of a multilayer wiring board according to a third embodiment.

【符号の説明】[Explanation of symbols]

1‥‥‥ベース基板 2‥‥‥配線 3‥‥‥接続用端子 4‥‥‥めっきレジスト 5‥‥‥金属めっき 6‥‥‥接着剤 7‥‥‥導体支持体 8‥‥‥ビルドアップ配線 9‥‥‥ビルドアップ側接続用端子 10‥‥導電粒子 10a‥Au層 10b‥ポリスチレン系核体 10c‥ニッケル粒子 11‥‥異方性導電接着剤 11a‥導電粒子分散層 11b‥導電粒子無分散層 12‥‥スルーホール接続多層配線基板 13‥‥内層回路 101‥非貫通スルーホール 102‥スルーホール 103‥ビアホール 104‥ビルドアップ配線 1 base board 2 wiring 3 connection terminals 4 plating resist 5 metal plating 6 adhesive 7 conductor support 8 build-up wiring 9 Terminal for build-up side connection 10 Conductive particle 10a Au layer 10b Polystyrene core 10c Nickel particle 11 Anisotropic conductive adhesive 11a Conductive particle dispersion layer 11b No conductive particle dispersion Layer 12 Multi-layer wiring board with through-hole connection 13 Inner layer circuit 101 Non-through-hole 102 102 Through-hole 103 Via hole 104 Build-up wiring

