JP3862454B2 - Metal-based multilayer circuit board - Google Patents

Metal-based multilayer circuit board Download PDF

Info

Publication number
JP3862454B2
JP3862454B2 JP26171299A JP26171299A JP3862454B2 JP 3862454 B2 JP3862454 B2 JP 3862454B2 JP 26171299 A JP26171299 A JP 26171299A JP 26171299 A JP26171299 A JP 26171299A JP 3862454 B2 JP3862454 B2 JP 3862454B2
Authority
JP
Japan
Prior art keywords
metal
circuit board
copper
multilayer circuit
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26171299A
Other languages
Japanese (ja)
Other versions
JP2001085842A (en
Inventor
俊樹 斎藤
智寛 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26171299A priority Critical patent/JP3862454B2/en
Publication of JP2001085842A publication Critical patent/JP2001085842A/en
Application granted granted Critical
Publication of JP3862454B2 publication Critical patent/JP3862454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大電流の通電が可能であり、その結果高密度実装が可能で、更に耐電圧性に優れた金属ベース多層回路基板に関する。
【0002】
【従来の技術】
近年、半導体素子の小型化、高性能化、ハイパワー化が進み、半導体素子から発生した熱を如何に放散するかということが問題となってきており、電源分野を中心に金属板上に絶縁層を介して金属箔を積層し回路形成した金属ベース回路基板が熱放散性に優れるという理由から使用されてきている。しかし、金属ベース回路基板は回路形成面が通常片面一層であるため、配線面積が限定され、高密度実装化が困難であるという問題があった。
【0003】
高密度実装化を達成する目的で、例えば、金属ベース回路基板上の全面あるいは一部に回路を有する上層回路基板を接着剤を介して積層し、前記上層回路基板上に発熱性の電子部品を搭載した金属ベース多層回路基板が公知となっている(特開平5−327169号公報)。このような金属ベース多層回路基板では、金属板と上層基板の間に熱伝導性の悪い樹脂からなる接着剤層が存在すること、又、絶縁材としてエポキシ含浸ガラスクロス等の熱放散性の悪い材料が使用されていることから、上層回路パターン上に発熱性の高いパワー電子素子を搭載する場合には、熱放散性が不十分であり、電子素子の温度が上昇し、ひいては誤動作を生ぜしめるという問題があった。
【0004】
上記問題点の解決を意図して、本発明者らはいろいろな検討を行い、金属板に高熱伝導絶縁層と導体回路を順次形成し、高熱伝導絶縁層により隔てられた導体回路間をバイアホールにより接合した構造の金属ベース多層回路基板を提示している(特願平7−234001号明細書)。
【0005】
しかし、上記金属ベース多層回路基板は、バイアホール部導体に1A/孔程度以上の大電流を流す場合に、バイアホールの構造如何によっては、バイアホール部導体の発熱が大きくなり、部品の寿命を縮めてしまうことがあった。
【0006】
この対策として、更に本発明者らは、1A/孔程度以上の大電流を流すことのできる金属ベース多層回路基板を提示している(特願平8−266926号明細書)。
【0007】
【発明が解決しようとする課題】
しかし、上記金属ベース多層回路基板であっても、バイアホール部導体に1A/孔程度以上の大電流を流す場合に、バイアホールの構造如何によっては、バイアホール部導体の発熱が大きくなり、部品の寿命を縮めてしまうことがあった。
【0008】
本発明は、上記事情に鑑みてなされたものであって、その目的は、大電流の通電、特にバイアホール部で1A以上の大電流を通電することが可能であり、かつ高密度実装が可能な金属ベース多層回路基板を生産性良く提供することである。
【0009】
【課題を解決するための手段】
本発明は、金属板の一主面上に絶縁層を介して金属箔を貼り付け、前記金属箔より回路を設け、前記回路面全体にNiめっきを施した後、前記Niめっき上に銅層を設けて、当該銅層より支柱部を形成し、更に絶縁層を介して金属箔を貼り付け、回路を形成してなることを特徴とする金属ベース多層回路基板であり、支柱の大きさが1.3×10 −4 mm 以上である前記の金属ベース多層回路基板である。
【0010】
又、本発明は、導体回路間を電気的に接続する支柱の厚みが50〜200μmであり、更に、熱伝導率が2.0W/mK以上である前記の金属ベース多層回路基板である。
【0011】
【発明の実施の形態】
以下、図に基づいて、本発明を詳細に説明する。
【0012】
本発明における金属ベース多層回路基板は、図1に例示した通りに、金属板1上に絶縁層2を介して導体回路5を設けている金属ベース回路基板3上の前記導体回路5表面に支柱7が設けられ、前記導体回路5の支柱7が設けられていない部分と支柱7の側面部に絶縁層4が設けられ、そして、絶縁層4の上面には支柱7と電気的に接合されている導体回路8が設けられている。また、前記導体回路5の表面の絶縁層に接しない部分にはニッケル層6が設けられている。
【0013】
本発明の金属ベース多層回路基板は、前記構成を採用しており、前記支柱7が1A以上の大電流を通電できる、いわゆるバイアホールの機能を有しているので、その結果高密度実装が可能であるという特徴を有する。また、図1においては、導体回路層が2層の場合を例示したが、前記構成を繰り返すことで3層以上の導体回路を有する金属ベース多層回路基板が得られる。また、最外層の導体回路と絶縁層上には、さらに必要に応じて、半田レジストやシンボルマークを形成していても構わない。尚、支柱の材質については、電気伝導性と熱伝導性に優れること、更にめっき法により容易に得られることから銅が好ましい。
【0014】
本発明に於いて、前記支柱7の高さは50〜200μmが好ましい。50μm未満では絶縁層4の絶縁性が十分に確保できないし、200μmより高い場合には絶縁層4の放熱性が必ずしも十分ではなく、用途が制限されることがある。
【0015】
また、前記支柱7の大きさについては、用途に応じて適宜選択することができるが、電気的に信頼性高い接続を確保する為にはその大きさを9.8×10-5mm以上とすると良く、また支柱1個に流す電流が1A程度であれば1.3×10-4mm以上の大きさである10A以上の電流を通電する場合には1.3×10-3mm以上の大きさであることが好ましい。
【0016】
本発明に於いて、絶縁層の熱伝導率に特に制限は無いが、特に金属板に接する絶縁層2の熱伝導率が2.0W/mK以上であると、回路基板全体の放熱性が一層良好であり、好ましい。
【0017】
本発明に於いて、前記絶縁層2、4は金属酸化物及び/又は金属窒化物と樹脂とで構成されることが好ましい。金属酸化物並びに金属窒化物は、熱伝導性に優れ、しかも電気絶縁性のものが好ましい。金属酸化物としては酸化アルミニウム、酸化珪素、酸化ベリリウム、酸化マグネシウムが、金属窒化物としては窒化硼素、窒化珪素、窒化アルミニウムが選択され、これらを単独または2種以上を混合して用いることができる。特に、前記金属酸化物のうち、酸化アルミニウムは電気絶縁性、熱伝導性ともに良好な絶縁接着剤層を容易に得ることができ、しかも安価に入手可能であるという理由で、また、前記金属窒化物のうち窒化硼素は電気絶縁性、熱伝導性に優れ、更に誘電率が小さいという理由で好ましい。
【0018】
絶縁層2、4を構成する樹脂としては、前記の金属酸化物及び/又は金属窒化物を含みながらも、硬化状態下において、金属板1及び導体回路5、8との接合力に優れ、また耐電圧特性等を損なわないものが選択される。このような樹脂として、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂の他、各種のエンジニアリングプラスチックが単独または2種以上を混合して用いることができるが、このうちエポキシ樹脂が金属同士の接合力に優れるので好ましい。特に、エポキシ樹脂のなかでは、流動性が高く、前記の金属酸化物及び金属窒化物との混合性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が一層好ましい樹脂である。
【0019】
導体回路5、8の材質は銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウムのいずれか、または、これらの金属を含む合金、及びそれぞれの金属及び/又は合金を使用したクラッド箔等が用いることができる。また、この時の箔の製造方法は電解法でも圧延法で作製したものでもよく、箔上にはNiめっき、Ni+Auめっき、はんだめっきなどの金属めっきがほどこされていてもかまわないが、絶縁層との接着性の点から、導体回路5の表面はエッチングやめっき等により予め粗化処理されていればさらに好ましい。又、導体回路5、8の厚みは特に制限はないが一般的には9〜500μmが用いられる。
【0020】
本発明では、金属板1として、良好な熱伝導性を持つアルミニウムおよびアルミニウム合金、銅および銅合金、鉄および鉄合金等の金属、銅/鉄−ニッケル系合金、アルミニウム/鉄−ニッケル系合金等の2層の複合材料、あるいは銅/鉄−ニッケル系合金/銅、アルミニウム/鉄−ニッケル系合金/アルミニウム等の3層の複合材料等が使用可能である。また、金属板1の厚みとしては、特に制限はないが、0.5mm〜3.0mmが一般に用いられる。
【0021】
本発明の金属ベース多層回路基板を製造する方法については、次ぎに例示する方法により得ることができる。即ち、まず、金属板上に絶縁層を介して銅箔を設けた金属ベース基板を作製するが、この場合、金属板上に印刷法により絶縁材を塗布し、ラミネート法で銅箔を張り合わせる方法、或いは、Bステージ状の絶縁材シートを金属板と銅箔でサンドイッチし、熱プレスにより加熱加圧硬化する方法等の従来公知の方法を採用すれば良い。
【0022】
次ぎに、前記金属ベース基板の銅箔からなる導体回路上に銅支柱部を形成するが、いくつかの方法を採用することができる。例えば、導体回路の銅支柱部と接する部分にNi層を設けて、両者間の電気的接続をより信頼性のあるものにすることを意図する場合には、銅箔をエッチングして導体回路を形成した後に回路面全面にNiめっきを施す方法、或いは、銅箔上の所定箇所にNiめっきレジストを塗布した後にNiめっきを施し、さらにNiめっきレジストを除去した後にNiめっきをエッチングレジストとして銅箔をエッチングする方法を採用することができ、そして、前記Niめっき層上の所望の位置に銅めっき法で銅層を形成し、更に、導体回路上の所定箇所にエッチングレジストを施し、エッチングすることにより支柱部を形成すれば良い。また、前記銅めっきに代えて、銅ペースト等の導電性ペーストを用いて前記支柱部を形成することもできる。
【0023】
