WO2007026421A1 - レーザ加工方法およびレーザ加工装置 - Google Patents
レーザ加工方法およびレーザ加工装置 Download PDFInfo
- Publication number
- WO2007026421A1 WO2007026421A1 PCT/JP2005/015905 JP2005015905W WO2007026421A1 WO 2007026421 A1 WO2007026421 A1 WO 2007026421A1 JP 2005015905 W JP2005015905 W JP 2005015905W WO 2007026421 A1 WO2007026421 A1 WO 2007026421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- objective lens
- laser
- optical axis
- optical system
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
Definitions
- the present invention is a laser suitable for performing processing for removing and correcting various defect portions generated on an electronic circuit board such as a liquid crystal panel, a semiconductor substrate, and a printed wiring board by irradiating a laser beam.
- the present invention relates to a processing method and a laser processing apparatus.
- a conventional laser processing apparatus (laser irradiation apparatus) of this type is described in Patent Document 1.
- This laser processing apparatus reflects laser light output from a laser light source by a polygon mirror having a multi-surface reflecting surface on the outer periphery.
- the laser processing apparatus collects the reflected light by the f ⁇ lens and irradiates it onto the electronic circuit board to perform the required processing, and then rotates the polygon mirror to irradiate the electronic circuit board.
- the electronic circuit board is moved in synchronization with the rotation of the polygon mirror in a direction orthogonal to the scanning direction while scanning light in a certain direction. By this operation, the required processing can be performed within a certain range of the electronic circuit board.
- Patent Document 1 Japanese Patent Laid-Open No. 2002-86288
- the beam spot size of 15 m is the limit as the performance of the f ⁇ lens, so that fine processing cannot be performed.
- the reflection angle of each reflecting surface is repeatedly changed by the continuous rotation of the polygon mirror, whereby the position of the laser light irradiated on the electronic circuit board is always changed repeatedly within a certain range. Therefore, the minimum processing range processed by the laser beam is a linear portion having a certain length corresponding to the scanning range of the laser beam in a certain direction determined by a change in the reflection angle of the reflecting surface of the polygon mirror. Therefore, for complicated shapes and finely processed parts, laser light is irradiated even to useless parts, and there is a problem that a predetermined processed part cannot be processed accurately! .
- the present invention has been made in view of the above circumstances, and provides a laser processing method and a laser processing apparatus capable of accurately processing a complicated shape and a fine processed portion in an electronic circuit board. For the purpose.
- the laser processing method of the present invention irradiates a workpiece with a laser beam output from a laser oscillator through an optical system having an imaging lens and an objective lens.
- a laser-caching method for covering a web part wherein the objective lens is moved in a plane perpendicular to the optical axis of the optical system, thereby forming an image on the workpiece through the objective lens. Processing is performed by moving the spot position of the laser beam.
- the objective lens is in the optical axis of the optical system.
- the laser beam spot position with respect to the workpiece is slightly moved according to the movement position of the objective lens relative to the optical axis of the optical system. By the movement, the details are processed in a predetermined processed portion of the cake.
- a laser processing apparatus irradiates a workpiece with a laser beam output from a laser oscillator through an optical system having an imaging lens and an objective lens to cover a predetermined workpiece.
- a laser processing apparatus comprising: a movable body that supports the objective lens so that its optical axis is parallel to the optical axis of the optical system; and the objective lens that supports the movable body and the objective lens is a light beam of the optical system.
- a support for guiding the movable body so as to move in a direction perpendicular to the axis, a moving means for moving the movable body in the moving direction relative to the support, and the movement means And a control device for controlling movement of the spot position of the laser beam focused on the workpiece through the objective lens.
- the control unit is operated to move the moving unit, and the moving unit is moved relative to the support by the moving unit in a direction perpendicular to the optical axis of the optical system, thereby supporting the objective supported on the movable unit. While moving the lens with respect to the optical axis of the optical system and moving the spot position of the laser beam output from the laser oscillator and irradiated to the work through the optical system, the predetermined work portion of the work is processed. Do. [0007] In the laser processing apparatus according to the present invention, the support does not move in a direction perpendicular to the optical axis of the optical system, and the light of the optical system with respect to the base body.
- a movable support that moves in one direction perpendicular to the axis, and the movable body is supported by the movable support so as to be movable in a direction perpendicular to the direction of movement, and the moving means is
- the first moving means for moving the movable support with respect to the base body and the second moving means for moving the movable body with respect to the movable support may be provided.
- the control device has a standby position of the objective lens with respect to a rectangular coordinate axis parallel to a moving direction of the movable body and the movable support body, with the position of the optical axis of the optical system as an origin.
- the coordinate value of the optical axis is registered in advance, and the movement of the objective lens is controlled by operating the first and second moving means based on the coordinate value of the optical axis of the objective lens on the rectangular coordinate axis.
- the base body is moved and adjusted by third moving means whose operation is controlled by the control apparatus in a direction parallel to the optical axis of the optical system, and the movable body May support multiple objectives with different magnifications.
- the objective lens is moved in a direction perpendicularly crossing the optical axis of the optical system, and the objective lens is moved according to the movement position of the objective lens with respect to the optical axis.
- the spot position of the laser beam relative to the mark can be moved minutely. Therefore, by moving the spot position of this laser beam, even if the part to be processed of the workpiece is a complicated shape or a finely processed part on the electronic circuit board, it can be processed accurately, and an unnecessary part Can be reliably avoided.
- the minute movement of the laser beam spot relative to the workpiece is easy and easy. It is smooth, and the laser power of the workpiece can be smoothly and quickly performed. Also, use f ⁇ lens
- the moving unit is operated by the control unit, and the moving unit is proposed by the moving unit in a direction perpendicular to the optical axis of the optical system with respect to the support.
- the moving unit is proposed by the moving unit in a direction perpendicular to the optical axis of the optical system with respect to the support.
- the first and second moving means and the movable support that is individually moved in two directions perpendicular to the optical axis of the optical system and movable
- the objective lens is moved through the body. Therefore, the degree of freedom of the movement position of the objective lens with respect to the optical axis of the optical system can be increased, and laser force can be applied appropriately corresponding to the complicated shape of the workpiece to be processed.
- the movement of the objective lens is controlled based on the coordinate value. Therefore, it is possible to accurately move and position the objective lens with respect to the optical axis of the optical system, and it is possible to perform laser processing on a fine workpiece to be processed with high accuracy.
- a plurality of objective lenses having different magnifications supported by the movable body are selectively exchanged and moved to the position of the optical axis of the optical system.
- the base body can be moved and adjusted in the optical axis direction of the optical system by the third moving means in accordance with the magnification of the selected objective lens. Therefore, the laser beam spot from the selected objective lens can be accurately imaged on the workpiece.
- FIG. 1 is a system diagram showing a laser processing apparatus according to an embodiment of the present invention.
- FIG. 2 is a side view showing a laser processing apparatus according to an embodiment of the present invention.
- FIG. 3 is a front view showing a laser processing apparatus according to an embodiment of the present invention.
- FIG. 4 is a plan view showing one embodiment of the present invention viewed from the direction A in FIG.
- FIG. 5 is a flowchart for explaining the teaching operation of the standby position coordinates of the objective lens in one embodiment of the present invention.
- FIG. 6 is a flowchart for explaining the teaching operation (continued) of the standby position coordinates of the objective lens in one embodiment of the present invention.
- FIG. 7 is a flowchart for explaining the operation of the objective lens in the laser processing apparatus according to one embodiment of the present invention.
- FIG. 8 is a plan view showing a teaching cross mark substrate in one embodiment of the present invention.
- FIG. 9 is a side view (upper view) and a plan view (lower view) showing a processing method by a laser processing apparatus according to an embodiment of the present invention.
- reference numeral 1 denotes a laser carriage apparatus according to an embodiment of the present invention.
- This laser processing device 1 is output from a laser oscillator 3 connected to a laser power source 2, a laser optical axis adjusting mirror 4 having a pair of reflecting mirrors 4a and 4b, and the laser oscillator 3, and adjusting the laser optical axis.
- An aperture mechanism 5 that shapes the beam shape of the laser beam R whose optical axis is adjusted by the mirror 4, an imaging lens 6 and an objective lens 7, and the laser beam R that has passed through the aperture mechanism 5 is converted into an electronic circuit board.
- An optical system 8 that forms an image on W is provided. As shown in the aperture mechanism described in Japanese Patent Application No.
- the aperture mechanism 5 uses a pair of slit plates 5a, 5b with adjustable intervals between the slits 5c, 5d. Arranged perpendicular to the optical axis L and shifted in the direction of the laser optical axis L (Z-axis direction z, vertical direction in Fig. 1), and the crossing angle of the upper and lower slits 5c, 5d can be adjusted. It is provided to intersect.
- the beam shape of the laser light R is shaped according to the shape of the synthetic slit obtained by overlapping the upper and lower slits 5c, 5d.
- the optical system 8 arranged on the laser optical axis L includes a slit plate 5b on the lower side (downstream of the laser light R) and the imaging lens 6, and an imaging lens 6 and Positioned between the objective lens 7 and the first and second half mirrors 9 and 10, respectively.
- a CCD camera (imaging means) 12 is disposed above the optical axis of the third half mirror 11 provided facing the first half mirror 9, and a CCD 13 is disposed behind the third half mirror 11. ing. Further, a reflection mirror 15 is provided to face the second half mirror 10 with the lens 14 therebetween.
- the illuminator 18 causes illumination light emitted from an illumination optical fiber 16 connected to an illumination projector (not shown) to be incident on the second half mirror 10 through the lens 17, the reflection mirror 15, and the lens 14.
- a table 19 is disposed below the objective lens 7 and is moved in the direction of the laser optical axis (optical axis of the optical system) L with respect to the objective lens 7 by X and Y axis drive means (not shown). They are moved relative to each other in the X-axis direction X and the Y-axis direction y perpendicular to each other in a plane perpendicular to the Z-axis direction z).
- the workpiece W placed on the table 19 and illuminated through the objective lens 7 by the illuminator 18 is imaged by the CCD camera 12 through the optical system 8 and the half mirror 11.
- the laser oscillator 3, the optical system 8, the CCD camera 13, the illuminator 18, and the like are assembled as a laser processing head 20 and supported by an appropriate support structure M.
- a beam shape shaper 22 provided with an aperture mechanism 5 and a laser optical axis adjustment above an upper barrel 21 provided with the imaging lens 6 and the half mirror 10.
- the optical axis adjuster 23 provided with the mirror 4 is arranged in the order of downward force.
- the half mirror 10 is provided at the lower part of the upper lens barrel 21, and a lower lens barrel 25 provided with a lens moving device 24 supporting the objective lens 7 is connected to the lower end.
- a T-shaped imaging lens barrel 26 provided with the third half mirror 11, the CCD camera 12, and the CCD 13 is connected to one side portion of the upper lens barrel 21 in the X-axis direction X.
- An L-shaped illumination mirror 27 provided with the lenses 14, 17, the reflection mirror 15, and the illumination optical fiber 16 is connected to the side of the lower barrel 25 opposite to the imaging barrel 26. ing.
- the support structure M includes a gantry (not shown) that supports the table 19 movably in the X and Y axis directions X and y, and a pair of gantry fixed to both ends of the gantry in the X axis direction X. Both ends are supported by a support column (not shown), extended in the X-axis direction X, and provided above the table 19. X-axis beam 28. A pair of upper and lower guide rails 29, 29 extending horizontally in the X-axis direction X are fixed to the X-axis beam 28.
- a saddle 31 that supports and guides the guided portion 30 on the guide rails 29 and 29 is provided so as to be movable in the X-axis direction X with respect to the X-axis beam 28.
- a linear motor 32 composed of a linear motor coil 32a and a linear motor magnet 32b is disposed along the X-axis direction X above the guide rails 29, 29 in the X-axis beam 28.
- the linear motor coil 32a is fixed to a flat support member 33 that is attached to the upper end of the saddle 31 so as to extend above the X-axis beam 28, and the operation of the linear motor 32 causes the saddle 31 to move to the X-axis. Reciprocates in direction X.
- the laser oscillator 3 communicated with the laser beam axis adjuster 23 is supported on the support member 33.
- a support tool 34 is attached to the front surface of the saddle 31 in the Y-axis direction y (the left side surface in FIG. 2) so as to protrude forward, and the upper end of the upper barrel 21 is supported by the saddle 31 by the support tool 34.
- a slide base 36 having a pair of Z-axis guide rails 35, 35 (see FIG. 4) provided along the Z-axis direction z is fixed to the front lower portion of the saddle 31.
- a Z-axis slider 37 is supported on the slide base 36 through the Z-axis guide rails 35, 35 so as to be movable in the Z-axis direction z.
- a support piece 38 protrudes forward and is fixed to the front surface of the Z-axis slider 37.
- a rear portion of the lower lens barrel 25 in the Y-axis direction y is supported by the support piece 38, and the upper and lower lens barrels 21, 25 are connected to the optical axis of the optical system 8 by the support piece 38 and the support tool 34.
- the Z-axis slider 37 has a ball nut 39 fixed to the back surface thereof screwed onto the slide base 36 and a ball screw shaft 41 rotatably supported by lower bearing members 40a and 40b.
- the ball screw shaft 41 is rotated by the Z-axis servomotor 42 fixed to the member 40a, it moves in the Z-axis direction z.
- the upper part 25a of the lower barrel 25 is fitted to the lower end part 21a of the upper mirror 21 so as to be relatively movable in the Z-axis direction z (vertical direction in FIGS. 1 and 2), and the Z-axis slider 37
- the servo motor 42 is allowed to move in the Z-axis direction z.
- the imaging lens 6 is fixed to the lower part of the upper lens barrel 21 so that it does not come into contact with the lower lens barrel 25 due to the relative movement of the lower lens mount 25 in the Z-axis direction z. .
- the lens moving device 24 is long in the X-axis direction X fixed to the lower end of the lower lens barrel 25.
- the shaft slider 44 is provided with a Y-axis slider (movable body) 46 guided by a pair of Y-axis guide rails 45, 45 and supported so as to be movable in the Y-axis direction y.
- the Y-axis slider 46 is a rectangular flat plate that is slightly smaller than the X-axis slider 44.
- the X-axis slider 44 is attached to a movable member (movable support body) 48 supported and guided by an X-axis guide rail 47 provided along the X-axis direction X on the Z-axis slider 37.
- a ball screw shaft 50 is supported by bearing members 49a and 49b provided at both ends in the X-axis direction X.
- a ball nut 51 fixed to the movable body 48 is screwed to the ball screw shaft 50, and the X-axis slider 44 is rotated by the rotation of the ball screw shaft 50 by the X-axis servo motor 52 fixed to the one bearing member 49b. Is now moved in the X direction X! / The position of the X-axis slider 44 in the X-axis direction X is detected by a linear encoder 62. Also, bearing members 53a, 53b provided on one end side (left end side in FIGS.
- the ball screw shaft 54 is supported on the surface.
- a ball nut 55 fixed to the Y-axis slider 46 is screwed to the ball screw shaft 54, and the Y-axis slider is rotated by rotation of the ball screw shaft 54 by a Y-axis servo motor 56 fixed to one bearing member 53a. 46 is moved in the Y-axis direction y.
- the position of the y-axis slider 46 in the Y-axis direction y is detected by the linear encoder 63.
- a plurality of objective lenses 7a, 7b, 7c, and 7d are prepared by combining a plurality of lenses and having different magnifications.
- the objective lenses 7a, 7b, 7c and 7d are supported by the Y-axis slider 46.
- the X-axis slider 44 By moving the X-axis slider 44 in the X-axis direction X by the X-axis servo motor 52, one of the objective lenses 7a to 7d is selectively moved to the position of the optical axis L of the optical system 8.
- the magnification of the objective lens 7 can be exchanged.
- the X-axis servo motor 52 selects the X-axis slider 44 in the X-axis direction X and the Y-axis servo motor 56 moves the Y-axis slider 46 in the Y-axis direction y.
- the position of the optical axis of the objective lens 7 can be finely moved and positioned in the X and Y axis directions x and y with respect to the position of the optical axis L of the optical system 8.
- the X-axis slider 44 has holes through which the laser light R passes at positions corresponding to the optical axes of the objective lenses 7a to 7d. This hole has a size slightly larger than the diameter of the objective lens 7.
- This hole diameter is preferably larger than twice the diameter of the objective lens 7, but is not limited thereto.
- a through hole having a predetermined size is formed in the central portion of the guide plate 43 so as to coincide with the position of the optical axis L of the optical system 8 and allow the laser beam R and the illumination beam to pass through without interfering with the hole wall. It has been.
- the magnifications of the objective lenses 7a, 7b, 7c, and 7d are set, for example, in order of 5 times, 20 times, 50 times, and 100 times, respectively.
- a guide mechanism comprising the guide rail 29 and the guided portion 30, a guide mechanism comprising the Z-axis guide rail 35 and the Z-axis slider 37, and the Y-axis guide rail 45 and the Y-axis slider 46.
- the guide mechanism comprising the X-axis guide rail 47 and the movable body 48 may each be a sliding guide surface, but in order to smoothly plan the movement of the movable part relative to the fixed part.
- a linear guide mechanism using a rolling element is preferable.
- the saddle 31 may be moved with respect to the X-axis beam 28 through a linear motion mechanism in which a ball nut is screwed onto a ball screw shaft by rotation of a servo motor. .
- the X, Y, and saddle shaft servomotors 52, 56, and 42 and the ball screw mechanism formed by screwing the Bonore screw shafts 50, 54, and 41 with the ball nuts 51, 55, and 39, ⁇ , ⁇ Axis sliders 44, 46, 37 reciprocate in X, ⁇ , ⁇ axis directions x, y, z respectively X axis moving means (first moving means) 57, Y axis moving means (second (Moving means) 58, Z-axis moving means (third moving means) 59.
- the present invention is not limited to this, and the X, Y, shaft moving means 57, 56, 59 may be structured by a moving mechanism using a linear motor or another moving mechanism.
- the X, ⁇ , and ⁇ -axis servo motors 52, 56, and 42 may be replaced with stepping motors.
- the laser processing apparatus 1 includes the laser light source 2, the CCD camera 12, the illuminator 18, the X, Y, vertical axis servomotors 52, 56, 42, and the table 19 as X, X And a control computer (control device) 61 for controlling the operation of a motor driver 60 and the like for individually operating servo motors (not shown) of table driving means for moving in the axial directions ⁇ , y.
- the control computer 61 includes a laser Z objective lens movement control unit 61a, an image processing unit 61b, a display 61c, a main control unit 61d, an input means 6 le such as a keyboard, Main memory (not shown).
- the laser Z objective lens movement control unit 6 la is connected to the laser power source 2 and the motor driver 60.
- the image processing unit 61b is connected to the CCD camera 12, and the CCD camera 12 takes an image of the shape of a defective part or the like (processed part) on the surface of the work W by the reflected light from the work W. The obtained image is processed to obtain the required image data.
- the display 61c displays the image data obtained by the image processing unit 6 lb.
- the main control unit 6 Id performs a required calculation based on the image data obtained from the image processing unit 6 lb, and instructs the laser Z object lens movement control unit 61a according to the calculation result to output the motor driver.
- the main control unit 61d stores the image data obtained from the image processing unit 6 lb in a memory (not shown) or displays the image on the display unit 61c.
- An input means 61e such as a keyboard is provided for setting and inputting necessary commands.
- a main memory or the like not shown
- an operation program of the CCD camera 12 various setting numerical values input by the input means 61e, data obtained by the main control unit 61d, and the like are registered.
- the position of the optical axis L is the origin and the rectangular coordinate axes (X, Y along the X and Y directions x, y) are used.
- a teaching operation is performed to collect the coordinate value of the optical axis of the objective lens 7 at the standby position with respect to the coordinate axis).
- the objective lenses 7a to 7d are separated from the positions where their optical axes are correctly aligned with the optical axis L of the optical system 8, and from there to one of the X and Y axis directions X and y. This is done in order to accurately move and reciprocate between the standby position (original position).
- step Sl the X and Y axis servo motors 52 and 56 are returned to their home positions (step Sl).
- an arbitrary objective lens (preferably a low-magnification objective lens) 7 is moved to the vicinity of the optical axis L of the imaging lens 6 by the X and Y axis servo motors 52 and 56, and placed on the table 19.
- ⁇ ⁇ In place of the mark W, a teaching cross mark board (hereinafter simply referred to as “mark board”) M as shown in FIG. 8 is placed.
