WO2007029660A1 - 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子 - Google Patents

腸溶性基剤が表面に吸着した難溶性薬物の微小粒子 Download PDF

Info

Publication number
WO2007029660A1
WO2007029660A1 PCT/JP2006/317483 JP2006317483W WO2007029660A1 WO 2007029660 A1 WO2007029660 A1 WO 2007029660A1 JP 2006317483 W JP2006317483 W JP 2006317483W WO 2007029660 A1 WO2007029660 A1 WO 2007029660A1
Authority
WO
WIPO (PCT)
Prior art keywords
poorly soluble
soluble drug
hydroxypropylmethylcellulose
dissolved
sodium
Prior art date
Application number
PCT/JP2006/317483
Other languages
English (en)
French (fr)
Inventor
Hisami Yamaguchi
Tetsuo Tominaga
Original Assignee
Astellas Pharma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astellas Pharma Inc. filed Critical Astellas Pharma Inc.
Priority to JP2007534409A priority Critical patent/JPWO2007029660A1/ja
Priority to CA002621800A priority patent/CA2621800A1/en
Priority to EP06783174A priority patent/EP1923051A4/en
Publication of WO2007029660A1 publication Critical patent/WO2007029660A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions

Definitions

  • the present invention relates to a microparticle of a poorly soluble drug necessary for supplying a preparation having improved absorption by improving the dissolution property of a poorly soluble poorly soluble drug, and a method for producing the same. More specifically, the present invention relates to a microparticle of a slightly soluble drug having a mean particle size of 1 to: LOOOnm in which a specific enteric base is adsorbed on the surface of the poorly soluble drug, and a saccharide. , As well as their production methods.
  • the soft capsule has a problem that the size of the capsule that can be administered is about 2 mL at the maximum, so that only a drug amount that can be dissolved in the amount of the organic solvent can be administered.
  • the size of the tablet or capsule becomes very large, which may impair the patient's ingestion, so it may be necessary to abandon the development substantially.
  • the third issue is related to the stability of the product.
  • the drug molecules present in the amorphous state can be recovered.
  • the supersaturated solubility decreases, and as a result, drug dissolution decreases.
  • this technology is not a technology aiming at supersaturated dissolution of a drug, like the above-mentioned solid dispersion, if the supersaturated solubility decreases during storage at high humidity and the dissolution characteristics deteriorate, it is very stable. In recent years, it has attracted attention as an excellent technology in terms of ensuring Yes.
  • Patent Document 1 U.S. Pat.No. 5,145,684
  • Another problem is the dispersion stability of the microparticle suspension.
  • the stability of the microparticle suspension obtained using a high-pressure emulsifier or a bead mill was evaluated during storage and dilution, the particles tend to aggregate over time, especially in the acidic region. It was also found that there are cases in which easy-to-aggregate tendency tends to settle for easy basic poorly soluble drugs.
  • Conventional microparticle suspensions were found to be very prone to agglomerate in the electrolyte solution, and it was considered that there was concern about safety when administered as an injection.
  • HPMC P hydroxypropylmethylcellulose phthalate
  • HP MCAS hydroxypropylmethylcellulose acetate succinate
  • the fine particles in the suspension are considered to exhibit excellent dispersion stability due to the repulsive force of the zeta potential on the surface. Therefore, it is known that microparticles tend to aggregate easily when the zeta potential is neutralized.
  • Dissolving HPMCAS or HPMCP in an electrolyte solution and using it as a dispersing agent (Eg GWCastellan.Physical Chemistry.Third Edition.Section 18.16.3; translation: Meguro, Tanaka, Imamura, GWCASTELL AN physics) (Top) 3rd edition, p.474, Tokyo Kagaku Dojin (1986) and C.
  • Patent Document 1 conventionally, among various known dispersants, PVP and pull-mouth nick F68 which do not need to dissolve in water or use an electrolyte such as alkali immediately as a solubilizer. F108 was particularly preferred.
  • the inventors of the present invention have been conducted so far in order to improve the productivity of the suspension by improving the dispersion stability of the suspension while producing the fine particle suspension of the drug by the wet grinding method.
  • HPMCAS and / or HPMCP is dissolved in water with an alkali addition agent that is not constrained by the common knowledge of particle aggregation, and the drug is finely pulverized using this as a dispersing agent, the pulverization is unexpectedly unexpected. It was found that a suspension that progresses very efficiently and has excellent dispersion stability can be obtained.
  • the dried suspension produced in this manner releases fine particles as HP MCAS or HPMCP dissolves in the second solution (pH 6.8) of the JP dissolution test solution.
  • the inventors have found that the suspension obtained by adding sugar and / or sugar alcohol to the suspension is particularly excellent in the property of redispersing the fine particles without agglomeration, and have completed the present invention.
  • microparticle according to 1 above containing hydroxypropylmethylcellulose acetate succinate and / or hydroxypropylmethylcellulose phthalate in a proportion of 0.005 to 20 parts by weight with respect to 1 part by weight of the poorly soluble drug,
  • microparticle according to any one of 1 to 4 obtainable by a production method selected from the following (1) to (3):
  • a production method comprising adding an organic solvent solution in which a poorly soluble drug is dissolved to precipitate fine particles of the poorly soluble drug,
  • Alkaline substances or substances that ionize alkaline earth metal ions in water are sodium citrate, calcium citrate, citrate, sodium tartrate, sodium malate, Sodium lactate, sodium hydroxide, potassium hydroxide, potassium hydroxide, magnesium hydroxide, sodium carbonate, sodium bicarbonate, triethanolamine, monoethanolamine, magnesium aluminum silicate, phosphate, magnesium oxide 7.
  • the sparingly soluble drug used in the present invention is not particularly limited as long as it is sparingly soluble in water. Specifically, when the free form or free form hydrate is prepared and the solubility is evaluated. Refers to drugs whose solubility in purified water is 0.1 mgZmL or less, preferably 0.05 mgZmL or less, such as analgesics, anti-inflammatory drugs, anthelmintic drugs, antiarrhythmic drugs, antibiotics (including penicillins).
  • Anticoagulant antihypertensive, antidiabetic, antiepileptic, antihistamine, antihypertensive, antimuscarinic, antimycobacterial, antineoplastic, immunosuppressive, antithyroid, Antiviral drugs, anxiolytic drugs (hypnotics and neuroleptic drugs), astrogens, adrenergic
  • Various known drugs including substances, sympathomimetics, thyroid drugs
  • diphedipine tacrolimus, indomethacin, diclofenac sodium, aspirin, ibuprofen, naproxen, furosemide, oxophosphoric acid, sulfarin potassium, FK555 (ASP0355), dicoumarol, phenytoin, phenobarbital, ketoprofen , Chlorpropamide, Griseofulvin, Carbamazepine, Cyclosporine 8, Damazol, Ketoconazole, Prednisone, Triamsinalone-acetonide, Bromo ⁇ relylurea, Acetyltylosin, Vinpocetine, Domperidone, Allopurinol, Tripamide indapamide, Hexatomide , Pindolol and the like.
  • the basic poorly soluble drug in the present invention is not particularly limited as long as it is sparingly soluble in water and basic, but when the free form or free form hydrate is prepared to evaluate the solubility.
  • the solubility in purified water is not more than 0.1 mgZmL
  • the solubility in pHl.2 is at least twice the solubility in purified water, preferably the solubility in purified water is not more than 0.05 mgZmL
  • a drug whose solubility at pHl. 2 is more than 3 times that in purified water. Examples include FK4664, guanfacine hydrochloride, iliapine hydrochloride, tamoxifen citrate, and cardipine hydrochloride.
  • the ratio of the poorly soluble drug contained in the microparticles of the present invention is preferably 0.1 to 99.9% by weight, more preferably 0.5 to 99% by weight, based on the whole microparticles.
  • the ratio is more preferably 10 to 95% by weight, and particularly preferably 20 to 90% by weight.
  • the substitution degree of HPMCAS used as a dispersant in the present invention is not particularly limited, but the methoxyl group content is 10 to 29%, the hydroxypropoxyl group content is 2 to 25%, the acetyl group content is 1 to 18%, A succinoyl group content of 2-30% is preferred, and a methoxyl group content of 19-27%, a hydroxypropoxyl group content of 4-11%, a acetyl group content of 4-15%, and a succinoyl group content of 3-19%.
  • AQO AT from Shin-Etsu Chemical Co., Ltd. AS-LG, AS-LF, AS-MG, AS-MF, AS-HG, and AS-HF grades are particularly preferred.
  • the substitution degree of HPM CP used as a dispersant in the present invention is not particularly limited, but the methoxyl group content is 16 to 27%, the hydroxypropoxyl group content is 3 to 12%, and the carboxybenzoyl group content is 19 to 37.
  • the preferred methoxyl group content is 18-24%, the hydroxypropoxyl group content is 5-10%, and the carboxybenzoyl group content is 21-35%.
  • HP-50, HP-55, and HP-55S are particularly preferable.
  • the blending amount of HPMCP or HPMCAS in the present invention is 0.0005 to 20 parts by weight of HPMCP or HPMCAS, preferably 0.02 to 10 parts by weight, more preferably 1 part by weight of the poorly soluble drug. Preferably it is 0.05 to 5 parts by weight.
  • HPMCAS is more preferable than HPMCP.
  • hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethinoresenorelose, hydroxyethinoremethinoresenorelose, methinoresenoles Water-soluble cellulose such as loin, Ethyl acrylate 'Methyl acrylate copolymer, Methacrylate copolymer, Aminoalkyl methacrylate copolymer, Gum arabic, Sodium alginate, Alpha-ized starch, Reduced maltose syrup , Sodium caseinate, dextrin, tragacanth powder, pullulan, propyl glycol, pectin, sodium polyacrylate, lecithin, polybulal alcohol, polyethylene glycol, hydrogenated polybulurpyrrolidone, and polyoxy Polyethylene polyoxypropylene glycol, pull mouth nick F68, pluronic F108, polysorbate 80, polysorbate,
  • the state in which the dispersant is adsorbed on the surface of the poorly soluble drug is only the state in which the dispersant is chemically bonded to the surface of the drug, such as HPMCP or HPMCAS. It also refers to the state of physical adsorption.
  • the fine particles of the present invention should be a particulate composition having an average particle size of 1 nm to 1000 nm, more preferably an average particle size of 1 to 750 nm, and still more preferably 1 to 500 nm. Particularly preferred is l to 300 nm.
  • the average particle diameter means a volume-based median diameter, but a conventional particle size measurement method well known in the art, for example, laser scattering particle size measurement method, sedimentation field 'flow' fractionation, photon correlation It can be measured by conventional particle size measurement methods such as photon correlation spectroscopy or disk centrifugation, but the average particle size is preferably determined by the laser scattering particle size analyzer HORIBA LA-920 (manufactured by Horiba). It can be measured.
  • the microparticles of the present invention are characterized by improved dispersibility.
  • the suspension containing the microparticles of the present invention shows agglomeration and precipitation by naked eye observation for more than 6 months after its preparation.
  • it has the characteristic that the average particle size of the suspension containing the microparticles of the present invention does not increase more than twice over 3 months without increasing after preparation.
  • the sugar and sugar alcohol of the present invention include lactose, fructose, sucrose, glucose, erythritol, xylitol, mannitol, trehalose, anhydrous lactose, sorbitol, maltitol, arabinose, xylose, fructose, galactose, mannose. , Latitol, xylose, manoleose, sucrose, manoletotriose, nonose, ratatosucrose, theandarose, and reduced lactose.In the present invention, one or more of these substances are combined. can do.
  • the amount of sugar and sugar alcohol is 0.01 to 4000 weight repulsive force S, preferably 0.01 to 400 weight repulsive force S per 1 weight part of the drug amount, and 0.02 to 200 0 weight part. Particularly preferred is 0.05 to 200 parts by weight.
  • HPMCAS and / or HPMCP and their solubilizing agent in the present invention mean substances that promote dissolution of HPMCA S and / or HPMCP, but to the extent that the dispersibility of the microparticles of the present invention is reduced. Does not include substances that promote dissolution of poorly soluble drugs. When the dissolution of the sparingly soluble drug itself is promoted during the production of the microparticles of the present invention, the microparticles of the present invention cause aggregation even in the presence of a dispersant such as HPMCA S and / or HPMCP. This is because fine particles having dispersibility and a desired average particle diameter cannot be obtained.
  • HPMCAS or HP MCP The force required to dissolve and disperse the MCP is not necessarily a clear solution, but may be a cloudy state as long as no solid matter is observed.
  • a solubilizer for HPMCAS or HP MCP any alkaline substance or substance capable of ionizing alkali metal ions or alkaline earth metal ions in water may be used. Specific examples include sodium citrate, calcium citrate, and citrate.
  • Salts organic acid salts such as sodium tartrate and sodium lactate, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, sodium bicarbonate, triethanolamine, monoethanolamine , Magnesium aluminum silicate, phosphate, magnesium oxide, aqueous ammonia, L-arginine, and sodium alginate.
  • HPMCAS or HPMCP solubilizers are not limited to alkaline electrolytes, but may be electrolytes that can dissolve or disperse HPMCP or HPMCAS in a cloudy state. It is particularly preferable if the pH after dissolving HPMCAS or HPMCP is 4 or more.
  • a water-soluble organic solvent such as ethanol, or a mixture of an electrolyte and a water-soluble organic solvent may be used.
  • organic solvents such as ethanol generally tend to dissolve poorly soluble drugs, the concentration of dissolved drug in the suspension increases, and the dissolution rate and precipitation rate during the equilibrium process of dissolution and precipitation on the drug particle surface. Tend to be larger. Therefore, aggregation of particles is promoted in the process of reprecipitation of the dissolved drug, and there is a possibility that the microparticles of the present invention having a desired particle size cannot be obtained.
  • the amount of the water-soluble organic solvent that can be used in the present invention V, or the mixture of the electrolyte and the water-soluble organic solvent is a water-soluble organic solvent that does not interfere with the effects of the microparticles of the present invention. This is preferred.
  • the fine particles of the present invention can be formulated into various pharmaceutical additives as appropriate.
  • the pharmaceutical additives that can be used as long as they are pharmaceutically acceptable.
  • an excipient, a binder, a disintegrant, a sour agent, a foaming agent, an artificial sweetener, a fragrance, a lubricant, a colorant and the like are used.
  • the excipient include lactose, crystalline cellulose, microcrystalline cellulose, D-sorbitol, D-mannitol and the like.
  • binders include hydroxypropyl methylcellulose, hydroxypropylcellulose, and polyvinyl chloride. Dong, polybulu alcohol, methylcellulose, gum arabic and the like.
  • Examples of the disintegrant include corn starch, potato starch, carmellose, carmellose calcium, carmellose sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose, crospovidone and the like.
  • Examples of acidulants include citrate, tartaric acid, malic acid and the like.
  • Examples of the foaming agent include baking soda.
  • Examples of the artificial sweetener include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia, thaumatin and the like.
  • Examples of the fragrances include lemon, lemon lime, orange and menthol.
  • the lubricant examples include magnesium stearate, calcium stearate, sucrose fatty acid ester, polyethylene glycol, talc, stearic acid and the like.
  • the colorant for example, yellow ferric oxide, red ferric oxide, titanium oxide, edible yellow No. 4, No. 5, edible red No. 3, No. 102, and edible blue No. 3 can be used.
  • a pharmaceutical additive one or a combination of two or more can be appropriately added in an appropriate amount.
  • the wet pulverization method means a method of reducing the particle size of a drug in a suspension by utilizing mechanical means or physical phenomenon.
  • a wet pulverization method using a media mill represented by a bead mill or a sand mill, a high-pressure emulsifier, and a rotating disk mill is preferable, and a wet pulverization method using a bead mill is preferable.
  • a poorly soluble drug is dispersed in a solvent in which HPMCAS and Z or HPMCP and their solubilizers are dissolved or suspended, and the resulting mixture is further wetted.
  • a poorly soluble drug is dissolved in a solvent in which HPMCAS and Z or HPMCP and their solubilizers are dissolved or suspended.
  • a production method characterized by adding an organic solvent solution to precipitate fine particles of a poorly soluble drug; (3) a pulverized product obtained by wet pulverizing a poorly soluble drug in the presence of a dispersant; Examples of the production method include adding a solvent in which HPMCAS and Z or HPMCP and their solubilizers are dissolved or suspended, and the production method (1) is preferred.
  • the enteric base material has an excellent productivity and anti-aggregation viewpoint power for pulverizing hardly soluble drugs with a bead mill, a high-pressure emulsifier or a rotary disk mill. Although it has a fruit, it is effective not only as a dispersant in a wet pulverization method but also as a dispersant in a crystallization method.
  • HPMCAS and / or HPM CP and a solubilizing agent such as sodium quenate for dissolving this are added to purified water and stirred to dissolve HPMCAS and / or HPMCP. .
  • HPMCAS and / or HPM CP and a solubilizing agent such as sodium quenate for dissolving this are added to purified water and stirred to dissolve HPMCAS and / or HPMCP. .
  • the solution may become clear depending on its pH, it may become cloudy, but there is no problem if the enteric base material does not remain in a solid state.
  • a poorly soluble drug is introduced into this solution.
  • the average particle size is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average particle size of the drug before pulverization exceeds 500 m, it is preferable to reduce the particle size by using a dry pulverization method such as a pin mill.
  • concentration of the poorly soluble drug in the suspension tends to be higher and the powder tends to be crushed.
  • the viscosity is extremely large, so the addition amount is almost limited to about 30% (w / Vol), 1 to 25% (w / vol)
  • the mixture slurry thus obtained is allowed to stand overnight, deaerated, and then introduced into a wet pulverizer such as a bead mill, a high-pressure emulsifier, or a rotating disk mill until fine particles having a target particle size are obtained. Operate the machine. Further, degassing is not necessarily required, but the degassing improves the grinding efficiency. Also, in order to improve the handling and quality of the mixture slurry, it may be pulverized by adding an antifoaming agent, a surfactant, or an antiseptic.
  • a wet pulverizer such as a bead mill, a high-pressure emulsifier, or a rotating disk mill until fine particles having a target particle size are obtained. Operate the machine. Further, degassing is not necessarily required, but the degassing improves the grinding efficiency. Also, in order to improve the handling and quality of the mixture slurry, it may be pulverized by adding an antifoaming agent,
  • the strength of which beads of various materials are available Plastics such as polystyrene and urethane, or inorganic materials such as zirconia are generally used.
  • the particle diameter of beads introduced into the container is usually preferably 0.05 mm ⁇ to 3 mm ⁇ , more preferably 0.1 to 0.5 ⁇ ⁇ .
  • the input amount is preferably about 50 to 90%, more preferably about 70 to 85% as the filling rate of the container.
  • the force that rotates the rotor (agitator disk) to rotate the beads at high speed in the container is preferably 5 to 12 m / sec, more preferably 7 to llm / sec in terms of the circumferential speed of the rotor.
  • the rolling speed is preferably 5 to 12 m / sec, more preferably 7 to llm / sec in terms of the circumferential speed of the rotor.
  • the grinding mechanism by the high-pressure emulsifier is narrow at a high pressure that is not achieved by the grinding mechanism of beads such as a bead mill.
  • the force that is pulverized by the shearing force of the pulverization The pulverization is carried out by passing the fluid of a poorly soluble drug, enteric base material and its dissolving agent many times through these holes and slits. By passing these fluids several times to several tens of times, target fine particles can be obtained.
  • a rotating disc mill in the wet pulverization method, can be used.
  • a rotating disk mill is a device that pulverizes by passing a fluid containing the material to be crushed through a narrow gap between the upper and lower disks, but the gap through which the fluid passes is not necessarily a circular disk.
  • CLEAR SS5 MTECHNIQ UE, Japan
  • CLEAR SS5 MTECHNIQ UE, Japan
  • a fluid containing a poorly soluble drug and hydroxypropylmethylcellulose succinate and / or hydroxypropylmethylcellulose phthalate and a solubilizing agent such as sodium citrate to dissolve the same is added to the center of the rotating disk or rotor.
  • Part force Force to feed The poorly soluble drug moves to the circumference while being finely pulverized by the shearing force generated by the rotation of the disk or rotor.
  • the shearing force applied to the fluid increases as the gap between the disk and the rotor part is narrower and the rotation speed is larger, and the poorly soluble drug can be finely pulverized.
  • a poorly soluble drug is wet pulverized using a dispersant such as PVP or HPMC.
  • the resulting suspension may be adsorbed with hydroxypropylmethylcellulose acetate succinate and Z or hydroxypropylmethylcellulose phthalate dissolved with a solubilizer.
  • the fine particles of the present invention can be produced not only by the wet pulverization method as described above but also by a crystallization method.
  • Solution (1) in which HPMCAS and / or HPMCP is dissolved.
  • Solution (1) may become clear or become cloudy depending on its pH, but there is no problem if HPMCAS and / or HPMCP does not remain in a solid state. In some cases, this solution is pH adjusted with phosphate or alkali. In some cases, preservatives such as salted benzalcoum are added.
  • solution (2) a solution in which a poorly soluble drug is dissolved in an organic solvent such as ethanol is prepared.
  • the above-mentioned surfactant which is a dispersant used together with HPMCP and / or HPMCAS in the present invention.
  • an organic solvent such as ethanol
  • the solution (2) in which the poorly soluble drug is dissolved in an organic solvent such as ethanol is gradually added dropwise to become cloudy at the same time as the addition, and the fine particles of the poorly soluble drug are obtained.
  • Any organic solvent that dissolves poorly soluble drugs can be used as long as it dissolves in water, such as acetone, ethanol, methanol, and isopropanol.
  • the poorly soluble drugs in general, it is preferable to dissolve poorly soluble drugs at high concentrations so that less organic solvent is used. Appropriate conditions are set because the particle size of the resulting fine particles depends on the agitation conditions and temperature of the poor solvent phase. Further, since the obtained fine particle suspension contains an organic solvent, a water-dispersed suspension can be produced by removing the solvent phase of the suspension with a filter. It is also possible to remove the solvent phase containing the organic solvent by lyophilization. In addition, unlike the above-described production method, the poorly soluble drug dissolved in the good solvent is dropped into the poor solvent. On the contrary, the poorly soluble phase is dropped into the good solvent phase to precipitate fine particles of the poorly soluble drug. It is also possible to make it.
  • the dried product of the fine particle suspension of the present invention was mixed with other excipients, subjected to various preparations, and then tableted.
  • solid preparations such as powders, granules, pills, capsules, and sachets, these may be coated with an enteric film.
  • saccharide and Z or sugar alcohol it is desirable to add saccharide and Z or sugar alcohol in order to provide redispersibility.
  • microparticles of the poorly soluble drug in the present invention are microparticles that have excellent dispersibility and have improved dissolution properties by reducing the particle diameter and increasing the surface area. That is, although the drug solubility remains low, the surface area is remarkably increased by making the drug into fine particles, thereby increasing the substantial dissolution amount of the drug in the digestive tract.
  • FIG. 1 shows the influence of various dispersants on the average particle size and pulverization time in bead mill pulverization of Compound A.
  • FIG. 2 shows the effect of various dispersants on the average particle size and grinding time in compound B bead mill grinding.
  • FIG. 3 shows the effect of various dispersants on the average particle size and grinding time in compound C bead mill grinding.
  • HPMCP HP-55S manufactured by Shin-Etsu Chemical
  • lg was dissolved in an aqueous solution of sodium citrate dihydrate and adjusted to pH 6.3 with aqueous sodium hydroxide solution.
  • Example 1 was wet pulverized at a rotor rotational speed of 9 mZsec for a predetermined time. Obtained fine particles.
  • Example 2 As shown in the composition of Table 1, the microparticles of Example 2 were prepared in the same manner as in Example 1 except that HPMCAS (AQOA T AS-LG) manufactured by Shin-Etsu Chemical was used instead of HPMCP lg. Obtained
  • HPMC TC-5R manufactured by Shin-Etsu Chemical
  • pH was adjusted with sodium hydroxide without adding sodium citrate dihydrate.
  • the fine particles of Comparative Example 3 were obtained in the same manner as in Example 1.
  • ⁇ Test Example 1 Relationship between grinding time and average particle size in basic poorly soluble drug compound A> Average particles of suspension fine particles of Examples 1-2 and Comparative Examples 3-4 obtained by wet grinding for a predetermined time The diameter was measured with a laser scattering particle size analyzer HORIBA 1 ⁇ -920 (manufactured by Horiba Seisakusho), and the relationship between grinding time and average particle size is shown in FIG. In Comparative Examples 1 and 2 of the PVP formulation, a primary particle suspension of 10 ⁇ m or less was not obtained even when pulverized.
  • Comparative Example 5 As shown in Table 2, the microparticles of Comparative Example 5 were prepared in the same manner as in Comparative Example 1, except that 5g of basic poorly soluble drug compound B was used instead of 5g of basic poorly soluble drug compound A. Obtained.
  • ⁇ Test Example 2 Relationship between pulverization time and average particle size in basic slightly soluble drug compound B> The average particle size of the suspension microparticles obtained in Example 3 and Comparative Example 5 obtained by wet pulverization for a predetermined time was measured by laser scattering.
  • Fig. 2 shows the relationship between grinding time and average particle size as measured by a particle size measuring instrument HORIBA LA-920.
  • Comparative example 5 of PVP combination formula is 2 hours Even when pulverized, a suspension of fine particles with an average particle size of 200 nm or less was not obtained, but in the case of Example 3 (AQOAT AS-LG), which is an HPMCAS formulation, a suspension of fine particles of 200 nm or less was obtained in 1 hour. And reached 106.5 nm in 2 hours.
  • Example 4 As shown in Table 2, 3-meth oxy-1.5-bis (4-methoxyphenyl) -lH-l, 2,4-triazole ( Hereinafter, the fine particles of Example 4 were obtained in the same manner as Example 2 except that 5 g of Compound C was used.
  • microparticles of Comparative Example 7 were obtained in the same manner as Comparative Example 3, except that the hardly soluble drug compound C 5g was used instead of the basic hardly soluble drug compound A 5g.
  • Example 4 The average particle size of the suspension fine particles of Example 4 and Comparative Examples 6 to 7 obtained by wet pulverization for a predetermined time was measured by a laser scattering method particle size measuring instrument HORIBA LA-920, and the pulverization time and the average particle size were measured.
  • Figure 3 shows the relationship.
  • Comparative Example 6 which is a PVP formulation
  • Comparative Example 7 of the HPM C compound formulation had a mean particle size of 343 nm after 2 hours of grinding.
  • Example 4 of the HPMCAS compound formulation reached an average particle size of 120.4 nm.
  • Example 1 Place 11 ml of the second elution test solution (pH 6.8) into the measurement cell of the laser scattering particle size analyzer HORIBA LA-920 (Horiba), and store the blank scattered light.
  • the suspensions produced in Example 1, Example 2 and Comparative Example 4 were added with a Eppendorf pipette so as to be diluted, and the particle size was measured over time.
  • Table 3 shows the average particle size of each suspension.
  • the comparative example 4 which is an HPMC formulation, had an average particle size of 377.3 nm, but after dilution with the second solution of the JP dissolution test solution, 60 minutes later Aggregated at 12549. 7 nm.
  • Examples 1 and 2 containing HPMCAS and HPMCP the particle size hardly changed.
  • Lactose 50 mg was added to 2 g of the fine particle suspension 2 produced in Example 1 and dissolved, and then placed in a Teflon (registered trademark) sheet tray and dried by ventilation at 40 ° C. The dried product was pulverized and sieved with a 500 m sieve to obtain a dried sample of the fine particle suspension. In addition, a dried product sample to which lactose was not added was also prepared. 10 mg of these samples were placed in a test tube, purified water or 0.5 mL of the second liquid was added, redispersed using a laboratory mixer, and the average particle size was measured. The results are shown in Table 4. The dried fine particle suspension added with lactose showed very good redispersibility.
  • HPMCAS AQOAT AS-LG, manufactured by Shin-Etsu Chemical
  • lg is dissolved in an aqueous solution of sodium citrate dihydrate, adjusted to pH 6.3 with an aqueous sodium hydroxide solution, and then the basic poorly soluble drug in this solution
  • Compound A (5 g) and sodium lauryl sulfate (0.02 g) were dispersed to obtain 100 g of a slurry mixture.
  • DYNO MILL MULTI LAB batch type WAB, Switzerland
  • Wet milling was performed at a rotor rotation speed of 9 mZsec for 2 hours to obtain fine particles having an average particle diameter of 131 nm.
  • HPMCAS AQOAT AS-LG manufactured by Shin-Etsu Chemical Co., Ltd.
  • HPMCAS AQOAT AS-LG manufactured by Shin-Etsu Chemical Co., Ltd.
  • 1 was stirred at 6000 rpm using a homogenizer, and a solution 2 in which compound A, which is a basic poorly soluble drug, and sodium lauryl sulfate was dissolved in ethanol was added, and the average particle size was 356.4 nm. Particles could be precipitated.
  • HPMCP manufactured by Shin-Etsu Chemical Co., Ltd.
  • sodium citrate dihydrate aqueous solution was adjusted to pH 6.3 with sodium hydroxide sodium hydroxide, as shown in Table 7, for 20 g of suspension 1 H P-55S was added to give Example 7.
  • Example 8 was prepared in the same manner as Example 7 except that HPMCAS (AQ OAT AS-LG) 0.6 g was used instead of HPMCP 0.6 g. Got.
  • HPMCAS AQ OAT AS-LG
  • Test Example 6 Dilution stability of suspension 1 of JP1 with HPMCP or HPMCAS into second solution>
  • Example 7 and Comparative Example 8 The suspension of Example 7, Example 8 and Comparative Example 8 was diluted to 1000 times by adding the second solution (pH 6.8) lOOmL of the JP dissolution test solution to 0.1 mL, and the particle size was measured over time. .
  • Table 8 shows the average particle size of each suspension.
  • Comparative Example 8 which is a single HPMC formulation, it dilutes with the second solution of the JP dissolution test solution, and after 60 minutes, it aggregates to 3034.2 nm. .
  • Example 7 and Example 8 where HPMCP and HPMCAS were blended later There was almost no change in particle size immediately after dilution with the second solution of the JP dissolution test solution.
  • the present invention relates to a microparticle of a poorly soluble drug in which a specific enteric base is adsorbed on the surface of the poorly soluble drug, a microparticle further containing a saccharide, and a method for producing them.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、吸収不良性の難溶性薬物の溶出性を向上させることにより吸収を改善した製剤を供給するために必要な難溶性薬物の微小粒子、及びその製造法に関する。さらに詳しくは、本発明は、特定の腸溶性基剤が難溶性薬物の表面に吸着した平均粒子径が1~1000nmの難溶性薬物の微小粒子、及び更に糖類を含有してなる微小粒子、並びにそれらの製造法に関するものである。溶出性を高めた本発明の微小粒子を用いることにより、人体等において吸収不良性の難溶性薬物の吸収を改善できる微小粒子を効率よく短時間で安全に生産することができるとともに、分散安定性の優れた製剤を提供するできる。

Description

明 細 書
腸溶性基剤が表面に吸着した難溶性薬物の微小粒子
技術分野
[0001] 本発明は、吸収不良性の難溶性薬物の溶出性を向上させることにより吸収を改善 した製剤を供給するために必要な難溶性薬物の微小粒子、及びその製造法に関す る。さらに詳しくは、本発明は、特定の腸溶性基剤が難溶性薬物の表面に吸着した 平均粒子径が 1〜: LOOOnmの難溶性薬物の微小粒子、及び更に糖類を含有してな る微小粒子、並びにそれらの製造法に関するものである。
背景技術
[0002] 医薬品開発においては、薬効成分の経口吸収性の優劣が開発成否の鍵となるケ ースが少なくない。経口投与される医薬品のほとんどは、薬効成分が消化管で溶解 し、これが吸収されることにより薬効が発現するため、開発候補品の溶解性が優れて いることが好ましい。し力しながら、最近の医薬品開発においては、実に 30〜40%の 開発候補品は経口剤として必要な溶解度に達して 、な 、と 、う報告もある (Am. Phar m. Rev. 5, p82_85(2002))。このため、難溶性薬物の溶解性を改善する技術は、医薬 品開発において極めて重要な基盤技術となっている。溶解性改善法として、従来は ピンミルやジェットミルによって原薬を乾式粉砕する方法、あるいは有機溶媒に溶解 して軟カプセルとする方法が多用されてきた。しかしながら、ジェットミルなどの乾式粉 砕法では粉砕後の平均粒子径は高々数ミクロン程度にしかならず、十分な溶出性改 善効果の期待できな 、ケースが多くあった。
また、軟カプセルについては、投与できるカプセルの大きさが最大でも 2mL程度で あるため、この有機溶媒量に溶解する薬物量しか投与できな 、と 、う問題点があった
[0003] 以上の課題を解決するために、溶解性を十分に改善し、かつ高用量の投与量を確 保するための技術として、薬物を固体分散体にする方法が開発された。これは、薬効 成分をポリビュルピロリドン(以下、 PVPと略す)ゃヒドロキシプロピルメチルセルロー ス(以下、 HPMCと略す)などの水溶性高分子担体中にアモルファス状態で分散固 定させるもので、一時的に過飽和状態にまで溶解度を改善できる方法である。製造 方法としては、難溶性薬物と水溶性高分子を高温溶融する方法と、これら原料を有 機溶媒に溶解後、乾燥する方法が知られている。後者の有機溶媒を使用する方法 は、広く実用化されている。
[0004] し力しながら、このように商業生産されて!、る固体分散体技術にっ 、ても三つの課 題がある。ひとつは製造上の課題であり、難溶性薬物を溶解し、高分子担体中に保 持させるためにエタノールゃジクロロメタンなどの有機溶媒を使用しなければならな!/ヽ ことであり、製造作業における安全性確保や環境保護の観点からは好ましくなぐ製 造後においても固体分散体に有機溶媒が残存する懸念もある。また、高温溶融法は 、高温で不安定な薬物には適用できないという問題点がある。二つ目の課題は、往 々にして高分子担体量を多く必要とすることであり、十分な過飽和溶解度を確保する ためには、原薬量の 5倍量以上の担体を添加する必要のあるケースがある。このよう に多量の添加が必要な場合には、錠剤やカプセルの大きさが非常に大きくなり、患 者の服用性に支障をきたすことから、実質的に開発を断念しなければならないことも ある。更に、三つ目の課題は、製品の安定性に関することであり、このように製造され た固体分散体が高湿度下で保管される場合には、アモルファス状態で存在している 薬物分子の再結晶化が進行して、過飽和溶解度が低下し、その結果、薬物の溶出 性が低下すると 、うことである。
[0005] 以上のような状況を打開する方法として、平均粒子径 400nm以下の薬物粒子のサ スペンションを調製する方法は有望と考えられる (例えば、特許文献 1参照)。これは 、難溶性薬物を PVPなどの分散剤とともに、ビーズミルを用いて湿式粉砕すること〖こ より、粒子表面積を著しく増大させて難溶性薬物の溶出性を改善する方法である。こ の方法では微小粒子を製造するための必須成分として分散剤を添加する必要があ るが、その量は固体分散体法で必要とする高分子担体量より少ない配合量となること が期待され、合わせて有機溶媒を使用しないで製造できるという利点もある。更に、 本技術は、薬物の過飽和溶解を目指す技術ではないため、上記固体分散体のよう に、高湿度下で保管中に過飽和溶解度が低下して溶出特性が劣化すると 、うことは なぐ安定性を確保するという面からは優れた技術であるとして、近年注目を浴びて いる。
特許文献 1 :米国特許第 5, 145, 684号明細書
発明の開示
発明が解決しょうとする課題
[0006] 以上のような背景力も本発明者らは、ビーズミル、高圧乳化機あるいは回転ディスク ミルなどによる湿式粉砕法で微小粒子を製造する方法に着目し、その有用性を評価 してきた結果、いくつかの問題点のあることが判明してきた。
[0007] 問題点の一つは、粉砕時間が一般的に非常に長くかかり、ビーズミルを用いた場 合には、しばしば生産スケールでは 5〜8日間も粉砕機を稼動し続けなければならな いことである。このため、生産効率は著しく低下し、コストは上昇する。粉砕工程の時 間が著しく長いために、この間に機械の稼動トラブルを被るリスクが高くなり、 GMPで の製造管理上も好ましくな ヽ。湿式粉砕工程にお!、てトラブルが発生した場合には、 製造途中の中間製品サスペンションが微生物などによる汚染を受けることなぐ効率 的に回収することも非常に困難となる。また、特にビーズミルによる方法は機械的な 力による粉砕であることから、コンテナ内壁やビーズなどの磨耗は避けられず、機械 稼動が長時間に及ぶ場合にはサスペンションに混入する不純物の量も増大し、無視 できない問題となる。
このため、湿式粉砕法での粉砕効率を高める検討が、主に機械メーカーによって 実施されており、ビーズミルのローター形状を工夫した WAB社 (スイス)の DYNO- Ml LL ECM型や、アイメッタス社 (AIMEX:日本)の UVM- 2 Ultra Visco Millのような新 機種が発売されている。また、機械の構成やメカニズムそのものを工夫した例も多く みられ、世界の各社がそれぞれに優れた粉砕効率を特徴とする湿式粉砕機を販売 している。更に、高圧乳化機を活用する方法も提案されている。しかしながら、機械が 安定的に稼動し、平均粒子径 50〜: LOOOnmの微小粒子を製造できるという機械に っ 、ては、満足できる粉砕時間の短縮には成功して 、な 、。
[0008] もうひとつの問題点は、微小粒子サスペンションの分散安定性である。高圧乳化機 やビーズミルを用いて得られた微小粒子サスペンションの保管時や希釈時の安定性 を評価したところ、粒子が経時的に凝集していく傾向があり、特に酸性領域で溶解し やすい塩基性難溶性薬物についてはその凝集傾向が強ぐ沈降するケースのあるこ とも判った。従来の微小粒子サスペンションは、電解質溶液中で非常に凝集し易いこ とも判明し、注射剤として投与する場合には安全性に懸念があると考えられた。
以上のとおり、難溶性薬物の吸収性の改善を目的として、微小粒子サスペンション 技術を商業生産で広く活用していくためには、上記のような製造性や凝集性に対す る問題点を解決することが重要な課題であると考えられた。
課題を解決する手段
[0009] 微小粒子サスペンションの製造性および分散性を改善するための解決方法として、 本発明者らはナノサスペンション製造時に添加する分散剤に着目し、各種医薬品添 加物の分散剤としての効果 ¾1¾意検討した。その結果、水に対して溶解性が乏しい ために敬遠されていたヒドロキシプロピルメチルセルロースフタレート(以下、 HPMC Pと略す)又はヒドロキシプロピルメチルセルロースアセテートサクシネート(以下、 HP MCASと略す)を例えばクェン酸ナトリウムなどのアルカリの水溶液中に溶解して、こ れらを分散剤とすることにより、課題が解決されることを見出した。
[0010] サスペンション中の微小粒子は、その表面のゼータ電位の反発力により優れた分 散安定性を示すと考えられている。そのため、微小粒子はゼータ電位が中和されると 、容易に凝集する傾向のあることが知られており、 HPMCAS又は HPMCPを電解 質溶液に溶解して分散剤として使用することは、分散安定性の優れたサスペンション を製造する上では不利になると考えられて 、た(例えば、 G.W.Castellan.Physical Ch emistry.Third Edition.Section 18.16.3;翻訳書:目黒、田中、今村訳、 G.W.CASTELL AN物理化学(上)第 3版、 p.474,東京化学同人 (1986)及び C.Keck et al; Production and optimization of oral cyclosporine nanocrystals, Abstract of AAP¾ Annual Meetin g(2004)を参照)。しかしながら、本発明者らは、粒子凝集に関する常識にとらわれるこ となぐ多量のクェン酸ナトリウムを溶解したアルカリ溶液中に HPMCASや HPMCP を溶解し、この溶液中で難溶性薬物を粉砕したところ、従来汎用されていた HPMC や PVPを用いた場合に比べて、非常に早く微砕化が進行する上に、予想に反して薬 物微小粒子の分散性が極めて優れていることを見出したのである。
[0011] また、湿式粉砕法による微小粒子サスペンションの製造においては、精製水に容易 に溶解する分散剤を添加して、この溶液の中で難溶性薬物を微粉砕する必要がある
。特許文献 1にも記載されているように従来は、各種知られている分散剤のなかでも、 水に溶けやすぐアルカリなどの電解質を溶解剤として使用する必要のない PVPや プル口ニック F68及び F108が特に好ましいものとされていた。
本発明者らは、湿式粉砕法による薬物の微小粒子サスペンションの製造にぉ 、て、 短時間に微粉砕して生産性を改善するとともに、サスペンションの分散安定性を改善 すべく、これまでに実施例として知られて 、な 、分散剤につ 、て生産性や分散安定 性に対する影響を検討した。その結果、 HPMCAS及び/又は HPMCPを、粒子凝 集に関する常識にとらわれることなぐアルカリの添カ卩により水に溶解して、これを分 散剤として薬物を微粉砕した場合には、意外にも粉砕が非常に効率よく進行し、且 つ分散安定性の優れたサスペンションの得られることを見出した。また、このように製 造したサスペンションを乾燥したものは、 日局溶出試験液の第 2液 (pH6. 8)中で HP MCAS又は HPMCPの溶解とともに、微小粒子を放出していくが、本発明者らは該 サスペンションに糖及び/又は糖アルコールを添加して乾燥したものは、微小粒子 を凝集することなく再分散させる特性に特に優れていることを見出し、本発明を完成 するに至った。
すなわち、本発明は、
1.難溶性薬物の表面に、ヒドロキシプロピルメチルセルロースアセテートサクシネート 及び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径が 1 ηπ!〜 lOOOnmの難溶性薬物の微小粒子、
2.難溶性薬物 1重量部に対して、ヒドロキシプロピルメチルセルロースアセテートサク シネート及び/又はヒドロキシプロピルメチルセルロースフタレートを 0. 005〜20重量 部の割合で含む前記 1に記載の微小粒子、
3.更に、糖及び Z又は糖アルコールを難溶性薬物 1重量部に対して 0. 01〜4000 重量部含有してなる前記 1乃至 2のいずれ力 1項に記載の微小粒子、
4.糖及び Z又は糖アルコール力 乳糖、果糖、ショ糖、ブドウ糖、オリゴ糖、マン-ト ール、ソルビトール、マルチトール、マルトース、キシリトール、エリスリトール、還元麦 芽糖水ァメ、トレハロース、無水乳糖、及びキシロース力もなる群より選択された 1種 又は 2種以上の物質である前記 3に記載の微小粒子、
5.下記(1)乃至(3)より選択された製造法で得られうる前記 1乃至 4のいずれか 1項に 記載の微小粒子、
(1)ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシ プロピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に 、難溶性薬物を分散後、得られた混合物を更に湿式粉砕法により難溶性薬物の平 均粒子径を小さくすることを特徴とする製造法、
(2)ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシ プロピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に
、難溶性薬物が溶解した有機溶媒溶液を添加して、難溶性薬物の微小粒子を析出 させることを特徴とする製造法、
(3)難溶性薬物を分散剤の存在下で湿式粉砕して得られた粉砕物に、ヒドロキシプ 口ピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプロピルメチル セルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒を添加することを特 徴とする製造法、
6.ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプ 口ピルメチルセルロースフタレートの溶解剤力 アルカリ性物質又は水中でアルカリ 金属イオンあるいはアルカリ土類金属イオンを電離する物質である前記 5項に記載の 微小粒子、
7.アル力リ性物質又は水中でアルカリ金属イオンある 、はアル力リ土類金属イオンを 電離する物質が、クェン酸ナトリウム,クェン酸カルシウム、クェン酸塩、酒石酸ナトリ ゥム、リンゴ酸ナトリウム、乳酸ナトリウム、水酸化ナトリウム、水酸ィ匕カリウム、水酸化力 ルシゥム、水酸化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム、トリエタノールァ ミン、モノエタノールァミン、ケィ酸マグネシウムアルミニウム、リン酸塩、酸化マグネシ ゥム、酸化カルシウム、 L-アルギニン、アンモニア水、及びアルギン酸 Naからなる群よ り選択された 1種又は 2種以上の物質である前記 5及び 6項に記載の微小粒子、
8.ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプ 口ピルメチルセルロースフタレートをそれらの溶解剤の水又は水溶性有機溶媒と水の 混液に溶解又は懸濁させた後、その中に難溶性薬物を分散させ、得られた混合物を 更に湿式粉砕法により難溶性薬物の平均粒子径を小さくすることを特徴とする、難溶 性薬物の表面にヒドロキシプロピルメチルセルロースアセテートサクシネート及び z又 はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径の lnm〜 10 OOnmである難溶性薬物の微小粒子の製造法、
9.ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプ 口ピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に、 難溶性薬物が溶解した有機溶媒溶液を添加して、難溶性薬物の微小粒子を析出さ せることを特徴とする、難溶性薬物の表面にヒドロキシプロピルメチルセルロースァセ テートサクシネート及び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着 した平均粒子径の Inn!〜 lOOOnmである難溶性薬物の微小粒子の製造法、
10.難溶性薬物を分散剤の存在下で湿式粉砕して得られた粉砕物に、ヒドロキシプロ ピルメチルセルロースアセテートサクシネート及び/又はヒドロキシプロピルメチルセ ルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒を添加することを特徴 とする、難溶性薬物の表面にヒドロキシプロピルメチルセルロースアセテートサクシネ ート及び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径 の Inn!〜 lOOOnmである難溶性薬物の微小粒子の製造法、に関するものである。 以下に本発明の詳細を記載する。
本発明に用いられる難溶性薬物としては、水に対して難溶性であれば特に限定さ れないが、具体的にはそのフリー体あるいはフリー体の水和物を調製して溶解度を 評価する時に、精製水での溶解度が 0. lmgZmL以下であり、好ましくは 0. 05mg ZmL以下である薬物をいい、例えば、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗 生物質 (ペニシリン類を含む)、抗凝固薬、抗低血圧薬、抗糖尿病薬、抗てんかん薬 、抗ヒスタミン薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑 制薬、抗甲状腺薬、抗ウィルス薬、不安解消薬 (催眠薬および神経弛緩薬)、ァストリ ンゼント、アドレナリン性 |8受容体遮断薬、血液製剤および代用血漿、心筋変性力薬 、コントラスト媒質、コルチコステロイド、咳抑制薬 (去痰薬および粘液破壊薬)、診断 薬、診断像形成薬、利尿薬、ドパーミン作用薬 (抗パーキンソ氏病薬)、止血薬、免疫 薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニンお よびビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン (ステロイド類を 含む)、抗アレルギー薬、興奮薬および食欲減退物質、交感神経興奮薬、甲状腺薬 、血管拡張剤およびキサンチン類を含む各種既知薬物類力 選ぶことができる。具 体的には、二フエジピン、タクロリムス、インドメサシン、ジクロフエナックナトリウム、ァス ピリン、イブプロフェン、ナプロキセン、フロセミド、ォキソリン酸、ヮルフアリンカリウム、 FK555(ASP0355)、ジクマロール、フエニトイン、フエノバルビタール、ケトプロフェン、ク ロルプロパミド、グリセオフルビン、カルバマゼピン、シクロスポリン八、ダマゾール、ケ トコナゾール、プレドニゾン、トリアムシナロンァセトニド、ブロムヮレリル尿素、ァセチ ルタイロシン、ビンポセチン、ドンペリドン、ァロプリノール、トリパミドインダパミド、ォキ サトミド、ヘプ口-カート、ピンドロールなどが挙げられる。
本発明において、微小粒子サスペンションの製造性や凝集性の改善効果は、従来 技術では特に困難とされていた塩基性の難溶性薬物に対してより顕著に現れる。 本発明における塩基性の難溶性薬物としては、水に対して難溶性でかつ塩基性で あれば特に限定されないが、そのフリー体あるいはフリー体の水和物を調製して溶解 度を評価する時に、精製水での溶解度が 0. lmgZmL以下であり、且つ pHl. 2で の溶解度が精製水での溶解度の 2倍以上で、好ましくは精製水での溶解度が 0. 05 mgZmL以下であり、且つ pHl. 2での溶解度が精製水での溶解度の 3倍以上であ る薬物をいう。例えば、 FK4664,塩酸グアンファシン、塩酸マ-ジピン、クェン酸タモ キシフェン、塩酸-カルジピンなどが挙げられる。
また、本発明の微小粒子に含まれる難溶性薬物の割合は微小粒子全体に対して、 0. 1〜99. 9重量%の割合であればよぐ好ましくは 0. 5〜99重量%であり、より好 ましくは 10〜95重量%であり、特に好ましくは 20〜90重量%の割合である。
本発明において分散剤として使用される HPMCASは、その置換度は特に限定さ れないが、メトキシル基含量 10〜29%,ヒドロキシプロポキシル基含量 2〜25%,ァ セチル基含量 1〜18%,サクシノィル基含量 2〜30%が好ましぐより好ましくはメト キシル基含量 19〜27%,ヒドロキシプロボキシル基含量 4〜 11%,ァセチル基含量 4〜15%,サクシノィル基含量 3〜 19%であり、信越ィ匕学工業 (株)より AQO ATとし て供給される AS— LG、 AS— LF、 AS— MG、 AS— MF、 AS— HG、 AS— HFの グレードのものが特に好ましい。また、本発明において分散剤として使用される HPM CPの置換度も特に限定されないが、メトキシル基含量 16〜27%、ヒドロキシプロポキ シル基含量 3〜12%、カルボキシベンゾィル基含量 19〜37%が好ましぐメトキシル 基含量 18〜24%、ヒドロキシプロポキシル基含量 5〜10%,カルボキシベンゾィル 基含量 21〜35%がより好ましぐ信越ィ匕学工業 (株)より供給される HP— 50、 HP— 55、 HP— 55Sが特に好ましい。また、本発明における HPMCP又は HPMCASの 配合量としては、難溶性薬物 1重量部に対して HPMCP又は HPMCASを 0. 005 〜20重量部であり、好ましくは 0. 02〜10重量部であり、より好ましくは 0. 05〜5重 量部である。また、本発明に用いられる分散剤としては、 HPMCPに比べ HPMCAS 力 り好ましい。
[0015] 更に、本発明において HPMCP及び/又は HPMCASとともに使用される分散剤と して、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシ ェチノレセノレロース、ヒドロキシェチノレメチノレセノレロース、メチノレセノレロースなどの水溶 性セルロース、アクリル酸ェチル 'メタアクリル酸メチル酸共重合体、メタアクリル酸コ ポリマー、アミノアルキルメタアタリレートコーポリマー、アラビアゴム、アルギン酸ナトリ ゥム、アルファ一化デンプン、還元麦芽糖水あめ、カゼインナトリウム、デキストリン、ト ラガント末、プルラン、プロピルグリコール、ぺクチン、ポリアクリル酸ナトリウム、レシチ ン、ポリビュルアルコール、ポリエチレングリコール、水ァ入ポリビュルピロリドン、及 びポリオキシエチレンポリオキシプロピレングリコール、プル口ニック F68、プルロニッ ク F108、ポリソルベート 80、ポリソルベート、ラウリル硫酸ナトリウム、ステアリン酸ポリ ォキシル 40、ポリオキシエチレン硬化ヒマシ油、ソルビタン脂肪酸エステル、ショ糖脂 肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフ ェ-ルエーテル、スルホコハク酸ナトリウム、スルホコハク酸ジォクチルナトリウムなど の界面活性剤力 選ばれた 1種又は 2種以上の物質が挙げられる。
[0016] 本発明の微小粒子において、難溶性薬物の表面に分散剤が吸着した状態とは、 H PMCP又は HPMCASなどの分散剤力 薬物表面に化学的に結合している化学吸 着した状態のみならず、物理吸着した状態をも指す。 [0017] 本発明の微小粒子は、平均粒子径が lnm〜1000nmの粒子状の組成物であれ ばよぐより好ましくは平均粒子径が l〜750nmであり、更に好ましくは l〜500nmで あり、特に好ましくは l〜300nmである。当該平均粒子径は、体積基準メディアン径 を意味するが、当該技術分野で周知の通常の粒子サイズ測定法、例えば、レーザー 散乱法粒子径測定法、沈降フィールド'フロー'フラクシヨネーシヨン、光子相関分光 法(photon correlation spectroscopy)またはディスク遠心分離のような常用されてい る粒子サイズ測定法によって測定できるが、好ましくはレーザー散乱法粒子径測定 器 HORIBA LA-920 (堀場製作所製)によって平均粒子径を測定できる。
また、本発明の微小粒子の特徴として、分散性の改善されたことが挙げられるが、 具体的には、本発明微小粒子を含むサスペンションがその調製後 6ヶ月以上裸眼観 察で凝集沈殿を示さず、好ましくは本発明微小粒子を含むサスペンションの平均粒 子径がその調製後に増大することなぐ 3力月以上に渡って 2倍以上にはならない特 徴を有する。
[0018] 本発明の糖及び糖アルコールとしては、乳糖、果糖、ショ糖、ブドウ糖、エリスリトー ル、キシリトール、マン-トール、トレハロース、無水乳糖、ソルビトール、マルチトール 、ァラビノース、キシロース,フルクトース、ガラクトース、マンノース、ラタチトール、キ シロース、マノレトース、ショ糖、マノレトトリオース、ノ ノース、ラタトスクロース、テアンダロ ース、及び還元乳糖などが挙げられ、本発明では、これらの 1種又は 2種以上の物質 を配合することができる。また、糖及び糖アルコールの配合量は薬物量 1重量部に対 して 0. 01〜4000重量咅力 S好ましく、 0. 01〜400重量咅力 Sより好ましく、 0·02〜20 0重量部が特に好ましぐ 0. 05〜200重量部が最も好ましい。
[0019] 本発明における HPMCAS及び/又は HPMCPとそれらの溶解剤とは、 HPMCA S及び/又は HPMCPの溶解を促進する物質を意味するが、本発明の微小粒子の分 散性を低下させる程度に難溶性薬物の溶解を促進するような物質は含まれな ヽ。本 発明の微小粒子の製造中にぉ ヽて難溶性薬物自体の溶解を促進すると、 HPMCA S及び/又は HPMCPのような分散剤が存在しても、本発明の微小粒子が凝集を起こ し、分散性を有し所望の平均粒子径をもつ微小粒子が得られないためである。また、 本発明の微小粒子を製造するためには、溶解性が低いとされる HPMCAS又は HP MCPを溶解して分散することが必須である力 必ずしも澄明に溶解しなくても、固体 状のものが認められないのであれば、白濁状態であってもよい。 HPMCAS又は HP MCPの溶解剤としては、アルカリ性物質又は水中でアルカリ金属イオンあるいはァ ルカリ土類金属イオンを電離する物質であれば良いが、具体的にはクェン酸ナトリウ ム,クェン酸カルシウム、クェン酸塩、酒石酸ナトリウム、乳酸ナトリウムなどの有機酸 塩、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウム、水酸化マグネシウム、炭 酸ナトリウム、炭酸水素ナトリウム、トリエタノールァミン、モノエタノールァミン、ケィ酸 マグネシウムアルミニウム、リン酸塩、酸化マグネシウム、アンモニア水、 L-アルギニン 、アルギン酸ナトリウムが挙げれ、本発明においてこれらの物質群から 1種又は 2種以 上のものを配合することが出来る。また、 HPMCAS又は HPMCPの溶解剤はアル力 リ性電解質のみならず、 HPMCP又は HPMCASを溶解あるいは白濁状態に分散 できる電解質であれば必ずしもアルカリ性でなくてもよぐ中性付近の pHを示すもの でもよぐ HPMCAS又は HPMCPを溶解後の pHが 4以上であれば特に好ましい。 更にエタノールなどの水溶性有機溶媒、あるいは電解質と水溶性有機溶媒の混合物 を用いてもよい。但し、一般にエタノールなどの有機溶媒は難溶性薬物を溶解させる 傾向があることから、サスペンション中での溶解薬物濃度が高くなり、薬物粒子表面 での溶解と析出の平衡過程において、溶解速度と析出速度が大きくなる傾向がある 。そのため、溶解薬物が再析出する過程で粒子同士の凝集が促進され、所望の粒 子径をもつ本発明の微小粒子が得られなくなる可能性がある。従って、本発明にお V、て用いられうる水溶性有機溶媒、あるいは電解質と水溶性有機溶媒の混合物の配 合量としては、本発明微小粒子の効果を妨げない程度に水溶性有機溶媒を用いるこ とが好ましい。
なお、本発明の微小粒子には、各種医薬添加剤が適宜使用され、製剤化すること が出来る。カゝかる医薬添加剤としては、製薬的に許容される添加剤であれば特に制 限されない。例えば賦形剤、結合剤、崩壊剤、酸味料、発泡剤、人工甘味料、香料、 滑沢剤、着色剤などが使用される。賦形剤としては、例えば乳糖、結晶セルロース、 微結晶セルロース、 D-ソルビトール、 D-マン-トールなどが挙げられる。結合剤として は、例えばヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ポビ ドン、ポリビュルアルコール、メチルセルロース、アラビアゴムなどが挙げられる。崩壊 剤としては、例えばトウモロコシデンプン、バレイショデンプン、カルメロース、カルメロ ースカルシウム、カルメロースナトリウム、クロスカルメロースナトリウム、低置換度ヒドロ キシプロピルセルロース、クロスポビドンなどが挙げられる。酸味料としては、例えばク ェン酸、酒石酸、リンゴ酸などが挙げられる。発泡剤としては、例えば重曹などが挙げ られる。人工甘味料としては、例えばサッカリンナトリウム、グリチルリチン酸二カリウム 、アスパルテーム、ステビア、ソーマチンなどが挙げられる。香料としては、例えばレモ ン、レモンライム、オレンジ、メントールなどが挙げられる。滑沢剤としては、例えばス テアリン酸マグネシウム、ステアリン酸カルシウム、ショ糖脂肪酸エステル、ポリエチレ ングリコール、タルク、ステアリン酸などが挙げられる。着色剤としては、例えば黄色三 二酸化鉄、赤色三二酸化鉄、酸化チタン、食用黄色 4号、 5号、食用赤色 3号、 102号 、食用青色 3号などを使用することができる。医薬添加剤としては、 1種または 2種以上 組合せて適宜適量添加することができる。
本発明において湿式粉砕法とは、懸濁液中の薬物を機械的手段あるいは物理現 象の活用により薬物の粒子サイズを低減する方法のことを意味する。具体的には、ビ ーズミルやサンドミルに代表されるメディアミル、高圧乳化機及び回転ディスクミルを 用いた湿式粉砕法を! ヽ、好ましくはビーズミルを用いた湿式粉砕法である。また、 本発明微小粒子の製造法としては、(l) HPMCAS及び Z又は HPMCPとそれらの 溶解剤が溶解又は懸濁した溶媒中に、難溶性薬物を分散後、得られた混合物を更 に湿式粉砕法により難溶性薬物の平均粒子径を小さくすることを特徴とする製造法、 (2) HPMCAS及び Z又は HPMCPとそれらの溶解剤が溶解又は懸濁した溶媒中 に、難溶性薬物が溶解した有機溶媒溶液を添加して、難溶性薬物の微小粒子を析 出させることを特徴とする製造法、 (3)難溶性薬物を分散剤の存在下で湿式粉砕し て得られた粉砕物に、 HPMCAS及び Z又は HPMCPとそれらの溶解剤が溶解又 は懸濁した溶媒を添加することを特徴とする製造法などが挙げられるが、好ましくは 上記(1)の製造法である。
更に本発明においては、腸溶性基材はビーズミル、高圧乳化機あるいは回転ディ スクミルでの難溶性薬物の粉砕にぉ 、て、生産性や凝集防止の観点力も優れた効 果を有するが、湿式粉砕法における分散剤としてのみならず、晶析法における分散 剤としても有効である。
[0022] 本発明の微小粒子の製造法を以下に詳述する。
まず、湿式粉砕法による製造法について説明すると、 HPMCAS及び/又は HPM CPとこれを溶解するためのクェン酸ナトリウムなどの溶解剤を精製水に添加して攪拌 し、 HPMCAS及び/又は HPMCPを溶解する。溶液はその pHによって澄明になるこ ともあれば、白濁状態になる場合があるが、腸溶性基材が明確に固体状態として残 留していなければ問題はない。次に、この溶液に難溶性薬物を投入するが、この平 均粒子径は 500 μ m以下が好ましいが、より好ましくは 100 μ m以下であり、 20 μ m以 下であれば特に好ましい。また、粉砕前薬物の平均粒子径が 500 mを超える場合 はピンミルなどの乾式粉砕法で事前に粉砕して粒子径を小さくして使用するのが好 ま 、。サスペンション中での難溶性薬物の濃度は高 、ほうが粉砕され易 、傾向が あるが、粘性が著しく大きくなるため、添加量は 30%( w/Vol)程度がほぼ限界であり、 1 〜25%(w/vol)に
するのが好ましぐ 3〜15%にするのが特に好ましい。このようにして得られた混合物ス ラリーを一晩放置して脱気後に、ビーズミル、高圧乳化機あるいは回転ディスクミルな どの湿式粉砕機に投入して目標とする粒子径の微小粒子が得られるまで機械を稼 動する。また必ずしも、脱気は必要ではないが、脱気により粉砕効率は改善する。ま た、この混合物スラリーのハンドリングを改善したり品質を向上させるために、消泡剤 や界面活性剤、あるいは防腐剤を添加して粉砕してもよ 、。
[0023] 特に、ビーズミルで粉砕する場合は、各種材質のビーズが入手可能である力 ポリ スチレンやウレタンなどのプラスチック、あるいはジルコユアなどの無機材質のものが 、一般的に使用されている。ビーズは密度が高いほど粉砕効率が高いが、選択にあ たっては、ビーズの磨耗によるコンタミネーシヨンの可能性や粉砕に要する時間を考 慮して選択する。コンテナ内に投入するビーズの粒子径は通常 0.05mm φ〜3mm φ のものが好ましく 0.1〜0.5πιπι φのものがより好ましい。投入量はコンテナへの充填率 として、 50〜90%程度が好ましく 70〜85%程度がより好ましい。ビーズをコンテナ中で 高速に回転させるために、ローター(アジテーターディスク)を回転させる力 その回 転速度はローターの周速で 5〜12 m/secが好ましく 7〜llm/secがより好ましい。また 、コンテナを冷却水で冷却すると粉砕効率が改善する。
[0024] また、高圧乳化機による粉砕メカニズムは、ビーズミルのようなビーズによる磨り潰し のメカニズではなぐ高圧で狭 、スリットゃ孔などに流体を流す場合に発生するキヤビ テーシヨンによる力や、スリット近辺でのせん断力によって粉砕するのである力 これ らの孔やスリットに難溶性薬物、腸溶性基材とその溶解剤の混合物流体を何度も通 過させることによって粉砕していくものであり、通常はこれら流体を数回から数十回通 過させることにより、 目標とする微小粒子が得られる。
[0025] さらに、湿式粉砕法では、回転ディスクミルを用いることも可能である。回転ディスク ミルとは、上下ディスクの狭い間隙に被粉砕物を含む流体を通過させることにより、せ ん断カを与えて粉砕する装置であるが、流体が通過する間隙は必ずしも円形ディス ク状である必要はなぐ円錐状の場合もあり、コロイドミルや CLEAR SS5(MTECHNIQ UE, 日本)などがその代表的な機種として挙げられ、それらの改良型を使用しても良 い。回転ディスクミルでは、難溶性薬物とヒドロキシプロピルメチルセルロースァセテ ートサクシネート及び/又はヒドロキシプロピルメチルセルロースフタレートとこれを溶 解するためのクェン酸ナトリウムなどの溶解剤を含有する流体を回転ディスクあるい はローターの中心部力 送液する力 難溶性薬物はディスクあるいはローターの回転 により発生するせん断力により微粉砕されながら円周部に移動して排出される。流体 に与えるせん断力はディスクやローター部の間隙が狭いほど、また回転数が大きい ほど大きくなり、難溶性薬物を微細に粉砕することができる。
[0026] なお、別法として、難溶性薬物を PVPや HPMCなどの分散剤を用いて湿式粉砕し
、得られたサスペンションに、溶解剤で溶解したヒドロキシプロピルメチルセルロース アセテートサクシネート及び Z又はヒドロキシプロピルメチルセルロースフタレートを添 加して吸着させてもよい。
[0027] また、本発明の微小粒子の製造法としては上記のような湿式粉砕法によるだけでは なぐ晶析法によっても製造することもできる。
この晶析法では、上記湿式粉砕法での製造と同様にして、 HPMCAS及び/又は H
PMCPとこれを溶解するためのクェン酸ナトリウムなどの溶解剤を精製水に添加して 攪拌し、 HPMCAS及び/又は HPMCPを溶解した溶液(1)を用意する。溶液(1)は その pHによって澄明になることもあれば、白濁状態になる場合があるが、 HPMCAS 及び/又は HPMCPが明確に固体状態として残留していなければ問題はない。この 液は、場合により燐酸塩やアルカリで pH調整される。また、塩ィ匕ベンザルコ-ゥムの ような防腐剤が添加される場合もある。一方、溶液 (2)として、難溶性薬物をエタノー ルなどの有機溶媒に溶解した溶液を用意する。この溶液(2)には、本発明において HPMCP及び/又は HPMCASとともに使用される分散剤である、上述の界面活性 剤を添加することが好ましい。次に、溶液(1)を攪拌しながら、難溶性薬物をエタノー ルなどの有機溶媒に溶解した溶液 (2)を徐々に滴下することにより、滴下と同時に白 濁して、難溶性薬物の微小粒子が析出する。難溶性薬物を溶解する有機溶媒はァ セトンやエタノール、メタノール、イソプロパノールなど水に溶解するものであれば良く
、一般的には使用する有機溶媒量が少なくてすむように、難溶性薬物を高濃度に溶 解するのが好ま ヽ。得られる微小粒子の粒子径は貧溶媒相の攪拌条件や温度な どに依存するため、適切な条件を設定する。また、得られた微小粒子サスペンション は有機溶媒を含有して 、るため、サスペンションの溶媒相をフィルターで除去するこ とによって水分散型サスペンションを製造することができる。また、凍結乾燥により有 機溶媒を含有した溶媒相を除去することも可能である。また、上記製造法のように、 良溶媒に溶解した難溶性薬物を貧溶媒中に滴下するのとは逆に、良溶媒相に貧溶 媒相を滴下して難溶性薬物の微小粒子を析出させることも可能である。
上記のように製造された難溶性薬物サスペンション中に所定量の糖ある!、は糖ァ ルコールを添加して、それらを溶解あるいは一部溶解させた後、これを乾燥して固形 化することにより、再分散性の優れた微小粒子サスペンションの固形ィ匕が可能である 。乾燥方法としては、通風乾燥や真空乾燥、あるいは商品名ノンバレルとして知られ るショ糖の球状顆粒の表面などにスプレーしながら、流動層乾燥することもできる。 本発明は難溶性薬物の微小粒子の吸収性を改善するために経口剤として適用さ れるのみならず、サスペンションの分散安定性の優れるところを活用して注射剤、懸 濁剤、シロップ剤などの液剤や半固形剤にも適用できる。また、本発明微小粒子サス ペンションの乾燥物は他の賦形剤と混合して、各種の製剤化処理を行った上、錠剤 、散剤、顆粒剤、丸剤、カプセル、サッシェなどの固形剤とする他、これらに腸溶性フ イルムをコーティングしてもよい。なお、微小粒子サスペンションの乾燥物を用いる上 記固形剤の場合は、再分散性を持たせるためにも糖類及び Z又は糖アルコールを 配合することが望ましい。
[0029] 本発明における難溶性薬物の微小粒子は、優れた分散性を有するとともに、粒子 径を低減して表面積を大きくすることで溶出性を高めた微小粒子である。すなわち薬 物溶解度は低いままであるが、薬物を微小粒子とすることにより表面積を著しく増大 させて、これにより消化管中での薬物の実質的な溶解量を増大させる技術である。 図面の簡単な説明
[0030] [図 1]化合物 Aのビーズミル粉砕における各種分散剤が平均粒子径と粉砕時間に及 ぼす影響を示す。
[図 2]化合物 Bのビーズミル粉砕における各種分散剤が平均粒子径と粉砕時間に及 ぼす影響を示す。
[図 3]化合物 Cのビーズミル粉砕における各種分散剤が平均粒子径と粉砕時間に及 ぼす影響を示す。
発明を実施するための最良の形態
[0031] 本発明を詳細に説明する。以下、実施例および比較例を挙げて、本発明をさらに 詳細に説明するが、本発明はこれらにより限定解釈されるものではない。
実施例 1
[0032] 表 1の組成に示すように、 HPMCP (信越化学製 HP-55S) lgをクェン酸ナトリウム 2 水和物の水溶液に溶解し、水酸ィ匕ナトリウム水溶液で pH6. 3に調整した後、この液 に塩基性難溶薬物である 2E) - 3- (4—クロ口フエ-ル) N— [ (1S)—2—ォキソ 2— [ [2 ォキソ 2—(4— [ [6 (トリフルォロメチル)ー4 ピリミジ -ル]ォキシ] — 1—ピベリジ-ル)ェチル]ァミノ]— 1— (2—ピリジルメチル)ェチル]— 2—プロべ ンアミド (以下、化合物 Aと略す) 5gを分散し、スラリー状混合物 lOOgを得た。その 後、 DYNO MILL MULTI LABバッチ式(WAB社製、スイス)に、 0. 3mm φジルコ- ァビーズ (株式会社ニツカトー製)を充填密度が 80%になるように充填して、このスラ リー状混合物 lOOgをローター回転速度 9mZsecで所定時間湿式粉砕し、実施例 1 の微小粒子を得た。
実施例 2
[0033] 表 1の組成に示すように、 HPMCP lgの代わりに HPMCAS (信越化学製 AQOA T AS-LG) lgを用いた以外は、実施例 1と同様の方法で実施例 2の微小粒子を得た
[比較例 1]
[0034] 表 1の組成に示すように、 HPMCP lgの代わりに PVP (BASF製 PVP K15) lgを 用い、クェン酸ナトリウム 2水和物を添加せず水酸ィ匕ナトリウムで pH調整しな力つた 以外は、実施例 1と同様の方法で比較例 1の微小粒子を得た。
[比較例 2]
[0035] 表 1の組成に示すように、 HPMCP lgの代わりに PVP (BASF製 PVP K15) 5gを 用い、クェン酸ナトリウム 2水和物を添加せず水酸ィ匕ナトリウムで pH調整しな力つた 以外は、実施例 1と同様の方法で比較例 2の微小粒子を得た。
[比較例 3]
[0036] 表 1の組成に示すように、 HPMCP lgの代わりに HPMC (信越化学製の TC- 5R) lgを用い、クェン酸ナトリウム 2水和物を添加せず水酸ィ匕ナトリウムで pH調整しなか つた以外は、実施例 1と同様の方法で比較例 3の微小粒子を得た。
[比較例 4]
[0037] 表 1の組成に示すように、 HPMCP lgの代わりに HPMC (信越化学製の TC- 5R) 2. 5gを用い、クェン酸ナトリウム 2水和物を添加せず水酸ィ匕ナトリウムで pH調整しな かった以外は、実施例 1と同様の方法で比較例 4の微小粒子を得た。
<試験例 1 :塩基性難溶薬物化合物 Aにおける粉砕時間と平均粒子径の関係 > 所定時間湿式粉砕して得られた実施例 1〜2及び比較例 3〜4のサスペンション微 小粒子の平均粒子径を、レーザー散乱法粒子径測定器 HORIBA 1^—920 (堀 場製作所製)によって測定し、粉砕時間と平均粒子径の関係を図 1に示した。 PVP 配合処方の比較例 1及び 2では粉砕しても 10 μ m以下の一次粒子のサスペンション は得られなかった。また、 HPMC配合処方の比較例 4は 2時間の粉砕での平均粒子 径は 377. 3nmであったが、 HPMCAS又は HPMCP配合処方の実施例 1及び 2で は 150nm程度にまで到達し、本発明の HPMCASや HPMCPを使用すると粉砕時 間が格段に短縮され、且つ粉砕後の到達粒子径も小さくなることが判った。特に、こ のような粉砕時間の短縮は、実生産スケールの生産効率や製造管理にお!、て非常 に有用であると言える。なお、本発明で使用される HPMCASや HPMCPは、難溶 性薬物を短時間で小さく粉砕するのに有効なだけではなぐ後述する経時的な分散 性の改善にも影響を与えているものと考えられる。
[表 1]
Figure imgf000020_0001
実施例 3
[0038] 表 2に示すように、塩基性難溶薬物化合物 A 5g に代えて塩基性難溶薬物である (2E)— 3— [4— (lH—benzimidazo卜 2— ylmethyDphenyl]— N— hydroxyacrylamide (以" h、ィ匕合 物 Bと略す) 5gを使用した以外は、実施例 2と同様にして実施例 3の微小粒子を得 た。
[比較例 5]
[0039] 表 2に示すように、塩基性難溶薬物化合物 A 5g に代えて塩基性難溶薬物化合 物 B 5gを使用した以外は、比較例 1と同様にして比較例 5の微小粒子を得た。 <試験例 2 :塩基性難溶薬物化合物 Bにおける粉砕時間と平均粒子径の関係 > 所定時間湿式粉砕して得られた実施例 3及び比較例 5のサスペンション微小粒子 の平均粒子径を、レーザー散乱法粒子径測定器 HORIBA LA-920によって測定し、 粉砕時間と平均粒子径の関係を図 2に示した。 PVP配合処方の比較例 5は、 2時間 粉砕しても平均粒子径 200nm以下の微小粒子のサスペンションは得られなかったが 、 HPMCAS配合処方である実施例 3 (AQOAT AS-LG)の場合は 1時間で 200nm 以下の微小粒子のサスペンションは得られ、 2時間で 106. 5nmに到達した。
実施例 4
[0040] 表 2に示すように、塩基性難溶薬物化合物 A 5g に代えて難溶薬物である 3-meth oxy-1.5-bis(4-methoxyphenyl)-lH-l ,2,4-triazole (以下、化合物 Cと略す) 5gを使 用した以外は、実施例 2と同様にして実施例 4の微小粒子を得た。
[比較例 6]
[0041] 表 2に示すように、塩基性難溶薬物化合物 A 5g に代えて難溶薬物化合物 C 5g を使用した以外は、比較例 1と同様にして比較例 6の微小粒子を得た。
[比較例 7]
[0042] 表 2に示すように、塩基性難溶薬物化合物 A 5g に代えて難溶薬物化合物 C 5g を使用した以外は、比較例 3と同様にして比較例 7の微小粒子を得た。
[表 2]
! 比較 ί列 5 ^施例 3 比蛟例 6 比較例 7 1 施例 4
i PVP IIPMCAS PVP IIPMC ! ilPMCAS
配 r処 - 配 処方 配合処方 配合処方 配 r処方
処 化 I 物 'つ g - h 化^物 c ;
pvp - ! -
HPMし - - I s -
Hi'MCAS - l l g : ェ 酸ナ卜1 ! > 水 物 ' - lg - l g ;
NaOH - Ι)Η6. 3 に調^ HB. 整 ;
^魁水 適量 適■ : 適 t
ftn l- 100g lOUg 100g 100g I QOg :
[0043] <試験例 3 :難溶薬物化合物 Cにおける粉砕時間と平均粒子径の関係 >
所定時間湿式粉砕して得られた実施例 4及び比較例 6〜7のサスペンション微小粒 子の平均粒子径を、レーザー散乱法粒子径測定器 HORIBA LA-920よって測定し、 粉砕時間と平均粒子径の関係を図 3に示した。 PVP配合処方である比較例 6では、 粉砕しても 400nm以下の微小粒子のサスペンションは得られなかった。また、 HPM C配合処方の比較例 7は、 2時間の粉砕での平均粒子径が 343nmであったのに対 して、 HPMCAS配合処方の実施例 4は平均粒子径 120. 4nmに到達した。
[0044] <試験例 4 :サスペンジョンの日局溶出試験液の第 2液への希釈安定性 >
レーザー散乱法粒子径測定器 HORIBA LA-920 (堀場製作所製)の測定セルに日 局溶出試験液の第 2液 (pH6. 8) 11mlを入れ、ブランク散乱光を記憶させた後、 73 0倍希釈となるように実施例 1、実施例 2及び比較例 4で製造したサスペンションをェ ッペンドルフピペットにより添カ卩し、経時的に粒子径を測定した。表 3に各サスペンシ ヨンの平均粒子径を示した力 HPMC配合処方である比較例 4は平均粒子径 377. 3nmであったが、 日局溶出試験液の第 2液で希釈すると、 60分後には 12549. 7nmに凝集した。一方、 HPMCASや HPMCPを配合した実施例 1及び 2では粒子 径は殆ど変化しな力つた。
HPMCASや HPMCPを配合した実施例 1及び 2では、粒子径の小さ!/、薬物粒子 を短時間で得られるだけでなぐ経時的な分散安定性にも優れていることが分力つた
[表 3]
Figure imgf000022_0001
[0045] <試験例 5:微小粒子サスペンション乾燥物の再分散性 >
実施例 1で製造した微小粒子サスペンション 2gに乳糖 50mgを添加して溶解後、テ フロン (登録商標)シート製のトレイに入れて 40°Cで通風乾燥した。この乾燥物を粉 砕後、 500 mの篩で篩過したものを微小粒子サスペンションの乾燥物試料とした。 また、乳糖を添加しない乾燥物試料も調製した。これらの試料 10mgを試験管に取り 、精製水あるいは第 2液 0. 5mLを添加して、ラボミキサーを用いて再分散し、平均粒 子径を測定した。結果を表 4に示すが、乳糖を添加した微小粒子サスペンションの乾 燥物は、非常に優れた再分散性を示した。
[表 4] 乳糖の -無 乾燥 f¾f-均お,:子径 乾燥後平均粒子径
精製水への冉分散後 第 2液への μί分散後 乳糖無添加 163. 2nm 303. 8nm 15448. 9nm 乳糖添加 170. 7nm 179. 7nm 実施例 5
[0046] HPMCAS (信越化学製 AQOAT AS- LG) lgをクェン酸ナトリウム 2水和物の水溶 液に溶解し、水酸化ナトリウム水溶液で pH6. 3に調整した後、この液に塩基性難溶 薬物である化合物 A 5g及びラウリル硫酸ナトリウム 0. 02gを分散し、スラリー状混合 物 100gを得た。その後、 DYNO MILL MULTI LABバッチ式(WAB社製、スイス)に 、 0. 3mm φジルコユアビーズ (株式会社ニツカトー製)を充填密度が 80%になるよう に充填して、このスラリー状混合物 100gをローター回転速度 9mZsecで 2時間湿式 粉砕し、平均粒子径 131nmの微小粒子を得た。
実施例 6
[0047] 表 5〖こ示すよう〖こ、 HPMCAS (信越化学製 AQOAT AS- LG)をクェン酸ナトリウム 2 水和物水溶液で溶解後、水酸ィ匕ナトリウムで pHを 6. 3に調整した溶液 1をホモジナ ィザを用いて 6000回転で攪拌させた所に、塩基性難溶薬物である化合物 Aおよび ラウリル硫酸ナトリウムをエタノールで溶解した溶液 2を添加し、平均粒子計 356. 4n mの微小粒子を析出させることができた。
[表 5]
Figure imgf000024_0001
[サスペンジョン 1の調製]
表 6に示すように HPMC3gを水で溶解した液に塩基性難溶薬物である化合物 A 15g及びラウリル硫酸ナトリウム 0. 15gを分散し、スラリー状混合物 lOOgを得た。そ の後、 DYNO MILL MULTI LABバッチ式(WAB社製、スイス)に、 0. 3mm φジルコ 二ァビーズ (株式会社ニツカトー製)を充填密度が 80%になるように充填して、このス ラリー状混合物 lOOgをローター回転速度 9mZsecで 2時間湿式粉砕し、平均粒子 径 154nmの微小粒子(サスペンジョン 1)を得た。
[表 6] サスペンジョ ン 1 化合物 A 1 g
HPMC 3g 処 ラウリル硫酸ナトリウム 0. 15g
精製水 過直
八 +
U π丁 100g 実施例 7
[0049] 20gのサスペンジョン 1に対して、表 7の処方となるように、クェン酸ナトリウム 2水和 物水溶液で溶解し水酸ィ匕ナトリウムで pHを 6. 3に調整した HPMCP (信越化学製 H P-55S)を加えて、実施例 7を得た。
実施例 8
[0050] 表 7の処方に示すように、 HPMCP 0. 6gの代わりに HPMCAS (信越化学製 AQ OAT AS-LG) 0. 6gを用いた以外は、実施例 7と同様の方法で実施例 8を得た。
[比較例 8]
[0051] 表 7の処方に示すように、 HPMCP 0. 6gの代わりに HPMCO. 6gを用い、クェン 酸ナトリウム 2水和物を添加せず水酸ィ匕ナトリウムで pH調整しな力つた以外は、実施 例 7と同様の方法で比較例 8を得た。
[表 7]
Figure imgf000025_0001
[0052] く試験例 6 : HPMCP又は HPMCASを添カ卩したサスペンジョン 1の日局溶出試験液の 第 2液への希釈安定性 >
実施例 7、実施例 8及び比較例 8のサスペンション 0. lmLに、 日局溶出試験液の 第 2液 (pH6. 8) lOOmLを入れて 1000倍に希釈し,経時的に粒子径を測定した。 表 8に各サスペンションの平均粒子径を示したが, HPMC単独配合処方である比 較例 8では, 日局溶出試験液の第 2液で希釈すると、 60分後には 3034. 2nmに凝 集した。一方, HPMCPや HPMCASを後で配合した実施例 7および実施例 8では, 日局溶出試験液の第 2液で希釈直後から粒子径の変化は殆どな力つた。
日局溶出試験液の第 2液で希釈することにより凝集しやす 、HPMC処方のサスぺ ンシヨンも、後力もアルカリで溶解した HPMCPまたは HPMCASをカ卩えることにより 経時的な分散安定性が向上することが分力 た。
[表 8]
Figure imgf000026_0001
産業上の利用可能性
本発明は、特定の腸溶性基剤が難溶性薬物の表面に吸着した難溶性薬物の微小 粒子及び更に糖類を含有する微小粒子、並びにそれらの製造法に関する。本発明 を用いることにより、人体等において吸収不良性の難溶性薬物の吸収を改善できる 微小粒子を効率よく短時間で安全に生産することができるとともに、分散安定性の優 れた製剤を提供できる。

Claims

請求の範囲
[1] 難溶性薬物の表面に、ヒドロキシプロピルメチルセルロースアセテートサクシネート及 び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径が In m〜1000nmの難溶性薬物の微小粒子。
[2] 難溶性薬物 1重量部に対して、ヒドロキシプロピルメチルセルロースアセテートサクシ ネート及び/又はヒドロキシプロピルメチルセルロースフタレートを 0. 005〜20重量部 の割合で含む請求項 1に記載の微小粒子。
[3] 更に、糖及び Z又は糖アルコールを難溶性薬物 1重量部に対して 0. 01〜4000重 量部含有してなる請求項 1乃至 2のいずれ力 1項に記載の微小粒子。
[4] 糖及び/又は糖アルコール力 乳糖、果糖、ショ糖、ブドウ糖、オリゴ糖、マン-トー ル、ソルビトール、マルチトール、マルトース、キシリトール、エリスリトール、還元麦芽 糖水ァメ、トレハロース、無水乳糖、及びキシロース力もなる群より選択された 1種又 は 2種以上の物質である請求項 3に記載の微小粒子。
[5] 下記(1)乃至(3)より選択された製造法で得られうる請求項 1乃至 4の ヽずれか 1項 に記載の微小粒子;
(1)ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシ プロピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に 、難溶性薬物を分散後、得られた混合物を更に湿式粉砕法により難溶性薬物の平 均粒子径を小さくすることを特徴とする製造法、
(2)ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシ プロピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に
、難溶性薬物が溶解した有機溶媒溶液を添加して、難溶性薬物の微小粒子を析出 させることを特徴とする製造法、
(3)難溶性薬物を分散剤の存在下で湿式粉砕して得られた粉砕物に、ヒドロキシプ 口ピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプロピルメチル セルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒を添加することを特 徴とする製造法。
[6] ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプロ ピルメチルセルロースフタレートの溶解剤力 アルカリ性物質又は水中でアルカリ金 属イオンあるいはアルカリ土類金属イオンを電離する物質である請求項 5項に記載の 微小粒子。
[7] アルカリ性物質又は水中でアルカリ金属イオンある ヽはアル力リ土類金属イオンを電 離する物質が、クェン酸ナトリウム,クェン酸カルシウム、クェン酸塩、酒石酸ナトリウ ム、リンゴ酸ナトリウム、乳酸ナトリウム、水酸化ナトリウム、水酸ィ匕カリウム、水酸化力 ルシゥム、水酸化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム、トリエタノールァ ミン、モノエタノールァミン、ケィ酸マグネシウムアルミニウム、リン酸塩、酸化マグネシ ゥム、酸化カルシウム、 L-アルギニン、アンモニア水、及びアルギン酸 Naからなる群よ り選択された 1種又は 2種以上の物質である請求項 5及び 6項に記載の微小粒子。
[8] ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプロ ピルメチルセルロースフタレートをそれらの溶解剤の水又は水溶性有機溶媒と水の 混液に溶解又は懸濁させた後、その中に難溶性薬物を分散させ、得られた混合物を 更に湿式粉砕法により難溶性薬物の平均粒子径を小さくすることを特徴とする、難溶 性薬物の表面にヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又 はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径の lnm〜 10 OOnmである難溶性薬物の微小粒子の製造法。
[9] ヒドロキシプロピルメチルセルロースアセテートサクシネート及び Z又はヒドロキシプロ ピルメチルセルロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒中に、難 溶性薬物が溶解した有機溶媒溶液を添加して、難溶性薬物の微小粒子を析出させ ることを特徴とする、難溶性薬物の表面にヒドロキシプロピルメチルセルロースァセテ ートサクシネート及び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着し た平均粒子径の Inn!〜 lOOOnmである難溶性薬物の微小粒子の製造法。
[10] 難溶性薬物を分散剤の存在下で湿式粉砕して得られた粉砕物に、ヒドロキシプロピ ルメチルセルロースアセテートサクシネート及び/又はヒドロキシプロピルメチルセル ロースフタレートとそれらの溶解剤が溶解又は懸濁した溶媒を添加することを特徴と する、難溶性薬物の表面にヒドロキシプロピルメチルセルロースアセテートサクシネー ト及び Z又はヒドロキシプロピルメチルセルロースフタレートが吸着した平均粒子径の Inn!〜 lOOOnmである難溶性薬物の微小粒子の製造法。
PCT/JP2006/317483 2005-09-06 2006-09-05 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子 WO2007029660A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007534409A JPWO2007029660A1 (ja) 2005-09-06 2006-09-05 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子
CA002621800A CA2621800A1 (en) 2005-09-06 2006-09-05 Fine particles of poorly soluble drug having enteric base material adsorbed on the surface thereof
EP06783174A EP1923051A4 (en) 2005-09-06 2006-09-05 MICROPARTICLES OF A HEAVY-DUTY SUBSTANCE WITH ENTERIAN BASE MATERIAL ADSORBED ON THE SUBSTANCE SURFACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71492405P 2005-09-06 2005-09-06
USUS60/714924 2005-09-06

Publications (1)

Publication Number Publication Date
WO2007029660A1 true WO2007029660A1 (ja) 2007-03-15

Family

ID=37835779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317483 WO2007029660A1 (ja) 2005-09-06 2006-09-05 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子

Country Status (5)

Country Link
US (1) US20080213383A1 (ja)
EP (1) EP1923051A4 (ja)
JP (1) JPWO2007029660A1 (ja)
CA (1) CA2621800A1 (ja)
WO (1) WO2007029660A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120724A1 (ja) * 2007-03-30 2008-10-09 Ajinomoto Co., Inc. 固体分散体製剤
JPWO2009123210A1 (ja) * 2008-04-01 2011-07-28 アステラス製薬株式会社 血管性疾患の予防剤及び/又は治療剤
WO2011152297A1 (ja) * 2010-05-31 2011-12-08 アステラス製薬株式会社 トリアゾール化合物の固体分散体
JP2013532151A (ja) * 2010-06-14 2013-08-15 ダウ グローバル テクノロジーズ エルエルシー アセテートおよびサクシネートの置換が向上されたヒドロキシプロピルメチルセルロースアセテートサクシネート
JP2015127316A (ja) * 2013-06-03 2015-07-09 信越化学工業株式会社 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
JP2018519272A (ja) * 2015-05-12 2018-07-19 エスイー タイローズ ユーエスエー,インク. 水性腸溶コーティング組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580442B (zh) * 2011-10-19 2017-05-01 傑特大學 醫藥毫微懸浮物
WO2020179701A1 (ja) * 2019-03-01 2020-09-10 塩野義製薬株式会社 異物を低減したナノ粒子組成物およびその製法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295420A (ja) * 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JPH11504638A (ja) * 1995-05-08 1999-04-27 ノバルティス・アクチエンゲゼルシャフト 低溶解性の薬剤の経口投与のためのナノ粒子
JP2002538199A (ja) * 1999-03-08 2002-11-12 エラン ファーマ インターナショナル,リミティド ナノ粒子組成物における結晶成長および粒子凝集を防止するための方法
JP2004534811A (ja) * 2001-06-22 2004-11-18 ファイザー・プロダクツ・インク ポリマーと薬剤の集合体を含む医薬組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185013A (ja) * 1986-02-08 1987-08-13 Green Cross Corp:The 易吸収性医薬組成物
US5145884A (en) * 1986-11-13 1992-09-08 Menicon Co., Ltd. Ultraviolet-hardenable adhesive
JP2528706B2 (ja) * 1988-05-30 1996-08-28 ゼリア新薬工業株式会社 ジヒドロピリジン化合物の製剤組成物
JP4631228B2 (ja) * 2001-07-31 2011-02-16 株式会社豊田自動織機 ピストン式圧縮機における防振構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295420A (ja) * 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JPH11504638A (ja) * 1995-05-08 1999-04-27 ノバルティス・アクチエンゲゼルシャフト 低溶解性の薬剤の経口投与のためのナノ粒子
JP2002538199A (ja) * 1999-03-08 2002-11-12 エラン ファーマ インターナショナル,リミティド ナノ粒子組成物における結晶成長および粒子凝集を防止するための方法
JP2004534811A (ja) * 2001-06-22 2004-11-18 ファイザー・プロダクツ・インク ポリマーと薬剤の集合体を含む医薬組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AM. PHARM. REV., vol. 5, 2002, pages 82 - 85
KAWASHIMA Y. ET AL.: "A new powder design method to improve inhalation efficiency of pranlukast hydrate dry powder aerosols by surface modification with hydroxypropylmethylcellulose phthalate nanospheres", PHARM. RES., vol. 15, no. 11, 1998, pages 1748 - 1752, XP009009759 *
KIM I.H. ET AL.: "Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles", J. CONTROL RELEASE, vol. 89, no. 2, 2003, pages 225 - 233, XP004421358 *
See also references of EP1923051A4
WANG X.Q. ET AL.: "Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration", J. CONTROL RELEASE, vol. 97, no. 3, 2004, pages 421 - 429, XP004519506 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120724A1 (ja) * 2007-03-30 2008-10-09 Ajinomoto Co., Inc. 固体分散体製剤
JPWO2009123210A1 (ja) * 2008-04-01 2011-07-28 アステラス製薬株式会社 血管性疾患の予防剤及び/又は治療剤
JP5589838B2 (ja) * 2008-04-01 2014-09-17 アステラス製薬株式会社 血管性疾患の予防剤及び/又は治療剤
WO2011152297A1 (ja) * 2010-05-31 2011-12-08 アステラス製薬株式会社 トリアゾール化合物の固体分散体
JP2013532151A (ja) * 2010-06-14 2013-08-15 ダウ グローバル テクノロジーズ エルエルシー アセテートおよびサクシネートの置換が向上されたヒドロキシプロピルメチルセルロースアセテートサクシネート
JP2015127316A (ja) * 2013-06-03 2015-07-09 信越化学工業株式会社 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
JP6007322B2 (ja) * 2013-06-03 2016-10-12 信越化学工業株式会社 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
JPWO2014196519A1 (ja) * 2013-06-03 2017-02-23 信越化学工業株式会社 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
US10016508B2 (en) 2013-06-03 2018-07-10 Shin-Etsu Chemical Co., Ltd. Composition for hot-melt extrusion and method for producing hot-melt extrusion product using same
US10646573B2 (en) 2013-06-03 2020-05-12 Shin-Etsu Chemical Co., Ltd. Composition for hot melt extrusion and method for producing hot melt extrudate by using same
JP2018519272A (ja) * 2015-05-12 2018-07-19 エスイー タイローズ ユーエスエー,インク. 水性腸溶コーティング組成物

Also Published As

Publication number Publication date
JPWO2007029660A1 (ja) 2009-03-19
CA2621800A1 (en) 2007-03-15
EP1923051A4 (en) 2012-12-19
US20080213383A1 (en) 2008-09-04
EP1923051A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
Yang et al. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability
JP5439182B2 (ja) 化学物質のミセルのナノ粒子
WO2007029660A1 (ja) 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子
TWI558422B (zh) 減少奈米顆粒活性劑組成物中薄片狀聚集之技術
US5573783A (en) Redispersible nanoparticulate film matrices with protective overcoats
US6375986B1 (en) Solid dose nanoparticulate compositions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate
JP4884975B2 (ja) 微粒子含有組成物およびその製造方法
CN104968332B (zh) 药用芯-壳复合粉末及其制备方法
Plakkot et al. Comminution of ibuprofen to produce nano-particles for rapid dissolution
TW201513896A (zh) 醋酸阿比特龍配方
US10166197B2 (en) Sugar ester nanoparticle stabilizers
JP2008540644A (ja) 新規粒質化方法及びそれから生成される粒質物
JP6666352B2 (ja) デュタステリド含有固体分散体及びこれを含む組成物
US20230365719A1 (en) Hydroxypropyl methyl cellulose acetate succinate, method for producing the same, and composition for hot-melt extrusion
TWI392507B (zh) 包埋的膠束奈米顆粒
KR101730865B1 (ko) 레바프라잔-함유 나노입자를 포함하는 경구투여용 약학 조성물 및 그의 제조방법
CN114533735A (zh) 盐酸鲁拉西酮药物组合物及其制备方法
Saritha et al. Preparation and evaluation of solid dispersions of Ofloxacin
JP7219617B2 (ja) 難溶性薬物の微粒子を含有する医薬組成物の製造方法
JP2019137614A (ja) 経口用医薬組成物及びその製造方法
EP3978535A1 (en) Hydroxypropyl methyl cellulose phthalate, method for producing the same, and composition for hot-melt extrusion
JP2006505518A (ja) 沈澱制御法を用いて製造された結晶質薬物粒子
CN106913545B (zh) 一种格列美脲片剂及其制备方法
TWI520752B (zh) 決奈達隆固體分散體及其製備方法
JP2017197469A (ja) 補酵素q10含有組成物、その製造方法、及び該組成物を用いた補酵素q10配合製剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007534409

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006783174

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2621800

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE