WO2007021308A1 - Metabotropic glutamate-receptor-potentiating isoindolones - Google Patents

Metabotropic glutamate-receptor-potentiating isoindolones Download PDF

Info

Publication number
WO2007021308A1
WO2007021308A1 PCT/US2006/005246 US2006005246W WO2007021308A1 WO 2007021308 A1 WO2007021308 A1 WO 2007021308A1 US 2006005246 W US2006005246 W US 2006005246W WO 2007021308 A1 WO2007021308 A1 WO 2007021308A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
alkylnr
cycloalkyl
alkylaryl
Prior art date
Application number
PCT/US2006/005246
Other languages
English (en)
French (fr)
Inventor
Bradford Van Wagenen
Radhakrishnan Ukkiramapandian
Joshua Clayton
Ian Egle
James Empfield
Methvin Isaac
Fupeng Ma
Abdelmalik Slassi
Gary Steelman
Rebecca Urbanek
Sally Walsh
Original Assignee
Astrazeneca Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2005/028760 external-priority patent/WO2006020879A1/en
Application filed by Astrazeneca Ab filed Critical Astrazeneca Ab
Priority to JP2008525976A priority Critical patent/JP5031745B2/ja
Priority to US12/063,007 priority patent/US7807706B2/en
Priority to EP06720758A priority patent/EP1912939A1/en
Publication of WO2007021308A1 publication Critical patent/WO2007021308A1/en
Priority to US12/861,336 priority patent/US8153638B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/46Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to novel compounds that function as potentiators of glutamate receptors, methods for their preparation, pharmaceutical compositions containing them and their use in therapy.
  • the metabotropic glutamate receptors are a family of GTP -binding-protein (G-protein) coupled receptors that are activated by glutamate, and that have important roles in synaptic activity in the central nervous system, neural plasticity, neural development and neurodegeneration.
  • Activation of mGluRs in intact mammalian neurons elicits one or more of the following responses: activation of phospholipase C; increases in phosphoinositide (PI) hydrolysis; intracellular calcium release; activation of phospholipase D; activation or inhibition of adenyl cyclase; increases or decreases in the formation of cyclic adenosine monophosphate (cAMP); activation of guanylyl cyclase; increases in the formation of cyclic guanosine monophosphate (cGMP); activation of phospholipase A 2 ; increases in arachidonic acid release; and increases or decreases in the activity of voltage- and ligand-gated ion channels (Schoepp et al, 1993, Trends Pharmacol.
  • PI phosphoinositide
  • Group-I includes mGluRl and mGluR5, which activate phospholipase C and the generation of an intracellular calcium signal.
  • Group-II mGluR2 and niGluR3
  • Group-Ill mGluR4, rnGluR ⁇ , mGluR7, and mGluR8
  • mGluRs mediate an inhibition of adenylyl cyclase activity and cyclic AMP levels.
  • mGluR family receptors Activity of mGluR family receptors is implicated in a number of normal processes in the mammalian CNS, and are important targets for compounds for the treatment of a variety of neurological and psychiatric disorders. Activation of mGluRs is required for induction of hippocampal long-term potentiation and cerebellar long-term depression (Bashir et ah, 1993, Nature, 363:347 ; Bortolotto et a!., 1994, Nature, 368:740 ; Aiba et al., 1994, Cell, 79:365 ; Aiba et ah, 1994, Cell, 79:377).
  • mGluR activation has been suggested to play a modulatory role in a variety of other normal processes including synaptic transmission, neuronal development, apoptotic neuronal death, synaptic plasticity, spatial learning, olfactory memory, central control of cardiac activity, waking, motor control and control of the vestibulo-ocular reflex (Nakanishi, 1994, Neuron, 13:1031; Pin et ah, 1995, Neuropharmacology, see above; Knopfel et al., 1995, J. Med. Chem., 38:1417).
  • R 1 is a 3- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein said ring is substituted by one or more B;
  • R 2 and R 3 are independently selected from the group consisting of H, Ci -6 -alkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, aryl, heteroaryl, heterocycloalkyl, Cs.g-cycloalkyl, Ci -6 -alkyl-aryl, Ci -6 -alkyl-heteroaryl, and Ci- ⁇ -alkyl-Cs-s-cycloalkyl, wherein R and R 3 may be substituted by one or more A;
  • R 4 and R 6 are independently selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, Ci -6 -alkyl, Q-e-alkylhalo, OCi -6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2 - 6 -alkenyl, C 2 - 6 -alkynyl, OC 2-6 -alkynyl, C ⁇ s-cycloalkyl, Ci -6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3-8 ⁇ cycloalkyl, aryl, C 1-6 -alkylaryl, OC 0 .
  • 6 -alkylCO 2 R 10 d-e-alkylcyano, OC 2- 6-alkylcyano, C 0-6 -alkylNR 10 R ⁇ , OC 2 - 6 -alkylNR 10 R ⁇ , C 1 . 6 -alkyl(CO)NR 10 R 11 , OC 1-6 -alkyl(CO)NR 10 R 11 , C 0-6 -alkylNR 10 (CO)R n , OC 2-6 -alkylNR 10 (CO)R 11 , Co -6 -alkylNR 10 (CO)NR 10 R ⁇ , C 0 .
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, nitro, CN, Ci_ 6 -alkyl, OCo -6 -alkyl, Ci_ 6 -alkylhalo, OC 1-6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2 - 6 -alkynyl, C 3 _ 8 -cycloalkyl, Ci-e-alkyl-Cs-s-cycloalkyl, OC 0-6 -alkyl-C 3-8 -cycloalkyl, aryl, Ci- 6 -alkylaryl, C 1-6 -alkylheteroaryl, OCi -6 -alkylaryl, OC 1-6 -alkylheteroaryl, Ci- ⁇ -alkylheterocycloalkyl, Oheterocycloalkyl, OQ
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, nitro, cyano, OCi -4 -alkyl, Ci -6 -alkyl, C 1-6 -alkylhalo, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, and C 3-8 -cycloalkyl;
  • R 8 and R 9 are independently selected from the group consisting of H, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, C 1-6 -alkylhalo, OC 1-6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl,
  • R 1 and R l are independently selected from the group consisting of H, hydroxy, oxo, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, Ci -6 -alkylhalo, OCi -6 alkyl, OCi- 6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, Ci -6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, OC 0-6 -alkylaryl, Co- ⁇ -alkyl-heterocycloalkyl, OCj- ⁇ -alkyl-heterocycloalkyl, heteroaryl, and Ci -6 alkylheter
  • A is selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, oxo, Ci -6 -alkyl, Ci -6 -alkylhalo, OC 1-6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, C 1-6 -alkyl-C 3-8 -cycloalkyl, OCo- ⁇ -alkyl-Cs-s-cycloalkyl, aryl, Ci -6 -alkylaryl, OCo -6 -alkylaryl, d- ⁇ -alkyl-heterocyclyl, Ci-e-alkyl-heterocycloalkyl, OC 0-6 -alkyl-heterocycloalkyl, (CO
  • B is selected from the group consisting of C 3-8 -cycloalkyl, C 1-6 -alkyl-C 3- g-cycloalkyl, OCo- ⁇ -alkyl-C B -s-cycloalkyl, C 0-6 -alkylaryl, OC 0-6 -alkylaryl, Ci- ⁇ -alkyl-heterocycloalkyl, C 1-6 -alkyl-heterocycloalkyl, OCo- ⁇ -alkyl-heterocycloalkyl, C 0-6 -alkyl-heteroaryl and OC 0-6 -alkyl-heteroaryl, wherein any cyclic moiety is substituted with at least one substituent selected from the group consisting of halo, alkyl, alkylhalo, hydroxy, alkoxy, oxo, COR, CO 2 R, SO 2 R and CN; and n is selected from the group consisting of 1, 2, 3, 4, 5, 6, 7,
  • the invention also provides processes for the preparation of compounds of formula I.
  • the invention further provides a pharmaceutical composition comprising a compound according to formula I together with a pharmaceutically acceptable carrier or excipient; in another aspect the invention provides a method for the treatment or prevention of neurological and psychiatric disorders associated with glutamate dysfunction in an animal in need of such treatment.
  • the method comprises the step of administering to the animal a therapeutically effective amount of a compound of formula I or a pharmaceutical composition thereof.
  • the invention also provides for the use of a compound according to formula I, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for the treatment of any of the conditions discussed herein. Further, the invention provides a compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, for use in therapy.
  • the present invention is based upon the discovery of compounds that exhibit activity as modulators of metabotropic glutamate receptors. More particularly, the compounds of the present invention exhibit activity as potentiators of the mGluR2 receptor, and are useful in therapy, in particular as pharmaceuticals for the treatment of neurological and psychiatric disorders associated with glutamate dysfunction.
  • alkyl as used herein means a straight- or branched-chain hydrocarbon radical having, for example, from one to six carbon atoms, and includes methyl, ethyl, propyl, isopropyl, t-butyl and the like.
  • alkenyl as used herein means a straight- or branched-chain alkenyl radical having, for example, from two to six carbon atoms, and includes ethenyl, 1 -propenyl, 1-butenyl and the like.
  • alkynyl as used herein means a straight- or branched-chain alkynyl radical having, for example, from two to six carbon atoms, and includes 1-propynyl (propargyl), 1-butynyl and the like.
  • cycloalkyl as used herein means a cyclic group (which may be unsaturated) having, for example, from three to seven carbon atoms, and includes cyclopropyl, cyclohexyl, cyclohexenyl and the like.
  • heterocycloalkyl as used herein means, for example, a three- to seven-membered cyclic group (which may be unsaturated) having at least one heteroatom selected from the group consisting of N, S and O, and includes piperidinyl, piperazinyl, pyrrolidinyl, tetrahydrofuranyl and the like.
  • alkoxy as used herein means a straight- or branched-chain alkoxy radical having, for example, from one to six carbon atoms and includes methoxy, ethoxy, propyloxy, isopropyloxy, t-butoxy and the like.
  • halo as used herein means halogen and includes fluoro, chloro, bromo, iodo and the like, in both radioactive and non-radioactive forms.
  • aryl as used herein means an aromatic group having, for example, five to twelve atoms, and includes phenyl, naphthyl and the like.
  • heteroaryl means an aromatic group which includes at least one heteroatom selected from the group consisting of N, S and O, and includes groups and includes pyridyl, indolyl, furyl, benzofuryl, thienyl, benzothienyl, quinolyl, oxazolyl and the like.
  • alkanoyl as used herein means a straight- or branched-chain alkanoyl radical having, for example, from two to seven atoms, and includes acetyl, propionyl, butyryl and the like.
  • cycloalkenyl as used herein means an unsaturated cylcloaklyl group having, for example, from four to seven carbon atoms, and includes cyclopent-1-enyl, cyclohex-1-enyl and the like.
  • alkylaryl refers to an alkyl radical substituted with an aryl, heteroaryl or cycloalkyl group, and includes 2-phenethyl, 3 -cyclohexyl propyl and the like.
  • the term "5- to 7-membered ring that may contain one or more heteroatoms independently selected from N, O and S” includes aromatic and heteroaromatic rings, as well as carbocyclic and heterocyclic rings which may be saturated or unsaturated, and includes furyl, isoxazolyl, oxazolyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, thiazolyl, thienyl, imidazolyl, triazolyl, morpholinyl, piperazinyl, piperidinyl, homopiperidinyl, tetrahydropyranyl, phenyl, cyclohexyl, cycloheptyl, cyclopentyl, cyclohexanyl and the like.
  • pharmaceutically acceptable salt means either an acid addition salt or a basic addition salt which is compatible with the treatment of patients.
  • a "pharmaceutically acceptable acid addition salt” is any non-toxic organic or inorganic acid addition salt of the base compounds represented by Formula I or any of its intermediates.
  • Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acid and acid metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate.
  • Illustrative organic acids which form suitable salts include the mono-, di- and tricarboxylic acids.
  • Illustrative of such acids are, for example, acetic, glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, benzoic, hydroxybenzoic, phenylacetic, cinnamic, salicylic, 2-phenoxybenzoic, p-toluenesulfonic acid and other sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.
  • Either the mono- or di-acid salts can be formed, and such salts can exist in either a hydrated, solvated or substantially anhydrous form.
  • the acid addition salts of these compounds are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms.
  • the selection criteria for the appropriate salt will be known to one skilled in the art.
  • Other non-pharmaceutically acceptable salts e.g. oxalates may be used for example in the isolation of compounds of Formula I for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.
  • a "pharmaceutically acceptable basic addition salt” is any non-toxic organic or inorganic base addition salt of the acid compounds represented by Formula I or any of its intermediates.
  • Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium or barium hydroxides.
  • Illustrative organic bases which form suitable salts include aliphatic, alicyclic or aromatic organic amines such as methylamine, trimethyl amine and picoline or ammonia.
  • the selection of the appropriate salt may be important so that an ester functionality, if any, elsewhere in the molecule is not hydrolyzed. The selection criteria for the appropriate salt will be known to one skilled in the art.
  • Solvate means a compound of Formula I or the pharmaceutically acceptable salt of a compound of Formula I wherein molecules of a suitable solvent are incorporated in a crystal lattice.
  • a suitable solvent is physiologically tolerable at the dosage administered as the solvate. Examples of suitable solvents are ethanol, water and the like. When water is the solvent, the molecule is referred to as a hydrate.
  • stereoisomers is a general term for all isomers of the individual molecules that differ only in the orientation of their atoms in space. It includes mirror image isomers (enantiomers), geometric (cis/trans) isomers and isomers of compounds with more than one chiral centre that are not mirror images of one another (diastereomers).
  • treat or “treating” means to alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disorder or condition.
  • terapéuticaally effective amount means an amount of the compound which is effective in treating the named disorder or condition.
  • pharmaceutically acceptable carrier means a non-toxic solvent, dispersant, excipient, adjuvant or other material which is mixed with the active ingredient in order to permit the formation of a pharmaceutical composition, i.e., a dosage form capable of administration to the patient.
  • a pharmaceutical composition i.e., a dosage form capable of administration to the patient.
  • a pharmaceutically acceptable oil typically used for parenteral administration.
  • R 1 is a 3- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein said ring is substituted by one or more B;
  • R 2 and R 3 are independently selected from the group consisting of H, Ci -6 -alkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, aryl, heteroaryl, heterocycloalkyl, C 3-8 -cycloalkyl, Ci -6 -alkyl-aryl, Ci_ 6 -alkyl-heteroaryl, Ci_ 6 -alkyl-heterocycloalkyl, and Ci -6 -alkyl-C 3-8 -cycloalkyl, wherein R 2 and R 3 may be substituted by one or more A;
  • R 4 and R 6 are independently selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, Ci -6 -alkylhalo, OC 1-6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC2-6-alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -Cy cloalkyl, Ci- ⁇ -alkyl-Cs.s-cycloalkyl, OCo -6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, OC 0-6 -alkylaryl, (CO)R 10 , O(CO)R 10 , 0(CO)OR 10 , C(O)OR 10 , O(CNR 10 )OR n , C 1-6 -alkylOR 10
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, nitro, CN, Ci -6 -alkyl, OCo -6 -alkyl, C 1-6 -alkylhalo, OC 1-6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3 .g-cycloalkyl, Ci- ⁇ -alkyl-Cs-s-cycloalkyl, OCo-o-alkyl-Cs-s-cycloalkyl, aryl, Cj -6 -alkylaryl, C 1-6 -alkylheteroaryl, OC 1-6 -alkylaryl, OC 1-6 -alkylheteroaryl, Ci- ⁇ -alkylheterocycloalkyl, Oheterocycloalkyl, OC ⁇ -alkylhe
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, nitro, cyano, OCi -4 -alkyl, Ci- 6 -alkyl, C 1-6 -alkylhalo, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, and C 3 -s-cycloalkyl; o Q
  • R and R are independently selected from the group consisting of H, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, C 1-6 -alkylhalo, OC 1-6 alkyl, OC 1-6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, and OC 2-6 -alkynyl, or, where n is greater than 1 , two or more R and/or R 9 on adjacent carbon atoms may be absent to form an alkenyl or alkynyl moiety;
  • R 10 and R 11 are independently selected from the group consisting of H, hydroxy, oxo, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, Ci -6 -alkylhalo, OC 1-6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, Ci -6 -alkyl-C 3- g-cycloalkyl, OCo- 6 -alkyl-Cs-s-cycloalkyl, aryl, Ci- 6 -alkylaryl, OC 0-6 -alkylaryl, Co-e-alkyl-heterocycloalkyl, OCi- ⁇ -alkyl-heterocycloalkyl, heteroaryl, and Ci -6 alkylheteroary
  • A is selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, oxo, C 1-6 -alkyl, C 1-6 -alkylhalo, OCi -6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, C 1-6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, OC 0-6 -alkylaryl, Cj-e-alkyl-heterocyclyl, Ci-e-alkyl-heterocycloalkyl, OCo-e-alkyl-heterocycloalkyl, (CO)
  • B is selected from the group consisting of C ⁇ s-cycloalkyl, Ci -6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3- 8-cycloalkyl, C 0-6 -alkylaryl, OC 0-6 -alkylaryl, Ci-e-alkyl-heterocycloalkyl, OCo- ⁇ -alkyl-heterocycloalkyl, C 0-6 -alkyl-heteroaryl and OCo -6 -alkyl-heteroaryl, wherein any cyclic moiety is substituted with at least one substituent selected from the group consisting of halo, alkyl, alkylhalo, hydroxy, alkoxy, oxo, COR, CO 2 R, SO 2 R and CN, and n is selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, and 8; or a pharmaceutically acceptable salt, hydrate, solvate, optical is
  • R 1 is phenyl wherein said phenyl is substituted by one or more B;
  • R 2 and R 3 are independently selected from the group consisting of H, Ci -6 -alkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, aryl, heteroaryl, heterocycloalkyl, C 3-8 -cycloalkyl, Ci -6 -alkyl-aryl, C 1-6 -alkyl-heteroaryl, Ci-e-alkyl-heterocycloalkyl, and C 1-6 -alkyl-C 3-8 -cycloalkyl, wherein R 2 and R 3 may be substituted by one or more A; R 4 and R 6 are independently selected from the group consisting of H 5 hydroxy, F, Cl, Br, I, nitro, cyano, Ci -6 -alkyl, Ci -6 -alkylhalo, OCi.
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, nitro, CN, Ci -6 -alkyl, OCo- 6 -alkyl, Ci- 6 -alkylhalo, OC 1-6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, Ci -6 -alkylheteroaryl, OC 1-6 -alkylaryl, OC 1-6 -alkylheteroaryl, Ci- ⁇ -alkylheterocycloalkyl, Oheterocycloalkyl, OCi-e-alkylheterocycloalkyl, C(O)H, (CO)R
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, nitro, cyano, OCi -4 -alkyl, Ci -6 -alkyl, Ci -6 -alkylhalo, OC 1-6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, and C 3-8 -cycloalkyl;
  • R 8 and R 9 are both H
  • R 10 and R 11 are independently selected from the group consisting of H, hydroxy, oxo, F, Cl, Br, I, nitro, cyano, Ci -6 -alkyl, Ci_ 6 -alkylhalo, OCi -6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3-8 -cycloalkyl, Ci.
  • any cyclic moiety is optionally fused to a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of C, N, O and S and any cyclic moiety is optionally substituted with a substituent selected from alkyl, halo, hydroxyl, Oalkyl, haloalkyl and Ohaloalkyl;
  • A is selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, oxo, Ci -6 -alkyl, C 1-6 -alkylhalo, OC 1-6 alkyl, OCi -6 -alkylhalo, C 2-6 -alkenyl, OC 2-6 -alkenyl, C 2-6 -alkynyl, OC 2-6 -alkynyl, C 3 _ 8 -cycloalkyl, C 1-6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3- 8-cycloalkyl, aryl, Ci_ 6 -alkylaryl, OC 0-6 -alkylaryl, Ci-e-alkyl-heterocycloalkyl, OCce-alkyl-heterocycloalkyl, (CO)R 10 , O(CO)R 10 , 0(CO)OR
  • B is selected from the group consisting of C 0-6 -alkylaryl and OC 0-6 -alkylaryl, wherein any aryl moiety is substituted with at least one substituent selected from the group consisting of halo, alkyl, alkylhalo, hydroxy, alkoxy, oxo, COR, CO 2 R, SO 2 R and CN; and n is 1; or a pharmaceutically acceptable salt, hydrate, solvate, optical isomer, or combination thereof.
  • R 1 is phenyl wherein said phenyl is substituted by one or more B;
  • R 2 and R 3 are independently selected from the group consisting of H and C 1-6 -alkyl
  • R 4 is H and R 6 is selected from the group consisting of H, hydroxy, F, Cl, Br, I, nitro, cyano, C 1-6 -alkyl, and OCi -6 alkyl;
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, or a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S;
  • R 7 is selected from the group consisting of H or C 1-6 -alkyl
  • R 8 and R 9 are both H
  • B is OCo -6 -alkylaryl, wherein said aryl moiety is substituted with at least one substituent selected from the group consisting of halo, alkyl, alkylhalo and alkoxy, and n is 1; or a pharmaceutically acceptable salt, hydrate, solvate, optical isomer, or combination thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and n are defined as hereinabove.
  • n is 1, 2, or 3.
  • R 8 and R on adjacent carbon atoms can be missing so as to form partially or fully unsaturated moieties.
  • n is 1 and two adjacent R and R are missing, the moiety is an alkenyl group.
  • R 8 and R 9 are missing, the moiety is an alkynyl group. All of these combinations are contemplated.
  • n is 1.
  • R and R particularly are each H.
  • R is a 5- to 7-membered ring that is selected from the group consisting of aryl, C 3-8- cycloalkyl, cycloalkenyl, and heterocyclyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I 5 OCi -6 -alkylhalo, and OC 0-6 -alkylaryl.
  • Exemplary rings in this context include but are not limited to phenyl, naphthyl, C 3-8- cycloalkyl, cycloalkenyl, furanyl, tetrahydrofuranyl, thiophenyl, pyridyl, oxadiazolyl, quinolinyl, piperazinyl, and tetrahydropyranyl.
  • R 1 is phenyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I 5 OCi -6 -alkylhalo, and OC 0-6 -alkylaryl.
  • R 1 is phenyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I, OC 1-6 -alkylhalo, and OC 0-6 -alkylaryl.
  • R 2 , R 3 , R 4 , R 6 , R 8 , and R 9 are each H and n is 1.
  • Particular values for R 7 include H, Cl, Br, I, C 1-6 -alkyl, and OC 1-4 -alkyl, particularly H, Cl, Br, I, -CH 3 , and -OCH 3 , and most particularly Cl 5 Br 5 I, and -OCH 3 .
  • R 1 is a C 3-8 -cycloalkyl group. Particularly, R 1 is cyclopropyl. In this embodiment, n is particularly 1, 2, or 3, and most particularly is 1.
  • R 5 is selected from the group consisting of C 3-8 -cycloalkyl, Ci -6 -alkyl-C 3-8 -cycloalkyl, OC 0-6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, OC 1-6 -alkylaryl, and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S.
  • R 5 may be substituted by one or more A, and any cycloalkyl or aryl is optionally fused to a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of C, N, O and S.
  • R 5 is selected from Ci_ 6 -alkylaryl and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein R may be substituted by one or more A.
  • R 5 is a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, which ring is substituted by one or more A selected from the group consisting of Ci- 6 -alkyl-heterocyclyl and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S.
  • n is 1, 2, or 3;
  • R 4 , R 6 , R 8 and R 9 are each H;
  • R 1 is selected from the group consisting of aryl, C 3-8- cycloalkyl, cycloalkenyl, and heterocyclyl optionally substituted by one or more A selected from the group consisting of F 5 Cl, Br, I, OC t - 6 -alkylhalo, and OC 0-6 -alkylaryl;
  • R 7 is selected from the group consisting of H, Cl, Br, I, C 1-6 -alkyl, and OCi_ 4 -alkyl, and
  • R 5 is selected from the group consisting of C 3- g-cycloalkyl, C 1-6 -alkyl-C 3-8 -cycloalkyl, OCo -6 -alkyl-C 3-8 -cycloalkyl, aryl, C 1-6 -alkylaryl, OCi -6 -alkylaryl, and
  • n is 1, 2, or 3;
  • R 4 , R 6 , R 8 and R 9 are each H;
  • R 1 is selected from phenyl, naphthyl, C 3-8- cycloalkyl, cycloalkenyl, furanyl, tetrahydrofuranyl, thiophenyl, pyridyl, oxadiazolyl, quinolinyl, piperazinyl, and tetrahydropyranyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I, OCi -6 -alkylhalo, and OC 0-6 -alkylaryl;
  • R 7 is selected from Cl, Br, I, and -OCH 3
  • R 5 is selected from C 1-6 -alkylaryl and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein R 5 may be substituted by one or more
  • n is 1, 2, or 3;
  • R 4 , R 6 , R 8 and R 9 are each H;
  • R 1 is phenyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I, OC 1-6 -alkylhalo, and OCo -6 -alkylaryl;
  • R 7 is selected from the group consisting of H, Cl, Br, I, C 1-6 -alkyl, and OC 1-4 -alkyl, and
  • R 5 is a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein the 5- to 7-membered ring is substituted by one or more A selected from the group consisting of Ci- 6 -alkyl-heterocyclyl and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S.
  • n is 1 ;
  • R 2 , R 3 , R 4 , R 6 , R 8 and R 9 are each H;
  • R 1 is phenyl optionally substituted by one or more A selected from the group consisting of F, Cl, Br, I, OCi -6 -alkylhalo, and OC 0-6 -alkylaryl;
  • R 7 is selected from Cl, Br, I, and -OCH 3 , and
  • R 5 is selected from C 1-6 -alkylaryl and a 5- to 7-membered ring that may contain one or more heteroatoms independently selected from the group consisting of N, O and S, wherein R 5 may be substituted by one or more A.
  • the compounds of the invention may exist in, and be isolated as, enantiomeric or diastereomeric forms, or as a racemic mixture.
  • the present invention includes any possible enantiomers, diastereomers, racemates or mixtures thereof, of a compound of formula I.
  • the optically active forms of the compound of the invention may be prepared, for example, by chiral chromatographic separation of a racemate, by synthesis from optically active starting materials or by asymmetric synthesis based on the procedures described thereafter.
  • salts of the compounds of formula I are also salts of the compounds of formula I.
  • pharmaceutically acceptable salts of compounds of the present invention are obtained using standard procedures well known in the art, for example, by reacting a sufficiently basic compound, for example an alkyl amine with a suitable acid, for example, HCl or acetic acid, to afford a physiologically acceptable anion.
  • a corresponding alkali metal such as sodium, potassium, or lithium
  • an alkaline earth metal such as a calcium
  • a compound of the present invention having a suitably acidic proton, such as a carboxylic acid or a phenol with one equivalent of an alkali metal or alkaline earth metal hydroxide or alkoxide (such as the ethoxide or methoxide), or a suitably basic organic amine (such as choline or meglumine) in an aqueous medium, followed by conventional purification techniques.
  • a suitably acidic proton such as a carboxylic acid or a phenol
  • an alkali metal or alkaline earth metal hydroxide or alkoxide such as the ethoxide or methoxide
  • a suitably basic organic amine such as choline or meglumine
  • the compound of formula I may be converted to a pharmaceutically acceptable salt or solvate thereof, particularly, an acid addition salt such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, methanesulphonate or j?-toluenesulphonate.
  • an acid addition salt such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, methanesulphonate or j?-toluenesulphonate.
  • compositions include the compounds described herein, their pharmaceutically acceptable salts, hydrates, solvates and optical isomers thereof.
  • the compounds of the present invention may be formulated into conventional pharmaceutical composition comprising a compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, in associaton with a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include, but are not limited to, powders, tablets, dispersible granules, capsules, cachets, and suppositories.
  • a solid carrier can be one or more substances, which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or table disintegrating agents.
  • a solid carrier can also be an encapsulating material.
  • the carrier is a finely divided solid, which is in a mixture with the finely divided compound of the invention, or the active component.
  • the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
  • a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient sized moulds and allowed to cool and solidify.
  • Suitable carriers include, but are not limited to, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low-melting wax, cocoa butter, and the like.
  • composition is also intended to include the formulation of the active component with encapsulating material as a carrier providing a capsule in which the active component (with or without other carriers) is surrounded by a carrier which is thus in association with it. Similarly, cachets are included.
  • Tablets, powders, cachets, and capsules can be used as solid dosage forms suitable for oral administration.
  • Liquid form compositions include solutions, suspensions, and emulsions.
  • sterile water or water propylene glycol solutions of the active compounds may be liquid preparations suitable for parenteral administration.
  • Liquid compositions can also be formulated in solution in aqueous polyethylene glycol solution.
  • Aqueous solutions for oral administration can be prepared by dissolving the active component in water and adding suitable colorants, flavoring agents, stabilizers, and thickening agents as desired.
  • Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.
  • Exemplary compositions intended for oral use may contain one or more coloring, sweetening, flavoring and/or preservative agents.
  • the pharmaceutical composition will include from about 0.05%w (percent by weight) to about 99%w, more particularly, from about 0.10%w to 50%w, of the compound of the invention, all percentages by weight being based on the total weight of the composition.
  • a therapeutically effective amount for the practice of the present invention can be determined by one of ordinary skill in the art using known criteria including the age, weight and response of the individual patient, and interpreted within the context of the disease which is being treated or which is being prevented.
  • Neurological and psychiatric disorders amenable to treatment with compounds disclosed herein include, but are not limited to, disorders such as cerebral deficit subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, convulsions, cerebral deficits secondary to prolonged status epilepticus, migraine (including migraine headache), urinary incontinence, substance tolerance, substance withdrawal (including, substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), psychosis, schizophrenia, anxiety (including generalized anxiety disorder, panic disorder, social phobia, obse
  • the invention thus provides a use of any of the compounds according to formula I, or a pharmaceutically acceptable salt or solvate thereof, for the manufacture of a medicament for the treatment of any of the conditions discussed above.
  • the invention provides a method for the treatment of a subject suffering from any of the conditions discussed above, whereby an effective amount of a compound according to formula I or a pharmaceutically acceptable salt or solvate thereof, is administered to a patient in need of such treatment.
  • the invention also provides a compound of formula I or pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined for use in therapy.
  • the term “therapy” also includes “prophylaxis” unless there are specific indications to the contrary.
  • the term “therapeutic” and “therapeutically” should be construed accordingly.
  • the term “therapy” within the context of the present invention further encompasses the administration of an effective amount of a compound of the present invention, to mitigate either a pre-existing disease state, acute or chronic, or to mitigate a recurring condition.
  • This definition also encompasses prophylactic therapies for prevention of recurring conditions and continued therapy for chronic disorders.
  • the compounds of the present invention may be administered in the form of a conventional pharmaceutical composition by any route including orally, intramuscularly, subcutaneously, topically, intranasally, intraperitoneally, intrathoracially, intravenously, epidurally, intrathecally, intracerebroventricularly and by injection into the joints.
  • the route of administration is oral, intravenous, or intramuscular.
  • the dosage will depend on the route of administration, the severity of the disease, age and weight of the patient and other factors normally considered by the attending physician, who determines the individual regimen and dosage level for a particular patient.
  • the compounds described herein may be provided or delivered in a form suitable for oral use, for example, in a tablet, lozenge, hard and soft capsule, aqueous solution, oily solution, emulsion, and suspension.
  • the compounds may be formulated into a topical administration, for example, as a cream, ointment, gel, spray, or aqueous solution, oily solution, emulsion or suspension.
  • the compounds described herein also may be provided in a form that is suitable for nasal administration, for example, as a nasal spray, nasal drops, or dry powder.
  • the compounds can be administered to the vagina or rectum in the form of a suppository.
  • the compounds described herein also may be administered parentally, for example, by intravenous, intravesicular, subcutaneous, or intramuscular injection or infusion.
  • the compounds can be administered by insufflation (for example as a finely divided powder).
  • the compounds may also be administered transdermally or sublingually.
  • the compounds of formula I, or salts thereof are useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of mGluR-related activity in laboratory animals as part of the search for new therapeutics agents.
  • Such animals include, for example, cats, dogs, rabbits, monkeys, rats and mice. Processes for Preparing:
  • a compound of formula Ib is then cross-coupled with a suitable reagent containing R to yield a a compound according to formula Ic:
  • 5-substituted-7-methyl isoindolones are synthesized as depicted in Scheme 1 below.
  • 4-bromo-2,6-dimethylaniline is converted to the corresponding nitrile under Sandmeyer reaction conditions.
  • the nitrile is then hydrolyzed to the acid in a stepwise fashion.
  • the amide can be obtained by basic hydrolysis.
  • the amide is then diazotized and hydrolyzed with nitrososulphuric acid to provide the benzoic acid, which is subsequently protected as the methyl ester using standard conditions.
  • the benzylic methyl group is monobrominated with N-bromosuccinimide using benzoyl peroxide as the radical initiator.
  • 5-substituted-7-chloro isoindolones are synthesized as depicted in Scheme 2 below.
  • 4-bromo-2-methylbenzoic acid is chlorinated ortho to the acid using N-chlorosuccinimide and a palladium catalyst.
  • this acid was then esterified, brominated, and cyclized to yield the isoindolone intermediate.
  • Substituent R 5 is introduced similarly.
  • isoindolones that are substituted with an amide at C5 can be prepared as depicted in Scheme 3 below.
  • an appropriately substituted 5-bromoisoindolone is converted to the corresponding nitrile using zinc cyanide in the presence of a palladium catalyst.
  • the nitrile is then hydrolyzed under basic conditions to provide the benzoic acid, which was then coupled with various amines using methodologies that are well-known in the art to provide the final compounds.
  • the pharmacological properties of the compounds of the invention can be analyzed using standard assays for functional activity.
  • glutamate receptor assays are well known in the art as described in, for example, Aramori et ah, 1992, Neuron, 8:757; Tanabe et al, 1992, Neuron, 8:169; Miller etal, 1995, J. Neuroscience, 15:6103; Balazs, et al, 1997, J. Neurochemistry, 1997,69:151.
  • the methodology described in these publications is incorporated herein by reference.
  • the compounds of the invention can be studied by means of an assay that measures the mobilization of intracellular calcium, [Ca 2+ ] j in cells expressing mGluR2.
  • Fluorometric Imaging Plate Reader FLIPR analysis was used to detect allosteric activators of mGluR2 via calcium mobilization.
  • FLIPR Fluorometric Imaging Plate Reader
  • the cells were trypsinized and plated in DMEM at 100,000 cells/well in black sided, clear-bottom, collagen I coated, 96-well plates. The plates were incubated under 5% CO 2 at 37 0 C overnight. Cells were loaded with 6 ⁇ M fluo-3 acetoxymethylester (Molecular Probes, Eugene Oregon) for 60 minutes at room temperature.
  • FLIPR experiments were done using a laser setting of 0.8 W and a 0.4 second CCD camera shutter speed. Extracellular fluo-3 was washed off and cells were maintained in 160 ⁇ L of buffer and placed in the FLIPR. An addition of test compound (0.01 ⁇ M to 30 ⁇ M in duplicate) was made after 10 seconds of baseline fluorescent readings were recorded on FLIPR. Fluorescent signals were then recorded for an additional 75 seconds at which point a second addition of DCG-IV (0.2 ⁇ M) was made and fluorescent signals were recorded for an additional 65 seconds. Fluorescent signals were measured as the peak height of the response within the sample period. Data was analyzed using Assay Explorer, and EC 50 and E max values (relative to maximum DCG-IV effect) were calculated using a four parameter logistic equation.
  • a [ 35 S]-GTPyS binding assay was used to functionally assay mGluR2 receptor activation.
  • the allosteric activator activity of compounds at the human mGluR2 receptor were measured using a [ 35 S]-GTPyS binding assay with membranes prepared from CHO cells which stably express the human mGluR2.
  • the assay is based upon the principle that agonists bind to G-protein coupled receptors to stimulate GDP-GTP exchange at the G-protein. Since [ 35 S]-GTPyS is a non-hydrolyzable GTP analog, it can be used to provide an index of GDP-GTP exchange and, thus, receptor activation.
  • the GTPyS binding assay therefore provides a quantitative measure of receptor activation.
  • Membranes were prepared from CHO cells stably transfected with human mGluR2. Membranes (30 ⁇ g protein) were incubated with test compound (3 nM to 300 ⁇ M) for 15 minutes at room temperature prior to the addition of 1 ⁇ M glutamate, and incubated for 30 min at 30 0 C in 500 ⁇ L assay buffer (20 mM HEPES, 100 mM NaCl, 10 raM MgCl 2 ), containing 30 ⁇ M GDP and 0.1 nM [ 35 S]-GTPyS (1250 Ci/mmol). Reactions were carried out in triplicate in 2 mL polypropylene 96-well plates.
  • Example 1 5-Bromo-2-[4-(2-fluorophenoxy)benzyl]-7-methyl-2,3-dihydro-isoindol-l-one

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Anesthesiology (AREA)
  • Otolaryngology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
PCT/US2006/005246 2005-08-12 2006-02-15 Metabotropic glutamate-receptor-potentiating isoindolones WO2007021308A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008525976A JP5031745B2 (ja) 2005-08-12 2006-02-15 代謝型グルタミン酸受容体増強性イソインドロン
US12/063,007 US7807706B2 (en) 2005-08-12 2006-02-15 Metabotropic glutamate-receptor-potentiating isoindolones
EP06720758A EP1912939A1 (en) 2005-08-12 2006-02-15 Metabotropic glutamate-receptor-potentiating isoindolones
US12/861,336 US8153638B2 (en) 2005-08-12 2010-08-23 Metabotropic glutamate-receptor-potentiating isoindolones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
USPCT/US2005/028760 2005-08-12
PCT/US2005/028760 WO2006020879A1 (en) 2004-08-13 2005-08-12 Isoindolone compounds and their use as metabotropic glutamate receptor potentiators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/028760 Continuation WO2006020879A1 (en) 2004-08-13 2005-08-12 Isoindolone compounds and their use as metabotropic glutamate receptor potentiators

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/861,336 Continuation US8153638B2 (en) 2005-08-12 2010-08-23 Metabotropic glutamate-receptor-potentiating isoindolones

Publications (1)

Publication Number Publication Date
WO2007021308A1 true WO2007021308A1 (en) 2007-02-22

Family

ID=36464390

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2006/005247 WO2007021309A1 (en) 2005-08-12 2006-02-15 Substituted isoindolones and their use as metabotropic glutamate receptor potentiators
PCT/US2006/005246 WO2007021308A1 (en) 2005-08-12 2006-02-15 Metabotropic glutamate-receptor-potentiating isoindolones

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2006/005247 WO2007021309A1 (en) 2005-08-12 2006-02-15 Substituted isoindolones and their use as metabotropic glutamate receptor potentiators

Country Status (4)

Country Link
EP (2) EP1912940A1 (enrdf_load_stackoverflow)
JP (2) JP5031745B2 (enrdf_load_stackoverflow)
CN (2) CN101309905A (enrdf_load_stackoverflow)
WO (2) WO2007021309A1 (enrdf_load_stackoverflow)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130853A1 (en) * 2007-04-17 2008-10-30 Astrazeneca Ab Hydrazides and their use as metabotropic glutamate receptor potentiators - 681
WO2008150233A1 (en) * 2007-06-07 2008-12-11 Astrazeneca Ab Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators - 842
WO2008150232A1 (en) * 2007-06-07 2008-12-11 Astrazeneca Ab Metabotropic glutamate receptor oxadiazole ligands and their use as potentiators - 841
US7754742B2 (en) 2008-07-18 2010-07-13 Eli Lilly And Company Imidazole carboxamides
WO2010104195A1 (en) * 2009-03-11 2010-09-16 Banyu Pharmaceutical Co.,Ltd. Novel isoindolin-1-one derivative
CN102105466A (zh) * 2008-06-06 2011-06-22 阿斯利康(瑞典)有限公司 异噁唑衍生物及其作为亲代谢性谷氨酸受体增效剂的用途
US8153638B2 (en) 2005-08-12 2012-04-10 Astrazeneca Ab Metabotropic glutamate-receptor-potentiating isoindolones
US8314120B2 (en) 2010-03-30 2012-11-20 Abbott Gmbh & Co. Kg Small molecule potentiators of metabotropic glutamate receptors
US8664214B2 (en) 2010-03-30 2014-03-04 AbbVie Deutschland GmbH & Co. KG Small molecule potentiators of metabotropic glutamate receptors I
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8895571B2 (en) 2011-10-14 2014-11-25 Incyte Corporation Isoindolinone and pyrrolopyridinone derivatives as Akt inhibitors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
EP2770997A4 (en) * 2011-10-28 2015-04-01 Univ Vanderbilt SUBSTITUTED 2- (4-HETEROCYCLYLBENZYL) ISOINDOLIN-1-ON ANALOGS AS POSITIVE ALLOSTERIC MODULATORS OF THE MUSCARIN ACETYLCHOLIN RECEPTOR M1
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US9242933B2 (en) 2007-05-25 2016-01-26 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds as positive modulators of metabotropic glutamate receptor 2 (mGlu2 receptor)
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
EP3459939A1 (en) * 2017-09-26 2019-03-27 Pragma Therapeutics Novel heterocyclic compounds as modulators of mglur7
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11078204B2 (en) 2018-11-13 2021-08-03 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11161838B2 (en) 2018-11-13 2021-11-02 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11396502B2 (en) 2018-11-13 2022-07-26 Incyte Corporation Substituted heterocyclic derivatives as PI3K inhibitors

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080139846A1 (en) * 2006-09-01 2008-06-12 Astrazeneca Ab New Process 298
WO2008131439A1 (en) * 2007-04-23 2008-10-30 House Ear Institute Treatment and/or prevention of presbycusis by modulation of metabotropic glutamate receptor 7
WO2009004430A1 (en) * 2007-06-29 2009-01-08 Pfizer Inc. N-benzyl oxazolidinones and related heterocycleic compounds as potentiators of glutamate receptors
GB0811643D0 (en) 2008-06-25 2008-07-30 Cancer Rec Tech Ltd New therapeutic agents
AU2010303243B2 (en) * 2009-10-09 2014-08-28 Celgene Corporation Processes for the preparation of 2-(1-phenylethyl) isoindolin-1-one compounds
WO2011051490A2 (en) 2009-11-02 2011-05-05 N.V. Organon Heterocyclic derivatives
US20130203995A1 (en) * 2010-01-07 2013-08-08 Astrazeneca Ab Process for Making a Metabotropic Glutamate Receptor Positive Allosteric Modulator - 874
TWI713455B (zh) 2014-06-25 2020-12-21 美商伊凡克特治療公司 MnK抑制劑及其相關方法
GB201517216D0 (en) 2015-09-29 2015-11-11 Cancer Res Technology Ltd And Astex Therapeutics Ltd Pharmaceutical compounds
GB201517217D0 (en) 2015-09-29 2015-11-11 Astex Therapeutics Ltd And Cancer Res Technology Ltd Pharmaceutical compounds
US10112955B2 (en) 2015-10-29 2018-10-30 Effector Therapeutics, Inc. Isoindoline, azaisoindoline, dihydroindenone and dihydroazaindenone inhibitors of Mnk1 and Mnk2
US20170121339A1 (en) 2015-10-29 2017-05-04 Effector Therapeutics, Inc. Pyrrolo-, pyrazolo-, imidazo-pyrimidine and pyridine compounds that inhibit mnk1 and mnk2
US10000487B2 (en) 2015-11-20 2018-06-19 Effector Therapeutics, Inc. Heterocyclic compounds that inhibit the kinase activity of Mnk useful for treating various cancers
CN105837557A (zh) * 2016-05-05 2016-08-10 青岛辰达生物科技有限公司 一种用于治疗ii型糖尿病的阿格列汀的制备方法
CN106279182B (zh) * 2016-07-29 2019-06-07 中国药科大学 一种吡咯并[2,1-a]异吲哚酮类化合物及其合成方法
US20180228803A1 (en) 2017-02-14 2018-08-16 Effector Therapeutics, Inc. Piperidine-Substituted Mnk Inhibitors and Methods Related Thereto
GB201704966D0 (en) 2017-03-28 2017-05-10 Astex Therapeutics Ltd Pharmaceutical compounds
GB201704965D0 (en) 2017-03-28 2017-05-10 Astex Therapeutics Ltd Pharmaceutical compounds
US11130757B2 (en) 2018-10-24 2021-09-28 Effector Therapeutics Inc. Crystalline forms of MNK inhibitors
CN110498759A (zh) * 2019-09-12 2019-11-26 天津瑞岭化工有限公司 异吲哚啉酮类化合物的合成方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE620654A (fr) * 1961-07-28 1963-01-25 May & Baker Ltd Nouvelles isoindolinones
US3579524A (en) * 1968-06-05 1971-05-18 Miles Lab 2-aminoalkyl derivatives of phthalimidines
US3993617A (en) * 1975-10-30 1976-11-23 Morton-Norwich Products, Inc. Antifungal 2-substituted phthalimidines
EP0548934A1 (en) * 1991-12-25 1993-06-30 Mitsubishi Chemical Corporation Benzamide derivatives
US5681954A (en) * 1993-05-14 1997-10-28 Daiichi Pharmaceutical Co., Ltd. Piperazine derivatives
WO1999026927A2 (en) * 1997-11-21 1999-06-03 Nps Pharmaceuticals, Inc. Metabotropic glutamate receptor antagonists for treating central nervous system diseases
WO2004024702A1 (de) * 2002-08-24 2004-03-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue carbonsäureamid-verbindungen mit mch-antagonistischer wirkung, diese verbindungen enthaltende arzneimittel und verfahren zu ihrer herstellung
WO2004031178A1 (en) * 2002-10-07 2004-04-15 Pfizer Limited Pyrazole derivatives
WO2005040157A2 (en) * 2003-10-22 2005-05-06 Eli Lilly And Company Novel mch receptor antagonists
WO2005074643A2 (en) * 2004-01-30 2005-08-18 Smithkline Beecham Corporation Benzamide compounds useful as rock inhibitors
WO2005085216A1 (ja) * 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. イソキサゾリン置換ベンズアミド化合物及び有害生物防除剤
WO2005085214A1 (ja) * 2004-03-05 2005-09-15 Banyu Pharmaceutical Co., Ltd ジアリール置換複素5員環誘導体
WO2006020879A1 (en) * 2004-08-13 2006-02-23 Astrazeneca Ab Isoindolone compounds and their use as metabotropic glutamate receptor potentiators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717561A1 (de) * 1987-05-25 1988-12-08 Thomae Gmbh Dr K Indol-, isochinolin- und benzazepinderivate, diese verbindungen enthaltende arzneimittel und verfahren zu ihrer herstellung
JPH02184667A (ja) * 1989-01-11 1990-07-19 Meiji Seika Kaisha Ltd N,n’―ジ置換ピペラジル誘導体及びそれを有効成分とする排尿障害改善剤
RU2124511C1 (ru) * 1993-05-14 1999-01-10 Фармасьютикал Ко., Лтд Производные пиперазина
PT1260512E (pt) * 2000-02-29 2007-10-10 Mitsubishi Pharma Corp ''novos derivados de amida cíclicos''
DE10031391A1 (de) * 2000-07-03 2002-02-07 Knoll Ag Bicyclische Verbindungen und ihre Verwendung zur Prophylaxe und Therapie der zerebralen Ischämie
ATE374750T1 (de) * 2000-07-18 2007-10-15 Dainippon Sumitomo Pharma Co Serotoninwiederaufnahme-inhibitoren

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE620654A (fr) * 1961-07-28 1963-01-25 May & Baker Ltd Nouvelles isoindolinones
US3579524A (en) * 1968-06-05 1971-05-18 Miles Lab 2-aminoalkyl derivatives of phthalimidines
US3993617A (en) * 1975-10-30 1976-11-23 Morton-Norwich Products, Inc. Antifungal 2-substituted phthalimidines
EP0548934A1 (en) * 1991-12-25 1993-06-30 Mitsubishi Chemical Corporation Benzamide derivatives
US5681954A (en) * 1993-05-14 1997-10-28 Daiichi Pharmaceutical Co., Ltd. Piperazine derivatives
WO1999026927A2 (en) * 1997-11-21 1999-06-03 Nps Pharmaceuticals, Inc. Metabotropic glutamate receptor antagonists for treating central nervous system diseases
WO2004024702A1 (de) * 2002-08-24 2004-03-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue carbonsäureamid-verbindungen mit mch-antagonistischer wirkung, diese verbindungen enthaltende arzneimittel und verfahren zu ihrer herstellung
WO2004031178A1 (en) * 2002-10-07 2004-04-15 Pfizer Limited Pyrazole derivatives
WO2005040157A2 (en) * 2003-10-22 2005-05-06 Eli Lilly And Company Novel mch receptor antagonists
WO2005074643A2 (en) * 2004-01-30 2005-08-18 Smithkline Beecham Corporation Benzamide compounds useful as rock inhibitors
WO2005085216A1 (ja) * 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. イソキサゾリン置換ベンズアミド化合物及び有害生物防除剤
WO2005085214A1 (ja) * 2004-03-05 2005-09-15 Banyu Pharmaceutical Co., Ltd ジアリール置換複素5員環誘導体
WO2006020879A1 (en) * 2004-08-13 2006-02-23 Astrazeneca Ab Isoindolone compounds and their use as metabotropic glutamate receptor potentiators

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
AHN K H ET AL: "N-Substituted-3-arylpyrrolidines: potent and selective ligands at serotonin 1A receptor", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 9, no. 10, 17 May 1999 (1999-05-17), pages 1379 - 1384, XP004164896 *
ANDERSON P S ET AL: "Synthesis of 9,10-dihydroanthracen-9,10-imines", JOURNAL OF ORGANIC CHEMISTRY, vol. 44, no. 9, 1979, pages 1519 - 15, XP002981802 *
BAILEY D M ET AL: "2,3-Diarylphthalimidines", JOURNAL OF MEDICINAL CHEMISTRY, vol. 14, no. 3, 1971, pages 240 - 241, XP002357873 *
BARR N ET AL: "Palladium-assisted organic reactions. VIII. Simple syntheses of 2,3-disubstituted phthalimidines", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 302, no. 1, 11 March 1986 (1986-03-11), pages 117 - 126, XP002383544 *
BÖHME H ET AL: "Untersuchungen in der Phthalimidin-Reihe", DIE PHARMAZIE, no. 25, 1970, pages 283 - 289, XP002357872 *
BREYTENBACH J C ET AL: "Synthesis and antimicrobial activity of some isoindolin-1-ones derivatives", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, no. 15, 7 August 2000 (2000-08-07), pages 1629 - 1631, XP004213210 *
CASAGRANDE C ET AL: "Synthesis of some isoindolines and 1,2,3,4-tetrahydroisoquinolines and their evaluation as alpha-adrenergic and adrenergic neuron blocking agents", IL FARMACO, EDIZIONE SCIENTIFICA, vol. 27, no. 6, June 1972 (1972-06-01), pages 445 - 470, XP000571647 *
CLAYDEN J ET AL: "Dearomatizing anionic cyclization of substituted N-cumyl-N-benzyl-benzamides on treatment with LDA: synthesis of partially saturated substituted isoindolones", ORGANIC LETTERS, vol. 2, no. 26, 2000, pages 4229 - 4232, XP002345295 *
COUTURE A ET AL: "Diastereoselective addition of metalated isoindolin-1-ones to aldehydes. stereoselective preparation of (E)-3-arylideneisoindolin-1-ones", TETRAHEDRON LETTERS, vol. 43, no. 12, 18 March 2002 (2002-03-18), pages 2207 - 2210, XP004344002 *
GRIGG R ET AL: "Isoindolinones via a room temperature palladium nanoparticle-catalysed 3-component cyclative carbonylation-amination cascade", TETRAHEDRON LETTERS, vol. 44, no. 37, 8 September 2003 (2003-09-08), pages 6979 - 6982, XP004447066 *
HATT H H ET AL: "Heterocyclic nitrogen compounds. Part II. The preparation of 5:7:12:14-tetrahydro-6:3-diazanaphthacene and some derivatives thereof, with an example of ring expansion and contraction in a Clemmensen reductionth", JOURNAL OF THE CHEMICAL SOCIETY, 1952, pages 199 - 205, XP002357871 *
HOARAU C ET AL: "A versatile synthesis of poly- and diversely substituted isoindolin-1-ones", SYNTHESIS, no. 5, 2000, pages 655 - 660, XP002383545 *
LUZZIO F A ET AL: "A facile scheme for phthalimide - phthalimidine conversion", TETRAHEDRON LETTERS, vol. 40, no. 11, 12 March 1999 (1999-03-12), pages 2087 - 2090, XP002357870 *
MAYER P ET AL: "New substituted 1-(2,3-dihydrobenzo[1,4]dioxin-2-ylmethyl piperidin-4-yl derivatives with alpha2-adrenoreceptor antagonist activity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 43, 19 September 2000 (2000-09-19), pages 3653 - 3664, XP001183987 *
MOREAU A ET AL: "A new approach to isoindoloisoquinolinones. A simple synthesis of nuevamine", TETRAHEDRON, vol. 60, no. 29, 12 July 2004 (2004-07-12), pages 6169 - 6176, XP002357869 *
MORI M ET AL: "Reactions and syntheses with organometallic compounds. 7. Synthesis of benzolactams by palladium-catalyzed amidation", JOURNAL OF ORGANIC CHEMISTRY, vol. 43, no. 9, 28 April 1978 (1978-04-28), pages 1864 - 1867, XP002357874 *
NORMAN M H ET AL: "Conformationally restricted analogues of remoxipride as potential antipsychotic agents", JOURNAL OF MEDICINAL CHEMISTRY, vol. 36, no. 22, 29 October 1993 (1993-10-29), pages 3417 - 3423, XP002357876 *
NORMAN M H ET AL: "Effect of linking bridge modifications on the antipsychotic profile of some phthalimide and isoindolinone derivatives", JOURNAL OF MEDICINAL CHEMISTRY, vol. 39, no. 1, 1996, pages 149 - 157, XP000982309 *
RYS V ET AL: "A short total synthesis of the alkaloids piperolactam C, goniopedaline, and stigmalactam", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, no. 7, April 2003 (2003-04-01), pages 1231 - 1237, XP002383546 *
SUGIMOTO H ET AL: "Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine and related derivatives", JOURNAL OF MEDICINAL CHEMISTRY, vol. 35, no. 24, 1992, pages 4542 - 4548, XP002319779 *
YAMAMOTO Y ET AL: "Synthesis of benzo-fused lactams and lactones via Ru(II)-catalyzed cycloaddition of amide- and ester-tethered alpha,omega-diyines with terminal alkynes: electronic directing effect of internal conjugated carbonyl groups", ORGANIC AND BIOMOLECULAE CHEMISTRY, vol. 2, no. 9, May 2004 (2004-05-01), pages 1287 - 1294, XP002357868 *
ZHUANG Z-P ET AL: "Isoindol-1-one analogues of 4-(2'-methoxyphenyl)1- [2'-[N-(2''-pyridyl)-p-iodobenzamido] ethyl]piperazine (p-MPPI) as 5-HT1A receptor ligands", JOURNAL OF MEDICINAL CHEMISTRY, vol. 41, no. 2, 15 January 1998 (1998-01-15), pages 157 - 166, XP002357875 *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153638B2 (en) 2005-08-12 2012-04-10 Astrazeneca Ab Metabotropic glutamate-receptor-potentiating isoindolones
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9266834B2 (en) 2006-03-15 2016-02-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
WO2008130853A1 (en) * 2007-04-17 2008-10-30 Astrazeneca Ab Hydrazides and their use as metabotropic glutamate receptor potentiators - 681
US9242933B2 (en) 2007-05-25 2016-01-26 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds as positive modulators of metabotropic glutamate receptor 2 (mGlu2 receptor)
US8377939B2 (en) 2007-06-07 2013-02-19 Astrazeneca Ab Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators 842
US7799792B2 (en) 2007-06-07 2010-09-21 Astrazeneca Ab Metabotropic glutamate receptor oxadiazole ligands and their use as potentiators 841
WO2008150232A1 (en) * 2007-06-07 2008-12-11 Astrazeneca Ab Metabotropic glutamate receptor oxadiazole ligands and their use as potentiators - 841
WO2008150233A1 (en) * 2007-06-07 2008-12-11 Astrazeneca Ab Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators - 842
EP2444399A1 (en) * 2007-06-07 2012-04-25 AstraZeneca AB Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators - 842
US8377940B2 (en) 2007-06-07 2013-02-19 Astrazeneca Ab Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators—842
RU2470931C2 (ru) * 2007-06-07 2012-12-27 Астразенека Аб Производные оксадиазола и их применение в качестве потенцирующих средств метаботропных глутаматных рецепторов-842
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US9132122B2 (en) 2007-09-14 2015-09-15 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
EP2303872A4 (en) * 2008-06-06 2012-03-21 Astrazeneca Ab ISOXAZOLE DERIVATIVES AND THEIR USE AS REINFORCED METABOTROPER GLUTAMATER RECEPTORS
EP2772492A1 (en) * 2008-06-06 2014-09-03 AstraZeneca AB Use of an isoxazole derivative for the treatment of withdrawal symptom
US8148372B2 (en) 2008-06-06 2012-04-03 Astrazeneca Ab Metabotropic glutamate receptor isoxazole ligands and their use as potentiators—286
CN102105466A (zh) * 2008-06-06 2011-06-22 阿斯利康(瑞典)有限公司 异噁唑衍生物及其作为亲代谢性谷氨酸受体增效剂的用途
TWI477499B (zh) * 2008-06-06 2015-03-21 Astrazeneca Ab 代謝型麩胺酸受體異唑配位體及其作為增效劑之用途-286
US7754742B2 (en) 2008-07-18 2010-07-13 Eli Lilly And Company Imidazole carboxamides
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US8362052B2 (en) 2009-03-11 2013-01-29 Msd K.K. Isoindolin-1-one derivative
JP2012520240A (ja) * 2009-03-11 2012-09-06 Msd株式会社 新規イソインドリン−1−オン誘導体
WO2010104195A1 (en) * 2009-03-11 2010-09-16 Banyu Pharmaceutical Co.,Ltd. Novel isoindolin-1-one derivative
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US9226930B2 (en) 2009-05-12 2016-01-05 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-a] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US10071095B2 (en) 2009-05-12 2018-09-11 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of neurological and psychiatric disorders
US8314120B2 (en) 2010-03-30 2012-11-20 Abbott Gmbh & Co. Kg Small molecule potentiators of metabotropic glutamate receptors
US8664214B2 (en) 2010-03-30 2014-03-04 AbbVie Deutschland GmbH & Co. KG Small molecule potentiators of metabotropic glutamate receptors I
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US8895571B2 (en) 2011-10-14 2014-11-25 Incyte Corporation Isoindolinone and pyrrolopyridinone derivatives as Akt inhibitors
AU2012328476B2 (en) * 2011-10-28 2017-03-30 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M1
EP3153167A1 (en) * 2011-10-28 2017-04-12 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor m1
US10654847B2 (en) 2011-10-28 2020-05-19 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M1
AU2017204409B2 (en) * 2011-10-28 2018-11-15 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M1
US9586964B2 (en) 2011-10-28 2017-03-07 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M1
EP2770997A4 (en) * 2011-10-28 2015-04-01 Univ Vanderbilt SUBSTITUTED 2- (4-HETEROCYCLYLBENZYL) ISOINDOLIN-1-ON ANALOGS AS POSITIVE ALLOSTERIC MODULATORS OF THE MUSCARIN ACETYLCHOLIN RECEPTOR M1
AU2019200952B2 (en) * 2011-10-28 2020-07-16 Vanderbilt University Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M1
EP3639823A1 (en) * 2011-10-28 2020-04-22 Vanderbilt University Center for Technology Transfer and Commercialization Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor m1
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US11103506B2 (en) 2014-01-21 2021-08-31 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US12048696B2 (en) 2014-01-21 2024-07-30 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
AU2018340505B2 (en) * 2017-09-26 2024-04-04 Pragma Therapeutics Novel heterocyclic compounds as modulators of mGluR7
EP3459939A1 (en) * 2017-09-26 2019-03-27 Pragma Therapeutics Novel heterocyclic compounds as modulators of mglur7
US11414395B2 (en) 2017-09-26 2022-08-16 Pragma Therapeutics Heterocyclic compounds as modulators of mGluR7
CN111148744A (zh) * 2017-09-26 2020-05-12 布拉格玛治疗公司 作为mglur7调节剂的新的杂环化合物
WO2019063596A1 (en) * 2017-09-26 2019-04-04 Pragma Therapeutics NOVEL HETEROCYCLIC COMPOUNDS AS MODULATORS OF MGLUR7
US12234218B2 (en) 2017-09-26 2025-02-25 Pragma Therapeutics Heterocyclic compounds as modulators of mGluR7
US11161838B2 (en) 2018-11-13 2021-11-02 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11078204B2 (en) 2018-11-13 2021-08-03 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors
US11396502B2 (en) 2018-11-13 2022-07-26 Incyte Corporation Substituted heterocyclic derivatives as PI3K inhibitors
US12006320B2 (en) 2018-11-13 2024-06-11 Incyte Corporation Heterocyclic derivatives as PI3K inhibitors

Also Published As

Publication number Publication date
CN101309905A (zh) 2008-11-19
EP1912940A1 (en) 2008-04-23
JP2009509921A (ja) 2009-03-12
WO2007021309A1 (en) 2007-02-22
JP2009509920A (ja) 2009-03-12
CN101277934A (zh) 2008-10-01
EP1912939A1 (en) 2008-04-23
JP5031745B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
EP1912939A1 (en) Metabotropic glutamate-receptor-potentiating isoindolones
US7868008B2 (en) Substituted isoindolones and their use as metabotropic glutamate receptor potentiators
US8153638B2 (en) Metabotropic glutamate-receptor-potentiating isoindolones
TWI417100B (zh) 二唑衍生物及其作為代謝型麩胺酸受體增效劑-842之用途
US20110053953A1 (en) AZA-Isoindolones and Their Use as Metabotropic Glutamate Receptor Potentiators - 613
WO2008130853A1 (en) Hydrazides and their use as metabotropic glutamate receptor potentiators - 681
JP5031565B2 (ja) イソインドール化合物および代謝共役型グルタミン酸受容体増強剤としてのそれらの使用
DE69929704T2 (de) Tetrahydrobenzazepin-derivate verwendbar als dopamin-d3-rezeptor-modulatoren (antipsychotische mittel)
WO2008032191A2 (en) Spiro-oxazolidinone compounds and their use as metabotropic glutamate receptor potentiators
JP2009519929A (ja) オキサゾリジノン化合物及び代謝型グルタミン酸レセプター増強剤としてのそれらの使用
JP2010520876A (ja) ピペラジンおよびピペリジンmGluR5増強剤
JP2009503069A (ja) 三環式ベンゾイミダゾール類、および代謝性グルタミン酸塩受容体のモジュレータとしてのそれらの使用
JP2009532381A (ja) 二環式ベンズイミダゾール化合物、および代謝型グルタミン酸受容体増強剤としての該化合物の使用
MX2010012357A (es) Compuesto de amida.
JP2010529117A (ja) 代謝型グルタミン酸受容体オキサジアゾールリガンドおよびそれらの増強剤としての使用
JP2006523707A (ja) 治療化合物
DE60305332T2 (de) IMIDAZOi1,2-AöPYRIDINE
JP2009536213A (ja) 縮合複素環化合物及びmglur5モジュレーターとしてのその使用
HK1183480A (en) Oxadiazole derivatives and their use as metabotropic glutamate receptor potentiators - 842

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036311.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 934/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008525976

Country of ref document: JP

Ref document number: 2006720758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12063007

Country of ref document: US