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配線及び前記配線より大きな高さを持つ
層間接続用端子が形成された基板と、前記基板の層間接
続用端子に対応した層間接続用端子及び配線が形成され
た導体層とが、前記基板の層間接続用端子と前記導体層
の層間接続用端子を対向させて接着剤を介して積層一体
化されている共に、前記層間接続用端子間を電気的に導
通していることを特徴とする多層配線基板。
1. A substrate on which a wiring and an interlayer connection terminal having a height higher than the wiring are formed, and a conductor layer on which the interlayer connection terminal and the wiring corresponding to the interlayer connection terminal of the substrate are formed. The terminal for interlayer connection of the substrate and the terminal for interlayer connection of the conductor layer are laminated and integrated via an adhesive so as to face each other, and the terminals for interlayer connection are electrically connected. Characteristic multilayer wiring board.
【請求項2】 配線及び前記配線より大きな高さを持つ
層間接続用端子が形成された導体層と、前記導体層の層
間接続用端子に対応した層間接続用端子及び配線が形成
された基板とが、前記導体層の層間接続用端子と前記基
板の層間接続用端子を対向させて接着剤を介して積層一
体化されている共に、前記層間接続用端子間を電気的に
導通していることを特徴とする多層配線基板。
2. A conductor layer on which a wiring and an interlayer connection terminal having a height higher than the wiring are formed, and a substrate on which the interlayer connection terminal and the wiring corresponding to the interlayer connection terminal of the conductor layer are formed. Are laminated and integrated via an adhesive with the interlayer connection terminal of the conductor layer facing the interlayer connection terminal of the substrate and electrically connecting the interlayer connection terminals. A multilayer wiring board characterized by the above-mentioned.
【請求項3】 次の工程3a〜3eを含むことを特徴と
する多層配線基板の製造方法。 3a.配線及び層間接続用端子の形成された基板を用意
する工程。 3b.前記基板の層間接続用端子に対応した層間接続用
端子及び配線を支持体上に形成する工程。 3c.前記基板の層間接続用端子を同一面内の配線より
高く形成する工程。 3d.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 3e.前記支持体を剥離除去する工程。
3. A method for manufacturing a multilayer wiring board, comprising the following steps 3a to 3e. 3a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 3b. Forming an interlayer connection terminal and a wiring corresponding to the interlayer connection terminal of the substrate on a support. 3c. Forming an interlayer connection terminal of the substrate higher than a wiring in the same plane; 3d. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 3e. Removing and removing the support.
【請求項4】 次の工程4a〜4eを含むことを特徴と
する多層配線基板の製造方法。 4a.配線及び層間接続用端子の形成された基板を用意
する工程。 4b.前記基板の層間接続用端子に対応した層間接続用
端子及び配線を支持体上に形成する工程。 4c.前記支持体上に形成された層間接続用端子を同一
面内の配線より高く形成する工程。 4d.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 4e.前記支持体を剥離除去する工程。
4. A method for manufacturing a multilayer wiring board, comprising the following steps 4a to 4e. 4a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 4b. Forming an interlayer connection terminal and a wiring corresponding to the interlayer connection terminal of the substrate on a support. 4c. Forming an interlayer connection terminal formed on the support above a wiring in the same plane; 4d. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 4e. Removing and removing the support.
【請求項5】 次の工程5a〜5eを含むことを特徴と
する多層配線基板の製造方法。 5a.配線及び層間接続用端子の形成された基板を用意
する工程。 5b.前記基板の層間接続用端子に対応した層間接続用
端子を支持体上に形成する工程 5c.前記基板の層間接続用端子とこれに対応した前記
支持体上に形成された層間接続用端子とを位置合わせ
し、接着剤で接着固定するとともに前記層間接続用端子
間を電気的に導通する工程。 5d.前記支持体を剥離除去する工程。 5e.前記支持体を剥離除去した面に、配線を形成する
工程。
5. A method for manufacturing a multilayer wiring board, comprising the following steps 5a to 5e. 5a. A step of preparing a substrate on which wiring and interlayer connection terminals are formed; 5b. Forming on the support a terminal for interlayer connection corresponding to the terminal for interlayer connection of the substrate 5c. A step of aligning the interlayer connection terminals of the substrate with the corresponding interlayer connection terminals formed on the support, bonding them with an adhesive, and electrically connecting the interlayer connection terminals. . 5d. Removing and removing the support. 5e. Forming a wiring on the surface from which the support has been peeled off;
【請求項6】 接着剤が0.05〜30vol%の導電
粒子が分散されている異方性導電接着剤である請求項1
又は2記載の多層配線基板。
6. The adhesive according to claim 1, wherein the adhesive is an anisotropic conductive adhesive in which conductive particles of 0.05 to 30 vol% are dispersed.
Or the multilayer wiring board according to 2.
【請求項7】 接着剤が0.05〜30vol%の導電
粒子が分散されている異方性導電接着剤である請求項3
〜5項各項記載の多層配線基板の製造方法。
7. The adhesive according to claim 3, wherein the adhesive is an anisotropic conductive adhesive in which conductive particles of 0.05 to 30 vol% are dispersed.
Item 5. The method for manufacturing a multilayer wiring board according to any one of Items 5 to 5.
JP11239497A 1997-04-30 1997-04-30 Multi-layer wiring board and its manufacture Pending JPH10303561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11239497A JPH10303561A (en) 1997-04-30 1997-04-30 Multi-layer wiring board and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11239497A JPH10303561A (en) 1997-04-30 1997-04-30 Multi-layer wiring board and its manufacture

Publications (1)

Publication Number Publication Date
JPH10303561A true JPH10303561A (en) 1998-11-13

Family

ID=14585575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11239497A Pending JPH10303561A (en) 1997-04-30 1997-04-30 Multi-layer wiring board and its manufacture

Country Status (1)

Country Link
JP (1) JPH10303561A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242872A (en) * 2006-03-08 2007-09-20 Sumitomo Electric Printed Circuit Inc Multilayer printed wiring board, and manufacturing method thereof
JP2008131036A (en) * 2006-11-21 2008-06-05 Samsung Electro-Mechanics Co Ltd Printed circuit board and method of manufacturing the same
JP2008244290A (en) * 2007-03-28 2008-10-09 Cmk Corp Multilayer printed wiring board
JP2009088461A (en) * 2007-09-28 2009-04-23 Samsung Electro-Mechanics Co Ltd Method for manufacturing printed circuit board
JP2010123799A (en) * 2008-11-20 2010-06-03 Fujitsu Ltd Circuit board and multilayer circuit board
JP2010206233A (en) * 2010-06-23 2010-09-16 Sumitomo Electric Printed Circuit Inc Multilayer printed wiring board and manufacturing method of the same
JP2012060121A (en) * 2010-09-06 2012-03-22 Samsung Electro-Mechanics Co Ltd Method for forming plated layer of printed board
JP2014132603A (en) * 2012-11-14 2014-07-17 Fujikura Ltd Multilayer wiring board
JP2015201635A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method
JP2015201637A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method and multilayer wiring board
JP2015201636A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method and multilayer wiring board
KR20180025278A (en) * 2016-08-31 2018-03-08 주식회사 아모센스 Method for manufacturing flexible circuit board and flexible circuit board manufactured by the method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242872A (en) * 2006-03-08 2007-09-20 Sumitomo Electric Printed Circuit Inc Multilayer printed wiring board, and manufacturing method thereof
JP2008131036A (en) * 2006-11-21 2008-06-05 Samsung Electro-Mechanics Co Ltd Printed circuit board and method of manufacturing the same
US8058558B2 (en) 2006-11-21 2011-11-15 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and manufacturing method thereof
JP2008244290A (en) * 2007-03-28 2008-10-09 Cmk Corp Multilayer printed wiring board
US8024856B2 (en) 2007-09-28 2011-09-27 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing printed circuit board
JP2009088461A (en) * 2007-09-28 2009-04-23 Samsung Electro-Mechanics Co Ltd Method for manufacturing printed circuit board
JP4614367B2 (en) * 2007-09-28 2011-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board manufacturing method
JP2010123799A (en) * 2008-11-20 2010-06-03 Fujitsu Ltd Circuit board and multilayer circuit board
JP2010206233A (en) * 2010-06-23 2010-09-16 Sumitomo Electric Printed Circuit Inc Multilayer printed wiring board and manufacturing method of the same
JP2012060121A (en) * 2010-09-06 2012-03-22 Samsung Electro-Mechanics Co Ltd Method for forming plated layer of printed board
JP2014132603A (en) * 2012-11-14 2014-07-17 Fujikura Ltd Multilayer wiring board
JP2015201635A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method
JP2015201637A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method and multilayer wiring board
JP2015201636A (en) * 2014-03-31 2015-11-12 大日本印刷株式会社 Multilayer wiring board manufacturing method and multilayer wiring board
KR20180025278A (en) * 2016-08-31 2018-03-08 주식회사 아모센스 Method for manufacturing flexible circuit board and flexible circuit board manufactured by the method
US11013128B2 (en) 2016-08-31 2021-05-18 Amosense Co., Ltd Method for manufacturing flexible printed circuit board and flexible printed circuit board manufactured by same

Similar Documents

Publication Publication Date Title
JP3853219B2 (en) Semiconductor element built-in substrate and multilayer circuit board
JPH09116273A (en) Multilayered circuit board and its manufacture
JP2001044641A (en) Wiring board incorporating semiconductor element and its manufacture
KR20030005054A (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JP2008124459A (en) Manufacturing method of circuit board which has solder paste connection part
JPH10303561A (en) Multi-layer wiring board and its manufacture
JP2002043752A (en) Wiring board, multilayer wiring board, and their manufacturing method
JPH08148828A (en) Thin film multilayered circuit board and its manufacture
JPWO2003056889A1 (en) Connection board, multilayer wiring board using the connection board, substrate for semiconductor package, semiconductor package, and manufacturing method thereof
JPH07263828A (en) Printed interconnection board and its production process
JP3592129B2 (en) Manufacturing method of multilayer wiring board
JP2002111205A (en) Multilayered wiring board and method of manufacturing the same
JP2002246536A (en) Method for manufacturing three-dimensional mounting package and package module for its manufacturing
JP4004196B2 (en) Semiconductor chip
CN107770946A (en) Printed wiring board and its manufacture method
JPH1154926A (en) One-sided circuit board and its manufacture
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2002009440A (en) Composite wiring board
JP4200664B2 (en) Multilayer substrate and manufacturing method thereof
JP2002185139A (en) Printed wiring board and its manufacturing method
JP2006303338A (en) Multilayer circuit board and its manufacturing method
JPH0786749A (en) Manufacture of printed-wiring board
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
JP2004006572A (en) Method for manufacturing element built-in substrate and element built-in substrate, and method for manufacturing printed wiring board and the printed wiring board
JP3943055B2 (en) Manufacturing method of multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061013

A02 Decision of refusal

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A02