- the mark substrate M is irradiated with the illumination light through the optical fiber 16, the lens 17, the reflection mirror 15, the lens 14, the half mirror 10, and an optional objective lens (a low magnification objective lens is desirable) 7. .
- a reference point m 1 that is a corner of the cross mark m marked on the mark substrate M is captured by the CCD camera 12 by the reflected light.
- the operator measures the mark substrate M on the table 19 under the optical axis L of the optical system 8 where the image of the reference point ml is best viewed while observing the image captured and displayed by the CCD camera 12. Set to a position below the optical axis of the image lens 6 (step S2).
- the initial X and Y coordinate values for the objective lens 7d having a magnification of 100 times previously registered in the memory of the laser Z objective lens movement control unit 6 la are downloaded to the main control unit 6 Id. (Step S3). Thereafter, the motor driver 60 is instructed (step S4), and the X and Y axis servo motors 52 and 56 are connected to the linear encoders (position detectors) 62 and 63 provided on the X axis slider 44 and the Y axis slider 46, respectively.
- the objective lens 7d is operated by position feedback control based on the detected value, and the objective lens 7d is moved from the standby position (original position) to the X and Y axis directions X and y via the X axis slider 44 and the Y axis slider 46 (step S5).
- the objective lens 7d has moved by the initial X and Y coordinate values, the cross mark m of the mark substrate M is imaged by the CCD camera 12 through the objective lens 7d, and is displayed on the display unit 61c by the image processing unit 61b.
- the X-axis slider 44 and the Y-axis slider 46 are slightly moved in the Y-axis directions X and y so that the focal position of the objective lens 7d coincides with the reference point ml of the cross mark m.
- Move step S6.
- the position detection values by the encoders 52a and 56a of the X and Y axis servo motors 52 and 56 are used as the objective lens with respect to the optical axis L.
- the correct X and Y coordinate values of the optical axis at the 7 d standby position are registered in the memory of the laser Z objective lens movement controller 61a instead of the initial X and Y coordinate values (step S7).
- the objective lens 7c with a magnification of 50 times is connected to the optical axis L by performing the operations of steps S8 to S12 similar to the operations of steps S3 to S7.
- the normal X and Y coordinate values of the optical axis at the standby position of the objective lens 7c with respect to are registered in the memory of the laser Z object lens movement controller 6 lb.
- an objective lens with a magnification of 20 times Steps S3 to S17 similar to the operations in Steps S3 to S7 are performed on the lens 7b, and the correct X of the optical axis at the standby position of the objective lens 7b with respect to the optical axis L is obtained.
- the Y coordinate value is registered in the memory of the laser Z objective lens movement controller 6 la.
- the operations of Step S18 to Step S22 similar to the operations of Step S3 to Step S7 are performed, so that the objective lens 7a waits for the optical axis.
- the positive, X, and Y coordinate values of the optical axis at the standby position with respect to the origin of the X and Y coordinate axes are the laser Z objective lens. It is registered in advance in the memory of the movement control unit 6 la. Thereafter, the defective part of the workpiece W placed on the table 19 is covered.
- the table driver (not shown) is actuated by the motor driver 60, so that the workpiece W and the laser carriage head 20 are relative to each other in the X and Y axis directions x. Move to y.
- the position of the optical axis L of the optical system 8 is previously discovered and measured by an inspection device. For example, as shown in FIG. 9, the defect portion (short-circuit portion) of the wiring wl of the workpiece W moved to the center of wla.
- the objective lens 7 having a magnification necessary for the processing is selected and replaced in accordance with the shape and size of the defective portion wla.
- the 5 ⁇ objective lens 7b at the position of the optical axis L is replaced with a 50 ⁇ objective lens 7c at the second position on the right side thereof.
- the X and Y coordinate values of the object lens 7c registered in the memory of the laser Z objective lens movement controller 61a are downloaded to the main controller 6 Id (step S101).
- This main controller 61d issues a command to the servo driver 60 to operate the X-axis servo motor 52 and the Y-axis servo motor 56 at the same time by the amount of movement corresponding to the X and Y coordinate values of the objective lens 7c. (Step S102).
- the X-axis servo motor 52 and the Y-axis servo motor 56 are operated by position feedback control based on the detection values of the linear encoders 62 and 63, and the X-axis slider 44 and the Y-axis slider 46 are moved to X, Y axis direction X, y Each is moved by a movement amount corresponding to the X and Y coordinate values (step S103).
- the objective lens 7c is directed toward the optical axis L and moves along a straight line connecting the optical axis position at the standby position and the optical axis L.
- the optical axis of the objective lens 7c is Stops and positions when it matches the position of axis L. In this way, the replacement of the objective lens from the 20 ⁇ objective lens 7b to the 50 ⁇ objective lens 7c is completed.
- Step S104 the machining start position on the X and Y coordinate axes obtained by the main control unit 61d based on the shape and dimensions of the defect portion wla measured by the inspection apparatus (cutting start position of the short-circuit portion wla)
- X-axis servo motor 52 and Y-axis servo motor 56 are actuated by a command from the laser Z objective lens movement controller 61a to position the spot P of the laser beam R to pi.
- Step S104 the X and Y axis sliders 44 and 46 are moved, and the objective lens 7c fixed to the Y axis slider 46 is combined and moved in the X and Y axis directions x and y.
- the position of the optical axis of the lens 7c has moved from the position of the optical axis L by a predetermined distance in one of the X and Y axis directions X and y (to the right in FIG. 9) as shown in FIG. 9 (b). It will be in the state which arrived at processing start optical-axis position S1 (coordinate Sxl, Syl). Therefore, when the laser light source 2 is operated in this state, the laser light R output from the laser oscillator 3 is a predetermined distance Sxl, Syl in the X and Y axis directions X, y from the optical axis of the objective lens 7c.
- the spot P of the laser light R is imaged at the carriage start position pi by passing through the shifted position and changing the refraction angle of the objective lens 7c according to the distances Sxl and Syl.
- the X and Y axis servo motors 52 and 56 are operated while irradiating the defective portion wla of the workpiece W with the laser beam R at the start position pi, and the X and Y axes are operated.
- the position of the optical axis of the objective lens 7c is moved to the carriage end position S2 (coordinates Sx2, Sy2) via the sliders 44, 46.
- the position of the spot P of the laser beam R is changed from the start position pi to the opposite side of the X and Y axis directions X and y to the end position p2 due to the change in the refraction angle of the objective lens 7c.
- step S105 the short circuit part wla which is the said defective part is cut.
- the predetermined defect portion wla of the workpiece W can be processed.
- the objective lens 7 is replaced, focusing on the surface of the workpiece W is performed by operating the Z-axis servo motor 42 and moving the Z-axis slider 37 with respect to the slide base 36 in the Z-axis direction z. Adjust To do.
- the laser beam R output from the laser oscillator 3 is irradiated onto the workpiece W through the optical system 8 having the imaging lens 6 and the objective lens 7.
- a laser processing method for processing a predetermined processed part wherein the objective lens 7 is moved in a plane perpendicular to the optical axis L of the optical system 8 so that the workpiece W is passed through the objective lens 7. Processing is performed by moving the position of the spot P of the laser beam R to be imaged. Therefore, the position of the spot P of the laser beam R with respect to the workpiece W can be finely moved in accordance with the movement position of the objective lens 7 with respect to the optical axis L of the optical system 8.
- the spot position of the laser beam R By moving the spot position of the laser beam R, even if the part to be processed of the workpiece W is a complicated shape or a finely processed part on the electronic circuit board, it can be processed accurately, and unnecessary parts can be processed. Can definitely be avoided.
- it is not necessary to move the large structure itself on the workpiece W side or the laser calorhe head 20 side having the optical system 8 with respect to the spot P of the laser beam R.
- the small movement of the spot P of the laser beam R with respect to W is easy and smooth, and the laser calorie of the workpiece W can be performed smoothly and quickly. Further, since the conventional ⁇ lens is not used, the spot light of the laser light R can be reduced, and fine processing is possible.
- the laser processing apparatus 1 irradiates the workpiece W with the laser light R output from the laser oscillator 3 through the optical system 8 having the imaging lens 6 and the objective lens 7.
- a vertical axis slider 46 that supports the objective lens 7 so that its optical axis is parallel to the optical axis L of the optical system 8, and a vertical axis slider 46.
- An X-axis slider 44 that supports the lidar 46 and guides the Y-axis slider 46 so that the objective lens 7 moves in the vertical direction y across the optical axis L of the optical system 8;
- Y-axis moving means 58 for moving the Y-axis slider 46 in the Y-axis direction y, and the X and Y moving hands 57, 58 and a controller 61 for controlling the movement of the spot position of the laser beam R is focused on the workpiece W through the objective lens 7 is operated, and Ru.
- the control device 61 operates the X and Y axis moving means 57 and 58 to move the X and Y axes.
- the Y-axis slider 46 is guided and moved in two directions of X, Y-axis X, y perpendicularly crossing the optical axis L of the optical system 8 with respect to the guide body 43.
- the objective lens 7 supported on the optical system 8 can be accurately moved with respect to the optical axis L of the optical system 8. Therefore, it is possible to appropriately carry out the laser caching method and to increase the degree of freedom of the movement position of the object lens 7 relative to the optical axis L of the optical system 8. As a result, it is possible to effectively perform laser processing in an appropriate manner corresponding to the shape of the complex workpiece part of the workpiece W.
- the control device 61 uses the position of the optical axis L of the optical system 8 as the origin and is parallel to the moving direction of the X-axis slider 44 and the Y-axis slider 46.
- the coordinate value of the optical axis at the standby position of the objective lens 7 with respect to the rectangular coordinate axis (X, Y coordinate axis) is registered in advance, and the first coordinate value is calculated based on the coordinate value of the optical axis of the objective lens 7 on the rectangular coordinate axis.
- the second moving means 57 and 58 are actuated to control the movement of the objective lens 7. Therefore, it is possible to accurately move and position the objective lens 7 with respect to the optical axis L of the optical system 8, and it is possible to accurately laser-process a minute workpiece portion of the workpiece.
- the guide plate 43 is controlled by the third moving means 59 whose operation is controlled by the control device 61 in a direction parallel to the optical axis L of the optical system 8.
- the Y-axis slider 46 is configured to support a plurality of objective lenses 7 having different magnifications that are adjusted in movement. Therefore, laser processing can be performed by selectively exchanging and moving the required objective lenses 7 supported by the Y-axis slider 46 to the position of the optical axis L of the optical system 8. Further, according to the magnification of the selected objective lens 7, the guide plate 43 is moved and adjusted in the direction of the optical axis L of the optical system 8 by the third moving means 59, so that the selected objective lens 7 is adjusted.
- the spot diameter (spot P) of the corresponding laser beam R can be accurately imaged on the workpiece W.
- first, second and third moving means 57, 58, 59 are configured to have a force with the servo motors 52, 56, 42 and the ball screw mechanism driven by the servo motors 52, 56, 42.
- the rotation of the servo motors 52, 56, and 42 can be smoothly converted into linear motion via the ball screw mechanism, and the Y-axis slider 46 can be moved smoothly. Decisions can be made more accurately.
- the four objective lenses 7a to 7d having different magnifications are arranged on the Y-axis slider 46 on a straight line along the X-axis direction X.
- An example is shown in However, the present invention is not limited to this, and a plurality of objective lenses 7 other than four may be provided, and their arrangement on the Y-axis slider 46 is also arbitrary. Further, an example is shown in which the X-axis slider 44 is supported by the Z-axis slider 37 so as to be movable in the X-axis direction X, and the Y-axis slider 46 is supported by the X-axis slider 44 so as to be movable in the Y-axis direction y.
- the present invention is not limited to this, and the Y-axis slider 46 is supported by the Z-axis slider 37 or the guide plate 43 so as to be movable in the Y-axis direction y.
- the X-axis slider 44 is supported by the Y-axis slider 46 in the X-axis direction X.
- the objective lens 7 may be provided on the X-axis slider 44 by supporting it in a movable manner.
- the X-axis slider 44 is supported on the Z-axis slider 37 via the X-axis guide rail 47, so that the X-axis slider 44 is indirectly supported and guided and moved with respect to the guide plate 43.
- an X-axis guide rail 47 may be provided on the guide plate 43 so that the X-axis slider 44 is directly supported by the guide plate 43 and guided.
- rotary encoders 52a and 56a attached to shaft ends of the servomotors 52 and 56 may be used as indicated by broken lines in FIG.
- the present invention is applied to a laser carriage method and a laser carriage apparatus for performing processing for removing and correcting various defect portions generated on an electronic circuit board by irradiating a laser beam.
- the moving unit is operated by the control device, and the moving unit is guided by the moving unit in a direction perpendicular to the optical axis of the optical system by the moving unit.
- the supported objective lens can be accurately moved with respect to the optical axis of the optical system.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
本発明のレーザ加工装置は、レーザ発振器3から出力されたレーザ光Rを、結像レンズと対物レンズ7を有する光学系8を通してワークWである電子回路基盤の配線w1の欠陥部(短絡部)w1aに照射して所定の被加工部を加工する。このレーザ加工装置は、前記対物レンズ7の光軸を、前記光学系8の光軸Lに垂直な面内において、制御コンピュータの指令で作動されるX,Y軸サーボモータによってX,Y軸方向x,yに、加工開始光軸位置S1から加工終了光軸位置S2まで移動させることにより、前記対物レンズ7によって前記ワークWに結像される前記レーザ光RのスポットPの位置を加工開始位置p1から加工終了位置p2まで移動させて加工を行う。
Description
明 細 書
レーザ加工方法およびレーザ加工装置
技術分野
[0001] 本発明は、液晶パネル、半導体基板、プリント配線基盤等の電子回路基板上に生 じた各種の欠陥部をレーザ光を照射して除去および修正する加工等を行うのに適す るレーザ加工方法およびレーザ加工装置に関する。
背景技術
[0002] この種の従来のレーザ加工装置(レーザ照射装置)は、特許文献 1に記載されて 、 る。このレーザ加工装置は、レーザ光源から出力されたレーザ光を、外周に多面の反 射面を有するポリゴンミラーで反射させる。レーザ加工装置は、その後、 f Θレンズに よって反射光を集光して電子回路基板上に照射して所要の加工を行うに際し、前記 ポリゴンミラーを回転させて前記電子回路基板に照射されるレーザ光を一定方向に 走査すると共に、その走査方向に直交する方向に前記ポリゴンミラーの回転に同期さ せて電子回路基板を移動させる。この操作により、電子回路基板の一定範囲におけ る所要の加工を行うことができる。
特許文献 1 :特開 2002— 86288号公報
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、前記レーザカ卩ェ装置では、 f Θレンズの性能としてビームスポットサイ ズ 15 mが限界であるため、微細加工ができない。その上、前記ポリゴンミラーの連 続回転によって各反射面の反射角度が繰り返して変化し、それによつてレーザ光の 電子回路基板に照射される位置が常に一定の範囲で繰り返し変化する。そのため、 前記レーザ光によって加工される最小加工範囲は、前記ポリゴンミラーの反射面の 反射角度の変化によって定まる一定方向におけるレーザ光の走査範囲に対応する 一定長さの直線状部分となる。したがって、複雑な形状や微細な加工部分に対して は、無用な部分にまでレーザ光が照射されてしまい、所定の加工部分を正確に加工 することができな 、と!/、う問題がある。
[0004] 本発明は、上記事情に鑑みてなされたものであって、電子回路基板における複雑 な形状や微細な加工部分を正確に加工することができるレーザ加工方法およびレー ザ加工装置を提供することを目的とする。
課題を解決するための手段
[0005] 上記課題を解決するために、本発明のレーザ加工方法は、レーザ発振器から出 力されたレーザ光を結像レンズと対物レンズとを有する光学系を通してワークに照射 して所定の被力卩ェ部をカ卩ェするレーザカ卩ェ方法であって、前記光学系の光軸に垂 直な面内において前記対物レンズを移動させることにより、この対物レンズを通して 前記ワークに結像される前記レーザ光のスポット位置を移動させて加工を行う。
このレーザ加工方法においては、前記レーザ発振器から出力されたレーザ光が結 像レンズと対物レンズとを有する光学系を通してワークに照射されているときに、前記 対物レンズが前記光学系の光軸に対してそれを垂直に横切る方向に移動されること により、対物レンズの光学系の光軸に対する移動位置に応じて、ワークに対するレー ザ光のスポット位置が微小移動され、このレーザ光のスポット位置の微小移動によりヮ ークの所定の被加工部における細部の加工が行われる。
[0006] 本発明に係るレーザ加工装置は、レーザ発振器カゝら出力されたレーザ光を、結像 レンズと対物レンズとを有する光学系を通してワークに照射して所定の被加工部をカロ ェするレーザ加工装置であって、前記対物レンズをその光軸が前記光学系の光軸 に平行となるように支持した可動体と、この可動体を支持しかつ前記対物レンズが前 記光学系の光軸を垂直に横切って少なくとも一方向に移動するように前記可動体を 案内する支持体と、この支持体に対して前記可動体をその移動方向に移動させる移 動手段と、この移動手段を作動させ前記対物レンズを通してワークに結像されるレー ザ光のスポット位置の移動を制御する制御装置とを備えている。
制御装置を動作させて移動手段を作動させ、この移動手段によって前記支持体に 対して可動体を前記光学系の光軸を垂直に横切る方向へ移動させることにより、前 記可動体に支持した対物レンズを前記光学系の光軸に対して移動させ、前記レーザ 発振器から出力され前記光学系を通してワークに照射されるレーザ光のスポット位置 を微小移動させながら、ワークにおける所定の被加工部の加工を行う。
[0007] 本発明に係るレーザ加工装置において、前記支持体は、前記光学系の光軸に対 しそれに垂直な方向に移動しな 、ベース体と、このベース体に対して前記光学系の 光軸を垂直に横切る一方向に移動する可動支持体とを備え、前記可動体が前記可 動支持体にその移動方向に直角な方向に移動自在に支持されており、また、前記移 動手段は、前記可動支持体を前記ベース体に対して移動させる第 1の移動手段と、 前記可動支持体に対して前記可動体を移動させる第 2の移動手段とを備えていても よい。
[0008] 本発明に係るレーザ加工装置において、前記制御装置は、前記光学系の光軸の 位置を原点とし前記可動体と可動支持体の移動方向に平行な直角座標軸に関する 前記対物レンズの待機位置における光軸の座標値を予め登録しておき、前記直角 座標軸における対物レンズの光軸の座標値にもとづいて前記第 1、第 2の移動手段 を作動させて前記対物レンズの移動を制御してもよ 、。
[0009] 本発明に係るレーザ加工装置において、前記ベース体は前記光学系の光軸と平 行な方向に前記制御装置によって作動を制御される第 3の移動手段により移動調節 され、前記可動体は倍率の異なる複数個の対物レンズを支持してもよ 、。
発明の効果
[0010] 本発明に係るレーザ加工方法によれば、対物レンズを光学系の光軸を垂直に横切 る方向に移動させ、前記対物レンズの光学系の光軸に対する移動位置に応じて、ヮ ークに対するレーザ光のスポット位置を微小移動させることができる。したがって、こ のレーザ光のスポット位置の移動により、ワークの被加工部分が電子回路基板にお ける複雑な形状や微細な加工部分であっても、正確に加工することができて、無用な 部分の加工を確実に避けることができる。し力も、ワークの加工に際して、レーザ光の スポットに対してワーク側や前記光学系を支持するレーザ加工ヘッド側を微小移動さ せる必要がないので、ワークに対するレーザ光のスポットの微小移動が容易かつ円 滑であり、ワークのレーザ力卩ェを円滑、迅速に行うことができる。また、 f Θレンズを用
Vヽな 、ので、レーザ光のスポット径を小さくすることができる。
[0011] 本発明に係るレーザ加工装置によれば、制御装置により移動手段を作動させ、この 移動手段によって支持体に対して可動体を光学系の光軸を垂直に横切る方向へ案
内移動させることにより、前記可動体に支持した対物レンズを前記光学系の光軸に 対して的確に移動させることができる。したがって、上記レーザ加工方法を適切に実 施することができる。
[0012] 本発明の実施態様に係るレーザ加工装置によれば、第 1、第 2の移動手段によって 光学系の光軸を垂直に横切る直角な二方向に個別に移動される可動支持体と可動 体を介して対物レンズが移動される。したがって、対物レンズの前記光学系の光軸に 対する移動位置の自由度を高めることができ、ワークの複雑な被加工部の形状に適 切に対応してレーザ力卩ェを行うことができる。
[0013] 本発明の他の実施態様に係るレーザ加工装置によれば、光学系の光軸の位置を 原点とし可動体と可動支持体の移動方向に平行な直角座標軸に関する対物レンズ の光軸の座標値にもとづいて前記対物レンズの移動が制御される。したがって、前記 光学系の光軸に対する対物レンズの移動、位置決めを正確に行うことができて、ヮー クの微細な被加工部を精度良くレーザ加工することができる。
[0014] 本発明のさらに他の実施態様に係るレーザカ卩ェ装置によれば、可動体に支持した 複数の倍率の異なる対物レンズを選択的に光学系の光軸の位置へ交換移動してレ 一ザ加工を行うことができると共に、前記選択された対物レンズの倍率に応じて、第 3 の移動手段によりベース体を前記光学系の光軸方向へ移動調節することができる。 したがって、選択された対物レンズによるレーザ光のスポットをワークに正確に結像さ せることができる。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の一実施例に係るレーザ加工装置を示す系統図である。
[図 2]図 2は、本発明の一実施例に係るレーザ加工装置を示す側面図である。
[図 3]図 3は、本発明の一実施例に係るレーザ加工装置を示す正面図である。
[図 4]図 4は、図 3の A方向から見た本発明の一実施例を示す平面図である。
[図 5]図 5は、本発明の一実施例における対物レンズの待機位置座標のティーチング 動作を説明するフロー図である。
[図 6]図 6は、本発明の一実施例における対物レンズの待機位置座標のティーチング 動作 (つづき)を説明するフロー図である。
[図 7]図 7は、本発明の一実施例に係るレーザ加工装置における対物レンズの動作を 説明するフロー図である。
[図 8]図 8は、本発明の一実施例におけるティーチング用十字マーク基板を示す平面 図である。
[図 9]図 9は、本発明の一実施例に係るレーザ加工装置による加工方法を示す側面 図(上図)および平面図(下図)である。
符号の説明
1 レーザ加工装置
2 レーザ電源
3 レーザ発振器
6 結像レンズ
7 対物レンズ
12 CCDカメラ (撮像手段)
19 テーブル
20 レーザ加工ヘッド
21 上部鏡胴 (鏡胴)
24 レンズ移動装置
25 下部鏡胴 (鏡胴)
35 Z軸案内レーノレ
36 スライドベース
37 Z軸スライダ
42 Z軸サーボモータ
43 案内板(ベース体)
44 X軸スライダ (可動支持体)
45 Y軸案内レール
46 Y軸スライダ (可動体)
47 X軸案内レーノレ
52 X軸サーボモータ
56 Y軸サーボモータ
57、 58, 59 X, Υ, Ζ軸移動手段 (第 1、第 2、第 3の移動手段)
60 モータドライノく
61 制御コンピュータ (制御装置)
61a レーザ Z対物レンズ移動制御部
61b 画像処理部
61c 表示部
6 Id 主制御部
L レーザ光軸
M ティーチング用マーク基板 (マーク基板)
ml 基準点
R レーザ光
W ワーク
発明を実施するための最良の形態
以下、本発明の一実施例に係るレーザ加工装置について、添付図面を参照して説 明する。
図 1〜図 4において、 1は本発明の一実施例に係るレーザカ卩ェ装置を示す。このレ 一ザ加工装置 1は、レーザ電源 2に接続されたレーザ発振器 3と、一対の反射鏡 4a, 4bを有するレーザ光軸調整ミラー 4と、レーザ発振器 3から出力され、レーザ光軸調 整ミラー 4で光軸を調整されたレーザ光 Rのビーム形状を整形するアパーチャ一機構 5と、結像レンズ 6と対物レンズ 7を有し前記アパーチャ一機構 5を通過したレーザ光 Rを電子回路基板 (ワーク) W上に結像させる光学系 8とを備えている。前記ァパーチ ヤー機構 5は、特願 2003— 430071号明細書に記載されたアパーチャ一機構に示 されるように、スリット 5c, 5dの間隔を調整自在とした一組のスリット板 5a, 5bをレーザ 光軸 Lに直交させ、レーザ光軸 Lの方向(Z軸方向 z、図 1で上下方向)に位置をずら して配置すると共に、上下のスリット 5c, 5dの方向を交差角を調節可能に交差させて 設けられる。上下のスリット 5c, 5dが重ね合わせて得られる合成スリットの形状によつ て前記レーザ光 Rのビーム形状を整形する。
[0018] 前記レーザ光軸 L上に配置された光学系 8には、前記下側(レーザ光 Rの下流側) のスリット板 5bと前記結像レンズ 6との間、および結像レンズ 6と対物レンズ 7との間に 位置して、それぞれ第 1、第 2ハーフミラー 9, 10が設けられる。第 1ハーフミラー 9に 対向して設けた第 3ハーフミラー 11の光軸の上方位置には、 CCDカメラ (撮像手段) 12が配置され、前記第 3ハーフミラー 11の後方には CCD13が配置されている。さら に、レンズ 14を間にして前記第 2ハーフミラー 10に対向する反射ミラー 15が設けられ る。照明器 18は、図示しない照明用投光器に連絡された照明用光ファイバ 16から発 せられる照明光を、レンズ 17と前記反射ミラー 15と前記レンズ 14とを通して前記第 2 ハーフミラー 10に入射させる。また、テーブル 19が、前記対物レンズ 7の下方に配置 され、かつ X, Y軸駆動手段(図示せず)によって、対物レンズ 7に対してレーザ光軸( 光学系の光軸) Lの方向(Z軸方向 z)に垂直な面における互いに直角な X軸方向 Xと Y軸方向 yに相対的に移動されるようになっている。前記テーブル 19に載置され、前 記照明器 18によって対物レンズ 7を通して照明されるワーク Wは、前記光学系 8と前 記ハーフミラー 11を介して前記 CCDカメラ 12で撮像される。
[0019] 前記レーザ発振器 3、光学系 8、 CCDカメラ 13、照明器 18等はレーザ加工ヘッド 2 0として組み付けられて適宜の支持構造体 Mに支持されている。
すなわち、図 2〜図 4に示すように、前記結像レンズ 6とハーフミラー 10を設けた上 部鏡胴 21の上方に、アパーチャ一機構 5を設けたビーム形状整形器 22とレーザ光 軸調整ミラー 4を設けた光軸調節器 23とが下力 順に配置される。前記上部鏡胴 21 の下部には、前記ハーフミラー 10が設けられ、下端に前記対物レンズ 7を支持したレ ンズ移動装置 24を設けた下部鏡胴 25が接続されている。また、前記上部鏡胴 21の X軸方向 Xの一側部に、前記第 3ハーフミラー 11と CCDカメラ 12と CCD 13とを設け た T字状の撮像鏡胴 26が接続される。前記下部鏡胴 25における前記撮像鏡胴 26と 反対側の側部には、前記レンズ 14, 17、反射ミラー 15、照明用光ファイバ 16を設け た L字状の照明鏡月同 27が接続されている。
[0020] 前記支持構造体 Mは、前記テーブル 19を X, Y軸方向 X, yへ移動自在に支持した 架台(図示せず)と、この架台の X軸方向 Xの両端部に固定した一対の支柱(図示せ ず)に両端を支持されて X軸方向 Xに延長されかつ前記テーブル 19の上方に設けら
れた X軸ビーム 28とを備えている。前記 X軸ビーム 28には、 X軸方向 Xに水平に延長 して設けた上下一対の案内レール 29, 29が固定されている。この案内レール 29, 2 9に被案内部 30を支持案内させたサドル 31が、前記 X軸ビーム 28に対して X軸方向 Xに移動自在に設けられている。前記 X軸ビーム 28における案内レール 29, 29の上 方には、リニアモータコイル 32aとリニアモータマグネット 32bからなるリニアモータ 32 が X軸方向 Xに沿って配置される。前記リニアモータコイル 32aは、前記サドル 31の 上端部に X軸ビーム 28の上方に延長して取り付けた平板状の支持部材 33に固定さ れ、前記リニアモータ 32の作動で前記サドル 31が X軸方向 Xに往復移動するように なっている。前記支持部材 33上に前記レーザ光軸調整器 23と連絡された前記レー ザ発振器 3が支持されている。前記サドル 31の Y軸方向 yの前面(図 2の左側面)に は前方に突き出して支持具 34が取り付けられ、この支持具 34によって前記上部鏡 胴 21の上端が前記サドル 31に支持されて 、る。
[0021] 前記サドル 31の前面下部には Z軸方向 zに沿つて設けた一対の Z軸案内レール 35 , 35 (図 4参照)を有するスライドベース 36が固定されている。このスライドベース 36 には Z軸スライダ 37が前記 Z軸案内レール 35, 35を介して Z軸方向 zに移動自在に 支持されている。前記 Z軸スライダ 37の前面には支持片 38が前方に突き出して固定 されている。この支持片 38に前記下部鏡胴 25の Y軸方向 yの後部が支持され、この 支持片 38と前記支持具 34とにより、前記上、下部鏡胴 21, 25が前記光学系 8の光 軸 Lを Z軸方向 zに一致させた状態にして前記サドル 31に支持されて 、る。前記 Z軸 スライダ 37は、その背面に固定されたボールナット 39が前記スライドベース 36の上、 下部軸受部材 40a, 40bに回転自在に支持されたボールねじ軸 41に螺合され、前 記上部軸受部材 40aに固定した Z軸サーボモータ 42によってこのボールねじ軸 41 が回転されることにより、 Z軸方向 zに移動する。前記下部鏡胴 25の上部 25aは上部 鏡月同 21の下端部 21aに Z軸方向 z (図 1、図 2で上下方向)に相対移動可能に嵌合さ れており、前記 Z軸スライダ 37の前記サーボモータ 42による Z軸方向 zへの移動を許 容している。また、結像レンズ 6は、上部鏡胴 21の下部に固定されており、下部鏡月同 25の Z軸方向 zへの相対移動によって下部鏡胴 25に当接しな 、ようになって 、る。
[0022] 前記レンズ移動装置 24は、前記下部鏡胴 25の下端に固定した X軸方向 Xに長い
矩形の案内板 (ベース体) 43と、この案内板 43の下面に摺接されて X軸方向 Xに移 動自在に設けた矩形平板状の X軸スライダ (可動支持体) 44と、この X軸スライダ 44 に一対の Y軸案内レール 45, 45に案内されて Y軸方向 yに移動自在に支持された Y 軸スライダ (可動体) 46とを備える。 Y軸スライダ 46は、 X軸スライダ 44よりやや小さい 矩形平板状である。前記 X軸スライダ 44は、前記 Z軸スライダ 37に X軸方向 Xに沿つ て設けた X軸案内レール 47に支持、案内された可動部材 (可動支持体) 48に取り付 けられている。
前記 Z軸スライダ 37の下端には、 X軸方向 Xの両端側に位置して設けた軸受部材 4 9a, 49bにボールねじ軸 50が支持される。このボールねじ軸 50に前記可動体 48に 固定したボールナット 51が螺合され、前記一方の軸受部材 49bに固定した X軸サー ボモータ 52による前記ボールねじ軸 50の回転により、前記 X軸スライダ 44が X軸方 向 Xに移動されるようになって!/、る。前記 X軸スライダ 44の X軸方向 Xの位置はリニア エンコーダー 62で検出される。また、前記 X軸スライダ 44の一端側(図 3、図 4で左端 側)には、 Y軸方向 yの両端側(図 4で上、下端側)に位置して設けた軸受部材 53a, 53bにボールねじ軸 54が支持される。このボールねじ軸 54に前記 Y軸スライダ 46に 固定したボールナット 55が螺合され、一方の軸受部材 53aに固定した Y軸サーボモ ータ 56による前記ボールねじ軸 54の回転により、前記 Y軸スライダ 46が Y軸方向 y に移動されるようになって 、る。 Y軸スライダ 46の Y軸方向 yの位置はリニアェンコ一 ダー 63で検出される。
前記対物レンズ 7として、複数のレンズを組み合わせて倍率を異ならせた複数個 ( 図の例では 4個)の対物レンズ 7a, 7b, 7c, 7dが用意される。対物レンズ 7a, 7b, 7c , 7dは、前記 Y軸スライダ 46に支持される。前記 X軸サーボモータ 52による X軸スラ イダ 44の X軸方向 Xの移動により、それらの対物レンズ 7a〜7dのうちの 1つを、選択 的に前記光学系 8の光軸 Lの位置に移動させて対物レンズ 7の倍率の交換を行える 。また、前記 X軸サーボモータ 52による X軸スライダ 44の X軸方向 Xへの微小移動と 、前記 Y軸サーボモータ 56による Y軸スライダ 46の Y軸方向 yへの微小移動とにより 、選択された対物レンズ 7の光軸の位置を前記光学系 8の光軸 Lの位置に対して、 X , Y軸方向 x、 yへ微小移動、位置決めを行わせることができる。
前記 X軸スライダ 44には、前記対物レンズ 7a〜7dの各光軸に対応する位置に、レ 一ザ光 Rを通過させる穴が開けられている。この穴は対物レンズ 7の口径よりやや大 きい寸法を有する。この穴径は対物レンズ 7の口径の 2倍の寸法より大きくするのが 望ましいが、これに限らない。前記案内板 43の中央部分には前記光学系 8の光軸 L の位置に一致させ、レーザ光 Rと照明光の光束を穴壁に干渉させずに通過させる所 定大きさの貫通穴が開けられている。
なお、各対物レンズ 7a, 7b, 7c, 7dの倍率は、例えば、それぞれ、順に 5倍、 20倍 、 50倍、 100倍に設定されている。
[0024] なお、前記案内レール 29と被案内部 30とからなる案内機構、前記 Z軸案内レール 35と Z軸スライダ 37とからなる案内機構、前記 Y軸案内レール 45と Y軸スライダ 46と からなる案内機構、前記 X軸案内レール 47と可動体 48とからなる案内機構は、それ ぞれ、摺動案内面によるものでもよいが、可動部の固定部に対する移動を円滑に案 内するために、転動体を使用した直線案内機構とするのが好ましい。また、前記リニ ァモータ 32に代えて、サーボモータの回転により、ボールねじ軸にボールナットを螺 合してなる直線運動機構を介して前記サドル 31を X軸ビーム 28に対して移動させて もよい。さらに、前記 X、 Y、 Ζ軸サーボモータ 52, 56, 42と、ボーノレねじ軸 50, 54, 4 1にボールナット 51, 55, 39に螺合してなるボールねじ機構とにより、前記 X、 Υ, Ζ 軸スライダ 44, 46、 37を、それぞれ、 X、 Υ, Ζ軸方向 x, y, zに往復移動させる X軸 移動手段 (第 1の移動手段) 57、 Y軸移動手段 (第 2の移動手段) 58、 Z軸移動手段 ( 第 3の移動手段) 59を構成している。しかし、これに限らず、前記 X、 Y、 Ζ軸移動手 段 57, 56, 59は、リニアモータによる移動機構、その他の移動機構による構造のも のであってもよい。また、前記 X, Υ, Ζ軸サーボモータ 52, 56, 42をステッピングモ ータに代えてもよい。
[0025] 前記レーザ加工装置 1は、前記レーザ光源 2と、前記 CCDカメラ 12と、前記照明器 18と、前記 X、 Y、 Ζ軸サーボモータ 52, 56, 42や前記テーブル 19を X, Υ軸方向 χ , yへ移動させるテーブル駆動手段のサーボモータ(図示せず)を個別に作動させる モータドライバ 60等の動作を制御する制御コンピュータ (制御装置) 61とを備えてい る。
前記制御コンピュータ 61は、図 1に示すように、レーザ Z対物レンズ移動制御部 61 aと、画像処理部 61bと、表示器 61cと、主制御部 61dと、キーボード等の入力手段 6 leと、主メモリ等(図示せず)とを備えている。レーザ Z対物レンズ移動制御部 6 laは 、前記レーザ電源 2と前記モータドライバ 60とに接続される。画像処理部 61bは、前 記 CCDカメラ 12に接続され、この CCDカメラ 12が前記ワーク Wからの反射光によつ てワーク Wの表面における欠陥部等 (被加工部)の形状等を撮像して得られた画像 を演算処理して所要の画像データを得る。表示器 61cは、前記画像処理部 6 lbで得 られた画像データ等を表示する。主制御部 6 Idは、前記画像処理部 6 lbから得られ た画像データにもとづいて所要の演算をして、その演算結果により前記レーザ Z対 物レンズ移動制御部 61aに指令して前記モータドライバ 60によって前記 X、 Y、 Ζ軸 サーボモータ 52, 56, 42、前記テーブル駆動手段に所要の動作を行わせる。さらに 主制御部 61dは、前記画像処理部 6 lbから得られた画像データをメモリ(図示せず) に記憶させたり、前記表示部 61cに画像を表示させたりする。キーボード等の入力手 段 61eは、必要な指令を設定入力するために設けられる。主メモリ等(図示せず)に は、前記 CCDカメラ 12の動作プログラム、前記入力手段 61eで入力された各種設定 数値や前記主制御部 61dで得られたデータ等が登録される。
次に、前記構成のレーザ加工装置 1の作用と共に本発明に一実施例に係るレーザ 加工方法について、図 5〜図 9を参照しながら説明する。
レーザ加工装置 1の対物レンズ 7の倍率変換とレーザ光 Rのスポットの移動による加 ェに際して、前記光軸 Lの位置を原点とし前記 X、 Y軸方向 x、 yに沿う直角座標軸( X, Y座標軸)に関する前記待機位置における対物レンズ 7の光軸の座標値を採取 するティーチング動作を行う。このティーチング動作は、各対物レンズ 7a〜7dを、そ れらの光軸が前記光学系 8の光軸 Lに正しく一致する位置と、そこから X, Y軸方向 X 、 yの一方へ離れた待機位置 (原位置)との間で正確に往復移動させ、位置決めさせ るために行われる。
先ず、前記 X、 Y軸サーボモータ 52, 56を原点復帰させる(ステップ Sl)。次に、任 意の対物レンズ (低倍率の対物レンズが望ましい) 7を前記 X、 Y軸サーボモータ 52, 56によって結像レンズ 6の光軸 Lの近辺に移動させ、前記テーブル 19の上に、ヮー
ク Wの代わりに、図 8に示すようなティーチング用十字マーク基板 (以下、単に「マー ク基板」という) Mを載置する。照明器用投光器力も光ファイバ 16、レンズ 17、反射ミ ラー 15、レンズ 14、ハーフミラー 10および任意の対物レンズ (低倍率の対物レンズが 望ましい) 7を介して照明光を前記マーク基板 Mに照射する。その反射光によってマ ーク基板 Mに記した十字マーク mの角部である基準点 m 1は前記 CCDカメラ 12で撮 像される。測定者は、前記 CCDカメラ 12で撮像され表示させた像を見ながら、前記 テーブル 19上の前記マーク基板 Mを、前記基準点 mlの像が最も良く見える光学系 8の光軸 L下 (結像レンズ 6の光軸下)の位置にセットする (ステップ S2)。
[0027] 次に、前記レーザ Z対物レンズ移動制御部 6 laのメモリに予め登録されていた、例 えば、倍率 100倍の対物レンズ 7dに対する初期 X、 Y座標値が主制御部 6 Idにダウ ンロードされる (ステップ S3)。その後、前記モータドライバ 60に指令して (ステップ S4 )、 X、 Y軸サーボモータ 52, 56を、 X軸スライダ 44および Y軸スライダ 46に設けられ たリニアエンコーダ (位置検出器) 62, 63の検出値にもとづく位置フィードバック制御 により作動させ、前記対物レンズ 7dを、前記 X軸スライダ 44と Y軸スライダ 46を介して 待機位置 (原位置)から X, Y軸方向 X, yへ移動させる (ステップ S5)。前記対物レン ズ 7dが前記初期 X、 Y座標値だけ移動したところで、対物レンズ 7dを通して前記マー ク基板 Mの十字マーク mを前記 CCDカメラ 12で撮像し、前記画像処理部 61bにより 表示部 61cに表示された画像にもとづいて、前記十字マーク mの基準点 mlに対物 レンズ 7dの焦点位置が一致するように前記 X軸スライダ 44、 Y軸スライダ 46をそれぞ れ Y軸方向 X, yへ微移動させる(ステップ S6)。前記十字マーク mの基準点 mlに 対物レンズ 7dの焦点位置が一致したところで、前記 X、 Y軸サーボモータ 52, 56の エンコーダ 52a, 56aによる各位置検出値を、前記光軸 Lに対する前記対物レンズ 7 dの待機位置における光軸の正しい X、 Y座標値として、前記初期 X、 Y座標値に代 えて前記レーザ Z対物レンズ移動制御部 61aのメモリに登録させる (ステップ S7)。
[0028] 次!、で、例えば、倍率 50倍の対物レンズ 7cにつ!/、て、前記ステップ S3〜ステップ S7の動作と同様なステップ S8〜ステップ S12の動作を行って、前記光軸 Lに対する 前記対物レンズ 7cの待機位置における光軸の正 ヽ X、 Y座標値を前記レーザ Z対 物レンズ移動制御部 6 lbのメモリに登録させる。続いて、例えば、倍率 20倍の対物レ
ンズ 7bについて、前記ステップ S3〜ステップ S7の動作と同様なステップ SI 3〜ステ ップ S17の動作を行って、前記光軸 Lに対する前記対物レンズ 7bの待機位置におけ る光軸の正しい X、Y座標値を前記レーザ Z対物レンズ移動制御部 6 laのメモリに登 録させる。最後に、残りの倍率 5倍の対物レンズ 7aについて、前記ステップ S3〜ステ ップ S7の動作と同様なステップ S18〜ステップ S22の動作を行って、前記光軸しに 対する前記対物レンズ 7aの待機位置における光軸の正 、X、 Y座標値を前記レー ザ Z対物レンズ移動制御部 6 laのメモリに登録させて、ティーチング動作を終了する
[0029] 上記のようにして、全ての対物レンズ 7a, 7b, 7c, 7dについて,前記 X, Y座標軸 の原点に対する待機位置における光軸の正 、X、 Y座標値が前記レーザ Z対物レ ンズ移動制御部 6 laのメモリに予め登録される。その後、前記テーブル 19に載置さ れたワーク Wの欠陥部等をカ卩ェする。
先ず、前記制御コンピュータ 61を動作させると、前記モータドライバ 60によって前 記テーブル駆動手段(図示せず)が作動して、ワーク Wとレーザカ卩ェヘッド 20とが相 対的に X, Y軸方向 x、 yへ移動する。レーザカ卩ェヘッド 20は、その光学系 8の光軸 L の位置が、予め検査装置によって発見されて測定された、例えば、図 9に示すように 、ワーク Wの配線 wlの欠陥部(短絡部) wlaの中央位置まで移動される。次に、前記 欠陥部 wlaの形状、大きさに応じてその加工に必要な倍率の対物レンズ 7が選択さ れて交換される。
[0030] この場合、例えば、図 3、図 4に示すように、前記光軸 Lの位置にある 5倍の対物レ ンズ 7bからその右側 2番目の位置にある 50倍の対物レンズ 7cに交換する場合は、 図 7に示すように、前記レーザ Z対物レンズ移動制御部 61aのメモリに登録された対 物レンズ 7cの X、 Y座標値が前記主制御部 6 Idにダウンロードされる(ステップ S101 ) oこの主制御部 61dから前記サーボドライバ 60に対し対物レンズ 7cの X、 Y座標値 に対応する移動量だけ前記 X軸サーボモータ 52と Y軸サーボモータ 56とを同時に 作動させる指令が出される (ステップ S102)。この指令により、 X軸サーボモータ 52と Y軸サーボモータ 56がリニアエンコーダ 62, 63の各検出値にもとづく位置フィードバ ック制御により作動して、前記 X軸スライダ 44と Y軸スライダ 46を X、 Y軸方向 X, yへ
それぞれ X、 Y座標値に対応する移動量だけ移動させる (ステップ S 103)。これ〖こより 、前記対物レンズ 7cが前記光軸 Lに向力つて、その待機位置における光軸の位置と 光軸 Lとを結ぶ直線上に沿って移動し、対物レンズ 7cの光軸が前記光軸 Lの位置に 一致したところで停止して位置決めされる。このようにして 20倍の対物レンズ 7bから 5 0倍の対物レンズ 7cへの対物レンズの交換が終了する。
[0031] 次に、前記検査装置によって測定された欠陥部 wlaの形状、寸法にもとづいて前 記主制御部 61dが求めた前記 X, Y座標軸上の加工開始位置 (短絡部 wlaの切断 開始位置の X, Y座標値) piへレーザ光 Rのスポット Pを位置させるために、前記レー ザ Z対物レンズ移動制御部 61aの指令により前記 X軸サーボモータ 52と Y軸サーボ モータ 56が作動される(ステップ S104)。これにより、前記 X, Y軸スライダ 44, 46が 移動して Y軸スライダ 46に固定された対物レンズ 7cが X, Y軸方向 x、 yへ合成移動 されて、前記選択された 50倍の対物レンズ 7cの光軸の位置が、前記光軸 Lの位置 から図 9 (b)に示すように、 X, Y軸方向 X, yの一方(図 9で右方)に所定距離だけ移 動した加工開始光軸位置 S1 (座標 Sxl, Syl)に着いた状態となる。したがって、こ の状態でレーザ光源 2を作動させると、前記レーザ発振器 3から出力されたレーザ光 Rは、前記対物レンズ 7cの光軸から X, Y軸方向 X, yに所定距離 Sxl, Sylだけずれ た位置を通り、距離 Sxl, Sylに応じた対物レンズ 7cの屈折角の変化により前記レ 一ザ光 Rのスポット Pが前記カ卩ェ開始位置 piに結像される。
[0032] そこで、前記カ卩ェ開始位置 piでワーク Wの欠陥部 wlaにレーザ光 Rを照射しなが ら、前記 X, Y軸サーボモータ 52, 56を作動させて、前記 X, Y軸スライダ 44, 46を 介して対物レンズ 7cの光軸の位置をカ卩ェ終了位置 S2 (座標 Sx2, Sy2)へ移動させ る。これにより、前記対物レンズ 7cの屈折角の変化により、レーザ光 Rのスポット Pの 位置を前記カ卩ェ開始位置 piから X, Y軸方向 X, yの反対側へカ卩ェ終了位置 p2まで 移動し、前記欠陥部である短絡部 wlaの切断加工が行われる (ステップ S 105)。 以下、同様にして必要な倍率の対物レンズを光学系 8の光軸 Lの位置へ交換移動 させた後に、ワーク Wの所定の欠陥部 wlaの加工を行うことができる。なお、対物レン ズ 7の交換を行ったときのワーク Wの表面への焦点合わせは、前記 Z軸サーボモータ 42を作動させて Z軸スライダ 37をスライドベース 36に対して Z軸方向 zへ移動調節す
ることにより行う。
[0033] 上記のように、本実施例に係るレーザ加工方法によれば、レーザ発振器 3から出力 されたレーザ光 Rを、結像レンズ 6と対物レンズ 7を有する光学系 8を通してワーク W に照射して所定の被加工部を加工するレーザ加工方法であって、前記光学系 8の光 軸 Lに垂直な面内において前記対物レンズ 7を移動させることにより、この対物レンズ 7を通して前記ワーク Wに結像される前記レーザ光 Rのスポット Pの位置を移動させて 加工を行う構成とした。したがって、前記対物レンズ 7の光学系 8の光軸 Lに対する移 動位置に応じて、ワーク Wに対するレーザ光 Rのスポット Pの位置を微小移動させるこ とができる。このレーザ光 Rのスポット位置の移動により、ワーク Wの被加工部分が電 子回路基板における複雑な形状や微細な加工部分であっても、正確に加工すること ができて、無用な部分の加工を確実に避けることができる。し力も、ワーク Wの加工に 際して、レーザ光 Rのスポット Pに対してワーク W側や前記光学系 8を有するレーザカロ ェヘッド 20側の大きな構造物自体を微小移動させる必要がないので、ワーク Wに対 するレーザ光 Rのスポット Pの微小移動が容易かつ円滑であり、ワーク Wのレーザカロ ェを円滑かつ迅速に行うことができる。また、従来のような ί θレンズを用いないため、 レーザ光 Rのスポット Ρを小さくすることができ、微細加工が可能である。
[0034] また、上記実施例に係るレーザ加工装置 1は、レーザ発振器 3から出力されたレー ザ光 Rを、結像レンズ 6と対物レンズ 7を有する光学系 8を通してワーク Wに照射して 所定の被加工部を加工するレーザ加工装置 1であって、前記対物レンズ 7をその光 軸が前記光学系 8の光軸 Lに平行となるように支持した Υ軸スライダ 46と、この Υ軸ス ライダ 46を支持し、かつ前記対物レンズ 7が前記光学系 8の光軸 Lを垂直に横切って Υ軸方向 yに移動するように前記 Y軸スライダ 46を案内する X軸スライダ 44と、この X 軸スライダ 44を Y軸方向 yに直角な X軸方向 Xへ案内する案内板 43と、この案内板 4 3に対して前記 X軸スライダ 44を X軸方向 Xに移動させる X軸移動手段 57と、前記 Y 軸スライダ 46を Y軸方向 yに移動させる Y軸移動手段 58と、前記 X、 Y移動手段 57, 58を作動させ前記対物レンズ 7を通してワーク Wに結像されるレーザ光 Rのスポット 位置の移動を制御する制御装置 61とを備えて 、る。
[0035] したがって、制御装置 61により X, Y軸移動手段 57, 58を作動させ、 X, Y軸移動
手段 57, 58によって案内体 43に対して Y軸スライダ 46を光学系 8の光軸 Lを垂直に 横切る X, Y軸方向 X, yの二方向へ案内移動させることにより、前記 Y軸スライダ 46 に支持した対物レンズ 7を前記光学系 8の光軸 Lに対して的確に移動させることがで きる。したがって、上記レーザカ卩ェ方法を適切に実施することができると共に、前記対 物レンズ 7の前記光学系 8の光軸 Lに対する移動位置の自由度を高めることができる 。この結果、ワーク Wの複雑な被加工部の形状に適切に対応してレーザ加工を効果 的に行うことができる。
また、上記実施例に係るレーザ加工装置 1によれば、前記制御装置 61が、前記光 学系 8の光軸 Lの位置を原点とし前記 X軸スライダ 44と Y軸スライダ 46の移動方向に 平行な直角座標軸 (X, Y座標軸)に関する前記対物レンズ 7の待機位置における光 軸の座標値を予め登録しておき、前記直角座標軸における対物レンズ 7の光軸の座 標値にもとづいて前記第 1、第 2の移動手段 57, 58を作動させて前記対物レンズ 7の 移動を制御する構成とした。したがって、前記光学系 8の光軸 Lに対する対物レンズ 7 の移動、位置決めを正確に行うことができて、ワークの微細な被加工部を精度良くレ 一ザカ卩ェすることができる。
さらに、上記実施例に係るレーザ加工装置 1によれば、前記案内板 43が前記光学 系 8の光軸 Lと平行な方向に前記制御装置 61によって作動を制御される第 3の移動 手段 59により移動調節され、前記 Y軸スライダ 46が倍率の異なる複数個の対物レン ズ 7を支持した構成とした。したがって、 Y軸スライダ 46に支持した複数の倍率の異な る対物レンズ 7の所要のものを選択的に光学系 8の光軸 Lの位置へ交換移動してレ 一ザ加工を行うことができる。また、前記選択された対物レンズ 7の倍率に応じて、第 3の移動手段 59により案内板 43を前記光学系 8の光軸 L方向へ移動調節することに より、選択された対物レンズ 7に対応したレーザ光 Rのスポット径 (スポット P)をワーク Wに正確に結像させることができる。
また、前記第 1、第 2、第 3移動手段 57, 58, 59を、サーボモータ 52, 56, 42とこの サーボモータ 52, 56, 42によって駆動されるボールねじ機構と力もなる構成としたの で、サーボモータ 52, 56, 42の回転をボールねじ機構を介して円滑に直線運動に 変換して、 Y軸スライダ 46の移動を円滑に行うことができ、対物レンズ 7の移動、位置
決めを一層正確に行うことができる。
[0037] なお、上記一実施例に係るレーザカ卩ェ装置 1にお 、ては、前記 Y軸スライダ 46に 倍率の異なる 4個の対物レンズ 7a〜7dを X軸方向 Xに沿う一直線上の位置に配置し た例を示した。しかし、これに限らず、対物レンズ 7は 4個以外の複数個を設けてもよ ぐそれらの前記 Y軸スライダ 46への配置も任意である。また、前記 Z軸スライダ 37に X軸スライダ 44を X軸方向 Xへ移動自在に支持し、 X軸スライダ 44に Y軸スライダ 46 を Y軸方向 yへ移動自在に支持する例を示した。しかし、これに限らず、前記 Z軸スラ イダ 37または案内板 43に Y軸スライダ 46を Y軸方向 yへ移動自在に支持し、 Y軸ス ライダ 46に X軸スライダ 44を X軸方向 Xへ移動自在に支持し、 X軸スライダ 44に対物 レンズ 7を設けるようにしてもよい。また、前記 X軸スライダ 44を、 X軸案内レール 47を 介して Z軸スライダ 37に支持することにより、前記案内板 43に対して間接的に支持し て案内移動させるようにした。これに代えて、前記案内板 43に X軸案内レール 47を 設けて X軸スライダ 44を直接的に案内板 43に支持して案内移動させるようにしてもよ い。
また、リニアエンコーダ 62, 63に代えて、図 1に破線で示すように、サーボモータ 52 , 56の軸端に取り付けられたロータリエンコーダ 52a, 56aを用いてもよい。
産業上の利用可能性
[0038] 本発明は、電子回路基板上に生じた各種の欠陥部をレーザ光を照射して除去およ び修正する加工等を行うレーザカ卩ェ方法およびレーザカ卩ェ装置レーザカ卩ェ装置に 適用することができ、制御装置により移動手段を作動させ、この移動手段によって支 持体に対して可動体を光学系の光軸を垂直に横切る方向へ案内移動させることによ り、前記可動体に支持した対物レンズを前記光学系の光軸に対して的確に移動させ ることがでさる。
Claims
[1] レーザ発振器から出力されたレーザ光を、結像レンズと対物レンズを有する光学系 を通してワークに照射して所定の被加工部を加工するレーザ加工方法であって、 前記光学系の光軸に垂直な面内において前記対物レンズを移動させることにより、 前記対物レンズを通して前記ワークに結像される前記レーザ光のスポット位置を移動 させて加工を行うことを特徴とするレーザ加工方法。
[2] レーザ発振器から出力されたレーザ光を、結像レンズと対物レンズを有する光学系 を通してワークに照射して所定の被加工部を加工するレーザ加工装置であって、 前記対物レンズをその光軸が前記光学系の光軸に平行となるように支持した可動 体と、
前記可動体を支持しかつ前記対物レンズが前記光学系の光軸を垂直に横切って 少なくとも一方向に移動するように前記可動体を案内する支持体と、
前記可動体を前記一方向に移動させる移動手段と、
前記移動手段を作動させ、前記対物レンズを通してワークに結像されるレーザ光の スポット位置の移動を制御する制御装置と
を備えるレーザ加工装置。
[3] 請求項 2記載のレーザ加工装置において、
前記支持体は、前記光学系の光軸方向のみに移動するベース体と、前記ベース体 に対して前記光学系の光軸を垂直に横切る一方向に移動する可動支持体とを備え 、前記可動体が前記可動支持体にその移動方向に直角な方向に移動自在に支持さ れており、
前記移動手段は、前記可動支持体を前記ベース体に対して移動させる第 1の移動 手段と、前記可動支持体に対して前記可動体を移動させる第 2の移動手段とを備え るレーザ加工装置。
[4] 請求項 3に記載のレーザ加工装置において、前記制御装置は、前記光学系の光 軸の位置を原点とし前記可動体と可動支持体の移動方向に平行な直角座標軸に関 する前記対物レンズの待機位置における光軸の座標値を予め登録しておき、前記直 角座標軸における対物レンズの光軸の座標値にもとづいて前記第 1および第 2の移
動手段を作動させて前記対物レンズの移動を制御するレーザ加工装置。
請求項 3または 4に記載のレーザ加工装置において、前記固定部材は前記光学系 の光軸と平行な方向に前記制御装置によって作動を制御される第 3の移動手段によ り移動調節され、前記可動体は倍率の異なる複数個の対物レンズを支持するレーザ 加工装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/015905 WO2007026421A1 (ja) | 2005-08-31 | 2005-08-31 | レーザ加工方法およびレーザ加工装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/015905 WO2007026421A1 (ja) | 2005-08-31 | 2005-08-31 | レーザ加工方法およびレーザ加工装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007026421A1 true WO2007026421A1 (ja) | 2007-03-08 |
Family
ID=37808525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/015905 WO2007026421A1 (ja) | 2005-08-31 | 2005-08-31 | レーザ加工方法およびレーザ加工装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007026421A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115686A (ja) * | 2008-11-13 | 2010-05-27 | Olympus Corp | 欠陥修正装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04253586A (ja) * | 1991-01-31 | 1992-09-09 | Nec Corp | レーザ加工装置用オートフォーカス装置 |
JP2002244060A (ja) * | 2001-02-21 | 2002-08-28 | Sumitomo Heavy Ind Ltd | レーザビーム走査装置 |
JP2005186100A (ja) * | 2003-12-25 | 2005-07-14 | V Technology Co Ltd | レーザ加工装置 |
JP2005279761A (ja) * | 2004-03-30 | 2005-10-13 | V Technology Co Ltd | レーザ加工方法およびレーザ加工装置 |
-
2005
- 2005-08-31 WO PCT/JP2005/015905 patent/WO2007026421A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04253586A (ja) * | 1991-01-31 | 1992-09-09 | Nec Corp | レーザ加工装置用オートフォーカス装置 |
JP2002244060A (ja) * | 2001-02-21 | 2002-08-28 | Sumitomo Heavy Ind Ltd | レーザビーム走査装置 |
JP2005186100A (ja) * | 2003-12-25 | 2005-07-14 | V Technology Co Ltd | レーザ加工装置 |
JP2005279761A (ja) * | 2004-03-30 | 2005-10-13 | V Technology Co Ltd | レーザ加工方法およびレーザ加工装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115686A (ja) * | 2008-11-13 | 2010-05-27 | Olympus Corp | 欠陥修正装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5086187B2 (ja) | スリット幅調整装置及び顕微鏡レーザ加工装置 | |
US20180299260A1 (en) | Laser processing system having measurement function | |
JP5266647B2 (ja) | レーザ溶接装置およびその調整方法 | |
JP5221560B2 (ja) | レーザ加工装置 | |
KR102192600B1 (ko) | 마킹 장치 및 패턴 생성 장치 | |
EP1714193B1 (en) | Image enhancement for multiple exposure beams | |
JP2008119718A (ja) | レーザ加工装置 | |
JP2008203434A (ja) | 走査機構、被加工材の加工方法および加工装置 | |
KR20160030365A (ko) | 레이저 가공 장치 | |
JP5613893B2 (ja) | 作業装置におけるテーブル位置決め装置および位置決め方法。 | |
JP2000202655A (ja) | レ―ザ―マ―キング装置 | |
JP4397229B2 (ja) | レーザ加工装置 | |
JP4615238B2 (ja) | レーザ加工装置 | |
JP4520918B2 (ja) | スリット幅調整装置およびこれを備えた顕微鏡レーザリペア装置 | |
WO2020065997A1 (ja) | レーザ加工機 | |
KR20140052840A (ko) | 레이저 조사 유닛 및 레이저 가공 장치 | |
JP2010274267A (ja) | レーザー加工機 | |
JP2004114203A (ja) | ワーク形状測定装置及び該装置を用いた形状測定システム | |
WO2007026421A1 (ja) | レーザ加工方法およびレーザ加工装置 | |
JP2022167452A (ja) | レーザー加工装置の調整方法、及びレーザー加工装置 | |
JP2015131303A (ja) | レーザー加工装置における加工送り機構の作動特性検出方法およびレーザー加工装置 | |
TWI342250B (en) | Laser beam machining method and laser beam machining apparatus | |
JP4177606B2 (ja) | レーザ加工装置 | |
JP2009160610A (ja) | レーザリペア装置 | |
JP2023168832A (ja) | レーザ加工機の焦点位置の調整方法及びレーザ加工機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05781311 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |