WO2007026595A1 - ユニバーサル塩基含有ポリマー - Google Patents

ユニバーサル塩基含有ポリマー Download PDF

Info

Publication number
WO2007026595A1
WO2007026595A1 PCT/JP2006/316585 JP2006316585W WO2007026595A1 WO 2007026595 A1 WO2007026595 A1 WO 2007026595A1 JP 2006316585 W JP2006316585 W JP 2006316585W WO 2007026595 A1 WO2007026595 A1 WO 2007026595A1
Authority
WO
WIPO (PCT)
Prior art keywords
universal base
nucleic acid
base
pna
natural
Prior art date
Application number
PCT/JP2006/316585
Other languages
English (en)
French (fr)
Inventor
Masanori Kataoka
Yoshihiro Hayakawa
Taisuke Hirano
Original Assignee
Inter-University Research Institute Corporation National Institutes Of Natural Sciences
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter-University Research Institute Corporation National Institutes Of Natural Sciences, National University Corporation Nagoya University filed Critical Inter-University Research Institute Corporation National Institutes Of Natural Sciences
Priority to JP2007533201A priority Critical patent/JP5251125B2/ja
Publication of WO2007026595A1 publication Critical patent/WO2007026595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a novel universal base-containing polymer capable of forming a base pair with an oligonucleotide consisting of DNA or a natural nucleobase.
  • pyrimido [4,5-d] pyrimidine-2,4,5,7-tetraone used by the inventor as a basis for universal bases and derivatives thereof are not to form pseudo base pairs with natural nucleobases. It was thought, but it was not (nonpatent literature 2).
  • Patent Document 1 Japanese Patent Application Publication No. 2005-511096
  • Patent Document 2 Special Feature 2003-528883
  • Non-patent literature l Ohtsuka, E. et al, J. Biol. Chem., 260, 2605-2608 (1985)
  • Non-patent literature 2 Niess, R., Robins, RKJ Heterocyclic. Chem., 7, 243-244 (1970) Disclosure of the Invention
  • Oligonucleotides composed of universal bases capable of forming base pairs with conventional nucleobases have not been able to achieve the function as universal nucleic acids.
  • An object of the present invention is to provide a polymer which forms a base pair nonspecifically with a DNA or an oligonucleotide consisting of natural nucleic acid bases.
  • R represents a monovalent group other than a hydrogen atom
  • R is a PNA (an artificial nucleic acid developed by Nielsen et al. In 1991), using N-2 Successful in synthesizing a polymer by combining it with -aminoethylglycine as a backbone unit and having a structure in which a nucleobase is linked to this via a methylene carbocyclic group) as a monomer, and polymerizing this to form a monomer did.
  • R 1 and R 2 each represent a hydrocarbon chain having 1 to 18 carbon atoms which may have the same or different substituents
  • R 3 represents a natural nucleic acid or a naturally occurring nucleic acid or Non-naturally occurring nucleic acid
  • X 1 and X 2 may be the same as or different from each other —N— or —CR 4 — (wherein R 4 has a hydrogen atom or a substituent)
  • X 3 represents a hydrocarbon group which may contain a divalent heteroatom, an amino acid residue or an oligopeptide residue, a nucleic acid residue or an alkyl group having 1 to 4 carbon atoms.
  • the oligonucleotide residues, Y and Z which may be the same or different, each represents a monovalent residue, and m is 1 or more, n is 0 or more, and m + n is an integer of about 2 to 50.
  • a universal base-containing polymer represented by 1) is an integer of 0 or more.
  • the present invention is a method of forming these base pairs by mixing the universal base-containing polymer with a solution containing an oligonucleotide consisting of DNA or natural nucleobase.
  • the universal base-containing polymer of the present invention is represented by the following formula. However, this general formula simply shows the composition, not the structure. That is, each unit is randomly combined.
  • R 1 and R 2 are divalent chains for bonding a universal base, a natural base or another group to the main chain of the polymer, and the structure is not particularly limited as long as the function is achieved. That is, R 1 and R 2 each represent a hydrocarbon chain having 1 to 18 carbon atoms which may have the same or different substituents. Examples of the substituent include a hydroxyl group, an amino group, a thiol group, an alkoxy group, a carboxyl group, a carbamoyl group, an ester group, a hetero atom (S, O,
  • Hydrocarbon groups which may contain N), and the like, and examples thereof include alkyl groups, alkenyl groups, alkyl groups, aryl groups, heterocyclic groups and the like, and carbo, imide, carbonate, etc. It may have an ester, urethane, amide, amine, ether, sulfide, disulfide, sulfoxide, sulfone and the like.
  • This polymer may have only a universal base to form a base pair, and may have a naturally occurring nucleic acid or a non-naturally occurring nucleic acid other than the universal base of the present invention.
  • R 3 represents a naturally occurring nucleic acid or a non-naturally occurring nucleic acid.
  • R 3 represents a naturally occurring nucleic acid or a non-naturally occurring nucleic acid.
  • X 1 and X 2 each represent the universal base described above, or a natural nucleic acid or a non-natural nucleic acid attached to the polymer main chain, and represent N or CR 4 which may be the same or different from each other.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the alkyl group may be branched. Examples of this substituent include a hydroxyl group, a thiol group, an amino group, a carboxyl group, a carbamoyl group, a guar group, a aryl group and a heterocyclic group.
  • X 3 may contain a divalent heteroatom, a hydrocarbon group, an amino group, an amino acid residue or an oligopeptide residue, a nucleic acid residue or an oligonucleotide residue, etc., or a combination thereof Even!
  • the main chain of the polymer may contain synthetic polymers such as polystyrene, polyethylene, polyacetylene, polyether, polyurethane, polyamide, polyester, natural polymers and the like.
  • these monomers may be used as the above-mentioned hydrocarbon group.
  • Y and Z are ends of the polymer, and are not particularly limited. That is, Y and Z each represent a monovalent residue which may be the same or different. Examples of Y and Z include, for example, a terminal having an amino group, and a linear or branched alkyl group having 1 to 18 carbon atoms of a hydroxyl group.
  • Y and Z When Y and Z are used by binding the universal base-containing polymer of the present invention to a solid carrier, they may be solid carriers.
  • a solid support styrene beads, polystyrene beads obtained by graft polymerization of polyethylene glycol (TentaGel (R) And polyethylene glycol, polyurethane, fluorine resin, polyolefin, glass, silica gel, butyl rubber, silicone resin, cellulose, gold, carbon and the like.
  • n is 0 or more
  • m + n is an integer of about 2 to 50, preferably about 5 to 30, and more preferably about 10 to 25; 1 is an integer of 0 or more.
  • the universal base contained in the universal base-containing polymer of the present invention can be turned into both a purine type and a pyrimidine type by rotation around the bond. That is, as shown in the following formula, when the opposite base is an amidine type base adenine (A) or cytosine (C), the configuration of an amide type, the amide type base guanine (G) or thymine (T In the case of), it takes an amide type configuration and can form a base pair with all natural nucleobases.
  • the universal base-containing polymer of the present invention can form nonspecific base pairs with DNA or oligonucleotides consisting of natural nucleobases.
  • the solvent used in the case of forming a base pair with the DNA etc. of the universal base-containing polymer of the present invention is generally preferably an aprotic organic solvent, but when it is assumed to be used in vivo, buffers and oligos are assumed. Hydroalcohols are preferred for nucleotide synthesis and utilization, and DMSO and DMF are preferred for nucleoside adsorption. In this base pair formation, the concentration of the universal base-containing polymer, DNA and the like is usually about ImM.
  • a universal base (2) was linked to PNA to be a monomer. That is, a universal base-containing monomer (hereinafter referred to as "PPT") represented by the following formula (5) was used. The synthesis method of this monomer is described in Synthesis Example 1 below.
  • PPT universal base-containing monomer
  • PNA-A GEN 063014
  • PNA-G GEN 063016
  • PNA-C GEN 063015
  • PNA-T GEN 0301 7
  • the universal base-containing oligomer was synthesized by a manual solid phase synthesis method, and a solid phase carrier was TENTA GEL S RAM (A00213, 0.27 mmol / g, manufactured by Watanabe Kagaku Co., Ltd.). In order to improve the solubility of synthetic oligomers and to suppress self-association, lysine was introduced.
  • PNA monomers PNA monomers
  • 1-3 cycles used the above-mentioned PNA-T
  • 4 cycles used the above-mentioned universal base-containing monomers
  • 5-7 cycles used ⁇ - ⁇ .
  • Trifluoroacetic acid was used for excision of the solid phase carrier force (2 h). This makes C-terminal
  • the Boc group protecting the amino group of syn could also be removed.
  • the resulting oligomer is purified by using a reverse phase preparative column COSMOSIL 5C -AR-300 and represented by the following formula: H N -Lys
  • the resulting oligomer is further treated with 20% pyridine / water to deprotect the Fmoc group, and then purified using the same reverse phase preparative column as above to obtain the target PNA oligomer H N-Lvs-TTT (PPT) TTT-Gly-NH (m / z 1068.63; Calcd for (CHNO 2) (M
  • HPLC high performance liquid chromatograph
  • HPLC system JASCO GULliver high pressure gradient system
  • Solution A was linearly gradientd to 0-100% relative to solution B over 35 minutes using trifluoroacetic acid / acetonitril.
  • the HPLC chart is shown in FIG.
  • the large peak in the figure also indicates the target oligomer Since the other peaks are hardly detected, it can be understood that the purity of the obtained oligomer is high.
  • Example 2 As in Example 1, a table of the following formula (H N -Lys-CCT (PPT) TCC-Gly-NH 2) is used.
  • a universal base-containing oligomer was synthesized.
  • Solid phase synthesis was carried out according to Table 2 using the above PPT (universal base-containing monomer) and PNA monomer as monomers.
  • the HPLC of this oligomer was measured as in Example 1.
  • the HPLC chart is shown in FIG.
  • the large peak in the figure indicates the target oligomer, and the other peaks are hardly detected. This indicates that the purity of the obtained oligomer is high.
  • a universal base-containing oligomer represented by Gly-NH 2 was synthesized.
  • Solid phase synthesis was carried out according to Table 2 using the above PPT (universal base-containing monomer) and the above PNA monomer as monomers. 1, 11 cycles are PNA-T, 2, 10 cycles are PN AG, 3, 9 cycles are 1 ⁇ -cycle, 4, 8 cycles are PNA- C, 5, 6 and 7 cycles are universal salts Group containing monomers were used.
  • the HPLC of this oligomer was measured as in Example 1.
  • the HPLC chart is shown in FIG.
  • the large peak in the figure indicates the target oligomer, and the other peaks are hardly detected. This indicates that the purity of the obtained oligomer is high.
  • melting temperature, Tm melting temperature
  • Temperature gradient UV measurement was performed using a V-550 spectrophotometer manufactured by JASCO Corporation equipped with a Peltier-type temperature controller ETC-505T, using a 4.0 ⁇ M PNA-ODN mixture in 10 mM phosphate buffer (pH 7.0)
  • the solution in which 1: 1 was dissolved was incubated at 95 ° C for 5 minutes, returned to room temperature over 8 hours, cooled to 5 ° C, heated to 70 ° C at C / min, and the process was carried out It sampled every 1 degreeC, and the absorbance change of the ultraviolet region was measured on condition of the following.
  • Cell GL Science Type M25- B (optical path length 10 mm)
  • the graph obtained by plotting the absorbance against solution temperature was analyzed.
  • solid phase synthesis was performed according to Table 2 using the above-mentioned PNA monomer.
  • the HPLC of this oligomer was measured as in Example 1.
  • the HPLC chart is shown in FIG.
  • the large peak in the figure indicates the target oligomer, and the other peaks are hardly detected. This indicates that the purity of the obtained oligomer is high.
  • the compound obtained above was added to a 300 mL eggplant type flask equipped with a fluorine resin coated stirrer.
  • the universal base-containing polymer of the present invention is a sequence-unspecified gene or non-specified gene It can be applied to the detection of single nucleotide polymorphisms (SNPs), suppression of expression of nonspecific genes by antigene method, highly selective extraction of nucleic acid components, removal of nucleic acid components (affinity column) and the like.
  • SNPs single nucleotide polymorphisms
  • affinity column removal of nucleic acid components
  • FIG. 1 shows an HPLC chart of the PNA oligomer synthesized in Example 1.
  • the vertical axis represents absorbance (Ab s, absorbance at 260 nm), and the horizontal axis represents time (minutes).
  • FIG. 2 shows an HPLC chart of the PNA oligomer synthesized in Example 2.
  • FIG. 3 shows an HPLC chart of the PNA oligomer synthesized in Example 3.
  • FIG. 4 shows an HPLC chart of the PNA oligomer synthesized in Comparative Example 1.
  • FIG. 5 shows the results of complex formation experiments using the PNA oligomer of Example 2.
  • the absorbance of the mixed solution of PNA oligomer and natural oligonucleotide was plotted against the mixing ratio.
  • FIG. 6 shows the results of complex formation experiments using the natural oligonucleotide of Comparative Example 1. It is the figure which plotted the light absorbency of FIG. 1 with respect to the mixing ratio.
  • FIG. 7 shows a reaction scheme for the synthesis of a universal base-containing monomer.
  • FIG. 8 is a view showing a reaction scheme of universal base-containing monomer synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Polyamides (AREA)

Abstract

【課題】  DNA又は天然核酸塩基から成るオリゴヌクレオチドと非特異的に塩基対を形成するポリマーを提供する。  【解決手段】  発明者らが4種のいずれの天然核酸塩基と非特異的に塩基対を形成することを確認した、ピリミド[4,5-d]ピリミジン-2,4,5,7-テトラオンに基づくユニバーサル塩基を用いて、これを重合してユニバーサル塩基含有ポリマーを合成した。このユニバーサル塩基含有ポリマーは天然型オリゴヌクレオチドと複合体を形成することが確認された。  

Description

明 細 書
ユニバーサル塩基含有ポリマー
技術分野
[0001] この発明は、 DNA又は天然核酸塩基から成るオリゴヌクレオチドと塩基対を形成す ることのできる新規なユニバーサル塩基含有ポリマーに関する。
背景技術
[0002] 天然核酸塩基と非特異的に擬似塩基対を形成する人工核酸塩基、即ちュニバー サル塩基を得る試みは多く成されている。しかし、一般にユニバーサル塩基と呼ばれ ているものはインターカレーターの類であり、これは天然核酸塩基と疑似塩基対を形 成することはない。一方、疑似塩基対を形成するユニバーサル塩基としてイノシンを ベースとした誘導体が知られているが(特許文献 1、 2等)、グァニンとしてのみふるま うことが最近の研究で明らかとなつて 、る (非特許文献 1)。
本発明において、発明者がユニバーサル塩基のベースとして利用したピリミド [4,5- d]ピリミジン- 2,4,5,7-テトラオン及びその誘導体は、天然核酸塩基と疑似塩基対を形 成するとは考えられて 、なかった (非特許文献 2)。
[0003] 特許文献 1 :特表 2005- 511096
特許文献 2:特表 2003-528883
非特許文献 l : Ohtsuka, E. et al, J. Biol. Chem., 260, 2605-2608(1985) 非特許文献 2 : Niess, R., Robins, R. K. J.Heterocyclic. Chem., 7, 243-244(1970) 発明の開示
発明が解決しょうとする課題
[0004] 従来の核酸塩基と塩基対を形成可能なユニバーサル塩基から成るオリゴヌクレオ チドは、ユニバーサル核酸としての機能の実現には至って 、なかった。
本発明は、 DNA又は天然核酸塩基カゝら成るオリゴヌクレオチドと非特異的に塩基 対を形成するポリマーを提供することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、既にピリミド [4,5-d]ピリミジン- 2,4,5,7-テトラオンに基づいて、 4種の いずれの天然核酸塩基と非特異的に塩基対を形成することが確認された下式
[化 2]
Figure imgf000003_0001
(式中、 Rは、水素原子を除ぐ一価の基を表す。)で表されるユニバーサル塩基を用 いて、これを PNA (1991年に Nielsenらにより開発された人工核酸で、 N- 2-アミノエチ ルグリシンを骨格単位とし、これにメチレンカルボ二ル基を介して核酸塩基を結合さ せた構造を持つ。 )に結合させ単量体とし、これを重合してポリマーを合成することに 成功した。
即ち、本発明は、下式
[化 1]
Y
Figure imgf000003_0002
-)-(-X3-)— Z
(式中、 R1及び R2は、それぞれ同じであっても異なってもよぐ置換基を有していても よい炭素数が 1〜18の炭化水素鎖を表し、 R3は天然核酸又は非天然核酸を表し、 X 1及び X2は、それぞれ同じであっても異なってもよぐ— N—又は— CR4— (式中、 R4 は水素原子又は置換基を有して 、てもよ 、炭素数 1〜4のアルキル基を表す。 )を表 し、 X3は 2価のへテロ原子を含んでもよい炭化水素基、アミノ酸残基若しくはオリゴぺ プチド残基、核酸残基若しくはオリゴヌクレオチド残基、 Y及び Zは、それぞれ同じで あっても異なってもよく、一価の残基を表し、 mは 1以上 nは 0以上で m+nが約 2〜5 0の整数を表し、 1は 0以上の整数を表す。)で表されるユニバーサル塩基含有ポリマ 一である。 更に、本発明は、 DNA又は天然核酸塩基から成るオリゴヌクレオチドを含む溶液 にこのユニバーサル塩基含有ポリマーを混合することによりこれらの塩基対を形成さ せる方法である。
発明を実施するための最良の形態
本発明のユニバーサル塩基含有ポリマーは下式で表される。但し、この一般式は 単に組成を示し、構造を示すものではない。即ち、各単位はランダムに結合していて ちょい。
[化 1]
Y
Figure imgf000004_0001
-)-(-X3-)— z
R1及び R2は、ポリマーの主鎖にユニバーサル塩基、天然塩基又はその他の基を結 合させるための 2価の鎖であり、その機能を果たせば構造に特に制限はない。即ち、 R1及び R2は、それぞれ同じであっても異なってもよぐ置換基を有していてもよい炭 素数が 1〜18の炭化水素鎖を表す。置換基としては、水酸基、アミノ基、チオール基 、アルコキシ基、カルボキシル基、力ルバモイル基、エステル基、ヘテロ原子(S, O,
Nなど)を含んでもよい炭化水素基、例えば、アルキル基、アルケニル基、アルキ-ル 基、ァリール基、複素環基などなどが挙げられ、また、鎖の途中にカルボ-ル、イミド 、カーボナート、エステル、ウレタン、アミド、ァミン、エーテル、スルフイド、ジスルフイド 、スルホキシド、スルホン等を有していてもよい。
このポリマーは塩基対を形成するためにユニバーサル塩基のみを有して 、てもよ ヽ が、天然核酸や本発明のユニバーサル塩基以外の非天然核酸を有して 、てもよ 、。
R3は天然核酸又は非天然核酸を表す。天然核酸としては、下式
Figure imgf000005_0001
(式中、 *は結合手を表す。 )に示すようなアデニン (A)、グァニン (G)、シトシン (C) 又はチミン (T)に適当な結合手を設けたものでもよい。また、非天然核酸としてイノシ ンをベースとしたユニバーサル塩基(特表 2005-511096、特表 2003-528883等)を用 いてもよい。
[0009] X1及び X2は、上記のユニバーサル塩基や、天然核酸又は非天然核酸をポリマー 主鎖に結合させるものであり、それぞれ同じであっても異なってもよぐ N 又は CR4 を表す。ここで R4は水素原子又は置換基を有していてもよい炭素数 1〜4のァ ルキル基を表す。このアルキル基は、枝分かれ構造であってもよい。この置換基とし ては、水酸基、チオール基、アミノ基、カルボキシル基、力ルバモイル基、グァ -ジル 基、ァリール基、複素環基などが挙げられる。
[0010] X3は、 2価のへテロ原子を含んでもよ 、炭化水素基、アミノ基、アミノ酸残基若しく はオリゴペプチド残基、核酸残基若しくはオリゴヌクレオチド残基など、又はこれらの 組み合わせであってもよ!/、。
また、ポリマーの主鎖に、ポリスチレン、ポリエチレン、ポリアセチレン、ポリエーテル 、ポリウレタン、ポリアミド、ポリエステルなどの合成ポリマーや天然ポリマーなどを含ん でいてもよい。この場合には、上記炭化水素基としてはこれらのモノマーを用いれば よい。
[0011] Y及び Zは、ポリマーの末端であり、特に制限はない。即ち、 Y及び Zは、それぞれ 同じであっても異なってもよぐ一価の残基を表す。 Y及び Zとしては、例えば、末端 がァミノ基ある 、はヒドロキシル基の 1-18炭素数の直鎖あるいは分岐鎖アルキル基等 が挙げられる。
また Y及び Zは、本発明のユニバーサル塩基含有ポリマーを個体担体に結合させ て用いる場合には、固体担体であってもよい。このような固体担体としては、スチレン ビーズ、ポリエチレングリコールをグラフト重合させたポリスチレンビーズ (TentaGel(R) )、ポリエチレングリコール、ポリウレタン、フッ素榭脂、ポリオレフイン、ガラス、シリカゲ ル、ブチルゴム、シリコン榭脂、セルロース、金、カーボン等が挙げられる。
mは 1以上 nは 0以上で m+nが約 2〜50、好ましくは約 5〜30、より好ましくは約 10 〜25の整数を表し、 1は 0以上の整数を表す。
本発明のユニバーサル塩基含有ポリマーに含まれるユニバーサル塩基は、その結 合を軸とした回転により、プリン型、ピリミジン型の両塩基になりうる。即ち、下式に示 すように、相対する塩基がアミジン型の塩基であるアデニン (A)又はシトシン (C)の 場合はアミド型の配置、アミド型塩基であるグァニン (G)又はチミン (T)の場合はアミ ジン型配置をとり、すべての天然核酸塩基と塩基対を形成することができる。
[化 4]
Figure imgf000006_0001
(式中、 R1は、上記と同様を表す。 )
従って、本発明のユニバーサル塩基含有ポリマーは DNA又は天然核酸塩基から 成るオリゴヌクレオチドと非特異的に塩基対を形成することができる。
本発明のユニバーサル塩基含有ポリマーを DNA等と塩基対を形成させる場合に 用いる溶媒は、一般的には非プロトン性有機溶媒が好ましいが、生体内で使うことを 想定した場合には緩衝液、オリゴヌクレオチドの合成や利用を考えた場合は水ゃァ ルコール、ヌクレオシドの吸着を考えた場合には DMSOや DMFが好ましい。この塩 基対形成においてはユニバーサル塩基含有ポリマーや DNA等の濃度は通常 ImM 程度である。 実施例
[0013] 以下、実施例にて本発明を例証するが本発明を限定することを意図するものでは ない。
ユニバーサル塩基含有オリゴマーを合成するため、ユニバーサル塩基 (ィ匕 2)を PN Aに結合させて単量体とした。即ち、下式 (ィ匕 5)で表されるユニバーサル塩基含有モ ノマー(以下「PPT」という。)を用いた。このモノマーの合成法は後記の合成例 1に記 す。
[化 5]
Figure imgf000007_0001
[0014] 次に天然塩基として下式の ΡΝΑ-Α〜Τ (アプライドバイォシステムズジャパン社製、 PNA-A:GEN063014, PNA— G:GEN063016, PNA— C:GEN063015, PNA— T:GEN06301 7) (以下「PNAモノマー」という。)を用いた。
[化 6]
NHBhoc
Nク、
o
Figure imgf000007_0002
FmocHN OH
PNA-A PNA-G PNA-C PNA- T
* Fmoc: fluorenylmethyloxycarbonyl, Bhoc: benzylhydroxycarbonyl
[0015] 実施例 1
ユニバーサル塩基含有オリゴマーを、マニュアル固相合成法にて合成し、固相担 体は TENTA GEL S RAM (渡辺化学社製 A00213、 0.27 mmol/g)を用いた。合成オリ ゴマーの溶解性の向上と自己会合の抑制を図るためにリシンを導入した。固相担体 を 30% piperidine/DMF処理後、 Fmoc- Lvs(Boc)- OH (渡辺化学社製、 K00443) (10 e quiv)、 PyBOP ((benzotriazol— 1— yloxy)tripyrrolidino— phosphonium hexafluorophospha te、 Novabiochem社製 01— 62— 0016) (10 equiv)、 H O Bt( 1 -hydr oxybenzotriazole , Naca lai tesque社製 18513- 24)(10 equiv)、 Nメチルモルホリン (NMM,20 equiv)をあらかじめ ジメチルァセトアミド (DMA、和光純薬工業社製)中で反応させておいたものを用いて カップリングさせることによりリシンを導入した。反応の進行は Kaiser testにより確認し 7こ。 (Kaiser test: negative)
[0016] 続く固相合成は表 1に従って行った。反応は全て室温 (25°C)で行った。
[表 1]
Reaction Sequence of the Solid -Phase Synthesis step operation reagent(s) time ( )
1 washing DMF, 30% piperidine/DMF
2 de protect 30% piperidine/DMF 0.5
3 washing DMF, DMA
4 coupling PNA monomer (3 equiv)/ 2-3
PyBOP (3 equiv)/HOBt (3 equiv)/
NMM (6 equiv)編 A
5 washing DMF
6 capping 0.5 M Ac20 pyridine-DMF (v v = 1:1 ) 0.5 step 1〜6を繰り返すことにより鎖長反応を行った。この鎖長反応において、 PNAモ ノマー (PNA monomer)として、 1-3サイクルは上記 PNA- T、 4サイクルは上記ュ-バー サル塩基含有モノマー、 5-7サイクルは ΡΝΑ-Τを使用した。
[0017] 各反応の進行は、 kaiser testにより確認した。最後のモノマーを導入 ' Fmoc基の 脱保護後、 N末端アミノ基のァシル転位力もの環状アミド生成による自己崩壊を防ぐ ために、 Fmoc- Gly- OH (NovaBiochem社製、 04- 12- 1001) (10 equiv)ゝ PyBOP(10 equ iv)、 HOBt(10 equiv), NMM(20 equiv)を用いてグリシンを導入した。固相担体から切り 出した後の合成オリゴマーの精製を容易にするために、グリシンの Fmoc基はそのま まにしておいた。
固相担体力もの切り出しにはトリフルォロ酢酸を用いた (2 h)。これにより C末端のリ シンのアミノ基を保護している Boc基も除去できた。得られたオリゴマーを、逆相分取 カラム COSMOSIL 5C -AR-300を用いることにより精製し、下式で表される H N-Lys
18 2
-TTT(PPT)TTT-Gly-NHFmoc(m/z 1179.66; Calcd for(C H N O )(M + 2H+): m/
101 124 34 34
z 1179.45)を得た。
[化 7]
Figure imgf000009_0001
さらに得られたオリゴマーを 20% piperidine/waterで処理し Fmoc基を脱保護した 後に、上記同様の逆相分取カラムを用いて精製することにより、 目的とする PNAオリ ゴマー H N-Lvs-TTT(PPT)TTT- Gly-NH (m/z 1068.63; Calcd for(C H N O )(M
2 2 86 114 34 32
+ 2H+): m/z 1068.42)を 47%の収率で得ることができた。
精製後のこのオリゴマーの高速液体クロマトグラフ (HPLC)を下記条件で測定した。
HPLC装置:日本分光社製 Gulliver高圧グラジェントシステム
カラム: COSMOSIL 5C18-MS column
溶出液:溶出液 A 0.1% TFA/water;溶出液 B 0.1 %
trifluoroacetic acid/acetonitrileを用い、 A液を B液に対して 0-100%まで 35分かけ て直線勾配した。
溶出速度 1 mL/分
分析温度: 55°C
UV検出波長 UV: 260 nm
その HPLCチャートを図 1に示す。図中の大きなピークが目的のオリゴマーを示すも のであり、他のピークはほとんど検出されないことから、得られたオリゴマーの純度が 高いことが分かる。
[0019] 実施例 2
本実施例では、実施例 1と同様に、下式 (H N- Lys- CCT(PPT)TCC- Gly- NH )で表
2 2 されるユニバーサル塩基含有オリゴマーを合成した。
[化 8]
Figure imgf000010_0001
[0020] モノマーとしては、上記 PPT (ユニバーサル塩基含有モノマー)と PNAモノマーを用 い、固相合成を表 2に従って行った。
[表 2]
Reaction Sequence of the Solid-Phase Synthesis
step operation reagent(s) time
1 washing DMF, 0.21 M piperidine, 0.14 DBU in DMF
2 deprotect 0.21 M piperidine, 0.14 M DBU in DMF 14 min
3 washing DMF, 10.4 M NMP/DMF
4 coupling monomer (3.0 equiv), HATU (2.7 equiv),
DIPEA (3.3 equiv), 2,6-lutidine (3.3 equiv) l 5-2 0 h in 10.4 M NMP/DMF ' '
5 washing DMF
6 capping 0.59 M Ac20, 0.58 M 2,6-lutidine in DMF 10 min 1,2,6,7サイクルは PNA-C、 3,5サイクルは PNA-T、 4サイクルはユニバーサル塩基含 有モノマーを使用した。
質量分析の結果は m/z 1038.5; Calcd for (C H N O ) (M+2): m/z 1038.4であつ
82 110 38 28
た。
このオリゴマーの HPLCを実施例 1と同様に測定した。その HPLCチャートを図 2に示 す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど 検出されないことから、得られたオリゴマーの純度が高いことが分かる。
実施例 3
本実施例では、実施例 2と同様に、下式(H N-Lys-TGCA(PPT)(PPT)(PPT)ACGT-
2
Gly-NH )で表されるユニバーサル塩基含有オリゴマーを合成した。
2
[化 9]
Figure imgf000011_0001
モノマーとしては、上記 PPT (ユニバーサル塩基含有モノマー)と上記 PNAモノマー を用い、固相合成を表 2に従って行った。 1, 11サイクルは PNA-T、 2,10サイクルは PN A- G、 3,9サィクルは1^ -じ、 4,8サイクルは PNA- C、 5,6,7サイクルはユニバーサル塩 基含有モノマーを使用した。
質量分析の結果は m/z 1126.74; Calcd for (C H N O ) (M+3): m/z 1126.76で
130 160 68 44
あった。
このオリゴマーの HPLCを実施例 1と同様に測定した。その HPLCチャートを図 3に示 す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど 検出されないことから、得られたオリゴマーの純度が高いことが分かる。
実施例 4
本実施例では、実施例 2で作製したユニバーサル塩基含有オリゴマー(H N-Lys-C
2
CT(PPT)TCC-Gly-NH )と天然型オリゴヌクレオチドとの複合体形成実験を行った。
2
天然型オリゴヌクレオチドとして、デォキシリボオリゴヌクレオチド d(GGAxAGG) (X = A, G, C or T) (ODN、ジーンデザイン社より購入)を用いた。
これらを用いて、複合体形成と複合体の安定性にっ 、て温度勾配 UVスペクトル測 定による融解曲線と変曲点の温度 (融解温度、 Tm)を指標として調査した。
温度勾配 UVスペクトル測定はペルチェ式温度コントローラー ETC-505Tを装備した 日本分光社製 V-550スぺクトロメータを用いて、 10 mMリン酸緩衝液 (pH 7.0)に 4.0 μ Μの PNA-ODN混合物(1: 1)を溶解した溶液を 95°Cで 5分間インキュベーション、 8 時間以上かけて室温まで戻した後に 5°Cに冷却、 C/minで 70°Cまで昇温させて、そ の過程を 1°C毎にサンプリングし、紫外領域の吸光度変化を下記の条件で測定した。 測定装置 JASCO V- 550 SERIAL NO. C02951260
温度コントローラー JASCO ETC-505T
—セル GL Science Type: M25- B (光路長 10mm)
測定波長: 260nm
溶液温度に対して吸光度をプロットして得られるグラフを解析した。
吸光度変化を図 5に示す。いずれの PNA-ODN混合溶液においても融解曲線が得 られ、融解温度は 32.4-20.8°Cまで様々であるが PNA-ODN複合体の形成が示唆さ れ、ユニバーサル塩基として機能していることが明ら力となった。この結果はュ-バー サル塩基含有 PNAが配列未特定部を含む遺伝子に対するプローブとして有効であ ることを示して ヽる。 列 1
本比較例では、 PPT (ユニバーサル塩基含有モノマー)を用いずに、実施例 2と同様 に、下式(H N-Lys-CCTTTCC-Gly-NH )で表される天然型オリゴヌクレオチドを合
2 2
成し 7こ。
[化 10]
Figure imgf000013_0001
モノマーとしては、上記 PNAモノマーを用い、固相合成を表 2に従って行った。 1,2,6 ,7サイクルは PNA-C、 3,5サイクルは PNA-Tを用いた。
質量分析の結果は m/z 1003.45; Calcd for (C H N O )(M+2): m/z 1003.43であ
82 110 38 28
つた o
このオリゴマーの HPLCを実施例 1と同様に測定した。その HPLCチャートを図 4に示 す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど 検出されないことから、得られたオリゴマーの純度が高いことが分かる。
比較例 2
更に、比較例 1で得た天然型オリゴヌクレオチドを用いて、実施例 4と同様に複合体 形成実験を行った。
天然塩基のみで構成された PNAと配列中 1力所のみ塩基を入れ換えた 4種の ODN の温度勾配 UVスペクトル解析にぉ 、て、図 6に示す通り相補的な組み合わせ (マツ チ)においては融解曲線が得られ、 Tmが 29.1°Cを示すのに対して、相補的でない組 6 9ΐ 3 ·83ΐ '38"131 '8^321 'W Zl 80 ST SS ST ££'SZ
I '96· ΐ '(HHDHD) V9L '( っ つ N) SS'I9 '( っ つ Ν)90· '( ( HD)DIS) 26"92
'( ( H )つ !S) ΐΐ ·6ΐ 9 ΟΟΐ '9Ρ- OS Η醒 '(ΗΝ 'Ηΐ ZZ'Ol '{Hf
)8S"Z '(Η9 '^)IVL Η 'ΗΖ '^) 0Z"9 '(^HNDHD 'Ηΐ '^) 09' '(HO^HD 'ΗΖ '^)
Wf HD 'ΗΖ 'Jq) 9ΖΤ '( ( H )つ 'Η6 's)96'0 9 :(ZH 00 '9P-OS a)H N HT
°(%0 6 ¾i'I0U"ii VQ 'S Z'Z) - Ζί^-^^ ^
^ Tコ w ^^ $粼¾ αΐΐ #^α«>¾?η m止縱 6)> ェ ¾f¾
Figure imgf000014_0001
Ί m
Figure imgf000014_0002
8 ΐ '§ω SZ8、灞 έ ) /— 、^^ '( louiui YQ 'qui f \、灞^ :)ベ /^ cm^ / fi-ェ ^ :- '(Iou™ 8"S)§ 0·ΐ¾
^-M^ 、 έ 面 os ^疆 士 iRn — 榭峯
Figure imgf000014_0003
[8200] 。68 9ΐ ' SI 'Z8"TST '( HNつ Ηつ) ·9 '(Η0 HD)82"6S '( HD
D )£V 9 :(ζΗ 00ΐ '9P-OS a)H N D£l '(HN Ήΐ '^)Ζ£Ό\ '(Η 'ΗΖ '^)ΐ9
'9 '(ΗΟ 'Ηΐ 'Jq)60"S ' HNつ Ηつ 'Ηΐ ' S' '(^H 9·6 'Η0 'ΗΖ '¾S8"S '(ΖΗ 9·6 iZHD HD 'ΗΖ ') ·ε 9 :(ΖΗ 00 '9P-OS a)H N HT'
Figure imgf000014_0004
omuig'S
¾
Figure imgf000014_0005
、、 ¾、 一 ^ェ、
^αΐΐ ¾¾¾3ϊΗ^¾ 。 翻 z ^a^douiuio ^ ·9 / ェ邈
、; a。™iio9) '9 ^エ 、^ ci、 — s #o)¾-
Figure imgf000014_0006
ra〇6 /—,^ェ氺雜 -2 r= έ 面 T«00S "^疆 士 IRn4— r=榭峯、
^Ο) - 9 - Λ^^^ ^ - 1 [ 00]
¾マ一^
Figure imgf000014_0007
TW ^ [9200]
Figure imgf000014_0008
S8S9TC/900Zdf/X3d S6S9Z0/.00Z OAV [0029] (6-ァミノ- l-「2- (t-ブチルジフエ-ルシラ -ロキシ)-ェチル 1-2,4-ジォキソ -1,2, 3,4-テ トラヒドロピリミジン- 5-カルボニル)力ルバミン酸ェチルエステル(化合物 3)の合成 フッ素榭脂コートした撹拌子を備えた 100 mLナス型フラスコに、上記で得た化合 物 2を 13.7 g(33.3 mmol)とジメチルホルムアミド (40 mL)をカ卩え、室温下で撹拌しなが ら滴下漏斗でイソシアナトギ酸ェチル 3.9 g (東京化成製、 33.9 mmol)を 30分かけて 滴下した。その後、室温で 24時間撹拌し、減圧濃縮し、減圧乾燥させ、酢酸ェチルで 洗浄することにより白色固体として化合物 3を得た(7.0 g, 13.3 mmol,収率 40.1%)。 JH NMR(DMSO-d6, 400 MHz): δ 0.94 (s, 9H, Si(CH ) ), 1.22 (t, 3H, OCH CH , 7.
3 3 2 3
2 Hz), 3.81 (br, 2H, NCH , 4.8 Hz), 4.12 (q, 2H, OCH CH , 4.8 Hz), 4.18 (t, 2H, N
2 2 3
CH CH , 4.8 Hz), 7.42 (m, 6H), 7.53 (M, 4H), 8.36 (br, 1H), 10.85 (br, 1H), 11.35 (b
2 2
r, 1H), 12.39 (br, 1H); 13C NMR(DMSO- d6, 100 MHz): δ 14.68 (OCH CH ), 19.05
2 3
(SiC(CH ) ), 26.89 (SiC(CH ) ), 43.12 (NCH ), 60.61 (OCH CH ), 61.12 (NCH CH ),
3 3 3 3 2 2 3 2 2
81.06 (COCCO), 128.30, 130.39, 132.94, 135.42, 148.77, 150.77, 159.94, 164.45, 166.23
[0030] 1-「2- (t-ブチルジフエ二ルシラニロキシ)-ェチル 1- 1H.8H-ピリミド「4.5- dlピリミジン- 2.
4.5.7-テトラオン (化合物 4)の合成
フッ素榭脂コートした撹拌子を備えた 50 mLナス型フラスコに、無水エタノーノレ (ナカ ライ製) 20 mLを加え氷浴中撹拌しながら金属ナトリウム 60 mg (ナカライ製、 2.6 mmol) を注意深く加え、完全に溶解するまで撹拌した。その後、上記で得た化合物 3を 600 mg(l.l mmol)を加え、 17時間還流させた。得られた反応溶液をろ過することにより得 られる固体を 1.0 M希塩酸で洗い、減圧乾燥させることにより、白色固体として化合物 4 (PPT)を得た(500 mg, 1.0 mmol,収率 91.6%)。
1H NMR(DMSO-d6, 400 MHz): δ 0.94 (s, 9Η, SiC(CH ) ), 3.83 (t, 2H, NCH CH ),
3 3 2 2
4.23 (t, 2H, NCH CH ), 7.38 (m, 6H), 7.57 (m, 4H), 9.79 (br, 1H), 10.53 (br, 1H); 13
2 2
C NMR(DMSO-d6, 100 MHz): δ 19.16 (SiC(CH ) ), 27.03 (SiC(CH ) ), 42.27 (NCH
3 3 3 3
), 61.12 (NCH CH ), 86.04 (COCCO), 128.26, 130.14, 133.56, 135.43, 151.56, 157
2 2 2
.86, 161.62, 162.60, 164.78; MS (ESI+) 479.21 (M +H+ calcd 479.17)
[0031] 1-ヒビロキシェチル- 1I"L8H-ピリミド「4,5- cHピリミジン -2^7-テトラオン(化合物 5 )の合成
フッ素榭脂コートした撹拌子を備えた 10 mLふた付きプラスチック容器に、上記で 得た化合物 4(1.7 g, 3.6 mmol)とトリエチルァミン三フッ化水素酸 5 mL(30.7 mmol)を 加え、室温下で 24時間撹拌させた。得られた反応溶液を、 2M KOH水溶液の中に、 酸性にならないように注意深く加え、最終的に 2M HC1水溶液で中和した後にろ過、 ジェチルエーテルで洗浄することにより、 白色固体として化合物 5(700 mg, 2.9 mmol ,収率 82.1%)を得た; ^ NMR(DMSO-d6, 400 MHz): δ 3.49(br, 2Η, NCH ), 4.02(b
2 r, 2H, CH OH), 4.88(br, 1H, OH), 9.44(br, 1H), 10.20(br, 1H); 13C NMR(DMSO— d6
2
, 100 MHz): ? 40.04(NCH2), 58.84(CH OH), 86.05(COCCO), 151.47, 157.87, 161
2
.30, 162.69, 164.45; MS(ESI+)241.06(M +H+ calcd 241.05)。
[0032] 2.4.5.7—テトラオキソ— 3.4.5.6.7.8—へキサヒドロ— 2H—ピリミド「4.5— dlピリミジ—1— -ル 酢酸 (化合物 6)の合成
フッ素榭脂コートした撹拌子を備えた 300 mLナス型フラスコに、上記で得た化合 物 5
(1.0 g, 4.2 mmol), 2,2,6,6-テトラメチル- 1-ピベリジ-口キシ、フリーラジカル (TEMPO) 698 mg(4.2 mmol)と臭化ナトリウム 922 mg(8.4 mmol)を入れた後に 0.4 M水酸化ナト リウム水溶液をカ卩ぇ pHを 11に調整し、完全に TEMPOが溶解するまで室温で撹 拌した後、反応溶液に次亜塩素酸ナトリウム 11%水溶液 5.4 mL(8.4 mmol)を力卩ぇ室 温で 1.5時間撹拌した。 pHを 11に維持するために時折 0.4 M水酸ィ匕ナトリウム水 溶液を加えた。反応終了後、エタノールを加えろ過することにより得られる固体を水 に溶力して氷浴にうつし、 pHが 1になるまで 2 M塩酸を加えて 1時間そのまま放 置した。析出した固体をろ過することにより、白色固体として化合物 6(530.3 mg, 2.1 mmol,収率 50.0%)を得た; 1H NMR(DMSO-d6, 400 MHz): δ 4.71(s, 2H, CH CO),
2
11.05(br, 1H, NH), 11.24(br, 1H, NH), 11.45(br, 1H, NH), 13.25(br, 1H, COOH); 13C NMR(DMSO-d6, 100 MHz): δ 44.59(NCH ), 87.45(COCCO), 149.61, 150.33,
2
155.40, 158.51, 159.70, 169.14(COOH); MS(ESI+)255.04(M +H+ calcd 255.03)。
[0033] tert-ブチル N-「2- (N- 9-フルォレニルメトキシカルボニル)アミノエチル 1-N-「(2,4,5, 7- テ卜ラ才キソ—3.4.5.6.7.8 -へキサヒドロ— 2H—ピリミド「4,5— dlヒ: ミジ -1-ニル酢酸(化 ·9)の )^
フッ素榭脂コートした撹拌子を備えた 50 mLナス型フラスコに、上記で得た化合物 6( 723 mg, 2.8 mmol), tert-ブチル N-[2-(N- 9-フルォレ -ルメトキシカルボ-ル)ァミノ ェチル]グリシネート(化合物 7) 1.1 g(2.8 mmol)と 1- (3-ジメチルァミノプロピル)- 3-ェ チルカルポジイミド塩酸塩 (ィ匕合物 8) 1.1 g(5.6 mmol)をカ卩え、 DMF (ナカライ製)中室 温で 24時間撹拌した。得られた反応溶液を減圧濃縮した後、水を加えろ過すること により得られる白色固体をシリカゲルクロマトグラフィーで精製することにより、白色固 体としてブチルエステル体(ィ匕合物 9) (1.3 g, 2.1 mmol,収率 73.5%)を得た; ^ NMR (DMSO-d6, 500 MHz): δ 1.37— 1.45(m, 9H, C(CH3)3), 3.09- 3.42(m, 4H, NHCH C
2
H N), 3.89— 3.92(br, 1H, Fmoc— H9), 4.14— 4.33(m, 4H, NCH COO and Fmoc-CH O
2 2 2
), 4.73-4.94(m, 2H, NCH CON), 7.30— 7.41(m, 5H, NHCOO and Fmoc— H3, H4, H5
2
, H6), 7.66-7.68(m, 2H, Fmoc- H2, H7), 7.86- 7.88(m, 2H, Fmoc- 1H, 8H), 10.11-1 0.95(br, 2H, NH); MS(ESI+)633.29(M +H+ calcd 633.23)。
[0034] N-「2-(N- 9-フルォレニルメトキシカルボ-ル)アミノエチル 1- N-「(2.4.5.7-テトラオキソ - 3.4.5.6.7.8-へキサヒドロ- 2H-ピリミド「4.5- dlピリミジ -1-ニル酢酸(化合物 10)の フッ素榭脂コートした撹拌子を備えた 100 mLナス型フラスコに、上記で得た化合 物 9(1.9 g, 3.0 mmol)とジクロロメタン 10 mLを入れ撹拌しながらトリフルォロ酢酸 20 mL(250 mmol)を加え室温で 24時間撹拌した。得られた反応溶液を減圧濃縮した粗 生成物をメタノール-ジェチルエーテルで再沈澱させることにより、白色固体として化 合物 10(1.5 g, 2.6 mmol,収率 86.7%)を得た; JH NMR(DMSO-d6, 400 MHz): δ 3. 10-3.64(m, 4Η, NHCH CH N), 3.99(br, 1H, Fmoc— H9), 4.23— 4.37(m, 4H, NCH CO
2 2 2
O and Fmoc-CH O), 4.79-4.97(m, 2H, NCH CON), 7.28-7.46(m, 5H, NHCOO and
2 2
Fmoc— H3, H4, H5, H6), 7.65— 7.69(m, 2H, Fmoc— H2, H7), 7.87— 7.91(m, 2H, Fmoc -1H, 8H), 10.68(br, 1H, NH), 11.16(br, 1H, NH), 12.66(br, 1H, COOH); MS(ESI+) 577.19(M +H+ calcd 577.17)。
産業上の利用可能性
[0035] 本発明のユニバーサル塩基含有ポリマーは、配列未特定遺伝子や不特定遺伝子 のプローブ、一塩基多型(SNPs)の検出、アンチジーン法による不特定遺伝子の発 現抑制、核酸成分の高選択的抽出'除去、核酸成分の精製 (ァフィニティーカラム) などに応用できる。
図面の簡単な説明
[図 1]実施例 1で合成した PNAオリゴマーの HPLCチャートを示す。縦軸は吸光度 (Ab s , 260nmにおける吸光度)、横軸は時間(分)を表す。
260
[図 2]実施例 2で合成した PNAオリゴマーの HPLCチャートを示す。
[図 3]実施例 3で合成した PNAオリゴマーの HPLCチャートを示す。
[図 4]比較例 1で合成した PNAオリゴマーの HPLCチャートを示す。
[図 5]実施例 2の PNAオリゴマーを用いた複合体形成実験結果を示す図である。 PNA オリゴマーと天然型オリゴヌクレオチドの混合溶液における吸光度を混合比に対して プロットした。
[図 6]比較例 1の天然型オリゴヌクレオチドを用いた複合体形成実験結果を示す図で ある。図 1の吸光度を混合比に対してプロットした図である。
[図 7]ユニバーサル塩基含有モノマー合成の反応スキームを示す図である。
[図 8]ユニバーサル塩基含有モノマー合成の反応スキームを示す図である。

Claims

請求の範囲 [1] 下式 γ
[化 1]
Figure imgf000019_0001
-)-(-X3-)-Z
(式中、 R1及び R2は、それぞれ同じであっても異なってもよぐ置換基を有していても よい炭素数が 1〜18の炭化水素鎖を表し、 R3は天然核酸又は非天然核酸を表し、 X 1及び X2は、それぞれ同じであっても異なってもよぐ— N—又は— CR4— (式中、 R4 は水素原子又は置換基を有して 、てもよ 、炭素数 1〜4のアルキル基を表す。 )を表 し、 X3は 2価のへテロ原子を含んでもよい炭化水素基、アミノ酸残基若しくはオリゴぺ プチド残基、核酸残基若しくはオリゴヌクレオチド残基、 Y及び Zは、それぞれ同じで あっても異なってもよく、一価の残基を表し、 mは 1以上 nは 0以上で m+nが約 2〜5 0の整数を表し、 1は 0以上の整数を表す。)で表されるユニバーサル塩基含有ポリマ
DNA又は天然核酸塩基カゝら成るオリゴヌクレオチドを含む溶液に請求項 1に記載の ユニバーサル塩基含有ポリマーを混合することによりこれらの塩基対を形成させる方 法。
PCT/JP2006/316585 2005-08-30 2006-08-24 ユニバーサル塩基含有ポリマー WO2007026595A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533201A JP5251125B2 (ja) 2005-08-30 2006-08-24 ユニバーサル塩基含有ポリマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-248586 2005-08-30
JP2005248586 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026595A1 true WO2007026595A1 (ja) 2007-03-08

Family

ID=37808689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316585 WO2007026595A1 (ja) 2005-08-30 2006-08-24 ユニバーサル塩基含有ポリマー

Country Status (2)

Country Link
JP (1) JP5251125B2 (ja)
WO (1) WO2007026595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137118B2 (ja) * 2005-08-30 2013-02-06 国立大学法人高知大学 ユニバーサル塩基
US20210222219A1 (en) * 2015-07-07 2021-07-22 Thermo Fisher Scientific Geneart Gmbh Enzymatic synthesis of nucleic acid sequences

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138689A1 (en) * 2000-03-28 2001-10-04 Roche Diagnostics GmbH N8- and C8-linked purine bases as universal nucleosides used for oligonucleotide hybridization
WO2007026485A1 (ja) * 2005-08-30 2007-03-08 Inter-University Research Institute Corporation National Institutes Of Natural Sciences ユニバーサル塩基

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHIKAWA T.: "Product Class 22: Other Diazinodiazines", SCIENCE OF SYNTHESIS, vol. 16, 2004, pages 1337 - 1397, XP003003122 *
NIESS R. ET AL.: "A New Synthesis of the Pyrimido[4,5-]pyrimidine Ring. Preparation of Pyrimido[4,5-d]pyrimidine-2,4,5,7-tetrone(1a)", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 7, 1970, pages 243 - 244, XP003003123 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137118B2 (ja) * 2005-08-30 2013-02-06 国立大学法人高知大学 ユニバーサル塩基
US20210222219A1 (en) * 2015-07-07 2021-07-22 Thermo Fisher Scientific Geneart Gmbh Enzymatic synthesis of nucleic acid sequences

Also Published As

Publication number Publication date
JP5251125B2 (ja) 2013-07-31
JPWO2007026595A1 (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
US10793605B2 (en) Conformationally-preorganized, miniPEG-containing γ-peptide nucleic acids
Amant et al. Synthesis and oligomerization of Fmoc/Boc-protected PNA monomers of 2, 6-diaminopurine, 2-aminopurine and thymine
Bialy et al. Dde-protected PNA monomers, orthogonal to Fmoc, for the synthesis of PNA–peptide conjugates
AU2022287635A1 (en) DisuIfide bond containing compounds and uses thereof
WO2007026595A1 (ja) ユニバーサル塩基含有ポリマー
Abramova et al. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics
US6716961B2 (en) Chiral peptide nucleic acids with a N-aminoethyl-d-proline backbone
WO2007026485A1 (ja) ユニバーサル塩基
TW201920228A (zh) 用於製備伊美司他之改進的方法
Lonkar et al. Chimeric (aeg-pyrrolidine) PNAs: synthesis and stereo-discriminative duplex binding with DNA/RNA
CN114901673A (zh) 溶液相肽核酸寡聚体的制备方法
JP2023541091A (ja) オリゴヌクレオチドを調製するための方法
JP2002503265A (ja) ペプチド核酸を標識するための新規モノマー構成体
Del Bene et al. Ultrasound-assisted Peptide Nucleic Acids synthesis (US-PNAS)
JP2020529472A (ja) ペプチド化合物の環化放出関連する出願の相互参照
Hirano et al. Peptide-nucleic acids (PNAs) with pyrimido [4, 5-d] pyrimidine-2, 4, 5, 7-(1 H, 3 H, 6 H, 8 H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides
WO2023127918A1 (ja) オリゴ核酸化合物の製造方法
KR101354692B1 (ko) 올리고머 및 그 제조 방법
KR20030042180A (ko) 펩타이드 핵산의 골격을 제조하는 방법
EP4347110A1 (en) Electrografted films for dna synthesis
JPH1087634A (ja) 核酸結合オリゴマー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007533201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782989

Country of ref document: EP

Kind code of ref document: A1