WO2007032458A1 - 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法 - Google Patents

拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法 Download PDF

Info

Publication number
WO2007032458A1
WO2007032458A1 PCT/JP2006/318337 JP2006318337W WO2007032458A1 WO 2007032458 A1 WO2007032458 A1 WO 2007032458A1 JP 2006318337 W JP2006318337 W JP 2006318337W WO 2007032458 A1 WO2007032458 A1 WO 2007032458A1
Authority
WO
WIPO (PCT)
Prior art keywords
seeds
antagonistic
strain
seed
low
Prior art date
Application number
PCT/JP2006/318337
Other languages
English (en)
French (fr)
Inventor
Takeshi Kobayashi
Yoshihiro Hashimoto
Kenji Takebayashi
Masataka Aino
Original Assignee
Sakata Seed Corporation
Hyogo Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005271020A external-priority patent/JP2007077126A/ja
Priority claimed from JP2005270616A external-priority patent/JP5111747B2/ja
Application filed by Sakata Seed Corporation, Hyogo Prefecture filed Critical Sakata Seed Corporation
Priority to US11/991,962 priority Critical patent/US20100154299A1/en
Priority to EP06810179A priority patent/EP1935245A1/en
Publication of WO2007032458A1 publication Critical patent/WO2007032458A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/27Pseudomonas

Definitions

  • Antagonistic microorganism-coated seed method for producing the same, and method for controlling diseases in crops
  • the present invention relates to an antagonistic microorganism-coated seed, a method for producing the seed, and a method for controlling diseases in crops.
  • Non-patent Documents 1 and 2 Bacillus bacteria, Pseudomonas bacteria, non-pathogenic Erwinia bacteria, Streptomyces actinomycetes, non-pathogenic Fusarium fungi , Trichoderma fungi, Gliocladium fungi, Penicillium fungi, Talaromyces fungi, Pythium fungi, etc. has been isolated and its controlling effect has been confirmed.
  • these biocontrols have not become widespread technologies.
  • One of the reasons is that it is not economical to apply it to a wide field where the production cost of microbial materials is high, and the effect is unstable.
  • Patent Documents 1 and 2 Furthermore, as a simple treatment method using the smallest amount, a method of coating seeds has been considered (Patent Documents 3 and 4, Non-Patent Document 3).
  • Patent Documents 5 and 6 a method of treating seed with an effective microorganism having an antagonistic property against a pathogen has been reported.
  • Non-Patent Documents 4 and 5 an attempt is made to adsorb Rhizobium meliloti, which is a useful microorganism that is not an antagonistic microorganism, to Alf alpha seeds under reduced pressure conditions.
  • the rhizobial reduced-pressure adsorbed seeds described in Non-Patent Documents 4 and 5 have a reduced number of viable bacteria at low temperatures, particularly at room temperature, compared to seeds inoculated with rhizobia by coating or adhesive. There was a marked decrease in nodulation ability. There has been no report that the technique of inoculating seeds with useful microorganisms under reduced pressure is advantageous in terms of the storage stability of microorganisms.
  • Patent Document 10 As a method for inoculating seeds with bacteria, a test (Patent Document 10) in which a free-flowing composition comprising a non-crosslinkable polysaccharide is dried and brought into contact with seeds has been reported. In particular, the survival of bacteria in the coated seeds was confirmed for several days after inoculation, and it is very difficult to survive the bacteria for a long time in the composition covering the coated seeds.
  • Patent Document 1 JP-A-9-308372
  • Patent Document 2 JP 11-335217 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-203917
  • Patent Document 4 Japanese Patent Laid-Open No. 11-4606
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-346407
  • Patent Document 6 JP 2002-003322 A
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-34607
  • Patent Document 8 JP-A-8-268826
  • Patent Document 9 Japanese Patent Laid-Open No. 7-163334
  • Patent Document 10 Japanese Patent No. 2885805
  • Non-patent document 1 Microbial materialization: The forefront of research, (2000), edited by Takahito Suzui et al., Soft Science
  • Non-Patent Document 2 Annual Review of Phytopathology, 31 (1993), 53-80
  • Non-Patent Document 3 Journal of the Japanese Society for Plant Pathology No. 68, No. 2, p240
  • Non-Patent Document 4 Journal of the Japanese Society of Grassland Science, No. 42, No. 1, April, P7-12 Alfalfa Rhizobium inoculated seed storage method and nodule formation
  • Non-Patent Document 5 Journal of the Japanese Society of Grassland Science No. 44, No. 1, Apr. Pl-6 Nocturnal Proprietary Ratio of Inoculation Source Lines Used for Lime-coats and Vacuum-adsorbed Seeds
  • An object of the present invention is to provide an antagonistic microorganism-coated seed having a high disease control effect and a high storage stability.
  • the present inventors have studied a method for stably introducing antagonistic microorganisms into beech seeds that solve the above-mentioned problems, storage stability, and control effects thereof.
  • the inventors surprisingly inoculated the seeds with antagonistic microorganisms under reduced pressure, It is possible to dramatically increase the survival rate of antagonistic microorganisms in the state of seeds coated with antagonistic microorganisms by drying seeds inoculated with antagonistic microorganisms under low temperature and low humidity conditions, or a combination of both I found out that The inventors have also found that this method is effective for seeds that require pellet granulation, such as lettuce seeds.
  • the antagonistic microorganisms can be introduced to the inside of the seed epidermis by vacuum inoculation. Unlike the dried seed surface, the inside of the seed epidermis retains enough water for the seed to survive, so the antagonistic microorganisms introduced to the inside of the seed epidermis survive using that moisture. It is estimated that the survival rate of antagonistic microorganisms will increase dramatically. In addition, when seeds are dried under low temperature and low humidity conditions after inoculation with antagonistic microorganisms, the antagonistic microorganisms are less likely to be damaged by temperature, and the survival rate of antagonistic microorganisms is dramatically increased.
  • the present inventors have found that the antagonistic microorganism-coated seed thus produced can be stably stored for a long period of time by storing it under low temperature and low humidity conditions.
  • the present invention more specifically includes the following inventions.
  • a method for producing an antagonistic microorganism-coated seed characterized by inoculating a seed with an antagonistic microorganism under reduced pressure.
  • Antagonistic microorganism coating produced by the method according to any one of (1) to (3) Seeds.
  • a method for controlling a disease in a crop comprising inoculating an antagonistic microorganism into a seed of a crop, and drying the seed under a low temperature and low humidity condition after the inoculation.
  • the seed of the crop inoculated with the antagonistic microorganism means that when (8) is subordinate to (5) or (6), "Crop seed”.
  • (5) to (8) may include each step necessary for growing a crop from seeds, for example, a step of seeding seeds that have been inoculated with antagonistic microorganisms and dried.
  • the seeds are lettuce seeds
  • the antagonistic microorganism is an endophytic bacterium that is antagonistic to the genus Orpidium that retains the lettuce big bain virus.
  • the force that is a form in which the disease to be controlled is lettuce big vein disease is not limited to this.
  • the present invention provides an antagonistic microorganism-coated seed having a high disease control effect and a high storage stability, a method for producing the seed, and a method for controlling a disease in a crop using the antagonistic microorganism-coated seed.
  • “antagonizing microorganism-coated seed” refers to a seed coated with an antagonistic microorganism. That is, as long as the antagonistic microorganism is coated on the seed,
  • the seeds may remain as they are, or seeds that have been subjected to various processing treatments such as film-coated seeds, pellet seeds, gel-coated seeds, seeder tapes, seed graphs, and priming seeds.
  • the pellets are usually cut into pellets by pellet granulation.
  • the amount of the coated microorganism is not particularly limited, and may be contained within a range of 1 ⁇ ⁇ 1 0 cells / particle.
  • the granulation process in the case of pelletizing the seeds as long as the granulation is performed using a normal pellet granulator or the like.
  • the granulation size should be slightly larger than the seed, and the thickness of the granulation layer should be in the range of 1 nm to 50 mm.
  • the shape after granulation is preferably spherical or rugby ball, but is not particularly limited. After granulation, sorting by grain size and grain shape is preferred to increase the efficiency of sowing work.
  • the seed used in the present invention is not particularly limited, but for example, seeds of liliaceae such as onions and leeks, seeds of akazaceae such as spinach and sugar beet, cabbage, cauliflower, broccoli, radish Seeds of Brassicaceae such as, seeds of Leguminosae such as broad bean and endu, seeds of Apiaceae such as carrots, celery, and honeybees, seeds of Asteraceae such as lettuce, shiyungiku, burdock, etc.
  • seeds of liliaceae such as onions and leeks
  • seeds of akazaceae such as spinach and sugar beet, cabbage, cauliflower, broccoli, radish Seeds of Brassicaceae
  • seeds of Leguminosae such as broad bean and endu
  • seeds of Apiaceae such as carrots, celery, and honeybees
  • Asteraceae such as lettuce, shiyungiku, burdock, etc.
  • Seeds of solanaceae seeds of cucurbitaceae such as melon, cucumber, watermelon and cabotya, crop seeds such as rice of cereals such as rice, corn, wheat and barley; pansy, viola, petunia, eustoma, stock, first , Cyclamen, primula, goldfish, di-a, marigold, morning glory, sunflower, cosmos Ranunculus, Lavender, Lupine, Mimuras, Poppy, Begonia, Nemesia, Bin Force, Treasure, Delphi-Yum, Dianthus, Zera-Yum, Sen-Chiko, Sui Toby, Sanorebia, Gerbera, bedrooms Flower seeds such as Range Yura, Gloxinia, Keito, Impatiens, Anemone and Agratam; others include seeds such as forage crop seeds, grass and grass.
  • the antagonistic (sex) microorganism used in the present invention is not particularly limited as long as it is antagonistic to a phytopathogenic microorganism.
  • Gram-positive bacteria a bacterium belonging to the genus Bacillus, Streptomyces genus actinomycetes, Gram-negative bacteria, Pseudomonas genus bacteria, non-pathogenic Erwinia genus bacteria, filamentous fungi, non-pathogenic Fusarium genus fungi, Trichoderma ( Trichoderma)
  • filamentous fungi Gliocladium fungi, Penicillium fungi, Talaromyces fungi, Pythium fungi, and the like.
  • Endogenous bacteria can be defined as bacteria that can infect and propagate in the plant body but cannot cause plant disease and can be separated by plant sterilization. Endogenous bacteria produce various physiologically active substances, and these actions make plants infected with endogenous bacteria resistant to diseases. One of the phenomena may be systemic induced resistance caused by endogenous bacteria.
  • rhizobia belonging to the genus Rhizobium such as Rhizobium trifolii, Rhizobium meliloti and the like are useful microorganisms but not antagonistic microorganisms. That is, the “antagonistic microorganism” in the present invention is other than rhizobia.
  • Bacillus cereus KI2N strain (FERM P-17147, Japanese Patent No. 3140430) exhibits growth-inhibiting effects against multiple fungi, and Rhizocton ia solani, including seedling blight of cucumber It has a disease control effect against Bacillus subtilis NCIB12376 strain (FERM P-14647, Japanese Patent No. 3554592) and NCIB12616 strain (FERM P-14646, the same publication) have a controlling effect against many plant diseases including gray mold disease of vegetables and flower buds.
  • Non-patent Document 1 Control of diseases caused by bacteria belonging to the genus Syudomonas (Non-patent Document 1) includes Syudomonas' Putida FP-16 strain (a tomato root surface-separated strain that produces antibacterial active substances against bacterial wilt, Control of tomato bacterial wilt by S. fluorescens FPH9601 strain (FERM BP-5479), and S.
  • Syudomonas' Putida FP-16 strain a tomato root surface-separated strain that produces antibacterial active substances against bacterial wilt
  • S. fluorescens FPH9601 strain FERM BP-5479
  • FPH-2003 strain (independent administrative agency, National Institute of Advanced Industrial Science and Technology, Accession number FERM BP -10665 (granted on 18th August 2006, transferred from the original deposit [FERM P-20654 deposited domestically on 2nd September 2005] to the international deposit under the Budapest Treaty) , FPH-2005-1 (Internationally deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, and assigned the deposit number FERM BP-10664 (the original deposit [20 (Transferred to the international deposit under the Budapest Treaty from FERM P-20653) deposited domestically on September 2, 2005)), Jujumonas sp. CAB-02 (FERM P-15237, Patent No.
  • Rice bacterial disease control (Momigenki wettable powder). Streptomyces sp. R-5 strain (FERM BP-7179, Patent No. 3629212) is effective in controlling plant diseases in the family Hodges.
  • Trichoderma harzianum SK5-5 strain (Microtechnological Bacteria 13327, Patent 304 6167) has been reported as a plant disease control bacterium. Trichoderma harjyanum kubota strain is known to have the effect of controlling gray mold disease under the trade name Harjin L (Monthly Modern Agriculture September 2003, P155-159, Agricultural Bunka Kyokai).
  • Trichoderma 'Atoguchi Vilide SKT-1 strain (FE RM P-16510, JP-A-11-253151), SKT-2 strain (FERM P-16511, the same publication), and SKT-3 strain (FERM P- 17021, the same gazette) shows a control effect against rice blast blight, rice seedling blight and rice brown streak.
  • the non-pathogenic erby rotobora strain CGE234M403 (FERM BP-4328, Patent No. 3040322) is effective in controlling soft rot, black rot, and rice seedling blight.
  • an endogenous bacterium that shows antagonistic properties against the genus Orpidium that retains lettuce big bain virus can be used.
  • the variety of lettuce seeds is not particularly limited.
  • Endogenous bacteria exhibiting antagonistic properties against the genus Orpidium that retains the lettuce big bain virus are not particularly limited as long as they exhibit the prescribed antagonistic properties.
  • Syudumonas' Putida FP-16 strain A strain isolated from the root surface of tomato, which produces an antibacterial active substance against bacterial wilt and has a high inhibitory effect against bacterial wilt in the field
  • Pseudomonas fluorescens FPH9601 strain (FERM BP-5479) Pseudomonas sp., Pseudomonas sp. FPH-2003 (FERM BP-10665), FPH-2005-1 (FERM BP-10664), and the like.
  • These antagonistic microorganisms are screened from seeds, plants, soil, etc., and are used after isolation. You can be. Furthermore, it is smeared on the same medium with the plant pathogenic microorganisms to be controlled or crossed, cultured for several days at a suitable temperature for the pathogenic microorganisms, and observed in both directions to observe the pathogenic microorganisms. Those whose growth is clearly suppressed by the candidate bacteria can be selected as antagonistic microorganisms and used in the present invention (phytopathogenic microorganism research method, (1993), supervised by Saki Wakimoto, soft science Company).
  • seeds coated with candidate bacteria are sown in soil contaminated with orpidium that mediates lettuce big vane virus.
  • Those that have been cultured for several weeks at a suitable temperature for growth of the fungi and that clearly inhibit the infection of the root of Orbidum spp. Can be selected as antagonistic endogenous bacteria and used in the present invention (Japanese plant pathology). Society 68, No. 2, p240).
  • As conditions for culturing antagonistic microorganisms of the present invention the conditions described in experimental documents (new edition of soil microorganism experiment method (1997) edited by Soil Microorganism Society, Yokendo) can be used.
  • the medium is, for example, meat extract medium, LB medium, potato dextrose (PD) medium, 1/10 PD medium, King B agar medium, etc.
  • the culture method is, for example, a petri dish, a test tube, a flask, a dimentor, etc. It is not necessary to perform the culture under special culture conditions that can be carried out in a container such as standing, shaking, or stirring.
  • vacuum inoculation refers to creating a closed container connected to a suction machine, placing seeds mixed with and contacting antagonistic microorganisms therein, and creating negative pressure conditions by sucking air inside the container. After removing the air on the seed surface, it returns to normal pressure (about 760 mmHg), thereby introducing antagonistic microorganisms inside the seed epidermis.
  • suction machine those widely used can be used, for example, aspirator, soccer, oil rotary vacuum pump, dry vacuum pump and the like.
  • the pressure that can be reached when the negative pressure is reached is within the range where the seeds and antagonistic microorganisms do not die or the cells are not substantially damaged.
  • 1 mmHg to 755 mmHg preferably 100 mmHg to 700 mmHg (large (Represented by the degree of vacuum when the atmospheric pressure is 0 mmHg).
  • the time until the normal pressure reaches the maximum negative pressure is not particularly limited, but it may be, for example, in the range of 1 second to 120 minutes. In addition, the time for the maximum negative pressure condition may be in the range of 1 minute to 100 minutes. Thereafter, the pressure is returned to normal pressure, but the negative pressure condition force may be returned to normal pressure within a range of 1 second to 120 minutes.
  • a sealed container can be used by creating a sealed system by attaching a rubber stopper to a suction bottle or pressure bottle, or by sealing with a sealing tape. If the sealed system can be maintained, it can be shaped. There are no special restrictions on materials.
  • the size of the container can be appropriately selected according to the amount of seeds and antagonistic microorganisms.
  • a range force of 1 ml to 1000 m 3 can be selected.
  • the connecting part that connects the suction device and the closed container should not be harmful to the seeds and antagonistic microorganisms, as long as it is a pressure resistant pipe that can maintain a closed system and can withstand negative pressure conditions. Flower ,. If it is difficult to assemble the equipment, existing vacuum drying equipment, low temperature vacuum drying equipment, rotary evaporators, freeze dryers, etc. can be used.
  • the method for mixing and contacting seeds and antagonistic microorganisms for inoculation under reduced pressure is not particularly limited as long as it is a commonly used method. For example, soaking seeds in a suspension containing antagonistic microorganisms, spraying seeds with a suspension containing antagonistic microorganisms, putting seeds in a powder containing antagonistic microorganisms, and dressing them. Stirring and mixing are preferable in order to increase the contact efficiency between the seed and the antagonistic microorganism, but care should be taken because excessive seeding may damage the seed.
  • the amount of the antagonistic microorganism inoculated into the seed is not particularly limited, but may be in the range of, for example, lO ⁇ li ⁇ cells / grain.
  • the method for producing an antagonistic microorganism-coated seed of the present invention is more preferably a step of drying the seed under low-temperature and low-humidity conditions after inoculating the seed with the antagonistic microorganism under reduced pressure by the above method.
  • the method for producing an antagonistic microorganism-coated seed of the present invention is a method of performing a step of drying the seed under low-temperature and low-humidity conditions after inoculating the seed with the antagonistic microorganism by a method other than the above-described reduced-pressure inoculation. Also good.
  • an embodiment of the present invention is a method for producing an antagonistic microorganism-coated seed by inoculating a seed with an antagonistic microorganism and drying the seed after inoculation, wherein the seed of the antagonistic microorganism is applied to the seed. It relates to a method characterized in that the inoculation is carried out by vacuum inoculation and the drying is carried out under low-temperature and low-humidity conditions.
  • the seed is dried under low-temperature and low-humidity conditions after inoculating the seed with an antagonistic microorganism (depressurized)” means that the drying step under low-temperature and low-humidity conditions is more than the inoculation of seeds with antagonistic microorganisms. Includes any form as long as it is performed later in time. That is, in the present invention, a step of drying seeds under low-temperature and low-humidity conditions may be performed subsequent to inoculation of the antagonistic microorganisms to the seed, or additional treatment may be performed after inoculation of the antagonistic microorganisms to the seed.
  • a step of drying the seed under low temperature and low humidity conditions may be performed.
  • Methods for inoculating seeds with antagonistic microorganisms by methods other than reduced-pressure inoculation include immersing seeds in suspensions containing antagonistic microorganisms, spraying suspensions containing antagonistic microorganisms on seeds, and using antagonistic microorganisms. Examples include, but are not limited to, putting seeds into the powder containing and dressing.
  • the "low temperature and low humidity condition" in the drying treatment of the antagonistic microorganism-coated seed treatment of the present invention is a temperature condition at a temperature (low temperature) of room temperature (about 25 ° C) or lower and a humidity of 100 to 30% in the room. In the case of, it refers to the condition of humidity (low humidity) lower than that value. More specifically, “low temperature” means a temperature in the range of 80 ° C. to normal temperature, and a temperature in the range of 10 ° C. to 20 ° C. is particularly desirable. “Low humidity” is usually in the range of 0% to 80%. Among these, a range of 0% to 60% is particularly preferable, and a range of 0% to 40% is more preferable.
  • Examples of the method for lowering the temperature include a room having a cooling device or a container containing a coolant, a cooler box, a refrigerator, a freezer, and the like.
  • Examples of methods for lowering humidity include chemical desiccants such as quicklime, physical desiccants such as silica gel, zeolite and clay minerals, methods of passing dry air and nitrogen gas, and methods using a dehumidifier.
  • the moisture content of the seed after drying is desirably in the range of 0.01% to 20%.
  • a more preferable moisture content is 0.01% or more and 10% or less. If the moisture content is higher than that, the germination rate of seeds will decrease during storage, or germination of seeds may occur during storage, and other germs such as mold may adhere to the seeds and grow. . Conversely, when the moisture content is low, the survival rate of microorganisms is reduced.
  • Storage of the antagonistic microorganism-coated seeds produced according to the method of the present invention is desirably performed under conditions that have as little influence as possible on the number of viable microorganisms of the antagonistic microorganisms and germination of the seeds.
  • Such conditions include low temperature and low humidity conditions.
  • “low temperature” is preferably 80 ° C or higher and 30 ° C or lower, more preferably 0 ° C or higher and 20 ° C or lower.
  • “low humidity” in terms of storage conditions is preferably 0% or more and 80% or less, more preferably 0% or more and 60% or less, and more preferably 0% or more and 50% or less. It is particularly preferred that it is 0% or more and 40% or less.
  • the present invention relates to a method for controlling diseases in crops using antagonistic microorganism-coated seeds. For example, when seeding and raising seedlings with antagonistic microorganism-coated seeds and then planting seedlings in a field or pot containing soil contaminated with soil pathogenic microorganisms, the occurrence of soil diseases is reduced and suppressed.
  • seedlings are planted in a field or pot containing soil contaminated with the genus Orpidium that holds the lettuce big bain virus. When cultivated, the occurrence of lettuce big vein disease is reduced.
  • the disease control method of the present invention can be used in combination with other disease control methods.
  • Other disease control methods include, for example, soil disinfection treatment, chemical treatment, soil conditioner treatment, and Takatsuki treatment for reducing the soil fungus density of soil pathogenic microorganisms.
  • Participant 1 Grab-positive bacteria (Bacillus) contact with cabbage film-coated insulators Of drought and drying on fungal survival and seed germination
  • Gram-positive bacteria Bacillus cereus KI2N strain was used as an antagonistic microorganism. Bacillus cereus KI2N stock was purchased from Biotech Co., Ltd.
  • Bacillus cereus KI2N strain was inoculated into a PD liquid medium, shake-cultured at 35 ° C for 2 days, collected with a centrifuge, and used as an inoculum.
  • the survival rate of Bacillus cereus KI2N strain in seeds was determined by the following method. 100 seeds were suspended in 10 ml of sterilized water, and 10-fold, 100-fold, 1000-fold and 10000-fold dilutions were made. These bacterial suspensions were applied on PDA agar medium by the dilution plate method. The cells were cultured at 35 ° C for 3 days and judged by the appearance of colonies. The germination rate of seeds was confirmed by the following method. 150 film-coated seeds (50 grains x 3 repetitions) were placed on the filter paper soaked with deionized water, and cultivated for 14 days under 20 ° C dark conditions for 16 hours and 30 ° C light conditions for 8 hours. Those that confirmed the presence of hypocotyls and radicles were counted, and the percentage was calculated from the number to determine the germination rate.
  • Reference example 1 2. 5 X 10 4 1, 5 X 10 2 0. 6 96
  • Gram negative bacteria Pseudomonas putida HAI00 377 strain was used.
  • Pseudomonas putida HAI00377 strain was inoculated into a 9 cm petri dish containing King B agar medium and statically cultured at 25 ° C for 2 days. Bacteria were collected using a corn large stick and suspended in distilled water to which 1/5000 Tween 80 was added. When the number of viable bacteria was measured by a dilution plate method, it was about 1 ⁇ 10 10 clu / ml. Carrot seeds (variety: Beta 312, Sakata Seed Co., Ltd.) 200 g were wrapped in a mesh, placed in a strawberry pack, placed on a weight so that it did not float, and 300 ml of the bacterial suspension was poured so that the seeds would sink.
  • the vacuum inoculation method was performed under a negative pressure condition using a compact air pump NUP-2 (manufactured by Azwan).
  • the pumping capacity was 12 1 / min
  • the ultimate pressure was 300 mmHg
  • the time to reach the maximum negative pressure condition was about 2 minutes.
  • the loose cock was opened to return to normal pressure.
  • the time to return to normal pressure was about 20 seconds.
  • MOV-212F constant temperature dryer
  • the thus obtained antagonistic microorganism-coated seeds were further pelletized.
  • the pellet granulation process will be described below.
  • the entire amount of coated carrot seeds obtained above (about 200 g) was put into a rotating granulator Pelletizing unit (SEED PROCESSING) and the seeds were mixed with 3.0% polyvinyl alcohol for granulation while stirring the seeds. Sprayed and moistened. After the seeds were sufficiently moistened, a predetermined amount of granulating powder (a mixture of diatomaceous earth and calcium carbonate) was added. Furthermore, pellets were granulated while alternately adding a granulating binder and granulating powder.
  • SEED PROCESSING rotating granulator Pelletizing unit
  • HAI00377 was cultured and collected in the same manner as in Example 1.
  • the immersion treatment of the antagonistic microorganism was performed under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension. Excess water was removed in the same manner as in Example 1, granulated into pellets, and dried by ventilation under conditions of 30 ° C. The drying time was 48 hours. The humidity of the room at this time was about 45%.
  • the survival rate of the strain HAI00377 in the pelleted granulated seed was determined by the following method. 50 pellets (10 seeds x 5 repeats) were placed on King B agar medium supplemented with streptomycin and cultured at 25 ° C for 96 hours. After culturing, colonies of the HAI00377 strain were counted, and the percentage was determined from the number to determine the survival rate. Moreover, the germination rate of seeds was confirmed by the following method. 150 pellets (50 tablets x 3 repetitions) were placed on the filter paper soaked with deionized water and cultivated under dark conditions at 20 ° C for 16 hours and 30 ° C for 8 hours for 14 days. Counts were confirmed of the presence of hypocotyls and radicles, and the percentage was calculated from the number to determine the germination rate.
  • Example 1 The results of Example 1 and Comparative Example 1 are shown in Table 2.
  • the survival rate of HAI00377 strain was 90%, pelleted granulated after immersion inoculation of HAI00377 strain and ventilated at 30 ° C
  • the survival rate of the HAI00377 strain was 24%, and the survival rate of Example 1 was higher than that of Comparative Example 1.
  • the germination rate of the carrot pellet seeds of the example was 85% or more, which was almost the same as the comparative example. This indicates that in the production of carrot pellet seeds, the method of inoculating antagonistic microorganisms under reduced pressure and then drying at low temperature and low humidity is effective in fixing the antagonistic microorganisms on carrot seeds. It was.
  • Example 1 100 90 2 or less 88
  • Example 2 Effects of vacuum inoculation of tomato seeds with Gram-negative bacteria (Pseudomonas spp.) And low-temperature and low-humidity drying on fungal survival and seed germination
  • Tomato seeds (variety: Mylock, Sakata Seed Co., Ltd.) were inoculated under reduced pressure with Gram-negative bacteria (Pseudomonas putida) HAI00377 under the same conditions as in Example 1.
  • Gram-negative bacteria Pseudomonas putida
  • HAI00377 under the same conditions as in Example 1.
  • MOV-212F constant temperature dryer
  • SANYO constant temperature dryer
  • a desiccator was placed in a low-temperature room at 15 ° C, and silica gel was placed as a desiccant in it.
  • the above seeds were put into a beaker, placed in a desiccator, and dried for 48 hours. At this time, the humidity in the desiccator was about 20%.
  • HAI00377 was cultured and collected in the same manner as in Example 1.
  • the immersion treatment of the antagonistic microorganism was performed under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension. Excess water was removed in the same manner as in Example 1, followed by ventilation drying at 30 ° C. The drying time was 48 hours. The humidity of the room at this time was about 45%.
  • the survival rate of HAI00377 strain in seeds was determined by the following method. 50 seeds (10
  • germination rate of seeds was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on a filter paper soaked with deionized water and cultivated under conditions of 25 ° C—constant temperature and darkness for 14 days. Counts were confirmed of the presence of hypocotyls and radicles, and percentages were calculated to determine the germination rate.
  • Example 2 The results of Example 2 and Comparative Example 2 are shown in Table 3.
  • the survival rate of the HAI00377 strain was 90%, and the HAI00377 strain was soaked in air and dried at 30 ° C (Comparative Example 2).
  • the survival rate of the HAI00377 strain was 14%, and the survival rate of Example 2 was higher than that of Comparative Example 2.
  • the seed germination rate also showed a high value of 90% or more, indicating that there was no problem.
  • Antagonistic microorganisms ⁇ Survival rate Seed germination rate (%)
  • One seed of broccoli (variety: green cocoon, Sakata seed) was inoculated under reduced pressure using the same conditions as in Example 1 using the Pseudomonas putida HAI00377 strain as an antagonistic microorganism. And low-temperature low-humidity drying. The humidity in the desiccator after drying at low temperature and low humidity was about 20%.
  • HAI00377 was cultured and collected in the same manner as in Example 1.
  • the immersion treatment of the antagonistic microorganism was performed under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension. Excess water was removed in the same manner as in Example 1, followed by ventilation drying at 30 ° C. The drying time was 48 hours. The humidity of the room at this time was about 45%.
  • the survival rate of HAI00377 strain in seeds was determined by the following method. 50 seeds (10 seeds X
  • the germination rate of seeds was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on the filter paper soaked with deionized water and cultivated under dark conditions at 20 ° C for 16 hours and 30 ° C for 8 hours. Counts that confirmed the presence of hypocotyls and radicles were counted, and the percentage of the number was determined as the germination rate.
  • Table 4 shows the results of Example 3 and Comparative Example 3.
  • the survival rate of the HAI00377 strain was 96%, and the HAI00377 strain was inoculated and dried at 30 ° C by ventilation (Comparative Example 3).
  • the survival rate of the HAI00377 strain was 20%, and the survival rate of Example 3 was higher than that of Comparative Example 3.
  • the germination rate of seeds also showed a high value of 90% or more, indicating that there was no problem. This is also achieved by inoculating antagonistic microorganisms under reduced pressure in broccoli seeds and then drying at low temperature and low humidity. It became clear that it was effective to settle on the seeds of Roccoli.
  • HAI00377 gram-negative bacteria (Pseudomonas putida) HAI00377 as antagonistic microorganisms to cabotya seeds (variety: fairy tale, Sakata seed), under reduced pressure inoculation and low-temperature, low-humidity drying under the same conditions as in Example 1. went.
  • HAI00377 was cultured and collected in the same manner as in Example 1.
  • the immersion treatment of the antagonistic microorganism was performed under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension. Excess water was removed in the same manner as in Example 1, followed by ventilation drying at 30 ° C. The drying time was 48 hours. The humidity of the room at this time was about 45%.
  • the survival rate of HAI00377 strain in seeds was determined by the following method. 50 seeds (10 seeds X
  • the germination rate of seeds was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on the filter paper soaked with deionized water and cultivated for 14 days at 25 ° C—constant temperature / dark conditions. Those that confirmed the presence of hypocotyls and radicles were counted, and the percentage was determined from the number to determine the germination rate.
  • Table 5 shows the results of Example 4 and Comparative Example 4.
  • the survival rate of the HAI00377 strain was 60%, and the HAI00377 strain was inoculated and dried by ventilation at 30 ° C (Comparative Example 4).
  • the survival rate of the HAI00377 strain was 10%, and the survival rate of Example 4 was higher than that of Comparative Example 4.
  • the germination rate of seeds was 88%, indicating that there was no problem. This force is also observed in the botany seeds. It became clear that the method of low-temperature, low-humidity drying after inoculating the product under reduced pressure was effective in fixing antagonistic microorganisms to the seeds of cabotya.
  • Comparative example 4 100 10 93
  • HAI00377 gram-negative bacteria (Pseudomonas putida) HAI00377 as antagonistic microorganisms to green soybean seeds (variety: Amagamine, Sakata Seed Co., Ltd.) under reduced pressure inoculation and drying at low temperature and low humidity using the same conditions as in Example 1. Went. The humidity in the desiccator after drying at low temperature and low humidity was about 20%.
  • HAI00377 was cultured and collected in the same manner as in Example 1.
  • the immersion treatment of the antagonistic microorganism was performed under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension. Excess water was removed in the same manner as in Example 1, followed by ventilation drying at 30 ° C. The drying time was 48 hours. The humidity of the room at this time was about 45%.
  • the survival rate of the HAI00377 strain in seeds was determined by the following method. 50 seeds (10 seeds X).
  • the germination rate of seeds was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on the filter paper soaked with deionized water and cultivated for 14 days at 25 ° C—constant temperature / dark conditions. Those that confirmed the presence of hypocotyls and radicles were counted, and the percentage was determined from the number to determine the germination rate.
  • Example 5 shows the results of Example 5 and Comparative Example 5.
  • the survival rate of the HAI00377 strain was 96%, and the HAI00377 strain was inoculated and dried at 30 ° C by ventilation (Comparative Example 5).
  • the survival rate of the HAI00377 strain was 30%, and the survival rate of Example 5 was higher than that of Comparative Example 5.
  • the seed germination rate was 27%.
  • the quality of the seeds used this time which was 39% in the comparative example, was low, and the effect of the treatment conditions is considered to be small. From this, it was clarified that the method of low-temperature, low-humidity drying after inoculating microorganisms under reduced pressure is effective for colonization of green soybean seeds.
  • Antagonistic organism survival rate (%) Minako germination rate (3 ⁇ 4>
  • the vacuum inoculation of Syudomonas strain HAI00377 was performed by the following method. 200g spinach seeds were wrapped in a mesh and placed in a strawberry pack, a weight was placed so as not to float, and 300ml of the bacterial suspension was poured so that the seeds would sink.
  • the vacuum inoculation method was a negative pressure condition using a compact air pump NUP-2 (manufactured by Azwan). The pumping capacity was 12 1 / min, the ultimate pressure was 300 mmHg, and the time to reach the maximum negative pressure condition was about 2 minutes. After 5 minutes at maximum negative pressure, the cock was slowly opened to return to normal pressure. The time to return to normal pressure was about 20 seconds. In order to remove excess moisture, ventilation drying was performed at 30 ° C for 1 hour using a constant temperature dryer (MOV-212F) (manufactured by SANYO).
  • MOV-212F constant temperature dryer
  • the film coating process will be described below.
  • the coated photo obtained above The whole amount of spinach seeds (about 200 g) was stirred well while adding 8 ml of a binder solution made of polybulu alcohol little by little.
  • the low-temperature and low-humidity drying was performed by placing a desiccator in a low-temperature chamber at 15 ° C and placing silica gel as a desiccant in it.
  • the above seeds were placed in a beaker, placed in a desiccator and dried for 48 hours. At this time, the humidity in the desiccator was about 20%.
  • the survival rate of the HAI00377 strain in seeds was determined by the following method. 50 seeds (10 seeds x 5 repeats) were placed on King B agar medium supplemented with streptomycin and cultured at 25 ° C for 96 hours. After culturing, colonies of HAI00377 strain were counted, and the percentage was determined from the number to determine the survival rate.
  • Gram-positive bacteria Bacillus cereus
  • KI2N strain was cultured in King B agar medium, suspended in distilled water supplemented with 1/5000 Tween 80, and 10 1Q cfo / ml bacterial suspension. was used as the inoculation source.
  • the survival rate of Bacillus cereus KI2N strain in seeds was determined by the following method. 50 seeds and 10 seeds were suspended in 10 ml of sterile water to prepare a 10-fold diluted solution. By treating these bacterial suspensions at 80 ° C for 10 minutes, microorganisms other than Bacillus forming heat-resistant spores were killed. The bacterial suspension after heat treatment was applied onto YG medium and cultured at 30 ° C for 2 days to check for the appearance of colonies. The criteria were 4 levels (1: No colony. +: Colonies were detected at a dilution rate of 50/10 ml. + +: Colonies were detected at a dilution rate of 10/10 ml. + + +: Colonies are detected at a dilution rate of 1 grain / 10ml;).
  • Trichoderma harjnamam kubota stock was sold by Katae Co., Ltd. Trichoderma harzianum kubota strain is cultured in PDA medium, suspended in distilled water supplemented with 1/5000 Tween80, and 10 7 cfo / ml of bacterial suspension is prepared. Inoculated source.
  • the survival rate of Trichoderma harzianum Kubota strain was determined by the following method. 50 seeds Eight five grains were suspended in 10 ml of sterilized water. A 10-fold dilution was also made. These bacterial suspensions were spread on a rose bengal agar medium by a dilution plate method. The cells were cultured at 25 ° C for 1 week, and judged by appearance of colonies peculiar to green Trichoderma. Judgment criteria were set to 4 levels (1: No colony +: Colonies were detected at a dilution rate of 50 tablets / 10ml. + +: 5 tablets / 10m
  • Colonies are detected at a dilution ratio of 1.
  • + + +: Colonies are detected at a dilution rate of 0.5 grains / 10ml.
  • + + + +: Colonies are detected at a dilution rate of 0.05 grains / 10ml).
  • the germination rate of the antagonistic microorganism-coated seed was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on the filter paper soaked with deionized water and cultivated for 14 days under conditions of 20 ° C—constant temperature and dark black. Counts that confirmed the presence of hypocotyls and radicles were counted, and the percentage was calculated from the number to determine the germination rate.
  • Example 6 culture of Pseudomonas HAI00377, Bacillus cereus KI2N, and Trichoderma harzianum Kubota was performed and collected.
  • the immersion treatment of these antagonistic microorganisms was carried out under normal pressure conditions using the same amount of seed and the antagonistic microorganism suspension.
  • Excess water was removed in the same manner as in Example 1, followed by film coating treatment and air-drying under conditions of 30 ° C. The drying time was 48 hours. The humidity in the room at this time was about 45%.
  • Example 6 and Comparative Example 6 are shown in Table 7.
  • the survival rate of HAI00377 strain was 100% in the group that had been dried at 15 ° C after inoculation under reduced pressure (Example 6-1), and the group that had been dried by ventilation at 30 ° C after inoculation of HAI00377 strain (comparison) In Example 6-1), the survival rate of HAI00377 strain was 92%, and Example 6-1 had a higher survival rate than Comparative Example 6-1.
  • Example 6- For the KI2N strain, the group (Example 6-2) which was dried at 15 ° C after inoculation under reduced pressure (Example 6-2) was the group which was dried by ventilation at 30 ° C after inoculation with the KI2N strain (Comparative Example 6- The survival rate was clearly higher than in 2).
  • Example 7 Gram-negative bacteria (Syud 'Monas bacterium)' Gram-positive bacteria (Bacillus ⁇ ⁇ ⁇ filamentous fungi (Trichoderma)) ffi contact or low temperature Low drought drying is fungus
  • Rice seeds (variety: Hinohikari, Miyazaki Prefecture) were inoculated under reduced pressure and dried at low temperature and low humidity under the same conditions as in Example 1 using the Gram negative bacterium (Pseudomona s putida) HAI00377 strain.
  • the survival rate of HAI00377 strain in seeds was determined by the following method. 50 seeds (10 seeds x 5 repeats) were placed on King B agar medium supplemented with streptomycin and cultured at 25 ° C for 96 hours. After incubation, count the HAI00377 strain colonies and calculate the percentage from the number. Survival rate.
  • Bacillus cereus KI2N strain was cultured on King B agar and suspended in distilled water supplemented with 1/500 0 Tween 80 to prepare a 10 1Q cfo / ml bacterial suspension. As an inoculation source.
  • the survival rate of Bacillus cereus KI2N strain in seeds was determined by the following method. 50 seeds and 10 seeds were suspended in 10 ml of sterile water to prepare a 10-fold diluted solution. By treating these bacterial suspensions at 80 ° C for 10 minutes, microorganisms other than Bacillus forming heat-resistant spores were killed. The bacterial suspension after heat treatment was applied onto YG medium and cultured at 30 ° C for 2 days to check for the appearance of colonies. The criteria were 4 levels (1: No colony. +: Colonies were detected at a dilution rate of 50/10 ml. + +: Colonies were detected at a dilution rate of 10/10 ml. + + +: Colonies are detected at a dilution rate of 1 grain / 10ml;).
  • Trichoderma harzianum kubota strain was cultured in PDA medium, suspended in distilled water supplemented with 1/5000 Tween 80, and 10 7 cfo / ml bacterial suspension was prepared. The source.
  • the survival rate of Trichoderma harzianum Kubota strain was determined by the following method. 50 seeds and 8 seeds were suspended in 10 ml of sterile water. A 10-fold dilution was also made. These bacterial suspensions were spread on a rose bengal agar medium by a dilution plate method. The cells were cultured at 25 ° C for 1 week, and judged by appearance of colonies peculiar to green Trichoderma. There were 4 criteria (1: no colony +: colonies were detected at a dilution rate of 50/10 ml. + +: Colonies were detected at a dilution rate of 5/10 ml. + + +: Colonies are detected at a dilution rate of 0.5 grains / 10 ml + + + +, colonies are detected at a dilution ratio of 0.05 grains / 10 ml;).
  • the germination rate of the antagonistic microorganism-coated seed was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on the filter paper soaked with deionized water and cultivated for 14 days under conditions of 20 ° C—constant temperature and dark black. Counts that confirmed the presence of hypocotyls and radicles were counted, and the percentage was calculated from the number to determine the germination rate.
  • Example 7 The results of Example 7 and Comparative Example 7 are shown in Table 8.
  • S. pneumoniae strain HAI00377 the survival rate of antagonistic microorganisms in the three conditions of Examples 7-1 to 7-3 was 82 to 100%, whereas HAI00377 strain was air-dried at 30 ° C after inoculation.
  • the ward (Comparative Example 7-1) reached 56%.
  • a high germination rate of 90% or more was shown.
  • Laboratory Example 8 Each fine cow) Coating ⁇ ⁇ ⁇
  • Example 1 and Comparative Example 1 and rice seeds of Example 7 and Comparative Example 7 were Using carrot pellet seeds of Example 1 and Comparative Example 1 and rice seeds of Example 7 and Comparative Example 7 at 30-35% humidity and 5 ° C, 15 ° C, and 25 ° C, respectively. Thereafter, the number of viable bacteria was measured for each condition.
  • the survival rate was about 10% in Comparative Example 7-1 at storage temperatures of 5 ° C and 15 ° C, but Examples 7-1 to 7- The survival rate was as high as 26% to 100% in 3, especially 84% to 100% in Example 7-3.
  • Comparative Example 7-II Bacillus bacteria could not be detected, but under the conditions of Example 7-6, at 5 ° C and 15 ° C. Bacillus bacteria were detected.
  • Example 9 Effect of control of seeds coated with fine beef cattle against cruciferous clubroot against Gram shade as an antagonistic microorganism against one broccoli seed (variety: green cocoon, Sakata seed) Pseudomonas putida HAI00377 strain was coated under the same conditions as in Example 3 and Comparative Example 3 to prepare microbial-coated seeds.
  • the following disease score was used for disease investigation.
  • Disease score 0 No disease was observed.
  • 1 The root bump is slightly growing on the side root.
  • 2 The root humps grow slightly on the main and side roots.
  • 3 The root nodules are markedly enlarged and enlarged. The severity was calculated by the following formula.
  • Disease severity [(Development score X Number of individuals in each disease score) X 100] / [3 X Survey population]
  • the control value was calculated by the following formula.
  • Control value 100— [Severity of treated area Z Severity of untreated area X 100]
  • lettuce seeds are treated with an endophytic bacterium that is antagonistic to the genus Orbidium that retains lettuce big bain virus.
  • an antagonistic endobacterium was used as the antagonistic microorganism.
  • Reference Example 2 Antagonistic internal cattle to lettuce film-coated seeds. Bacterial inoculation and drying are antagonistic. Ushida 3 ⁇ 4i cattle.
  • Syudumonas strain FPH-2003 was inoculated into a 9 cm petri dish containing King B agar medium, and statically cultured at 25 ° C for 2 days. Bacteria were collected using a corn large stick and used as an inoculum.
  • the bacterial density of the FPH-2003 strain in seeds was determined by the following method. 100 seeds were suspended in 10 ml of sterilized water, and 10-fold, 100-fold, 1000-fold and 10000-fold dilutions were prepared. These bacterial suspensions were spread on a King B agar medium supplemented with streptomycin by the dilution plate method. The cells were cultured at 25 ° C for 96 hours, and judged by the appearance of colonies. [0117] The results of Reference Example 2 are shown in Table 12.
  • Lettuce seeds inoculated with FPH-2003 strain using PVA film coating agent had a fungus density of 6.2 X 10 4 cfo / grain before drying in any drying temperature range, but it was completely destroyed after 6 hours of drying. It was. Also, lettuce seeds inoculated with FP H-2003 strain using PVAc film coating agent had a bacterial density of 1.2 X 10 5 cfu / grain before drying at any drying temperature range. It was annihilated. This proved that it was extremely difficult to survive the survival of the antagonistic endogenous bacteria after inoculating the lettuce seeds with the antagonistic endogenous bacteria.
  • Antibiotic Endogenous Fungus (cfu / grain) Film after 6 hours drying Drying temperature 0 hour dry 6 hour dry 24 hour dry
  • PVA film 25 6. 2 X 10 4 0 0 0
  • Agent 35 6. 2 X 10 4 0 0 0 0
  • Agent 35 1. 2 X 105 1. 6 X 10 2 0 0. 1
  • Reference Example 3 Antagonistic Inner Cattle. Antagonistic Inner Cattle Due to Moisture Content of Lettuce Pellet Seeds Inoculated with Bacteria. Effects of Bacteria on Cattle. Existence
  • Pseudomonas sp. FPH-2003 strain (FERM B P-10665) was used as an antagonistic endogenous bacterium.
  • Syudumonas strain FPH-2003 was inoculated into a 9 cm petri dish containing King B agar medium and cultured at 25 ° C for 2 days. Bacteria were collected using a corn large stick and used as an inoculum.
  • the operation of spraying the antagonistic endogenous bacterial dispersion solution and adding a small amount of the granulating powder was repeated until the antagonistic endogenous bacterial dispersion solution disappeared. Then, the granulator noinder
  • the pellets were granulated while switching to 3.0% polyvinyl alcohol and alternately adding a granulating binder and granulating powder. After granulation, only a pellet having a particle size of 3.0 to 3.5 mm was selected using a sieve. This seed was placed in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity in the room at this time was about 45%.
  • the same method as in Reference Example 2 was used to measure the density of the FPH-2003 strain in pelleted granulated seeds.
  • the survival rate of the FPH-2003 strain in pelleted granulated seeds was determined by the following method. 50 pellet seeds (10 seeds ⁇ 5 repeats) were placed on streptomycin-added King B agar medium and cultured at 25 ° C. for 96 hours. After culture, colonies of the FPH-2003 strain were counted, and the percentage was also determined as the survival rate.
  • Pseudomonas sp. FPH-2003 strain As an antagonistic endogenous bacterium, Pseudomonas sp. FPH-2003 strain (FERM B P-10665) was used. Pseudomonas sp. Strain FPH-2003 was inoculated into a 9 cm petri dish containing King B agar and cultured at 25 ° C for 2 days. Bacteria were collected using a corn large stick and suspended in sterile water to which 1/5000 Tween 80 was added. When the number of viable bacteria was measured by the dilution plate method, it was about 1 ⁇ 10 1Q ciU / ml.
  • the pellet granulation process will be described below.
  • the whole amount of coated seeds (about 100 g) obtained above is put into a rotating granulator Pelletizing unit (SEED PROCESSIN G), and while stirring the seeds, 3.0% Bull alcohol was sprayed onto the seeds and moistened. After the seeds were sufficiently moistened, a predetermined amount of granulating powder (a mixture of diatomaceous earth / carbonic acid, etc.) was added. Further, pellets were granulated while alternately adding a granulating binder and a granulating powder. After granulation, using a sieve, only pellets having a diameter of 3.0 to 3.5 mm were selected. The seeds were placed in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity of the room at this time was about 45%.
  • FPH-2003 strain was cultured and collected in the same manner as in Example 10.
  • the immersion treatment of FPH-2003 strain was performed under normal pressure conditions using 100 g of lettuce seeds (variety: logic) and an antagonistic endogenous bacterial suspension. Excess water was removed and pellet granulation was performed in the same manner as in Example 10. The seeds were placed in a 30 ° C hot air circulating dryer and dried for 24 hours. The humidity of the room at this time was about 45%.
  • Example 10 For the viability of the FPH-2003 strain in pelleted granulated seeds, the same method as in Reference Example 3 was used. [0126] Table 14 shows the results of Example 10 and Comparative Example 10. In the case where FPH-2003 strain was pelleted after vacuum inoculation (Example 10), the survival rate of FPH-2003 strain hardly decreased even when dried, and the moisture content was 1.1%, which was the moisture content of normal commercial pellets. Even when the rate was less than 2%, it was as high as 93%.
  • Ratio reduction example 1 0 11. 7 93
  • Example 11 Cattle in cattle piles on lettuce eggplants. Effects of bacteria contacting and drying methods on cattle piles in seedlings. Survival of bacteria and germination of seeds
  • Pseudomonas sp. FPH-2003 strain (FERM B P-10665) was used. Under reduced pressure inoculation and pellet granulation were performed under the same conditions as in Example 10. This seed was dried at low temperature and low humidity by the following method. A desiccator was placed in a low-temperature room at 15 ° C, and silica gel as a desiccant was placed therein. The pelleted seeds were placed in a desiccator and allowed to dry for 24 hours. The humidity in the desiccator at this time was about 20%.
  • FPH-2003 strain was dipped in the same manner as in Comparative Example 10, and pellet granulation was performed. This The seeds were placed in a 30 ° C hot air circulating dryer and dried for 24 hours. The humidity of the room at this time was about 45%.
  • the survival rate of the FPH-2003 strain in pelleted granulated seeds was the same as in Reference Example 3. Moreover, the germination rate of seeds was confirmed by the following method. 150 seeds (50 seeds x 3 repeats) were placed on a filter paper soaked with deionized water and cultivated under dark conditions at 20 ° C for 14 days. Counts that confirmed the presence of hypocotyls and radicles were counted, and the percentage of their strength was determined as the germination rate.
  • Example 11 shows the results of Example 11 and Comparative Example 11.
  • the survival rate of the FPH-2003 strain was 100%.
  • the survival rate of the FPH-2003 strain was 11%, and the survival rate of Example 11 was higher than that of Comparative Example 11.
  • the seed germination rate also showed a high value of over 95%, indicating that there was no problem. Based on these results, it was clarified that letting lettuce seeds inoculate antagonistic endogenous bacteria under reduced pressure and then drying at low temperature and low humidity is effective for colonizing antagonistic endogenous bacteria.
  • Example 1 100 100 100 2% or less 98
  • Comparative Example 1 1 100 11 2% or less 96
  • FPH-2003 strain was inoculated under reduced pressure, granulated and dried at 15 ° C and dried at low temperature and low humidity. The seeds were sealed, and (1) temperature 5 ° C, humidity 20%, (2) temperature 15 ° C, Humidity 40%, (3) Temperature 20/30 ° C temperature change • Stored for 3 months under 3 different conditions of 80% humidity. At a storage period of 0 month ⁇ 1 month ⁇ 3 months, the survival rate and seed germination rate of the FPH-2003 strain were investigated.
  • Example 12 The results of Example 12 are shown in Table 16. [0133] In the group where the lettuce pellet seeds were stored at a temperature of 5 ° C and humidity of 20% (Example 12-1), the survival rate of the FPH-2003 strain was 96% after 1 month of storage and 3 months of storage. Later it was 36%. On the other hand, in the plot where the seeds were stored at a temperature of 15 ° C and humidity of 40% (Example 12-2), the survival rate of the FPH-2003 strain was 30% after 1 month of storage and 0% after 3 months of storage. Met.
  • the survival rate of the FPH-2003 strain was 4% after 1 month of storage and 0% after 3 months of storage. %Met.
  • all the plots showed a high dimension value of 93% or more, and it was found that there was no problem.
  • These powers are obtained by inoculating antagonistic endogenous bacteria in lettuce seeds under reduced pressure, and after granulation, drying the pelleted seeds under low-temperature and low-humidity conditions and storing them under low-temperature and low-humidity conditions.
  • the survival rate has increased, and it has been shown that it is effective in establishing antagonistic endogenous bacteria on seeds for a long period of time.
  • Example 12-1 (1) 5 ° C 20% 100 96 36 98 96 97
  • Example 12-2 00 30 0 93 95 99
  • Example L2-3 ( 3) 20/30 ⁇ : Temperature change ⁇ 80% 100 4 0 93 97 93
  • Pseudomonas sp. FPH-2005-1 strain (FERM BP-10664) was used. Under reduced pressure inoculation and pellet granulation under the same conditions as in Example 11, low temperature and low humidity drying was performed. The seeds coated with the antagonistic endophytic bacteria and the normal seeds (the seeds coated with the antagonistic endophytic bacteria) were sown in a planter (25 cm ⁇ 60 cm) filled with Big Bain disease contaminated soil, and the glass greenhouse Nurtured within. Twenty-six days after sowing, lettuce seedlings were extracted, and the number of Olpidium brassicae zoospores formed at the roots was examined under a biological microscope.
  • Example 14 Antagonistic inner cow against lettuce big bain's disease.
  • Pseudomonas sp. FPH-2005-1 strain (FERM BP-10664) was used. Under reduced pressure inoculation and pellet granulation under the same conditions as in Example 11, low temperature and low humidity drying was performed.
  • the seeds coated with the antagonistic endophytic bacteria and the normal seeds were sown in a planter (25 cm ⁇ 60 cm) filled with Big Bain disease contaminated soil, and the glass greenhouse Nurtured within.
  • the disease was investigated 80 and 110 days after sowing. The number of surveys was 30 each. For normal seeds, the disease rate was 30.0% after 80 days of sowing and 100% after 110 days of sowing.
  • Pseudomonas sp. FPH-2005-1 strain As an antagonistic endogenous bacterium, Pseudomonas sp. FPH-2005-1 strain (FERM BP-10664) was used. Pseudomonas (Pseu domonas sp.) FPH-2005-1 strain was inoculated into a 9 cm petri dish containing King B agar medium, and cultured at 25 ° C for 2 days. Corn Large Stick The cells were collected using and suspended in sterile water to which 1/5000 Tween 80 was added. When the number of viable bacteria was measured by the dilution plate method, it was about 1 ⁇ 10 9 cfo / ml.
  • the seed germination rate was determined by placing 150 pellet seeds (50 seeds x 3 repeats) on filter paper soaked with deionized water and cultivating them under dark conditions at 20 ° C for 14 days. Counts were confirmed of the presence of hypocotyls and radicles, and the percentage was calculated from the number to determine the germination rate.
  • the pressure control valve of the pump MDA-15 was adjusted to change the maximum negative pressure condition.
  • the return time to normal pressure was adjusted by adjusting the opening and closing of the air holes.
  • Example 15-1 From the results of Example 15-1, it was proved that there was no problem in the bacteria detection rate and germination rate in the range of maximum negative pressure of 150 mmHg to 680 mmHg. From the results of Example 15-2, it was proved that there was no problem in the detection rate and germination rate of bacteria when the return time from the maximum negative pressure to normal pressure was in the range of 25 to 50 seconds. From the results of Example 15-3, it was found that the detection rate of the bacteria was slightly reduced when the maximum negative pressure retention time was 1200 seconds to 3600 seconds, compared to 300 seconds.
  • Example 16 Cattle in cattle piles to lettuce eggplant. Bacteria contacting and drying methods are cattle in cattle piles.
  • FPH-2005-1 strain (FERM BP-10664) was cultured in the same manner as in Example 15, and vacuum inoculation similar to Example 10 and low temperature and low humidity drying, and immersion inoculation under normal pressure conditions similar to Comparative Example 10 A test was conducted in combination with warm air drying.
  • Endogenous bacteria were detected by placing pelleted seeds into a 96-well microwell, streptomycin 200 ppm, thiofamate methyl 1,000 ppm, King B liquid medium 100 ⁇ 1 injection, and 25 ° C After culturing for 48 hours, UV light of 340 nm was irradiated and the wells that showed fluorescence were counted. The fluorescence intensity was classified into three levels (+: faint fluorescence was observed. + +: Fluorescence was observed. +++: strong fluorescence was confirmed;). Then, the percentage of the wells showing each fluorescence intensity with respect to all the wells was obtained.
  • Example 16-1 Normal pressure inoculation Low temperature and low humidity drying 2. 9 3. 1 96. 9 0.0 layer. 0
  • Example 16-2 Normal pressure inoculation Low temperature and low humidity drying 2 * 4 0. 0 100. 0, 0 100. 0
  • Example 16-3 Vacuum inoculation 1, S 83. 3 0. 0 0. 0 83. 3
  • Example 16-4 Inoculation under reduced pressure Drying with warm air L 1 92. 7 0. 0 0. 0 92. 7
  • Example 16-5 Vacuum inoculation Drying at low temperature and low humidity 3. 0 1. 0 93. 0 1. 0 100. 0
  • Example 16 Vacuum inoculation Drying at low temperature and low humidity 3. 0 1. 0 99. 0 0. 0 100. 0
  • Example 17 Antagonistic internal cattle. Bacteria coated seeds inhibit O. brassicae's infection of gonorrhoeae, number of colonizations on lettuce roots Disease severity (pot test)
  • a 15 cm diameter ice cream pack was filled with Big Bain disease contaminated soil, 15 seeds of antagonistic endogenous bacterial coated seeds were sown, and after 20 days, the roots were immersed in 0.1% dipotassium hydrogen phosphate solution and started swimming.
  • the zoospores were measured with a microscope.
  • the roots were surface sterilized with ethanol, and after grinding, the number of antagonistic endophytic bacteria colonizing the roots was measured by a dilution plate method using King B medium containing 200 ppm streptomycin.
  • King B medium containing 200 ppm streptomycin the extent of Big Bain's symptoms was investigated. The results are shown in Table 21. It was confirmed that antagonistic endophytic bacteria were established at the root of lettuce.
  • Control value 100- [Severity of treated area Z Severity of untreated area X 100]
  • lettuce seeds can be obtained by inoculating lettuce seeds under reduced pressure, inoculating lettuce seeds with antagonistic endogenous bacteria, drying under low-temperature and low-humidity conditions, and a combination thereof. Survival rate of antagonistic endogenous bacteria inoculated into seeds is remarkably high Obviously. Further, the antagonistic endophytic corinlet lettuce seed prepared based on the present invention showed a high control value against lettuce big bain disease. By using the present invention, it becomes possible to provide lettuce seeds that are highly effective in controlling lettuce big bain disease and have high storage stability at low cost and in a simple manner.

Abstract

 本発明は、病害防除効果が高く保存安定性の高い拮抗微生物コーティング種子を提供することを目的とする。  本発明は、種子に拮抗微生物を減圧接種すること、拮抗微生物を接種した種子を低温低湿条件下で乾燥させること、またはその両方を組み合わせることにより、拮抗微生物コーティング種子における拮抗微生物の生存率を飛躍的に高めることを可能にする。

Description

明 細 書
拮抗微生物コーティング種子、その製造方法、及び作物における病害の 防除方法
技術分野
[0001] 本発明は、拮抗微生物コーティング種子、その製造方法、及び作物における病害 の防除方法に関する。
背景技術
[0002] 近代農業において、農薬'肥料の使用が作物の生産性を飛躍的に高めたことは明 らかである。また、農薬による防除体制が整い、より生産効率の高い単一作物の連作 が行われるようになつてきた。ところが、化学肥料 ·農薬を使用した集約型農業生産 において、連作障害、特に土壌病害の発生が重要な問題となってきている。土壌病 害の被害額は日本国内だけで 1兆円にも達するという試算がなされており、これに対 する農薬の使用量も年々増カロしている。し力しながら、化学肥料 '化学農薬の人間の 健康や環境への影響が問題となってきており、肥料 ·農薬の使用量を削減する為の 努力が進められてきている。その中の一つに、拮抗微生物を用いた生物防除技術の 開発がある(非特許文献 1、 2)。これまでにバチルス (Bacillus)属細菌、シユードモナ ス(Pseudomonas)属細菌、非病原性ェルビ-ァ(Erwinia)属細菌、ストレプトマイセス (Streptomyces)属放線菌、非病原性フザリウム(Fusarium)属糸状菌、トリコデルマ(T richoderma)属糸状菌、グリオクラディウム(Gliocladium)属糸状菌、ぺ-シリウム(Peni cillium)属糸状菌、タラロマイセス(Talaromyces)属糸状菌、ピシゥム(Pythium)属糸 状菌、などが単離され、防除効果が確認されている。しかしながら、これらの生物防 除は、広く普及する技術にまではなっていない。その原因の一つとして、微生物資材 の製造コストが高ぐ広い圃場に施用する事は経済的でないし、その割には効果が 不安定であることがある。その為、より少量の拮抗微生物を用いて、より安定した効果 を出す為に、セル育苗苗の段階での施用も検討されている (特許文献 1、 2)。さらに、 最も少量で簡単な処理方法として、種子にコーティングする方法が考えられている( 特許文献 3、 4、非特許文献 3)。しかしながら、拮抗微生物を種子に処理した場合、 種子の乾燥、貯蔵条件が拮抗微生物の生存条件と合致しない事が多ぐ拮抗微生 物の生存率は低下しやすい。種子病害防除方法として、病原に対して拮抗性をもつ 有効微生物で種子を処理する方法が報告されている (特許文献 5、 6)。この中では、 まず物理的 'ィ匕学的手法による消毒を施し、種子伝染性病害の保菌量を低下させ、 その後に有効微生物を種子へ処理している。その処理方法は、浸漬接種した後に通 風乾燥するなど、いくつか示されているが、実質的にいずれも処理後に保存をせず 播種をすることが前提となっている。その為、実用的な長期の保存安定性を持つ処 理ではないため、商業的な活用は難しぐいまだに実用化には至っていない。また、 ポット試験の結果が、多様な現場土壌においては再現が難しいことも一因と考えられ る。
[0003] また、非特許文献 4及び 5では、拮抗微生物ではな!/、が有用な微生物である根粒 菌 Rhizobium melilotiを減圧条件下でアルフアルファ種子に吸着させることが試みら れている。し力しながら、非特許文献 4及び 5に記載の根粒菌減圧吸着種子は、コー ティング、接着剤により根粒菌を接種した種子と比較して、低温、特に室温状態で生 菌数の減少が著しぐ根粒着生能力の低下がみられた。有用な微生物を種子に減圧 接種する技術が、微生物の保存安定性などの観点力も有利であるという報告はなさ れていない。
[0004] また、種子に細菌を接種する方法として、非架橋性ポリサッカライドからなる易流動 性の組成物を乾燥し、種子に接触させる試験 (特許文献 10)が報告されているが、結 果的にコーティング種子の中で細菌の生存が確認されたのは接種後数日間であり、 コーティング種子を被覆する組成物の中で細菌を長期に生存させることは非常に難 しい。
[0005] また、レタス種子のようにペレット造粒を行う必要のある形態の種子の場合、種子へ の拮抗微生物の有効な定着はより一層困難であった。なぜなら、実用的なペレット種 子製造は、造粒工程'ペレットの粒径および形状の選別工程'乾燥工程カゝらなるが、 乾燥工程では加温した空気を送風することから、加温と乾燥により内生細菌は容易 に死滅してしまううえに、ペレット種子製造後から播種までの貯蔵期間中にも内生細 菌が死滅しやす!/、からである。 [0006] このように病害防除効果が高く保存安定性の高い拮抗微生物コーティング種子の 開発が望まれて!/ヽるが、実用的な技術は開発されて!ヽな ヽ。
特許文献 1:特開平 9-308372号公報
特許文献 2 :特開平 11-335217号公報
特許文献 3:特開平 10-203917号公報
特許文献 4:特開平 11-4606号公報
特許文献 5:特開 2001-346407号公報
特許文献 6:特開 2002-003322号公報
特許文献 7:特開 2003-34607号公報
特許文献 8:特開平 8-268826号公報
特許文献 9:特開平 7-163334号公報
特許文献 10:特許 2885805号公報
非特許文献 1 :微生物の資材化:研究の最前線、(2000)、編集 鈴井孝仁他、ソフトサ ィエンス社
非特許文献 2 : Annual Review of Phytopathology, 31(1993), 53-80
非特許文献 3 :日本植物病理学会報 第 68卷、第 2号、 p240
非特許文献 4 :日本草地学会会誌 第 42卷、第 1号、 4月、 P7〜12 アルファルファ根 粒菌接種コート種子の保存方法と根粒形成
非特許文献 5 :日本草地学会会誌 第 44卷、第 1号、 4月、 Pl〜6 ァカクローバ種子 の石灰コートおよび減圧吸着種子に用 ヽた接種源系統による根粒の専有割合 発明の開示
発明が解決しょうとする課題
[0007] 本発明は、病害防除効果が高く保存安定性の高い拮抗微生物コーティング種子を 提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、上記の課題を解決すベぐ種子への拮抗微生物の安定導入方法と 保存安定性およびその防除効果にっ 、て検討を行った。
[0009] その結果、本発明者らは、驚くべきことに、種子に拮抗微生物を減圧接種すること、 拮抗微生物を接種した種子を低温低湿条件下で乾燥させること、またはその両方を 組み合わせることにより、拮抗微生物がコーティングされた種子の状態での拮抗微生 物の生存率を飛躍的に高めることが可能となることを見出した。本発明者らはまた、レ タス種子のようにペレット造粒が必要な種子に対してもこの方法が有効であることを見 出した。すなわち、種子のペレット造粒工程の前に拮抗微生物を減圧接種すること、 拮抗微生物を接種した種子をペレット造粒工程の後、従来の加温通風乾燥ではなく 低温低湿条件下で乾燥させること、またはその両方を組み合わせることにより、拮抗 微生物がコーティングされた種子における拮抗微生物の生存率を飛躍的に高めるこ とが可能となることを見出した。また、こうして製造された拮抗微生物コーティング種子 は、播種、発芽に対しても問題がなぐ作物に対する土壌病害に対して高い防除価 を示す事を見出した。上記の本発明者らにより初めて確認された現象は、例えば以 下のように説明することができる。減圧接種法により拮抗微生物は種子の表皮の内側 まで導入させることができる。種子の表皮の内側は、乾燥した種子表面とは異なり、 種子が生存できるだけの水分が保持されていることから、種子の表皮の内側まで導 入させた拮抗微生物はその水分を利用して生存することができ、拮抗微生物の生存 率が飛躍的に高まるものと推定される。また、拮抗微生物接種後に種子を低温低湿 条件下で乾燥処理することにより、拮抗微生物が温度によりダメージを受けることが 少なくなるため、拮抗微生物の生存率が飛躍的に高まる。
[0010] 本発明者らは更にまた、こうして製造された拮抗微生物コーティング種子は、低温 低湿条件下で貯蔵することにより、長期間安定保存できることを見出した。
[0011] 即ち本発明は、より具体的には、下記の発明を包含する。
[0012] (1)種子に拮抗微生物を減圧接種することを特徴とする拮抗微生物コーティング種 子の製造方法。
[0013] (2)種子に拮抗微生物を減圧接種した後に、低温低湿条件下で乾燥することを更な る特徴とする(1)記載の方法。
[0014] (3)種子に拮抗微生物を接種し、接種後に前記種子を低温低湿条件下で乾燥する ことを特徴とする拮抗微生物コーティング種子の製造方法。
[0015] (4) (1)〜(3)のいずれか 1つに記載の方法により製造された拮抗微生物コーティン グ種子。
[0016] (5)作物の種子に拮抗微生物を減圧接種することを特徴とする、作物における病害 の防除方法。
[0017] (6)作物の種子に拮抗微生物を減圧接種した後に、低温低湿条件下で乾燥すること を更なる特徴とする(5)記載の方法。
[0018] (7)作物の種子に拮抗微生物を接種し、接種後に前記種子を低温低湿条件下で乾 燥することを特徴とする、作物における病害の防除方法。
[0019] (8)拮抗微生物を接種した作物の種子を、乾燥終了後から播種までの間に、低温低 湿条件下で貯蔵することを更なる特徴とする(5)〜(7)のいずれか 1つに記載の方法
[0020] なお(8)にお 、て、「拮抗微生物を接種した作物の種子」とは、 (8)が(5)又は(6) に従属する場合には、「拮抗微生物を減圧接種した作物の種子」を意味する。
[0021] また(5)〜(8)においては、種子から作物を育成するのに必要な各工程、例えば拮 抗微生物が接種され乾燥された種子を播種する工程も含まれ得る。
[0022] (1)〜(8)の典型的な形態は、種子がレタス種子であり、拮抗微生物が、レタスビッ グベインウィルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌であ り、且つ、防除される病害がレタスビッグべイン病である形態である力 これには限定 されない。
発明の効果
[0023] 本発明は、病害防除効果が高く保存安定性の高い拮抗微生物コーティング種子、 その製造方法、及び前記拮抗微生物コーティング種子を用いた、作物における病害 の防除方法を提供する。
[0024] 本明細書は本願の優先権の基礎である日本国特許出願 2005— 270616号およ び日本国特許出願 2005— 271020号の明細書に記載される内容を包含する。 発明を実施するための最良の形態
[0025] 以下、本発明について詳細に説明する。
[0026] 本発明において「拮抗微生物コーティング種子」とは、拮抗微生物を種子にコーテ イングしたものを言う。すなわち、拮抗微生物が種子にコーティングされている限り、 裸種子のままであっても良いし、フィルムコート種子、ペレット種子、ゲル被覆種子、 シーダ一テープ、シードグラフ、プライミング処理種子など様々な加工処理が施され た種子であっても良い。レタス種子等においては、通常は、ペレット造粒によりペレツ ト種子にカ卩ェされる。コーティングされた微生物の量は特に限定されないが、 1〜^ 10 cells/粒の範囲内で含まれていれば良い。
[0027] 種子をペレット造粒する場合の造粒工程は、通常のペレット造粒機などを用いて造 粒すれば良ぐ特に制限はない。造粒サイズは、種子よりもわずかでも大きければ良 ぐ造粒層の厚さは、 1 nm〜50 mmの範囲であればよい。造粒後の形状は、球状また はラグビーボール状であるほうが好ましいが、特に制限はない。造粒後、粒径および 粒の形状による選別を行うことは、播種作業の効率を上げる上で好ま U、。
[0028] 本発明に用いる種子としては、特に限定するものではないが、例えばタマネギ、ネ ギなどのユリ科の種子、ホウレンソゥ、テンサイなどのァカザ科の種子、キャベツ、カリ フラワー、ブロッコリ一、ダイコンなどのアブラナ科の種子、ソラマメ、エンドゥなどのマ メ科の種子、ニンジン、セルリー、ミツバなどのセリ科の種子、レタス、シユンギク、ゴボ ゥなどのキク科の種子、トマト、ナス、ピーマンなどのナス科の種子、メロン、キユウリ、 スイカ、カボチヤなどのゥリ科の種子、イネ、トウモロコシ、コムギ、ォォムギ等のイネ科 の種子等の作物種子;パンジー、ビオラ、ペチュニア、トルコギキヨウ、ストック、ァスタ 一、シクラメン、プリムラ、キンギヨソゥ、ジ -ァ、マリーゴールド、アサガオ、ヒマヮリ、コ スモス、ラナンキュラス、ラベンダー、ルピナス、ミムラス、ポピー、べゴニァ、ネメシア、 ビン力、トレ-ァ、デルフィ-ユーム、ダイアンサス、ゼラ-ユーム、セン-チコゥ、スィ 一トビー、サノレビア、ガーベラ、ガザ-ァ、力レンジユラ、グロキシニア、ケィトウ、イン パチ ンス、ァネモネ、アグラタム等の花卉種子;その他には飼料作物種子、牧草、 芝などの種子が挙げられる。
[0029] 本発明に用いる拮抗 (性)微生物としては、植物病原微生物に対して拮抗性を示す ものであれば特に限定されないが、例えば、グラム陽性細菌類として、バチルス (Bad llus)属細菌、ストレプトマイセス(Streptomyces)属放線菌、グラム陰性細菌類として、 シユードモナス(Pseudomonas)属細菌、非病原性エルビニァ(Erwinia)属細菌、糸状 菌類として、非病原性フザリウム(Fusarium)属糸状菌、トリコデルマ(Trichoderma)属 糸状菌、グリオクラディウム(Gliocladium)属糸状菌、ぺ-シリウム(Penicillium)属糸 状菌、タラロマイセス(Talaromyces)属糸状菌、ピシゥム(Pythium)属糸状菌、などが 挙げられる。この中には拮抗性内生細菌も含まれる。内生細菌とは、植物体内に感 染及び増殖することができるが、植物に病気を起こさせることができず、表面殺菌を 行った植物力 分離ができる細菌と定義することができる。内生細菌は種々の生理活 性物質を産生し、これらの働きによって内生細菌に感染した植物が病害に対して抵 抗性になったりする。この現象の一つとして、内生細菌によって引き起こされる全身 誘導抵抗性が考えられる。なお、当業者に自明であるが Rhizobium trifolii, Rhizobiu m meliloti等の Rhizobium属に属する根粒菌は有用な微生物ではあるが拮抗微生物 ではない。すなわち、本発明における「拮抗微生物」は根粒菌以外のものである。 具体的な拮抗微生物の例としては、下記の例などが知られている。バチルス セレ ウス KI2N株 (FERM P-17147,特許第 3140430号公報)は、複数の真菌に対して生 育抑制効果を示し、キユウリの苗立ち枯病を始めとするリゾクトニア ソラ - (Rhizocton ia solani)などに対して病害抑制効果を持つ。バチルス ズブチリス NCIB12376株 ( FERM P- 14647、特許 3554592号公報)、 NCIB12616株 (FERM P- 14646、同公報)は 、野菜、花卉の灰色かび病を始め多くの植物病害に対して防除効果を示す。シユー ドモナス属細菌による病害の防除 (非特許文献 1)としては、シユードモナス'プチダ FP -16株 (トマトの根面力 分離された菌株で、青枯菌に抗菌活性物質を産生し、圃場 においても高い青枯病発病抑制効果を有する菌株)、シユードモナス'フルォレツセ ンス FPH9601株(FERM BP- 5479)、およびシユードモナス 'フルォレツセンス FPT- 96 01株(FERM BP-5478)によるトマト青枯病の防除、シユードモナス'プチダ HAI0037 7株 (独立行政法人 産業技術総合研究所 特許生物寄託センター (茨城県つくば 巿東 1丁目 1番地 1中央第 6)に 2006年 8月 28日に、ブタペスト条約に基づく国際寄託 力 Sされ、受託番号 FERM BP-10666が付与されている)(非特許文献 1)によるァブラ ナ科根こぶ病の防除、シユードモナス'フルォレツセンス FPH9601株(FERM BP-547 9)、およびシユードモナス'フルォレツセンス FPT- 9601株(FERM BP- 5478)によるトマ ト青枯病の防除、シユードモナス(Pseudomonas sp.) FPH-2003株(独立行政法人 産業技術総合研究所 特許生物寄託センターに国際寄託され、受託番号 FERM BP -10665が付与されている(2006年 8月 18日に、原寄託〔2005年 9月 2日に国内寄託さ れた FERM P-20654〕よりブタペスト条約に基づく国際寄託へ移管されている))、 FPH -2005-1株 (独立行政法人 産業技術総合研究所 特許生物寄託センターに国際寄 託され、受託番号 FERM BP-10664が付与されている(2006年 8月 18日に、原寄託〔20 05年 9月 2日に国内寄託された FERM P-20653〕よりブタペスト条約に基づく国際寄託 へ移管されている))、シユードモナス sp.CAB- 02株 (FERM P- 15237,特許第 2884487 号公報)による、イネの細菌病防除 (モミゲンキ水和剤)などがある。ストレプトミセス sp . R-5株 (FERM BP-7179,特許第 3629212号)は、ッッジ科の植物病害防除に効果が ある。また、トリコデルマ ハルジァナム SK5- 5株(微工研菌寄第 13327号,特許第 304 6167号)は、植物病害防除菌と報告されている。トリコデルマ ハルジァナム kubota株 は、商品名ハルジン Lとして灰色かび病の防除効果があることが知られている(月刊 現代農業 2003年 9月号、 P155-159、農文協)。トリコデルマ'アト口ビリデ SKT-1株(FE RM P- 16510,特開平 11- 253151号公報)、 SKT- 2株 (FERM P- 16511,同公報)、およ び SKT-3株 (FERM P-17021,同公報)は、イネもみ枯細菌病、イネ苗立枯細菌病、ィ ネ褐条病に対して防除効果を示す。非病原性エルビ-ァ '力ロトボーラ CGE234M403 株(FERM BP-4328、特許第 3040322号)は、軟腐病、黒腐病、イネ苗立枯細菌病の 防除に有効である。
[0031] また、レタスビッグべイン病に対しては、拮抗微生物として、レタスビッグべインウイ ルスを保持するォルピディウム属菌に対して拮抗性を示す内生細菌を用いることが できる。レタス種子の品種は特に限定されない。レタスビッグべインウィルスを保持す るォルピディウム属菌に対して拮抗性を示す内生細菌としては、所定の拮抗性を示 すものであれば特に限定されないが、例えば、シユードモナス'プチダ FP-16株(トマト の根面から分離された菌株で、青枯菌に抗菌活性物質を産生し、圃場においても高 い青枯病発病抑制効果を有する菌株)、シユードモナス'フルォレツセンス FPH9601 株(FERM BP- 5479)、シユードモナス ·プチダ HAI00377株(FERM BP- 10666)、シ ユードモナス(Pseudomonas sp.) FPH- 2003株(FERM BP- 10665)、 FPH- 2005- 1株( FERM BP-10664)などが挙げられる。
[0032] これらの拮抗微生物は、種子、植物体、土壌などからスクリーニングし、単離して用 いることも出来る。更にまた、防除の対象とする植物病原微生物と同一培地上にて対 畤もしくは交差するように塗抹し、病原微生物の生育適温下において数日培養し、双 方の生育を観察して病原微生物の生育が候補菌によって明らかに抑制されているも のを、拮抗性を持つ微生物として選択して本発明に使用することができる (植物病原 性微生物研究法、(1993)、脇本哲監修、ソフトサイエンス社)。更にまた、レタスビッグ ベイン病を防除する拮抗性内生細菌をスクリーニングするためには、レタスビッグべィ ンウィルスを媒介するォルピディウム属菌汚染土に、候補菌をコーティングした種子 を播種し、ォルピディウム属菌の生育適温下において数週間培養し、オルビディゥム 属菌の根への感染を明らかに阻害するものを、拮抗性を持つ内生細菌として選択し て本発明に使用することができる(日本植物病理学会 第 68卷、第 2号、 p240)。本発 明の拮抗微生物の培養条件に関しては、実験書 (新編土壌微生物実験法(1997) 土壌微生物研究会編、養賢堂)等に記載されている条件を用いることができる。培地 は、例えば肉エキス培地、 LB培地、ポテトデキストロース(PD)培地、 1/10 PD培地、 キング B寒天培地などを用い、培養方法は、例えば、シャーレ、試験管、フラスコ、ジ ヤーファメンターなどの容器内で、静置、振とう、攪拌などの条件で行えばよぐ特殊 な培養条件で行う必要はな ヽ。
本発明において「減圧接種」とは、吸引機と連結した密閉容器を作成し、その中に 拮抗微生物を混和'接触させた種子を入れ、容器内部の空気を吸引することにより陰 圧条件を作り出し種子表面の空気を除去した後、常圧 (約 760 mmHg)に戻すことで、 拮抗微生物を種子表皮の内側に導入させる方法を言う。吸引機としては、一般に広 く使用されているものでよぐ例えばァスピレーター (aspirator)、サッカー (sucker)、油 回転真空ポンプ、ドライ真空ポンプなどを使用することができる。陰圧にした時の到達 圧力は種子と拮抗微生物が死滅したり、細胞に実質的な障害を受けない範囲であれ ば良ぐ例えば 1 mmHg〜755 mmHg,好ましくは、 100 mmHg〜700 mmHg (大気圧を 0 mmHgとした時の真空度で表記した)の範囲である。常圧力も最高陰圧に達するま での時間は特に限定されないが例えば 1秒〜 120分の範囲で行えば良い。また、最 高陰圧条件下に置く時間は、 1分〜 100分の範囲であれば良い。その後、常圧に戻 すが、陰圧条件力も常圧に戻す時間は、 1秒〜 120分の範囲で行えばよい。最高陰 圧条件下に 120分以上の長時間置くことは、拮抗微生物の生存率が低下したり、発 芽率が著しく低下する為に好ましくない場合がある。減圧接種処理の回数は、 1回以 上 20回までの範囲であれば良い。減圧接種を繰り返す事により、拮抗微生物の種子 内部への導入率は高くなる場合があるが、過度に行った場合には種子にダメージを 与え、発芽率低下などを招く場合がある。密閉容器は、吸引ビンや耐圧ビンにゴム栓 を付けたり、シールテープで塞ぐことにより密閉系としたものなどを作成して使用する ことができ、密閉系が保てる様になつていれば形状'材質などに特別な制限はない。 容器のサイズは、種子と拮抗微生物の量に応じて適宜選択することができ、例えば、 lml〜1000 m3の範囲力 選択できる。吸引機と密閉容器をつなぐ連結部分は、密閉 系が保て、かつ陰圧条件に耐えうる耐圧のパイプであればよぐ種子や拮抗微生物 に害を与えな 、材質のものであれば特に制限はな 、。装置を組み立てるのが難しけ れば、既存の減圧乾燥装置、低温減圧乾燥装置、ロータリーエバポレーター、凍結 乾燥機などを利用する事も可能である。
[0034] 減圧接種のために種子と拮抗微生物を混和 '接触させる方法としては、一般に行わ れる方法であれば良ぐ特別な制限はない。例えば、拮抗微生物を含む懸濁液中に 種子を浸す、拮抗微生物を含む懸濁液を種子に噴霧する、拮抗微生物を含む粉剤 中に種子を投入して粉衣するなどである。攪拌や混合を行うことは種子と拮抗微生物 との接触効率を上げる上で好ましいが、過度に行うと種子を傷つける場合もあるので 注意が必要である。
[0035] 種子に接種する拮抗微生物の量は特に限定されないが例えば lO^li^ cells/粒 の範囲であれば良い。
[0036] 本発明の拮抗微生物コーティング種子の製造方法は、上記の方法で種子に拮抗 微生物を減圧接種した後に、前記種子を低温低湿条件下で乾燥する工程を行うもの であることがより好ましい。或いはまた、本発明の拮抗微生物コーティング種子の製 造方法は、上記の減圧接種以外の方法で種子に拮抗微生物を接種した後に、前記 種子を低温低湿条件下で乾燥する工程を行う方法であっても良い。要するに本発明 の一実施形態は、種子に拮抗微生物を接種し、接種後の前記種子を乾燥することに より拮抗微生物コーティング種子を製造する方法であって、種子への拮抗微生物の 接種を減圧接種により行うこと、および乾燥を低温低湿条件で行うことの 、ずれか一 方、好ましくは両方を含むことを特徴とする方法に関する。ここで、「種子に拮抗微生 物を (減圧)接種した後に、前記種子を低温低湿条件下で乾燥する」とは、低温低湿 条件下での乾燥工程が、拮抗微生物の種子への接種よりも時間的に後に行われる 限りいずれの形態をも包含する。すなわち、本発明においては、拮抗微生物の種子 への接種の後に続けて、種子を低温低湿条件下で乾燥する工程を行っても良いし、 拮抗微生物の種子への接種の後に追カ卩的な処理 (例えばペレット造粒、フィルムコ ート処理)を施した後に、種子を低温低湿条件下で乾燥する工程を行っても良い。減 圧接種以外の方法で種子に拮抗微生物を接種する方法としては、拮抗微生物を含 む懸濁液中に種子を浸す、拮抗微生物を含む懸濁液を種子に噴霧する、拮抗微生 物を含む粉剤中に種子を投入して粉衣するなどの方法が挙げられるがこれらには限 定されない。
[0037] 本発明の拮抗微生物コーティング種子処理の乾燥処理における「低温低湿条件」 とは、常温 (約 25°C)以下の温度 (低温)で、かつ室内の湿度が 100〜30%の湿度条件 の場合、その値よりも低い湿度 (低湿)である条件のことを言う。「低温」とはより具体的 には、 80°C以上常温以下の範囲の温度であり、その中でも特に 10°C以上 20°C 以下の範囲の温度が望ましい。「低湿」とは通常 0%以上 80%以下の範囲の湿度であ る。その中でも特に 0%以上 60%以下の範囲が好ましぐ 0%以上 40%以下の範囲が より好ましい。低温にする方法としては、冷却装置を有する部屋または冷却剤を入れ た容器、クーラーボックス、冷蔵庫、冷凍庫などを用いる方法が挙げられる。湿度を 下げる方法としては、生石灰などの化学的乾燥剤や、シリカゲル、ゼォライト、粘土鉱 物などの物理的乾燥剤、乾燥空気や窒素ガスを通風する方法、除湿機などを用いる 方法が挙げられる。
[0038] 乾燥後の種子の含水率は、 0.01%以上 20%以下の範囲であることが望ましい。より 好ましい含水率は 0.01%以上 10%以下である。それよりも含水率が高い場合は、貯 蔵中に種子の発芽率が低下する、あるいは貯蔵中に種子の発芽が起こる、カビなど の雑菌が種子に付着し増殖する、などの問題が発生する。逆に、含水率が低い場合 は、微生物の生存率が低下してしまう。また、種子の発芽率低下が起こる場合もある [0039] 本発明の方法に従って製造した拮抗微生物コーティング種子の貯蔵は、拮抗微生 物の生菌数、種子の発芽などに出来るだけ影響の少ない条件で行うことが望ましい。 このような条件としては低温低湿条件が挙げられる。貯蔵条件に関して「低温」とは、 80°C以上 30°C以下であることが好ましぐ 0°C以上 20°C以下であることがより好まし い。また、貯蔵条件に関して「低湿」とは、 0%以上 80%以下であることが好ましぐ 0% 以上 60%以下であることがより好ましぐ 0%以上 50%以下であることがより好ましぐ 0% 以上 40%以下であることが特に好まし 、。
[0040] 本発明の方法で製造した拮抗微生物コーティング種子を播種することにより、作物 における病害、特に土壌病害を軽減、抑制することができる。すなわち本発明は、拮 抗微生物コーティング種子を用いた、作物における病害の防除方法に関する。例え ば、拮抗微生物コーティング種子を播種、育苗した後、土壌病原微生物に汚染され た土壌を含む圃場またはポットに苗を定植して栽培した場合に、土壌病害の発生が 軽減 '抑制される。具体的な一例を挙げれば、拮抗性内生細菌コーティングレタス種 子を播種、育苗した後、レタスビッグべインウィルスを保持するォルピディウム属菌に 汚染された土壌を含む圃場またはポットに苗を定植して栽培した場合に、レタスビッ グベイン病害の発生が軽減 '抑制される。
[0041] 本発明の病害の防除方法は、他の病害防除方法と併用することが可能である。他 の病害防除方法としては、例えば、土壌病原微生物の土壌菌密度を下げる為の土 壌消毒処理、薬剤処理、土壌改良剤処理、高畝処理などが挙げられる。また、拮抗 微生物でコーティングする種子として、病害抵抗性の品種あるいは病害耐病性の品 種の種子を用いることは防除効果をさらに高める上で好ましい。
実施例
[0042] 以下に本発明の実施例を掲げて、さらに具体的に説明する力 本発明はこれらの 実施例に制限されるものではない。例えば、下記実施例で用いられる種子以外の野 菜類、花卉類、穀物類、飼料作物、牧草、芝の種子に対して本発明を適用することも 可能である。
[0043] 参者例 1:キャベツフィルムコート糠子へのグラム陽件細菌(バチルス菌)の接糠およ び乾燥が菌の生存率および種子の発芽率に与える影響
拮抗微生物として、グラム陽性細菌(バチルス セレウス)(Bacillus cereus) KI2N株 を用いた。バチルス セレウス KI2N株は株式会社バイテクより分譲していただいた。
[0044] バチルス セレウス KI2N株を PD液体培地に植菌し、 35°Cで 2日間振とう培養後、遠 心機で集菌し、これを接種源とした。
[0045] 集菌したバチルス セレウス KI2N株に、ポリビュルアルコールで作製したバインダー 溶液 5mlを加え、回転子 (攪拌子)を用いて KI2N株を十分に分散させ、キャベツ種子( 品種:金系 201号、(株)サカタのタネ) 100gに少量ずつ加えながら、十分に攪拌した。 この種子を、 30°Cの温風循環乾燥機に入れ、 24時間乾燥させた。
[0046] 参考例 1と同ロットの種子を用い同様の方法で、微生物(バチルス セレウス KI2N株 )の入って!/、な 、バインダー溶液で種子をフィルムコート処理し、同条件で乾燥処理 を行ったものを対照とした。
[0047] 種子中におけるバチルス セレウス KI2N株の生存率は、下記の方法で求めた。種 子 100粒を 10 mlの滅菌水に懸濁し、さらに 10倍 · 100倍 · 1000倍 ' 10000倍希釈液を作 成した。これらの菌懸濁液を希釈平板法により PDA寒天培地上に塗布した。 35°Cで 3 日間培養し、コロニーの出現により判定した。また、種子の発芽率は下記の方法で確 認した。脱イオン水を吸水させたろ紙上に、フィルムコート種子 150粒 (50粒 X 3反復) を置床し、 20°C暗黒条件 16時間 '30°C明条件 8時間下で 14日間栽培した。胚軸と幼 根の存在を確認したものをカウントし、その数から百分率を求め発芽率とした。
[0048] 参考例 1の結果を表 1に示す。 KI2N株の接種による種子発芽率の低下は見られな かった。 KI2N株を接種した乾燥前の種子では、 2.5 X 104cfo/粒の菌密度であつたが 、 30°Cで 24時間乾燥させた後の種子の菌密度は、 1.5 X 102cfo/粒であった。本参考 例により、微生物を接種したキャベツフィルムコート種子を 30°Cで長時間乾燥すると、 微生物の生存率は 0.6%になり、菌密度が激減することが判明した。このことから、コ 一ティングに伴う長時間の高温乾燥を経て、種子に微生物を高濃度で定着させるこ とは、きわめて難しい事が明らかになった。
[表 1] キャベツ種子 (フィルムコート種子) へのグラム陽性細菌 (バチルス菌) の接種
および乾燥が茼の生存率および種子の発芽率に与える影響
拮抗微生物の菌密度(cfu/粒) 拮抗微生物の 種子の発芽
生存率(%) 率 (%)
乾燥前 乾燥後 乾燥後 乾燥後
参考例 1 2. 5 X 104 1, 5 X 102 0. 6 96
対照 - - 一 95
[0049] mi:ニンジン糠早へのグラム陰件細菌 (シユードモナス通細菌)の減 榇糠お よび低温低爾獻 が の ^¾feよび糠早の に^^る影
拮抗微生物として、グラム陰性細菌(シユードモナス)(Pseudomonas putida) HAI00 377株を用いた。
[0050] シユードモナス ·プチダ HAI00377株をキング B寒天培地を入れた 9cmシャーレに植 菌し、 25°C、 2日間静置培養した。コーンラージ棒を用いて集菌し、 1/5000 Tween80 を添加した蒸留水に懸濁した。希釈平板法で生菌数を測定したところ、約 1 X 1010 clu /mlであった。ニンジン種子 (品種:ベータ 312、(株)サカタのタネ) 200gをメッシュで包 みイチゴパックに収め、浮かばないように重りを載せ、種子が沈むように菌懸濁液 300 mlを注いだ。減圧接種法は、コンパクトエアーポンプ NUP-2(ァズワン製)を用いて、陰 圧条件とした。ポンプ排気能力は、 12 1/min,到達圧力は、 300 mmHg、最高陰圧条 件に達するまでの時間は、約 2分であった。 5分間、最高陰圧条件に置いた後、ゆつく りコックを開いて常圧に戻した。常圧に戻るまでの時間は、約 20秒であった。余剰水 分を除去する為に恒温乾燥機 (MOV-212F) (SANYO製)にて、 30°C、 1時間通風乾 燥を行った。
[0051] こうして得られた拮抗微生物コーティング種子を更にペレット造粒した。以下にペレ ット造粒工程にっ 、て説明する。上記で得られたコーティング済みのニンジン種子全 量 (約 200g)を回転した造粒装置 Pelletizing unit(SEED PROCESSING社製)に投入し、 種子を攪拌しながら造粒用バインダー 3.0%ポリビニルアルコールを種子にスプレー し湿らせた。種子が十分に湿った後、造粒用粉体 (珪藻土'炭酸カルシウムなどの混 合物)を所定量加えた。さらに造粒用バインダーと造粒用粉体を交互に添加しながら ペレットを造粒した。造粒後、篩を使用して、得られたペレットのうち直径 3.0〜3.5mm のもののみを選別した。低温低湿乾燥は、 15°Cの低温室に、デシケーターを入れ、 その中に乾燥剤としてシリカゲルを入れることにより行った。ビーカーに上記ペレット 種子を入れて、デシケーター中に置き、 48時間乾燥させた。このときのデシケーター 中の湿度は約 20%であった。
[0052] 比較例 1
実施例 1と同様の方法で HAI00377菌を培養、集菌した。拮抗微生物の浸漬処理は 、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行った。実施例 1と 同様に余剰水分を除去、ペレット造粒後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であった。このときの部屋の湿度は約 45%であった。
[0053] ペレット造粒種子中における HAI00377株の生存率は、下記の方法で求めた。ペレ ット種子 50粒 (10粒 X 5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置 床し、 25°Cで 96時間培養した。培養後に、 HAI00377株のコロニーをカウントし、その 数から百分率を求め生存率とした。また、種子の発芽率は下記の方法で確認した。 脱イオン水を吸水させたろ紙上に、ペレット種子 150粒 (50粒 X 3反復)を置床し、 20°C 16時間,30°C8時間の変温 '暗黒条件下で 14日間栽培した。胚軸と幼根の存在を確 認したものをカウントし、その数から百分率を求め発芽率とした。
[0054] 実施例 1と比較例 1の結果を表 2に示す。 HAI00377株を減圧接種後ペレット加工し 15°Cで低湿乾燥した区 (実施例 1)では、 HAI00377株の生存率は 90%、 HAI00377株 を浸漬接種後ペレット造粒加工し 30°Cで通風乾燥した区 (比較例 1)では、 HAI00377 株の生存率は 24%となり、比較例 1よりも実施例 1の方がより高い生存率となった。ま た、実施例のニンジンペレット種子の発芽率は、 85%以上であり、比較例とほぼ同等 であった。このことからニンジンペレット種子の製造において、用いられるニンジン種 子に拮抗微生物を減圧接種した後、低温低湿乾燥する方法が、拮抗微生物をニン ジン種子に定着させるのに有効であることが明らかになった。
[表 2] ニンジン種子 (ペレッ ト種子) へのグラム陰性細菌 (シユードモナス 種 ·乾燥処理条件が菌の生存率およぴ努芽率に及ぼす影響
拮抗微生物の生存率(%) ペレツ ト種子の 種子の発芽率(%)
含水率 (%)
乾燥前 乾燥後 乾燥後 乾燥後
実施例 1 100 90 2以下 88
比較例 1 100 24 2以下 85 [0055] 実施例 2:トマト種子へのグラム陰性細菌 (シユードモナス属細菌)の減圧接種および 低温低湿乾燥が菌の生存率および種子の発芽率に与える影響
トマト種子(品種:マイロック、(株)サカタのタネ)に拮抗微生物として、グラム陰性細 菌(シユードモナス) (Pseudomonas putida) HAI00377株を実施例 1と同様の条件で 減圧接種した。余剰水分を除去する為に恒温乾燥機 (MOV-212F) (SANYO製)にて 、 30°C、 1時間通風乾燥を行った。低温低湿乾燥は、 15°Cの低温室に、デシケーター を入れ、その中に乾燥剤としてシリカゲルを入れた。ビーカーに上記種子を入れて、 デシケーター中に置き、 48時間乾燥させた。このときのデシケーター中の湿度は約 20 %であった。
[0056] 比較例 2
実施例 1と同様の方法で HAI00377菌を培養、集菌した。拮抗微生物の浸漬処理は 、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行った。実施例 1と 同様に余剰水分を除去後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であつ た。このときの部屋の湿度は約 45%であった。
[0057] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒
X 5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時 間培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求 め生存率とした。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水さ せたろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 25°C—定温度 ·暗黒条件下で 14 日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数カゝら百分率を 求め発芽率とした。
[0058] 実施例 2と比較例 2の結果を表 3に示す。 HAI00377株を減圧接種後 15°Cで低湿乾 燥した区 (実施例 2)では、 HAI00377株の生存率は 90%、 HAI00377株を浸漬接種後 3 0°Cで通風乾燥した区 (比較例 2)では、 HAI00377株の生存率は 14%となり、比較例 2 よりも実施例 2の方がより高い生存率となった。実施例 2では種子の発芽率に関して も 90%以上の高い値を示し、問題のないことがわかった。このことからトマト種子にお いて、拮抗微生物を減圧接種した後、低温低湿乾燥する方法が、拮抗微生物をトマ ト種子に定着させるのに有効であることが明らかになった。 トマト β子へのグラム陰 ftsa — ( -ンユードモナス細菌) の接種 '乾燥処理条件が κ©生存
率および ¾芽率に及ぽす影響
拮抗微生物 ΰ 生存率 種子の発芽率(%)
乾 前 乾職 乾燥後
実施例 2 100 90 91
比較例 2 100 94
[0059] ¾施例 3:ブロッコリ一糠早へのグラム陰件細菌 (シユー モナス通細菌)の減 ffi接糠 : よび低温低爾乾燥が菌の牛存率: よび糠早の 莽率に^^る影響
ブロッコリ一種子 (品種:緑嶺、(株)サカタのタネ)に対し、拮抗微生物としてグラム陰 性細菌(シユードモナス)(Pseudomonas putida) HAI00377株を用いて、実施例 1と同 様の条件で減圧接種および低温低湿乾燥を行った。低温低湿乾燥後のデシケータ 一中の湿度は約 20%であった。
[0060] 比較例 3
実施例 1と同様の方法で HAI00377菌を培養、集菌した。拮抗微生物の浸漬処理は 、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行った。実施例 1と 同様に余剰水分を除去後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であつ た。このときの部屋の湿度は約 45%であった。
[0061] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒 X
5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時間 培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求め 生存率とした。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水させ たろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 20°C16時間 '30°C8時間の変温 '暗 黒条件下で 14日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数 力 百分率を求め発芽率とした。
[0062] 実施例 3と比較例 3の結果を表 4に示す。 HAI00377株を減圧接種後 15°Cで低湿乾 燥した区 (実施例 3)では、 HAI00377株の生存率は 96%、 HAI00377株を浸漬接種後 3 0°Cで通風乾燥した区 (比較例 3)では、 HAI00377株の生存率は 20%となり、比較例 3 よりも実施例 3の方がより高い生存率となった。実施例では種子の発芽率に関しても 9 0%以上の高い値を示し、問題のないことがわ力つた。このこと力もブロッコリ一種子に おいて、拮抗微生物を減圧接種した後、低温低湿乾燥する方法が、拮抗微生物をブ ロッコリー種子に定着させるのに有効であることが明らかになった。
[表 4] ブロッコリ一種子へのグラム陰性細菌 【シユードモナス細^!〕 の按種 .乾燥処堙条件が ¾
の生存率および 芽率に及ぼす影
拮抗微生物の生存率 —精子の発芽 ψ ( )
^ e¾¾後 " ~
実脑 3 100 "96 93 ~~
比^^ 3 100 20 J6
[0063] ¾施例 4:カボチヤ糠早へのグラム陰件細菌 (シユード 'モナス通細菌)の減 ffi接糠お よび低温低爾獻 が の ^¾feよび糠早の に^^る影
カボチヤ種子 (品種:メルヘン、(株)サカタのタネ)へ拮抗微生物として、グラム陰性 細菌(シユードモナス)(Pseudomonas putida) HAI00377株を用いて、実施例 1と同様 の条件で減圧接種および低温低湿乾燥を行った。低温低湿乾燥後のデシケーター 中の湿度は約 20%であった。
[0064] 比較例 4
実施例 1と同様の方法で HAI00377菌を培養、集菌した。拮抗微生物の浸漬処理は 、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行った。実施例 1と 同様に余剰水分を除去後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であつ た。このときの部屋の湿度は約 45%であった。
[0065] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒 X
5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時間 培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求め 生存率とした。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水させ たろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 25°C—定温度 ·暗黒条件下で 14日 間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から百分率を求 め発芽率とした。
[0066] 実施例 4と比較例 4の結果を表 5に示す。 HAI00377株を減圧接種後 15°Cで低湿乾 燥した区 (実施例 4)では、 HAI00377株の生存率は 60%、 HAI00377株を浸漬接種後 3 0°Cで通風乾燥した区 (比較例 4)では、 HAI00377株の生存率は 10%となり、比較例 4 よりも実施例 4の方がより高い生存率となった。実施例では種子の発芽率に関しても 8 8%あり、問題のないことがわ力つた。このこと力もカボチヤ種子において、拮抗微生 物を減圧接種した後、低温低湿乾燥する方法が、拮抗微生物をカボチヤ種子に定 着させるのに有効であることが明らかになった。
[表 5] 力ポチャ锤子へのゲラム陰性細菌 〔シュ一ドモナス細菌〕 の接種 .乾燥処 ¾条件が の
存窄および発芽率に及ぼす影響
拮抗微生物の生存率 種子の発芽率 <%】
¾;燥前 乾燥後 乾燥後
実施例 4 100 60 88
比较例 4 100 10 93
[0067] ¾施例 5:エダマメ糠早へのグラム陰件細菌 (シユードモナス通細菌)の減 ffi榇糠およ び低温低爾獻 が の よび糠早の に^^る
エダマメ種子 (品種:天ケ峰、(株)サカタのタネ)へ拮抗微生物として、グラム陰性細 菌(シユードモナス) (Pseudomonas putida) HAI00377株を用いて、実施例 1と同様の 条件で減圧接種および低温低湿乾燥を行った。低温低湿乾燥後のデシケーター中 の湿度は約 20%であった。
[0068] 比較例 5
実施例 1と同様の方法で HAI00377菌を培養、集菌した。拮抗微生物の浸漬処理は 、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行った。実施例 1と 同様に余剰水分を除去後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であつ た。このときの部屋の湿度は約 45%であった。
[0069] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒 X
5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時間 培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求め 生存率とした。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水させ たろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 25°C—定温度 ·暗黒条件下で 14日 間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から百分率を求 め発芽率とした。
[0070] 実施例 5と比較例 5の結果を表 6に示す。 HAI00377株を減圧接種後 15°Cで低湿乾 燥した区 (実施例 5)では、 HAI00377株の生存率は 96%、 HAI00377株を浸漬接種後 3 0°Cで通風乾燥した区 (比較例 5)では、 HAI00377株の生存率は 30%となり、比較例 5 よりも実施例 5の方がより高い生存率となった。実施例では種子の発芽率は、 27%で あつたが、比較例も 39%と低ぐ今回使用した種子の品質がたまたま悪かった為であ り、処理条件の影響は小さいと考えられる。このことからエダマメ種子において、微生 物を減圧接種した後、低温低湿乾燥する方法が、微生物を定着させるのに有効であ ることが明らかになった。
[表 6] エダマメ種子へのグラム陰性細菌 (シユード乇ナス 菌) の 種 *乾燥処理条件が菌の生
存率および^芽率に及ぼす影轡
拮抗 生物の生存率(%) 港子の発芽率(¾>
乾燥前 乾燥後 読後
実施例 5 100 96 11
比 例 5 100 3G 39
[0071] ¾施例 6:ホウレンソゥ糠早へのグラム陰件細菌 (シユード 'モナス通細菌) ·グラム陽件
(バチルス菌) · ^ (トリコデルマ菌)の減 接糠および低温低爾獻 が の 生存率および種子の発芽率に与える影響
ホウレンソゥ種子 (品種:プラトン、(株)サカタのタネ)へグラム陰性細菌(シユードモ ナス)(Pseudomonas putida) HAI00377株を用いて、実施例 1と同様の条件で減圧接 種および低温低湿乾燥を行った。キング B寒天培地を入れた 9cmシャーレに植菌し、 25°C、 2日間静置培養した。コーンラージ棒を用いて集菌し、 1/5000 Tween80を添加 した蒸留水に懸濁した。希釈平板法で生菌数を測定したところ、約 1 X 101Q ciU/mlで めつに。
[0072] シユードモナス HAI00377株の減圧接種は、以下の方法で行った。ホウレンソゥ種子 200gをメッシュで包みイチゴパックに収め、浮かばないように重りを載せ、種子が沈む ように菌懸濁液 300mlを注いだ。減圧接種法は、コンパクトエアーポンプ NUP-2(ァズ ワン製)を用いて、陰圧条件とした。ポンプ排気能力は、 12 1/min,到達圧力は、 300m mHg、最高陰圧条件に達するまでの時間は、約 2分であった。 5分間、最高陰圧条件 に置いた後、ゆっくりコックを開いて常圧に戻した。常圧に戻るまでの時間は、約 20秒 であった。余剰水分を除去する為に恒温乾燥機 (MOV-212F) (SANYO製)にて、 30 °C、 1時間通風乾燥を行った。
[0073] こうして得られた拮抗微生物コ一ティング種子に更にフィルムコ一ト処理を施した。
以下にフィルムコート処理について説明する。上記で得られたコーティング済みのホ ウレンソゥ種子全量 (約 200g)に、ポリビュルアルコールで作製したバインダー溶液 8ml を少量ずつ加えながら、十分に攪拌した。低温低湿乾燥は、 15°Cの低温室に、デシ ケーターを入れ、その中に乾燥剤としてシリカゲルを入れることにより行った。ビーカ 一に上記種子を入れて、デシケーター中に置き、 48時間乾燥させた。このときのデシ ケーター中の湿度は約 20%であった。
[0074] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒 X 5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時間 培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求め 生存率とした。
[0075] グラム陽性細菌(バチルス セレウス)(Bacillus cereus) KI2N株は、キング B寒天培 地で培養し、 1/5000 Tween80を添加した蒸留水に懸濁し、 101Qcfo/mlの菌懸濁液を 作成し、接種源とした。
[0076] バチルス セレウス KI2N株の減圧接種および低温低湿乾燥は、シユードモナス HAI 00377株と同様の方法で行った。
[0077] 種子中におけるバチルス セレウス KI2N株の生存率は、下記の方法で求めた。種 子 50粒、 10粒を 10 mlの滅菌水に懸濁し、さらに 10倍希釈液を作成した。これらの菌 懸濁液を 80°C、 10分間処理する事により、耐熱性の芽胞を形成しているバチルス以 外の微生物を死滅させた。熱処理した後の菌懸濁液を YG培地上に塗布し、 30°C、 2 日間培養してコロニーの出現の有無を調べた。判定基準を 4段階とした(一:コロニー なし。 + : 50粒/ 10mlの希釈率でコロニーが検出される。 + +: 10粒/ 10mlの希釈率で コロニーが検出される。 + + + : 1粒/ 10mlの希釈率でコロニーが検出される。;)。
[0078] トリコデルマ ハルジァナム kubota株はカヮタエ業株式会社より分譲をしていただい た。糸状菌(トリコデルマ ハルジァナム)(Trichoderma harzianum) kubota株は、 PD A培地で培養し、 1/5000 Tween80を添カ卩した蒸留水に懸濁し、 107cfo/mlの菌懸濁 液を作成し、接種源とした。
[0079] トリコデルマ ハルジァナム kubota株の減圧接種および低温低湿乾燥は、シユード モナス HAI00377株と同様の方法で行った。
[0080] トリコデルマ ハルジァナム Kubota株の生存率は、下記の方法で求めた。種子 50粒 八 5粒を 10ml滅菌水に懸濁した。さらに 10倍希釈液も作成した。これらの菌懸濁液を 希釈平板法によりローズベンガル寒天培地上に塗布した。 25°Cで 1週間培養し、緑 色のトリコデルマ菌特有のコロニーの出現により判定した。判定基準を 4段階とした( 一 :コロニーなし。 + : 50粒/ 10mlの希釈率でコロニーが検出される。 + + : 5粒/ 10m
1の希釈率でコロニーが検出される。 + + + : 0.5粒/ 10mlの希釈率でコロニーが検出 される。 + + + + : 0.05粒/ 10mlの希釈率でコロニーが検出される)。
[0081] 上記拮抗微生物コーティング種子の発芽率は下記の方法で確認した。脱イオン水 を吸水させたろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 20°C—定温度 ·喑黒条 件下で 14日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から 百分率を求め発芽率とした。
[0082] 比較例 6
実施例 6と同様の方法でシユードモナス HAI00377菌、バチルス セレウス KI2N株お よびトリコデルマ ハルジァナム Kubota株の培養、集菌を行った。これら拮抗微生物 の浸漬処理は、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行つ た。実施例 1と同様に余剰水分を除去後、フィルムコート処理を行い、 30°C条件下で 通風乾燥した。乾燥時間は 48時間であった。このときの部屋の湿度は約 45%であつ た。
[0083] 種子中におけるシユードモナス HAI00377菌、バチルス セレウス KI2N株およびトリ コデルマ ハルジァナム Kubota株の生存率は、実施例 6と同様の方法で求めた。ま た、種子の発芽率についても、実施例 6と同じ方法を用いて求めた。
[0084] 実施例 6と比較例 6の結果を表 7に示す。 HAI00377株については、減圧接種後 15 °Cで低湿乾燥した区 (実施例 6-1)では、 HAI00377株の生存率は 100%、 HAI00377株 を浸漬接種後 30°Cで通風乾燥した区 (比較例 6-1)では、 HAI00377株の生存率は 92 %となり、比較例 6-1よりも実施例 6-1の方がより高い生存率となった。
[0085] KI2N株にっ ヽては、減圧接種後 15°Cで低湿乾燥した区 (実施例 6-2)は、 KI2N株を 浸漬接種後 30°Cで通風乾燥した区 (比較例 6-2)と比べて明らかに生存率が高いこと がわかった。
[0086] Kubota株につ!ヽては、減圧接種後 15°Cで低湿乾燥した区 (実施例 6-3)と、 Kubota 株を浸漬接種後 30°Cで通風乾燥した区 (比較例 6-3)比べると、乾燥直後の菌の生存 率には違いがないものの、実施例では種子の発芽率が 90%と高い値を示した。以上 のことからホウレンソゥのフィルムコート種子の製造にぉ 、て、用いられるホウレンソゥ 種子に対してグラム陰性細菌 (シユードモナス属細菌)、グラム陽性細菌 (バチルス菌 )、または糸状菌(トリコデルマ菌)を減圧接種した後、低温低湿乾燥する方法が、ホ ウレンソゥ種子への微生物の定着および種子の発芽率の向上のために有効であるこ とが明らかになった。
[表 7]
ホウレン 'ノウ種子 〔ソイルムコート種子) へのグラム陰性 ¾a¾ (シュ一ドモナス厲細菌)
, グラム陽性細菌 厲钿^ 0 ■糸 菌(トリコデルマ厲¾状 s»の接種♦乾燥処理条
伴が & 生存率および 芽率に及ほす^響
拮抗微生物の *存率 種子の発芽串
前 乾燥後 乾燥後
シユードモナス^ 実施 103 100 96
細菌 i ^J6-L 100 92 95
バチルス n 実施例 5-2 + + + + ¾
細 ¾ 比較例 5-2 + + 十 92
トリコデルマ厲 ¾施例 5-3 + + + + + + + 90
糸状^ 比敉例 S-3 + + - + +十+ S1
[0087] ¾施例 7 :イネ糠早へのグラム陰件細菌 (シユード 'モナス通細菌) 'グラム陽件細菌 (バ チルス^ Π ·糸状菌 (トリコデルマ菌)の減 ffi接糠あ び または低温低爾乾燥が菌 の : よび糠早の に^^る
イネ種子 (品種:ヒノヒカリ、宮崎県)へグラム陰性細菌(シユードモナス) (Pseudomona s putida) HAI00377株を用いて、実施例 1と同様の条件で減圧接種および低温低湿 乾燥を行った。
[0088] 加えて、シユードモナス HAI00377株の減圧接種または低温低湿乾燥のどちらか一 方、または両方の処理を行った。 HAI00377株の減圧処理は実施例 1と同様の方法で 行い、浸漬処理は、同じ量の種子と HAI00377株の懸濁液を用いて、常圧条件下に て行った。低温低湿乾燥は実施例 1と同様の方法で 15°Cにて行い、通風乾燥は余剰 水分を除去後、 30°C条件下で乾燥した。いずれの場合も乾燥時間は 48時間であつ た。
[0089] 種子中における HAI00377株の生存率は、下記の方法で求めた。種子 50粒 (10粒 X 5反復)をストレプトマイシンを添カ卩したキング B寒天培地上に置床し、 25°Cで 96時間 培養した。培養後に、 HAI00377株のコロニーをカウントし、その数から百分率を求め 生存率とした。
[0090] バチルス セレウス(Bacillus cereus) KI2N株は、キング B寒天培地で培養し、 1/500 0 Tween80を添カ卩した蒸留水に懸濁し、 101Qcfo/mlの菌懸濁液を作成し、接種源とし た。
[0091] 種子中におけるバチルス セレウス KI2N株の生存率は、下記の方法で求めた。種 子 50粒、 10粒を 10 mlの滅菌水に懸濁し、さらに 10倍希釈液を作成した。これらの菌 懸濁液を 80°C、 10分間処理する事により、耐熱性の芽胞を形成しているバチルス以 外の微生物を死滅させた。熱処理した後の菌懸濁液を YG培地上に塗布し、 30°C、 2 日間培養してコロニーの出現の有無を調べた。判定基準を 4段階とした(一:コロニー なし。 + : 50粒/ 10mlの希釈率でコロニーが検出される。 + +: 10粒/ 10mlの希釈率で コロニーが検出される。 + + + : 1粒/ 10mlの希釈率でコロニーが検出される。;)。
[0092] トリコデルマ ハルジァナム(Trichoderma harzianum) kubota株は、 PDA培地で培養 し、 1/5000 Tween80を添カ卩した蒸留水に懸濁し、 107 cfo/mlの菌懸濁液を作成し、接 種源とした。
[0093] トリコデルマ ハルジァナム Kubota株の生存率は、下記の方法で求めた。種子 50粒 八 5粒を 10ml滅菌水に懸濁した。さらに 10倍希釈液も作成した。これらの菌懸濁液を 希釈平板法によりローズベンガル寒天培地上に塗布した。 25°Cで 1週間培養し、緑 色のトリコデルマ菌特有のコロニーの出現により判定した。判定基準を 4段階とした( 一 :コロニーなし。 + : 50粒/ 10mlの希釈率でコロニーが検出される。 + + : 5粒/ 10ml の希釈率でコロニーが検出される。 + + + : 0.5粒/ 10mlの希釈率でコロニーが検出 される。 + + + + , 0.05粒/ 10mlの希釈率でコロニーが検出される。;)。
[0094] 上記拮抗微生物コーティング種子の発芽率は下記の方法で確認した。脱イオン水 を吸水させたろ紙上に、種子 150粒 (50粒 X 3反復)を置床し、 20°C—定温度 ·喑黒条 件下で 14日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から 百分率を求め発芽率とした。
[0095] 比較例 7
実施例 7と同様の方法でシユードモナス HAI00377菌、バチルス セレウス KI2N株お よびトリコデルマ ハルジァナム Kubota株の培養、集菌を行った。これら拮抗微生物 の浸漬処理は、同じ量の種子と拮抗微生物懸濁液を用いて、常圧条件下にて行つ た。実施例 7と同様に余剰水分を除去後、 30°C条件下で通風乾燥した。乾燥時間は 48時間であった。
[0096] 種子中におけるシユードモナス HAI00377菌、バチルス セレウス KI2N株およびトリ コデルマ ハルジァナム Kubota株の生存率は、実施例 7と同様の方法で求めた。ま た、種子の発芽率についても、実施例 7と同じ方法を用いた。
[0097] 実施例 7と比較例 7の結果を表 8に示す。シユードモナス HAI00377株については、 実施例 7-1〜7-3の 3条件における拮抗微生物の生存率が 82〜100%であったのに 対して、 HAI00377株を浸漬接種後 30°Cで通風乾燥した区 (比較例 7-1)は、 56%とな つた。種子の発芽率に関しては、比較例でやや低ぐ実施例の 3試験区では 90%以 上の高い発芽率を示した。
[0098] KI2N株については、比較例 7-Πではイネ種子を熱処理することにより、耐熱性芽胞 形成細菌 (バチルス属細菌)が検出されなかったのに対して、実施例 7-4〜7-6の 3条 件ではバチルス属細菌の耐熱性芽胞が検出された。種子の発芽率に関しては、比 較例 7-11、実施例 7-4〜7-6ともに 95%以上の高い発芽率であった。
[0099] Kubota株については、比較例 7-IIIで生存率の低下が認められた力 実施例 7-7〜 7-9の 3試験区では生存率が高く維持されていた。種子の発芽率に関しては、比較例 7-ΠΙに比べて実施例 7-7〜7-9の 3試験区はいずれもやや高く 95%以上の発芽率を 示した。
[0100] 以上のことからイネ種子において、グラム陰性細菌(シユードモナス属細菌) 'グラム 陽性細菌 (バチルス属細菌) ·糸状菌(トリコデルマ属糸状菌)を減圧接種または低温 低湿乾燥のいずれか一方、または両方の処理を行うことが種子への定着に有効であ ることが明らかになった。
[表 8] ィネ種 へのクフム陰性細菌(シユードモナス^細菌) 'グラム陽性細菌 バチルス属細菌
• ^状菌(トリコデルマ ^糸状崗)の接種 '乾燥処理 件が閎の牛^率および発芽率に及ぼ
す影^ _
生物の生存率 の ~
(¾)
秄:方法 乾燥方法 乾 前 後 ¾
. 比 例 て通匦
^ -突施 1 低^ 】
細^ ^例 T 通風
実施例
バチルス 比 例 演接種 通
属細菌 実施例 ■锓¾接種 て低
実施例 減圧接種 通風
¾施例 減圧接栩 低 ¾
トリコデ ¾例 « 浸 接種 通風
ルマ展 ¾ 実施例 ― 浸 ¾接種 低瀝
状菌 ¾施例 接種 風
実施例 ^ 滅圧接種 低^
浸浸滅滅
清ほ^圧
接接接-
[0101] 室施例 8 :各微牛 )コーティング糠^の ϋ宁 ,験
実施例 1および比較例 1のニンジンのペレット種子、実施例 7および比較例 7のイネ 種子を用いて湿度は 30〜35%、温度条件はそれぞれ 5°C、 15°C、 25°Cで貯蔵後、各 条件ごとに生菌数を測定した。
[0102] 結果を表 9に示す。
[0103] ニンジンのペレット種子の貯蔵試験では、比較例 1の条件では生存率の低下が著 しかったが、実施例 1の条件では 90%の高い生存率が示された。
[0104] イネの種子の貯蔵試験では、 5°Cと 15°Cの貯蔵温度の場合に、比較例 7-1では 10% 程度の生存率であつたが、実施例 7-1〜7-3では 26%〜100%、特に実施例 7-3では 84%〜100%と高い生存率であった。イネ種子へバチルス属細菌をコーティングして 貯蔵した場合に、比較例 7 - IIでは、バチルス属細菌は検出できな力つたが、実施例 7 -6の条件では 5°C、と 15°Cでバチルス属細菌が検出された。
[¾9]
貯蔵種子中の微生物の生存率
Figure imgf000027_0001
実施例 9:アブラナ科根こぶ病に対する桔杭微牛物コーティング種子の防除効果 ブロッコリ一種子 (品種:緑嶺、(株)サカタのタネ)に対し、拮抗微生物としてグラム陰 性細菌(シユードモナス) (Pseudomonas putida) HAI00377株を実施例 3および比較 例 3と同じ条件でコーティングして、微生物コーティング種子を作成した。
[0106] ブロッコリ一種子をストレプトマイシン添加キング B寒天培地に置床、 25°Cで 3日間培 養後に蛍光を発するコロニーが出現する種子を数えることにより、 HAI00377の種子 定着率を算出した。
[0107] 結果を表 10に示す。減圧接種'低温低湿乾燥処理では微生物の定着率 100%で あった。一方、浸漬接種'加温通風乾燥では微生物の定着率は 7%であった。
[表 10]
定《率赒査箱 ¾
Figure imgf000028_0001
[0108] 上記それぞれの方法で内生細菌を処理した種子を培養土 (メトロミックス 350)を詰 めた 128穴セルトレーに播種し、温室で 3週間育苗した。本葉 1.5枚の苗を、アブラナ 科野菜根こぶ病菌(Plasmodiophora brassicae菌株: HTKZE)の休眠胞子を 1000個/ gの濃度で混和した土壌を詰めた 10.5cmYポットに移植することにより、根こぶ病菌を 接種した。温室 (最低 18°C-最高 28°C)で 25日間栽培したのち、根部を水洗し、各個 体の根こぶ病発病程度を調査した。発病調査には、以下の発病評点を用いた。発病 評点 0 :発病が認められない。 1 :根こぶが側根部に僅かに着生している。 2 :根こぶが 主根、側根に着生しやや肥大している。 3 :根こぶの着生、肥大が著しい。発病度は 次式により算出した。
[0109] 発病度 = [(発病評点 X各発病評点の個体数) X 100]/[3 X調査個体数]
防除価は次式により算出した。
[0110] 防除価 = 100— [処理区の発病度 Z無処理区の発病度 X 100]
結果を表 11に示す。減圧接種 ·低温低湿乾燥法によって内生細菌処理した区は 浸漬接種 ·加温通風乾燥区や無処理区に比べて発病程度が低ぐ 37%の防除効果 が認められた。
[表 11] 内 »ΉΛΙ003Γί«子処理 (こよるブロッコリ一相こぶ 防除試験
Figure imgf000029_0001
: 4 1 HH , : 20 5年 5月 S日。 調査 2005年 5月 31曰。
[0111] 以上の結果から、種子に拮抗微生物を減圧接種する方法、種子に拮抗微生物を 接種後、低温低湿条件下で乾燥する方法、およびこれらを組み合わせる方法により 、種子へ接種した拮抗微生物の生存率は著しく高まることは明らかである。更に、本 発明に基づいて作成した拮抗微生物コーティング種子は、土壌病害に対して高い防 除価を示した。したがって、本発明を利用することにより、病害防除効果が高く保存 安定性の高い種子を安価かつ簡便に提供する事が可能になる。
[0112] 以下の参考例、実施例および比較例は、レタスビッグべインウィルスを保持するォ ルビディウム属菌に対して拮抗性を示す内生細菌をレタス種子にコーティングしてレ タスビッグべイン病を防除する方法に関連する。レタスの実施例では、拮抗微生物と して拮抗性内生細菌を用いた。
[0113] 参考例 2:レタスフィルムコート種子への拮抗性内牛.細菌の接種および乾燥が拮抗性 牛 田 ¾iの牛. に える 》
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2003株(FERM B P-10665)を用いた。
[0114] キング B寒天培地を入れた 9cmシャーレにシユードモナス FPH- 2003株を植菌し、 25 °Cで 2日間静置培養した。コーンラージ棒を用いて集菌し、これを接種源とした。
[0115] 集菌した FPH-2003株に、ポリビュルアルコール (PVA)又はポリビュルアセテート (PV Ac)で作製したバインダー溶液 10mlをカ卩え、回転子 (攪拌子)を用いて FPH-2003株を 十分に分散させ、レタス種子 100g (品種:ロジック)に少量ずつ加えながら、十分に攪 拌した。この種子を、 25°C又は 35°Cの温風循環乾燥機に入れ、 24時間乾燥させた。
[0116] 種子中における FPH- 2003株の菌密度は、下記の方法で求めた。種子 100粒を 10 mlの滅菌水に懸濁し、さらに 10倍 · 100倍 · 1000倍 ' 10000倍希釈液を作成した。これら の菌懸濁液を希釈平板法によりストレプトマイシンを添加したキング B寒天培地上に 塗布した。 25°Cで 96時間培養し、コロニーの出現により判定した。 [0117] 参考例 2の結果を表 12に示す。 PVAフィルムコート剤を用いて FPH- 2003株を接種 したレタス種子では、いずれの乾燥温度区でも乾燥前に 6.2 X 104cfo/粒の菌密度で あつたが、乾燥 6時間後には全滅していた。また、 PVAcフィルムコート剤を用いて FP H-2003株を接種したレタス種子では、いずれの乾燥温度区でも乾燥前に 1.2 X 105cf u/粒の菌密度であった力 乾燥 24時間後には全滅していた。このことから、レタス種 子に拮抗性内生細菌を接種し乾燥後に、拮抗性内生細菌を生存させることは、きわ めて難しい事が明らかになった。
[表 12] レタスフィルムコート種子への拮抗性内生細菌の接種およぴ乾燥が拮抗性内生細
菌の生存率に与える影響
拮抗性内生 の菌¾度(cfu/粒) 6時間乾燥後の フィルム ト剤 乾燥温度 0時問乾燥 6時問乾燥 24時閒乾燥 掊抗性内生細菌
(X) 生存率 (%)
PVAフィルム ト 25 6. 2 X 104 0 0 0
剤 35 6. 2 X 104 0 0 0
PVAcフィルム 卜 25 1. 2 X 105 4. 3 X 103 0 3. 6
剤 35 1. 2 X 105 1. 6 X 102 0 0. 1
[0118] 参考例 3 :拮抗性内牛.細菌を接種したレタスペレット種子の含水率による拮抗性内牛. 細菌の牛.存に与える影響
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2003株(FERM B P-10665)を用いた。キング B寒天培地を入れた 9cmシャーレにシユードモナス FPH-2 003株を植菌し、 25°Cで 2日間静置培養した。コーンラージ棒を用いて集菌し、これを 接種源とした。
[0119] 集菌した FPH- 2003株に滅菌水 20mlを加え、回転子 (攪拌子)を用いて FPH- 2003株 を十分に分散させた。この拮抗性内生細菌分散溶液をレタス種子のペレット造粒に 用いた。次にペレット造粒工程について説明する。造粒装置 Pelletizing unit(SEED P ROCESSING社製)を回転させながら、レタス種子 100g (品種:ロジック)を投入し、種子 を攪拌しながら上記の拮抗性内生細菌分散溶液をスプレーし種子を十分に湿らせた 。その種子に造粒用粉体 (珪藻土 ·炭酸カルシウムなどの混合物)を少量加え攪拌し た。さらに、拮抗性内生細菌分散溶液をスプレーし造粒用粉体を少量加える作業を 、拮抗性内生細菌分散溶液がなくなるまで繰り返した。その後、造粒用ノインダーを 3.0%ポリビニルアルコールに切り替え、造粒用バインダーと造粒用粉体を交互に添 加しながらペレットを造粒した。造粒後、篩を使用し粒径 3.0〜3.5mmのペレットのみ 選別した。この種子を、 30°Cの温風循環乾燥機に入れ、 24時間乾燥させた。このとき の部屋の湿度は約 45 %であつた。
[0120] ペレット造粒種子中における FPH- 2003株の菌密度の測定は、参考例 2と同様の方 法を用いた。また、ペレット造粒種子中における FPH- 2003株の生存率は、下記の方 法で求めた。ペレット種子 50粒 (10粒 X 5反復)をストレプトマイシン添加キング B寒天 培地上に置床し、 25°Cで 96時間培養した。培養後に、 FPH- 2003株のコロニーをカウ ントし、その数力も百分率を求め生存率とした。
[0121] 参考例 3の結果を表 13に示す。 FPH- 2003株をレタス種子にスプレー接種した種子 は、ペレット種子の含水率が高!、ほど FPH- 2003株の生存率および菌密度が高 、、 つまりペレット種子を乾燥させるにつれて、 FPH- 2003株が減少していくことが明らか になった。通常の実用に供試し得るペレットの含水率は、 0.5〜3.0%であるが、含水 率を 0.8%に下げた場合、 FPH- 2003株が完全に死滅してしまうことが明らかになった 。レタス種子の場合に含水率が 10%を超えると保存中にカビが発生したり、腐敗が始 まったり、発芽したりする為に実用的に使用できない。したがって、拮抗性内生細菌 をレタス種子にスプレー接種後、ペレット造粒し、加温通風で乾燥させる従来の方法 では、拮抗性内生細菌をレタス種子に定着させることが、きわめて困難であることが 判明した。
[表 13]
レタスペレツト β子の含水率と拮抗性内生細菌の生存率との鬨係
へ'レ'/ト種子の含水^ (%) 拮抗性内生細菌の生存^ 捨抗性内生細菌の ¾度
(¾) (cfu/¾)
2S. 8 93 6. 7X 10S
9, 5 70 3. O x
7. 6 40 ]. SX】DS
4. 8 2S ]. 1 X 1D!
3. 13 0
1. 3 Τ 0
D. 8 0 0
¾施例 ίθ :レタス 子への桔杭件内牛細菌の榇糠方法が桔杭件内牛細菌の牛存に る
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2003株(FERM B P-10665)を用いた。キング B寒天培地を入れた 9cmシャーレにシユードモナス(Pseud omonas sp.) FPH- 2003株を植菌し、 25°Cで 2日間静置培養した。コーンラージ棒を 用いて集菌し、 1/5000 Tween80を添加した滅菌水に懸濁した。希釈平板法で生菌 数を測定したところ、約 1 X 101Q ciU/mlであった。レタス種子 100g (品種:ロジック)をメ ッシュで包みイチゴパックに収め、浮かばないように重りを載せ、種子が沈むように菌 懸濁液 300mlを注いだ。減圧接種法は、コンパクトエアーポンプ NUP-2(ァズワン製)を 用いて、陰圧条件とした。ポンプ排気能力は、 12 l/min、到達圧力は、 300 mmHg、 最高陰圧条件に達するまでの時間は、約 2分であった。 5分間、最高陰圧条件に置い た後、ゆっくりコックを開いて常圧に戻した。常圧に戻るまでの時間は、約 20秒であつ た。温度条件は 25°C±5°Cの範囲であった。余剰水分を除去する為に恒温乾燥機( MOV-212F) (SANYO製)にて、 30°C、 1時間通風乾燥を行った。
[0123] こうして得られた拮抗性内生細菌コーティングレタス種子を更にペレット造粒した。
以下にペレット造粒工程について説明する。上記で得られたコーティング済みのレタ ス種子の全量(約 100g)を回転している造粒装置 Pelletizing unit(SEED PROCESSIN G社製)に投入し、種子を攪拌しながら造粒用バインダー 3.0%ポリビュルアルコール を種子にスプレーし湿らせた。種子が十分に湿った後、造粒用粉体 (珪藻土 ·炭酸力 ルシゥムなどの混合物)を所定量加えた。さらに造粒用バインダーと造粒用粉体を交 互に添加しながらペレットを造粒した。造粒後、篩を使用して、得られたペレットのうち 直径 3.0〜3.5mmのもののみを選別した。この種子を、 30°Cの温風循環乾燥機に入れ 、 24時間乾燥させた。このときの部屋の湿度は約 45%であった。
[0124] 比較例 10
実施例 10と同様の方法で FPH-2003株を培養、集菌した。 FPH-2003株の浸漬処理 は、レタス種子 100g (品種:ロジック)と拮抗性内生細菌懸濁液を用いて、常圧条件下 にて行った。実施例 10と同様に余剰水分を除去、ペレット造粒を行った。この種子を 30°Cの温風循環乾燥機に入れ、 24時間乾燥させた。このときの部屋の湿度は約 45% であった。
[0125] ペレット造粒種子中における FPH- 2003株の生存率は、参考例 3と同様の方法を用 [0126] 実施例 10と比較例 10の結果を表 14に示す。 FPH- 2003株を減圧接種後ペレット加 ェした区 (実施例 10)では、 FPH-2003株の生存率は、乾燥してもほとんど低下せず、 含水率 1.1%と通常の商品用ペレットの含水率である 2%以下となっても、 93%と高い 値を示した。それに対して、 FPH-2003株を浸漬接種後ペレット加工した区 (比較例 1 0)では、 FPH- 2003株の生存率は、乾燥とともに徐々に低下し、含水率 1.1%と通常の 商品用ペレットの含水率である 2%以下となっても、 FPH- 2003株の生存率力 3%とな り、ほとんどの FPH- 2003株が死滅していることがわかった。このことからレタスペレット 種子の製造において、用いられるレタス種子に拮抗性内生細菌を減圧接種する方法 力 拮抗性内生細菌をレタス種子に定着させるのに有効であることが明らかになった
[表 14] レタス種子への拮抗性内生細菌の接種方法が拮抗性内生細菌の生存に与える影響
ペレツト種子の 掊抗性内生細菌の
含水率(°/0) 生存率 (
29. 8 100
24. 6 100
実施例 1 0 13. 2 100
1. 3 93
L 1 93
30. 1 100
22. 8 100
比絞例 1 0 11. 7 93
50
L 1 3
[0127] 実施例 11 :レタス糠子への桔杭件内牛.細菌の接糠方法および乾燥方法が桔杭件内 牛.細菌の生存および種子の発芽に与える影響
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2003株(FERM B P-10665)を用いた。実施例 10と同様の条件で減圧接種およびペレット造粒を行った 。この種子の低温低湿乾燥は、下記の方法で行った。 15°Cの低温室にデシケーター を入れ、その中に乾燥剤としてシリカゲルを入れた。ペレット種子をデシケーター中に 置き、 24時間乾燥させた。このときのデシケーター中の湿度は約 20%であった。
[0128] 比較例 11
比較例 10と同様の方法で FPH- 2003株を浸漬処理し、ペレット造粒を行った。この 種子を 30°Cの温風循環乾燥機に入れ、 24時間乾燥させた。このときの部屋の湿度は 約 45%であった。
[0129] ペレット造粒種子中における FPH- 2003株の生存率は、参考例 3と同様の方法を用 いた。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水させたろ紙 上に、ペレット種子 150粒 (50粒 X 3反復)を置床し、 20°C暗黒条件下で 14日間栽培し た。胚軸と幼根の存在を確認したものをカウントし、その数力 百分率を求め発芽率 とした。
[0130] 実施例 11と比較例 11の結果を表 15に示す。 FPH- 2003株を減圧接種後 15°Cで低 温低湿乾燥した区 (実施例 11)では、 FPH- 2003株の生存率は 100%、 FPH-2003株を 浸漬接種後 30°Cで通風乾燥した区 (比較例 11)では、 FPH-2003株の生存率は 11% となり、比較例 11よりも実施例 11の方がより高い生存率となった。種子の発芽率に関 しても 95%以上の高い値を示し、問題のないことがわかった。これらのことからレタス 種子において、拮抗性内生細菌を減圧接種した後、低温低湿乾燥する方法が、拮 抗性内生細菌を定着させるのに有効であることが明らかになった。
[表 15] レタス種子への拮抗性内生細菌の接種方法および乾燥方法が拮抗性内生細菌の生 存および種子の発芽に与える影響
拮抗性内生細菌の生存率 (%) ペレツ ト種子 種子
の含水率(%) の発芽率(%) 乾燥前 乾燥後 乾燥後 乾燥後
実施例 1 1 100 100 2%以下 98
比較例 1 1 100 11 2%以下 96
[0131] ¾施例 1 2 :桔杭件内牛細菌 減 ffi榇糠後、低温低湿乾熥したレタスペレット糠早に
: ける桔杭件内牛細菌の保存安定件試,験 (桔杭件内牛細菌の牛存率: よび糠子の の )
実施例 11で FPH-2003株を減圧接種後、造粒し 15°Cで低温低湿乾燥したペレット 種子を密封し、(1)温度 5°C,湿度 20%、(2)温度 15°C,湿度 40%、(3)温度 20/30°C変温 •湿度 80%の 3つの異なる条件下で 3ヶ月間貯蔵した。貯蔵期間 0ヶ月 · 1ヶ月 · 3ヶ月 の時点で、 FPH-2003株の生存率および種子の発芽率を調査した。
[0132] 実施例 12の結果を表 16に示す。 [0133] このレタスペレット種子を、温度 5°C .湿度 20%で保存した区 (実施例 12— 1)では、 F PH-2003株の生存率は貯蔵 1ヶ月後には 96%、貯蔵 3ヶ月後には 36%であった。一 方、この種子を温度 15°C '湿度 40%で保存した区(実施例 12— 2)では、 FPH-2003 株の生存率は貯蔵 1ヶ月後には 30%、貯蔵 3ヶ月後には 0%であった。また温度 20/3 0°C変温 ·湿度 80%で保存した区(実施例 12— 3)では、 FPH-2003株の生存率は貯 蔵 1ヶ月後には 4%、貯蔵 3ヶ月後には 0%であった。種子の発芽率に関してはいず れの区でも 93%以上の高い寸値を示し、問題のないことがわかった。これらのこと力 、 レタス種子において拮抗性内生細菌を減圧接種した後、造粒後、乾燥を低温低湿 条件下で行ったペレット種子を低温低湿下で貯蔵することで、拮抗性内生細菌の生 存率が高まり、拮抗性内生細菌を種子に長い期間定着させるのに有効であることが 明らかになった。
[表 16] 拮抗性内牛-細菌を減圧接種後、 低温低湿乾燥したレタスペレツト種子の保存安定
性試験 (拮抗性内生細菌の生存率おょぴ種子の発芽率の推移)
拮抗性内生細菌の生存率
種子の発芽率 (%)
(%)
貯蔵 貯蔵 貯蔵 貯蔵 貯蔵 貯蔵 保存温度 ·湿度
0ヶ月 1ヶ月 3ヶ月 0ヶ月 1ヶ月 3ヶ月 実施例 12-1 (1) 5°C · 20% 100 96 36 98 96 97 実施例 12-2 ] 00 30 0 93 95 99 実施例 L2-3 (3) 20/30^:変温 · 80% 100 4 0 93 97 93
[0134] ¾施例 1 3 :桔杭件内牛細菌コーティング糠早のレタスビッグべイン病^ ¾介する Olni dium brassicaeの感¾阳.害効菓
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2005- 1株(FERM BP-10664)を用いた。実施例 11と同様の条件で減圧接種およびペレット造粒を行 ヽ 、低温低湿乾燥を行った。拮抗性内生細菌コーティング種子及び通常種子 (拮抗性 内生細菌をコーティングして 、な 、種子)それぞれを、ビッグべイン病汚染土壌を充 填したプランター (25cm X 60cm)に播種し、ガラス温室内で育成した。播種 26日後にレ タス苗を抜き取り、生物顕微鏡下で根部に形成した Olpidium brassicaeの遊走子のう の数を調べた。調査数は試験区あたり 5株について行い、 1株当たり 10視野計測をお こなった。通常種子では 1株当たり 86.3個感染していたが拮抗性内生細菌コーティン グ種子では、 5.5個と Olpidium brassicaeの感染数を約 1/15に減少させることができた 結果を表 17に示す。
[表 17] 拮抗性内生細菌コーティング種子の Olpidium brassica の感染 IS害勃果
種子の種類 CJpidiuiD brassicae遊走子のう数(個 /tW
拮抗性内生細菡コ一ティング種子 5. 5
通常種于 (比較倒) 86. 3
[0136] 実施例 14:レタスビッグべイン病に対する拮抗性内牛.細菌コーティング種子の防除効
(ハウス内試験)
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2005- 1株(FERM BP-10664)を用いた。実施例 11と同様の条件で減圧接種およびペレット造粒を行 ヽ 、低温低湿乾燥を行った。拮抗性内生細菌コーティング種子及び通常種子 (拮抗性 内生細菌をコーティングして 、な 、種子)それぞれを、ビッグべイン病汚染土壌を充 填したプランター (25cm X 60cm)に播種し、ガラス温室内で育成した。播種 80及び 110 日後に発病を調査した。調査数は、それぞれ 30株であった。通常種子では播種 80日 後には発病株率 30.0%、播種 110日後には 100%となった。拮抗性内生細菌コーティン グ種子区では、播種 80日後では 5.9%、播種 110日後には 67.7%となり、それぞれ通常 種子と比べ低!、発病株率であった。本結果より拮抗性内生細菌コーティング種子は レタスビッグべイン病に対して高 ヽ発病抑制効果を示した。
[0137] 結果を表 18に示す。
[表 18] レタスビッグペイン^に対する拮抗性内生細 コーティング種子の防除効果
種子の種^ 播種 日後発病株卒 ( ) 捅種 UO B後発病株率 )
掊抗性 ^生細閑コ -テ ンゥ'種子 5. 9 ET. 7
通^種子 (比較例) 30. 0 100. 0 実施例 15:減圧接糠条件の枪討
拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2005- 1株(FERM BP-10664)を用いた。キング B寒天培地を入れた 9cmシャーレにシユードモナス(Pseu domonas sp.) FPH- 2005- 1株を植菌し、 25°Cで 2日間静置培養した。コーンラージ棒 を用いて集菌し、 1/5000 Tween80を添加した滅菌水に懸濁した。希釈平板法で生菌 数を測定したところ、約 1 X 109 cfo/mlであった。レタス種子 20g (品種:ロジック)をメッ シュで包みイチゴパックに収め、浮かばないように重りを載せ、種子が沈むように菌懸 濁液 150mlを注いだ。減圧接種法は、 MDA-015ポンプを用い減圧接種条件の検討 を行った。減圧接種後、脱水し、恒温乾燥機にて 30°C、 15時間通風乾燥した。種子 からの菌の検出は、下記の方法で行った。種子 100粒をストレプトマイシン添加キング B寒天培地に置床し、 25°Cで 2日間培養後、蛍光コロニーの出現する種子をカウント した。また、種子の発芽率は、脱イオン水を吸水させたろ紙上に、ペレット種子 150粒 ( 50粒 X 3反復)を置床し、 20°C暗黒条件下で 14日間栽培した。胚軸と幼根の存在を確 認したものをカウントし、その数から百分率を求め発芽率とした。
[0139] 施例 1 5— の 討
ポンプ MDA-15の圧力調節弁を調節し、最高陰圧条件を変えた。
[0140] ( 施例 ί5— 2)最高陰 ffiから常 ffiへの し日き間の檢討
空気穴の開閉を調節して常圧への戻し時間を調節した。
[0141] ( miB 3) 高陰 の保持日き間の檢討
最高陰圧条件下に保持する時間を変更した。
[0142] 比較例として、浸漬処理を行った種子を用いて菌の検出率と発芽率を調べた。
[0143] 結果を表 19に示した。実施例 15-1の結果から、最高陰圧 150 mmHg〜680 mmHgの 範囲では、菌の検出率、発芽率ともに問題ないことがわ力つた。実施例 15-2の結果 から、最高陰圧から常圧への戻し時間が 25秒〜 50秒の範囲では、菌の検出率、発 芽率ともに問題ないことがわ力つた。実施例 15-3の結果から、最高陰圧の保持時間 は、 300秒に比べ、 1200秒〜 3600秒では、菌の検出率がやや低下する事がわかつ た。
[0144] 実施例 15の減圧接種条件の範囲であれば、内生細菌をレタス種子に接種するの に問題ないことがわ力つた。
[表 19] 减圧接種条件の検討
試験 No. 取 r¾陰 最高陰压 最高陰 常圧への 菌検出 発芽
圧 までの到 圧保持 戻し時間 率 ) 率 («
、mmHg) 達 時 間 時間 (秒)
(秒) (秒)
実施例 15-1 - 1 150 60 300 15 96 90
2 400 60 300 25 96 3. 3
3 680 120 300 35 92 9L 3 実施例 15 - 2 4 400 135 300 25 71 92
5 400 120 300 50 S3 90. 6 実施例 15-3 6 400 135 300 25 71 92
7 揚 120 1200 25 33 94, 6
8 400 120 3600 25 43 92, 6 比較例 9 0 0 0 ϋ 84 94
[0145] 実施例 16:レタス糠子への桔杭件内牛.細菌の接糠方法および 燥方法が桔杭件内 牛 田 ¾iの牛. に える 》
実施例 15と同様の方法で FPH- 2005-1株(FERM BP-10664)を培養し、実施例 10 と同様の減圧接種と低温低湿乾燥および比較例 10と同様の常圧条件における浸漬 接種と加温通風乾燥を組合せた試験を行った。
[0146] 内生細菌の検出は、 96穴のマイクロウェルにペレット種子を入れ、ストレプトマイシ ン 200 ppm、チオファメートメチル 1,000 ppmカ卩用キング B液体培地を 100 μ 1注入後、 2 5°C、 48時間培養後、 340 nmの紫外光を照射し、蛍光を示したゥエルを数えた。蛍光 強度を 3段階に分類した(+ :かすかに蛍光が見られる。 + + :蛍光が見られる。 + + +:強い蛍光が確認される。;)。そして各蛍光強度を示すゥエルの、全ゥエルに対す る百分率を求めた。
[0147] 結果を表 20に示した。
[表 20] 接種方法およぴ乾燥方法の違 ' ト種子の含水率、 FPH- 2005- 1株の検出率 実施例 接種条件 乾燥条件 含 水 蛍光強度 検出率
率 + +++ (%)
(%)
実施例 16-1 常圧接種 低温低湿乾燥 2. 9 3. 1 96. 9 0. 0 層. 0
実施例 16-2 常圧接種 低温低湿乾燥 2* 4 0. 0 100. 0, 0 100. 0
0
実施例 16 - 3 減圧接種 1, S 83. 3 0. 0 0. 0 83. 3
実施例 16- 4 減圧接種 加温通風乾燥 L 1 92. 7 0. 0 0. 0 92. 7
実施例 16-5 減圧接種 低温低湿乾燥 3. 0 1. 0 93. 0 1. 0 100. 0
実施例 16 6 減圧接種 低温低湿乾燥 3. 0 1. 0 99. 0 0. 0 100. 0
比較例 常圧接種 加温通風乾燥 1, 8 1, 0 0. 0 0. 0 1. 0
比較例 常圧接 S 加温通風乾燥 L 1 0. 0 0. 0 0. 0 0. 0 [0148] 表 20の結果から、減圧接種、低温低湿乾燥のそれぞれ単独処理または併用処理 により接種した内生細菌 FPH- 2005-1株がレタスペレット種子力 高頻度で検出され ることが確認された。
[0149] 実施例 17 :拮抗性内牛.細菌コーティング種子による O.brassicaeの游走子感染阻害 効 、レタス根への定着数 発病程度 (ポット試験)
直径 15cmのアイスクリームパックにビッグべイン病汚染土壌を充填し、拮抗性内生 細菌コーティング種子を 15粒ずつ播種、 20日後に根を 0.1%リン酸水素二カリウム溶 液に浸し、泳ぎだした遊走子を顕微鏡で計測した。根部をエタノールで表面殺菌し、 摩砕後、ストレプトマイシン 200ppm入りキング B培地を用いて希釈平板法で根に定着 している拮抗性内生細菌の菌数を測定した。播種後 40日目にビッグべイン症状の発 病程度を調査した。結果を表 21に示す。レタスの根部に拮抗性内生細菌が定着して いることが確認された。拮抗性内生細菌コーティング種子を用いた場合、無処理区 (5 .1)に比べ根部から遊走子の放出数は 0.5と約 1/10に減少し、遊走子の感染を阻害し ていることが確認された。発病株率は、拮抗性内生細菌コーティング種子を用いた場 合 14.3%と無処理区の 70.0%と比べて明らかに低くなつており、発病抑制効果のある ことが確認された。
[表 21] 掊抗性内生細菌コーティング種子による 0. brassicaeの遊走子感染阻害効果、 レ
タス根への定着数と発病程度
Figure imgf000039_0001
[0150] ¾施例 1 8:レタスビッグべイン病に針する桔杭件内牛細菌コーティング糠早の防除効 拮抗性内生細菌として、シユードモナス(Pseudomonas sp.) FPH- 2005- 1株(FERM BP-10664)を用いた。実施例 10と同様の条件で減圧接種およびペレット造粒を行 ヽ 、低温低湿乾燥を行った。培土を充填した 200穴セルトレイに拮抗性内生細菌コーテ イング種子を播種、一般慣行に従って育苗後、兵庫県淡路島南淡町阿万塩屋の現 地圃場に定植した。(1) 9月下旬定植- 11月中旬調査、(2) 10月下旬定植- 12月調査 、(3) 11月下旬定植- 3月調査において防除効果を調べた。試作は 20株の 3反復で行 い、それぞれの調査数は 20株であった。
[0151] 発病調査には、以下の発病評点を用いた。 0 :症状が認められない。 1:ビッグべイン 症状が見られ、結球には影響しない。 2 :ビッグべイン症状が見られ、小玉になるが出 荷できる。 3 :ビッグべイン症状が見られ、結球するが出荷できない。 4:ビッグべイン症 状が見られ、結球しない。
[0152] 発病度、防除価、商品化率は次式により算出した。
[0153] 発病度 = [(発病評点 X各発病評点の個体数) X 100)] /[4 X全調査数]
防除価 = 100- [処理区の発病度 Z無処理区の発病度 X 100]
商品化率 = [(発病評点 0〜2の株数) X 100]Z全調査株数
結果を表 22に示す。(1)は小発生条件下での試験となり、防除価 45.8を示した。(2 )では中発生条件下における試験となり、防除価 41.0を示した。(3)では甚発生条件 下における試験となり、処理区 ·無処理区とも 100%の発病となった。しかし、拮抗性 内生細菌コーティング種子を用いた区では発病程度が低く抑えられ、商品化率は無 処理区の 81.0%に比べ、 98.9%とビッグべイン病の被害を回避することができた。
[表 22]
レタスビッグべイン病に対する拮抗性内生細菌コーティング種子の防除効果
Figure imgf000040_0001
以上の結果から、レタス種子に拮抗性内生細菌を減圧接種する方法、レタス種子 に拮抗性内生細菌を接種後、低温低湿条件下で乾燥する方法、およびこれらを組 み合わせる方法により、レタス種子へ接種した拮抗性内生細菌の生存率は著しく高 まることは明らかである。更に、本発明に基づいて作成した拮抗性内生細菌コーティ ングレタス種子は、レタスビッグべイン病害に対して高い防除価を示した。本発明を 利用することにより、レタスビッグべイン病害防除効果が高く保存安定性の高いレタス 種子を安価かつ簡便に提供することが可能になる。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本 明細書にとり入れるものとする。

Claims

請求の範囲
[1] 種子に拮抗微生物を減圧接種することを特徴とする拮抗微生物コーティング種子 の製造方法。
[2] 種子に拮抗微生物を減圧接種した後に、低温低湿条件下で乾燥することを更なる 特徴とする請求項 1記載の方法。
[3] 種子に拮抗微生物を接種し、接種後に前記種子を低温低湿条件下で乾燥すること を特徴とする拮抗微生物コーティング種子の製造方法。
[4] 請求項 1〜3のいずれか 1項記載の方法により製造された拮抗微生物コーティング 種子。
[5] 作物の種子に拮抗微生物を減圧接種することを特徴とする、作物における病害の 防除方法。
[6] 作物の種子に拮抗微生物を減圧接種した後に、低温低湿条件下で乾燥することを 更なる特徴とする請求項 5記載の方法。
[7] 作物の種子に拮抗微生物を接種し、接種後に前記種子を低温低湿条件下で乾燥 することを特徴とする、作物における病害の防除方法。
[8] 拮抗微生物を接種した作物の種子を、乾燥終了後から播種までの間に、低温低湿 条件下で貯蔵することを更なる特徴とする請求項 5〜7のいずれか 1項記載の方法。
PCT/JP2006/318337 2005-09-16 2006-09-15 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法 WO2007032458A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/991,962 US20100154299A1 (en) 2005-09-16 2006-09-15 Seed Coated with Antagonistic Microorganism, Method for Producing the Seed, and Disease Control Method for Crop
EP06810179A EP1935245A1 (en) 2005-09-16 2006-09-15 Seed coated with antagonistic microorganism, method of producing the same and method of protecting crop from diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005271020A JP2007077126A (ja) 2005-09-16 2005-09-16 内生細菌コーティングレタス種子、その製造方法、及びレタスビッグベイン病害の防除方法
JP2005270616A JP5111747B2 (ja) 2005-09-16 2005-09-16 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法
JP2005-270616 2005-09-16
JP2005-271020 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032458A1 true WO2007032458A1 (ja) 2007-03-22

Family

ID=37865041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318337 WO2007032458A1 (ja) 2005-09-16 2006-09-15 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法

Country Status (3)

Country Link
US (1) US20100154299A1 (ja)
EP (1) EP1935245A1 (ja)
WO (1) WO2007032458A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181389B1 (en) * 2009-03-24 2012-05-22 Weyerhaeuser Nr Company Method to improve manufactured seed germination by exposure to a change in ambient pressure
AU2010248203A1 (en) * 2009-05-14 2012-01-19 Rhino Research Europe B.V. Product marking
PL2790513T3 (pl) 2011-12-13 2020-04-30 Monsanto Technology Llc Drobnoustroje promujące wzrost roślin i ich zastosowanie
EP2676536A1 (en) 2012-06-22 2013-12-25 AIT Austrian Institute of Technology GmbH Method for producing plant seed containing endophytic micro-organisms
CA2899823C (en) 2013-02-05 2023-02-14 Vladimir Vujanovic Endophytic microbial symbionts in plant prenatal care
DE102013210408A1 (de) * 2013-06-05 2014-12-11 Evonik Industries Ag Granuliertes Saatgut
US10136646B2 (en) 2013-06-26 2018-11-27 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
MX2020003135A (es) 2013-06-26 2021-03-25 Indigo Ag Inc Poblaciones endofitas derivadas de semillas, composiciones y metodos de uso.
CN105491873B (zh) * 2013-07-04 2019-05-28 维尔莫林公司 用于种子消毒的处理
EP3659414A1 (en) * 2013-09-04 2020-06-03 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US9277751B2 (en) 2013-11-06 2016-03-08 The Texas A&M University System Fungal endophytes for improved crop yields and protection from pests
WO2015100432A2 (en) 2013-12-24 2015-07-02 Symbiota, Inc. Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds
US9364005B2 (en) 2014-06-26 2016-06-14 Ait Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor
CA3101008A1 (en) 2013-12-24 2015-07-02 Indigo Ag, Inc. Plants containing beneficial endophytes
MX367032B (es) 2014-06-20 2019-08-02 The Flinders Univ Of South Australia Inoculantes y metodos para su uso.
EP3161124B1 (en) 2014-06-26 2020-06-03 Indigo Ag, Inc. Endophytes, associated compositions, and methods of use thereof
US10667523B2 (en) 2014-12-30 2020-06-02 Indigo Ag, Inc. Seed endophytes across cultivars and species, associated compositions, and methods of use thereof
BR112017023551A2 (pt) 2015-05-01 2018-07-24 Indigo Agriculture Inc composições de endófitos complexos projetados e métodos para melhorar características da planta.
CN107846838A (zh) 2015-05-01 2018-03-27 靛蓝农业公司 用于改进的植物性状的分离的复合内生菌组合物和方法
AU2016274683B2 (en) 2015-06-08 2021-06-24 Indigo Ag, Inc. Streptomyces endophyte compositions and methods for improved agronomic traits in plants
AU2016378742A1 (en) 2015-12-21 2018-07-12 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance
US10624351B2 (en) 2016-12-01 2020-04-21 Indigo Ag, Inc. Modulated nutritional quality traits in seeds
MX2019007637A (es) 2016-12-23 2019-12-16 Texas A & M Univ Sys Endófitos fúngicos para mejores rendimientos de los cultivos y protección contra las plagas.
CN111432631A (zh) 2017-03-01 2020-07-17 靛蓝股份公司 内生植物组合物和用于改进植株性状的方法
EP3589128A1 (en) 2017-03-01 2020-01-08 Indigo AG, Inc. Endophyte compositions and methods for improvement of plant traits
EP3629742A4 (en) 2017-04-27 2022-01-05 Flinders University Of South Australia BACTERIAL VACCINE
AU2018266105A1 (en) 2017-05-09 2019-12-12 Taxon Biosciences Inc. Plant growth-promoting microbes, compositions, and uses
US11263707B2 (en) 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
EP3684175A1 (en) 2017-09-22 2020-07-29 Technische Universität Graz Polymeric particles containing microorganisms
US20210400985A1 (en) 2018-10-10 2021-12-30 Pioneer Hi-Bred International, Inc. Plant growth-promoting microbes, compositions, and uses
WO2020214843A1 (en) 2019-04-17 2020-10-22 Andes Ag, Inc. Novel seed treatment methods and compositions for improving plant traits and yield
CN111454849A (zh) * 2020-04-30 2020-07-28 福建省南平市农业科学研究所 一种抑制小麦穗腐致病菌的土壤微生物菌的分离方法
CN111269838B (zh) * 2020-04-30 2023-06-09 福建省南平市农业科学研究所 利用感染赤霉病菌的大麦粒诱导分离土壤中拮抗菌的方法
CN112048541B (zh) * 2020-09-14 2023-06-16 西藏自治区农牧科学院农业研究所 一种青稞抗坚黑穗病的鉴定方法
CN112391314B (zh) * 2020-11-19 2022-11-11 上海交通大学 一种内生蜡样芽孢杆菌、应用及其分离方法
CN114027120B (zh) * 2021-11-05 2022-11-22 中国农业科学院都市农业研究所 一种水稻快速加代育种的方法
CN114181865A (zh) * 2021-12-21 2022-03-15 海南师范大学 一种对茄雷尔氏菌有高效拮抗作用的芽孢菌及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501800A (ja) * 1987-05-20 1991-04-25 クロップ ジェネティクス インターナショナル コーポレイション 種子及び植物への有益な微生物の供給
JPH10218715A (ja) * 1997-02-05 1998-08-18 Idemitsu Kosan Co Ltd 微生物種子粉衣組成物
JP2003040720A (ja) * 2001-07-30 2003-02-13 Tokachi Nogyo Kyodo Kumiai Rengokai 根粒菌の接種資材及び接種方法及び根粒菌が接種された種子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932128A (en) * 1957-10-14 1960-04-12 Northrup King & Co Seed impregnation including bacterial and vacuum treatment
US3871132A (en) * 1973-08-20 1975-03-18 Fmc Corp Seed tablet
US3905152A (en) * 1974-07-02 1975-09-16 Minnesota Mining & Mfg Coated seeds
NZ181956A (en) * 1976-09-07 1978-06-02 Coated Seed Doated seed with a caseinate coating
US4344979A (en) * 1979-04-02 1982-08-17 Interox (Societe Anonyme) Process for the preparation of coated seeds
US4251952A (en) * 1979-08-06 1981-02-24 Sandoz Ltd. Plant seed coating
US4367609A (en) * 1980-07-28 1983-01-11 Coated Seed Limited Use of microorganisms in conjunction with seeds
US4631860A (en) * 1984-06-26 1986-12-30 Broughton Robert I Method for pre-germinating seeds
US5300127A (en) * 1989-01-06 1994-04-05 Agricultural Genetics Company Limited Seed coatings
US5113619A (en) * 1989-01-30 1992-05-19 Leps Walter T Method of adhering bacteria to seed and composition therefor
US5415372A (en) * 1993-03-16 1995-05-16 Shepherd; Charles G. Self closing cover and mounting assembly for telephone directory
US5484464A (en) * 1993-12-29 1996-01-16 Philom Bios, Inc.. Methods and compositions for increasing the benefits of rhizobium inoculation to legume crop productivity
GB9403941D0 (en) * 1994-03-01 1994-04-20 Sandoz Ltd Improvements in or relating to organic compounds
US5512069A (en) * 1995-03-31 1996-04-30 Salisbury State University Seeds, coated or impregnated with a PPFM
JP2835598B2 (ja) * 1996-05-20 1998-12-14 多木化学株式会社 育苗培土及びその製造方法並びに耐病性苗の育成方法
US5916029A (en) * 1996-06-26 1999-06-29 Liphatech, Inc. Process for producing seeds coated with a microbial composition
JP4372975B2 (ja) * 2000-06-22 2009-11-25 株式会社テイエス植物研究所 種子病害防除方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501800A (ja) * 1987-05-20 1991-04-25 クロップ ジェネティクス インターナショナル コーポレイション 種子及び植物への有益な微生物の供給
JPH10218715A (ja) * 1997-02-05 1998-08-18 Idemitsu Kosan Co Ltd 微生物種子粉衣組成物
JP2003040720A (ja) * 2001-07-30 2003-02-13 Tokachi Nogyo Kyodo Kumiai Rengokai 根粒菌の接種資材及び接種方法及び根粒菌が接種された種子

Also Published As

Publication number Publication date
EP1935245A1 (en) 2008-06-25
US20100154299A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2007032458A1 (ja) 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法
CN106591185B (zh) 一株解淀粉芽孢杆菌植物亚种及其菌剂的制备和应用
García et al. Effect of inoculation of Bacillus licheniformis on tomato and pepper
Bennett et al. Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming
US7429477B2 (en) Controlling plant pathogens with bacterial/fungal antagonist combinations
AU2002227228B2 (en) Bacterial inoculants for enhancing plant growth
CN100566574C (zh) 用芽孢杆菌属细菌防治植物病害的方法和防治剂
RU2143199C1 (ru) Композиция и способ борьбы с болезнями растений
JP2014507939A (ja) 細菌性植物病原体を生物的防除するためのセラチア・プリムシカ(Serratiaplymuthica)
Jorjani et al. Controlling sugar beet mortality disease by application of new bioformulations
WO2006025167A1 (ja) 植物病害防除剤および防除方法
WO2007011025A1 (ja) イネの育苗時期に発生する病害に対する防除剤
RU2689530C2 (ru) Новая бактерия рода bacillus и ее применение
Pill et al. Responses of non-primed or primed seeds of ‘Marketmore 76’cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum
JP4833448B2 (ja) 植物病害防除方法
Benizri et al. Fate of two microorganisms in maize simulated rhizosphere under hydroponic and sterile conditions
JP5111747B2 (ja) 拮抗微生物コーティング種子、その製造方法、及び作物における病害の防除方法
CN111869682B (zh) 一种球毛壳菌在防治小麦全蚀病中的应用
Shah‐Smith et al. Biological control of damping‐off of sugar beet by Pseudomonas putida applied to seed pellets
JP5374260B2 (ja) 農業用資材
Weststeijn Fluorescent Pseudomonas isolate E11. 3 as biocontrol agent for Pythium root rot in tulips
CN116918832A (zh) 一种复合生防菌剂、制备方法、应用与应用方法
CN114921364B (zh) 一种油菜假单胞菌、生化菌剂及其应用
JP5909695B1 (ja) 植物の細菌性病害に対する微生物防除剤および種子コーティング剤並びに該種子コーティング剤をコートした種子
KR100616408B1 (ko) 라이조푸스 올리고스포러스을 포함하는 잔디생장촉진제 및이를 이용한 잔디 생장 촉진 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11991962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810179

Country of ref document: EP