WO2007023648A1 - Substrate heating device, coating/development device, and method for heating substrate - Google Patents

Substrate heating device, coating/development device, and method for heating substrate Download PDF

Info

Publication number
WO2007023648A1
WO2007023648A1 PCT/JP2006/315209 JP2006315209W WO2007023648A1 WO 2007023648 A1 WO2007023648 A1 WO 2007023648A1 JP 2006315209 W JP2006315209 W JP 2006315209W WO 2007023648 A1 WO2007023648 A1 WO 2007023648A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
unit
processing
wafer
Prior art date
Application number
PCT/JP2006/315209
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Nishi
Takahiro Kitano
Katsuya Okumura
Original Assignee
Tokyo Electron Limited
Octec Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Octec Inc. filed Critical Tokyo Electron Limited
Publication of WO2007023648A1 publication Critical patent/WO2007023648A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • Substrate heating device coating and developing device, and substrate heating method
  • the present invention relates to a substrate heating apparatus, a coating and developing apparatus, and a substrate heating method in which a chemically amplified resist is applied and further subjected to heat treatment before developing the exposed substrate.
  • a photoresist process which is one of semiconductor manufacturing processes
  • a resist is applied in a thin film on the surface of a semiconductor wafer (hereinafter referred to as “wafer”), exposed, and then developed with an image solution.
  • a mask pattern is formed on the surface.
  • Such processing is generally performed using a system in which an exposure apparatus is connected to a coating and developing apparatus that performs resist coating and development.
  • FIG. 11 is a diagram showing the state of exposure, heating, and development when using a positive resist in which the exposed region is changed to be soluble in a developer by an acid catalyst reaction among chemically amplified resists.
  • an acid such as proton (H +) is generated on the surface of the contacted part ((a) in FIG. 11).
  • the wafer W is heated at a predetermined temperature, for example, 90 to 140 ° C.
  • the acid diffuses and the acid catalyzed reaction proceeds, and the base resin, which is the main component of the resist R, decomposes and the acid decomposes the developer.
  • a predetermined temperature for example, 90 to 140 ° C.
  • reference numeral 1 denotes an electron gun for irradiating an electron beam.
  • the electron beam irradiated from the electron gun 1 is bent by an electrostatic field formed by the first deflection unit 11, and the upper and lower aperture members 12a , 12b,..., 12b,..., 12b,... By passing through predetermined combinations of openings (not shown) such as circles, triangles, squares, etc.
  • the shape is formed in a predetermined pattern.
  • the electron beam is bent again by the second deflection unit 13 and is irradiated onto a predetermined irradiation region on the surface of the wafer W.
  • the electron beam exposure has an advantage that an arbitrary pattern can be drawn on the surface of the wafer W without using the mask M by changing the combination of openings through which the electron beam passes.
  • the acceleration of the electron beam irradiating the wafer W is too large, the electrons reaching the base of the wafer W are reflected and drawn up to an unscheduled portion (such as this) The phenomenon is called the proximity effect.)
  • the acceleration of the electron beam is set small. If the electron beam is set at a low acceleration in this way, the trajectory of the beam is easily bent by the electrostatic field of the deflection units 11 and 13, so that the target opening of the aperture member 12 can be passed with high accuracy. Furthermore, there is an advantage that the beam can be applied with high accuracy to a predetermined position on the surface of the wafer W.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-50567
  • Drawing using a low acceleration electron beam with force has the following problems.
  • the amount of acid that can be a trigger for promoting the amplification reaction in the case of a chemically amplified resist because the energy injected from the electron beam into the resist is reduced in proportion to the low acceleration.
  • the acid may not spread sufficiently in the drawing area. For this reason, the resist is not sufficiently altered, and as a result, the pattern is not formed, or even if formed, the line width accuracy is low and the pattern is formed.
  • the present invention has been made based on such circumstances, and an object of the present invention is to apply a resist when applying a chemically amplified resist, for example, to heat-treat a substrate exposed by a low acceleration electron beam.
  • the present invention provides a substrate heating apparatus, a coating / developing apparatus, and a substrate heating method capable of promoting a chemical amplification reaction to form a resist pattern with high line width accuracy and suppressing collapse of a pattern line width. is there.
  • a substrate heating apparatus of the present invention includes a processing container, a substrate mounting portion provided in the processing container, coated with a chemically amplified resist, on which a substrate after exposure and before development is mounted.
  • a heating unit for heating the substrate placed on the substrate placement unit, a vaporization unit for vaporizing water, a carrier gas supply path for supplying a carrier gas to the vaporization unit, and a carrier gas to the vaporization unit A gas supply path for supplying the processing gas containing water vapor obtained by supplying the gas into the processing container, and the substrate are placed on the substrate platform, and the temperature inside the processing container is higher than the dew point temperature of the processing gas.
  • a control unit for supplying the processing gas into the processing container is provided to the processing container.
  • the vaporization unit may include a container for containing water and publishing a carrier gas, and a unit for heating the water in the container. It may be determined that the temperature inside the processing container has become higher than the dew point temperature of the processing gas based on the elapsed time after the substrate is placed on the part or based on the temperature detection value in the processing container.
  • the exposure is electron beam exposure in which a pattern is drawn on the surface of the substrate by, for example, a low acceleration electron beam.
  • the substrate heating apparatus may further include a pressurizing unit that pressurizes the inside of the processing container. Further, the substrate heating apparatus further includes an exhaust unit that exhausts the inside of the processing container, and the control unit is configured to carry the substrate out of the processing container after the processing gas is exhausted by the exhaust unit.
  • the control signal may be output
  • the coating and developing apparatus of the present invention includes a carrier station into which a substrate carrier containing a plurality of substrates is carried in, and a delivery unit that delivers the substrate to the substrate carrier carried into the carrier station.
  • a carrier stage Including a carrier stage, a coating unit for applying a resist to the substrate delivered from the delivery unit, a development unit for developing the substrate after exposure, and a substrate before exposure to the exposure apparatus, An interface unit for receiving the substrate from the exposure apparatus and the substrate heating apparatus described above are provided.
  • the substrate heating method of the present invention is a substrate heating method in which a chemically amplified resist is applied and a substrate before exposure and before development is heated, and the substrate is placed on a substrate placement portion in a processing container.
  • a step of supplying the processing gas into the processing container is a substrate heating method in which a chemically amplified resist is applied and a substrate before exposure and before development is heated, and the substrate is placed on a substrate placement portion in a processing container.
  • the exposure may be an electron beam exposure in which a pattern is drawn on the surface of the substrate with a low acceleration electron beam.
  • the substrate heating method may further include a step of exhausting the processing gas from the inside of the processing container, and a step of subsequently carrying the substrate out of the processing container.
  • a chemically amplified resist is applied, and the exposed substrate is heated in a water vapor atmosphere. Therefore, for example, a short-time electron beam exposure is performed using a low acceleration electron beam. Even in the case of a resist with a small energy injection amount, The portion corresponding to the exposure region can be sufficiently altered by the processing. The reason for this is presumed that the acid generated from the resist by exposure moves in this water, so that the diffusion of the acid in the exposure area of the resist can be activated. . Therefore, since it is possible to cope with the heat treatment stage without increasing the irradiation time of the low-acceleration electron beam, the throughput can be improved.
  • the pattern formed by the heat treatment by supplying water vapor in this way can be prevented from collapsing even if the line width is low.
  • a resist pattern with high line width accuracy can be formed on the surface of the substrate.
  • FIG. 1 is an explanatory diagram showing a configuration of a substrate heating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal side view showing a configuration of a hot plate and a top plate of the substrate heating apparatus.
  • FIG. 3 is a graph showing the temperature of the wafer W and the state around the wafer W in the heat treatment performed using the substrate heating apparatus.
  • FIG. 4 is a plan view showing a coating / developing apparatus in which the substrate heating apparatus of the present invention is incorporated.
  • FIG. 5 is a perspective view showing a coating / developing apparatus in which the substrate heating apparatus of the present invention is incorporated.
  • FIG. 6 is a graph showing the relationship between the optimum energy amount of the electron beam during exposure and the absolute humidity during heat treatment.
  • FIG. 7 is a photograph showing the state of the pattern formed on the wafer at each absolute humidity.
  • FIG. 8 A photograph of the pattern of the formed wafer arranged for each line space of the pattern.
  • FIG. 9 is a graph showing the timing of supplying water vapor to the substrate in the heat treatment of the wafer.
  • FIG. 10 is a graph showing the relationship between the CD of the pattern formed on the wafer and the dose amount of the electron beam irradiated on the wafer.
  • FIG. 11 is an explanatory view showing a state when the chemically amplified resist is exposed, heated and developed.
  • FIG. 12 is an explanatory diagram showing an outline of electron beam exposure.
  • a substrate heating apparatus As an example of an embodiment of a substrate heating apparatus according to the present invention, a substrate such as a wafer after a chemical amplification type resist is applied and a predetermined pattern is drawn with a low acceleration electron beam, for example.
  • a substrate heating apparatus 2 that is a substrate calorie heating apparatus that causes an acid catalytic reaction to proceed while heat-treating W will be described with reference to FIG.
  • the substrate heating apparatus 2 is composed of a main body 2A and a water vapor supply unit 6.
  • the main body 2A includes a rectangular casing 20, and a transfer port 21 for a wafer W is opened on a side wall of the casing 20. Yes.
  • the shirter 21a is provided with 21 transport ports. For example, except for the case where the wafer W is loaded / unloaded through the transfer port 21, the shirter 21a is closed to prevent the outside air from flowing into the housing 20.
  • a base 22 having a hollow at the bottom is provided in the housing 20.
  • the base 22 is provided with lifting mechanisms 23 and 25 in this order on the front side and the rear side in this order.
  • three support pins 24 are connected to the elevating mechanism 23, and the support pins 24 are vertically moved on the base 22 through holes formed on the base 22 by the elevating mechanism 23. It is configured so that it can sink.
  • the lifting mechanism 25 will be described later.
  • a cooling plate 27 is provided on the front side on the base 22.
  • the cooling plate 27 is provided with a cooling flow path (not shown) for flowing temperature-controlled water, for example, on the back surface side, and is configured to roughly cool the wafer W placed on the cooling plate 27. Yes.
  • the cooling plate 27 is also provided with slits (not shown).
  • the wafer W transfer mechanism including an arm body that supports the back surface of the wafer W supports the wafer and the wafer W.
  • the support pins 24 raised as described above pass through the slits to support the back surface of the wafer W, and the support pins 24 support the wafer W.
  • the transfer of the wafer W to the cooling mechanism 27 is carried out!
  • the cooling plate 27 has a role of transferring the wafer W between the transfer mechanism and a hot plate 31 that heats the wafer W provided on the back side of the housing 20.
  • the base 22 is configured to be able to advance and retreat from the near side to the far side, so that the wafer W can be transferred onto the hot plate 31.
  • the hot plate 31 serving as the substrate mounting portion is formed in a circular shape, for example, and has a size that covers the surface of the wafer W.
  • a heater 32 as a heating unit is provided inside the hot plate 31.
  • the hot plate 31 is heated by the heat generated by the heater 32 in response to a control signal from the control unit 100 described later, and the wafer W placed on the hot plate 31 is heated at a predetermined temperature.
  • the support member 33 that supports the hot plate 31 is formed so as to cover the side periphery and the bottom of the hot plate 31.
  • the heat plate 31 is embedded in the base 22 through the support member 33.
  • each support pin 26 is connected to the elevating mechanism 25, and can move up and down in the hole through the elevating mechanism 25 so that it can project and sink on the hot plate 31.
  • the support pins 26 protrude on the hot plate 31 and pass through the slit of the cooling plate 27 so that the back of the wafer and W can be supported.
  • the support pins 26 are lowered while supporting the back surface of the wafer W, whereby the wafer W is delivered onto the hot plate 31.
  • the O-ring 34 is provided on the peripheral edge of the support member 33.
  • the top plate 41 is provided above the heat plate 31.
  • the top plate 41 constitutes the processing container 4 together with the support member 33, and is formed in a circular lid shape having a flange portion, for example.
  • the drive unit 42 is provided to raise and lower the top plate 41. As described above, when the wafer W is placed on the hot plate 31, the driving plate 42 lowers the top plate 41. Then, as shown in FIG. 2, the periphery of the top plate 41 and the periphery of the support member 33 are in close contact with each other via the O-ring 34, so that the periphery of the wafer W becomes a sealed space!
  • the drive unit 42 is provided to raise and lower the top plate 41. As described above, when the wafer W is placed on the hot plate 31, the driving plate 42 lowers the top plate 41. Then, as shown in FIG. 2, the periphery of the top plate 41 and the periphery of the support member 33 are in close contact with each other via the O-ring 34, so that the periphery of the
  • a gas supply port 51 is provided at the lower center of the top plate 41, and a gas supply pipe 65 described later is connected to the gas supply port 51. Further, for example, a cylindrical support member 52 is provided below the top plate 41. Rectifying plates 53, 54 are provided in parallel to be spaced apart from each other so as to partition the support member 52 in the vertical direction. Gas discharge ports 53a and 54a are provided at intervals.
  • the first ventilation chamber 55 is partitioned by being surrounded by the rectifying plate 53, the support member 52, and the top plate 41.
  • the second ventilation chamber 56 is partitioned by being surrounded by the current plate 53, the current plate 54, and the support member 52.
  • the heater block 57 is provided on the top plate 41, for example.
  • the heater block 57 heats the top plate 41 to a temperature corresponding to the temperature of the processing gas. As a result, the water vapor is prevented from condensing in the processing container 4.
  • a gas suction port 43 is provided around the entire circumference of the flange portion of the top plate 41, and an exhaust passage 45 is provided on the outer side of the gas suction port 43. It is provided to communicate with. As will be described later, the exhaust passage 45 is sucked into the exhaust passage 45 through the gas suction port 43 so that a part of the water vapor in the process gas cooled and liquefied can be stored.
  • a gas suction arch I tube 46 is connected to the exhaust passage 45.
  • the gas suction pipe 46 extends to the outside of the housing 20, for example, and is connected to a suction arch I exhaust mute 48 such as a vacuum pump via a pressure adjustment unit 47 !.
  • the pressure adjusting unit 47 and the flow rate controlling unit 69 described later constitute a pressurizing unit within the scope of the claims.
  • the water vapor supply unit 6 includes, for example, a container 61 in which pure water is stored.
  • the container 61 is configured so that the inside of the container 61 is hermetically sealed by a cap 62 closing the opening.
  • the temperature sensor 63 is a temperature detection unit that monitors the temperature of pure water in the container 61.
  • the mantle heater 64 is a heating unit provided so as to surround the outer periphery of the container 61.
  • the mantle heater 64 includes a heater 64a, a heat insulating material 64b surrounding the heater 64a, and an exterior part 64c surrounding the heat insulating material.
  • the mantle heater 64 can be set to generate heat at a predetermined temperature.
  • the temperature detection value is output to the control unit 100 described later, and the output is output.
  • the controller 100 outputs a temperature control signal of the mantle heater 64, so that the water temperature is controlled to become the set temperature.
  • One end of a gas supply pipe 65 which is a gas supply path, is opened in the gas phase portion in the container 61. This gas supply pipe 65 is connected to the gas supply port 51 in the top plate 41 described above. ing.
  • reference numeral 66 denotes a tape heater mounted on the gas supply pipe 65 in order to prevent the processing gas passing through the gas supply pipe 65 from condensing in the gas supply pipe 65 as described later. In response to an electrical signal from the control unit 100, for example, it is heated to a temperature corresponding to the temperature of the processing gas.
  • a nozzle 67 for publishing is immersed in the liquid phase portion in the container 61, and a carrier gas supply pipe 68 that is a carrier gas supply path is connected to the nozzle 67.
  • the end of the carrier gas supply pipe 68 is inert, for example, N gas as the carrier gas.
  • a flow rate control unit 69 such as a mass flow controller, a valve V2, and a valve VI are provided in this order in the upstream direction.
  • reference numeral 71 denotes a no-pass path that is piped by bypassing the vaporizing section, and a nozzle V3 and a flow rate control section 72 are interposed.
  • Opening and closing of the valves V1 to V3 is controlled by receiving a control signal from the control unit 100.
  • the valve V2 is open, the valve V3 is closed, and conversely, the valve V3 is open.
  • the valve V2 closes and the N gas vaporization part
  • N (nitrogen) gas is supplied from the gas supply source 60 to the carrier gas supply pipe 68.
  • the N gas is controlled to a preset flow rate by the flow rate control unit 69, for example.
  • N gas is humidified and treated with water vapor.
  • This processing gas flows into the gas supply pipe 65.
  • the N gas that has flowed into the carrier gas supply pipe 68 from the gas supply source 60 flows into the bypass 71, and is set by the flow rate control unit 72, for example, as a preset flow.
  • the amount is controlled and flows into the gas supply pipe 65.
  • the processing gas and N gas that have flowed into the gas supply pipe 65 in this way are supplied to the top plate 41.
  • the suction / exhaust unit 48 exhausts the interior of the housing 20 from the suction port 43 via the pressure adjustment unit 47.
  • the housing 20 The inside is set to atmospheric pressure.
  • an air flow as shown by arrows in FIG. 2 is formed by the supply and suction. Specifically, process gas and N gas are discharged from the discharge port 54a toward the entire surface of the wafer W.
  • the central portion side force of the wafer W is also directed toward the peripheral portion, and flows into the suction port 43 to be exhausted.
  • the wafer W is heated by the heat of the hot plate 31 while such an air flow is formed.
  • the acid-catalyzed reaction of the chemically amplified resist applied to Weno and W proceeds.
  • the air flow is formed by the processing gas
  • water vapor is supplied to the entire surface of the wafer W at a constant flow rate, and the absolute humidity (water vapor amount) around the wafer W is kept constant. Is to be heated. If water vapor contained in the processing gas is condensed on the surface of the wafer W, water droplet traces generated by the condensation adhere to the surface of the wafer W, and the water droplet traces adhere during the development processing performed after this heat treatment. Since the development of the pattern may be hindered at the above-mentioned places, when the processing gas is supplied to the wafer W as described above, the wafer W is processed by the heater 32 in order to prevent this water vapor condensation. It shall be heated to a temperature higher than the dew point of the gas!
  • the pressure is maintained.
  • This control unit has a program storage unit that is, for example, computer-powered.
  • the program storage unit includes the action of the substrate heating device 2 as described later, that is, the opening and closing of each valve, the flow rate control unit 69 , 72 N gas flow rate control, heating value control of each heater, top plate 4 via drive unit 42
  • Stored is a program having software commands, for example, in which commands are set so that 1 is moved up and down, each support pin is moved up and down via the drive units 23 and 25, and the cooling plate 27 is moved.
  • the control unit 100 controls the operation of the substrate heating apparatus 2 by reading the program to the control unit 100.
  • This program is stored in the program storage unit while being stored in a recording medium such as a disk, a hard disk, a compact disk, a magnetic optical disk, or a memory card.
  • valves VI and V3 are opened while the valve V2 is closed.
  • N gas is bypassed from the gas supply source 60.
  • the 71 flows into the gas supply pipe 65 after undergoing flow rate control by the flow rate control unit 72.
  • the N gas is discharged into the housing 20 through the vent chambers 55 and 56 of the top plate 41.
  • the amount of suction and exhaust corresponding to the amount of N gas supplied from the gas suction port 43 is performed.
  • the tape heater 66 and the heater block 57 are heated to, for example, a temperature of 70 ° C. or higher.
  • the wafer W carried into the housing 20 is delivered to the cooling plate 27 via the support pins 24.
  • the surface of the hot plate 31 is heated by the heater 32 to a predetermined temperature, for example, 130 ° C., until the cooling plate 27 moves onto the hot plate 31.
  • the support pins 26 are raised by the elevating mechanism 25 and the back surface of the wafer W transferred onto the hot plate 31 is supported by the cooling plate 27.
  • the cooling plate 27 is retracted, the support pins 26 are lowered, and the wafer W is placed on the hot plate 31 (time 1 in FIG. 3). [0040] After the top plate 41 is lowered and the processing container 4 is sealed, it is filled with N gas as described above.
  • the amount of water vapor is slightly less than the amount of saturated water vapor at the temperature of the processing gas.
  • Such high-humidity processing gas flows into the gas supply pipe 65, and the pipe is heated to a temperature of 70 ° C or higher, so that the processing gas does not condense in the processing container 4.
  • the absolute humidity around the wafer W rises, and water vapor is supplied to the wafer W (time t2 in FIG. 3).
  • the wafer W is heat-treated in such a high humidity atmosphere. After that, the valve V2 is closed simultaneously with the opening of the valve V3, and the gas constituting the air flow formed in the processing container 4 is switched to the processing gas force N gas, so that the periphery of the wafer W is switched to a dry atmosphere.
  • a chemically amplified resist is applied, and the exposed wafer W is heated in the processing container 4 by the heater 32, and the temperature of the wafer W is a processing gas containing water vapor. After the dew point temperature is raised, the processing gas is supplied into the processing container and the wafer W is heated in a water vapor atmosphere.
  • a low-acceleration electron beam is used for a short time. Even in the case of a resist with a small amount of energy injection that has undergone beam exposure, this heat treatment can sufficiently alter the portion corresponding to the exposure area. You can.
  • the reason for this is presumed that the acid generated from the resist by exposure moves in this water, so that it is possible to activate the diffusion of the acid in the exposed region of the resist. Accordingly, since it is possible to cope with the heat treatment stage without increasing the irradiation time of the low-acceleration electron beam, the throughput can be improved.
  • the pattern formed by heating with steam supplied in this way can be prevented from collapsing even if its line width is narrow.
  • a resist pattern with high line width accuracy can be formed on the surface of the substrate.
  • the timing of supplying the processing gas into the processing container 4 is, for example, that the temperature of the wafer W previously placed on the hot plate 31 is raised after being placed on the hot plate 31. Data about the time until the temperature reaches a certain temperature is input to the control unit 100, and the control unit 100 actually puts the wafer W on the hot plate 31 based on the data and waits for a while after the above time has elapsed.
  • the processing gas is supplied into the processing container 4 by switching the valve.
  • the present invention is not limited to managing the supply of the processing gas based on the time as described above. For example, the temperature of Weno and W on the hot plate 31 is detected, and the temperature is output to the control unit 100. After a while after the temperature of the wafer W detected by the temperature sensor becomes constant, the control unit 100 switches the valve as described above, and the processing gas in the processing container 4 May be supplied.
  • the inside of the processing container 4 when supplying the processing gas into the processing container 4, it is not limited to the inside of the processing container 4 being in a normal pressure state, for example, a pressurized state of about 1.2 X 10 5 Pa And the above airflow You can form it.
  • a pressurized state of about 1.2 X 10 5 Pa
  • the inside of the processing container 4 is in a pressurized state, more water vapor permeates the resist on the wafer W and works than in the case where an air flow is formed with the inside of the processing container 4 at normal pressure. Therefore, shortening of the acid catalyst decomposition reaction by heating can be expected.
  • the supply of the processing gas into the processing container 4 does not cause condensation of water vapor on the processing gas on the wafer W!
  • the process gas is transferred to wafer W. Let's feed it.
  • the sublimation material sublimated from the resist is raised by the heat of the heater 32.
  • the force is formed by the N gas and the processing gas described above.
  • the gas flows into the gas suction port 43 and is removed from the sealed space.
  • the air flow is formed by the processing gas, the water vapor in the processing gas reacts with the sublimate.
  • the sublimate can be placed in the airflow more reliably, so that the attachment of the sublimate to the exhaust line consisting of the top plate 41, the gas suction port 43, the exhaust passage 45, and the exhaust pipe 46 can be further reduced. .
  • the wafer W heated by the substrate heating apparatus 2 is not limited to the one drawn by the low acceleration electron beam, for example, the wafer W drawn by the high acceleration electron beam or the exposure via the mask. It can also be applied to a wafer W that has been manufactured. Even in this case, since the acid-catalyzed reaction can be promoted, the throughput can be improved by performing post-exposure heating in a short time.
  • the present invention can also be applied to a heat treatment of a substrate other than the semiconductor wafer W, such as an LCD substrate or a photomask reticle substrate, as the substrate to be processed.
  • the carrier mounting portion (carrier stage) B1 is a portion for loading and unloading the carrier C1, which is a substrate carrier in which, for example, 13 wafers W and W are hermetically stored.
  • the carrier platform B1 includes a carrier station 90 having a platform 90a on which a plurality of carriers C1 can be placed, an opening / closing unit 91 provided on the front wall as viewed from the carrier station 90, and an opening / closing unit.
  • the delivery unit A1 for taking out the wafer W is also provided through the carrier C force 91.
  • a processing unit B2 surrounded by a casing 92 is connected to the back side of the carrier mounting unit Bl, and heating and cooling units are arranged in multiple stages in this processing unit B2 in order of the front side force.
  • Shelf units Ul, U2, U3 and main transfer units A2, A3, which are wafer transfer units that transfer wafers W between processing units including the coating and developing units described later, are alternately arranged. It has been. That is, the shelf units Ul, U2, U3 and the main transfer units A2, A3 are arranged in a line in front and rear as viewed from the side of the carrier mounting portion B1, and an opening for wafer transfer (not shown) is formed at each connection site.
  • the wafer W can freely move in the processing section B2 from the shelf unit U1 on one end side to the shelf unit U3 on the other end side.
  • the main transport units A2 and A3 are one side of the shelf unit Ul, U2, U3 side arranged in the front-rear direction when viewed from the carrier mounting part B1, and one side of the right side liquid processing unit U4, U5 side described later, for example. It is placed in a space surrounded by a partition wall 93 composed of a part and a rear part forming one surface on the left side.
  • reference numerals 94 and 95 denote temperature / humidity control units equipped with a temperature control device for the coating liquid used in each unit and a duct for temperature / humidity control.
  • the liquid processing units U4 and U5 are provided with a coating unit COT and a developing unit on a storage unit 96 that forms a space for supplying a chemical solution such as a coating solution (resist solution) and a developing solution as shown in FIG. -It has a structure in which multiple DEVs, anti-reflection film forming units BARC, etc. are stacked in multiple stages, for example, 5 stages.
  • the shelf units Ul, U2, U3 described above are configured in such a manner that various units for performing pre-processing and post-processing of the liquid processing units U4, U5 are stacked in multiple stages, for example, 9 stages.
  • the combination includes a post-exposure heating unit (PEB) in which the above-described substrate heating apparatus 2 is turned on, a heating unit for heating (beta) the wafer W, a cooling unit for cooling Weno, and the like.
  • PEB post-exposure heating unit
  • An exposure unit B4 is connected to the back side of the shelf unit U3 in the processing unit B2 via an interface unit B3 including, for example, a first transfer chamber 97 and a second transfer chamber 98.
  • the shelf unit U6 and the buffer carrier CO are located inside the interface unit B3. Is provided.
  • the wafer W is heated by a heating unit that forms one shelf of the shelf units U1 to U3 (beta process). Then, after further cooling, it is carried into the interface B3 via the delivery unit of the rear shelf unit U3. The wafer W is transferred to the interface unit B3 by way of the delivery unit A4 ⁇ the shelf unit U6 ⁇ the delivery unit A5, for example, to the exposure unit B4 for exposure.
  • the substrate heating apparatus of the present invention provided in the shelf unit U3 performs heat treatment as described above, and then the wafer W is carried into the development unit DEV via the main transfer unit A3 and developed. As a result, a resist pattern is formed. After this, Ueno and W are returned to the original carrier C1 on the mounting table 90a.
  • a predetermined pattern was drawn on a wafer W coated with a chemically amplified resist with a low-speed electronic beam having a dose amount of 260 jZm 2 .
  • the line width of the pattern was 250 nmLS (line space).
  • the wafer W was subjected to a heat treatment using a heating apparatus configured in substantially the same manner as the substrate heating apparatus 2 described above. During this heat treatment, N gas with a relative humidity of 45% and a temperature of 23 ° C was continuously supplied to the wafer W during the heat treatment of the wafer W. Also
  • the pressure of water vapor contained in this N gas is 1 atm, and N calculated based on these values
  • Absolute humidity of the gas is 9gZm 3. After this heat treatment, development processing is performed on wafer W.
  • a resist pattern was formed.
  • the absolute humidity of the processing gas calculated using these values was 160 gZm 3 .
  • development processing is performed on each wafer W.
  • the resist pattern has the same line width as the resist pattern formed by drawing with the optimum dose amount in the standard processing 1 described above. and had are resist patterns formed on the wafer W drawn by Dose of 230jZm 2, and the optimum Dose amount this 230 j / m 2 in the absolute humidity 160 g / m 3.
  • Evaluation test 2 Same as evaluation test 1 except that the temperature of the mantle heater was set to 100 ° C for multiple wafers W on which patterns were drawn with electron beams of different doses. The resist pattern was formed by performing the heat treatment and the development treatment according to the procedures described above. Then, the temperature of the mantle heater 64 is set to 100 ° C, and the water vapor pressure and relative humidity values are the same as those in the evaluation test 1 and the absolute humidity in the process gas is calculated. The absolute humidity in the gas was 460 gZm 3 .
  • the patterns formed on each wafer W are compared, and the resist pattern formed on the wafer W drawn with a dose amount of 200 jZm 2 is drawn and formed with the optimum dose amount in the standard process 1.
  • the line width was the same as the line width of this pattern, and this 200jZm 2 was taken as the optimum dose amount at an absolute humidity of 460gZm 3 .
  • evaluation test 3 except that the temperature of the mantle heater was set to 130 ° C, a plurality of wafers W on which patterns were drawn with electron beams having different dose amounts were performed in the same procedure as in evaluation test 1. Then, heat treatment and development processing were performed to form a! / ⁇ pattern.
  • the temperature of mantle heater 64, 130 ° C is the temperature of water vapor contained in the process gas, and the values of water vapor pressure and relative humidity are the absolute humidity in the process gas calculated using the same values as in Evaluation Test 1.
  • the evaluation test 1 and a comparison of Les resist pattern formed on each wafer W similarly optimum Dose volume was 170jZm 2.
  • the optimum dose amount of standard processing 1 is 260 jZm 2 which is the dose amount when the pattern is drawn as described above, and is supplied to the wafer W during the heat treatment in standard processing 1 and evaluation tests 1 to 3.
  • Figure 6 shows the correlation between the absolute humidity of the treated gas and the optimum dose.
  • This graph shows that the optimal dose in evaluation test 1, evaluation test 2 and evaluation test 3 is about 12%, about 23%, and about 35% lower than the optimal dose in standard treatment 1, respectively.
  • the optimal dose amount decreases as the amount of water vapor supplied to the wafer W increases. In other words, it is shown that as the amount of water vapor supplied to the wafer W increases, the energy becomes lower and the pattern can be drawn on the wafer W with the beam! /.
  • Fig. 7 is a cross-sectional photograph of the pattern formed by drawing with the optimum dose amount in standard processing 1 and evaluation tests 1 to 3.
  • (a) is standard processing and
  • (b) ( c) (d) corresponds to evaluation tests 1, 2, and 3, respectively.
  • patterns with the same shape as standard processing 1 were formed in evaluation tests 1 and 2 for each optimum dose amount. Deterioration of the pattern formed by scraping the area where the beam was irradiated with water with water occurred.
  • the temperature of the mantle heater 64 is calculated as the temperature of water vapor in the process gas. However, this temperature is different from the actual water temperature, and the relative humidity of the process gas is also accurately 9 It ’s not 0%.
  • FIG. 8 shows a cross section of the resist pattern of each wafer W formed in this way, and is a table.
  • the horizontal axis shows the size of the LS, and from the top, photographs of resist patterns formed by heat treatment under the conditions of standard processing and evaluation tests 1, 2, and 3 are arranged. As shown in Fig.
  • the chemically amplified resist is prepared using the substrate heating apparatus 2 described above.
  • a predetermined pattern was drawn on each of a plurality of coated wafers W with different dose amounts.
  • each wafer W is subjected to a heat treatment according to a procedure substantially similar to the procedure described in the above-described embodiment using the substrate heating apparatus 2 described above, and then subjected to a development process.
  • a resist pattern was formed.
  • (A) in Fig. 9 shows the timing for supplying the processing gas to the wafer W in the heat treatment of this evaluation test 4 in a graph.
  • an evaluation test 5 a chemically amplified resist is applied in substantially the same manner as in the above-described evaluation test 4, and a plurality of wafers W each having a predetermined pattern drawn with different dose amounts are applied. A heat treatment and a development treatment were performed to form a resist pattern.
  • the processing gas was supplied into the processing container 4 for 20 seconds in the latter half of the time until the heating temperature of the wafer W reached the dew point and the force Ueno and W retracted the hot plate power.
  • (B) in Fig. 9 is a graph showing the relationship between the temperature of Ueno and W in this evaluation test 5 and the timing of supplying the processing gas.
  • a chemically amplified resist is applied in substantially the same manner as in the above-described evaluation test 4, and a plurality of Ueno and W in which a predetermined pattern is drawn with different dose amounts are calo-heat treated. And development processing was performed. As in evaluation tests 4 and 5, the pressure in the processing container 4 during the heat treatment was set to 1.8 atm. However, in this standard treatment 2, during the heat treatment, The process gas was not supplied.
  • FIG. 10 shows the dose amount of the electron beam irradiated on each wafer W in evaluation tests 4 and 5 and standard processing 2 and the line width of the resist pattern formed on the wafer W after the development processing. nm).
  • the dose amount of the electron beam necessary to obtain a pattern with a predetermined line width is smaller in the evaluation tests 4 and 5 than in the standard treatment 2, and the evaluation test 4 and the evaluation test. In comparison with 5, evaluation test 5 had a smaller amount of electron beam dose required to obtain a pattern with a predetermined line width.
  • the present invention is applied to the substrate heating apparatus and the substrate heating method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This invention provides a substrate heating device (2) comprising a substrate mounting part (31) within a treatment container (4), vaporization parts (61, 62, 64, 67) for vaporizing water, a feed route (68) for feeding a carrier gas into the vaporization parts (61, 62, 64, 67), a gas feed route (65) for feeding a treatment gas containing water vapor, obtained by feeding the carrier gas into the vaporization parts (61, 62, 64, 67), into the treatment container (4), and a control unit (100) for conducting control in such a manner that a treatment gas is fed into the treatment container (4) after the substrate is mounted on the substrate mounting part (31) and the treatment container (4) reaches a temperature above the dew temperature of the treatment gas. Since the exposed substrate can be heated in a water vapor atmosphere, even in the case of a resist with a small energy introduction amount, which has been exposed to electron beams for a short period of time, sites as the exposed region can satisfactorily undergo a change in quality upon heat treatment and the line width accuracy can also be improved.

Description

明 細 書  Specification
基板加熱装置、塗布,現像装置および基板加熱方法  Substrate heating device, coating and developing device, and substrate heating method
技術分野  Technical field
[0001] 本発明は、化学増幅型のレジストが塗布され、さらに露光された後の基板を現像す る前に加熱処理する基板加熱装置、塗布'現像装置および基板加熱方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a substrate heating apparatus, a coating and developing apparatus, and a substrate heating method in which a chemically amplified resist is applied and further subjected to heat treatment before developing the exposed substrate. Background art
[0002] 従来、半導体製造工程の一つであるフォトレジスト工程においては、例えば半導体 ウェハ(以下、「ウェハ」という)の表面に薄膜状にレジストを塗布し、露光した後、現 像液により現像して表面にマスクパターンを形成している。このような処理は、一般に レジストの塗布、現像を行なう塗布'現像装置に、露光装置を接続したシステムを用 いて行なわれる。  Conventionally, in a photoresist process, which is one of semiconductor manufacturing processes, for example, a resist is applied in a thin film on the surface of a semiconductor wafer (hereinafter referred to as “wafer”), exposed, and then developed with an image solution. Thus, a mask pattern is formed on the surface. Such processing is generally performed using a system in which an exposure apparatus is connected to a coating and developing apparatus that performs resist coating and development.
[0003] レジストの種類の一つに化学増幅型のレジストがある。このレジストを用いる場合、 露光することによりレジストに含まれる酸発生剤から酸が発生し、さらに PEB (Post E xposure Bake)と呼ばれる加熱処理を行なうことによりこの酸が露光領域内に拡散し て酸触媒反応が進行する。図 11は化学増幅型のレジストのうち露光領域が酸触媒 反応によって現像液に対し溶解性に変質するポジ型のレジストを用いたときの露光、 加熱、現像の状態を示す図である。先ず、レジスト Rが薄膜状に塗布された基板例え ばウエノヽ Wに対し、パターンに対応する開口部を有するマスク Mを介在させて露光を 行なうと、マスク Mの開口部を通過して光の当たった部位の表面部に例えばプロトン( H+)などの酸が発生する(図 11中(a) )。次 、でウェハ Wを所定の温度例えば 90〜 140°Cで加熱すると、酸が拡散して酸触媒反応が進行し、そしてレジスト Rの主成分 であるベース榭脂を酸が分解して現像液に対して可溶解性となる(図 11中(b) )。こ の酸触媒反応についてより詳しくは、例えば露光部に発生した酸が拡散してベース 榭脂を分解すると、このとき新たに酸 (或いは酸に相当する成分)が生成し、この酸が ベース榭脂を分解する、といったように増幅反応が進行する。その後、ウェハ Wの表 面に現像液を供給することにより、現像液に不溶解性の部位が残ってレジストパター ンが形成される(図 11中(c) )。 [0004] ところで、パターンの微細化は益々進行する傾向にあり、更に、近年においては、 少品種大量生産から多品種少量生産の生産方式に移行しつつあることから、これま でのように各品種毎に専用のマスク Mを作製していたのでは製品の単価が高騰して しまうことがある。そこで、電子ビームを用いてキャラクタープロジェクシヨンと呼ばれる マスクレスの描画技術 (以下、「電子ビーム露光」と呼ぶ)が検討され、報告がなされ て 、る(特開 2002— 50567号公報 (特許文献 1)参照)。電子ビーム露光の概念に っ ヽて図 12を用いて以下に簡単に述べておく。図中 1は電子ビームを照射するため の電子銃であり、この電子銃 1から照射された電子ビームは第 1の偏向ユニット 11に より形成される静電界により曲げられ、上下の目開き部材 12a, 12b, · · ·の各々の表 面に形成された例えば丸、三角、四角などの種々の開口部(図示せず)のうち所定の 組み合わせの開口部を通過させることにより、電子ビームの断面形状が所定のパタ ーン状に形成される。その後、電子ビームは第 2の偏向ユニット 13により再度曲げら れてウェハ Wの表面の予定とする照射領域に照射される。このように電子ビーム露光 は、電子ビームを通過させる開口部の組み合わせを変えることによりマスク Mを用い なくとも任意のパターンをウェハ Wの表面に描画することができる利点がある。 One type of resist is a chemically amplified resist. When this resist is used, an acid is generated from the acid generator contained in the resist by exposure, and this acid is diffused into the exposed area by a heat treatment called PEB (Post Exposure Bake). Catalytic reaction proceeds. FIG. 11 is a diagram showing the state of exposure, heating, and development when using a positive resist in which the exposed region is changed to be soluble in a developer by an acid catalyst reaction among chemically amplified resists. First, when exposure is performed through a mask M having an opening corresponding to a pattern on a substrate on which a resist R is applied in a thin film shape, for example, Ueno W, the light passes through the opening of the mask M and light is transmitted. For example, an acid such as proton (H +) is generated on the surface of the contacted part ((a) in FIG. 11). Next, when the wafer W is heated at a predetermined temperature, for example, 90 to 140 ° C., the acid diffuses and the acid catalyzed reaction proceeds, and the base resin, which is the main component of the resist R, decomposes and the acid decomposes the developer. (Fig. 11 (b)). In more detail about this acid-catalyzed reaction, for example, when the acid generated in the exposed area diffuses and decomposes the base resin, at this time, an acid (or a component corresponding to the acid) is newly generated. The amplification reaction proceeds such as decomposing fat. Thereafter, a developer is supplied to the surface of the wafer W, so that an insoluble portion remains in the developer and a resist pattern is formed ((c) in FIG. 11). [0004] By the way, pattern miniaturization tends to progress more and more, and moreover, in recent years, a shift is being made from a production method of low-mix and high-volume production to high-mix low-volume production. If a special mask M is made for each product type, the unit price of the product may increase. Therefore, a maskless drawing technique called character projection using an electron beam (hereinafter referred to as “electron beam exposure”) has been studied and reported (Japanese Patent Laid-Open No. 2002-50567 (Patent Document 1)). )reference). The concept of electron beam exposure is briefly described below using Fig. 12. In the figure, reference numeral 1 denotes an electron gun for irradiating an electron beam. The electron beam irradiated from the electron gun 1 is bent by an electrostatic field formed by the first deflection unit 11, and the upper and lower aperture members 12a , 12b,..., 12b,..., 12b,... By passing through predetermined combinations of openings (not shown) such as circles, triangles, squares, etc. The shape is formed in a predetermined pattern. Thereafter, the electron beam is bent again by the second deflection unit 13 and is irradiated onto a predetermined irradiation region on the surface of the wafer W. As described above, the electron beam exposure has an advantage that an arbitrary pattern can be drawn on the surface of the wafer W without using the mask M by changing the combination of openings through which the electron beam passes.
[0005] 但し、ウェハ Wに照射する電子ビームの加速度が大きすぎるとウェハ Wの下地に到 達した電子が反射して上方側に向かい予定しない部位まで描画してしまうことから(こ のような現象は近接効果と呼ばれている)、この近接効果を抑制するために電子ビー ムの加速度は小さく設定されて 、る。このように電子ビームを低加速に設定すれば、 偏向ユニット 11, 13の静電界によりビームの軌道が曲げやすくなるので、目開き部材 12の目標とする開口部を高精度に通過させることができ、更にウェハ Wの表面の予 定とする位置に高精度にビームを当てることができるという利点もある。  [0005] However, if the acceleration of the electron beam irradiating the wafer W is too large, the electrons reaching the base of the wafer W are reflected and drawn up to an unscheduled portion (such as this) The phenomenon is called the proximity effect.) To suppress this proximity effect, the acceleration of the electron beam is set small. If the electron beam is set at a low acceleration in this way, the trajectory of the beam is easily bent by the electrostatic field of the deflection units 11 and 13, so that the target opening of the aperture member 12 can be passed with high accuracy. Furthermore, there is an advantage that the beam can be applied with high accuracy to a predetermined position on the surface of the wafer W.
特許文献 1:特開 2002 - 50567号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-50567
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら低加速の電子ビームを用いた描画には以下のような問題がある。即ち 、低加速にした分にぉ 、て電子ビームからレジストに注入されるエネルギーが少なく なるため、化学増幅型レジストの場合には増幅反応促進のトリガーとなり得る酸の量 が不足してしま ヽ、描画後加熱を行なっても描画領域内に充分に酸が広がらな 、場 合がある。このためレジストの変質が充分に行なわれず、結果としてパターンが形成 されな 、か、あるいは形成されたとしても線幅精度が低 、パターンが形成されてしまう 。このため電子ビーム露光を実施しょうとすると充分な電子ビームのエネルギーをレ ジストに注入するために描画部位に対する電子ビームの照射時間を長くせざるを得 ないが、そうするとスループットがかなり低くなつてしまい、実現化が阻まれている要因 になっている。そして、今後、より高精度にビームの軌道を制御するために更にビー ムを低加速に設定したいという動きもあり、ビームの低加速度化とスループットの向上 とのトレードオフの問題が益々顕著ィ匕する懸念がある。 [0006] Drawing using a low acceleration electron beam with force, however, has the following problems. In other words, the amount of acid that can be a trigger for promoting the amplification reaction in the case of a chemically amplified resist because the energy injected from the electron beam into the resist is reduced in proportion to the low acceleration. However, even if heating is performed after drawing, the acid may not spread sufficiently in the drawing area. For this reason, the resist is not sufficiently altered, and as a result, the pattern is not formed, or even if formed, the line width accuracy is low and the pattern is formed. For this reason, if electron beam exposure is to be carried out, the electron beam irradiation time for the drawing site must be lengthened in order to inject sufficient electron beam energy into the resist, but in that case the throughput will be considerably reduced, This is a factor that prevents realization. In the future, there is a movement to set the beam to lower acceleration in order to control the beam trajectory with higher accuracy, and the problem of trade-off between lower beam acceleration and higher throughput is becoming more prominent. There are concerns.
[0007] また他の問題として電子ビーム露光に限られないが、一般に形成しょうとするパタ ーンが微細化してその線幅が小さくなるほど、例えばレジストの強度や下地との密着 面積が少なくなるなどの要因から形成されたパターンが崩れて線幅精度が低くなつた り、パターンが形成されなかったりする不具合が発生しやすくなる。  [0007] Although other problems are not limited to electron beam exposure, in general, as the pattern to be formed becomes finer and the line width becomes smaller, for example, the resist strength and the contact area with the base decrease. Due to these factors, the formed pattern collapses, the line width accuracy is lowered, and a defect that the pattern is not formed is likely to occur.
[0008] 本発明は、このような事情に基づいてなされたものであり、その目的は化学増幅型 のレジストが塗布され、例えば低加速の電子ビームにより露光された基板を加熱処理 するにあたり、レジストの化学増幅反応を促進させて線幅精度の高 、レジストパター ンを形成し、またパターンの線幅の崩れを抑えることのできる基板加熱装置、塗布' 現像装置および基板加熱方法を提供することにある。  [0008] The present invention has been made based on such circumstances, and an object of the present invention is to apply a resist when applying a chemically amplified resist, for example, to heat-treat a substrate exposed by a low acceleration electron beam. The present invention provides a substrate heating apparatus, a coating / developing apparatus, and a substrate heating method capable of promoting a chemical amplification reaction to form a resist pattern with high line width accuracy and suppressing collapse of a pattern line width. is there.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の基板加熱装置は、処理容器と、処理容器内に設けられ、化学増幅型のレ ジストが塗布された、露光後、現像前の基板が載置される基板載置部と、基板載置 部に載置された基板を加熱する加熱ユニットと、水を気化する気化部と、この気化部 にキャリアガスを供給するためのキャリアガス供給路と、キャリアガスを上記気化部に 供給して得られた水蒸気を含む処理ガスを処理容器内に供給するガス供給路と、基 板が基板載置部に載置され、処理容器内が上記処理ガスの露点温度よりも高い温 度になった後に、上記処理ガスを処理容器内に供給するための制御部とを備える。  [0009] A substrate heating apparatus of the present invention includes a processing container, a substrate mounting portion provided in the processing container, coated with a chemically amplified resist, on which a substrate after exposure and before development is mounted. A heating unit for heating the substrate placed on the substrate placement unit, a vaporization unit for vaporizing water, a carrier gas supply path for supplying a carrier gas to the vaporization unit, and a carrier gas to the vaporization unit A gas supply path for supplying the processing gas containing water vapor obtained by supplying the gas into the processing container, and the substrate are placed on the substrate platform, and the temperature inside the processing container is higher than the dew point temperature of the processing gas. And a control unit for supplying the processing gas into the processing container.
[0010] 上記気化部は、水を収容し、キャリアガスをパブリングさせるための容器と、この容 器内の水を加熱するユニットとを含んでもよぐまた上記制御部は、例えば基板載置 部に基板が載置された後の経過時間に基づいてあるいは処理容器内の温度検出値 に基づいて、処理容器内が上記処理ガスの露点温度よりも高い温度になったと判断 してちよい。 [0010] The vaporization unit may include a container for containing water and publishing a carrier gas, and a unit for heating the water in the container. It may be determined that the temperature inside the processing container has become higher than the dew point temperature of the processing gas based on the elapsed time after the substrate is placed on the part or based on the temperature detection value in the processing container.
[0011] 上記露光は、例えば低加速の電子ビームにより基板の表面にパターンを描画する 電子ビーム露光である。また、上記基板加熱装置は、上記処理容器内を加圧する加 圧ユニットをさらに備えていてもよい。さら〖こ、上記基板加熱装置は、処理容器内を排 気する排気ユニットをさらに備え、上記制御部は、この排気ユニットにより処理ガスが 排気された後に、基板を処理容器の外に搬出するための制御信号を出力してもよい  [0011] The exposure is electron beam exposure in which a pattern is drawn on the surface of the substrate by, for example, a low acceleration electron beam. The substrate heating apparatus may further include a pressurizing unit that pressurizes the inside of the processing container. Further, the substrate heating apparatus further includes an exhaust unit that exhausts the inside of the processing container, and the control unit is configured to carry the substrate out of the processing container after the processing gas is exhausted by the exhaust unit. The control signal may be output
[0012] 本発明の塗布'現像装置は、複数枚の基板を収納した基板キャリアが搬入されるキ ャリアステーションとキャリアステーションに搬入された基板キャリアに対して基板の受 け渡しを行なう受け渡しユニットとを含むキャリアステージと、上記受け渡しユニットか ら受け渡された基板にレジストを塗布する塗布ユニットと、露光後の基板を現像する 現像ユニットと、露光前の基板を露光装置に受け渡し、露光後の基板を露光装置か ら受け取るためのインターフェイス部と、既述の基板加熱装置とを備える。 [0012] The coating and developing apparatus of the present invention includes a carrier station into which a substrate carrier containing a plurality of substrates is carried in, and a delivery unit that delivers the substrate to the substrate carrier carried into the carrier station. Including a carrier stage, a coating unit for applying a resist to the substrate delivered from the delivery unit, a development unit for developing the substrate after exposure, and a substrate before exposure to the exposure apparatus, An interface unit for receiving the substrate from the exposure apparatus and the substrate heating apparatus described above are provided.
[0013] 本発明の基板加熱方法は、化学増幅型のレジストが塗布された、露光後、現像前 の基板を加熱する基板加熱方法であって、基板を処理容器内の基板載置部に載置 する工程と、キャリアガスにより水を気化して水蒸気を含む処理ガスを生成する工程と 、基板が基板載置部に搬入され、処理容器内が上記処理ガスの露点温度よりも高い 温度になった後に、上記処理ガスを処理容器内に供給する工程とを備える。 The substrate heating method of the present invention is a substrate heating method in which a chemically amplified resist is applied and a substrate before exposure and before development is heated, and the substrate is placed on a substrate placement portion in a processing container. A step of evaporating water with a carrier gas to generate a processing gas containing water vapor, a substrate is carried into the substrate platform, and the inside of the processing container has a temperature higher than the dew point temperature of the processing gas. And a step of supplying the processing gas into the processing container.
[0014] 上記露光は、低加速の電子ビームにより基板の表面にパターンを描画する電子ビ ーム露光であってもよい。また上記基板加熱方法は、処理ガスを処理容器内から排 気する工程と、その後、基板を処理容器の外に搬出する工程とをさらに備えていても よい。 [0014] The exposure may be an electron beam exposure in which a pattern is drawn on the surface of the substrate with a low acceleration electron beam. The substrate heating method may further include a step of exhausting the processing gas from the inside of the processing container, and a step of subsequently carrying the substrate out of the processing container.
発明の効果  The invention's effect
[0015] 本発明は、化学増幅型のレジストが塗布され、露光された基板を水蒸気雰囲気で 加熱するようにして 、るため、例えば低加速の電子ビームを用いて短時間の電子ビ ーム露光がなされたエネルギー注入量の少ないレジストの場合であってもこの加熱 処理により露光領域にあたる部位を充分に変質させることができる。その理由につい ては、露光によってレジストから発生している酸がこの水の中を移動するため、レジス トの露光領域内での酸の拡散を活発にすることができるからであると推測される。従 つて、低加速の電子ビームの照射時間を長くしなくとも当該加熱処理の段階で対処 できるので、スループットの向上を図ることができる。また後述の評価試験で述べるよ うにこのように水蒸気が供給されて加熱処理されて形成されたパターンは、その線幅 が低くなつても崩れが抑えられることから、その結果として現像後にお 、て基板の表 面に線幅精度の高いレジストパターンを形成することができる。 In the present invention, a chemically amplified resist is applied, and the exposed substrate is heated in a water vapor atmosphere. Therefore, for example, a short-time electron beam exposure is performed using a low acceleration electron beam. Even in the case of a resist with a small energy injection amount, The portion corresponding to the exposure region can be sufficiently altered by the processing. The reason for this is presumed that the acid generated from the resist by exposure moves in this water, so that the diffusion of the acid in the exposure area of the resist can be activated. . Therefore, since it is possible to cope with the heat treatment stage without increasing the irradiation time of the low-acceleration electron beam, the throughput can be improved. In addition, as described in the evaluation test described later, the pattern formed by the heat treatment by supplying water vapor in this way can be prevented from collapsing even if the line width is low. A resist pattern with high line width accuracy can be formed on the surface of the substrate.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施の形態に係る基板加熱装置の構成を示す説明図である。 FIG. 1 is an explanatory diagram showing a configuration of a substrate heating apparatus according to an embodiment of the present invention.
[図 2]上記基板加熱装置の熱板および天板の構成を示す縦断側面図ある。 FIG. 2 is a longitudinal side view showing a configuration of a hot plate and a top plate of the substrate heating apparatus.
[図 3]上記基板加熱装置を用いて行なう加熱処理におけるウェハ Wの温度およびゥ ェハ Wの周囲の状態を示すグラフ図である。 FIG. 3 is a graph showing the temperature of the wafer W and the state around the wafer W in the heat treatment performed using the substrate heating apparatus.
[図 4]本発明の基板加熱装置が組み込まれる塗布 ·現像装置を示す平面図である。  FIG. 4 is a plan view showing a coating / developing apparatus in which the substrate heating apparatus of the present invention is incorporated.
[図 5]本発明の基板加熱装置が組み込まれる塗布 ·現像装置を示す斜視図である。 FIG. 5 is a perspective view showing a coating / developing apparatus in which the substrate heating apparatus of the present invention is incorporated.
[図 6]露光時の電子ビームの最適なエネルギー量と加熱処理時における絶対湿度と の関係を示したグラフである。 FIG. 6 is a graph showing the relationship between the optimum energy amount of the electron beam during exposure and the absolute humidity during heat treatment.
[図 7]上記各絶対湿度においてウェハに形成されたパターンの状態を示した写真で ある。  FIG. 7 is a photograph showing the state of the pattern formed on the wafer at each absolute humidity.
[図 8]形成されたウェハのパターンの状態をパターンのラインスペースごとに配列した 写真である。  [Fig. 8] A photograph of the pattern of the formed wafer arranged for each line space of the pattern.
[図 9]ウェハの加熱処理において基板に水蒸気を供給するタイミングを示したグラフ である。  FIG. 9 is a graph showing the timing of supplying water vapor to the substrate in the heat treatment of the wafer.
[図 10]ウェハに形成されたパターンの CDとウェハに照射された電子ビームの Dose 量との関係を示したグラフである。  FIG. 10 is a graph showing the relationship between the CD of the pattern formed on the wafer and the dose amount of the electron beam irradiated on the wafer.
[図 11]化学増幅型レジストを露光、加熱、現像したときの様子を示す説明図である。  FIG. 11 is an explanatory view showing a state when the chemically amplified resist is exposed, heated and developed.
[図 12]電子ビーム露光の概略を示す説明図である。 FIG. 12 is an explanatory diagram showing an outline of electron beam exposure.
符号の説明 [0017] 2 基板加熱装置、 32 ヒータ、 4 処理容器、 41 天板、 6 水蒸気供給部、 65 ガ ス供給管。 Explanation of symbols [0017] 2 substrate heating device, 32 heater, 4 processing vessel, 41 top plate, 6 water vapor supply section, 65 gas supply pipe.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に本発明に係る基板加熱装置の実施の形態の一例として、化学増幅型のレジ ストが塗布され、さらに例えば低加速の電子ビームにより所定のパターンが描画され た後の基板例えばウェハ Wに加熱処理を行な ヽ、酸触媒反応を進行させる基板カロ 熱装置である基板加熱装置 2について図 1を用いて説明する。この基板加熱装置 2 は本体部 2Aと水蒸気供給部 6とにより構成され、本体部 2Aは方形の筐体 20を備え ており、筐体 20の側壁にはウェハ Wの搬送口 21が開口されている。シャツタ 21aは、 搬送口 21〖こ設けられる。例えばウェハ Wが搬送口 21を介して搬入出される場合を 除いてシャツタ 21aが閉鎖されることで筐体 20内への外気の流入が防がれている。ま た筐体 20内には下方が空洞となっている基台 22が設けられている。  [0018] As an example of an embodiment of a substrate heating apparatus according to the present invention, a substrate such as a wafer after a chemical amplification type resist is applied and a predetermined pattern is drawn with a low acceleration electron beam, for example. A substrate heating apparatus 2 that is a substrate calorie heating apparatus that causes an acid catalytic reaction to proceed while heat-treating W will be described with reference to FIG. The substrate heating apparatus 2 is composed of a main body 2A and a water vapor supply unit 6. The main body 2A includes a rectangular casing 20, and a transfer port 21 for a wafer W is opened on a side wall of the casing 20. Yes. The shirter 21a is provided with 21 transport ports. For example, except for the case where the wafer W is loaded / unloaded through the transfer port 21, the shirter 21a is closed to prevent the outside air from flowing into the housing 20. In addition, a base 22 having a hollow at the bottom is provided in the housing 20.
[0019] 筐体 20内において搬送口 21に向力 側を手前側とすると、この基台 22の内部に は手前側力も奥側に昇降機構 23、 25がこの順に設けられている。昇降機構 23には 例えば 3本の支持ピン 24が接続されており、この支持ピン 24は当該昇降機構 23によ り基台 22上に穿孔された孔を介して基台 22上を鉛直方向に突没できるように構成さ れている。昇降機構 25については後述する。  [0019] If the direction toward the transport port 21 is the front side in the casing 20, the base 22 is provided with lifting mechanisms 23 and 25 in this order on the front side and the rear side in this order. For example, three support pins 24 are connected to the elevating mechanism 23, and the support pins 24 are vertically moved on the base 22 through holes formed on the base 22 by the elevating mechanism 23. It is configured so that it can sink. The lifting mechanism 25 will be described later.
[0020] 基台 22上において手前側には冷却プレート 27が設けられている。当該冷却プレー ト 27は裏面側に、例えば温度調節水を流すための図示しな 、冷却流路を備えており 、当該冷却プレート 27に載置されたウェハ Wを粗冷却するように構成されている。ま た冷却プレート 27にはスリット(不図示)が設けられており、例えばウェハ Wの裏面を 支持するアーム体を備えたウェハ Wの搬送機構 (不図示)がウエノ、 Wを支持した状 態で搬送口 21を介して筐体 20内に進入すると、既述のように上昇した支持ピン 24が 上記スリットを通過してウェハ Wの裏面を支持し、この支持ピン 24がウェハ Wを支持 したまま下降することで上記搬送機構力 冷却プレート 27へのウェハ Wの受け渡し が行なわれるようになって!/、る。  A cooling plate 27 is provided on the front side on the base 22. The cooling plate 27 is provided with a cooling flow path (not shown) for flowing temperature-controlled water, for example, on the back surface side, and is configured to roughly cool the wafer W placed on the cooling plate 27. Yes. The cooling plate 27 is also provided with slits (not shown). For example, the wafer W transfer mechanism (not shown) including an arm body that supports the back surface of the wafer W supports the wafer and the wafer W. When entering the housing 20 through the transfer port 21, the support pins 24 raised as described above pass through the slits to support the back surface of the wafer W, and the support pins 24 support the wafer W. By lowering, the transfer of the wafer W to the cooling mechanism 27 is carried out!
[0021] また冷却プレート 27は上記搬送機構と、筐体 20の奥側に設けられたウェハ Wをカロ 熱する熱板 31との間でウェハ Wの受け渡しを行なう役割を持ち、基台 22に設けられ るガイドユニット (不図示)に沿って基台 22上を手前側から奥側へ進退自在に構成さ れ、ウェハ Wを熱板 31上に搬送できるようになつている。 In addition, the cooling plate 27 has a role of transferring the wafer W between the transfer mechanism and a hot plate 31 that heats the wafer W provided on the back side of the housing 20. Provided Along the guide unit (not shown), the base 22 is configured to be able to advance and retreat from the near side to the far side, so that the wafer W can be transferred onto the hot plate 31.
[0022] 図 2をも参照して筐体 20内における熱板 31の周囲の構成について説明する。この 基板載置部である熱板 31は例えば円形状に形成されており、ウェハ W表面をカバ 一する大きさを有している。加熱ユニットであるヒータ 32は、熱板 31の内部に設けら れる。後述の制御部 100からの制御信号を受けたこのヒータ 32の発熱により熱板 31 が加熱され、熱板 31上に載置されたウェハ Wが所定の温度で加熱される。熱板 31 を支持する支持部材 33は、熱板 31の側周部および底部を覆うように形成される。熱 板 31はこの支持部材 33を介して基台 22に埋め込まれて 、る。  A configuration around the hot plate 31 in the housing 20 will be described with reference to FIG. The hot plate 31 serving as the substrate mounting portion is formed in a circular shape, for example, and has a size that covers the surface of the wafer W. A heater 32 as a heating unit is provided inside the hot plate 31. The hot plate 31 is heated by the heat generated by the heater 32 in response to a control signal from the control unit 100 described later, and the wafer W placed on the hot plate 31 is heated at a predetermined temperature. The support member 33 that supports the hot plate 31 is formed so as to cover the side periphery and the bottom of the hot plate 31. The heat plate 31 is embedded in the base 22 through the support member 33.
[0023] 熱板 31および支持部材 33にはこれらを夫々鉛直方向に貫くように例えば 3つの孔 が穿孔されており、これらの各孔内には夫々支持ピン 26が設けられている。各支持 ピン 26は上記昇降機構 25に接続され、この昇降機構 25を介して上記孔内を昇降し 、熱板 31上に突没できるようになつている。そしてウェハ Wを保持した冷却プレート 2 7が熱板 31上に移動した際に支持ピン 26が熱板 31上に突出し、冷却プレート 27の スリットを通過することでウエノ、 Wの裏面を支持できるようになっており、冷却プレート 27が後退した後、支持ピン 26がウェハ Wの裏面を支持したまま下降することにより熱 板 31上にウェハ Wが受け渡される。なお図 2に示されるように、 Oリング 34は、支持 部材 33の周縁部上に設けられる。  [0023] For example, three holes are drilled in the hot plate 31 and the support member 33 so as to penetrate each of them in the vertical direction, and a support pin 26 is provided in each of these holes. Each support pin 26 is connected to the elevating mechanism 25, and can move up and down in the hole through the elevating mechanism 25 so that it can project and sink on the hot plate 31. When the cooling plate 27 holding the wafer W moves onto the hot plate 31, the support pins 26 protrude on the hot plate 31 and pass through the slit of the cooling plate 27 so that the back of the wafer and W can be supported. After the cooling plate 27 is retracted, the support pins 26 are lowered while supporting the back surface of the wafer W, whereby the wafer W is delivered onto the hot plate 31. As shown in FIG. 2, the O-ring 34 is provided on the peripheral edge of the support member 33.
[0024] 天板 41は、熱板 31の上方に設けられる。この天板 41は上記支持部材 33とともに 処理容器 4を構成し、例えばフランジ部を有する円形の蓋状に形成されている。駆動 部 42は、天板 41を昇降させるために設けられる。既述のようにウェハ Wが熱板 31上 に載置されるとこの駆動部 42により天板 41が下降する。そして図 2に示すように上記 Oリング 34を介して天板 41の周縁部と支持部材 33の周縁部とが密着することにより 、ウェハ Wの周囲が密閉空間となるように構成されて!ヽる。  The top plate 41 is provided above the heat plate 31. The top plate 41 constitutes the processing container 4 together with the support member 33, and is formed in a circular lid shape having a flange portion, for example. The drive unit 42 is provided to raise and lower the top plate 41. As described above, when the wafer W is placed on the hot plate 31, the driving plate 42 lowers the top plate 41. Then, as shown in FIG. 2, the periphery of the top plate 41 and the periphery of the support member 33 are in close contact with each other via the O-ring 34, so that the periphery of the wafer W becomes a sealed space! The
[0025] 天板 41の中央下部にはガス供給口 51が設けられており、このガス供給口 51には 後述するガス供給管 65が接続されている。また天板 41の下部には例えば円筒状の 支持部材 52が設けられて 、る。この支持部材 52を上下方向に仕切るように整流板 5 3, 54が夫々並行に間隔をおいて設けられており、整流板 53, 54には例えば多数の ガス吐出口 53a, 54aが夫々間隔をおいて設けられている。第 1の通気室 55は、整 流板 53と支持部材 52と天板 41とにより囲まれることにより区画される。第 2の通気室 56は、整流板 53と整流板 54と支持部材 52とにより囲まれることにより区画される。ヒ 一タブロック 57は、例えば天板 41の上部に設けられる。後述するようにガス供給管 6 5から処理容器 4内に水蒸気を含んだ処理ガスが供給される際に例えばこのヒータブ ロック 57により天板 41がその処理ガスの温度に対応した温度に加熱されることによつ て上記水蒸気がこの処理容器 4内で結露することが防がれるようになって 、る。 A gas supply port 51 is provided at the lower center of the top plate 41, and a gas supply pipe 65 described later is connected to the gas supply port 51. Further, for example, a cylindrical support member 52 is provided below the top plate 41. Rectifying plates 53, 54 are provided in parallel to be spaced apart from each other so as to partition the support member 52 in the vertical direction. Gas discharge ports 53a and 54a are provided at intervals. The first ventilation chamber 55 is partitioned by being surrounded by the rectifying plate 53, the support member 52, and the top plate 41. The second ventilation chamber 56 is partitioned by being surrounded by the current plate 53, the current plate 54, and the support member 52. The heater block 57 is provided on the top plate 41, for example. As will be described later, when processing gas containing water vapor is supplied from the gas supply pipe 65 to the processing container 4, for example, the heater block 57 heats the top plate 41 to a temperature corresponding to the temperature of the processing gas. As a result, the water vapor is prevented from condensing in the processing container 4.
[0026] 天板 41の上記フランジ部の内方には例えば全周に亘りガス吸引口 43力設けられ ており、このガス吸引口 43の外方側には排気通路 45が当該ガス吸引口 43と連通す るように設けられている。この排気通路 45は後述するようにガス吸引口 43を介して排 気通路 45内に吸引されることにより冷却されて液ィ匕した処理ガス中の一部の水蒸気 を貯留することができるようになっており、またこの排気通路 45にはガス吸弓 I管 46が 接続されている。ガス吸引管 46は例えば筐体 20の外部へ伸長し、圧力調整部 47を 介して例えば真空ポンプなどの吸弓 I排気ュ-ット 48に接続されて!、る。なおこの圧 力調整部 47と後述の流量制御部 69とは請求の範囲で 、う加圧ユニットを構成して!/、 る。 [0026] For example, a gas suction port 43 is provided around the entire circumference of the flange portion of the top plate 41, and an exhaust passage 45 is provided on the outer side of the gas suction port 43. It is provided to communicate with. As will be described later, the exhaust passage 45 is sucked into the exhaust passage 45 through the gas suction port 43 so that a part of the water vapor in the process gas cooled and liquefied can be stored. A gas suction arch I tube 46 is connected to the exhaust passage 45. The gas suction pipe 46 extends to the outside of the housing 20, for example, and is connected to a suction arch I exhaust mute 48 such as a vacuum pump via a pressure adjustment unit 47 !. The pressure adjusting unit 47 and the flow rate controlling unit 69 described later constitute a pressurizing unit within the scope of the claims.
[0027] 次に水蒸気供給部 6について説明する。水蒸気供給部 6は例えば純水が貯留され た容器 61を備え、この容器 61はキャップ 62によりその開口部が塞がれることで当該 容器 61の内部が気密になるように構成されている。感温センサ 63は、容器 61内の 純水の温度をモニターする温度検出部である。マントルヒータ 64は、容器 61の外周 を囲むように設けられた加熱ユニットである。このマントルヒータ 64はヒータ 64aと、ヒ ータ 64aを囲む断熱材 64bと、断熱材を囲う外装部 64cとにより構成されている。この マントルヒータ 64は所定の温度で発熱できるように設定可能となっており、また例え ば上記感温センサ 63が水温を検出するとその温度検出値を後述の制御部 100に出 力し、その出力に基づき制御部 100がマントルヒータ 64の温度制御信号を出力する ことによって、その水温が設定温度になるように制御されるようになっている。なお容 器 61、キャップ 62、後述のノズル 67およびマントルヒータ 64は請求の範囲でいう気 化部を構成している。 [0028] 容器 61内の気相部分にはガス供給路であるガス供給管 65の一端が開口しており 、このガス供給管 65は、既述の天板 41におけるガス供給口 51に接続されている。な お図中 66は後述するようにこのガス供給管 65を通過する処理ガスがこのガス供給管 65内で結露することを防ぐために当該ガス供給管 65に卷装されたテープヒータであ り、制御部 100からの電気信号を受けて例えば処理ガスの温度に対応する温度に加 熱されるようになつている。 Next, the water vapor supply unit 6 will be described. The water vapor supply unit 6 includes, for example, a container 61 in which pure water is stored. The container 61 is configured so that the inside of the container 61 is hermetically sealed by a cap 62 closing the opening. The temperature sensor 63 is a temperature detection unit that monitors the temperature of pure water in the container 61. The mantle heater 64 is a heating unit provided so as to surround the outer periphery of the container 61. The mantle heater 64 includes a heater 64a, a heat insulating material 64b surrounding the heater 64a, and an exterior part 64c surrounding the heat insulating material. The mantle heater 64 can be set to generate heat at a predetermined temperature. For example, when the temperature sensor 63 detects the water temperature, the temperature detection value is output to the control unit 100 described later, and the output is output. Based on the above, the controller 100 outputs a temperature control signal of the mantle heater 64, so that the water temperature is controlled to become the set temperature. The container 61, the cap 62, the nozzle 67 and the mantle heater 64, which will be described later, constitute a vaporizing section referred to in the claims. [0028] One end of a gas supply pipe 65, which is a gas supply path, is opened in the gas phase portion in the container 61. This gas supply pipe 65 is connected to the gas supply port 51 in the top plate 41 described above. ing. In the figure, reference numeral 66 denotes a tape heater mounted on the gas supply pipe 65 in order to prevent the processing gas passing through the gas supply pipe 65 from condensing in the gas supply pipe 65 as described later. In response to an electrical signal from the control unit 100, for example, it is heated to a temperature corresponding to the temperature of the processing gas.
[0029] また容器 61内の液相部分にはパブリングを行なうためのノズル 67が浸漬されてお り、このノズル 67にはキャリアガス供給路であるキャリアガス供給管 68が接続されて いる。キャリアガス供給管 68の端部は例えばキャリアガスとして Nガスなどの不活性  In addition, a nozzle 67 for publishing is immersed in the liquid phase portion in the container 61, and a carrier gas supply pipe 68 that is a carrier gas supply path is connected to the nozzle 67. The end of the carrier gas supply pipe 68 is inert, for example, N gas as the carrier gas.
2  2
ガスが貯留されたガス供給源 60に接続されており、このガス供給源 60から上記 Nガ  It is connected to a gas supply source 60 in which gas is stored.
2 スがキャリアガス供給管 68に流入するようになっている。このキャリアガス供給管 68に は例えばマスフローコントローラなどからなる流量制御部 69、バルブ V2、バルブ VI が上流側に向力つてこの順に介設されている。なお図中 71は気化部をバイパスして 配管されたノ ィパス路であり、ノ レブ V3、流量制御部 72が介設されている。  2 flows into the carrier gas supply pipe 68. In this carrier gas supply pipe 68, for example, a flow rate control unit 69, such as a mass flow controller, a valve V2, and a valve VI are provided in this order in the upstream direction. In the figure, reference numeral 71 denotes a no-pass path that is piped by bypassing the vaporizing section, and a nozzle V3 and a flow rate control section 72 are interposed.
[0030] ノ レブ V1〜V3は夫々制御部 100からの制御信号を受けることによって開閉が制 御されており、例えばバルブ V2が開いているときにはバルブ V3が閉じ、逆にバルブ V3が開いているときにはバルブ V2が閉じることによって Nガスの気化部の通流と気 [0030] Opening and closing of the valves V1 to V3 is controlled by receiving a control signal from the control unit 100. For example, when the valve V2 is open, the valve V3 is closed, and conversely, the valve V3 is open. Occasionally, the valve V2 closes and the N gas vaporization part
2  2
化部のバイパス (迂回)とが交互に切り替えられるようになって!/、る。そしてバルブ VI およびバルブ V2が開くとガス供給源 60からキャリアガス供給管 68に N (窒素)ガス  It is now possible to alternate between bypassing and bypassing! When valve VI and valve V2 are opened, N (nitrogen) gas is supplied from the gas supply source 60 to the carrier gas supply pipe 68.
2  2
が供給される。この Nガスは流量制御部 69により例えば予め設定された流量に制御  Is supplied. The N gas is controlled to a preset flow rate by the flow rate control unit 69, for example.
2  2
されてノズル 67から容器 61内に吐出され、上記マントルヒータ 64により加熱されなが らバブリングされる。このパブリングによって Nガスは加湿されて水蒸気を含んだ処理  Then, it is discharged from the nozzle 67 into the container 61 and is bubbled while being heated by the mantle heater 64. By this publishing, N gas is humidified and treated with water vapor.
2  2
ガスとなり、この処理ガスが上記ガス供給管 65に流入するようになっている。  This processing gas flows into the gas supply pipe 65.
[0031] またバルブ VIおよび V3が開くとガス供給源 60からキャリアガス供給管 68内に流 入した Nガスはバイパス路 71に流入し、流量制御部 72より例えば予め設定された流[0031] When the valves VI and V3 are opened, the N gas that has flowed into the carrier gas supply pipe 68 from the gas supply source 60 flows into the bypass 71, and is set by the flow rate control unit 72, for example, as a preset flow.
2 2
量に制御され、ガス供給管 65に流入するようになって 、る。  The amount is controlled and flows into the gas supply pipe 65.
[0032] このようにガス供給管 65内に流れ込んだ処理ガスおよび Nガスは天板 41のガス供 The processing gas and N gas that have flowed into the gas supply pipe 65 in this way are supplied to the top plate 41.
2  2
給口 51を介して第 1の通気室 55に流入する。そしてこの第 1の通気室 55に流入した これらのガスは整流板 53の吐出口 53aを介して第 2の通気室 56に流入し、その後整 流板 54の吐出口 54aから筐体 20内に吐出されるようになっている。またこのように N It flows into the first ventilation chamber 55 through the supply port 51. And flowed into the first vent chamber 55 These gases flow into the second ventilation chamber 56 via the discharge port 53a of the rectifying plate 53, and are then discharged into the housing 20 from the discharge port 54a of the rectifying plate 54. N
2 ガスおよび処理ガスが筐体 20内に供給されると吸引排気ユニット 48が圧力調整部 4 7を介して吸引口 43から筐体 20内の排気を行なうようになっており、例えば筐体 20 内が大気圧に設定される。  2 When the gas and the processing gas are supplied into the housing 20, the suction / exhaust unit 48 exhausts the interior of the housing 20 from the suction port 43 via the pressure adjustment unit 47. For example, the housing 20 The inside is set to atmospheric pressure.
[0033] そして熱板 31にウェハ Wが載置されると既述のように天板 41が下降して、熱板 31 に載置されたウェハ Wの周囲が密閉空間とされ、既述の Nガスおよび処理ガスの供 [0033] Then, when the wafer W is placed on the hot plate 31, the top plate 41 is lowered as described above, and the periphery of the wafer W placed on the hot plate 31 is set as a sealed space. Supply of N gas and processing gas
2  2
給と吸引とにより例えば図 2に矢印で示すような気流が形成される。具体的に説明す ると処理ガスおよび Nガスが吐出口 54aからウェハ Wの表面全体に向けて吐出され  For example, an air flow as shown by arrows in FIG. 2 is formed by the supply and suction. Specifically, process gas and N gas are discharged from the discharge port 54a toward the entire surface of the wafer W.
2  2
た後、ウェハ Wの中心部側力も周縁部側へ向力ぃ、吸引口 43に流入して排気される ようになっており、このような気流が形成されながら熱板 31の熱によりウェハ Wが加熱 され、ウエノ、 Wに塗布されたィ匕学増幅型のレジストの酸触媒反応が進行するようにな つている。  After that, the central portion side force of the wafer W is also directed toward the peripheral portion, and flows into the suction port 43 to be exhausted. The wafer W is heated by the heat of the hot plate 31 while such an air flow is formed. As a result, the acid-catalyzed reaction of the chemically amplified resist applied to Weno and W proceeds.
[0034] そして上記気流が処理ガスにより形成される場合はウェハ Wの表面全体に例えば 一定の流量で水蒸気が供給され、ウェハ Wの周囲の絶対湿度 (水蒸気量)が一定に 保たれながらウェハ Wが加熱されるようになっている。なおウェハ Wの表面に処理ガ ス中に含まれた水蒸気が結露すると結露により生じた水滴跡がウェハ Wの表面に付 着し、この加熱処理の後に行なわれる現像処理の際に水滴跡が付着した箇所はバタ ーンの現像が妨げられるおそれがあることから、既述のようにウェハ Wに処理ガスが 供給される際にはこの水蒸気の結露を防ぐためにウェハ Wはヒータ 32により上記処 理ガスの露点よりも高 ヽ温度に加熱されて!ヽるものとする。  [0034] When the air flow is formed by the processing gas, for example, water vapor is supplied to the entire surface of the wafer W at a constant flow rate, and the absolute humidity (water vapor amount) around the wafer W is kept constant. Is to be heated. If water vapor contained in the processing gas is condensed on the surface of the wafer W, water droplet traces generated by the condensation adhere to the surface of the wafer W, and the water droplet traces adhere during the development processing performed after this heat treatment. Since the development of the pattern may be hindered at the above-mentioned places, when the processing gas is supplied to the wafer W as described above, the wafer W is processed by the heater 32 in order to prevent this water vapor condensation. It shall be heated to a temperature higher than the dew point of the gas!
[0035] なおこのようにしてウェハ Wに水蒸気が供給される際には流量制御部 69により処理 容器 4へ供給される Nガスの供給量が制御され、また圧力調整部 47により処理容器 Note that when the water vapor is supplied to the wafer W in this way, the supply amount of N gas supplied to the processing container 4 is controlled by the flow rate control unit 69, and the processing container is controlled by the pressure adjusting unit 47.
2  2
4内から排出される Nガスの排気量が夫々制御されることで処理容器 4内が所定の  4 The amount of N gas exhausted from inside is controlled, so that the inside of the processing container 4
2  2
圧力に維持されるようになって 、る。  The pressure is maintained.
[0036] 続いてこの基板加熱装置 2に備えられた制御部 100について説明する。この制御 部は、例えばコンピュータ力 なるプログラム格納部を有しており、プログラム格納部 には後述するような基板加熱装置 2の作用、つまり各バルブの開閉、流量制御部 69 , 72による Nガスの流量制御、各ヒータの発熱量の制御、駆動部 42を介した天板 4Next, the control unit 100 provided in the substrate heating apparatus 2 will be described. This control unit has a program storage unit that is, for example, computer-powered. The program storage unit includes the action of the substrate heating device 2 as described later, that is, the opening and closing of each valve, the flow rate control unit 69 , 72 N gas flow rate control, heating value control of each heater, top plate 4 via drive unit 42
2 2
1の昇降、駆動部 23, 25を介した各支持ピンの昇降、冷却プレート 27の移動などが 実施されるように命令が組まれた例えばソフトウェア力もなるプログラムが格納される 。そして上記プログラムが制御部 100に読み出されることにより制御部 100は基板カロ 熱装置 2の作用を制御する。なおこのプログラムは、例えばノ、ードディスク、コンパクト ディスク、マグネットオプティカルディスク、メモリーカードなどの記録媒体に収納され た状態でプログラム格納部に格納される。  Stored is a program having software commands, for example, in which commands are set so that 1 is moved up and down, each support pin is moved up and down via the drive units 23 and 25, and the cooling plate 27 is moved. The control unit 100 controls the operation of the substrate heating apparatus 2 by reading the program to the control unit 100. This program is stored in the program storage unit while being stored in a recording medium such as a disk, a hard disk, a compact disk, a magnetic optical disk, or a memory card.
[0037] 次に既述の基板加熱装置 2を用いて表面に化学増幅型のレジストが塗布され、電 子ビームで所定のパターンが描画されたウェハ Wを加熱処理する場合を例にして図 3を参照しながら説明する。この図 3は横軸に時間をとり、時間とウェハ Wの温度およ びこのウェハ Wの周囲における N濃度および絶対湿度 (H 0 (水)の量)の変化とを [0037] Next, a case where a wafer W on which a chemically amplified resist is coated on the surface using the substrate heating apparatus 2 described above and a predetermined pattern is drawn with an electron beam is heat-treated as an example is shown in FIG. Will be described with reference to FIG. In Fig. 3, the horizontal axis shows time.
2 2  twenty two
示している。  Show.
[0038] 先ず例えばウェハ Wが筐体 20内に搬入される前に、バルブ VIおよび V3が開かれ る一方でバルブ V2が閉じられ、既述のようにガス供給源 60から Nガスがバイパス路  [0038] First, for example, before the wafer W is loaded into the housing 20, the valves VI and V3 are opened while the valve V2 is closed. As described above, N gas is bypassed from the gas supply source 60.
2  2
71に流入し、流量制御部 72により流量制御を受けた後ガス供給管 65に流入する。 そしてこの Nガスが天板 41の通気室 55, 56を介して筐体 20内に吐出されるとともに  71 flows into the gas supply pipe 65 after undergoing flow rate control by the flow rate control unit 72. The N gas is discharged into the housing 20 through the vent chambers 55 and 56 of the top plate 41.
2  2
ガス吸引口 43からこの Nガスの供給量に応じた量の吸引排気が行なわれることによ  The amount of suction and exhaust corresponding to the amount of N gas supplied from the gas suction port 43 is performed.
2  2
つて筐体 20内にガスの気流が形成されている。  Thus, a gas flow is formed in the housing 20.
[0039] 続いて図示しない外部の搬送機構により搬送口 21を介して筐体 20内にウェハ W が搬入されると、例えば流量制御部 72を介して Nガスの筐体 20内への供給量が制 Subsequently, when the wafer W is loaded into the casing 20 via the transfer port 21 by an external transfer mechanism (not shown), for example, the supply amount of N gas into the casing 20 via the flow rate controller 72 Is
2  2
御されることにより筐体 20内の N濃度が上昇する。一方マントルヒータ 64が所定の  As a result, the N concentration in the housing 20 increases. On the other hand, the mantle heater 64
2  2
温度例えば 70°Cに加熱されており、またテープヒータ 66およびヒータブロック 57が例 えば夫々 70°C以上の温度に加熱される。筐体 20内に搬入されたウェハ Wは支持ピ ン 24を介して冷却プレート 27に受け渡される。当該冷却プレート 27が熱板 31上へ 移動するまでに熱板 31の表面はヒータ 32により所定の温度例えば 130°Cに加熱さ れる。そして昇降機構 25により支持ピン 26が上昇して冷却プレート 27により熱板 31 上に搬送されたウェハ Wの裏面を支持する。冷却プレート 27が後退すると支持ピン 2 6は下降し、熱板 31上にウェハ Wが載置される(図 3中時間 1 )。 [0040] 天板 41が下降して処理容器 4が密閉された後、この中に既述のような Nガスによる For example, the tape heater 66 and the heater block 57 are heated to, for example, a temperature of 70 ° C. or higher. The wafer W carried into the housing 20 is delivered to the cooling plate 27 via the support pins 24. The surface of the hot plate 31 is heated by the heater 32 to a predetermined temperature, for example, 130 ° C., until the cooling plate 27 moves onto the hot plate 31. Then, the support pins 26 are raised by the elevating mechanism 25 and the back surface of the wafer W transferred onto the hot plate 31 is supported by the cooling plate 27. When the cooling plate 27 is retracted, the support pins 26 are lowered, and the wafer W is placed on the hot plate 31 (time 1 in FIG. 3). [0040] After the top plate 41 is lowered and the processing container 4 is sealed, it is filled with N gas as described above.
2 気流が形成され例えば圧力調整部 47の圧力調整により、処理容器 4内が大気圧状 態になる。また熱板 31によりウェハ Wが加熱されてウエノ、 Wの温度が上昇する。そし て当該ウェハ Wの温度が一定になって例えば 30秒経過した後、バルブ V3が閉じら れると同時にバルブ V2が開かれ、バイパス路 71における Nガスの流通が停止する  2 An air flow is formed, and, for example, the pressure in the pressure adjusting unit 47 is adjusted, so that the inside of the processing container 4 is in an atmospheric pressure state. Further, the wafer W is heated by the hot plate 31, and the temperature of the wafer W increases. Then, for example, after 30 seconds have passed since the temperature of the wafer W becomes constant, the valve V3 is closed and the valve V2 is opened at the same time, and the flow of N gas in the bypass passage 71 is stopped.
2  2
とともに、既述のように Nガス供給源 60からキャリアガス供給管 68に流入した Nガス  In addition, as described above, the N gas flowing into the carrier gas supply pipe 68 from the N gas supply source 60
2 2 が流量制御部 69により流量制御を受け、その後マントルヒータ 64で加熱された水の 中でパブリングされて水蒸気を含んだ処理ガスとなる。この処理ガス中には上記 Nガ  2 2 is subjected to flow control by the flow control unit 69, and then publishes in the water heated by the mantle heater 64 to become a processing gas containing water vapor. In this process gas, the above N gas
2 スが存在する分、その処理ガスの温度における飽和水蒸気量よりも若干少ない量の 水蒸気が含まれている。このような高湿度ガスである処理ガスがガス供給管 65内に 流入し、また途中配管が 70°C以上の温度に加熱されているので上記処理ガスは結 露せずに処理容器 4内に供給されて、ウェハ Wの周囲の絶対湿度が上昇し、ウェハ Wに水蒸気が供給される(図 3中時間 t2)。  The amount of water vapor is slightly less than the amount of saturated water vapor at the temperature of the processing gas. Such high-humidity processing gas flows into the gas supply pipe 65, and the pipe is heated to a temperature of 70 ° C or higher, so that the processing gas does not condense in the processing container 4. As a result, the absolute humidity around the wafer W rises, and water vapor is supplied to the wafer W (time t2 in FIG. 3).
[0041] このような高湿度雰囲気で当該ウェハ Wは加熱処理される。その後ノ レブ V3が開 かれると同時にバルブ V2が閉じられて処理容器 4内に形成される気流を構成するガ スが処理ガス力 Nガスに切り替わることにより、ウェハ Wの周囲は乾燥雰囲気に切 [0041] The wafer W is heat-treated in such a high humidity atmosphere. After that, the valve V2 is closed simultaneously with the opening of the valve V3, and the gas constituting the air flow formed in the processing container 4 is switched to the processing gas force N gas, so that the periphery of the wafer W is switched to a dry atmosphere.
2  2
り替わる(図 3中時間 t3)。その後天板 4が上昇し、支持ピン 26がウェハ Wの裏面を支 持したまま上昇する。冷却プレート 27が再び熱板 31上へ移動して、上記ウェハ Wは 冷却プレート 27上に受け渡され熱板 31から退避する(図 3中時間 t4)。上記冷却プレ ート 27はウエノ、 Wの粗熱取りを行なうとともに基台 22上を手前側へと移動する。冷却 プレート 27が移動した後、支持ピン 24を介してウェハ Wは当該冷却プレート 27から 例えば搬送アームなどの搬送機構に受け渡され、筐体 20の外へ搬出される。  It changes (time t3 in Fig. 3). Thereafter, the top plate 4 rises and the support pins 26 rise while supporting the back surface of the wafer W. The cooling plate 27 moves again onto the hot plate 31, and the wafer W is transferred onto the cooling plate 27 and retracts from the hot plate 31 (time t4 in FIG. 3). The cooling plate 27 performs rough heat removal of Ueno and W and moves to the front side on the base 22. After the cooling plate 27 moves, the wafer W is transferred from the cooling plate 27 to the transfer mechanism such as a transfer arm through the support pins 24 and is carried out of the housing 20.
[0042] 既述の基板加熱装置 2は、化学増幅型のレジストが塗布され、露光されたウェハ W が処理容器 4内においてヒータ 32により加熱され、そのウェハ Wの温度が水蒸気を 含んだ処理ガスの露点温度よりも高くなつた後にその処理ガスを処理容器内に供給 してウェハ Wを水蒸気雰囲気で加熱するようにして 、るため、例えば低加速の電子ビ ームを用いて短時間の電子ビーム露光がなされたエネルギー注入量の少な 、レジス トの場合であってもこの加熱処理により露光領域にあたる部位を充分に変質させるこ とができる。その理由については、露光によってレジストから発生している酸がこの水 の中を移動するため、レジストの露光領域内での酸の拡散を活発にすることができる 力もであると推測される。従って、低加速の電子ビームの照射時間を長くしなくとも当 該加熱処理の段階で対処できるので、スループットの向上を図ることができる。また後 述の評価試験が示すようにこのように水蒸気が供給されて加熱処理されて形成され たパターンは、その線幅が狭くなつても崩れが抑えられることから、その結果として現 像後において基板の表面に線幅精度の高いレジストパターンを形成することができる [0042] In the substrate heating apparatus 2 described above, a chemically amplified resist is applied, and the exposed wafer W is heated in the processing container 4 by the heater 32, and the temperature of the wafer W is a processing gas containing water vapor. After the dew point temperature is raised, the processing gas is supplied into the processing container and the wafer W is heated in a water vapor atmosphere. For example, a low-acceleration electron beam is used for a short time. Even in the case of a resist with a small amount of energy injection that has undergone beam exposure, this heat treatment can sufficiently alter the portion corresponding to the exposure area. You can. The reason for this is presumed that the acid generated from the resist by exposure moves in this water, so that it is possible to activate the diffusion of the acid in the exposed region of the resist. Accordingly, since it is possible to cope with the heat treatment stage without increasing the irradiation time of the low-acceleration electron beam, the throughput can be improved. In addition, as shown in the evaluation test described later, the pattern formed by heating with steam supplied in this way can be prevented from collapsing even if its line width is narrow. A resist pattern with high line width accuracy can be formed on the surface of the substrate.
[0043] 既述の実施形態において処理ガスの処理容器 4内に供給するタイミングとしては、 例えば予め熱板 31上に載置されたウェハ Wの温度が熱板 31への載置後昇温して 一定温度になるまでの時間についてのデータを制御部 100に入力しておき、制御部 100がそのデータに基づいて実際にウェハ Wが熱板 31に載置され上記時間が経過 した後しばらくすると既述のようにバルブの切り替えを行なうことで処理ガスが処理容 器 4内に供給されるようになって 、てもよ 、。またこのように時間を基準にして処理ガ スの供給を管理することに限らず例えば熱板 31上のウエノ、 Wの温度を検出し、また その温度を制御部 100に出力するように構成された感温センサを設けて、この感温 センサが検出するウェハ Wの温度が一定になった後しばらくすると制御部 100により 既述のようなバルブの切り替えが行なわれて処理容器 4内に処理ガスが供給されるよ うになつていてもよい。 In the above-described embodiment, the timing of supplying the processing gas into the processing container 4 is, for example, that the temperature of the wafer W previously placed on the hot plate 31 is raised after being placed on the hot plate 31. Data about the time until the temperature reaches a certain temperature is input to the control unit 100, and the control unit 100 actually puts the wafer W on the hot plate 31 based on the data and waits for a while after the above time has elapsed. As described above, the processing gas is supplied into the processing container 4 by switching the valve. Further, the present invention is not limited to managing the supply of the processing gas based on the time as described above. For example, the temperature of Weno and W on the hot plate 31 is detected, and the temperature is output to the control unit 100. After a while after the temperature of the wafer W detected by the temperature sensor becomes constant, the control unit 100 switches the valve as described above, and the processing gas in the processing container 4 May be supplied.
[0044] なお既述のようにウェハ Wを熱板 31から退避させる際に処理容器 4内のガスを処 理ガスから Nガスに置換して力ゝら天板 41を上昇させ、その後冷却プレート 27を介し  [0044] As described above, when the wafer W is withdrawn from the hot plate 31, the gas in the processing container 4 is replaced with N gas from the processing gas to raise the top plate 41, and then the cooling plate. Through 27
2  2
てウエノ、 Wを熱板 31から退避させることにより、処理容器 4内に残留した処理ガスが 天板 41の上昇時に処理容器 4の外に流出することが防がれ、このため水蒸気が筐 体 20内やその外部の搬送雰囲気において結露するおそれがない。このため後続の ウエノ、 Wに水滴が付着したり電気配線系にショートが起きたりすると 、つた懸念がな い。  By evacuating Ueno and W from the hot plate 31, the processing gas remaining in the processing vessel 4 is prevented from flowing out of the processing vessel 4 when the top plate 41 is raised, so that water vapor is contained in the housing. There is no risk of condensation in the transport atmosphere inside or outside. For this reason, if water drops adhere to the following Ueno or W, or if a short circuit occurs in the electrical wiring system, there is no concern.
[0045] また既述のように処理容器 4内に処理ガスを供給する際には処理容器 4内を常圧 状態とすることに限られず、例えば 1. 2 X 105Pa程度の加圧状態にして上記気流を 形成してもよ ヽ。処理容器 4内を加圧状態にすると処理容器 4内を常圧にして気流を 形成した場合に比べてより多くの水蒸気がウェハ Wのレジストにしみ渡って働きかけ る。従って加熱による酸触媒分解反応の短縮化が期待できる。 [0045] Further, as described above, when supplying the processing gas into the processing container 4, it is not limited to the inside of the processing container 4 being in a normal pressure state, for example, a pressurized state of about 1.2 X 10 5 Pa And the above airflow You can form it. When the inside of the processing container 4 is in a pressurized state, more water vapor permeates the resist on the wafer W and works than in the case where an air flow is formed with the inside of the processing container 4 at normal pressure. Therefore, shortening of the acid catalyst decomposition reaction by heating can be expected.
[0046] ところで処理容器 4内への処理ガスの供給は処理ガス中の水蒸気がウェハ W上で 結露しな!、タイミングで行なわれればよぐ既述の実施形態のようにウエノヽ Wの温度 が一定になって力も供給することに限られず例えばウェハ Wの昇温中においてゥェ ハ Wの温度が処理ガス中の水蒸気が結露する温度よりも高くなつた後、当該処理ガ スをウェハ Wに供給するようにしてもょ 、。  [0046] By the way, the supply of the processing gas into the processing container 4 does not cause condensation of water vapor on the processing gas on the wafer W! For example, when the temperature of wafer W becomes higher than the temperature at which water vapor in the process gas is condensed during the temperature rise of wafer W, the process gas is transferred to wafer W. Let's feed it.
[0047] なお既述の実施形態のようにウェハ Wが加熱される際にはレジストから昇華した昇 華物がヒータ 32の熱により上昇する力 既述の Nガスおよび処理ガスにより形成され  [0047] Note that when the wafer W is heated as in the above-described embodiment, the sublimation material sublimated from the resist is raised by the heat of the heater 32. The force is formed by the N gas and the processing gas described above.
2  2
る気流に乗ってガス吸引口 43に流入し、上記密閉空間内から除去されるようになつ ており、処理ガスにより上記気流が形成される場合には処理ガス中の水蒸気が昇華 物と反応することによって、より確実に昇華物を気流にのせることができるため天板 4 1およびガス吸引口 43、排気通路 45、排気管 46からなる排気ラインへの昇華物の付 着をより一層低減できる。  The gas flows into the gas suction port 43 and is removed from the sealed space. When the air flow is formed by the processing gas, the water vapor in the processing gas reacts with the sublimate. As a result, the sublimate can be placed in the airflow more reliably, so that the attachment of the sublimate to the exhaust line consisting of the top plate 41, the gas suction port 43, the exhaust passage 45, and the exhaust pipe 46 can be further reduced. .
[0048] ところで基板加熱装置 2により加熱されるウェハ Wは低加速の電子ビームにより描 画されたものに限られず、例えば高加速の電子ビームで描画されたウェハ Wや、マ スクを介して露光されたウェハ Wにも適用することもできる。この場合であっても、酸 触媒反応を促進させることができるので、短時間で露光後加熱を行なうことでスルー プットの向上を図ることができる。また本発明は、被処理基板に半導体ウェハ W以外 の基板、例えば LCD基板、フォトマスク用レチクル基板の加熱処理にも適用できる。  By the way, the wafer W heated by the substrate heating apparatus 2 is not limited to the one drawn by the low acceleration electron beam, for example, the wafer W drawn by the high acceleration electron beam or the exposure via the mask. It can also be applied to a wafer W that has been manufactured. Even in this case, since the acid-catalyzed reaction can be promoted, the throughput can be improved by performing post-exposure heating in a short time. The present invention can also be applied to a heat treatment of a substrate other than the semiconductor wafer W, such as an LCD substrate or a photomask reticle substrate, as the substrate to be processed.
[0049] 続ヽて本発明の基板加熱装置が組み込まれた塗布 ·現像装置の一例につ!ヽて図 4および図 5を参照しながら簡単に説明する。キャリア載置部(キャリアステージ) B1は 、基板であるウエノ、 Wが例えば 13枚密閉収納された基板キャリアであるキャリア C1を 搬入出するための部分である。キャリア載置部 B1には、キャリア C1を複数個載置可 能な載置部 90aを備えたキャリアステーション 90と、このキャリアステーション 90から 見て前方の壁面に設けられる開閉部 91と、開閉部 91を介してキャリア C力もウェハ Wを取り出すための受け渡しユニット A1とが設けられて 、る。 [0050] キャリア載置部 Blの奥側には筐体 92にて周囲を囲まれる処理部 B2が接続されて おり、この処理部 B2には手前側力 順に加熱、冷却系のユニットを多段化した棚ュ ニット Ul, U2, U3と、後述する塗布、現像ユニットを含む各処理ユニット間のウェハ Wの受け渡しを行なうウェハ搬送ユニットである主搬送ユニット A2, A3とが交互に配 列して設けられている。即ち、棚ユニット Ul, U2, U3および主搬送ユニット A2, A3 はキャリア載置部 B1側力 見て前後一列に配列されると共に、各々の接続部位に は図示しないウェハ搬送用の開口部が形成されており、ウェハ Wは処理部 B2内を 一端側の棚ユニット U1から他端側の棚ユニット U3まで自由に移動できるようになつ ている。また主搬送ユニット A2、 A3は、 キャリア載置部 B1から見て前後方向に配置 される棚ユニット Ul, U2, U3側の一面部と、後述する例えば右側の液処理ユニット U4, U5側の一面部と、左側の一面をなす背面部とで構成される区画壁 93により囲 まれる空間内に置かれている。また図中 94, 95は各ユニットで用いられる塗布液の 温度調節装置や温湿度調節用のダクト等を備えた温湿度調節ユニットである。 Next, an example of a coating / developing apparatus in which the substrate heating apparatus of the present invention is incorporated will be briefly described with reference to FIGS. 4 and 5. The carrier mounting portion (carrier stage) B1 is a portion for loading and unloading the carrier C1, which is a substrate carrier in which, for example, 13 wafers W and W are hermetically stored. The carrier platform B1 includes a carrier station 90 having a platform 90a on which a plurality of carriers C1 can be placed, an opening / closing unit 91 provided on the front wall as viewed from the carrier station 90, and an opening / closing unit. The delivery unit A1 for taking out the wafer W is also provided through the carrier C force 91. [0050] A processing unit B2 surrounded by a casing 92 is connected to the back side of the carrier mounting unit Bl, and heating and cooling units are arranged in multiple stages in this processing unit B2 in order of the front side force. Shelf units Ul, U2, U3 and main transfer units A2, A3, which are wafer transfer units that transfer wafers W between processing units including the coating and developing units described later, are alternately arranged. It has been. That is, the shelf units Ul, U2, U3 and the main transfer units A2, A3 are arranged in a line in front and rear as viewed from the side of the carrier mounting portion B1, and an opening for wafer transfer (not shown) is formed at each connection site. The wafer W can freely move in the processing section B2 from the shelf unit U1 on one end side to the shelf unit U3 on the other end side. The main transport units A2 and A3 are one side of the shelf unit Ul, U2, U3 side arranged in the front-rear direction when viewed from the carrier mounting part B1, and one side of the right side liquid processing unit U4, U5 side described later, for example. It is placed in a space surrounded by a partition wall 93 composed of a part and a rear part forming one surface on the left side. In the figure, reference numerals 94 and 95 denote temperature / humidity control units equipped with a temperature control device for the coating liquid used in each unit and a duct for temperature / humidity control.
[0051] 液処理ユニット U4, U5は、例えば図 5に示すように塗布液(レジスト液)や現像液と いった薬液供給用のスペースをなす収納部 96の上に、塗布ユニット COT、現像ュ- ット DEVおよび反射防止膜形成ユニット BARC等を複数段例えば 5段に積層した構 成とされている。また既述の棚ユニット Ul, U2, U3は、液処理ユニット U4, U5にて 行なわれる処理の前処理および後処理を行なうための各種ユニットを複数段例えば 9段に積層した構成とされており、その組み合わせは、上述の基板加熱装置 2をュ- ットイ匕した露光後加熱ユニット(PEB)、ウェハ Wを加熱(ベータ)する加熱ユニット、ゥ エノ、 Wを冷却する冷却ユニット等が含まれる。  [0051] The liquid processing units U4 and U5 are provided with a coating unit COT and a developing unit on a storage unit 96 that forms a space for supplying a chemical solution such as a coating solution (resist solution) and a developing solution as shown in FIG. -It has a structure in which multiple DEVs, anti-reflection film forming units BARC, etc. are stacked in multiple stages, for example, 5 stages. In addition, the shelf units Ul, U2, U3 described above are configured in such a manner that various units for performing pre-processing and post-processing of the liquid processing units U4, U5 are stacked in multiple stages, for example, 9 stages. The combination includes a post-exposure heating unit (PEB) in which the above-described substrate heating apparatus 2 is turned on, a heating unit for heating (beta) the wafer W, a cooling unit for cooling Weno, and the like.
[0052] 処理部 B2における棚ユニット U3の奥側には、例えば第 1の搬送室 97および第 2の 搬送室 98からなるインターフェイス部 B3を介して露光部 B4が接続されて 、る。インタ 一フェイス部 B3の内部には処理部 B2と露光部 B4との間でウェハ Wの受け渡しを行 なうための 2つの受け渡しユニット A4, A5の他に、棚ユニット U6およびバッファキヤリ ァ COが設けられている。  An exposure unit B4 is connected to the back side of the shelf unit U3 in the processing unit B2 via an interface unit B3 including, for example, a first transfer chamber 97 and a second transfer chamber 98. In addition to the two transfer units A4 and A5 for transferring the wafer W between the processing unit B2 and the exposure unit B4, the shelf unit U6 and the buffer carrier CO are located inside the interface unit B3. Is provided.
[0053] この装置におけるウェハの流れについて一例を示すと、先ず外部からウェハ Wの 収納されたキャリア C1が載置台 90aに載置されると、開閉部 91と共にキャリア Cの蓋 体が外されて受け渡しユニット Alによりウェハ Wが取り出される。そしてウェハ Wは 棚ユニット U1の一段をなす受け渡しユニット(図示せず)を介して主搬送ユニット A2 へと受け渡され、棚ユニット U1〜U3内の一の棚にて、塗布処理の前処理として例え ばアドヒージョン処理、冷却処理が行なわれ、し力る後、塗布ユニットにてレジスト膜 が形成されると、ウェハ Wは棚ユニット U1〜U3の一の棚をなす加熱ユニットで加熱( ベータ処理)され、更に冷却された後棚ユニット U3の受け渡しユニットを経由してイン ターフェイス部 B3へと搬入される。このインターフェイス部 B3にお!/、てウェハ Wは例 えば受け渡しユニット A4→棚ユニット U6→受け渡しユニット A5という経路で露光部 B4へ搬送され、露光が行なわれる。露光後、棚ユニット U3内に設けられた本発明の 基板加熱装置にて既述のようにして加熱処理が行なわれ、その後ウェハ Wは主搬送 ユニット A3を介して現像ユニット DEVに搬入され、現像されることでレジストパターン が形成される。し力る後ウエノ、 Wは載置台 90a上の元のキャリア C1へと戻される。 An example of the flow of wafers in this apparatus will be described. First, when the carrier C1 storing the wafer W from the outside is mounted on the mounting table 90a, the lid of the carrier C is opened together with the opening / closing portion 91. The body is removed and the wafer W is taken out by the delivery unit Al. Then, the wafer W is transferred to the main transfer unit A2 via a transfer unit (not shown) that forms one stage of the shelf unit U1, and is pre-processed as a coating process on one shelf in the shelf units U1 to U3. For example, after an adhesion process and a cooling process are performed and a resist film is formed in the coating unit, the wafer W is heated by a heating unit that forms one shelf of the shelf units U1 to U3 (beta process). Then, after further cooling, it is carried into the interface B3 via the delivery unit of the rear shelf unit U3. The wafer W is transferred to the interface unit B3 by way of the delivery unit A4 → the shelf unit U6 → the delivery unit A5, for example, to the exposure unit B4 for exposure. After exposure, the substrate heating apparatus of the present invention provided in the shelf unit U3 performs heat treatment as described above, and then the wafer W is carried into the development unit DEV via the main transfer unit A3 and developed. As a result, a resist pattern is formed. After this, Ueno and W are returned to the original carrier C1 on the mounting table 90a.
[0054] (評価試験) [0054] (Evaluation test)
本発明の効果を確認するために以下の評価試験を行なった。先ず化学増幅型の レジストが塗布されたウェハ Wに対して、 260jZm2の Dose量の低カ卩速の電子ビー ムで所定のパターンを描画した。パターンの線幅は 250nmLS (ラインスペース)とし た。そして標準処理 1として既述の基板加熱装置 2と略同様に構成された加熱装置を 用いてウェハ Wに対して加熱処理を行なった。この加熱処理にお!、てはウェハ Wの 加熱処理中に相対湿度 45%、温度 23°Cの Nガスをウェハ Wに供給し続けた。また In order to confirm the effect of the present invention, the following evaluation test was performed. First, a predetermined pattern was drawn on a wafer W coated with a chemically amplified resist with a low-speed electronic beam having a dose amount of 260 jZm 2 . The line width of the pattern was 250 nmLS (line space). Then, as a standard process 1, the wafer W was subjected to a heat treatment using a heating apparatus configured in substantially the same manner as the substrate heating apparatus 2 described above. During this heat treatment, N gas with a relative humidity of 45% and a temperature of 23 ° C was continuously supplied to the wafer W during the heat treatment of the wafer W. Also
2  2
この Nガス中に含まれる水蒸気の圧力は 1気圧とし、これらの値を基に算出された N The pressure of water vapor contained in this N gas is 1 atm, and N calculated based on these values
2 2
ガスの絶対湿度は 9gZm3である。この加熱処理後に現像処理を行ないウェハ WにAbsolute humidity of the gas is 9gZm 3. After this heat treatment, development processing is performed on wafer W.
2 2
レジストパターンを形成した。  A resist pattern was formed.
[0055] 続いて評価試験 1として複数のウェハ Wに対して 260jZm2よりも低い、夫々異なる Dose量で各ウェハ Wに標準処理 1と同様に 250nmLSのパターンを描画し、その後 各ウェハ Wにつ 、て上記基板加熱装置 2を用いて既述の実施形態で述べた手順と 同様の手順に従って加熱処理を行なった。マントルヒータ 64の温度は 70°Cに設定し た。このとき上記マントルヒータ 64の温度である 70°Cが処理ガスに含まれる水蒸気の 温度であるものとし、また処理ガスには Nガスが含まれているため当該処理ガスの相 対湿度を 90%とした。さらに処理ガス中の水蒸気の圧力は 1気圧としてこれらの各値 を用いて算出した処理ガスの絶対湿度は 160gZm3であった。その後各ウェハ Wに 現像処理を行な ヽ形成された各レジストパターンを比較すると上記標準処理 1におけ る最適 Dose量で描画されて形成されたレジストパターンの線幅と同一の線幅を有し ていたのは 230jZm2の Dose量で描画されたウェハ Wに形成されたレジストパター ンであり、この 230j/m2を絶対湿度 160g/m3における最適 Dose量とした。 [0055] Subsequently, as an evaluation test 1, a pattern of 250 nm LS is drawn on each wafer W with a different dose amount, which is lower than 260 jZm 2 for each of the wafers W, as in the standard processing 1, and then each wafer W Then, heat treatment was performed using the substrate heating apparatus 2 according to the same procedure as that described in the above-described embodiment. The temperature of the mantle heater 64 was set to 70 ° C. At this time, 70 ° C, which is the temperature of the mantle heater 64, is assumed to be the temperature of water vapor contained in the processing gas, and since the processing gas contains N gas, the phase of the processing gas Humidity was 90%. Furthermore, the absolute humidity of the processing gas calculated using these values, assuming that the pressure of water vapor in the processing gas was 1 atm, was 160 gZm 3 . Thereafter, development processing is performed on each wafer W. When the formed resist patterns are compared, the resist pattern has the same line width as the resist pattern formed by drawing with the optimum dose amount in the standard processing 1 described above. and had are resist patterns formed on the wafer W drawn by Dose of 230jZm 2, and the optimum Dose amount this 230 j / m 2 in the absolute humidity 160 g / m 3.
[0056] 続!、て評価試験 2として夫々異なる Dose量の電子ビームでパターンが描画された 複数のウェハ Wについてマントルヒータの温度を 100°Cにしたことを除いては評価試 験 1と同様の手順で加熱処理および現像処理を行ないレジストパターンを形成した。 そしてマントルヒータ 64の温度である 100°Cを処理ガスに含まれる水蒸気の温度とし 、水蒸気圧、相対湿度の値は評価試験 1と同様の値を用いて処理ガス中の絶対湿度 を算出した処理ガス中の絶対湿度は 460gZm3であった。そして評価試験 1と同様 に各ウェハ Wに形成されたパターンを夫々比較すると 200jZm2の Dose量で描画し たウェハ Wに形成されたレジストパターンが標準処理 1における最適 Dose量で描画 されて形成されたパターンの線幅と同一の線幅を有しており、この 200jZm2を絶対 湿度 460gZm3における最適 Dose量とした。 [0056] Continuing! Evaluation test 2 Same as evaluation test 1 except that the temperature of the mantle heater was set to 100 ° C for multiple wafers W on which patterns were drawn with electron beams of different doses. The resist pattern was formed by performing the heat treatment and the development treatment according to the procedures described above. Then, the temperature of the mantle heater 64 is set to 100 ° C, and the water vapor pressure and relative humidity values are the same as those in the evaluation test 1 and the absolute humidity in the process gas is calculated. The absolute humidity in the gas was 460 gZm 3 . As in evaluation test 1, the patterns formed on each wafer W are compared, and the resist pattern formed on the wafer W drawn with a dose amount of 200 jZm 2 is drawn and formed with the optimum dose amount in the standard process 1. The line width was the same as the line width of this pattern, and this 200jZm 2 was taken as the optimum dose amount at an absolute humidity of 460gZm 3 .
[0057] さらに評価試験 3としてマントルヒータの温度を 130°Cに設定したことを除いて評価 試験 1と同様の手順で夫々異なる Dose量の電子ビームでパターンが描画された複 数のウェハ Wにつ ヽて加熱処理および現像処理を行な!/ヽパターンを形成した。そし てマントルヒータ 64の温度である 130°Cを処理ガスに含まれる水蒸気の温度とし、水 蒸気圧、相対湿度の値は評価試験 1と同様の値を用いて算出した処理ガス中の絶対 湿度は l lOOgZm3であった。そして評価試験 1と同様に各ウェハ Wに形成されたレ ジストパターンを比較すると最適 Dose量は 170jZm2であった。 [0057] Further, in evaluation test 3, except that the temperature of the mantle heater was set to 130 ° C, a plurality of wafers W on which patterns were drawn with electron beams having different dose amounts were performed in the same procedure as in evaluation test 1. Then, heat treatment and development processing were performed to form a! / ヽ pattern. The temperature of mantle heater 64, 130 ° C, is the temperature of water vapor contained in the process gas, and the values of water vapor pressure and relative humidity are the absolute humidity in the process gas calculated using the same values as in Evaluation Test 1. Was l lOOgZm 3 . The evaluation test 1 and a comparison of Les resist pattern formed on each wafer W similarly optimum Dose volume was 170jZm 2.
[0058] 標準処理 1の最適 Dose量を既述のようにパターンを描画したときの Dose量である 260jZm2として、標準処理 1および評価試験 1〜3における加熱処理の際にウェハ Wに供給される処理ガスの絶対湿度と最適 Dose量との相関を図 6のグラフに示した 。このグラフを見ると標準処理 1における最適 Dose量に比べると評価試験 1、評価試 験 2および評価試験 3における最適 Dose量は夫々約 12%、約 23%、約 35%低下し ており、この結果力 ウェハ Wに供給される水蒸気量が多くなるに従い最適 Dose量 が低くなるといえる。つまりウェハ Wに供給される水蒸気量が多くなるに従ってよりェ ネルギ一の低 、ビームでウェハ Wにパターンを描画できることが示されて!/、る。 [0058] The optimum dose amount of standard processing 1 is 260 jZm 2 which is the dose amount when the pattern is drawn as described above, and is supplied to the wafer W during the heat treatment in standard processing 1 and evaluation tests 1 to 3. Figure 6 shows the correlation between the absolute humidity of the treated gas and the optimum dose. This graph shows that the optimal dose in evaluation test 1, evaluation test 2 and evaluation test 3 is about 12%, about 23%, and about 35% lower than the optimal dose in standard treatment 1, respectively. As a result, it can be said that the optimal dose amount decreases as the amount of water vapor supplied to the wafer W increases. In other words, it is shown that as the amount of water vapor supplied to the wafer W increases, the energy becomes lower and the pattern can be drawn on the wafer W with the beam! /.
[0059] 図 7は標準処理 1および評価試験 1〜3における最適 Dose量により描画を行なうこ とで形成されたパターンの断面写真であり、図 7中(a)は標準処理、(b) (c) (d)は夫 々評価試験 1、 2、 3に対応する。この写真から評価試験 1、 2では夫々の最適 Dose 量において標準処理 1と略同様の形状を持ったパターンが形成されているが評価試 験 3においては未露光部の膜ベリの発生、つまり電子ビームが照射されな力つた部 位が水により削られて形成されたパターンの劣化が生じていた。なお評価試験 1〜3 においてはマントルヒータ 64の温度を処理ガス中の水蒸気の温度として計算してい るがこの温度は実際の水温とは異なっており、また処理ガスの相対湿度も正確には 9 0%ではな 、。また加熱されて 、るため処理ガス中の水蒸気圧も正確に 1気圧ではな い。従って、これらの値を元に計算で求められる絶対湿度は処理ガス中における実 際の絶対湿度とは異なるものである。しかし既述の評価試験 1〜3の結果と標準処理 1の結果とを比べればウェハ Wに加湿した空気を供給することが最適 Dose量を下げ ることは明らかであり、また処理ガス中の絶対湿度が高いほど最適 Dose量が低下し ていくのも明らかである。  [0059] Fig. 7 is a cross-sectional photograph of the pattern formed by drawing with the optimum dose amount in standard processing 1 and evaluation tests 1 to 3. In Fig. 7, (a) is standard processing and (b) ( c) (d) corresponds to evaluation tests 1, 2, and 3, respectively. In this test, patterns with the same shape as standard processing 1 were formed in evaluation tests 1 and 2 for each optimum dose amount. Deterioration of the pattern formed by scraping the area where the beam was irradiated with water with water occurred. In the evaluation tests 1 to 3, the temperature of the mantle heater 64 is calculated as the temperature of water vapor in the process gas. However, this temperature is different from the actual water temperature, and the relative humidity of the process gas is also accurately 9 It ’s not 0%. In addition, since it is heated, the water vapor pressure in the processing gas is not exactly 1 atm. Therefore, the absolute humidity obtained by calculation based on these values is different from the actual absolute humidity in the process gas. However, comparing the results of the above-described evaluation tests 1 to 3 with the results of standard processing 1, it is clear that supplying the humid air to the wafer W will reduce the optimum dose amount, and that the absolute amount in the processing gas It is also clear that the optimal dose decreases with increasing humidity.
[0060] 続、て夫々異なる LSを持つように低加速の電子ビームで描画された複数のウェハ Wを夫々既述の標準処理 1および評価試験 1〜3と同じ条件で加熱した後に現像し て、各ウェハ Wに夫々レジストパターンを形成した。図 8はこのように形成された各ゥ ェハ Wのレジストパターンの断面を示し、表にしたものである。この表において横軸に は LSの大きさをとり、そして上から標準処理、評価試験 1、 2、 3の各条件で加熱処理 して形成されたレジストパターンの写真を配列している。この図 8に示すように標準処 理 1と同じ条件で処理したものは LSが 160nmから 250nmまでの範囲においてはレ ジストパターンの形成が確認されたが LSを夫々 150nm、 140nmとして描画したゥェ ハ Wについてはレジストパターンが崩れてしまっていた。これに対して評価試験 1〜3 の条件で処理したものは LSが夫々 140nm〜250nmの範囲においてレジストパター ンの崩れは見られず正常なレジストパターンが形成されて 、た。この結果力 LSが 小さくなるとレジストパターンが崩れて形成されにくくなる力 ウェハ Wの加熱処理中 に所定の量の水蒸気を当該ウェハ wに供給することによってレジストパターンの崩れ を防ぐことができるといえる。 [0060] Subsequently, a plurality of wafers W drawn with low-acceleration electron beams so as to have different LS are heated under the same conditions as the standard processing 1 and evaluation tests 1 to 3 described above, and developed. A resist pattern was formed on each wafer W. FIG. 8 shows a cross section of the resist pattern of each wafer W formed in this way, and is a table. In this table, the horizontal axis shows the size of the LS, and from the top, photographs of resist patterns formed by heat treatment under the conditions of standard processing and evaluation tests 1, 2, and 3 are arranged. As shown in Fig. 8, when the LS was processed under the same conditions as the standard processing 1, the formation of a resist pattern was confirmed when the LS ranged from 160 nm to 250 nm, but the LS was drawn with 150 nm and 140 nm, respectively. For C, the resist pattern has collapsed. On the other hand, those processed under the conditions of evaluation tests 1 to 3 showed that the resist pattern was not broken and the normal resist pattern was formed in the LS range of 140 nm to 250 nm, respectively. As a result, the force LS is If the resist pattern becomes smaller, the resist pattern is less likely to be formed. It can be said that the resist pattern can be prevented from collapsing by supplying a predetermined amount of water vapor to the wafer w during the heat treatment of the wafer W.
[0061] 次に加熱処理における水蒸気を供給するタイミングと形成されるレジストパターンの 線幅との関係を調べるために評価試験 4として既述の基板加熱装置 2を用いて先ず 化学増幅型のレジストが塗布された複数のウェハ Wに夫々異なる Dose量で所定の パターンを描画した。続 、て既述の基板加熱装置 2を用いて既述の実施形態で述べ た手順と略同様の手順に従って各ウェハ Wにつ 、て加熱処理を行なった後、現像処 理を行ない各ウェハ Wにレジストパターンを形成した。図 9中の(a)はこの評価試験 4 の加熱処理におけるウェハ Wに処理ガスを供給するタイミングをグラフに示したもの である。この評価試験 4では図 9中の(a)に示すようにその加熱処理においてウェハ Wが熱板 31に載置されて力 そのウェハ Wが熱板力 退避するまでの時間(図中 tl から t4までの時間)を 90秒とし、ウェハ Wの加熱温度が当該ウェハ Wに供給される 処理ガスの露点に達して力 ウェハ Wが熱板力 退避するまでの時間を前半と後半 とに分けた場合、その前半において 20秒間処理容器 4内に処理ガスを供給した。な お図 ヽて処理ガスの供給する時間、処理ガスの供給を停止する時間を夫々 t 2、 t3としている。また加熱処理中の処理容器内の圧力は 1. 8atmとした。  [0061] Next, in order to investigate the relationship between the timing of supplying water vapor in the heat treatment and the line width of the resist pattern to be formed, as the evaluation test 4, first the chemically amplified resist is prepared using the substrate heating apparatus 2 described above. A predetermined pattern was drawn on each of a plurality of coated wafers W with different dose amounts. Subsequently, each wafer W is subjected to a heat treatment according to a procedure substantially similar to the procedure described in the above-described embodiment using the substrate heating apparatus 2 described above, and then subjected to a development process. A resist pattern was formed. (A) in Fig. 9 shows the timing for supplying the processing gas to the wafer W in the heat treatment of this evaluation test 4 in a graph. In this evaluation test 4, as shown in (a) of FIG. 9, in the heat treatment, the time until the wafer W is placed on the hot plate 31 and the force of the wafer W retracts (from tl to t4 in the drawing). Time) until the heating temperature of the wafer W reaches the dew point of the processing gas supplied to the wafer W, and the time until the wafer W is retracted by the hot plate force is divided into the first half and the second half. In the first half, the processing gas was supplied into the processing container 4 for 20 seconds. The time for supplying the processing gas and the time for stopping the processing gas supply are t 2 and t3, respectively. The pressure in the processing vessel during the heat treatment was 1.8 atm.
[0062] 次に評価試験 5として既述の評価試験 4と略同様に化学増幅型のレジストが塗布さ れ、夫々異なる Dose量で所定のパターンが描画された複数のウェハ Wに対して夫 々加熱処理および現像処理を行な!ヽレジストパターンを形成した。ただし評価試験 4 と異なりウェハ Wの加熱温度が露点に達して力 ウエノ、 Wが熱板力 退避するまで の時間の後半において 20秒間、処理容器 4内に処理ガスを供給した。図 9中の (b) はこの評価試験 5のウエノ、 Wの温度と処理ガスを供給するタイミングとの関係をグラフ に示したものである。  [0062] Next, as an evaluation test 5, a chemically amplified resist is applied in substantially the same manner as in the above-described evaluation test 4, and a plurality of wafers W each having a predetermined pattern drawn with different dose amounts are applied. A heat treatment and a development treatment were performed to form a resist pattern. However, unlike the evaluation test 4, the processing gas was supplied into the processing container 4 for 20 seconds in the latter half of the time until the heating temperature of the wafer W reached the dew point and the force Ueno and W retracted the hot plate power. (B) in Fig. 9 is a graph showing the relationship between the temperature of Ueno and W in this evaluation test 5 and the timing of supplying the processing gas.
[0063] また標準処理 2として既述の評価試験 4と略同様に化学増幅型のレジストが塗布さ れ、夫々異なる Dose量で所定のパターンが描画された複数のウエノ、 Wに対してカロ 熱処理および現像処理を行なった。また評価試験 4、 5と同様に加熱処理中の処理 容器 4内の圧力は 1. 8atmとした。ただしこの標準処理 2においては加熱処理中に 処理ガスの供給を行なわな力つた。 [0063] Further, as standard treatment 2, a chemically amplified resist is applied in substantially the same manner as in the above-described evaluation test 4, and a plurality of Ueno and W in which a predetermined pattern is drawn with different dose amounts are calo-heat treated. And development processing was performed. As in evaluation tests 4 and 5, the pressure in the processing container 4 during the heat treatment was set to 1.8 atm. However, in this standard treatment 2, during the heat treatment, The process gas was not supplied.
[0064] 図 10は評価試験 4、 5および標準処理 2において各ウェハ Wに照射された電子ビ ームの Dose量と現像処理後のウェハ Wに形成されたレジストパターンの線幅である CD (nm)との関係を示したグラフである。このグラフからわ力るように所定の線幅のパ ターンを得るために必要な電子ビームの Dose量は標準処理 2に比べて評価試験 4, 5の方が少なぐまた評価試験 4と評価試験 5とを比較した場合所定の線幅のパター ンを得るために必要な電子ビームの Dose量は評価試験 5の方が少な力つた。  FIG. 10 shows the dose amount of the electron beam irradiated on each wafer W in evaluation tests 4 and 5 and standard processing 2 and the line width of the resist pattern formed on the wafer W after the development processing. nm). As can be seen from this graph, the dose amount of the electron beam necessary to obtain a pattern with a predetermined line width is smaller in the evaluation tests 4 and 5 than in the standard treatment 2, and the evaluation test 4 and the evaluation test. In comparison with 5, evaluation test 5 had a smaller amount of electron beam dose required to obtain a pattern with a predetermined line width.
[0065] これらの評価試験 4, 5と標準処理 2との結果から加熱処理中に加湿した空気を供 給するとその加湿した空気を供給しな 、場合に比べて低 、Dose量で所定の幅のパ ターンをウェハ Wに形成できることがわかる。また加熱処理中に加湿した空気を供給 する場合はウェハ Wの加熱温度が当該ウェハ Wに供給される処理ガスの露点に達し て力もウェハ Wが熱板力 退避するまでの時間を前半と後半とに分けるとその前半に 加湿した空気を供給するよりも後半に加湿した空気を供給した方がより低い Dose量 で所定の幅のパターンをウェハ Wに形成できることがわ力る。  [0065] From the results of these evaluation tests 4, 5 and standard treatment 2, when humidified air is supplied during the heat treatment, the humidified air is not supplied. It can be seen that this pattern can be formed on the wafer W. In addition, when humidified air is supplied during the heat treatment, the time until the heating temperature of the wafer W reaches the dew point of the processing gas supplied to the wafer W and the force is retracted by the hot plate force is divided into the first half and the second half. In other words, it is obvious that a pattern with a predetermined width can be formed on the wafer W with a lower dose by supplying humidified air in the latter half than supplying humidified air in the first half.
産業上の利用可能性  Industrial applicability
[0066] 以上のように、本発明は、基板加熱装置および基板加熱方法に適用される。 [0066] As described above, the present invention is applied to the substrate heating apparatus and the substrate heating method.

Claims

請求の範囲 The scope of the claims
[1] 処理容器 (4)と、  [1] Processing container (4),
前記処理容器 (4)内に設けられ、化学増幅型のレジストが塗布された、露光後、現 像前の基板が載置される基板載置部 (31)と、  A substrate mounting portion (31) provided in the processing container (4) and coated with a chemically amplified resist, on which a substrate before exposure and before image formation is mounted;
前記基板載置部に載置された前記基板を加熱する加熱ユニット (32)と、 水を気化する気化部(61, 62, 64, 67)と、  A heating unit (32) for heating the substrate placed on the substrate placement unit; a vaporization unit (61, 62, 64, 67) for vaporizing water;
前記気化部(61, 62, 64, 67)にキャリアガスを供給するためのキャリアガス供給路 (68)と、  A carrier gas supply path (68) for supplying a carrier gas to the vaporization section (61, 62, 64, 67);
前記キャリアガスを前記気化部(61, 62, 64, 67)に供給して得られた水蒸気を含 む処理ガスを前記処理容器 (4)内に供給するガス供給路 (65)と、  A gas supply path (65) for supplying a processing gas containing water vapor obtained by supplying the carrier gas to the vaporization section (61, 62, 64, 67) into the processing container (4);
前記基板が前記基板載置部(31)に載置され、前記処理容器 (4)内が前記処理ガ スの露点温度よりも高い温度になった後に、前記処理ガスを前記処理容器 (4)内に 供給するための制御部(100)とを備えた、基板加熱装置。  After the substrate is placed on the substrate platform (31) and the inside of the processing container (4) reaches a temperature higher than the dew point temperature of the processing gas, the processing gas is supplied to the processing container (4). A substrate heating apparatus comprising a control unit (100) for supplying the inside.
[2] 気化部(61, 62, 64, 67)は、水を収容し、キャリアガスをパブリングさせるための容 器 (64c)と、前記容器 (64c)内の水を加熱するユニット(64a)とを含む、請求項 1に 記載の基板加熱装置。 [2] The vaporizer (61, 62, 64, 67) contains water (60c) for containing water and publishing the carrier gas, and a unit (64a) for heating the water in the container (64c). The substrate heating apparatus according to claim 1, comprising:
[3] 前記制御部(100)は、前記基板載置部(31)に前記基板が載置された後の経過時 間に基づいてあるいは前記処理容器 (4)内の温度検出値に基づいて、処理容器 (4 )内が前記処理ガスの露点温度よりも高い温度になったと判断する、請求項 1に記載 の基板加熱装置。  [3] The control unit (100) may be based on an elapsed time after the substrate is placed on the substrate placement unit (31) or based on a temperature detection value in the processing container (4). The substrate heating apparatus according to claim 1, wherein it is determined that the inside of the processing container (4) has reached a temperature higher than a dew point temperature of the processing gas.
[4] 前記露光は、低加速の電子ビームにより前記基板の表面にパターンを描画する電 子ビーム露光である、請求項 1に記載の基板加熱装置。  4. The substrate heating apparatus according to claim 1, wherein the exposure is an electron beam exposure in which a pattern is drawn on the surface of the substrate with a low acceleration electron beam.
[5] 前記処理容器 (4)内を加圧する加圧ユニット (47, 69)をさらに備える、請求項 1に 記載の基板加熱装置。 [5] The substrate heating apparatus according to [1], further comprising a pressurizing unit (47, 69) for pressurizing the inside of the processing container (4).
[6] 処理容器 (4)内を排気する排気ユニット (48)をさらに備え、 [6] An exhaust unit (48) for exhausting the inside of the processing vessel (4) is further provided,
前記制御部(100)は、前記排気ユニットにより処理ガスが排気された後に、前記基 板を前記処理容器 (4)の外に搬出するための制御信号を出力する、請求項 1に記載 の基板加熱装置。 The substrate according to claim 1, wherein the control unit (100) outputs a control signal for carrying the substrate out of the processing container (4) after the processing gas is exhausted by the exhaust unit. Heating device.
[7] 複数枚の基板を収納した基板キャリア(C1)が搬入されるキャリアステーション(90) と前記キャリアステーション(90)に搬入された基板キャリア (C1)に対して前記基板の 受け渡しを行なう受け渡しユニット (A1)とを含むキャリアステージ (B1)と、 [7] A carrier station (90) into which a substrate carrier (C1) containing a plurality of substrates is loaded and a substrate carrier (C1) loaded into the carrier station (90) for delivering the substrate. A carrier stage (B1) including a unit (A1),
前記受け渡しユニット (A1)から受け渡された前記基板にレジストを塗布する塗布ュ ニット(COT)と、  A coating unit (COT) for applying a resist to the substrate delivered from the delivery unit (A1);
露光後の前記基板を現像する現像ユニット (DEV)と、  A development unit (DEV) for developing the substrate after exposure;
露光前の前記基板を露光装置 (B4)に受け渡し、露光後の前記基板を前記露光装 置(B4)力 受け取るためのインターフェイス部(B3)と、  An interface unit (B3) for transferring the substrate before exposure to an exposure apparatus (B4) and receiving the substrate after exposure with the exposure apparatus (B4) force;
請求項 1に記載の基板加熱装置 (2)とを備えた、塗布 ·現像装置。  A coating / developing device comprising the substrate heating device (2) according to claim 1.
[8] 化学増幅型のレジストが塗布された、露光後、現像前の基板を加熱する基板加熱 方法であって、 [8] A substrate heating method in which a chemically amplified resist is applied and a substrate before exposure and before development is heated.
前記基板を処理容器 (4)内の基板載置部(31)に載置する工程と、  Placing the substrate on the substrate placement portion (31) in the processing container (4);
キャリアガスにより水を気化して水蒸気を含む処理ガスを生成する工程と、 基板が前記基板載置部(31)に搬入され、前記処理容器 (4)内が前記処理ガスの 露点温度よりも高い温度になった後に、前記処理ガスを前記処理容器 (4)内に供給 する工程とを備えた、基板加熱方法。  A step of evaporating water with a carrier gas to generate a processing gas containing water vapor; And a step of supplying the processing gas into the processing container (4) after the temperature is reached.
[9] 前記露光は、低加速の電子ビームにより基板の表面にパターンを描画する電子ビ ーム露光である、請求項 8記載の基板加熱方法。 9. The substrate heating method according to claim 8, wherein the exposure is an electron beam exposure in which a pattern is drawn on the surface of the substrate with a low acceleration electron beam.
[10] 処理ガスを処理容器 (4)内から排気する工程と、 [10] exhausting the processing gas from the processing container (4);
その後、前記基板を前記処理容器 (4)の外に搬出する工程とをさらに備えた、請求 項 8に記載の基板加熱方法。  The substrate heating method according to claim 8, further comprising a step of unloading the substrate out of the processing container (4).
PCT/JP2006/315209 2005-08-24 2006-08-01 Substrate heating device, coating/development device, and method for heating substrate WO2007023648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-243357 2005-08-24
JP2005243357A JP2007059633A (en) 2005-08-24 2005-08-24 Substrate heating apparatus and substrate heating method

Publications (1)

Publication Number Publication Date
WO2007023648A1 true WO2007023648A1 (en) 2007-03-01

Family

ID=37771400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315209 WO2007023648A1 (en) 2005-08-24 2006-08-01 Substrate heating device, coating/development device, and method for heating substrate

Country Status (3)

Country Link
JP (1) JP2007059633A (en)
TW (1) TW200725694A (en)
WO (1) WO2007023648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010522A (en) * 2017-12-20 2019-07-12 株式会社迪思科 Segmenting device
CN111554571A (en) * 2019-02-08 2020-08-18 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775092B2 (en) * 2006-04-18 2011-09-21 凸版印刷株式会社 Heat treatment method for resist coated substrate
JP5194209B2 (en) * 2007-10-18 2013-05-08 日本フェンオール株式会社 Semiconductor processing unit and semiconductor manufacturing apparatus
TWI508179B (en) * 2010-07-23 2015-11-11 Sunshine Pv Corp Annealing device for a thin-film solar cell
JP5559656B2 (en) * 2010-10-14 2014-07-23 大日本スクリーン製造株式会社 Heat treatment apparatus and heat treatment method
JP6955073B2 (en) * 2016-12-08 2021-10-27 東京エレクトロン株式会社 Heat treatment method and heat treatment equipment
JP6781031B2 (en) * 2016-12-08 2020-11-04 東京エレクトロン株式会社 Substrate processing method and heat treatment equipment
US10276411B2 (en) * 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP6990121B2 (en) * 2018-03-06 2022-01-12 株式会社Screenホールディングス Board processing equipment
JP7158549B2 (en) * 2020-10-15 2022-10-21 東京エレクトロン株式会社 SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING SYSTEM AND COMPUTER-READABLE STORAGE MEDIUM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572747A (en) * 1991-09-13 1993-03-26 Toshiba Corp Pattern forming method
JPH09129535A (en) * 1995-10-30 1997-05-16 Tokyo Ohka Kogyo Co Ltd Thermal treatment equipment
JPH10261558A (en) * 1997-01-16 1998-09-29 Tokyo Electron Ltd Heat-treating device and method
JP2002043215A (en) * 2000-07-28 2002-02-08 Sharp Corp Method for forming resist pattern, semiconductor manufacturing apparatus, semiconductor device, and portable information terminal
JP2002072502A (en) * 2000-08-31 2002-03-12 Clariant (Japan) Kk Method for forming patterned polysilazane film
JP2002124460A (en) * 2000-08-11 2002-04-26 Kazuyuki Sugita Formation method of resist pattern
JP2003076018A (en) * 2001-08-31 2003-03-14 Kazuyuki Sugita Resist composition for surface layer imaging and pattern forming method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572747A (en) * 1991-09-13 1993-03-26 Toshiba Corp Pattern forming method
JPH09129535A (en) * 1995-10-30 1997-05-16 Tokyo Ohka Kogyo Co Ltd Thermal treatment equipment
JPH10261558A (en) * 1997-01-16 1998-09-29 Tokyo Electron Ltd Heat-treating device and method
JP2002043215A (en) * 2000-07-28 2002-02-08 Sharp Corp Method for forming resist pattern, semiconductor manufacturing apparatus, semiconductor device, and portable information terminal
JP2002124460A (en) * 2000-08-11 2002-04-26 Kazuyuki Sugita Formation method of resist pattern
JP2002072502A (en) * 2000-08-31 2002-03-12 Clariant (Japan) Kk Method for forming patterned polysilazane film
JP2003076018A (en) * 2001-08-31 2003-03-14 Kazuyuki Sugita Resist composition for surface layer imaging and pattern forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010522A (en) * 2017-12-20 2019-07-12 株式会社迪思科 Segmenting device
CN110010522B (en) * 2017-12-20 2024-05-03 株式会社迪思科 Dividing device
CN111554571A (en) * 2019-02-08 2020-08-18 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
CN111554571B (en) * 2019-02-08 2024-04-09 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2007059633A (en) 2007-03-08
TW200725694A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
WO2007023648A1 (en) Substrate heating device, coating/development device, and method for heating substrate
KR102640367B1 (en) Substrate processing method and heat treatment apparatus
TWI386979B (en) Developing apparatus, developing method and storage medium
KR101006800B1 (en) Method for improving surface roughness of processed film of substrate and apparatus for processing substrate
KR100590355B1 (en) Baking Apparatus and Baking Method
JP5303954B2 (en) Hydrophobic treatment method, hydrophobic treatment device, coating, developing device and storage medium
JP4271095B2 (en) Substrate heating apparatus and substrate heating method
JP5067432B2 (en) Coating, developing device, developing method, and storage medium
TWI445049B (en) Coating developing device, coating developing method, and memory medium
JP5003773B2 (en) Developing device, developing method, and storage medium
JP5099054B2 (en) Substrate processing apparatus, substrate processing method, coating and developing apparatus, coating and developing method, and storage medium
US8411246B2 (en) Resist coating and developing apparatus and method
JP4074593B2 (en) Vacuum drying apparatus and vacuum drying method
WO2008096835A1 (en) Substrate processing method and coating/developing apparatus
US7924396B2 (en) Coating/developing apparatus and pattern forming method
US7351936B1 (en) Method and apparatus for preventing baking chamber exhaust line clog
JP2016035956A (en) Board processing method, program, compute storage medium, and board processing system
JP5415881B2 (en) Hydrophobic treatment apparatus, hydrophobic treatment method, program, and computer storage medium
JP2003156858A (en) Method and system for treating substrate
JP4294893B2 (en) Substrate heat treatment apparatus, rectifying mechanism thereof, and rectifying method
JPH10261558A (en) Heat-treating device and method
WO2021193202A1 (en) Thermal treatment device and thermal treatment method
JP2001313252A (en) Treating apparatus
US20240120217A1 (en) Substrate treatment method, substrate treatment apparatus, and computer storage medium
JP2005166999A (en) Processing method of substrate and method for reducing influence on processing of substrate by fluctuation of exposure quantity or focal position when substrate is exposed

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782087

Country of ref document: EP

Kind code of ref document: A1