WO2007033971A1 - Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne - Google Patents

Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne Download PDF

Info

Publication number
WO2007033971A1
WO2007033971A1 PCT/EP2006/066551 EP2006066551W WO2007033971A1 WO 2007033971 A1 WO2007033971 A1 WO 2007033971A1 EP 2006066551 W EP2006066551 W EP 2006066551W WO 2007033971 A1 WO2007033971 A1 WO 2007033971A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
gas
pipe bend
head
liquid stream
Prior art date
Application number
PCT/EP2006/066551
Other languages
English (en)
French (fr)
Inventor
Volker Schuda
Rupert Wagner
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US12/067,250 priority Critical patent/US7883561B2/en
Priority to DE112006002526T priority patent/DE112006002526A5/de
Priority to UAA200805318A priority patent/UA90758C2/uk
Priority to AU2006293896A priority patent/AU2006293896B2/en
Priority to CN2006800347006A priority patent/CN101267872B/zh
Publication of WO2007033971A1 publication Critical patent/WO2007033971A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a device for the tangential introduction of a gaseous liquid stream into the head of a column in which gas and liquid are separated, the entry into the column head by a conventional radially arranged nozzle, which, however, followed by a special pipe construction , which ensures a smooth as possible, untwisted flow and their tangential exit into the column head.
  • gas streams the acid gases such.
  • These gas streams may be, for example, natural gas, synthesis gas from heavy oil or heavy residues, refinery gas or in the partial oxidation of organic materials such as coal or petroleum, resulting reaction gas.
  • the sour gas content of the gas must be significantly reduced.
  • CO 2 needs to be removed from natural gas because a high concentration of CO 2 reduces the calorific value of the gas.
  • CO 2 in conjunction with water often entrained in the gas streams, can lead to corrosion on pipes and fittings.
  • the chemical solvents have in particular the aqueous solutions of primary, secondary and tertiary aliphatic amines or alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), monomethylethanolamine (MMEA), diethylethanolamine (DEEA), triethanolamine (TEA), diisopropanolamine (DIPA ) and methyldiethanolamine (MDEA) proved technically, cf. z.
  • MMEA monoethanolamine
  • DEA monomethylethanolamine
  • DEEA diethylethanolamine
  • TEA triethanolamine
  • DIPA diisopropanolamine
  • MDEA methyldiethanolamine
  • the treatment of the raw gas with the liquid absorbent is usually carried out in countercurrent process under pressure in an absorption device.
  • the latter is usually fed to a desorption device in order to recover the valuable absorbent and to be able to feed it back to the absorption device.
  • the gas-laden Absorption liquid relaxes.
  • the pressure drop when entering the desorption effected especially in the modern and very powerful absorbents, for example, the tertiary aliphatic alkanolamines such.
  • MDEA methyldiethanolamine
  • flashed feeds pressurized gas-laden absorption liquid feeds which, upon entry into a regeneration column operating at much lower pressure, immediately release large amounts of gas charge due to the pressure gradient.
  • Figure 1 is the schematic representation of a head of a regeneration column with tangential inlet of the prior art
  • Figure 2 shows schematically three radial inlet variants of the prior art.
  • the head (15) of a regeneration column of the type in question comprises an inlet (17) for the gas-laden absorption liquid.
  • This inlet opens into a gallery (18), on which the first great relaxation of the liquid takes place and large quantities of gas are liberated.
  • Built-in components (19) are provided above the gallery.
  • the released gases leave the column through the outlet (16).
  • the feed (17) shown in Figure 1 opens tangentially into the column, which is shown more clearly in the sectional view A-A.
  • This tangential inlet ensures a low-turbulence gentle transition into the column and a uniform release of the gas load, so that no rapidly changing and / or asymmetric momentum occur which would permanently lead to damage of the column or the internals due to alternating stress.
  • a tangential configuration of the inlet is therefore advantageous to indispensable, especially in flashed feeds.
  • FIG. 2 shows in three sectional views a, b and c three embodiments of radial inlets.
  • the sectional views a and b represent cross sections through a regeneration column of the type shown in FIG. 1 at the level of the section AA.
  • the cylindrical jacket (25, 35) of a regeneration column has a radial inlet (26, 36) which, in the case of the 2a embodiment directly into a voltage applied to the inner wall of the column deflector (27) opens, in which divides the influx and is deflected abruptly by 90 °. In the gallery (28) then distribute the two out of the deflector (27) exiting counter-currents.
  • the abrupt deflection of the inflow in the deflector (27) with simultaneous expansion leads to violent turbulence, impacts and shocks, which affect the entire column head and its internals, so that in the long term damage is unavoidable.
  • the situation is similar in the embodiment shown in FIG. 2b.
  • the through the cylindrical column wall (35) guided radial inlet (36) is connected to a arranged in the axial center of the column T-piece (37) whose ends (39, 39 ') in the space between gallery (38) and column shell ( 35) are angled in the T-plane by 90 °.
  • the influx is in this case even deflected by two 90 ° abruptly, causing, as in the case described above, considerable turbulence, shocks and collisions in the top of the column.
  • the invention is therefore based on the object, an apparatus for introducing a gas-laden liquid stream in the head of a regeneration column, are separated in the gas and liquid to provide, which is connected to a conventional radial inlet but no sudden 90 ° flow deflections, but as a result, a turbulence-poor tangential introduction of a gas-laden liquid stream in the head of a regeneration column allows.
  • a device of the aforementioned type which is characterized by a first pipe bend with a bending angle ⁇ ⁇ 90 °, which is arranged at the inlet of a radial feed line for the gas-laden liquid stream in the column head and connected to the first pipe bend second pipe bend with an angle of curvature of ⁇ 1 ⁇ 90 °, which is curved against the first pipe bend and arranged so that an outlet opening in the vicinity of the inner wall of the column is and the gas-laden liquid flow substantially tangentially to the inner wall of the column can escape into this.
  • the length of the straight pipe section is advantageously chosen so that the outlet opening of the second pipe bend is displaced by about 90 ° on the circular arc, which describes the inner circumference of the column, compared to the entry into the column.
  • the device according to the invention comprises exactly one outlet opening, which is expediently formed by the tube end of the second tube bend.
  • the second pipe bend is followed by another pipe bend (third pipe bend).
  • a partial outlet for the gas-laden liquid is provided between the second and third pipe bends. The transition from the second to the third pipe bend is expediently designed so that the partial stream leaving the column exits into the column essentially tangentially to the inner wall of the column and the other partial stream passes from the second into the third pipe bend without a sudden change of direction.
  • the bending angles ⁇ and Y of the two pipe bends may be the same or different and be 30 to 60 °, in particular 40 to 50 °;
  • each curvature angle ⁇ Y is approximately 45 °.
  • the inventive device has the advantage that it can be installed instead of the known radial feeds in conventional regeneration columns of the type in question here, with no costly modifications or changes to the column itself are required.
  • the invention therefore also relates to the conversion of a regeneration column with known radial introduction of a gas-laden liquid stream in a regeneration onskolonne with tangential introduction of the liquid flow, wherein the known radial introduction removed and attached to the radial inlet nozzle, the device of the invention described above.
  • the device according to the invention is therefore particularly suitable for use in regeneration columns of acid gas scrubber plants. If an aqueous solution of at least one alkanolamine selected from methyldiethanolamine (MDEA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diisopropanolamine (DIPA), amino-di-ethylene glycol (ADG) is used as absorbent for acid gas scrubbing, it is highly recommended to provide the regeneration column with a tangential inlet according to the invention.
  • MDEA methyldiethanolamine
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA triethanolamine
  • DIPA diisopropanolamine
  • ADG amino-di-ethylene glycol
  • the release of the gas load is therefore only fairly trouble-free, if a low-turbulence smooth, tangential introduction of the gas-laden liquid flow takes place in the regeneration column.
  • the device according to the invention is particularly suitable for this purpose. It is advantageous to choose the total alkanolamine concentration of the aqueous absorption solution in the range of 38 to 50 weight percent. In addition, it is advantageous to add the aqueous absorption solution, piperazine, methylpiperazine and / or 3-methylamino-1-propylamine (MAPA) as activator. When using MDEA as an absorbent, the concomitant use of said activators is particularly advantageous.
  • FIG. 3 shows an embodiment of the invention with an outlet opening.
  • Figure 3 shows schematically the cross-section of a regeneration column at the level of introduction of the gas-laden liquid stream.
  • the designated 1 coat of the head of a regeneration column is provided with a radial feed line 3, which passes immediately after entry into the column in a first pipe bend 2.
  • a flange can be provided with which the inventive
  • Pipe bend construction is attached to the supply line 3.
  • the pipe bend 2 shown in Figure 3 has a bending angle ⁇ of 45 ° and is connected to a straight pipe section 7, which merges into a second, opposite curved pipe bend 4.
  • This second pipe bend also has a curvature angle (Y) of 45 °.
  • the length of the straight pipe section 7 is selected in the case shown in FIG. 3 such that the second pipe bend is offset from the inlet connection 3 by approximately 90 ° on the circular arc described by the inner circumference of the column.
  • Its outlet opening 5 is located very close to the column inner wall 6, so that upon introduction of the gas-laden liquid flow, it strikes the inner wall 6 of the column 1 in an almost tangential manner, where the latter has a reinforcement 8.
  • the incoming liquid flow is distributed in and on a conventional gallery 9 in the column head.
  • the pipe construction according to the invention which converts a radial inlet into a tangential inlet, has the shape of a lying elongated question mark or a stretched S.

Abstract

Die Erfindung betrifft eine Vorrichtung zum tangentialen Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Kolonne, in der Gas und Flüssigkeit getrennt werden. Dabei erfolgt der Eintritt in den Kolonnenkopf durch einen üblichen, radial angeordneten Stutzen (3), an den sich jedoch eine spezielle Rohrkonstruktion (2, 7, 4) anschließt, die eine möglichst glatte, unverwirbelte Strömung und deren tangentialen Austritt in den Kolonnenkopf gewährleistet.

Description

Vorrichtung zum tangentialen Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Kolonne.
Die vorliegende Erfindung betrifft eine Vorrichtung zum tangentialen Einleiten eines gasbe- ladenen Flüssigkeitsstroms in den Kopf einer Kolonne, in der Gas und Flüssigkeit getrennt werden, dabei erfolgt der Eintritt in den Kolonnenkopf durch einen üblichen radial angeordneten Stutzen, an den sich jedoch eine spezielle Rohrkonstruktion anschließt, die eine möglichst glatte, unverwirbelte Strömung und deren tangentialen Austritt in den Kolonnenkopf gewährleistet.
In zahlreichen Prozessen in der chemischen Industrie treten Gasströme auf, die Sauergase, wie z. B. CO2, H2S, SO2, CS2, HCN, COS oder Mercaptane als Verunreinigungen enthalten. Bei diesen Gasströmen kann es sich beispielsweise um Erdgas, Synthesegas aus Schweröl oder schweren Rückständen, Raffineriegas oder bei der partiellen Oxidation von organischen Materialien, wie beispielsweise Kohle oder Erdöl, entstehendes Reaktionsgas handeln. Bevor diese Gase transportiert oder weiterverarbeitet werden können, muss der Sauergasgehalt des Gases deutlich reduziert werden. CO2 muss beispielsweise aus Erdgas entfernt werden, da eine hohe Konzentration von CO2 den Brennwert des Gases reduziert. Außerdem kann CO2 in Verbindung mit in den Gasströmen häufig mitgeführtem Wasser zu Korro- sion an Leitungen und Armaturen führen.
Es ist bekannt, die unerwünschten sauren Gasbestandteile aus den Gasen durch Gaswäsche mit wässrigen oder nichtwässrigen Gemischen organischer Lösungsmittel als Absorptionsmittel zu entfernen. Dabei kommen sowohl physikalische als auch chemische Lö- sungsmittel zum Einsatz. Bekannte physikalische Lösungsmittel sind beispielsweise Cyclo- tetramethylensulfon (Sulfolan), N-Methylpyrrolidon und N-alkylierte Piperidone. Bei den chemischen Lösungsmitteln haben sich insbesondere die wässrigen Lösungen von primären, sekundären und tertiären aliphatischen Aminen bzw. Alkanolaminen wie Monoethanolamin (MEA), Diethanolamin (DEA), Monomethylethanolamin (MMEA), Diethylethanolamin (DEEA), Triethanolamin (TEA), Diisopropanolamin (DIPA) und Methyldiethanolamin (MDEA) technisch bewährt, vgl. z. B. WO 03/009924.
Die Behandlung des Rohgases mit dem flüssigen Absorptionsmittel erfolgt üblicherweise im Gegenstromverfahren unter Druck in einer Absorptionsvorrichtung. Man erhält dabei einer- seits das gewaschene und gewünschte Reingas und andererseits die unter Druck stehende gasbeladene Absorptionsflüssigkeit. Letztere wird in der Regel einer Desorptionsvorrichtung zugeführt, um das wertvolle Absorptionsmittel zurückzugewinnen und es der Absorptionsvorrichtung wieder zuführen zu können. In der Desorptionsvorrichtung wird die gasbeladene Absorptionsflüssigkeit entspannt. Der Druckabfall beim Eintritt in die Desorptionsvorrichtung bewirkt insbesondere bei den modernen und sehr leistungsfähigen Absorptionsmitteln, z.B. den tertiären aliphatischen Alkanolaminen, wie z. B. Methyldiethanolamin (MDEA), die ein sehr hohes Absorptionsvermögen für die oben erwähnten Sauergase besitzen, heftige Gas- ausbrüche aus der Absorptionsflüssigkeit, so dass bei der Einleitung bestimmte Maßnahmen erforderlich sind, um einen dauerhaften störungsfreien Betrieb einer Gaswaschanlage mit gekoppelten Absorptions- und Regenerationskolonnen zu gewährleisten.
Die Zuläufe zu Regenerationskolonnen sind daher vielfältig ausgestaltet worden. Vorwiegend handelt es sich um radiale Zulaufvarianten; es sind aber auch tangentiale Zuläufe bekannt. Die beiliegenden Figuren 1 und 2 zeigen heute übliche Ausgestaltungen von sogenannten flashenden Zuläufen zu Regenerationskolonnen. Mit flashenden Zuläufen sind unter Druck stehende gasbeladene Absorptionsflüssigkeitszuläufe gemeint, die beim Eintritt in eine unter wesentlich niedrigerem Druck arbeitende Regenerationskolonne aufgrund des Druckgefälles sofort große Mengen der Gasbeladung abgeben.
Figur 1 ist die schematische Darstellung eines Kopfes einer Regenerationskolonne mit tangentialem Zulauf des Standes der Technik;
Figur 2 zeigt schematisch drei radiale Zulaufvarianten des Standes der Technik.
Wie in Figur 1 dargestellt, weist der Kopf (15) einer Regenerationskolonne des hier in Rede stehenden Typs einen Zulauf (17) für die gasbeladene Absorptionsflüssigkeit auf. Dieser Zulauf mündet in eine Galerie (18), auf der die erste große Entspannung der Flüssigkeit er- folgt und große Mengen Gas freigesetzt werden. Über der Galerie sind Einbauten (19) vorgesehen. Die freigesetzten Gase verlassen durch den Ausgang (16) die Kolonne. Der in Figur 1 dargestellte Zulauf (17) mündet tangential in die Kolonne, was im Schnittbild A-A deutlicher dargestellt ist. Dieser tangentiale Zulauf gewährleistet eine turbulenzarme sanfte Überleitung in die Kolonne und eine gleichmäßige Freisetzung der Gaslast, so dass keine schnell wechselnden und/oder asymmetrischen Impulskräfte auftreten, die auf Dauer zu einer Beschädigung der Kolonne oder der Einbauten aufgrund von Wechselbeanspruchung führen würden. Eine tangentiale Ausgestaltung des Zulaufs ist daher insbesondere bei flashenden Zuläufen vorteilhaft bis unabdingbar.
Die Mehrzahl der heute im Betrieb befindlichen Regenerationskolonnen ist jedoch mit einem radialen Zulauf versehen, wie beispielsweise in Figur 2 dargestellt. Figur 2 zeigt in drei Schnittbildern a, b und c drei Ausführungsformen von radialen Zuläufen. Die Schnittbilder a und b stellen Querschnitte durch eine Regenerationskolonne des in Figur 1 dargestellten Typs auf der Höhe des Schnittes A-A dar. Der zylindrische Mantel (25, 35) einer Regenerationskolonne weist einen radialen Zulauf (26, 36) auf, der im Falle der in Figur 2a dargestellten Ausführungsform direkt in einen an der Innenwand der Kolonne anliegenden Deflektor (27) mündet, in welchem sich der Zustrom teilt und abrupt um 90° abgelenkt wird. In der Galerie (28) verteilen sich dann die beiden aus dem Deflektor (27) austretenden gegenläufigen Ströme. Die abrupte Umlenkung des Zustroms im Deflektor (27) bei gleichzeitiger Entspannung führt zu heftigen Turbulenzen, Schlägen und Stößen, die sich im ge- samten Kolonnenkopf und auf dessen Einbauten auswirken, so dass auf Dauer Schäden unvermeidbar sind. Ähnlich ist die Situation bei der in Figur 2b dargestellten Ausführungsform. Der durch die zylindrische Kolonnenwand (35) geführte radiale Zulauf (36) ist mit einem im axialen Zentrum der Kolonne angeordneten T-Stück (37) verbunden, dessen Enden (39, 39') in den Raum zwischen Galerie (38) und Kolonnenmantel (35) in der T-Ebene um 90° abgewinkelt sind. Der Zustrom wird in diesem Falle sogar zweimal um jeweils 90° abrupt umgelenkt, was, wie im zuvor geschilderten Falle, erhebliche Turbulenzen, Schläge und Stöße im Kolonnenkopf verursacht. Auch in diesem Falle sind auf Dauer Schäden unvermeidbar. Keilförmige Strömungsteiler, wie in Figur 2c dargestellt, bringen keine wesentliche Verbesserung. Der keilförmige Strömungsteiler (47) weist notgedrungen ziemlich enge Ra- dien auf, so dass die 90° Umlenkung auch sehr abrupt erfolgt. Der flashende Zulauf entwickelt in diesem Entspannungsstadium viel Gas. Der Wechsel zwischen kompressiblem Medium (Gas) und inkompressiblem Medium (Flüssigkeit) verursacht dann das oben bereits erwähnte Stoßen und Schlagen des Zustroms und die auf Dauer unvermeidbaren Schäden.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zum Einleiten eines gas- beladenen Flüssigkeitsstroms in den Kopf einer Regenerationskolonne, in der Gas und Flüssigkeit getrennt werden, bereitzustellen, die an einen herkömmlichen radialen Zulauf anschließbar ist aber keine jähen 90° Strömungsumlenkungen aufweist, sondern im Ergebnis ein turbulenzarmes tangentiales Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Regenerationskolonne ermöglicht.
Gelöst wird diese Aufgabe durch eine Vorrichtung der vorbezeichneten Art, die gekennzeichnet ist durch einen ersten Rohrbogen mit einem Krümmungswinkel γ < 90°, der am Eintritt einer radialen Zuleitung für den gasbeladenen Flüssigkeitsstrom in den Kolonnenkopf angeordnet ist und einen mit dem ersten Rohrbogen verbundenen zweiten Rohrbogen mit einem Krümmungswinkel von γ1 < 90°, der entgegen dem ersten Rohrbogen gekrümmt und so angeordnet ist, dass eine Austrittsöffnung sich in der Nähe der Innenwand der Kolonne befindet und den gasbeladenen Flüssigkeitsstrom im Wesentlichen tangential zur Innenwand der Kolonne in diese austreten lässt.
Es ist vorteilhaft, den zweiten Rohrbogen durch ein gerades Rohrstück mit dem ersten Rohr- bogen zu verbinden. Die Länge des geraden Rohrstückes wird vorteilhafterweise so gewählt, dass die Austrittsöffnung des zweiten Rohrbogens um etwa 90° auf dem Kreisbogen, den der Innenumfang der Kolonne beschreibt, gegenüber dem Eintritt in die Kolonne verlagert ist.
In einer Ausführungsform umfasst die erfindungsgemäße Vorrichtung genau eine Austritts- Öffnung, die zweckmäßigerweise durch das Rohrende des zweiten Rohrbogens gebildet wird. Anstatt einer einzelnen Austrittsöffnung aus dem zweiten Rohrbogen, aus welcher der gesamte gasbeladene Flüssigkeitsstrom austritt, kann man auch mehrere, insbesondere zwei, Austrittsöffnungen vorsehen. In diesem Fall schließt sich an den zweiten Rohrbogen ein weiterer Rohrbogen (dritter Rohrbogen) an. Zwischen dem zweiten und dritten Rohrbo- gen ist ein Teilauslass für die gasbeladene Flüssigkeit vorgesehen. Der Übergang vom zweiten zum dritten Rohrbogen ist zweckmäßigerweise so gestaltet, dass der in die Kolonne austretende Teilstrom im wesentlichen tangential zur Innenwand der Kolonne in diese austritt und der andere Teilstrom ohne plötzlichen Richtungswechsel vom zweiten in den dritten Rohrbogen gelangt. Bei zwei Austrittsöffnungen ist es vorteilhaft, die Auslassgeometrien und -querschnitte so zu wählen, dass der Gasstrom jeweils etwa hälftig aus jeder Austrittsöffnung ausströmt. Krümmung und Länge des dritten Rohrbogens werden zweckmäßigerweise so gewählt, dass die zweite Austrittsöffnung um etwa 180° auf dem Kreisbogen, den der Innendurchmesser der Kolonne beschreibt, gegenüber der ersten Austrittsöffnung verlagert ist. Durch die Anordnung beider Austrittsöffnungen an einander gegenüberliegenden Punkten der Kolonnenwand können sich Impulskräfte, die beim Austritt der gasbeladenen Flüssigkeit in die Kolonne auf die Kolonne einwirken, gegenseitig weitgehend kompensieren.
Die Krümmungswinkel γ und Y der beiden Rohrbögen können gleich oder verschieden sein und 30 bis 60°, insbesondere 40 bis 50° betragen; vorteilhafterweise beträgt jeder Krüm- mungswinkel γ Y etwa 45°.
Es empfiehlt sich, die Innenwand der Kolonne im Bereich der Austrittsöffnung des zweiten Rohrbogens und ein Stück weit stromabwärts zu verstärken, da in diesem Bereich der eingeleitete Flüssigkeitsstrom auf die Kolonnenwand auftrifft und einen erheblichen Teil seiner Gaslast abgibt. Bei mehr als einer Austrittsöffnung kann man bei den weiteren Austrittsöffnungen analog verfahren. Die erfindungsgemäße Vorrichtung hat den Vorteil, dass sie anstelle der bekannten radialen Zuläufe in übliche Regenerationskolonnen des hier in Rede stehenden Typs eingebaut werden kann, wobei keine aufwendigen Umbauten oder Veränderungen an der Kolonne selbst erforderlich sind. Der unproblematische Ersatz üblicher radialer Kolonnenzuläufe durch die erfindungsgemäße tangential einleitende Vorrichtung ist von großer praktischer Bedeutung, da ständig verbesserte Absorptionsmittel für die Gaswäsche entwickelt und bereitgestellt werden, die z.B. eine höhere Aufnahmekapazität für die zu absorbierenden Sauergase haben und diese auch leichter und vollständiger wieder abgeben. Wird nun in einer Regenerationskolonne ein herkömmliches Absorptionsmittel mit sehr starker chemischer Bindung für das zu absorbierende Sauergas (z.B. CO2) durch ein verbessertes Absorptionsmittel, z.B. Methyldiethanolamin (MDEA) ersetzt, man bezeichnet dies als „solvent swap", so treten meist die oben geschilderten Probleme mit den bekannten radialen Zuläufen auf, nämlich das Entstehen von Turbulenzen, Schlägen und Stößen im Kolonnenkopf, die auf Dauer Schäden verursachen. In der Vergangenheit musste man daher oft auf „solvent swaps" ver- ziehten. Aufgrund der vorliegenden Erfindung ist es jedoch jetzt ohne weiteres möglich, derartige „solvent swaps" durchzuführen.
Das vorstehend Ausgeführte gilt auch für sogenannte „revamps", womit die Wiederinbetriebnahme überholter Anlagen gemeint ist, die bisher mit weniger leistungsfähigen Absorptions- mittein betrieben wurden und aufgrund der erfindungsgemäßen Vorrichtung nun auf den Betrieb mit den modernen, verbesserten Absorptionsmitteln umgestellt werden können.
Gegenstand der Erfindung ist daher auch die Umwandlung einer Regenerationskolonne mit bekannter radialer Einleitung eines gasbeladenen Flüssigkeitsstroms in einer Regenerati- onskolonne mit tangentialer Einleitung des Flüssigkeitsstroms, wobei man die bekannte radiale Einleitung entfernt und an deren radialem Eintrittsstutzen die oben beschriebene erfindungsgemäße Vorrichtung befestigt.
Die erfindungsgemäße Vorrichtung eignet sich somit insbesondere für die Verwendung in Regenerationskolonnen von Anlagen zur Sauergaswäsche. Verwendet man als Absorptionsmittel für die Sauergaswäsche eine wässrige Lösung mindestens eines Alkanolamins ausgewählt aus MethylDiEthanolAmin (MDEA), MonoEthanolAmin (MEA), DiEthanolAmin (DEA), TriEthanolAmin (TEA), DilsopropanolAmin (DIPA), AminoDiEthylenGlykol (ADG), empfiehlt es sich sehr, die Regenerationskolonne mit einem erfindungsgemäßen tangentia- len Zulauf zu versehen. Die genannten Absorptionsmittel haben eine besonders große Aufnahmekapazität für Sauergase, die sie bei reduziertem Druck leicht und weitestgehend wieder abgeben. Die Freisetzung der Gaslast erfolgt daher nur dann einigermaßen störungsfrei, wenn eine turbulenzarme glatte, tangentiale Einleitung des gasbeladenen Flüssigkeitsstroms in die Regenerationskolonne erfolgt. Die erfindungsgemäße Vorrichtung ist dafür besonders geeignet. Es ist vorteilhaft, die Gesamtalkanolaminkonzentration der wässrigen Absorptionslösung im Bereich von 38 bis 50 Gewichtsprozent zu wählen. Darüber hinaus ist es vorteilhaft, der wässrigen Absorptionslösung, Piperazin, Methylpiperazin und/oder 3-Methylamino- 1-propylamin (MAPA) als Aktivator zuzusetzen. Bei Verwendung von MDEA als Absorptionsmittel ist die Mitverwendung der besagten Aktivatoren besonders vorteilhaft.
Die vorliegende Erfindung wird anhand der beiliegenden Figur 3 nun näher erläutert. In Figur 3 ist eine Ausführungsform der Erfindung mit einer Austrittsöffnung dargestellt.
Figur 3 zeigt schematisch den Querschnitt einer Regenerationskolonne auf dem Niveau der Einleitung des gasbeladenen Flüssigkeitsstroms. Der mit 1 bezeichnete Mantel des Kopfes einer Regenerationskolonne ist mit einer radialen Zuleitung 3 versehen, die nach dem Eintritt in die Kolonne sofort in einen ersten Rohrbogen 2 übergeht. An der Eintrittsstelle der Zulei- tung 3 in die Kolonne kann man einen Flansch vorsehen, mit dem die erfindungsgemäße
Rohrbogenkonstruktion an der Zuleitung 3 befestigt wird. Der in Figur 3 gezeigte Rohrbogen 2 weist einen Krümmungswinkel γ von 45° auf und ist mit einem geraden Rohrstück 7 verbunden, das in einen zweiten, entgegengesetzt gekrümmten Rohrbogen 4 übergeht. Dieser zweite Rohrbogen weist ebenfalls einen Krümmungswinkel (Y) von 45° auf. Die Länge des geraden Rohrstücks 7 ist in dem in Figur 3 gezeigten Fall so gewählt, dass der zweite Rohrbogen etwa 90° auf dem Kreisbogen, den der Innenumfang der Kolonne beschreibt, gegenüber dem Eintrittsstutzen 3 versetzt ist. Seine Austrittsöffnung 5 befindet sich ganz in der Nähe der Kolonneninnenwand 6, so dass beim Einleiten des gasbeladenen Flüssigkeitsstroms dieser in fast tangentialer Weise auf die Innenwand 6 der Kolonne 1 trifft, wo letzterer eine Verstärkung 8 aufweist. Der eintretende Flüssigkeitsstrom verteilt sich in und auf einer üblichen Galerie 9 im Kolonnenkopf. Die erfindungsgemäße Rohrkonstruktion, die einen radialen Zulauf in einen tangentialen Zulauf umwandelt, hat die Form eines liegenden gestreckten Fragezeichens bzw. eines gestreckten S.
Wie oben bereits geschildert, können herkömmliche radiale Flüssigkeitszuläufe, von denen einige Ausführungsformen in Figur 2 dargestellt sind, mit Hilfe der erfindungsgemäßen Vorrichtung auf sehr einfache Weise in tangentiale Zuläufe umgewandelt werden, was wiederum sogenannte „solvent swaps" und „revamps" ermöglicht.

Claims

Patentansprüche
1. Vorrichtung zum tangentialen Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Kolonne (1 ), in der Gas und Flüssigkeit getrennt werden, gekennzeichnet durch einen ersten Rohrbogen (2) mit einem Krümmungswinkel y <
90°, der am Eintritt einer radialen Zuleitung (3) für den gasbeladenen Flüssigkeitsstrom in den Kolonnenkopf angeordnet ist und einen mit dem ersten Rohrbogen verbundenen zweiten Rohrbogen (4) mit einem Krümmungswinkel y' ebenfalls < 90°, der entgegen dem ersten Rohrbogen gekrümmt und so angeordnet ist, dass eine Aus- trittsöffnung (5) sich in der Nähe der Innenwand (6) der Kolonne befindet und den gasbeladenen Flüssigkeitsstrom im wesentlichen tangential zur Innenwand der Kolonne in diese austreten lässt.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der zweite Rohrbogen (4) durch ein gerades Rohrstück (7) mit dem ersten Rohrbogen (2) verbunden ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Krümmungswinkel Y und Y', die gleich oder verschieden sein können, 30 bis 60° betragen.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass jeder Krümmungswinkel Y, Y' ca. 45° beträgt.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Innenwand (6) der Kolonne im Bereich der Austrittsöffnung (5) des zweiten Rohrbogens (4) und ein Stück weit stromabwärts verstärkt (8) ist.
6. Umwandlung des Kopfes einer Kolonne mit bekannter radialer Einleitung eines gasbeladenen Flüssigkeitsstroms in einen Kopf mit tangentialer Einleitung des Flüssigkeitsstroms, dadurch gekennzeichnet, dass man die radiale Einleitung entfernt und an deren radialem Eintrittsstutzen (3) eine Vorrichtung nach einem der Ansprüche 1 bis 5 befestigt.
7. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 6 in Regenerationskolonnen von Anlagen zur Sauergaswäsche.
8. Verwendung nach Anspruch 7, wobei als Absorptionsmittel zur Sauergaswäsche eine wässrige Lösung mindestens eines Alkanolamins ausgewählt aus MethylDiEthanolAmin (MDEA), MonoEthanolAmin (MEA), DiEthanolAmin (DEA), TriEthanolAmin (TEA), DilsopropanolAmin (DIPA), AminoDiEthylenGlykol (ADG) verwendet wird.
9. Verwendung nach Anspruch 8, wobei die Gesamtalkanolaminkonzentration der wäss- rigen Lösung 38 bis 50 Gewichtsprozent beträgt.
10. Verwendung nach einem der Ansprüche 8 oder 9, wobei eine wässrige Lösung von MDEA, die ein oder mehrere Amine der Reihe Piperazin, Methylpiperazin oder 3- Methylamino-1-propylamin (MAPA) als Aktivator enthält, verwendet wird.
PCT/EP2006/066551 2005-09-23 2006-09-20 Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne WO2007033971A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/067,250 US7883561B2 (en) 2005-09-23 2006-09-20 Device for the tangential introduction of a gas-loaded liquid stream into the head of a column
DE112006002526T DE112006002526A5 (de) 2005-09-23 2006-09-20 Vorrichtung zum tangentialen Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Kolonne
UAA200805318A UA90758C2 (uk) 2005-09-23 2006-09-20 Пристрій для тангенціальної подачі насиченого газом потоку рідини в головку колони
AU2006293896A AU2006293896B2 (en) 2005-09-23 2006-09-20 Device for the tangential introduction of a gas-loaded liquid stream into the head of a column
CN2006800347006A CN101267872B (zh) 2005-09-23 2006-09-20 用于将带气的液体流沿切向引入塔的顶部的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045534.4 2005-09-23
DE102005045534A DE102005045534A1 (de) 2005-09-23 2005-09-23 Vorrichtung zum tangentialen Einleiten eines gasbeladenen Flüssigkeitsstroms in den Kopf einer Kolonne

Publications (1)

Publication Number Publication Date
WO2007033971A1 true WO2007033971A1 (de) 2007-03-29

Family

ID=37487622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066551 WO2007033971A1 (de) 2005-09-23 2006-09-20 Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne

Country Status (8)

Country Link
US (1) US7883561B2 (de)
CN (1) CN101267872B (de)
AU (1) AU2006293896B2 (de)
DE (2) DE102005045534A1 (de)
MY (1) MY140426A (de)
RU (1) RU2388520C2 (de)
UA (1) UA90758C2 (de)
WO (1) WO2007033971A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645671A (zh) * 2015-01-13 2015-05-27 杭州路弘科技有限公司 液体脱气装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560276B2 (en) 2008-07-16 2023-01-24 Lyco Manufacturing, Inc. Transfer mechanism for use with a food processing system
US9060530B2 (en) 2008-07-16 2015-06-23 Lyco Manufacturing, Inc. Transfer mechanism for use with a food processing system
US8006613B2 (en) 2008-07-16 2011-08-30 Lyco Manufacturing, Inc. Transfer mechanism for use with a food processing system
DE102011111317B4 (de) 2010-08-31 2012-03-22 Plinke Gmbh Verdampfer
CN102367646A (zh) * 2011-12-01 2012-03-07 中联重科股份有限公司 沥青搅拌方法及设备
CN109751798A (zh) * 2017-11-02 2019-05-14 开利公司 气液分离器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974419A (en) * 1956-03-24 1961-03-14 Hoechst Ag Method of and apparatus for drying solid particles
US3340157A (en) * 1963-11-22 1967-09-05 Electro Glass Lab Inc Distilland treating and condensing apparatus
GB2342602A (en) * 1998-10-13 2000-04-19 Ingersoll Rand Co Primary gas/oil separator for a two-stage separation system
WO2003009924A1 (de) * 2001-07-20 2003-02-06 Basf Aktiengesellschaft Verfahren zur entfernung saurer gase aus einem gasstrom
WO2003076049A1 (de) * 2002-03-12 2003-09-18 Basf Aktiengesellschaft Verfahren zum entsäuern eines fluidstroms und waschflüssigkeit zur verwendung in einem derartigen verfahren

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402784A (en) * 1918-05-06 1922-01-10 W W Sly Mfg Company Fluid drier
US2082863A (en) * 1935-11-11 1937-06-08 Master Separator And Valve Com Oil and gas separator
US3171807A (en) * 1960-08-22 1965-03-02 Neuman Entpr Ltd Liquid separating apparatus
US3443364A (en) * 1966-12-09 1969-05-13 Bituminous Coal Research Dust collector
CA1005363A (en) * 1972-06-12 1977-02-15 Robin E. Schaller Vortex forming apparatus and method
JPS52149270A (en) * 1976-06-07 1977-12-12 Nippon Zeon Co Ltd Equipment for mass transfer of hollow fiber type
US4278550A (en) * 1979-12-14 1981-07-14 Watts John Dawson Fluid separator
US4343772A (en) * 1980-02-29 1982-08-10 Nasa Thermal reactor
US5227061A (en) * 1992-01-13 1993-07-13 Bedsole Robert D Fuel/contaminant separator
ES2106420T3 (es) * 1993-09-01 1997-11-01 Fresenius Ag Separador de aire.
US5599365A (en) * 1995-03-03 1997-02-04 Ingersoll-Rand Company Mechanical fluid separator
US6334234B1 (en) * 1999-01-08 2002-01-01 Fantom Technologies Inc. Cleaner head for a vacuum cleaner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974419A (en) * 1956-03-24 1961-03-14 Hoechst Ag Method of and apparatus for drying solid particles
US3340157A (en) * 1963-11-22 1967-09-05 Electro Glass Lab Inc Distilland treating and condensing apparatus
GB2342602A (en) * 1998-10-13 2000-04-19 Ingersoll Rand Co Primary gas/oil separator for a two-stage separation system
WO2003009924A1 (de) * 2001-07-20 2003-02-06 Basf Aktiengesellschaft Verfahren zur entfernung saurer gase aus einem gasstrom
WO2003076049A1 (de) * 2002-03-12 2003-09-18 Basf Aktiengesellschaft Verfahren zum entsäuern eines fluidstroms und waschflüssigkeit zur verwendung in einem derartigen verfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645671A (zh) * 2015-01-13 2015-05-27 杭州路弘科技有限公司 液体脱气装置及方法
CN104645671B (zh) * 2015-01-13 2016-03-30 杭州路弘科技有限公司 液体脱气装置及方法

Also Published As

Publication number Publication date
US7883561B2 (en) 2011-02-08
AU2006293896A1 (en) 2007-03-29
CN101267872A (zh) 2008-09-17
RU2008115236A (ru) 2009-10-27
DE112006002526A5 (de) 2008-08-14
RU2388520C2 (ru) 2010-05-10
CN101267872B (zh) 2012-08-08
UA90758C2 (uk) 2010-05-25
MY140426A (en) 2009-12-31
DE102005045534A1 (de) 2007-03-29
US20080202340A1 (en) 2008-08-28
AU2006293896B2 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2007033971A1 (de) Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne
DE60117265T2 (de) Vorrichtung und verfahren zum mischen von fluiden
EP1303345A1 (de) Verfahren zum entsäuern eines fluidstroms und waschflüssigkeit zur verwendung in einem derartigen verfahren
DE10210729A1 (de) Verfahren zum Entsäuern eines Fluidstroms und Waschflüssigkeit zur Verwendung in einem derartigen Verfahren
DE1934479A1 (de) Verfahren und Vorrichtung zur Extraktion eines Gases aus einem Gasgemisch
DE2609022A1 (de) Venturi-waescher
WO1994015700A1 (de) Vorrichtung zur reinigung der rauchgase von rauchgas-entschwefelungsanlagen durch versprühen einer kalkmilch-suspension in das rauchgas
EP0724917B1 (de) Vorrichtung zum Reinigen der Innenwandung eines Weinfasses
EP0205745B1 (de) Vorrichtung zum Waschen von Abgasen
DE2058395A1 (de) Siebvorrichtung zum Abscheiden von Feststoffen aus Fluessigkeitsstroemen in Rohrleitungen
AT371165B (de) Vorrichtung zum trocknen von materialbahnen, insbesondere papierbahnen
EP0014827B1 (de) Verfahren zur Beseitigung von Ammoniak aus Prozessabgasen und Einrichtung zur Durchführung dieses Verfahrens
DE2049902B2 (de) Ringspaltwaschvorrichtung
DE1757515B2 (de) Filter mit Spülluft-Stoßabreinigung
AT505752B1 (de) Vorrichtung zum verandern des venturikehlenquerschnitts eines venturisystems
DE4015831C2 (de) Vorrichtung zum Auswaschen von HCl aus einem Abgas
AT512151B1 (de) Vorrichtung zum Abtrennen von Stoffen aus einem Medium
DE102010007303A1 (de) Verfahren und Vorrichtung zum Einstellen der Konzentration von Säuren oder Laugen
DE2701148C3 (de) Verwendung von schräg oder senkrecht angeordneten Wärmeaustauschern zur wasserfreien Entteerung und Entstaubung von heißem Generatorrohgas und zur Aufheizung von Generatorreingas
DE102016010515A1 (de) Verfahren und Vorrichtung zur effektiven Strippung von teilbeladenem Waschmittel bei physikalischen Gaswäschen
DE1260442B (de) Vorrichtung zum direkten Kuehlen und Waschen von Gasen
AT300847B (de) Verfahren zum Rückgwinnen bzw. Entfernen von SO2 aus Rauchgasen, insbesondere für die Herstellung von Sulfitkochsäure, und Vorrichtung zur Durchführung dieses Verfahrens
DE1906526C (de) Ruckspulvorrichtung fur hohle Filter organe von Staubabscheidern
DE7148940U (de) Vorrichtung zum Ausbringen von Spänen o. dergl. aus Löchern, insbesondere Sacklöchern
DE3639303A1 (de) Rohrbuendelapparate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12067250

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680034700.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1403/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006293896

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1120060025260

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2006293896

Country of ref document: AU

Date of ref document: 20060920

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006293896

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008115236

Country of ref document: RU

REF Corresponds to

Ref document number: 112006002526

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06793680

Country of ref document: EP

Kind code of ref document: A1