そして、金属板の全面に絶縁剤を塗布し、銅箔をラミネート法により張り合わせること、或いは、Bステージ状の絶縁材シートと銅箔を積層し、熱プレスにより加熱加圧硬化した後、銅箔をエッチングして導体回路を形成し、金属ベース多層回路基板を得ることができる。
【0024】
以下、実施例に基づき、発明をより具体的に説明する。
【0025】
【実施例】
〔実施例1〕
510mm×510mm×1.5mmのアルミニウム板上に、窒化硼素(電気化学工業(株)製;GP)を53体積%含有するビスフェノールA型エポキシ樹脂(油化シェル(株)製;エピコート828)を絶縁剤として用い、アミン系硬化剤を加え、200μmの厚みとなるように塗布し、厚さが35μmの銅箔をラミネート法により張り合わせた。
【0026】
次に、前記銅箔をエッチングして導体回路を形成した後に、回路面全面にNiめっきを施した。この上に銅めっきにより70μmの銅層を形成した後、導体回路上の所定箇所にエッチングレジストを施し、エッチングすることにより銅支柱部を形成した。
【0027】
次ぎに、アルミニウム板の反対側全面に前記の絶縁剤を50μmの厚みで塗布し、銅箔をラミネート法により張り合わせ、銅箔をエッチングして導体回路を形成して金属ベース回路基板を得た。
【0028】
得られた金属ベース多層回路基板について、絶縁層耐電圧性、銅支柱部の直径と通電可能電流を表1に示したが、大電流の通電が可能であり、かつ耐電圧性にも優れ、良好であった。また、絶縁層の熱伝導率、銅支柱部の直径、耐電圧の測定については、次ぎに示す方法で行った。
【0029】
<熱伝導率の測定方法>
絶縁剤の加熱硬化体を(直径10mm厚さ1mmの円板)を作製し、レーザー法熱伝導率測定により測定した。
【0030】
<銅支柱部の直径の測定>
銅支柱部の最上部の断面の直径で評価した。
【0031】
<耐電圧の測定方法>
(1)絶縁層2の耐電圧測定;金属ベース多層回路基板の絶縁層2上の銅箔をエッチングしてφ20mmの円形パターンを10mm間隔で3×3個形成した。この円形パターンと金属板の耐電圧について、JIS C 2110に規定された段階昇圧法により、測定した。
【0032】
(2)絶縁層4の耐電圧測定;金属ベース多層回路基板の絶縁層2上に配置された導体回路をベタパターンとし、絶縁層4上の回路用導体をエッチングしてφ20mmの円形パターンを10mm間隔で3×3個形成した。尚、前記円形パターンのうち中心部に位置する円形パターンは銅支柱部により前記導体回路と電気的に接続した。上記金属ベース多層回路基板について、JIS C 2110に規定された段階昇圧法により、中心部の円形パターンと他の円形パターン間の耐電圧を測定した。
【0033】
【表1】

Figure 0003862454
【0034】
〔実施例2〕
絶縁剤に酸化アルミニウム(昭和電工(株)製:A−42−2)を54体積%含有するビスフェノールF型エポキシ樹脂(油化シェル(株)製:エピコート807)を用いたこと以外は、実施例1と同一の操作をして得た金属ベース多層回路基板について、絶縁層耐電圧性、銅支柱部の直径と通電可能電流を表1に示した。
【0035】
〔実施例3〕
510mm×510mm×1.5mmのアルミニウム板上に、窒化硼素(電気化学工業(株)製;GP)を53体積%含有するビスフェノールA型エポキシ樹脂(油化シェル(株)製;エピコート828)を絶縁剤として用い、アミン系硬化剤を加え、200μmの厚みとなるように塗布し、厚さが35μmの銅箔をラミネート法により張り合わせた。
【0036】
次に、前記銅箔をエッチングして導体回路を形成した後に、回路面全面にNiめっきを施した。この上に銅めっきにより220μmの銅層を形成した後、導体回路上の所定箇所にエッチングレジストを施し、エッチングすることにより銅支柱部7を形成した。
【0037】
次いで、アルミニウム板の反対側全面に上述の絶縁剤を200μmの厚みで塗布し、銅箔をラミネート法により張り合わせた。前記銅箔をエッチングして導体回路を形成し金属ベース多層回路基板を得た。
【0038】
得られた金属ベース多層回路基板について、絶縁層耐電圧性、銅支柱部の直径と通電可能電流を表1に示した。
【0039】
〔実施例4〕
510mm×510mm×1.5mmのアルミニウム板上に、窒化硼素(電気化学工業(株)製;GP)を53体積%含有するビスフェノールA型エポキシ樹脂(油化シェル(株)製;エピコート828)を絶縁剤として用い、アミン系硬化剤を加え、200μmの厚みとなるように塗布し、厚さが35μmの銅箔をラミネート法により張り合わせた。
【0040】
次に、前記銅箔をエッチングして導体回路を形成した後に、回路面全面にNiめっきを施した。この上に銅めっきにより50μmの銅層を形成した後、導体回路上の所定箇所にエッチングレジストを施し、エッチングすることにより銅支柱部7を形成した。
【0041】
次いで、アルミニウム板の反対側全面に前記絶縁剤を30μmの厚みで塗布し、銅箔をラミネート法により張り合わせ、銅箔をエッチングして導体回路を形成し、金属ベース多層回路基板を得た。
【0042】
得られた金属ベース多層回路基板について、絶縁層耐電圧性、銅支柱部の直径と通電可能電流を表1に示した。
【0043】
〔比較例〕
510mm×510mm×1.5mmのアルミニウム板上に、窒化硼素(電気化学工業(株)製;GP)を53体積%含有するビスフェノールA型エポキシ樹脂(油化シェル(株)製;エピコート828)を絶縁接着剤として用い、アミン系硬化剤を加え、200μmの厚みとなるように塗布し、厚さが35μmの銅箔をラミネート法により張り合わせた。次に、この銅箔にシールドパターンを形成した後に、銅箔上に前記絶縁接着剤にアミン系硬化剤を加え、200μmの厚みとなるように塗布し、さらに厚さが35μmの銅箔をラミネート法により張り合わせ、加熱硬化した。次に、外層銅箔の所定箇所にドリルによりφ0.5mmの丸穴を開け、第2の絶縁接着剤層まで切削した後に、銅めっきを施し、バイアホールを形成した。この表面にエッチングにより所望の回路を形成し、金属ベース多層回路基板を得た。得られた金属ベース多層回路基板について、絶縁層耐電圧性、銅支柱部の直径と通電可能電流を表1に示した。
【0044】
【発明の効果】
本発明の金属ベース多層回路基板は、バイアホール部を銅支柱で構成しているので、1A以上の大電流の通電が可能であり、従って、高密度実装が可能であり、しかも耐電圧性に優れている特徴を有するので、従来適用できなかった用途への適用が可能となり、産業上極めて有用である。
【0045】
本発明の金属ベース多層回路基板は、前記構成を有しておるので、パッドオンビアにも対応可能であり、特に電源分野用途での大電流回路基板として有用である。
【図面の簡単な説明】
【図1】本発明の金属ベース多層回路基板の一例を示す断面図。
【符号の説明】
1 金属板
2 絶縁層
3 金属ベース回路基板
4 絶縁層
5 導体回路
6 Ni層
7 支柱
8 導体回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-based multilayer circuit board that can be energized with a large current and, as a result, can be mounted at high density, and has excellent voltage resistance.
[0002]
[Prior art]
In recent years, semiconductor devices have become smaller, higher performance, and higher power, and it has become a problem how to dissipate the heat generated from the semiconductor devices. A metal base circuit board formed by laminating metal foils through layers to form a circuit has been used because of its excellent heat dissipation. However, the metal base circuit board usually has a single-sided circuit forming surface, so that there is a problem that the wiring area is limited and high-density mounting is difficult.
[0003]
For the purpose of achieving high-density mounting, for example, an upper circuit board having a circuit on the entire surface or a part of a metal base circuit board is laminated with an adhesive, and an exothermic electronic component is placed on the upper circuit board. A mounted metal base multilayer circuit board is publicly known (Japanese Patent Laid-Open No. 5-327169). In such a metal-based multilayer circuit board, an adhesive layer made of a resin having poor heat conductivity exists between the metal plate and the upper layer board, and heat dissipation such as an epoxy-impregnated glass cloth as an insulating material is poor. Due to the use of materials, when a highly heat-generating power electronic device is mounted on the upper circuit pattern, the heat dissipation is insufficient, causing the temperature of the electronic device to rise and thus causing a malfunction. There was a problem.
[0004]
In order to solve the above problems, the present inventors have made various studies, sequentially formed a high thermal conductive insulating layer and a conductive circuit on a metal plate, and via holes are formed between the conductive circuits separated by the high thermal conductive insulating layer. Presents a metal-based multi-layer circuit board having a structure bonded to each other (Japanese Patent Application No. 7-234001).
[0005]
However, when a large current of about 1 A / hole or more flows through the via-hole conductor, the metal-based multilayer circuit board increases the heat generation of the via-hole conductor depending on the structure of the via hole, thereby reducing the life of the component. It sometimes shortened.
[0006]
As a countermeasure, the present inventors have also proposed a metal-based multilayer circuit board capable of flowing a large current of about 1 A / hole (Japanese Patent Application No. 8-266926).
[0007]
[Problems to be solved by the invention]
However, even in the metal-based multilayer circuit board, when a large current of about 1 A / hole or more flows through the via-hole conductor, the via-hole conductor generates a large amount of heat depending on the structure of the via-hole. May shorten the life of
[0008]
The present invention has been made in view of the above circumstances, and its purpose is to energize a large current, in particular, a large current of 1 A or more can be energized at a via hole, and high-density mounting is possible. It is to provide a metal-based multilayer circuit board with high productivity.
[0009]
[Means for Solving the Problems]
In the present invention, a metal foil is pasted on one main surface of a metal plate via an insulating layer, a circuit is provided from the metal foil, a Ni layer is applied to the entire circuit surface, and then a copper layer is formed on the Ni plate. A metal-based multilayer circuit board, in which a post is formed from the copper layer, and a metal foil is pasted through an insulating layer to form a circuit. The metal-based multilayer circuit board having a size of 1.3 × 10 −4 mm 2 or more .
[0010]
The present invention also provides the metal-based multilayer circuit board according to the present invention, wherein the thickness of the pillars for electrically connecting the conductor circuits is 50 to 200 μm, and the thermal conductivity is 2.0 W / mK or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0012]
As illustrated in FIG. 1, the metal base multilayer circuit board according to the present invention has a pillar on the surface of the conductor circuit 5 on the metal base circuit board 3 in which the conductor circuit 5 is provided on the metal plate 1 via the insulating layer 2. 7 is provided, an insulating layer 4 is provided on a portion of the conductor circuit 5 where the column 7 is not provided, and a side surface of the column 7, and an upper surface of the insulating layer 4 is electrically connected to the column 7. A conductor circuit 8 is provided. Further, the contact portion not to the insulating layer on the surface of the conductor circuit 5 that has a nickel layer 6 is provided.
[0013]
The metal-based multilayer circuit board according to the present invention adopts the above-described configuration, and the post 7 has a so-called via-hole function capable of supplying a large current of 1 A or more. As a result, high-density mounting is possible. It has the characteristic of being. 1 illustrates the case where there are two conductor circuit layers, a metal-based multilayer circuit board having three or more conductor circuits can be obtained by repeating the above configuration. Further, a solder resist or a symbol mark may be formed on the outermost conductor circuit and the insulating layer as necessary. In addition, about the material of a support | pillar, since it is excellent in electrical conductivity and heat conductivity, and also it can obtain easily by the plating method, copper is preferable.
[0014]
In the present invention, the height of the column 7 is preferably 50 to 200 μm. If the thickness is less than 50 μm, the insulation of the insulating layer 4 cannot be sufficiently ensured. If the thickness is higher than 200 μm, the heat dissipation of the insulating layer 4 is not always sufficient, and the use may be limited.
[0015]
The size of the column 7 can be appropriately selected according to the use, but the size is 9.8 × 10 −5 mm 2 or more in order to ensure an electrically reliable connection. In addition, if the current flowing through one column is about 1 A, the size is 1.3 × 10 −4 mm 2 or more . In the case of supplying a current of 10 A or more, the size is preferably 1.3 × 10 −3 mm 2 or more.
[0016]
In the present invention, the thermal conductivity of the insulating layer is not particularly limited. However, when the thermal conductivity of the insulating layer 2 in contact with the metal plate is 2.0 W / mK or more, the heat dissipation of the entire circuit board is further improved. Good and preferred.
[0017]
In the present invention, the insulating layers 2 and 4 are preferably composed of a metal oxide and / or a metal nitride and a resin. Metal oxides and metal nitrides are preferably excellent in thermal conductivity and electrically insulating. Aluminum oxide, silicon oxide, beryllium oxide, and magnesium oxide are selected as the metal oxide, and boron nitride, silicon nitride, and aluminum nitride are selected as the metal nitride. These can be used alone or in combination of two or more. . In particular, among the metal oxides, aluminum oxide can easily obtain an insulating adhesive layer having good electrical insulation and thermal conductivity, and can be obtained at low cost. Of these materials, boron nitride is preferable because it is excellent in electrical insulation and thermal conductivity and has a low dielectric constant.
[0018]
The resin constituting the insulating layers 2 and 4 is excellent in the bonding strength between the metal plate 1 and the conductor circuits 5 and 8 in the cured state, while containing the metal oxide and / or metal nitride. Those that do not impair the withstand voltage characteristics are selected. As such a resin, an epoxy resin, a phenol resin, a polyimide resin, and various engineering plastics can be used singly or as a mixture of two or more, and among them, an epoxy resin is excellent in bonding strength between metals. preferable. In particular, among epoxy resins, bisphenol A type epoxy resin and bisphenol F type epoxy resin, which have high fluidity and excellent mixing properties with the metal oxide and metal nitride, are more preferable resins.
[0019]
The material of the conductor circuits 5 and 8 is any of copper, aluminum, nickel, iron, tin, silver, titanium, an alloy containing these metals, and a clad foil using each metal and / or alloy. be able to. In addition, the foil manufacturing method at this time may be an electrolytic method or a rolling method, and metal plating such as Ni plating, Ni + Au plating, or solder plating may be applied on the foil. It is more preferable that the surface of the conductor circuit 5 is roughened in advance by etching, plating, or the like. The thickness of the conductor circuits 5 and 8 is not particularly limited, but generally 9 to 500 μm is used.
[0020]
In the present invention, as the metal plate 1, aluminum and aluminum alloy having good thermal conductivity, copper and copper alloy, iron and iron alloy, etc., copper / iron-nickel alloy, aluminum / iron-nickel alloy, etc. Or a three-layer composite material such as copper / iron-nickel alloy / copper, aluminum / iron-nickel alloy / aluminum, or the like can be used. The thickness of the metal plate 1 is not particularly limited, but 0.5 mm to 3.0 mm is generally used.
[0021]
About the method of manufacturing the metal base multilayer circuit board of this invention, it can obtain by the method illustrated next. That is, first, a metal base substrate having a copper foil provided on an insulating layer on a metal plate is produced. In this case, an insulating material is applied on the metal plate by a printing method, and the copper foil is laminated by a laminating method. A conventionally known method such as a method or a method of sandwiching a B-stage-shaped insulating material sheet between a metal plate and a copper foil and curing by heat and pressure by hot pressing may be employed.
[0022]
Next, although a copper support | pillar part is formed on the conductor circuit which consists of a copper foil of the said metal base board | substrate, several methods are employable. For example, when it is intended to provide a Ni layer in a portion of the conductor circuit that contacts the copper support portion and to make the electrical connection between the two more reliable, the copper foil is etched to remove the conductor circuit. A method of applying Ni plating to the entire circuit surface after forming, or applying Ni plating resist to a predetermined location on the copper foil, applying Ni plating, removing the Ni plating resist, and then using Ni plating as an etching resist. A copper layer is formed by a copper plating method at a desired position on the Ni plating layer, and an etching resist is applied to a predetermined position on the conductor circuit to perform etching. The strut portion may be formed by the above. Moreover, it can replace with the said copper plating and can form the said support | pillar part using electrically conductive pastes, such as a copper paste.
[0023]
Then, an insulating agent is applied to the entire surface of the metal plate, and a copper foil is laminated by a laminating method, or a B-stage-shaped insulating material sheet and a copper foil are laminated and heated and pressurized and cured by hot press, and then copper The conductor circuit can be formed by etching the foil to obtain a metal-based multilayer circuit board.
[0024]
Hereinafter, based on an Example, invention is demonstrated more concretely.
[0025]
【Example】
[Example 1]
On a 510 mm × 510 mm × 1.5 mm aluminum plate, a bisphenol A type epoxy resin (manufactured by Yuka Shell Co., Ltd .; Epicoat 828) containing 53% by volume of boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd .; GP) Used as an insulating agent, an amine-based curing agent was added and applied to a thickness of 200 μm, and a copper foil having a thickness of 35 μm was pasted together by a laminating method.
[0026]
Next, after etching the copper foil to form a conductor circuit, the entire circuit surface was plated with Ni. A copper layer having a thickness of 70 μm was formed thereon by copper plating, and then an etching resist was applied to a predetermined portion on the conductor circuit, and a copper support portion was formed by etching.
[0027]
Next, the said insulating agent was apply | coated to the thickness of 50 micrometers in the other side whole surface of an aluminum plate, the copper foil was bonded together by the lamination method, the copper foil was etched, the conductor circuit was formed, and the metal base circuit board was obtained.
[0028]
About the obtained metal base multilayer circuit board, the insulation layer withstand voltage, the diameter of the copper support and the current that can be energized are shown in Table 1, but a large current can be energized, and the withstand voltage is excellent. It was good. Moreover, about the measurement of the heat conductivity of an insulating layer, the diameter of a copper support | pillar part, and a withstand voltage, it carried out by the method shown next.
[0029]
<Measurement method of thermal conductivity>
A heat-cured body of an insulating material (a disk having a diameter of 10 mm and a thickness of 1 mm) was prepared and measured by laser method thermal conductivity measurement.
[0030]
<Measurement of diameter of copper support>
Evaluation was made based on the diameter of the uppermost cross section of the copper support.
[0031]
<Measurement method of withstand voltage>
(1) Measurement of withstand voltage of insulating layer 2; The copper foil on the insulating layer 2 of the metal-based multilayer circuit board was etched to form 3 × 3 circular patterns of φ20 mm at intervals of 10 mm. The withstand voltage of the circular pattern and the metal plate was measured by a step-up method defined in JIS C 2110.
[0032]
(2) Measurement of withstand voltage of the insulating layer 4; a conductor circuit disposed on the insulating layer 2 of the metal-based multilayer circuit board is a solid pattern, and the circuit conductor on the insulating layer 4 is etched to form a circular pattern of φ20 mm to 10 mm. 3 × 3 pieces were formed at intervals. In addition, the circular pattern located in the center part among the said circular patterns was electrically connected with the said conductor circuit by the copper support | pillar part. With respect to the metal-based multilayer circuit board, the withstand voltage between the circular pattern at the center and another circular pattern was measured by a step-up method defined in JIS C2110.
[0033]
[Table 1]
Figure 0003862454
[0034]
[Example 2]
Except for using bisphenol F type epoxy resin (Oka Shell Co., Ltd .: Epicoat 807) containing 54% by volume of aluminum oxide (Showa Denko Co., Ltd .: A-42-2) as the insulating agent. With respect to the metal-based multilayer circuit board obtained by the same operation as in Example 1, the insulation layer voltage resistance, the diameter of the copper support and the current that can be passed are shown in Table 1.
[0035]
Example 3
On a 510 mm × 510 mm × 1.5 mm aluminum plate, a bisphenol A type epoxy resin (manufactured by Yuka Shell Co., Ltd .; Epicoat 828) containing 53% by volume of boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd .; GP) Used as an insulating agent, an amine-based curing agent was added and applied to a thickness of 200 μm, and a copper foil having a thickness of 35 μm was pasted together by a laminating method.
[0036]
Next, after etching the copper foil to form a conductor circuit, the entire circuit surface was plated with Ni. A copper layer having a thickness of 220 μm was formed thereon by copper plating, an etching resist was applied to a predetermined portion on the conductor circuit, and etching was performed to form a copper support portion 7.
[0037]
Next, the above-mentioned insulating agent was applied to the entire surface on the opposite side of the aluminum plate to a thickness of 200 μm, and a copper foil was laminated by a laminating method. The copper foil was etched to form a conductor circuit to obtain a metal-based multilayer circuit board.
[0038]
With respect to the obtained metal base multilayer circuit board, Table 1 shows the insulation layer voltage resistance, the diameter of the copper support and the current that can be energized.
[0039]
Example 4
On a 510 mm × 510 mm × 1.5 mm aluminum plate, a bisphenol A type epoxy resin (manufactured by Yuka Shell Co., Ltd .; Epicoat 828) containing 53% by volume of boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd .; GP) Used as an insulating agent, an amine-based curing agent was added and applied to a thickness of 200 μm, and a copper foil having a thickness of 35 μm was pasted together by a laminating method.
[0040]
Next, after etching the copper foil to form a conductor circuit, the entire circuit surface was plated with Ni. A copper layer having a thickness of 50 μm was formed thereon by copper plating, and then an etching resist was applied to a predetermined portion on the conductor circuit, followed by etching to form a copper support portion 7.
[0041]
Subsequently, the said insulating agent was apply | coated by the thickness of 30 micrometers to the other side whole surface of an aluminum plate, the copper foil was bonded together by the lamination method, the copper foil was etched, the conductor circuit was formed, and the metal base multilayer circuit board was obtained.
[0042]
With respect to the obtained metal base multilayer circuit board, Table 1 shows the insulation layer voltage resistance, the diameter of the copper support and the current that can be energized.
[0043]
[Comparative Example]
On a 510 mm × 510 mm × 1.5 mm aluminum plate, a bisphenol A type epoxy resin (manufactured by Yuka Shell Co., Ltd .; Epicoat 828) containing 53% by volume of boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd .; GP) Used as an insulating adhesive, an amine-based curing agent was added, applied to a thickness of 200 μm, and a copper foil having a thickness of 35 μm was laminated by a laminating method. Next, after forming a shield pattern on the copper foil, an amine-based curing agent is added to the insulating adhesive on the copper foil, applied to a thickness of 200 μm, and a copper foil having a thickness of 35 μm is laminated. Bonded by the method and cured by heating. Next, a circular hole of φ0.5 mm was drilled at a predetermined location on the outer layer copper foil, and after cutting to the second insulating adhesive layer, copper plating was performed to form a via hole. A desired circuit was formed on the surface by etching to obtain a metal-based multilayer circuit board. With respect to the obtained metal base multilayer circuit board, Table 1 shows the insulation layer voltage resistance, the diameter of the copper support and the current that can be energized.
[0044]
【The invention's effect】
In the metal-based multilayer circuit board of the present invention, the via-hole portion is composed of a copper support, so that a large current of 1 A or more can be applied, and therefore high-density mounting is possible, and the withstand voltage is improved. Since it has excellent characteristics, it can be applied to uses that could not be applied conventionally, and is extremely useful in industry.
[0045]
Since the metal-based multilayer circuit board of the present invention has the above-described configuration, it can be used for pad-on vias, and is particularly useful as a high-current circuit board for power supply applications.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a metal-based multilayer circuit board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Insulation layer 3 Metal base circuit board 4 Insulation layer 5 Conductor circuit 6 Ni layer 7 Support | pillar 8 Conductor circuit

Claims (4)

金属板の一主面上に絶縁層を介して金属箔を貼り付け、前記金属箔より回路を設け、前記回路面全体にNiめっきを施した後、前記Niめっき上に銅層を設けて、当該銅層より支柱部を形成し、更に絶縁層を介して金属箔を貼り付け、回路を形成してなることを特徴とする金属ベース多層回路基板。A metal foil is pasted on one main surface of the metal plate via an insulating layer, a circuit is provided from the metal foil, Ni plating is applied to the entire circuit surface, a copper layer is provided on the Ni plating, A metal-based multi-layer circuit board, wherein a post is formed from the copper layer, and a metal foil is pasted through an insulating layer to form a circuit. 前記支柱の大きさが1.3×10The size of the column is 1.3 × 10 −4-4 mmmm 2 以上であることを特徴とする請求項1記載の金属ベース多層回路基板。The metal-based multilayer circuit board according to claim 1, which is as described above. 前記導体回路間を電気的に接続する支柱の高さが50〜200μmであることを特徴とする請求項1記載又は請求項2記載の金属ベース多層回路基板。3. The metal-based multilayer circuit board according to claim 1, wherein a height of a pillar for electrically connecting the conductor circuits is 50 to 200 μm. 前記絶縁層の熱伝導率が1.5W/mK以上であることを特徴とする請求項1乃至3のいずれか一項に記載の金属ベース多層回路基板。The metal-based multilayer circuit board according to claim 1, wherein the insulating layer has a thermal conductivity of 1.5 W / mK or more.
JP26171299A 1999-09-16 1999-09-16 Metal-based multilayer circuit board Expired - Fee Related JP3862454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26171299A JP3862454B2 (en) 1999-09-16 1999-09-16 Metal-based multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26171299A JP3862454B2 (en) 1999-09-16 1999-09-16 Metal-based multilayer circuit board

Publications (2)

Publication Number Publication Date
JP2001085842A JP2001085842A (en) 2001-03-30
JP3862454B2 true JP3862454B2 (en) 2006-12-27

Family

ID=17365668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26171299A Expired - Fee Related JP3862454B2 (en) 1999-09-16 1999-09-16 Metal-based multilayer circuit board

Country Status (1)

Country Link
JP (1) JP3862454B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267747A (en) * 2000-03-22 2001-09-28 Nitto Denko Corp Manufacturing method for multi-layered circuit board
JP4640802B2 (en) 2005-07-07 2011-03-02 日東電工株式会社 Suspension board with circuit
JP4615427B2 (en) * 2005-12-01 2011-01-19 日東電工株式会社 Printed circuit board
JP4865453B2 (en) 2006-08-30 2012-02-01 日東電工株式会社 Wiring circuit board and manufacturing method thereof
JP2008282995A (en) 2007-05-10 2008-11-20 Nitto Denko Corp Wiring circuit board
JP2009117598A (en) * 2007-11-06 2009-05-28 Denki Kagaku Kogyo Kk Circuit substrate and semiconductor device using the same

Also Published As

Publication number Publication date
JP2001085842A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP0723388B1 (en) Printed circuit board
JP4669392B2 (en) Metal core multilayer printed wiring board
JP2007142406A (en) Method of manufacturing embedded printed circuit board
WO2006061916A1 (en) Printed board and printed board manufacturing method
JP3588230B2 (en) Manufacturing method of wiring board
EP0981268A1 (en) Circuit board with an electronic component mounted thereon and multi-layer board
JP2010272836A (en) Heat dissipating substrate and method of manufacturing the same
KR20070073730A (en) Wiring substrate, wiring material, copper-clad laminate, and method of manufacturing the wiring substrate
JP4597631B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2000077800A (en) Wiring board and manufacture thereof
JP3862454B2 (en) Metal-based multilayer circuit board
JP2009147026A (en) Circuit board and manufacturing method thereof
JP2801896B2 (en) Manufacturing method of metal-based multilayer circuit board
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2004031732A (en) Laminated resin wiring board and its manufacturing method
JP2004221388A (en) Multilayer circuit board for mounting electronic component and its manufacturing method
JP3174026B2 (en) Metal-based multilayer circuit board
JP2012104792A (en) Manufacturing method for semiconductor package substrate
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP4821276B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP3068804B2 (en) Metal-based multilayer circuit board
JPH08148781A (en) Metal base multilayer circuit board
JP2004031738A (en) Wiring board and its manufacturing method
JP2000151119A (en) Multilayer circuit board with metal base
JP2004031733A (en) Method of manufacturing laminated resin wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees