WO2007023696A1 - 熱間圧延線材の直接熱処理方法および装置 - Google Patents

熱間圧延線材の直接熱処理方法および装置 Download PDF

Info

Publication number
WO2007023696A1
WO2007023696A1 PCT/JP2006/315924 JP2006315924W WO2007023696A1 WO 2007023696 A1 WO2007023696 A1 WO 2007023696A1 JP 2006315924 W JP2006315924 W JP 2006315924W WO 2007023696 A1 WO2007023696 A1 WO 2007023696A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot
rolled wire
wire rod
heat treatment
Prior art date
Application number
PCT/JP2006/315924
Other languages
English (en)
French (fr)
Inventor
Tatsuya Inoue
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2007023696A1 publication Critical patent/WO2007023696A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the present invention relates to a method and apparatus for direct heat treatment of a hot-rolled wire rod.
  • the present invention relates to a method and apparatus for direct heat treatment of a hot-rolled wire rod.
  • the present invention relates to a direct heat treatment method and apparatus for a hot-rolled wire rod which can widen the control range of the cooling rate and can form a plurality of cooling zones having different cooling rates in the longitudinal direction of the heat treatment line.
  • a direct heat treatment method of a steel wire using boiling water or hot water as a refrigerant in which a hot rolled wire is wound into a ring shape, and the center of the ring is made into a roll coil shape with a constant pitch offset.
  • Patent Document 1 and Patent Document 2 As shown in FIG. 10, the refrigerant 100 controlled to a predetermined temperature is stored in the refrigerant tank 10, and the loose coil-shaped hot-rolled wire rod 200 supplied from the laying head 40 is immersed in the refrigerant 100. The heat treatment is performed while the wire rod 200 is conveyed by the conveyor 12 in the refrigerant tank.
  • a jet of boiling water or a gas-liquid mixed flow is injected from the nozzle 32 immersed in the refrigerant 100 in the refrigerant tank 10, and the refrigerant 100 in the refrigerant tank 10 is made to flow to alleviate the dispersion of the refrigerant temperature.
  • the cooling unevenness of the wire rod 200 is suppressed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-228619
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-207224
  • the size of the refrigerant tank is fixed, and the cooling rate of the steel wire is adjusted by the time for which the steel wire is immersed in the coolant, that is, the conveying speed of the steel wire.
  • the cooling rate due to the change of the transfer rate.
  • the diameter of the wire that can be cooled is limited depending on the size of the refrigerant tank. Since the cooling rate changes depending on the wire diameter, it is necessary to adjust the cooling rate according to the wire diameter. However, since the length of the cooling tank is constant, the diameter of the wire that can be cooled is restricted by the method of adjusting the cooling speed by changing the transport speed of the steel wire. Therefore, even if a large diameter wire is to be cooled at a sufficient speed, the longer the diameter of the larger diameter wire, the longer the cooling tank is required.
  • the control range of the cooling rate is narrow. Furthermore, even if forced convection of the refrigerant is performed by spouting the nozzle force gas-liquid mixed hot water etc. arranged in the refrigerant, the cooling speed depends on the arrangement direction and the arrangement density of the nozzles or the injection flow rate of the gas-liquid mixed flow. It is difficult to precisely control the cooling rate by changing these cooling conditions. Therefore, it is practically impossible to provide a plurality of cooling zones having different cooling rates in the longitudinal direction of the refrigerant tank, such as a recuperation zone and a quenching zone.
  • the present invention has been made in view of the above-described circumstances, and one of its objects is to provide a direct heat treatment method and apparatus for a hot-rolled wire rod which can expand the control range of the cooling rate. is there.
  • Another object of the present invention is to vary the cooling rate of the wire in the longitudinal direction of the refrigerant tank. It is an object of the present invention to provide a direct heat treatment method and apparatus of a hot rolled wire rod that can Means to solve the problem
  • the present invention achieves the above object by supplying a coolant flow to the hot rolled wire rod from outside the coolant rather than generating a jet flow in the coolant stored in the coolant tank.
  • the direct heat treatment method of the hot-rolled wire according to the present invention can be roughly classified into three types: a type in which the hot-rolled wire is not immersed in the refrigerant; a type in which the hot-rolled wire is partially immersed; Wrinkling is also a method of direct heat treatment of a hot-rolled wire rod that uses a coolant to cool the loose-rolled hot-rolled wire rod. And, each of the types is characterized by having the following configuration.
  • a loose coil-shaped hot rolled wire is exposed to a refrigerant flow and cooled without being immersed in the stored refrigerant.
  • the direct heat treatment method of the partial immersion type hot rolled wire rod of the present invention is characterized in that the loose coiled hot rolled wire rod is partially exposed from the liquid surface of the stored refrigerant, and the liquid surface of the refrigerant is partially exposed. External Force Cools by exposure to a supplied coolant stream.
  • the direct heat treatment method of the full immersion type of the present invention hot rolled wire rod is supplied from the outside of the liquid surface of the refrigerant in a state in which the loose coiled hot rolled wire rod is immersed in the stored refrigerant. Cool by exposure to refrigerant flow.
  • the coolant flow is directly supplied to the hot-rolled wire exposed to the outside of the refrigerant such as air or partially exposed from the refrigerant.
  • the control range of the cooling rate can be made wider compared to the conventional heat treatment method in which the temperature of the refrigerant flow is directly transmitted to the wire and the jet flow is immediately supplied from the refrigerant.
  • the control range of the cooling rate can be extended to both increasing and decreasing the cooling rate. Specifically, in the case of the 13 mm diameter wire, the control range of the cooling rate is about 10 to 20 ° C.
  • the control range of the cooling rate is 0.05 ° C. Zsec in the method of the present invention. It can be about 50.0 ° C. Z sec. As the wire diameter becomes larger (smaller), the upper limit of the cooling rate becomes lower (higher).
  • the conventional method With regard to the reduction of the cooling rate, the conventional method Although there is no difference between them, with regard to increasing the cooling rate, cooling by the refrigerant flow from outside the refrigerant can be made substantially comparable to that of the non-immersion type and partial immersion type.
  • the control range of the cooling rate can be made wider than that of the conventional heat treatment method in which the jet is supplied. Specifically, in the case of a 13 mm diameter wire, the control range of the cooling rate can be set to about 5.0 ° C./sec to 40.0 ° C./sec. In the case of the complete immersion type, since the wire is surely immersed in the refrigerant, a part which does not touch the refrigerant does not partially occur.
  • the direct heat treatment apparatus for the hot rolled wire according to the present invention can be roughly classified into three types: one in which the hot rolled wire is not immersed in the cooling medium; is there. All of them are a direct heat treatment apparatus for a hot-rolled wire rod having a refrigerant tank and a conveying means for conveying a loose coil-shaped hot-rolled wire rod in the refrigerant tank to the upstream side of the heat treatment process downstream. . And each of each type is characterized by having the following composition.
  • the direct heat treatment apparatus of the non-immersion type hot rolled wire rod of the present invention transports the hot rolled wire rod in the refrigerant tank without being immersed in the refrigerant by the transport means. And it has a refrigerant supply means which supplies a refrigerant flow to the hot rolling wire rod.
  • the direct heat treatment apparatus of the partial immersion type hot rolled wire rod of the present invention transports the hot rolled wire rod by the transport means in a state of being partially exposed from the liquid surface of the refrigerant stored in the refrigerant tank. And it has a refrigerant
  • the direct heat treatment apparatus of the complete immersion type of the present invention hot rolled wire rod transports the hot rolled wire rod immersed in the refrigerant stored in the refrigerant tank by the transport means. And, it has a refrigerant supply means for supplying a refrigerant flow to the heat rolled wire from outside the liquid surface of the refrigerant.
  • the non-immersion type and partial immersion type heat treatment apparatuses use the refrigerant supply means to perform hot rolling exposed outside the refrigerant such as the atmosphere or partially exposed from the refrigerant.
  • the refrigerant can be supplied directly to the wire. Accordingly, the control range of the cooling rate can be made wider compared to the conventional heat treatment apparatus which supplies the jet stream from the refrigerant.
  • the refrigerant in this heat treatment method or apparatus, it is possible to use, as the refrigerant, boiling water or hot water, or a gas-liquid mixed refrigerant obtained by mixing a liquid such as these with a gas such as air.
  • the refrigerant temperature is controlled to 85 ° C. or more and 100 ° C. or less, more preferably 90 ° C. or more and 95 ° C. or less.
  • the refrigerant used for cooling the hot-rolled wire rod is discharged from the refrigerant tank and returned to the temperature adjustment tank, and after the temperature is adjusted, the refrigerant is supplied again to the refrigerant tank. Thereafter, the refrigerant is similarly circulated between the temperature control tank and the refrigerant tank.
  • the refrigerant whose temperature has been adjusted to a predetermined temperature in the temperature adjustment tank is supplied as a refrigerant flow to the hot-rolled wire rod conveyed in the refrigerant tank by the refrigerant supply means.
  • the temperature control tank has a function of adjusting the refrigerant discharged from the refrigerant tank to a predetermined temperature.
  • a predetermined temperature For example, one having a container having a capacity equal to or higher than that of the refrigerant tank and a heat exchange means for adjusting the refrigerant temperature can be used.
  • this temperature control tank controls the refrigerant temperature to 85 ° C. or more and 100 ° C. or less, more preferably 90 ° C. or more and 95 ° C. or less.
  • the refrigerant adjusted to a predetermined temperature by the temperature adjustment tank is supplied to the refrigerant tank by the refrigerant supply means.
  • the refrigerant supply means is good as long as the refrigerant flow can be supplied to the hot rolled wire.
  • the refrigerant supply means one having a pump for transmitting the refrigerant from the temperature adjustment tank to the refrigerant tank and a nozzle for injecting the refrigerant to the hot rolling wire in the refrigerant tank can be used.
  • the nozzle for injecting the refrigerant instead of the nozzle for injecting the refrigerant, it simply has a supply port for the refrigerant flow, and the refrigerant flow is supplied to the inside of the cooling medium tank like this supply Roka waterfall, and the hot rolled wire is passed through the waterfall. You may cool it as you like.
  • the nozzle and the supply port be provided on the upper portion of the hot-rolled wire rod to be conveyed.
  • the coolant on the hot-rolled wire rod naturally falls downward along the surface of the wire rod by gravity, and the coolant is spread all around the wire rod.
  • Partial immersion type or immersion type Even in this case, since the flow of the refrigerant flow supplied from the outside of the refrigerant extends to the steel wire portion immersed in the refrigerant, effective cooling can be performed as in the non-immersion type.
  • the effective cooling rate can be controlled.
  • the downward force refrigerant flow of the wire may be supplied without being immersed in the refrigerant.
  • the refrigerant flow in addition to supplying the refrigerant flow from above, the refrigerant flow may also be supplied from below the wire immersed in the refrigerant, that is, from within the refrigerant. At that time, it is preferable to adjust the flow rate of the coolant flow so that the wire does not lift up due to the downward force of the coolant flow.
  • the refrigerant supply means be configured to supply the refrigerant to a portion that is more than a portion where the overlapping of the hot rolled wire rod is small.
  • a nozzle or a supply port may be directed to a portion where the hot rolled wire rod has a large amount of overlap, or the number of nozzles or supply ports directed to the portion having a large number of overlapping may The number of nozzles and supply ports may be increased.
  • the refrigerant supply means is configured to be able to mix a liquid refrigerant with a gas at a predetermined mixing ratio.
  • a liquid refrigerant with a gas at a predetermined mixing ratio.
  • connecting the gas refrigerant supply means which supplies gas with respect to a nozzle is mentioned.
  • the cooling capacity of the refrigerant can be changed, and the refrigerant temperature control with higher accuracy can be enabled. It is also possible to supply refrigerants having different gas mixing ratios at the places where the wire rods overlap and where the wires overlap.
  • a container having a refrigerant tank can be suitably used.
  • a refrigerant tank having a bottom surface, both side surfaces, both end surfaces and an open top.
  • the refrigerant tank used in the method or apparatus of the present invention does not need to store the refrigerant. That is, the refrigerant tank may have a structure in which the bottom surface is substantially removed.
  • the set temperature of the heating means may be the same or different in each cooling zone when a plurality of cooling zones are provided as described later.
  • the heat treatment is preferably performed by controlling the position of the liquid surface of the refrigerant so that the maximum distance from the liquid surface of the refrigerant to the hot-rolled wire rod is 6 cm or less. If the maximum distance force to the hot rolled wire is 3 ⁇ 4 cm or less, the immersion depth into the refrigerant is small, so the flow action by the refrigerant flow supplied from outside the refrigerant, that is, from the outside of the liquid surface of the refrigerant is sufficient. And effective cooling can be performed.
  • a discharge port of the refrigerant is formed on any of the surfaces constituting the refrigerant tank, and the discharged refrigerant is supplied to the temperature control tank and adjusted to a predetermined temperature.
  • an outlet may be formed on the upstream end surface or bottom surface of the refrigerant tank.
  • the discharge port on the bottom surface of the refrigerant tank it is possible to discharge the low temperature refrigerant stagnating at the bottom of the refrigerant tank.
  • the outlet on the bottom is preferably constructed so that the temperature of the refrigerant tends to rise, and the location of the outlet is larger than that of the other locations.
  • the area of the bottom outlet at the point where this temperature tends to rise is It can be mentioned to make it bigger.
  • a transfer means for transferring the hot-rolled wire rod from the upstream side to the downstream side of the heat treatment step is provided.
  • the conveyer can be transported without being immersed in the refrigerant.
  • the inclination angle of the introducing part is preferably within 60 ° with respect to the horizontal plane.
  • Heat treatment of the cooling zone having the above-described refrigerant tank, transport means and refrigerant supply means It is preferable to provide a plurality in the longitudinal direction of the process. By providing a plurality of cooling zones, heat treatment can be performed under different conditions for each cooling zone. Also, between the cooling zones, etc. shall be taken as the recuperation zone, and the wire rod cooled in the cooling zone shall be recuperated in the recuperation zone.
  • the refrigerant in the case of the non-immersion type and the partial immersion type heat treatment method, the refrigerant is directly applied to the hot-rolled wire exposed to the outside of the refrigerant such as air or partially exposed from the refrigerant.
  • the control range of the cooling rate can be made wider than in the conventional heat treatment method in which the jet stream is supplied from the refrigerant.
  • the cooling by the external refrigerant and the refrigerant flow can be made substantially comparable to those of the non-immersion type and the partial immersion type, and the control range of the cooling rate can be expanded similarly. Along with this, the following effects can be achieved.
  • a plurality of cooling zones having different cooling conditions can be provided in the longitudinal direction of the heat treatment step. For example, it is possible to easily provide a rapid cooling zone having a high cooling rate, or provide a recuperation zone to recuperate the wire rod once cooled.
  • FIG. 1 is a schematic configuration view of a non-immersion type present invention device.
  • FIG. 2 is a schematic perspective view showing an arrangement relationship between wires and nozzles in a refrigerant tank of the apparatus of FIG.
  • FIG. 3 is a schematic cross-sectional view showing an arrangement relationship between wires and nozzles in a refrigerant tank of the apparatus of FIG.
  • FIG. 4 Arrangement of the wire and the nozzle in the refrigerant tank of the device of the present invention in which the nozzle is also provided below the wire It is a schematic cross section which shows positional relationship.
  • Fig. 5 is a schematic cross-sectional view showing an arrangement relationship between a wire and a nozzle in a refrigerant tank of a partial immersion type device.
  • Fig. 6 is a schematic cross-sectional view showing an arrangement relationship between a wire and a nozzle in a refrigerant tank of a complete immersion type device.
  • FIG. 7A is a schematic plan view of a heat treatment line configured by the device of the present invention.
  • FIG. 7B is a schematic plan view of a heat treatment line configured with a comparative example device.
  • FIG. 8A is a histogram showing tensile strength distribution of a wire obtained by heat treatment in a comparative example device.
  • FIG. 8B is a histogram showing tensile strength distribution of the wire obtained by heat treatment in the example device.
  • FIG. 9A is a graph showing the temperature history of the wire in heat treatment by the comparative example device.
  • FIG. 9B is a graph showing the temperature history of the wire in heat treatment by the example device.
  • FIG. 10 is a schematic block diagram of a comparative example device.
  • FIG. 1 is a schematic block diagram of the heat treatment apparatus of the present invention.
  • This apparatus has a refrigerant tank 10, a temperature control tank 20 for adjusting the temperature of the refrigerant discharged from the refrigerant tank 10, and a refrigerant supply means 30 for supplying the refrigerant of the temperature control tank 20 to the refrigerant tank 10.
  • the refrigerant supply means 30 has a pump 31 and a nozzle 32.
  • a laying head 40 is provided upstream of the refrigerant tank 10, and the hot rolled wire rod 200 delivered from the head 40 is immersed in the refrigerant 100 of the refrigerant tank 10 to perform heat treatment.
  • the refrigerant tank 10 is a container-like tank having an open top, and is composed of both end surfaces, both side surfaces, and a bottom surface. Among these, the discharge port 11 of the refrigerant is formed on the upstream side of the bottom surface. Further, the refrigerant tank 10 is provided with a heating means capable of adjusting the temperature of the refrigerant introduced into the refrigerant tank 10 to some extent.
  • a conveyor 12 for conveying the hot-rolled wire rod 200 is disposed inside the refrigerant tank 10.
  • the conveyor 12 is connected to the horizontal conveyors 50A and 50B provided between the laying head 40 and the refrigerant tank 10 and on the downstream side of the refrigerant tank 10, and the hot-rolled wire rod 200 fed from the head 40 is It is introduced into the refrigerant of the tank 10 to perform heat treatment, and then the wire rod is sent out of the refrigerant tank 10.
  • a conveyor 12 is used in the refrigerant tank 10, in which the upstream side has a high slope on the upstream side and the low side on the downstream side, the middle stage is horizontal, and the downstream side has a low slope on the upstream side and a high slope on the downstream side.
  • the inclination angle of the former and latter stages is 20 °.
  • the temperature control tank 20 has a capacity equal to or greater than that of the refrigerant tank 10, and is an open at the top.
  • the adjustment tank 20 is located just below the refrigerant tank 10 and is disposed so that the refrigerant 100 from the outlet 11 of the refrigerant tank 10 can be received at one end side of the adjustment tank 20.
  • a pump 31 is connected to the other end side of the adjustment tank 20 via a pipe, and driving of the pump 31 circulates the refrigerant in the adjustment tank 20 to the refrigerant tank 10 side.
  • heat exchange ⁇ for adjusting the refrigerant in the temperature control tank 20 to a predetermined temperature is provided in the temperature control tank 20.
  • the refrigerant which has been adjusted to a predetermined temperature from the adjustment tank 20 and sent, is jetted from the nozzles 32 arranged to face the bottom surface of the refrigerant tank 10.
  • the nozzles 32 are disposed opposite to each other on the conveyor 12 in the refrigerant tank, and are configured to be able to mix the hot water from the adjustment tank 20 with air at a predetermined ratio and jet it. That is, by supplying the refrigerant 100 with an almost upward force to the hot-rolled wire rod 200, it is possible to suppress the occurrence of transport troubles due to the disturbance of the pitch of the wire rod 200 and the like.
  • the nozzles 32 are arranged at intervals in the width direction of the refrigerant tank 10, and the refrigerant can be intensively supplied to the loose-coil hot-rolled wire rod 200 at a location where there are many overlaps. It is being done.
  • three wires along the wire transport direction Nozzles 32 are arranged in parallel. In each of the nozzles, the more overlapping portions of the hot-rolled wire rod 200 can supply more refrigerant than other portions where the number of injection ports of the refrigerant is large.
  • the refrigerant 100 supplied from the nozzle 32 is stored in the bottom of the refrigerant tank 10 to a certain extent.
  • the liquid level of the stored refrigerant 100 is below the conveyor 12 positioned. That is, the hot-rolled wire rod 200 is held on the compensator 12 without being immersed in the stored refrigerant 100, and is cooled by the refrigerant flow supplied exclusively by the nozzle 32. Since the refrigerant 100 in contact with the wire 200 is intended to fall downward by gravity, it can be spread over the entire outer periphery of the wire 200, and the wire 200 can be cooled uniformly without unevenness. Therefore, cooling can be performed by injecting a jet from the nozzle 32 disposed in the stored refrigerant 100 to the wire 200, and the control range of the cooling rate can be expanded widely compared to the conventional cooling method ( Figure 10).
  • the hot-rolled wire rod 200 sent from a rolling line (not shown) is cut into a ring by the laying head 40, and the center of the ring is a predetermined pitch.
  • a rolling line (not shown)
  • the center of the ring is a predetermined pitch.
  • supply to the horizontal conveyor 50A In the form of an offset loose coil, supply to the horizontal conveyor 50A.
  • the hot-rolled wire rod 200 on the horizontal conveyer 50A is sent to the conveyer 12 in the refrigerant tank 10 and is brought into contact with the refrigerant flow supplied from the nozzle 32 to be cooled. By this cooling, the hot-rolled wire 200 is transformed to a structure consisting essentially of austenite.
  • the heat-treated wire rod 200 is sent out from the refrigerant tank 10 and transported by the horizontal conveyor 50 B, and then supplied to the next process.
  • the control range of the cooling rate can be expanded compared to the conventional case. Along with that, improvement of the mechanical properties of the wire can be realized.
  • the nozzle 32 may be disposed below the conveyor 12 so that the downward force of the hot-rolled wire rod 200 can also jet the refrigerant flow. .
  • the coolant flow can be applied to the hot-rolled wire rod 200 as well, so that efficient cooling can be expected.
  • the hot-rolled wire rod conveyed by the conveyor is not immersed in the refrigerant in the refrigerant tank and is cooled by the refrigerant flow supplied exclusively with the nozzle force, but in this example, the hot-rolled wire rod 200 The difference is that a part of is immersed in the refrigerant 100.
  • the other configuration is the same as that of the first embodiment, so the description will be omitted.
  • a large amount of the refrigerant 100 of the embodiment is stored in the refrigerant tank 10, and the liquid surface of the refrigerant 100 is positioned approximately midway in the thickness direction of the hot-rolled wire rod 200. doing.
  • Such partial immersion of the wire 200 can be easily realized by adjusting the balance between the amount of refrigerant supplied from the nozzle 32 and the amount of refrigerant discharged from the refrigerant tank 10.
  • the hot-rolled wire rod 200 is substantially cooled by the flow of the refrigerant supplied from the nozzle 32, so the same degree of cooling as in Example 1 is performed. Temperature range of speed can be realized.
  • Example 2 a part of the hot-rolled wire rod conveyed by the conveyor was immersed in the refrigerant in the refrigerant tank, but in this example, all of the hot-rolled wire rod 200 was immersed in the refrigerant. Is different.
  • the amount of refrigerant stored was such that the maximum distance between the liquid surface of the stored refrigerant 10 and the loose-coil hot-rolled wire rod 200 was 3 cm.
  • the adjustment of the refrigerant storage amount is performed by adjusting the balance between the refrigerant supply amount from the nozzle 32 and the refrigerant discharge amount from the discharge port of the refrigerant tank 10.
  • the hot-rolled wire rod 200 can be cooled by the refrigerant flow supplied from the nozzle 32 to obtain a cooling state very similar to the cooling state.
  • an adjustment width comparable to that of the first embodiment or the second embodiment can be obtained.
  • the heat treatment of the hot-rolled wire rod was performed using the comparative example devices shown in the above-described example devices (FIG. 1, FIG. 5, FIG. 6) and FIG.
  • a heat treatment line having two cooling zones ie, the first cooling zone 61 on the upstream side (the laying head 40 side) and the second cooling zone 62 on the downstream side, was configured.
  • Each of the cooling zones 61, 62 is configured with the same type of embodiment apparatus, and in the first cooling zone, the wire is cooled, and in the second cooling zone, cooling is more relaxed than in the first cooling zone.
  • a heat treatment line having a single cooling zone 60 was configured.
  • the conditions of the heat treatment equipment used in these heat treatment lines are as follows.
  • Refrigerant tank length in first cooling zone approx. 4 m
  • Refrigerant tank length in second cooling zone approx. 4 m
  • the maximum immersion distance to the wire is also 3cm
  • Refrigerant tank length about 24 m
  • Refrigerant tank capacity about 20 m 3
  • Tables 1 to 4 Specific heat treatment conditions are shown in Tables 1 to 4.
  • Table 1 shows the conditions for heat treatment using a non-immersion type embodiment device
  • Table 2 shows the conditions for heat treatment using a partial immersion type embodiment device
  • Table 3 shows a complete immersion type embodiment device.
  • Table 4 shows the conditions in the heat treatment using the device of the comparative example. Also, the tensile strength of the obtained steel wire was measured. The measurement results are also shown in Tables 1 to 4. In these tables, the meaning of each term is as follows.
  • Steel billet heating temperature temperature at which steel billet is heated during rolling
  • Wrinkling temperature Rolled material temperature when winding with a laying head
  • Refrigerant tank temperature Set temperature of refrigerant tank (common to the first cooling zone 'second cooling zone)
  • Refrigerant temperature Set temperature of temperature control tank
  • Tensile strength The tensile strength of the sample obtained from multiple positions in the longitudinal direction of the wire is measured, and the average value of the measured values is shown.
  • the center of the tensile strength distribution is the direction of the steel wire (FIG. 8B) obtained by the non-immersion type device than the steel wire (FIG. 8A) obtained by the comparative device.
  • the superiority of the heat treatment using the device of the present invention can be confirmed.
  • the distribution width of tensile strength can also suppress the dispersion of smaller product characteristics with the steel wire obtained by the non-immersion type device.
  • the same heat treatment was performed in which the maximum distance from the liquid surface of the refrigerant to the wire was 6.0 cm, 2.0 cm, and 0.5 cm. It was found that the tensile strength was superior to the obtained steel wire.
  • the method and apparatus of the present invention are expected to be utilized in the heat treatment of steel wires, particularly in the field of manufacture of hard steel wire rods, piano wires and the like.

Abstract

 冷却速度の制御幅を広げることができる熱間圧延線材の直接熱処理方法と装置を提供する。  冷媒100でルーズコイル状の熱間圧延線材200を冷却する熱間圧延線材の直接熱処理方法である。この冷却は、ルーズコイル状の熱間圧延線材200を、貯留した冷媒に浸漬されることなく冷媒流に曝して行う。冷媒外に曝された熱間圧延線材200に直接冷媒流を供給することにより、冷媒中から噴流を供給する従来の熱処理方法に比べて、冷却速度の制御幅をより広範囲とすることができる。それに伴い、気液混合水などを冷媒としながら、溶融鉛並みの冷却速度で熱処理したり、熱処理工程の長手方向に冷却条件の異なる複数の冷却ゾーンを設けることができる。

Description

明 細 書
熱間圧延線材の直接熱処理方法および装置
技術分野
[0001] 本発明は、熱間圧延線材の直接熱処理方法および装置に関するものである。特に
、冷却速度の制御幅を広くでき、かつ熱処理ラインの長手方向に冷却速度の異なる 複数の冷却ゾーンを形成できる熱間圧延線材の直接熱処理方法および装置に関す るものである。
背景技術
[0002] 熱間圧延線材をー且リング状に巻き取り、このリングの中心を一定ピッチずらしたル ーズコイル状にして、沸騰水又は温水を冷媒に用いる鋼線の直接熱処理方法が知ら れている(例えば特許文献 1、特許文献 2)。これは、図 10に示すように、所定温度に 制御された冷媒 100を冷媒槽 10に貯留し、この冷媒 100中にレーイングヘッド 40から 供給したルーズコイル状の熱間圧延線材 200を浸漬し、冷媒槽内のコンベア 12により 同線材 200を搬送しながら熱処理を行う技術である。その際、冷媒槽 10内で冷媒 100 に浸漬されたノズル 32から沸騰水や気液混合流の噴流を噴射し、冷媒槽 10中の冷 媒 100を流動させて冷媒温度のばらつきを緩和すると共に、線材 200の冷却むらを抑 制するようにしている。
[0003] 特許文献 1:特開昭 60-228619号公報
特許文献 2:特開平 6-207224号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記の従来技術では、通常、冷媒槽の大きさは決まっており、鋼線の冷却速度の 調整は鋼線を冷媒に浸漬する時間、つまり鋼線の搬送速度で調整している。しかし、 この搬送速度の変化による冷却速度の調整には種々の限界がある。
[0005] (1)冷媒中に鋼線を浸漬して通過させる冷媒浸漬式では、冷却速度のコントロール 範囲が狭いという問題がある。冷媒浸漬式では、最低冷却速度が冷媒中の冷却速度 と等しくなり、それ以上に冷却速度を下げることができない。そのため、冷却速度を下 げることに関して限界がある。一方、この冷媒浸漬式において、ノズル力も沸騰水を 噴射するなどして、冷媒の強制対流による攪拌を行っても、冷却速度を溶融鉛並に 到達させることは困難であり、冷却速度を上げることにも制約がある。
[0006] (2)冷媒浸漬式では、冷媒槽の大きさによって冷却できる線材径に制限がある。鋼 線は、その線径によって冷却速度が変化するため、線径に応じた冷却速度の調整が 必要になる。しかし、冷却槽の長さが一定のため、鋼線の搬送速度を変えて冷却速 度を調整する方法では、冷却できる線材径が制約される。そのため、太径の線材でも 十分な速度で冷却しょうとすれば、太径の線材になればなるほど、より長い冷却槽が 必要になる。
[0007] (3)冷媒浸漬式では、線材の冷却速度を冷媒槽の長手方向に可変することが実質 的に不可能である。上述したように、冷媒浸漬式では、冷却速度のコントロール範囲 が狭い。その上、冷媒中に配されたノズル力 気液混合温水などを噴出し、冷媒の 強制対流を行ったとしても、ノズルの配置方向や配置密度あるいは気液混合流の噴 出流量などによって冷却速度が変わるため、これらの冷却条件を変えて冷却速度を きめ細やかに制御することは難しい。そのため、復熱ゾーンや急冷ゾーンなど、冷媒 槽の長手方向に冷却速度が異なる複数の冷却ゾーンを設けることは事実上不可能 である。
[0008] (4)鋼線を均一に冷却することが難しい。冷媒内で鋼線に噴流を吹き付けたり鋼線 の下方からエアを噴射する場合、特に直径 7mm以下の細径線材では、噴流やエアの 吹き付けにより線材が浮き上がり、鋼線搬送トラブルの原因となったり、冷却速度のバ ラツキによってルーズコイル状の鋼線が変形する現象が発生しやすい。また、亜共析 や過共析組成と 、つた共析成分のように単一組織に変態しな 、ような組成では、共 析変態中にルーズコイル状の鋼線が反り上がる現象が顕著で、やはり鋼線搬送トラ ブノレの原因になっている。
[0009] 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、冷却速度の 制御幅を広げることができる熱間圧延線材の直接熱処理方法と装置を提供すること にある。
[0010] また、本発明の別の目的は、線材の冷却速度を冷媒槽の長手方向に可変すること が可能な熱間圧延線材の直接熱処理方法と装置を提供することにある。 課題を解決するための手段
[0011] 本発明は、冷媒槽に貯留した冷媒内で噴流を生じさせるのではなぐその冷媒外か ら熱間圧延線材に冷媒流を供給することで上記の目的を達成する。
[0012] 本発明熱間圧延線材の直接熱処理方法は、大別すると、熱間圧延線材を冷媒に 浸漬しないタイプと、部分的に浸漬するタイプと、完全に浸漬するタイプの 3つがある 。 ヽずれも冷媒でルーズコイル状の熱間圧延線材を冷却する熱間圧延線材の直接 熱処理方法である。そして、各タイプの各々は、下記の構成を有することを特徴とす る。
[0013] 非浸漬タイプの本発明熱間圧延線材の直接熱処理方法は、ルーズコイル状の熱 間圧延線材を、貯留した冷媒に浸漬されることなく冷媒流に曝して冷却する。
[0014] 部分浸漬タイプの本発明熱間圧延線材の直接熱処理方法は、ルーズコイル状の 熱間圧延線材を、貯留した冷媒の液面から部分的に露出した状態で、その冷媒の液 面の外側力 供給される冷媒流に曝して冷却する。
[0015] 完全浸漬タイプの本発明熱間圧延線材の直接熱処理方法は、ルーズコイル状の 熱間圧延線材を、貯留した冷媒に浸潰された状態で、冷媒の液面の外側から供給さ れる冷媒流に曝して冷却する。
[0016] 本発明方法のうち、非浸漬タイプおよび部分浸漬タイプの熱処理方法では、大気 などの冷媒外に曝されたまたは部分的に冷媒から露出した熱間圧延線材に直接冷 媒流を供給することにより、冷媒流の温度を直接的に線材に伝達しやすぐ冷媒中か ら噴流を供給する従来の熱処理方法に比べて、冷却速度の制御幅をより広範囲とす ることができる。特に、非浸漬タイプおよび部分浸漬タイプによれば、冷却速度を早く することと遅くすることの両方に冷却速度の制御範囲を拡げることができる。具体的に は、 13mm φ線材の場合、従来の熱処理方法では、冷却速度の制御幅が 10〜20°C Zsec程度にあるのに対し、本発明方法では、冷却速度の制御幅を 0.05°CZsec〜50 .0°CZsec程度とすることができる。線径が大きくなる (小さくなる)ほど、冷却速度の上 限が低く (高く)なる。
[0017] また、完全浸漬タイプであっても、冷却速度を遅くすることに関しては従来法と大き な差異はないが、冷却速度を早くすることに関しては、冷媒外からの冷媒流による冷 却を実質的に非浸漬タイプや部分浸漬タイプに遜色ない程度とすることができ、やは り冷媒中から噴流を供給する従来の熱処理方法に比べて、冷却速度の制御幅をより 広範囲とすることができる。具体的には、 13mm φ線材の場合、冷却速度の制御幅を 5.0°C/sec〜40.0°C/sec程度とすることができる。なお、完全浸漬タイプの場合、線 材が冷媒中に確実に浸漬されるため、冷媒に触れないところが部分的に生じることが ない。
[0018] 一方、本発明熱間圧延線材の直接熱処理装置は、大別すると、熱間圧延線材を冷 媒に浸漬しないタイプと、部分的に浸漬するタイプと、完全に浸漬するタイプの 3つが ある。いずれも、冷媒槽と、冷媒槽内でルーズコイル状の熱間圧延線材を熱処理ェ 程の上流側力 下流側へと搬送する搬送手段とを有する熱間圧延線材の直接熱処 理装置である。そして、各タイプの各々は、下記の構成を有することを特徴とする。
[0019] 非浸漬タイプの本発明熱間圧延線材の直接熱処理装置は、前記搬送手段で熱間 圧延線材を冷媒槽内で冷媒に浸漬されない状態で搬送する。そして、その熱間圧延 線材に冷媒流を供給する冷媒供給手段を有する。
[0020] 部分浸漬タイプの本発明熱間圧延線材の直接熱処理装置は、前記搬送手段で熱 間圧延線材を冷媒槽内に貯留した冷媒の液面から部分的に露出した状態で搬送す る。そして、その熱間圧延線材に冷媒の液面の外側から冷媒流を供給する冷媒供給 手段を有する。
[0021] 完全浸漬タイプの本発明熱間圧延線材の直接熱処理装置は、前記搬送手段で熱 間圧延線材を冷媒槽内に貯留した冷媒に浸漬した状態で搬送する。そして、その熱 間圧延線材に冷媒の液面の外側から冷媒流を供給する冷媒供給手段を有する。
[0022] 本発明装置のうち、非浸漬タイプおよび部分浸漬タイプの熱処理装置では、冷媒 供給手段を用いることで、大気などの冷媒外に曝されたまたは部分的に冷媒から露 出した熱間圧延線材に直接冷媒流を供給することができる。それに伴って冷媒中か ら噴流を供給する従来の熱処理装置に比べて、冷却速度の制御幅をより広範囲とす ることがでさる。
[0023] また、完全浸漬タイプであっても、冷却速度を遅くすることに関しては従来法と大き な差異はないが、冷却速度を早くすることに関しては、冷媒供給手段を用いることで 、冷媒外力 の冷媒流による冷却を実質的に非浸漬タイプや部分浸漬タイプに遜色 ない程度とすることができる。そのため、冷媒中から噴流を供給する従来の熱処理装 置に比べて、冷却速度の制御幅をより広範囲とすることができる。
[0024] この熱処理方法または装置において、冷媒には、沸騰水または温水あるいはこれら の液体冷媒に空気などの気体を混合した気液混合冷媒を用いることができる。冷媒 温度は、 85°C以上 100°C以下とし、より好ましくは 90°C以上 95°C以下に制御される。こ の冷却により、熱間圧延線材は、オーステナイトから実質的にパーライトよりなる組織 に変態される。熱間圧延線材の冷却に利用された冷媒は、冷媒槽から排出されて温 度調整槽に戻され、温度調整がなされた後、再度冷媒槽へと供給される。その後、同 様に冷媒は温度調整槽と冷媒槽との間で循環される。
[0025] 通常、温度調整槽で所定の温度に温度調整された冷媒は、冷媒供給手段により、 冷媒槽内を搬送される熱間圧延線材に冷媒流として供給される。
[0026] 温度調整槽は、冷媒槽から排出された冷媒を所定の温度に調整する機能を有する 。例えば、冷媒槽と同等以上の容量をもつ容器と、冷媒温度を調整する熱交換手段 とを有するものが利用できる。この温度調整槽により、上述したように、冷媒温度を 85 °C以上 100°C以下、より好ましくは 90°C以上 95°C以下に制御する。温度調整槽で所 定温度に調整された冷媒は、冷媒供給手段にて冷媒槽へ供給される。
[0027] 冷媒供給手段は、冷媒流を熱間圧延線材に供給できる構成であれば良 ヽ。例えば 、冷媒供給手段は、温度調整槽から冷媒槽へと冷媒を送るポンプと、冷媒を冷媒槽 内の熱間圧延線材に噴射するノズルとを有するものが利用できる。その他、冷媒を噴 射するノズルの代わりに、単に冷媒流の供給口を有し、この供給ロカ 滝のように冷 媒槽内に冷媒流を供給し、その滝内に熱間圧延線材をくぐらせるようにして冷却して も良い。
[0028] その際、ノズルや供給口は、搬送される熱間圧延線材の上部に設けることが好適で ある。非浸漬タイプの場合、上部から冷媒流を供給することで、熱間圧延線材にかか つた冷媒は重力で同線材の表面に沿って下方側に自然落下し、線材の全周に冷媒 が行き渡ることで、効果的な冷却を行うことができる。部分浸漬タイプゃ浸漬タイプの 場合であっても、冷媒外から供給される冷媒流の勢!、が冷媒に浸潰された鋼線部分 にも及ぶため、非浸漬タイプと同様に効果的な冷却を行なうことができる。特に、部分 浸漬タイプゃ浸漬タイプの場合、冷媒槽に貯留する冷媒と異なる温度の冷媒流を供 給する場合に、効果的な冷却速度の制御を行うことができる。
[0029] もちろん、非浸漬タイプの場合は、冷媒に浸漬しな 、線材の下方力 冷媒流を供 給しても良い。また、部分浸漬タイプおよび浸漬タイプの場合は、上方から冷媒流を 供給することに加えて、冷媒に浸漬している線材の下方、つまり冷媒内からも冷媒流 を供給しても良い。その際、下方力もの冷媒流により線材が浮き上がらないように冷 媒流の流量を調整することが好ま ヽ。
[0030] また、冷媒供給手段は、熱間圧延線材の重なりの少ない箇所よりも多い箇所に冷 媒を供給するように構成されていることが好ましい。例えば、熱間圧延線材の重なり の多い箇所にノズルや供給口を向けて構成することや、この重なりの多い箇所に向 けられたノズルや供給口の数を線材の重なりが少な ヽ箇所に向けられたノズルや供 給口の数より多くすることなどが挙げられる。このような冷媒供給手段を用いることで、 線材の重なりの多い箇所と少ない箇所における冷却むらを抑制することができる。
[0031] また、冷媒供給手段は、液体の冷媒に気体を所定の混合率で混合可能に構成さ れていることが望ましい。例えば、ノズルに対して気体を供給する気体冷媒供給手段 を接続することが挙げられる。液体冷媒に所定の混合率で気体を混合することで、冷 媒の冷却能力を変化させ、より一層精度の高い冷媒温度制御を可能にすることがで きる。線材の重なりの多い箇所と少ない箇所とで気体の混合率の異なる冷媒を供給 しても良い。
[0032] 一方、冷媒槽は容器状のものが好適に利用できる。例えば、底面と両側面、両端 面を有し、上部が開口した形状の冷媒槽を用いることができる。本発明方法または装 置で用いる冷媒槽は、非浸漬タイプの場合、冷媒を貯留する必要はない。つまり、底 面が実質的に抜けている構造の冷媒槽でも良い。部分浸漬タイプや完全浸漬タイプ の場合、冷媒槽に貯留する冷媒温度をある程度調整する加熱手段を備えるものが好 ましい。この加熱手段の設定温度は、後述するように複数の冷却ゾーンを設けた場 合、各冷却ゾーンで同じでも良いし異なっても良い。完全浸漬タイプの場合、貯留し た冷媒の液面から熱間圧延線材までの最大距離が 6cm以下となるように冷媒の液面 位置を制御して熱処理することが好ま 、。熱間圧延線材までの最大距離力 ¾cm以 下であれば冷媒への浸漬深さが浅いため、冷媒外、つまり冷媒の液面の外からの供 給される冷媒流による流動作用が十分に線材に及ぼされ、効果的な冷却を行うこと ができる。
[0033] 冷媒槽を構成するいずれかの面には、冷媒の排出口が形成され、排出ロカゝら排出 された冷媒は、温度調整槽に供給されて、所定の温度に調整される。例えば、冷媒 槽の上流側端面や底面に排出口を形成することが挙げられる。冷媒槽のうち、熱間 圧延線材が投入される上流側に冷媒の排出口を設けることで、線材に接して温度上 昇した冷媒を効率的に冷媒槽外へ排出することができる。
[0034] また、特に浸漬タイプの場合、冷媒槽の底面に排出口を設けることで、冷媒槽底部 に滞留する低温冷媒を排出することができる。底面の排出口は、冷媒温度上昇の生 じやす 、箇所がそれ以外の箇所よりも冷媒排出量を多くなるように構成されて 、るこ とが好ましい。例えば、冷媒槽における上流側から 2m付近が鋼線の変態発熱などに より冷媒の温度が上昇しやすい場合、この温度が上昇しやすい箇所における底部排 出口の面積を他の箇所よりも局部的に大きくすることが挙げられる。このような構成に より、冷媒の温度上昇が生じやすい箇所の冷媒を効率的に排出させ、より効果的な 冷却を可能にする。
[0035] このような冷媒槽には、熱間圧延線材を熱処理工程の上流側から下流側へと搬送 する搬送手段が内装されている。この搬送手段には、非浸漬タイプの場合、冷媒に 浸漬することなく搬送可能なコンベアが、部分浸漬タイプ或 、は完全浸漬タイプの場 合、冷媒中に線材の少なくとも一部が浸漬された状態で駆動可能なコンベアが挙げ られる。通常、この搬送手段は、冷媒槽への導入部と排出部が傾斜して構成され、導 入部と排出部の中間が水平に構成されている。その際、導入部の傾斜角度は、水平 面に対して 60° 以内であることが好ましい。搬送手段における導入部の傾斜を抑え ることで、線材が搬送手段上力 ずれて搬送トラブルとなることを抑制することができ る。この傾きのより好ましい値は 45° 以下である。
[0036] 以上のような冷媒槽、搬送手段および冷媒供給手段を有する冷却ゾーンを熱処理 工程の長手方向に複数設けることが好ましい。冷却ゾーンを複数箇所設けることで、 各冷却ゾーンごとに異なる条件で熱処理を行うことができる。また、各冷却ゾーンの 間などを復熱ゾーンとし、ー且冷却ゾーンで冷却された線材を復熱ゾーンで復熱す ることちでさる。
発明の効果
[0037] 本発明方法及び装置によれば、非浸漬タイプおよび部分浸漬タイプの熱処理方法 の場合、大気などの冷媒外に曝されたまたは部分的に冷媒から露出した熱間圧延線 材に直接冷媒流を供給することにより、冷媒中から噴流を供給する従来の熱処理方 法に比べて、冷却速度の制御幅をより広範囲とすることができる。完全浸漬タイプの 場合、冷媒外力もの冷媒流による冷却を実質的に非浸漬タイプや部分浸漬タイプと 遜色ない程度とすることができ、同様に冷却速度の制御幅を広げることができる。そ れに伴い、次の効果を奏することができる。
[0038] (1)溶融鉛並みの冷却速度で熱処理することが可能になる。
(2)熱処理工程の長手方向に冷却条件の異なる複数の冷却ゾーンを設けることがで きる。例えば、冷却速度の速い急冷ゾーンを設けたり、一旦冷却された線材を復熱す る復熱ゾーンを設けたりすることが容易にできる。
(3)太 、線材であっても、その線径に適した冷却速度を冷却槽の長さを長くすること なく得ることができる。
(4)適正な冷却速度を得ると共に冷却のばらつきも低減でき、機械的特性に優れた 鋼線を得ることができる。特に、線材の高強度化や機械的性能のコントロールが実施 し易くなる。
図面の簡単な説明
[0039] [図 1]非浸漬タイプの本発明装置の概略構成図である。
[図 2]図 1の装置の冷媒槽における線材とノズルの配置関係を示す模式斜視図であ る。
[図 3]図 1の装置の冷媒槽における線材とノズルの配置関係を示す模式断面図であ る。
[図 4]線材の下方にもノズルを設けた本発明装置の冷媒槽における線材とノズルの配 置関係を示す模式断面図である。
[図 5]部分浸漬タイプの装置の冷媒槽における線材とノズルの配置関係を示す模式 断面図である。
[図 6]完全浸漬タイプの装置の冷媒槽における線材とノズルの配置関係を示す模式 断面図である。
[図 7A]本発明装置で構成した熱処理ラインの概略平面図である。
[図 7B]比較例装置で構成した熱処理ラインの概略平面図である。
[図 8A]比較例装置での熱処理で得られた線材の抗張力分布を示すヒストグラムであ る。
[図 8B]実施例装置での熱処理で得られた線材の抗張力分布を示すヒストグラムであ る。
[図 9A]比較例装置による熱処理における線材の温度履歴を示すグラフである。
[図 9B]実施例装置による熱処理における線材の温度履歴を示すグラフである。
[図 10]比較例装置の概略構成図である。
符号の説明
[0040] 10 冷媒槽 11 排出口 12 コンベア
20 温度調整槽 30 冷媒供給手段 31 ポンプ 32 ノズル
40 レーイングヘッド 50A、50B 水平コンベア
60 冷却ゾーン 61 第 1冷却ゾーン 62 第 2冷却ゾーン
100 冷媒 200 熱間圧延線材
発明を実施するための最良の形態
[0041] 以下、本発明の実施の形態を説明する。
[0042] (実施例 1:非浸漬タイプ)
図 1は本発明熱処理装置の概略構成図である。この装置は、冷媒槽 10と、冷媒槽 1 0から排出された冷媒の温度調整を行なう温度調整槽 20と、温度調整槽 20の冷媒を 冷媒槽 10へ供給する冷媒供給手段 30とを有する。冷媒供給手段 30は、ポンプ 31とノ ズル 32を有する。この冷媒槽 10の上流にはレーイングヘッド 40が設けられ、同ヘッド 4 0から送り出される熱間圧延線材 200を冷媒槽 10の冷媒 100中に浸漬して熱処理を行 [0043] 冷媒槽 10は、上部が開口した容器状の槽で、両端面、両側面、底面から構成され ている。このうち、底面の上流側に冷媒の排出口 11が形成されている。また、冷媒槽 1 0には、冷媒槽 10の内部に導入された冷媒の温度をある程度調整可能な加熱手段が 設けられている。
[0044] また、冷媒槽 10の内部には、熱間圧延線材 200を搬送するコンベア 12が配されてい る。このコンベア 12はレーイングヘッド 40から冷媒槽 10の間および冷媒槽 10の下流側 に設けられた各水平コンベア 50A,50Bにつながっており、同ヘッド 40から送り出された 熱間圧延線材 200を冷媒槽 10の冷媒中に導入して熱処理を行わせ、その後、冷媒槽 10外へと線材を送り出す。本例では、冷媒槽 10内において、前段は上流側が高く下 流側が低い傾斜を持ち、中段は水平で、後段は上流側が低く下流側が高い傾斜を 持ったコンベア 12を用いた。この前段と後段の傾斜角度は 20° である。
[0045] 一方、温度調整槽 20は、冷媒槽 10と同等以上の容量を有して、上部が開口した槽 である。この調整槽 20は、丁度冷媒槽 10の下方に位置され、冷媒槽 10の排出口 11か らの冷媒 100を調整槽 20の一端側で受けられるように配置されている。また、調整槽 2 0の他端側には、配管を介してポンプ 31が接続され、このポンプ 31の駆動により調整 槽 20内の冷媒を冷媒槽 10側へ環流している。そして、図示していないが、温度調整 槽 20内の冷媒を所定の温度に調整するための熱交^^が、温度調整槽 20に設けら れている。
[0046] 調整槽 20から所定温度に調整されて送られて来た冷媒は、冷媒槽 10の底面に対 向して配されたノズル 32カゝら噴射される。ノズル 32は、冷媒槽内でコンベア 12上に対 向して配置され、調整槽 20からの温水に空気を所定の比率で混合して噴射できるよ うに構成されている。つまり、熱間圧延線材 200に対してほぼ上方力も冷媒 100を供給 することで、同線材 200のピッチなどに乱れが生じて搬送トラブルが生じることを抑制 している。
[0047] また、ノズル 32は、冷媒槽 10の幅方向に間隔をあけて配置されており、ルーズコィ ル状の熱間圧延線材 200における重なりの多い箇所に対して重点的に冷媒を供給で きるようにされている。ここでは、図 2、図 3に示すように、線材の搬送方向に沿った 3本 のノズル 32を平行に配置している。各ノズルは、熱間圧延線材 200の重なりの多い箇 所ほど冷媒の噴射口が多ぐ他の箇所よりも多くの冷媒を供給できるようにしている。
[0048] そして、図 1や図 3に示すように、ノズル 32から供給された冷媒 100は、冷媒槽 10の底 部にある程度は貯留する力 貯留した冷媒 100の液面はコンベア 12の下方に位置し ている。つまり、熱間圧延線材 200は貯留した冷媒 100に浸漬されない状態にコンペ ァ 12上に保持され、専らノズル 32力 供給される冷媒流により冷却される。線材 200に 接触した冷媒 100は、重力により下方に落下しょうとするため、線材 200の外周全域に 行き渡らせることが可能であり、むらなく線材 200の冷却を効率的に行うことができる。 そのため、貯留した冷媒 100中に配置したノズル 32から噴流を線材 200に噴射するこ とで冷却を行って 、た従来の冷却方法に比べて、冷却速度の制御範囲を大きく拡げ ることができる(図 10)。
[0049] このような装置において、図示しない圧延ラインから送られて来た熱間圧延線材 200 はレーイングヘッド 40で一且卷き取ってリング状にし、このリングの中心が所定のピッ チでずれたルーズコイル状にして水平コンベア 50Aへと供給する。
[0050] 水平コンベア 50A上の熱間圧延線材 200は冷媒槽 10内のコンベア 12へと送られてノ ズル 32から供給される冷媒流に接触されて冷却される。この冷却により、熱間圧延線 材 200は、オーステナイトから実質的にパーライトよりなる組織に変態される。
[0051] そして、熱処理された線材 200は、冷媒槽 10から送り出されて水平コンベア 50Bで搬 送されたのち、次工程へと供給される。
[0052] このような装置によれば、熱間圧延線材 200が冷媒 100に浸漬されない状態で冷媒 流により冷却されるため、従来に比べて冷却速度の制御範囲を拡げることができる。 それに伴 、、線材の機械的特性の改善を実現することができる。
[0053] その他、変形例としては、図 4に示すように、ノズル 32をコンベア 12の下方にも配置 し、熱間圧延線材 200の下方力 も冷媒流を噴射できるように構成しても良い。この場 合、上下力も冷媒流を熱間圧延線材 200に浴びせることができ、効率的な冷却が期 待できる。ただし、線材 200の下方から冷媒流を噴射するため、その冷媒流に押し上 げられて線材 200がコンベア 12上で暴れな 、程度の勢!、で冷媒流を噴射することが 好ましい。 [0054] (実施例 2:部分浸漬タイプ)
次に、部分浸漬タイプの本発明装置を図 5に基づいて説明する。
実施例 1では、冷媒槽内において、コンベアで搬送される熱間圧延線材が冷媒に 浸漬されず、専らノズル力も供給される冷媒流によって冷却されているが、本例では 、熱間圧延線材 200の一部が冷媒 100に浸漬されている点が異なる。それ以外の構 成は実施例 1と同様であるため説明を省略する。
[0055] つまり、図 5に示すように、実施例はりも多くの冷媒 100が冷媒槽 10に貯留され、そ の冷媒 100の液面が熱間圧延線材 200の厚さ方向のほぼ中間に位置している。このよ うに部分的に線材 200を浸漬させるには、ノズル 32からの冷媒供給量と冷媒槽 10にお ける排出ロカもの冷媒排出量のバランスを調整することで容易に実現できる。そして 、このような部分浸漬状態の熱間圧延線材 200であっても、熱間圧延線材 200は実質 的にノズル 32から供給される冷媒流により冷却されるため、実施例 1と同程度の冷却 速度の温度幅を実現することができる。
[0056] (実施例 3:完全浸漬タイプ)
次に、完全浸漬タイプの本発明装置を図 6に基づいて説明する。
実施例 2では、冷媒槽内において、コンベアで搬送される熱間圧延線材の一部が 冷媒に浸漬されていたが、本例では、熱間圧延線材 200の全てが冷媒に浸漬されて いる点が異なる。
[0057] つまり、図 6に示すように、実施例 2よりも多くの冷媒 100が冷媒槽 10に貯留され、そ の冷媒 10の液面が熱間圧延線材 200の上部に位置している。本例では、貯留された 冷媒 10の液面とルーズコイル状の熱間圧延線材 200との最大距離が 3cmとなるような 冷媒貯留量とした。本例の場合も、冷媒貯留量の調整は、ノズル 32からの冷媒供給 量と冷媒槽 10における排出口からの冷媒排出量のノ ランスを調整することで行う。
[0058] このような完全浸漬状態の熱間圧延線材 200であっても、冷媒 100中への浸漬深さ が浅いため、冷媒外から供給される冷媒流の勢いが熱間圧延線材 200の全体に十分 におよび、ノズル 32から供給される冷媒流により熱間圧延線材 200を冷却して ヽる状 態と極めて近似した冷却状態を得ることができる。特に、冷却速度を早くすることにつ Vヽては、実施例 1や実施例 2と遜色な 、程度の調整幅を得ることができる。 [0059] (試験例 1)
上述の実施例装置(図 1、図 5、図 6)および図 10に示した比較例装置を用いて、熱 間圧延線材の熱処理を行った。実施例装置では、図 7Aに示すように、上流側(レー イングヘッド 40側)の第 1冷却ゾーン 61と下流側の第 2冷却ゾーン 62の 2つの冷却ゾー ンを持つ熱処理ラインを構成した。各冷却ゾーン 61,62はそれぞれ同じタイプの実施 例装置で構成され、第 1冷却ゾーンでは線材を冷却し、第 2冷却ゾーンでは第 1冷却 ゾーンよりも緩和された冷却を行う。一方、比較例装置では、図 7Bに示すように、単 一の冷却ゾーン 60を有する熱処理ラインを構成した。これらの熱処理ラインで用いた 熱処理装置の諸条件は、次の通りである。
[0060] <実施例 1〜3 >
第 1冷却ゾーンの冷媒槽長さ =約 4m
第 1冷却ゾーンの冷媒槽容量 =約 6m3
第 2冷却ゾーンの冷媒槽長さ =約 4m
第 2冷却ゾーンの冷媒槽容量 =約 6m3
第 1冷却ゾーンと第 2冷却ゾーンとの間隔 =約 1.05m
完全浸漬タイプの冷媒液面力も線材までの最大距離 =3cm
[0061] <比較例 >
冷媒槽長さ =約 24m
冷媒槽容量 =約 20m3
[0062] 具体的な熱処理条件を表 1〜表 4に示す。表 1は非浸漬タイプの実施例装置を用 Vヽた熱処理における条件を、表 2は部分浸漬タイプの実施例装置を用いた熱処理に おける条件を、表 3は完全浸漬タイプの実施例装置を用いた熱処理における条件を 、表 4は比較例装置を用いた熱処理における条件を示している。また、得られた鋼線 の抗張力を測定した。その測定結果も併せて表 1〜表 4に示す。これらの表において 、各用語の意義は次の通りである。
[0063] 鋼片加熱温度:圧延時に鋼片を加熱する温度
最終圧延温度:最終圧延機の出口における圧延材温度
卷取り温度:レーイングヘッドで巻き取る際の圧延材温度 冷媒槽温度:冷媒槽の設定温度 (第 1冷却ゾーン'第 2冷却ゾーンで共通) 冷媒温度:温度調整槽の設定温度
流量:各冷媒槽からの全排水流量
抗張力:線材長手方向の複数位置から得た試料の抗張力を測定し、その測定値 の平均値を示す。
[表 1]
Figure imgf000016_0001
[表 2]
試料 No. 線径 鋼種 鋼片 最終圧延 卷き取り 冷媒槽 (mm) 加熱温度 /皿 ¾t 備考
(°C) (。c) (。c) (°C)
2-1 11.5 SWRH82B 1100 980 800 90.0 本発明
2-2 11.5 SWRH82B 1100 980 900 90.0 本発明
2-3 11.5 SWRH87B 1100 980 900 90.0 本発明
2-4 13.0 SWRH82B 1100 980 800 88.0 本発明
2-5 13.0 SWRH82B 1100 980 900 88.0 本発明
2-6 13.0 SWRH87B 1100 980 900 88.0 本発明
2-7 16.0 SWRH82B 1100 980 800 88.0 本発明
2-8 16.0 SWRH82B 1100 980 900 88.0 本発明
2-9 16.0 SWRH87B 1100 980 900 88.0 本発明 試料 No. 冷却ゾ-ン 第 2冷却ゾ-ン 抗張カ
:ぉ旦
fV媒温度 エア-混合 / し里 /"Π媒;皿 エア-混合 : 县
Allし里 (MPa)
(。c) の有無 (m3/分) (。c) の有無 (m 分)
2-1 90.0 有り 1.5 99.0 無し 1.5 1221
2-2 90.0 有り 1.5 99.0 無し 1.5 1236
2-3 90.0 有り 1.5 97.0 無し 1.5 1257
2-4 88.0 有り 2.0 97.0 無し 2.0 1239
2-5 88.0 有り 2.0 97.0 無し 2.0 1245
2-6 88.0 有り 2.0 97.0 無し 2.0 1250
2-7 85.0 有り 2.5 95.0 有り 2.2 1233
2-8 85.0 有り 2.5 95.0 有り 2.2 1240
2-9 85.0 有り 2.5 95.0 有り 2.2 1248 3] 式 4No. 線径 鋼種 鋼片 最終圧延 巻き取り 冷媒槽
、mm) 加熱温度 /皿ス 備考
(。c) (。C) (°o (°C)
3-1 11.5 SWRH82B 1100 980 800 90.0 本発明
3-2 11.5 SWRH82B 1100 980 900 90.0 本発明
3-3 11.5 SWRH87B 1100 980 900 90.0 本発明
3-4 13.0 SWRH82B 1100 980 800 88.0 本発明
3-5 13.0 SWRH82B 1100 980 900 88.0 本発明
3-6 13.0 SWRH87B 1100 980 900 88.0 本発明
3-7 16.0 SWRH82B 1100 980 800 88.0 本発明
3-8 16.0 SWRH82B 1100 980 900 88.0 本発明
3-9 16.0 SWRH87B 1100 980 900 88.0 本発明 式料 No. 第 1冷却ゾ-ン 第 2冷却ゾ-ン 抗張力
IV媒;皿 エア-混合 : 罢
/ し里 , 未;皿度 エア-混合 ;Jlし里 (MPa)
(°C) の有無 (m3/分) (°C) の有無 (m3〃 )
3-1 90.0 有り 1.5 99.0 無し 1.5 1204
3-2 90.0 有り 1.5 99.0 無し 1.5 1210
3-3 90.0 有り 1.5 97.0 無し 1.5 1238
3-4 88.0 有り 2.0 97.0 無し 2.0 1212
3-5 88.0 有り 2.0 97.0 無し 2.0 1230
3-6 88.0 有り 2.0 97.0 無し 2.0 1226
3-7 85.0 有り 2.5 95.0 有り 2.2 1218
3-8 85.0 有り 2.5 95.0 有り 2.2 1223
3-9 85.0 有り 2.5 95.0 有り 2.2 1226 [0067] [表 4]
Figure imgf000018_0001
[0068] 以上の表から明らかなように、表 1に示す非浸漬タイプの装置を用いた場合に最も 抗張力の高い鋼線が得られ、以下部分浸漬タイプ、完全浸漬タイプの順に抗張力の 高い鋼線が得られることがわかる。一方、比較例装置を用いた熱処理では、いずれ の実施例装置を用いた熱処理と比較してもはるかに低い抗張力の鋼線であることが ゎカゝる。
[0069] また、線材長手方向の複数位置から得た試料の抗張力を測定した際、各試料の抗 張力のばらつきを調べた。ここでは、非浸漬タイプの装置を用いた熱処理 (試料 No.l -1に相当)と、比較例装置を用いた熱処理 (試料 No.4-1に相当)により得られた鋼線 の抗張力の分布を調べた。その結果を図 8に示す。
[0070] このグラフから明らかなように、抗張力の分布の中心が、比較例装置により得られた 鋼線(図 8A)よりも非浸漬タイプの装置により得られた鋼線(図 8B)の方が高強度側 にずれており、本発明装置を用いた熱処理の優位性が確認できる。カ卩えて、抗張力 の分布幅も非浸漬タイプの装置により得られた鋼線の方が小さぐ製品特性のばらつ きを抑制できて 、ることもわかる。
[0071] さらに、非浸漬タイプの装置を用いた熱処理 (試料 No.1-1に相当)と、比較例装置 を用いた熱処理 (試料 No.4-1に相当)における線材温度と冷却時間の関係も調べた 。その結果を図 9のグラフに示す。
[0072] 比較例装置を用いた熱処理では、図 9Aに示すように、冷却前段に急激に線温が 低下し、冷却中段で鋼線組成に依存して生じる線温の上昇が生じる。その後、冷却 後段で再度急激に線温が低下する温度履歴を示す。その際、冷却前段の線温の低 下傾向(冷却速度)と冷却後段の線温の低下傾向はほぼ同等である。つまり、冷却前 段と後段とで異なる冷却速度を得ることはできて 、な 、。
[0073] これに対し、非浸漬タイプの装置を用いた熱処理 (実施例)では、図 9Bに示すよう に、比較例装置での熱処理の場合以上に、冷却前段で急激に線温が低下する。ま た、冷却中段で鋼線組成に依存して生じる線温の上昇が生じる点は比較例装置で の熱処理の場合と同様であるが、その温度上昇程度が緩和されている。そして、冷却 後段では、比較例装置での熱処理の場合に比べて、より緩やかに線温が低下してい ることがわ力る。つまり、その際、冷却前段の線温の低下傾向(冷却速度)と冷却後段 の線温の低下傾向は異なっており、冷却前段と後段とで異なる冷却速度を得られて いることがわ力る。
[0074] 次に、完全浸漬タイプの実施例装置を用いて冷媒液面から線材までの最大距離を 6.0cm, 2.0cm, 0.5cmとした熱処理も同様に行ったところ、いずれも比較例装置で得 られた鋼線よりも抗張力に優れることがわ力つた。
産業上の利用可能性
[0075] 本発明方法および装置は、鋼線の熱処理、特に硬鋼線材ゃピアノ線材などの製造 分野において利用することが期待される。

Claims

請求の範囲
[1] 冷媒でルーズコイル状の熱間圧延線材を冷却する熱間圧延線材の直接熱処理方 法であって、
前記熱間圧延線材は、貯留した冷媒に浸漬されることなく冷媒流に曝されて冷却さ れることを特徴とする熱間圧延線材の直接熱処理方法。
[2] 冷媒でルーズコイル状の熱間圧延線材を冷却する熱間圧延線材の直接熱処理方 法であって、
前記熱間圧延線材は、貯留した冷媒の液面力 部分的に露出した状態で、その冷 媒の液面の外側から噴射される冷媒流に曝されて冷却されることを特徴とする熱間 圧延線材の直接熱処理方法。
[3] 冷媒でルーズコイル状の熱間圧延線材を冷却する熱間圧延線材の直接熱処理方 法であって、
前記熱間圧延線材は、貯留した冷媒に浸漬された状態で、冷媒の液面の外側から 噴射される冷媒流に曝されて冷却されることを特徴とする熱間圧延線材の直接熱処 理方法。
[4] 貯留した冷媒の液面力も浸漬された熱間圧延線材までの最大距離力 ¾cm以下であ ることを特徴とする請求項 3に記載の熱間圧延線材の直接熱処理方法。
[5] 前記熱間圧延線材が冷媒流に曝されて冷却される冷却ゾーンを複数形成し、各冷 却ゾーンの冷却条件が異なることを特徴とする請求項 1〜4のいずれかに記載の熱間 圧延線材の直接熱処理方法。
[6] 冷媒槽と、冷媒槽内でルーズコイル状の熱間圧延線材を熱処理工程の上流側から 下流側へと搬送する搬送手段とを有する熱間圧延線材の直接熱処理装置であって 前記搬送手段は、熱間圧延線材を冷媒槽内で冷媒に浸潰されな ヽ状態で搬送し その熱間圧延線材に冷媒流を供給する冷媒供給手段を有することを特徴とする熱 間圧延線材の直接熱処理装置。
[7] 冷媒槽と、冷媒槽内でルーズコイル状の熱間圧延線材を熱処理工程の上流側から 下流側へと搬送する搬送手段とを有する熱間圧延線材の直接熱処理装置であって 前記搬送手段は、熱間圧延線材を冷媒槽内に貯留した冷媒の液面から部分的に 露出した状態で搬送し、
その熱間圧延線材に冷媒の液面の外側から冷媒流を供給する冷媒供給手段を有 することを特徴とする熱間圧延線材の直接熱処理装置。
[8] 冷媒槽と、冷媒槽内でルーズコイル状の熱間圧延線材を熱処理工程の上流側から 下流側へと搬送する搬送手段とを有する熱間圧延線材の直接熱処理装置であって 前記搬送手段は、熱間圧延線材を冷媒槽内に貯留した冷媒に浸潰された状態で 搬送し、
その熱間圧延線材に冷媒の液面の外側から冷媒流を供給する冷媒供給手段を有 することを特徴とする熱間圧延線材の直接熱処理装置。
[9] 前記冷媒槽、搬送手段および冷媒供給手段を有する冷却ゾーンを熱処理工程の 長手方向に複数有することを特徴とする請求項 6〜8のいずれかに記載の熱間圧延 線材の直接熱処理装置。
PCT/JP2006/315924 2005-08-23 2006-08-11 熱間圧延線材の直接熱処理方法および装置 WO2007023696A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005241782A JP2007056300A (ja) 2005-08-23 2005-08-23 熱間圧延線材の直接熱処理方法および装置
JP2005-241782 2005-08-23

Publications (1)

Publication Number Publication Date
WO2007023696A1 true WO2007023696A1 (ja) 2007-03-01

Family

ID=37771447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315924 WO2007023696A1 (ja) 2005-08-23 2006-08-11 熱間圧延線材の直接熱処理方法および装置

Country Status (2)

Country Link
JP (1) JP2007056300A (ja)
WO (1) WO2007023696A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118089A1 (en) 2013-02-01 2014-08-07 Nv Bekaert Sa Forced water cooling of thick steel wires
WO2018130498A1 (en) 2017-01-12 2018-07-19 Nv Bekaert Sa Lead-free patenting process and equipment
CN115478150A (zh) * 2022-07-27 2022-12-16 青岛特殊钢铁有限公司 一种高线吐丝后直接淬火浴槽及其淬火方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309943B1 (ko) * 2011-08-26 2013-09-17 주식회사 포스코 선재코일 냉각 장치
JP6043551B2 (ja) * 2012-09-05 2016-12-14 株式会社Ihi 熱処理方法
CN103757195A (zh) * 2013-11-26 2014-04-30 常熟市福熙机械零部件制造有限公司 紧固件线材的球化退火工艺
CN110144442B (zh) * 2019-06-13 2024-01-19 范淼森 一款用于高速热轧细钢丝热处理的水淬火装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472740Y1 (ja) * 1969-08-25 1972-01-29
JPS4910495Y1 (ja) * 1970-01-12 1974-03-13
JPH07275919A (ja) * 1994-04-06 1995-10-24 Nippon Steel Corp 線材の冷却方法
JPH1017943A (ja) * 1988-09-16 1998-01-20 Toa Steel Co Ltd 熱間圧延鋼線材の直接急冷方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472740Y1 (ja) * 1969-08-25 1972-01-29
JPS4910495Y1 (ja) * 1970-01-12 1974-03-13
JPH1017943A (ja) * 1988-09-16 1998-01-20 Toa Steel Co Ltd 熱間圧延鋼線材の直接急冷方法
JPH07275919A (ja) * 1994-04-06 1995-10-24 Nippon Steel Corp 線材の冷却方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118089A1 (en) 2013-02-01 2014-08-07 Nv Bekaert Sa Forced water cooling of thick steel wires
CN104968809A (zh) * 2013-02-01 2015-10-07 贝卡尔特公司 粗钢丝的强制水冷
CN107653375A (zh) * 2013-02-01 2018-02-02 贝卡尔特公司 粗钢丝的强制水冷
CN107653364A (zh) * 2013-02-01 2018-02-02 贝卡尔特公司 粗钢丝的强制水冷
CN107653375B (zh) * 2013-02-01 2019-06-18 贝卡尔特公司 粗钢丝的强制水冷
CN107653364B (zh) * 2013-02-01 2019-07-05 贝卡尔特公司 粗钢丝的强制水冷
US10400319B2 (en) 2013-02-01 2019-09-03 Nv Bekaert Sa Forced water cooling of thick steel wires
WO2018130498A1 (en) 2017-01-12 2018-07-19 Nv Bekaert Sa Lead-free patenting process and equipment
US11299795B2 (en) 2017-01-12 2022-04-12 Nv Bekaert Sa Lead-free patenting process and equipment
CN115478150A (zh) * 2022-07-27 2022-12-16 青岛特殊钢铁有限公司 一种高线吐丝后直接淬火浴槽及其淬火方法

Also Published As

Publication number Publication date
JP2007056300A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2007023696A1 (ja) 熱間圧延線材の直接熱処理方法および装置
JP4678069B1 (ja) 熱延鋼板の冷却装置
EP2116313B1 (en) Device and method for cooling hot-rolled steel strip
RU2745923C1 (ru) Установка и способ для производства толстого стального листа
JP5573837B2 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
EP2700724B1 (en) Method and apparatus for heat treating rails
JP6569843B1 (ja) 厚鋼板の冷却装置および冷却方法ならびに厚鋼板の製造設備および製造方法
JP5673530B2 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
CN110665964A (zh) 一种薄规格x70管线钢带轧制方法
JP4924538B2 (ja) 熱延鋼板の製造装置及び製造方法
JP6870701B2 (ja) 鋼板の冷却方法、鋼板の冷却装置および鋼板の製造方法
JP5100327B2 (ja) 冷延鋼板の製造方法
JP4066387B1 (ja) 棒鋼の制御冷却装置
JP5663848B2 (ja) 熱延鋼板の冷却装置及びその動作制御方法
JP3801145B2 (ja) 高温鋼板の冷却装置
JP5613997B2 (ja) 熱延鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP2007211308A (ja) 鋼線材のインライン熱処理方法及びインライン熱処理装置
JP6295387B1 (ja) 熱延棒鋼の制御冷却方法
JP2005264244A (ja) 熱間圧延線材の直接熱処理方法および装置
WO2017130767A1 (ja) 熱延鋼帯の製造設備列および熱延鋼帯の製造方法
JP5556087B2 (ja) 熱延鋼板の冷却設備および冷却方法
JP2006281220A (ja) H形鋼の冷却設備及び冷却方法
JP3424157B2 (ja) 形鋼の冷却方法及びその装置
JPH07275919A (ja) 線材の冷却方法
JP2005305490A (ja) 厚鋼板の調整冷却装置および調整冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796362

Country of ref document: EP

Kind code of ref document: A1