WO2007020925A1 - 電気音響変換装置 - Google Patents

電気音響変換装置 Download PDF

Info

Publication number
WO2007020925A1
WO2007020925A1 PCT/JP2006/316046 JP2006316046W WO2007020925A1 WO 2007020925 A1 WO2007020925 A1 WO 2007020925A1 JP 2006316046 W JP2006316046 W JP 2006316046W WO 2007020925 A1 WO2007020925 A1 WO 2007020925A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroacoustic transducer
diaphragm
substrate
permanent magnet
thin film
Prior art date
Application number
PCT/JP2006/316046
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Minematsu
Kazumi Maruyama
Original Assignee
Fuji Electric Device Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co., Ltd. filed Critical Fuji Electric Device Technology Co., Ltd.
Priority to JP2007530999A priority Critical patent/JPWO2007020925A1/ja
Publication of WO2007020925A1 publication Critical patent/WO2007020925A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/13Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using electromagnetic driving means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/06Arranging circuit leads; Relieving strain on circuit leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/024Manufacturing aspects of the magnetic circuit of loudspeaker or microphone transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones

Definitions

  • the present invention relates to an electroacoustic transducer having a thin film coil, a permanent magnet, and a diaphragm, and more particularly to an electroacoustic transducer constructed using MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • FIG. 23 shows a dynamic speaker that is an example of a conventional electroacoustic transducer.
  • a concentric cylindrical coil 3 connected and fixed to the diaphragm 2 is inserted into a magnetic field formed by the permanent magnet 6 and the yokes 51 and 52.
  • the coil 3 is arranged so as to protrude from the diaphragm 2 (see Patent Document 1).
  • a piezo-type small electroacoustic transducer is disclosed in Non-Patent Document 1, for example.
  • a capacitor-type small electroacoustic transducer is disclosed in Patent Document 2.
  • a conventional dynamic speaker or microphone as described in Patent Document 1 has a structure in which a cylindrical coil protrudes from a diaphragm. With such a structure, there was a limit to thinning. In addition, the sensor unit in the speaker and the amplifier unit in the microphone are usually separated from each other. Therefore, there was a problem of picking up noise on the connected Cape Nore.
  • the piezoelectric electro-acoustic transducer using the MEMS technology as described in Patent Document 2 and Non-Patent Document 1 can be downsized, but the piezoelectric type generates large sound waves. There is a problem that the voltage applied to the piezo element increases. In addition, the capacitor type has a problem that a large noise voltage is required. Furthermore, the electroacoustic transducer described in Patent Document 3 is a force that is originally intended to achieve a reduction in thickness, and is a magnetic buzzer. Or suitable for use as a microphone Not right.
  • an object of the present invention is to provide an electroacoustic transducer that can be thinned, is small in size, consumes less power, and can be applied as a high-quality speaker or microphone. is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-169390
  • Patent Document 2 Special Table 2003-509984 Publication
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-305409
  • Non-patent literature 1 S. H. Yi and E. b. Kim, "Piezoelectric Microspea er with Compressiv e Nitride Diaphragm” International MEMS Conference. January 20-24. 2002. Las Ve gas
  • a substrate having an opening, a diaphragm supported on the substrate so that one surface faces the opening, and the diaphragm
  • An electroacoustic transducer having a thin film coil formed on the other surface and a cover portion provided with a permanent magnet, wherein the thin film coil circulates around one axis, and the permanent magnet is the axis.
  • an electroacoustic transducer characterized by being located above and having the same direction of polarity as the direction of the axis.
  • the cover portion is made of a nonmagnetic material, and a ferromagnetic material can be plated on the inner surface thereof.
  • the cover portion may be made of a ferromagnetic material.
  • a yoke can be provided between the permanent magnet and the cover portion.
  • the yoke can be made of a ferromagnetic material.
  • the diaphragm made of a soft magnetic material formed so as to face the permanent magnet can be omitted.
  • a substrate having an opening, a diaphragm supported so that one surface faces the opening of the substrate, and provided on the other surface of the diaphragm
  • An electroacoustic transducer having a permanent magnet formed on the substrate so as to circulate around the diaphragm, wherein the thin film coil is the permanent magnet
  • An electroacoustic transducer is provided, wherein the permanent magnet is rotated around the center thereof and the direction of polarity of the permanent magnet is the same as the direction of the axis.
  • the material of the diaphragm may be different from that of the substrate.
  • the substrate may be made of a semiconductor, and may include an electric circuit formed directly on the substrate and connected to the thin film coil.
  • an electric circuit provided on the substrate via an insulating film and connected to the thin film coil can be provided.
  • the knock of the electroacoustic transducer can be shared with the cover.
  • the thin film coiler is also adapted to the sound wave corresponding to the sound wave. A signal can be obtained.
  • the diaphragm can vibrate by an electromagnetic force of a magnetic field generated by the permanent magnet and a current based on an acoustic signal flowing through the thin film coil, thereby generating a sound wave.
  • a thin film can be formed by disposing a thin film coil formed on a diaphragm supported by a substrate having an opening and a permanent magnet so as to face the thin film coil.
  • An electroacoustic transducer with a small size and low power consumption can be provided.
  • a permanent magnet is provided on a diaphragm supported by a substrate, and a thin film coil is formed on the substrate around the diaphragm, whereby a further thin film can be obtained.
  • an electroacoustic transducer can be provided.
  • the connection between the thin film coil and the electric circuit can be shortened as much as possible, and the influence of noise incident from the outside can be achieved. Therefore, it is possible to provide a high-quality electroacoustic transducer.
  • FIG. 1 is a cross-sectional view of a first embodiment of an electroacoustic transducer according to the present invention.
  • FIG. 2 is a cross-sectional view of the first embodiment of the electroacoustic transducer of the present invention.
  • FIG. 3 is a cross-sectional view of the first embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 4 is a cross-sectional view of the first embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 5 is a sectional view of the first embodiment of the electroacoustic transducer of the present invention. 6] FIG. 6 is a cross-sectional view of the first embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 7 is a cross-sectional view of the first embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 8 is a cross-sectional view of the second embodiment of the electroacoustic transducer of the present invention.
  • FIG. 9 is a cross-sectional view of a second embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 10 is a cross-sectional view of a second embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 11 is a cross-sectional view of the second embodiment of the electroacoustic transducer of the present invention.
  • FIG. 12 is a cross-sectional view of a second embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 13 is a cross-sectional view of a second embodiment of the electroacoustic transducer including the knocker of the present invention.
  • FIG. 14 is a cross-sectional view of a third embodiment of the electroacoustic transducer of the present invention.
  • FIG. 15 is a cross-sectional view of a third embodiment of the electroacoustic transducer of the present invention.
  • FIG. 16A is a cross-sectional view of the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 16B is a plan view of the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 17A is a cross-sectional view showing the steps in the method of manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 17B is a cross-sectional view showing another process in the method for manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 17C is a cross-sectional view showing still another process in the method of manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 18A is a cross-sectional view showing still another process in the method for manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 18B is a cross-sectional view showing still another process in the method of manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 19A is a cross-sectional view of an electroacoustic transducer according to a second embodiment of the present invention.
  • FIG. 19B is a plan view of the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 20A is a cross-sectional view showing a process in the method for manufacturing the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 20B is a cross-sectional view showing another step in the method for manufacturing the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 20C is a cross-sectional view showing still another process in the method for manufacturing an electroacoustic transducer of Example 2 of the present invention.
  • FIG. 20D is a cross-sectional view showing still another process in the method of manufacturing the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 21A is a cross-sectional view showing still another process in the method of manufacturing the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 21B is a cross-sectional view showing still another process in the method for manufacturing an electroacoustic transducer of Example 2 of the present invention.
  • FIG. 21C is a cross-sectional view showing still another process in the method of manufacturing the electroacoustic transducer according to the second embodiment of the present invention.
  • FIG. 22A is a cross-sectional view of an electroacoustic transducer according to a third embodiment of the present invention.
  • FIG. 22B is a plan view of the electroacoustic transducer according to the third embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of a conventional dynamic electroacoustic transducer.
  • FIG. 1 is a cross-sectional view showing an example of an electroacoustic transducer according to the first embodiment of the present invention.
  • a diaphragm 2 is supported on a substrate 1 having an opening 1 A, and one surface of the diaphragm 2 faces the opening 1 A.
  • a thin film coil 3 is formed on the other surface of the diaphragm 2.
  • the thin film coil 3 is a spiral coil whose planar shape circulates around one axis.
  • the spiral shape for example, there are a spiral shape without a straight portion or a spiral shape with a straight portion and a corner portion.
  • Such a basic structure of the thin film coil 3 is common to the second embodiment and the second example of the present invention.
  • a plate-like yoke 5 is made of a metal plate on a cover portion 4 made of a semiconductor, a glass substrate, a resin, etc., and a permanent magnet 6 is bonded or vapor-deposited and patterned on the central portion of the yoke 5.
  • the permanent magnet 6 may be thin and cylindrical or polygonal.
  • the direction of the polarity of the permanent magnet 6 is set to be the same as the direction of the central axis of the thin film coil 3.
  • the cover part 4 is fixed to the substrate 1 by adhesion or the like so that the central axis of the thin film coil 3 and the central axis of the permanent magnet 6 coincide. Accordingly, the permanent magnet 6 faces the inner part of the thin film coil 3.
  • the peripheral part of the cover part 4 is in close contact with the substrate 1 except for the opening part 8.
  • a gap 7 is formed between the diaphragm 2 (and the thin film coil 3) and the yoke 5.
  • the yoke 5 it is possible to replace the yoke 5 by forming a ferromagnetic material such as Ni or ferrite inside the cover portion 4 by plating. Also, the entire cover portion 4 can be made of a ferromagnetic material such as Ni or ferrite, so that the entire cover portion 4 can be used in place of the yoke 5.
  • a semiconductor substrate can be used, and the diaphragm 2 can be formed by thinning a part of the semiconductor substrate.
  • Diaphragm 2 may be a thin film made of a semiconductor that may have a material force different from that of substrate 1, an insulating film such as SiN or SiO, a metal film such as A1, or a high content such as polyimide.
  • the thin film coil 3 is made of a metal film and can be formed on the diaphragm 2 by plating, sputtering, vapor deposition, or the like. Further, an anti-oxidation film may be formed on the surface of the thin film coil 3 as necessary. In addition, the thin film coil 3 is made of an insulating film such as SiN or SiO
  • the electroacoustic apparatus having such a configuration can be operated as a speaker as follows. That is, the magnetic field formed by the yoke 5 and the permanent magnet 6 extends radially from the central axis of the thin film coil 3. Therefore, when a current based on an acoustic signal is applied to the thin film coil 3, the diaphragm 2 vibrates due to the electromagnetic force acting between the magnetic field and the current based on the acoustic signal applied to the thin film coil 3, and the current based on the acoustic signal Sound wave corresponding to can be generated. Further, the electroacoustic apparatus having such a configuration can be operated as a microphone as follows.
  • the diaphragm 2 vibrates due to the sound wave that has reached the back surface (the surface opposite to the coil 3) of the diaphragm 2, the thin film coil 3 relatively moves in the magnetic field, and the thin film coil 3 An electric current flows and an acoustic signal corresponding to the sound wave can be obtained.
  • the thickness can be reduced.
  • MEMS technology it becomes possible to stably create a gap 7 between the permanent magnet 6 and the thin-film coil 3 that is small, and sufficient driving force of the diaphragm 2 can be obtained even with a small magnetic force. It is done.
  • FIG. 2 is a cross-sectional view showing another example of the electroacoustic transducer according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the electroacoustic transducer including the package according to the first embodiment of the present invention.
  • This electroacoustic transducer is obtained by joining the electroacoustic transducer shown in FIG. 1 to the package body 11 by bonding or the like and bonding the lid 12 to the package body 11 by bonding or the like.
  • the nano / cage body 11 is made of resin, glass, metal, and a composite material thereof, and is provided with an opening 13 for sound waves to enter and exit below the diaphragm 2 of the electroacoustic transducer. ing.
  • the lid 12 also has power such as resin, glass, metal, and composite materials thereof.
  • FIG. 4 is a cross-sectional view showing another example of the electroacoustic transducer including the package according to the first embodiment of the present invention.
  • This electroacoustic transducer is characterized in that the cover part 4 is joined to the package body 11, and the cover part 4 has the same function as the lid 12 of the package shown in FIG.
  • the thickness can be reduced compared to the embodiment of FIG. 3, which can contribute to downsizing and cost reduction.
  • FIG. 5 is a cross-sectional view showing still another example of the electroacoustic transducer according to the first embodiment of the present invention.
  • This electroacoustic transducer is provided with an electric circuit 9 made of CMOS or the like on the substrate 1 of the electroacoustic transducer shown in FIG.
  • the electric circuit 9 includes an amplifier circuit, a DA conversion circuit, an AD conversion circuit, an impedance circuit, and the like, and is built on the substrate 1 that is a semiconductor, or separately formed on the substrate 1 via an insulating film. Deploy.
  • FIG. 6 is a cross-sectional view showing still another example of the electroacoustic transducer including the package according to the first embodiment of the present invention.
  • This electroacoustic transducer is obtained by joining the electroacoustic transducer shown in FIG. 5 to the package body 11 and joining the lid 12 to the package body 11.
  • the knock body 11 is made of resin, glass, metal, a composite material thereof, and the like, and has an opening 13 through which sound waves enter and exit at the lower part of the diaphragm of the electro-acoustic transducer.
  • the lid 12 also has power such as grease, glass, metal, and a composite material thereof.
  • FIG. 7 shows an electroacoustic transducer including a package according to the first embodiment of the present invention. It is sectional drawing which shows another example of a device.
  • This electroacoustic transducer is characterized in that the cover portion 4 is joined to the package body 11, and this cover portion 4 has the same function as the lid 12 of the package shown in FIG.
  • FIG. 8 is a cross-sectional view showing an example of an electroacoustic transducer in the second embodiment of the present invention.
  • This electroacoustic transducer is obtained by providing a core 21 having a soft magnetic force at a position facing the permanent magnet 6 on the diaphragm 2 in addition to the electroacoustic transducer shown in FIG.
  • the core 21 may be formed of a soft magnetic material such as ferrite, permalloy, or key copper.
  • the electroacoustic transducer having such a configuration When the electroacoustic transducer having such a configuration is used as a speaker, when a current based on an acoustic signal is applied to the thin film coil 3, an electromagnetic field formed by the thin film coil 3 to which the current is applied and the core 21 is applied.
  • the diaphragm 2 vibrates by acting on the magnetic field of the permanent magnet 6 to constitute a speaker that generates sound waves corresponding to the current based on the sound signal.
  • the electromagnetic field formed by the coil 3 can be concentrated at the center of the device, and it can be efficiently operated with the magnetic field of the permanent magnet 6, thereby improving the efficiency of the speaker.
  • the electroacoustic transducer having such a configuration can be used as a microphone. That is, the diaphragm 2 is vibrated by the sound wave, and the current flows through the thin film coil 3 formed around the core 4 as the core 21 moves in the magnetic field of the permanent magnet 6. Signal can be obtained and used as a microphone.
  • the thickness can be reduced.
  • FIG. 9 is a sectional view showing another example of the electroacoustic transducer according to the second embodiment of the present invention.
  • This electroacoustic transducer is obtained by joining the electroacoustic transducer shown in FIG. 8 to the package body 11 and joining the lid 12 to the package body 11.
  • the knock body 11 An opening 13 is formed in the lower part of the diaphragm 2 of the electro-acoustic transducer for entering and exiting sound waves.
  • the lid 12 also has power such as resin, glass, metal, and composite materials thereof.
  • FIG. 10 is a cross-sectional view showing an example of an electroacoustic transducer including a package in the second embodiment of the present invention.
  • This electroacoustic transducer is characterized in that the cover part 4 is joined to the package body 11, and the cover part 4 has the same function as the lid 12 of the package shown in FIG.
  • the thickness can be reduced compared to the embodiment of FIG. 9, which can contribute to size reduction and cost reduction.
  • FIG. 11 is a cross-sectional view showing still another example of the electroacoustic transducer according to the second embodiment of the present invention.
  • This electroacoustic transducer includes an electrical circuit 9 made of CMOS or the like on the substrate 1 of the electroacoustic transducer shown in FIG.
  • the electric circuit 9 includes an amplifier circuit, a DA conversion circuit, an AD conversion circuit, an impedance circuit, and the like, and is built on the substrate 1 that is a semiconductor, or separately formed on the substrate 1 via an insulating film. Deploy. The distance between the thin film coil 3 and the electric circuit 9 can be reduced, and the influence of noise can be minimized.
  • FIG. 12 is a cross-sectional view showing another example of the electroacoustic transducer including the package in the second embodiment of the present invention.
  • This electroacoustic transducer is obtained by joining the electroacoustic transducer shown in FIG. 11 to the package body 11 and joining the lid 12 to the package body 11.
  • the knock body 11 is made of resin, glass, metal, and a composite material thereof, and has an opening 13 for sound waves to enter and exit below the diaphragm of the electro-acoustic transducer.
  • the lid 12 also has power such as resin, glass, metal, and composite materials thereof.
  • FIG. 13 is a sectional view showing still another example of the electroacoustic transducer including the package in the second embodiment of the present invention.
  • This electroacoustic transducer is characterized in that the cover portion 4 is joined to the package body 11, and this cover portion 4 has the same function as the lid 12 of the package shown in FIG. By adopting such a configuration, it is thinner and smaller than the embodiment of FIG. And it can contribute to cost reduction.
  • FIG. 14 is a cross-sectional view showing an example of an electroacoustic device according to the third embodiment of the present invention.
  • a diaphragm 2 is formed on a substrate 1
  • a permanent magnet 6 is provided at the center of the diaphragm 2 by adhesion or vapor deposition and patterning, and a thin film is formed on the substrate 1 around the diaphragm 2.
  • Coil 3 is created.
  • the thin film coil 3 is a spiral coil whose planar shape circulates around one axis. Examples of the spiral shape include a spiral shape having no straight portion or a spiral shape having a straight portion and a corner portion.
  • the permanent magnet 6 is preferably thin and cylindrical or polygonal.
  • the direction of the polarity of the permanent magnet 6 is set to be the same as the direction of the central axis of the thin film coil 3.
  • a semiconductor substrate can be used as the substrate 1, and the diaphragm 2 can be formed by thinning a part of the semiconductor substrate.
  • the diaphragm 2 may be a thin film made of a semiconductor, which may have a material force different from that of the substrate 1, an insulating film such as SiN or SiO, a metal film such as A1, or a polymer such as polyimide.
  • It may be a material film. Further, a single film or a composite film of these materials may be used.
  • the thin film coil 3 is made of a metal film and can be formed on the diaphragm 2 by plating, sputtering, vapor deposition, or the like. Further, an anti-oxidation film may be formed on the surface of the thin film coil 3 as necessary.
  • the thin-film coil 3 can be laminated via an insulating film such as SiN or Si02 or a high-molecular material film such as polyimide.
  • the diaphragm 2 vibrates and corresponds to the current based on the acoustic signal. It can be used as a speaker that generates sound waves.
  • diaphragm 2 and permanent magnet 6 are vibrated by the sound wave, and the permanent magnet 6 moves up and down inside the thin film coil 3 so that a current flows through the thin film coil 3, so that an acoustic signal corresponding to the sound wave is obtained.
  • FIG. 15 is a cross-sectional view showing another example of the electroacoustic transducer according to the third embodiment of the present invention.
  • This electroacoustic transducer is formed on the substrate 1 of the electroacoustic transducer shown in FIG. Equipped with an electrical circuit 9 and so on.
  • the electric circuit 9 includes an amplifier circuit, a DA conversion circuit, an AD conversion circuit, an impedance circuit, etc., and is built on the semiconductor-powered substrate 1 or separately formed and insulated on the substrate 1 as necessary. Place through the membrane. The distance between the thin film coil 3 and the electric circuit 9 can be reduced, and the influence of noise can be minimized.
  • FIG. 16A is a cross-sectional view of the electroacoustic transducer according to the first embodiment of the present invention, and is a cross-sectional view taken along line X VIA-XVIA in FIG. 16B.
  • FIG. 16B is a plan view, and illustration of the cover portion 4 in which the yoke 5 and the permanent magnet 6 of FIG. 16A are formed is omitted. This example corresponds to the example of FIG. 5 in the first embodiment.
  • An oxide film 22 is formed on a substrate 1 that also has silicon power, and a bow I extrusion layer 23 made of copper connected to one end of the thin film coil 3 is formed thereon, and a bow I extrusion layer 23 is formed.
  • the lead layer 23 is connected to the thin film coil 3 and the pad portion 25 by a contact layer 26 having a copper force.
  • the pad portion 25 and the electric circuit 9 are electrically connected by a bonding wire (not shown).
  • FIGS. 17A, B and C and FIGS. 18A and 18B are cross-sectional views showing respective steps in the method of manufacturing the electroacoustic transducer according to the first embodiment of the present invention.
  • an oxide film 22 is formed on the surface of the silicon substrate 1 with a hot acid solution or the like.
  • copper is vapor-deposited and patterned on the oxide film 22 to form the bow I exposed layer 23.
  • a polyimide is applied so as to cover the bow I exposed layer 23 and patterned to form an insulating layer 24.
  • a contact hole 27 is formed by patterning the insulating layer 24.
  • the silicon substrate 1 is etched using the photoresist 28 as a mask to expose the oxide film 22.
  • the oxide film 22 is etched using the silicon substrate 1 as a mask to expose the insulating film 24 and the extraction layer 23.
  • the insulating film 24 exposed by etching acts as the diaphragm 2.
  • ferrite is vapor-deposited and bumped on the cover portion 4 formed of a glass substrate to form the yoke 5, the permanent magnet 6 is bonded onto the yoke 5, and the cover portion 4 is attached as shown in FIG.
  • the electroacoustic transducer as shown in FIG. 16 is obtained by bonding onto the substrate.
  • the step of etching a part of the oxide film 22 in FIG. 18B is performed.
  • the step of etching the acid film 22 is not performed, and the oxide film 22 and the insulating film 24 are formed. It is good also as diaphragm 2.
  • FIG. 18A when the silicon substrate 1 is etched, the silicon film 1 is thinned without exposing the oxide film 22, and the portion where the silicon substrate is thinned and the oxide film 22
  • the insulating film 24 may be used as the diaphragm 2, and the diaphragm 2 configured in this way can be supported on another substrate having a structure such as the substrate 1 in FIG. 1 by bonding or the like.
  • FIG. 19A is a cross-sectional view of the electroacoustic transducer according to the second embodiment of the present invention, and is a cross-sectional view taken along line XIXA-XIXA in FIG. 19B.
  • FIG. 19B is a plan view, and illustration of the cover portion 4 on which the permanent magnet 6 of FIG. 19A is formed is omitted. This example corresponds to the example of FIG. 11 in the second embodiment.
  • An oxide film 22 is formed on a substrate 1 that also has silicon power, and a bow I extrusion layer 23 made of copper connected to one end of the thin film coil 3 is formed thereon, and the bow I extrusion layer 23 is formed.
  • An insulating film 24 made of polyimide, which becomes diaphragm 2, is formed so as to cover the film, and a thin film that also has copper power is formed on the insulating film 24.
  • a coil 3, a knot portion 25 that also has copper power, a core 21 made of ferrite, and an electric circuit 9 are formed.
  • the lead layer 23 is connected to the thin film coil 3 and the pad portion 25 by a contact layer 26 having a copper force.
  • the node portion 25 and the electric circuit 9 are electrically connected by a bonding wire (not shown).
  • FIGS. 21A, B, C are cross-sectional views showing respective steps in the method of manufacturing the electroacoustic transducer of the second embodiment of the present invention.
  • an oxide film 22 is formed on the surface of the silicon substrate 1 with a hot acid solution or the like.
  • a stop layer 29 is formed by depositing and patterning aluminum-um on the oxide film 22. Copper is vapor-deposited and turned on the stop layer 29 and the oxide film 22 to form the extraction layer 23.
  • polyimide is applied so as to cover the lead layer 23 to form an insulating layer 24.
  • a contact hole 27 is formed by patterning the insulating layer 24.
  • the contact layer 26 is deposited and patterned to form the contact layer 26.
  • the thin film coil 3 and the pad 25 are formed by depositing and patterning copper. Using the photoresist as a mask, ferrite is deposited, patterned and etched to form the core 21.
  • the contact hole 27 is shallow, the contact layer 26, the thin film coil 3 and the pad portion 25 can be formed simultaneously.
  • the electric circuit 9 is bonded onto the insulating film 24, and the electric circuit 9 and the pad portion 25 are connected by wire bonding. Seal the electrical circuit pad 9 and bonding wire as necessary.
  • the process of FIG. 20 is performed after the electric circuit 9 is formed, and the electric circuit 9 is connected when the lead layer 23 and the thin film coil 3 are formed. In this case, the pad portion 25 need not be formed.
  • the silicon substrate 1 is etched using the photoresist 28 as a mask to expose the oxide film 22.
  • the oxide film 22 is etched using the silicon substrate 1 as a mask to expose the stop layer 29.
  • the stop layer 29 is removed by etching, and the insulating film 24 is removed. And the lead-out layer 23 is exposed.
  • the electroacoustic transducer shown in FIG. 19 is obtained by adhering the permanent magnet 6 to the cover part 4 formed of a glass substrate and adhering the cover part 4 on FIG. 21C. .
  • the stop layer 29 was formed and manufactured.
  • the reason for forming the stop layer 29 is to reliably etch only the silicon substrate 1 including the oxide film 22 regardless of the etching method. If the stop layer 29 is not provided, the extraction layer 23 and the insulating film 24 may be damaged by the etching method.
  • electroacoustic transducer shown in FIG. 19 can be manufactured by the manufacturing method shown in FIG. 17 and FIG.
  • the electroacoustic transducer shown in FIG. 16 can be manufactured by the manufacturing method shown in FIG. 20 and FIG.
  • FIG. 22A is a cross-sectional view of the electroacoustic transducer according to the third embodiment of the present invention, and is a cross-sectional view taken along the line ⁇ of FIG. 22B.
  • FIG. 22B is a plan view. This example corresponds to the example of FIG. 15 in the third embodiment.
  • An oxide film 22 is formed on a substrate 1 that also has silicon power, and a bow I extrusion layer 23 made of copper connected to one end of the thin film coil 3 is formed thereon, and a bow I extrusion layer 23 is formed.
  • An insulating film 24, which is also a polyimide film serving as the diaphragm 2 is formed so as to cover the thin film coil 3 having a copper force and a pad portion having a copper force 25 on the insulating film 24 and around the diaphragm 2.
  • Circuit 9 is formed.
  • a permanent magnet 6 is bonded on the center of the diaphragm 2.
  • the lead layer 23 is connected to the thin film coil 3 and the pad portion 25 by a contact layer 26 having a copper force.
  • the nod portion 25 and the electric circuit 9 are electrically connected by a bonding wire or the like, not shown.
  • the electroacoustic transducer of this embodiment can be manufactured by the manufacturing method shown in Figs. It can also be manufactured by the manufacturing method shown in FIG. 20 and FIG.
  • the manufacturing method described in the above-described embodiments is performed using MEMS technology.
  • MEMS technology it is possible to stably form each component with a small interval, and it is possible to drive the diaphragm sufficiently even with a small magnetic force.

Abstract

 開口を有する基板(1)にダイアフラム(2)が支持される。当該開口にダイヤフラム(2)の一方の面が臨んでいる。薄膜コイル(3)は、平面形状が1つの軸の周りを周回する渦巻き形のコイルである。カバー部(4)にヨーク(5)を作成し、ヨーク(5)の中央部に永久磁石(6)を設ける。ダイアフラム(2)とヨーク(5)との間には空隙(7)が形成されている。ダイアフラム(2)に薄膜コイル(3)を形成することによって、薄型化を図ることができる。永久磁石(6)と薄膜コイル(3)との間の間隙(7)が小さいので、小さな磁力でもダイアフラム(2)の十分な駆動力が得られる。薄型化が可能であり、小型化され、消費電力の少ない電気音響変換装置を実現することができる。

Description

明 細 書
電気音響変換装置
技術分野
[0001] この発明は薄膜コイルと永久磁石とダイアフラムを有する電気音響変換装置に関し 、特に MEMS (Micro Electro Mechanical Systems)技術を用いて开成する電気音響 変換装置に関する。
背景技術
[0002] 従来の電気音響変換装置の一例であるダイナツミク型スピーカを図 23に示す。図 2 3に示すように、ダイアフラム 2に連結固定した同心円筒形状のコイル 3が、永久磁石 6とヨーク 51、 52から形成される磁界中に挿入されている。このコイル 3は、ダイアフラ ム 2から突き出した配置となって 、る (特許文献 1参照)。
[0003] 近年、 MEMS技術の発展により、シリコンベースのピエゾ型や、コンデンサ型の小型 電気音響変換装置も提案されて 、る。ピエゾ型の小型電気音響変換装置につ!、て は、例えば非特許文献 1に示されている。コンデンサ型の小型電気音響変換装置に ついては、特許文献 2に示されている。
[0004] 特許文献 1に記載のような従来のダイナミック型スピーカやマイクロフォンは、ダイァ フラムから円筒形状のコイルが突き出した構造を有している。このような構造では、薄 型化に限界があった。また、前記のスピーカにおけるァクチユエ一タ部ゃマイクロフォ ンにおけるセンサ部と、アンプ部とは通常離れている。そのため、その接続ケープノレ 上でノイズを拾うなどの問題もあった。
[0005] 一方、特許文献 2、非特許文献 1に記載のような MEMS技術を活用したピエゾ型ゃ コンデンサ型による電気音響変換装置では小型化は実現できるものの、ピエゾ型で は、大きな音波を発生するためのピエゾ素子に印加する電圧が大きくなつてしまうと いう問題があった。また、コンデンサ型においては大きなノィァス電圧が必要となると いう問題があった。さらに、特許文献 3に記載の電気音響変換装置は、薄型化を達 成することを課題としている力 本来はマグネチックブザーであり、その構造は発音部 分が外側に開放されておらず、スピーカまたはマイクロフォンとしての用途としては適 当ではない。
[0006] 上記問題点に鑑み、本発明の目的は薄型化が可能であり、小型で、消費電力の少 ない、高品質なスピーカまたはマイクロフォンとしての適用可能な電気音響変換装置 を提供することにある。
[0007] 特許文献 1 :特開 2003— 169390号公報
特許文献 2:特表 2003 - 509984号公報
特許文献 3:特開 2003 - 305409号公報
非特干文献 1 : S. H. Yi and E. b. Kim, "Piezoelectric Micro spea er with Compressiv e Nitride Diaphragm" International MEMS Conference. January 20-24. 2002. Las Ve gas
発明の開示
[0008] 前記の目的を達成するために、本発明の一態様によれば、開口を有する基板と、 前記基板に前記開口に一方の面が臨むように支持されたダイァフラムと、前記ダイァ フラムの他方の面上に形成された薄膜コイルと、永久磁石が設けられたカバー部とを 有する電気音響変換器であって、前記薄膜コイルは 1つの軸の周りを周回し、前記 永久磁石は前記軸上に位置し、かつ、その極性の方向が前記軸の方向と同一であ ることを特徴とする電気音響変換装置が提供される。
[0009] ここで、前記カバー部は、非磁性材料からなり、その内側面に強磁性材料をメツキ することができる。
[0010] さらに、前記カバー部は、強磁性材カもなるものとすることができる。
[0011] さらに、前記永久磁石と前記カバー部との間にヨークを備えることができる。
[0012] さらに、前記ヨークは強磁性材料とすることができる。
[0013] さらに、前記ダイァフラムに前記永久磁石と対向するように形成される軟磁性体から なるコ を備免ることができる。
[0014] また、本発明の他の一態様によれば、開口を有する基板と、前記基板の前記開口 に一方の面が臨むように支持されたダイァフラムと、前記ダイァフラムの他方の面上 に設けられた永久磁石と、前記ダイアフラムを周回するように前記基板上に形成され た薄膜コイルとを有する電気音響変換器であって、前記薄膜コイルは前記永久磁石 の中心を軸とするように周回し、前記永久磁石は極性の方向が前記軸の方向と同一 であることを特徴とする電気音響変換装置が提供される。
[0015] ここで、前記ダイァフラムの材料は、前記基板と異なるものとすることができる。
[0016] さらに、前記基板は半導体からなり、前記基板に直接形成され、前記薄膜コイルと 接続された電気回路を備えることができる。
[0017] さらに、前記基板上に絶縁膜を介して設けられ、前記薄膜コイルと接続された電気 回路を備えることができる。
[0018] さらに、当該電気音響変換装置のノ ッケージを、前記カバー部と共通化することが できる。
[0019] さらに、前記開口を介して外部力 入射した音波を感知して前記ダイァフラムおよ び前記薄膜コイルが前記永久磁石による磁界中で振動することにより、当該薄膜コィ ルカも音波に対応した音響信号を得ることができる。
[0020] さらに、前記永久磁石による磁界と前記薄膜コイルに流れる音響信号に基づく電流 との電磁力により前記ダイァフラムが振動し、音波を発生させることができる。
[0021] 本発明によれば、開口を有する基板に支持されたダイアフラム上に形成された薄膜 コイルと、この薄膜コイルに対向するように永久磁石を配置することで、薄膜化が可能 であり、小型で消費電力の少ない、電気音響変換装置を提供することができる。
[0022] また、本発明によれば、基板に支持されたダイアフラム上に永久磁石を設け、ダイ ァフラムの周りの基板上に薄膜コイルを形成することで、さらに薄膜ィ匕が可能であり、 小型で消費電力の少な!ヽ、電気音響変換装置を提供することができる。
[0023] さらに、本発明によれば基板上に CMOSなどによる電気回路を配置することで、薄 膜コイルと電気回路間の結線を極力短くすることができ、外部から入射されるノイズに よる影響を極力小さくすることが可能となり、高品質な、電気音響変換装置を提供す ることがでさる。
[0024] さらに、本発明によれば永久磁石を有するカバー部をパッケージと共通化すること で、更なる薄膜ィ匕が可能であり、小型の電気音響変換装置を提供することができる。 図面の簡単な説明
[0025] [図 1]図 1は本発明の電気音響変換装置の第 1の実施の形態の断面図である。 圆 2]図 2は本発明の電気音響変換装置の第 1の実施の形態の断面図である。 圆 3]図 3は本発明のノ ッケージを含めた電気音響変換装置の第 1の実施の形態の 断面図である。
圆 4]図 4は本発明のノ ッケージを含めた電気音響変換装置の第 1の実施の形態の 断面図である。
圆 5]図 5は本発明の電気音響変換装置の第 1の実施の形態の断面図である。 圆 6]図 6は本発明のノ ッケージを含めた電気音響変換装置の第 1の実施の形態の 断面図である。
圆 7]図 7は本発明のノ ッケージを含めた電気音響変換装置の第 1の実施の形態の 断面図である。
圆 8]図 8は本発明の電気音響変換装置の第 2の実施の形態の断面図である。 圆 9]図 9は本発明のノ ッケージを含めた電気音響変換装置の第 2の実施の形態の 断面図である。
圆 10]図 10は本発明のノ ッケージを含めた電気音響変換装置の第 2の実施の形態 の断面図である。
圆 11]図 11は本発明の電気音響変換装置の第 2の実施の形態の断面図である。 圆 12]図 12は本発明のノ ッケージを含めた電気音響変換装置の第 2の実施の形態 の断面図である。
圆 13]図 13は本発明のノ ッケージを含めた電気音響変換装置の第 2の実施の形態 の断面図である。
圆 14]図 14は本発明の電気音響変換装置の第 3の実施の形態の断面図である。 圆 15]図 15は本発明の電気音響変換装置の第 3の実施の形態の断面図である。 圆 16A]図 16Aは本発明の第 1の実施例の電気音響変換装置の断面図である。 圆 16B]図 16Bは本発明の第 1の実施例の電気音響変換装置の平面図である。 圆 17A]図 17Aは本発明の第 1の実施例の電気音響変換装置の製造方法における 工程を示す断面図である。
圆 17B]図 17Bは本発明の第 1の実施例の電気音響変換装置の製造方法における 別の工程を示す断面図である。 [図 17C]図 17Cは本発明の第 1の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 18A]図 18Aは本発明の第 1の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 18B]図 18Bは本発明の第 1の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 19A]図 19Aは本発明の第 2の実施例の電気音響変換装置の断面図である。
[図 19B]図 19Bは本発明の第 2の実施例の電気音響変換装置の平面図である。
[図 20A]図 20Aは本発明の第 2の実施例の電気音響変換装置の製造方法における 工程を示す断面図である。
[図 20B]図 20Bは本発明の第 2の実施例の電気音響変換装置の製造方法における 別の工程を示す断面図である。
[図 20C]図 20Cは本発明の第 2の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 20D]図 20Dは本発明の第 2の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 21A]図 21Aは本発明の第 2の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 21B]図 21Bは本発明の第 2の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 21C]図 21Cは本発明の第 2の実施例の電気音響変換装置の製造方法における さらに別の工程を示す断面図である。
[図 22A]図 22Aは本発明の第 3の実施例の電気音響変換装置の断面図である。
[図 22B]図 22Bは本発明の第 3の実施例の電気音響変換装置の平面図である。
[図 23]図 23は従来のダイナミック型電気音響変換装置の断面図である。
発明を実施するための最良の形態
以下に、本発明を実施する最良の形態を説明するが、第 1乃至第 3の実施形態は、 本発明にカゝかる電気音響変換装置の基本構造を示すものである。本発明の具体的 な実施例およびその製造方法は後述する。
[0027] 図 1は本発明の第 1の実施形態における電気音響変換装置の例を示す断面図で ある。
[0028] 図 1に示すように、開口 1 Aを有する基板 1にダイアフラム 2が支持されており、当該 開口 1Aにダイアフラム 2の一方の面が臨んでいる。このような基本構造は本発明の 他の実施形態および各実施例に共通である。ダイアフラム 2の他方の面上に薄膜コ ィル 3が作成されている。この薄膜コイル 3は、平面形状が 1つの軸の周りを周回する 渦巻き形のコイルである。渦巻き形としては、例えば、直線部を持たない渦巻き形ま たは直線部および角部を持つ渦巻き形がある。このような薄膜コイル 3の基本構造は 本発明の第 2の実施形態および第 2の実施例に共通である。
[0029] 一方、半導体、ガラス基板、榭脂等により作成されたカバー部 4に金属板により皿 状のヨーク 5を作成し、ヨーク 5の中央部に永久磁石 6を接着または蒸着とパターニン グにより設ける。永久磁石 6は、薄型で円柱形状または多角柱形状であるとよい。ま た、永久磁石 6の極性の方向は、薄膜コイル 3の中心軸方向と同一方向になるように する。カバー部 4は、薄膜コイル 3の中心軸と永久磁石 6の中心軸が一致するように 基板 1に接着等により固定される。従って、永久磁石 6は薄膜コイル 3の内側部分と 対向している。カバー部 4の周辺部は開口部 8を除いて基板 1に密着している。ダイ ァフラム 2 (および薄膜コイル 3)とヨーク 5との間には空隙 7が形成されている。
[0030] ここで、カバー部 4の内側に Ni、フェライトなどの強磁性材料をメツキにより形成する ことでヨーク 5の代わりとすることも可能である。また、カバー部 4全体を Ni、フェライト などの強磁性材料で作製することで、カバー部 4全体をヨーク 5の代わりとすることも 可能である。
[0031] 基板 1としては、半導体基板を用いることができ、ダイアフラム 2は半導体基板の一 部を薄膜ィ匕することで形成できる。
[0032] ダイアフラム 2としては、基板 1と異なる材料力もなるものであってもよぐ半導体から なる薄膜、 SiN、 SiOなどの絶縁膜、 A1などの金属膜、もしくはポリイミドなどの高分
2
子材料膜であってもよい。また、これらの材料の単体膜でも複合膜でもよい。この場 合、 MEMS技術を用いて、基板 1上にダイアフラム 2となる膜を形成後、該膜を形成し た面とは反対側の面力も基板 1を選択的に除去することで形成することもでき、また、 他の手法により形成されたものを接着等によって支持することもできる。
[0033] 薄膜コイル 3は、金属膜からなりメツキ、スパッタリングおよび蒸着などによりダイァフ ラム 2上に形成できる。また、薄膜コイル 3の表面には必要に応じて酸ィ匕防止膜を形 成するとよい。また、薄膜コイル 3は、 SiN、 SiOなどの絶縁膜やポリイミドなどの高分
2
子材料膜を介して積層してもょ ヽ。
[0034] このような構成の電気音響装置は、次のようにしてスピーカとして動作させることが できる。すなわち、ヨーク 5と永久磁石 6により形成された磁界が薄膜コイル 3の中心 軸から半径方向に放射状に延びている。従って、薄膜コイル 3に音響信号に基づく 電流を印加すると、前述の磁界と薄膜コイル 3に印加された音響信号に基づく電流と の間に働く電磁力によりダイアフラム 2が振動し、音響信号に基づく電流に対応した 音波を発生させることができる。また、このような構成の電気音響装置は、次のように してマイクロフォンとして動作させることができる。すなわち、ダイァフラム 2の裏面(コ ィル 3と反対側の面)側に到達した音波によりダイアフラム 2が振動すると、前記磁界 中を薄膜コイル 3が相対的に移動することになり、薄膜コイル 3に電流が流れて、音波 に対応した音響信号を得ることができる。
[0035] 以上の通り、ダイアフラム 2に薄膜コイル 3を形成することによって、薄型化を図るこ とができる。また、 MEMS技術を活用することで、永久磁石 6と薄膜コイル 3との間の間 隙 7を小さぐ安定して作成することが可能となり、小さな磁力でもダイアフラム 2の十 分な駆動力が得られる。
[0036] これらのことから、薄型化が可能であり、小型化され、消費電力の少ない電気音響 変換装置を実現することができる。
[0037] 図 2は、本発明の第 1の実施の形態における電気音響変換装置の別の例を示す断 面図である。
[0038] この例における電気音響変換装置は、図 1に示した電気音響変換装置におけるョ ーク 5を形成しないことが特徴であり、これ以外は図 1のそれと同様である。このように ヨーク 5を形成しないことで、製造プロセスの工程を減らすことが可能であり、コスト低 減〖こ繁げることができる。 [0039] 図 3は、本発明の第 1の実施の形態におけるパッケージを含めた電気音響変換装 置の断面図である。
[0040] この電気音響変換装置は、図 1に示した電気音響変換装置をパッケージ本体 11に 接着等により接合し、蓋体 12をパッケージ本体 11に接着等により接合したものであ る。
[0041] ノ¾ /ケージ本体 11は、榭脂、ガラス、金属、およびそれらの複合材などからなり、電 気音響変換装置のダイアフラム 2の下側に音波が出入りするための開口部 13を設け ている。蓋体 12は、榭脂、ガラス、金属、およびそれらの複合材など力もなる。
[0042] 図 4は、本発明の第 1の実施の形態におけるパッケージを含めた電気音響変換装 置の別の例を示す断面図である。
[0043] この電気音響変換装置は、カバー部 4をパッケージ本体 11に接合したことを特徴と し、このカバー部 4が図 3で示したパッケージの蓋 12と同様な機能を有している。この ような構成とすることにより、図 3の実施の形態に比べて、より薄型化され小型化およ びコスト低減に寄与することができる。
[0044] 図 5は、本発明の第 1の実施の形態における電気音響変換装置のさらに別の例を 示す断面図である。
[0045] この電気音響変換装置は、図 1で示した電気音響変換装置の基板 1上に、 CMOS などによる電気回路 9を備えている。電気回路 9は、アンプ回路、 DA変換回路、 AD 変換回路、インピーダンス回路などを備え、半導体力 なる基板 1上に作り込むか、ま たは、別途形成して基板 1上に絶縁膜を介して配置する。
[0046] 図 6は、本発明の第 1の実施の形態におけるパッケージを含めた電気音響変換装 置のさらに別の例を示す断面図である。
[0047] この電気音響変換装置は、図 5に示した電気音響変換装置をパッケージ本体 11に 接合し、蓋体 12をパッケージ本体 11に接合したものである。ノ ッケージ本体 11は、 榭脂、ガラス、金属、およびそれらの複合材などからなり、電気響変換装置のダイァフ ラムの下部に音波が出入りするための開口部 13を設けている。蓋体 12は、榭脂、ガ ラス、金属、およびそれらの複合材など力もなる。
[0048] 図 7は、本発明の第 1の実施の形態におけるパッケージを含めた電気音響変換装 置のさらに別の例を示す断面図である。
[0049] この電気音響変換装置は、カバー部 4をパッケージ本体 11に接合したことを特徴と し、このカバー部 4が図 6で示したパッケージの蓋 12と同様な機能を有している。この ような構成とすることにより、図 6の実施の形態に比べて、より薄型化され小型化およ びコスト低減に寄与することができる。
[0050] 図 8は、本発明の第 2の実施の形態における電気音響変換装置の例を示す断面図 である。
[0051] この電気音響変換装置は、図 2に示した電気音響変換装置に、さらに、ダイアフラ ム 2上の永久磁石 6に対向する位置に軟磁性体力もなるコア 21を設けたものである。 コア 21は、フェライト、パーマロイもしくはケィ素銅などの軟磁性体で形成されるとよい
[0052] このような構成の電気音響変換装置をスピーカとして用いる場合、薄膜コイル 3に音 響信号に基づく電流を印加すると、電流が印加された薄膜コイル 3とコア 21により形 成された電磁界が永久磁石 6の磁界と作用することによりダイアフラム 2が振動し、音 響信号に基づく電流に対応した音波を発生させるスピーカが構成される。コア 21を 用いることによって、コイル 3により形成された電磁界を装置の中心部に集中させるこ とができ、永久磁石 6の磁界と効率良く作用させることができ、スピーカとしての効率 がー層向上する。また、このような構成の電気音響変換装置をマイクロフォンとして用 いることもできる。すなわち、音波によりダイアフラム 2が振動し、前記永久磁石 6によ る磁界中をコア 21が移動することにより、コア 4の周りに形成した薄膜コイル 3に電流 が流れることから、音波に対応した音響信号を得ることができ、マイクロフォンとして用 いることがでさる。
[0053] 図 8の構成によれば、ダイアフラム 2の上に薄膜コイル 3およびコア 21を形成するこ とから、薄型化を図ることができる。
[0054] 図 9は、本発明の第 2の実施の形態における電気音響変換装置の別の例を示す断 面図である。
[0055] この電気音響変換装置は、図 8に示した電気音響変換装置をパッケージ本体 11に 接合し、蓋体 12をパッケージ本体 11に接合したものである。ノ ッケージ本体 11は、 榭脂、ガラス、金属、およびそれらの複合材などからなり、電気響変換装置のダイァフ ラム 2の下部に音波が出入りするための開口部 13を設けている。蓋体 12は、榭脂、 ガラス、金属、およびそれらの複合材など力もなる。
[0056] 図 10は、本発明の第 2の実施の形態におけるパッケージを含めた電気音響変換装 置の例を示す断面図である。
[0057] この電気音響変換装置は、カバー部 4をパッケージ本体 11に接合したことを特徴と し、このカバー部 4が図 9で示したパッケージの蓋 12と同様な機能を有している。この ような構成とすることにより、図 9の実施の形態に比べて、より薄型化され小型化およ びコスト低減に寄与することができる。
[0058] 図 11は、本発明の第 2の実施の形態における電気音響変換装置のさらに別の例を 示す断面図である。
[0059] この電気音響変換装置は、図 8で示した電気音響変換装置の基板 1上に、 CMOS などによる電気回路 9を備えている。電気回路 9は、アンプ回路、 DA変換回路、 AD 変換回路、インピーダンス回路などを備え、半導体力 なる基板 1上に作り込むか、ま たは、別途形成して基板 1上に絶縁膜を介して配置する。薄膜コイル 3と電気回路 9 の間の距離を小さくすることができ、ノイズの影響を最小限に抑えることができる。
[0060] 図 12は、本発明の第 2の実施の形態におけるパッケージを含めた電気音響変換装 置の別の例を示す断面図である。
[0061] この電気音響変換装置は、図 11に示した電気音響変換装置をパッケージ本体 11 に接合し、蓋体 12をパッケージ本体 11に接合したものである。ノ ッケージ本体 11は 、榭脂、ガラス、金属、およびそれらの複合材などからなり、電気響変換装置のダイァ フラムの下側に音波が出入りするための開口部 13を設けている。蓋体 12は、榭脂、 ガラス、金属、およびそれらの複合材など力もなる。
[0062] 図 13は、本発明の第 2の実施の形態におけるパッケージを含めた電気音響変換装 置のさらに別の例を示す断面図である。
[0063] この電気音響変換装置は、カバー部 4をパッケージ本体 11に接合したことを特徴と し、このカバー部 4が図 12で示したパッケージの蓋 12と同様な機能を有している。こ のような構成とすることにより、図 12の実施の形態に比べて、より薄型化され小型化 およびコスト低減に寄与することができる。
[0064] 図 14は、本発明の第 3の実施の形態における電気音響装置の例を示す断面図で ある。
[0065] 図 14に示すように、基板 1にダイァフラム 2を形成し、ダイァフラム 2の中心に接着ま たは蒸着とパターユングにより永久磁石 6を設け、ダイアフラム 2の周りの基板 1上に、 薄膜コイル 3が作成されている。この薄膜コイル 3は、平面形状が 1つの軸の周りを周 回する渦巻き形のコイルである。渦巻き形としては、例えば、直線部を持たない渦巻 き形または直線部および角部を持つ渦巻き形がある。
[0066] 永久磁石 6は、薄型で円柱形状もしくは多角柱形状であるとよい。また、永久磁石 6 の極性の方向は、薄膜コイル 3の中心軸方向と同一方向になるようにする。
[0067] 基板 1として、半導体基板を用いることができ、ダイアフラム 2は半導体基板の一部 を薄膜ィ匕して形成できる。
[0068] ダイアフラム 2としては、基板 1と異なる材料力もなるものであってもよぐ半導体から なる薄膜、 SiN、 SiOなどの絶縁膜、 A1などの金属膜もしくはポリイミドなどの高分子
2
材料膜であってもよい。また、これらの材料の単体膜でも複合膜でもよい。
[0069] 薄膜コイル 3は、金属膜からなりメツキ、スパッタリングおよび蒸着などによりダイァフ ラム 2上に形成できる。また、薄膜コイル 3の表面には必要に応じて酸ィ匕防止膜を形 成するとよい。また、薄膜コイル 3は、 SiN、 Si02などの絶縁膜やポリイミドなどの高 分子材料膜を介して積層してもょ ヽ。
[0070] 音響信号に基づく電流が印加された薄膜コイル 3により形成された電磁界と永久磁 石 6による磁界とが作用することにより、ダイアフラム 2が振動し、音響信号に基づく電 流に対応した音波を発生させるスピーカとして用いることができる。また、音波により ダイアフラム 2および永久磁石 6が振動し、薄膜コイル 3の内側で永久磁石 6が上下 に移動することにより、薄膜コイル 3に電流が流れることから、音波に対応した音響信 号を得ることができ、マイクロフォンとして用いることができる。
[0071] 図 15は、本発明の第 3の実施の形態における電気音響変換装置の別の例を示す 断面図である。
[0072] この電気音響変換装置は、図 14で示した電気音響変換装置の基板 1上に CMOS などによる電気回路 9を備えている。電気回路 9は、アンプ回路、 DA変換回路、 AD 変換回路、インピーダンス回路などを備え、半導体力 なる基板 1上に作り込むか、ま たは、別途形成して基板 1上に必要に応じて絶縁膜を介して配置する。薄膜コイル 3 と電気回路 9の間の距離を小さくすることができ、ノイズの影響を最小限に抑えること ができる。
実施例
[0073] 以下、本発明の実施例を図を参照して説明する。
[0074] 図 16Aは本発明の第 1の実施例の電気音響変換装置の断面図であり、図 16Bの X VIA— XVIA線における断面図である。図 16Bは平面図であり、図 16Aのヨーク 5お よび永久磁石 6が形成されたカバー部 4については図示を省略した。この実施例は、 第 1の実施形態における図 5の例に対応する。
[0075] シリコン力もなる基板 1上に酸ィ匕膜 22が形成され、その上に薄膜コイル 3の一端に 接続される銅からなる弓 Iき出し層 23が形成され、弓 Iき出し層 23を覆うようにダイアフラ ム 2となるポリイミドからなる絶縁膜 24が形成され、絶縁膜 24の上に、銅力もなる薄膜 コイル 3、銅カゝらなるパッド部 25、電気回路 9が形成されている。引き出し層 23と薄膜 コイル 3およびパッド部 25とは銅力もなるコンタクト層 26により接続されている。パッド 部 25と電気回路 9は、図示しないボンディングワイヤなどで電気的に接続される。
[0076] ガラス基板カゝらなるカバー部 4に形成された凹部にフェライトをメツキにより形成した ヨーク 5が形成され、ヨーク 5の上に永久磁石 6が接着により形成されている。
[0077] 図 17A, B, Cおよび図 18A, Bは、本発明の第 1の実施例の電気音響変換装置の 製造方法における各工程を示す断面図である。
[0078] 図 17Aに示すように、シリコン基板 1の表面に熱酸ィ匕などにより酸ィ匕膜 22を形成す る。
[0079] その後、図 17Bに示すように、酸ィ匕膜 22の上に銅を蒸着およびパターユングして 弓 Iき出し層 23を形成する。弓 Iき出し層 23を覆うようにポリイミドを塗布しパターニング して絶縁層 24を形成する。絶縁層 24をパターユングしてコンタクト孔 27を形成する。
[0080] その後、図 17Cに示すように、銅を蒸着およびパターユングしてコンタクト層 26を形 成する。さら〖こ、銅を蒸着およびパターユングして薄膜コイル 3およびパッド部 25を形 成する。コンタクト孔 27の深さが浅い場合には、コンタクト層 26と薄膜コイル 3および ノ ッド部 25を同時に形成することも可能である。図示しないが、この後、絶縁膜 24の 上に電気回路 9を接着し、ワイヤボンディングにより電気回路 9とパッド部 25を接続す る。必要に応じて電気回路 9、パッド部 25およびボンディングワイヤを榭脂封止する。 なお、電気回路 9をシリコン基板上に作り込む場合は、電気回路 9を形成後に図 17 の工程を行い、引き出し層 23および薄膜コイル 3を形成する際に電気回路 9との接 続を行う。この場合パッド部 25は形成しなくてょ 、。
[0081] その後、図 18Aに示すように、フォトレジスト 28をマスクとしてシリコン基板 1をエッチ ングして、酸化膜 22を露出する。
[0082] その後、図 18Bに示すように、シリコン基板 1をマスクとして酸ィ匕膜 22をエッチングし て絶縁膜 24および引き出し層 23を露出させる。エッチングによって露出した絶縁膜 24がダイアフラム 2として作用する。
[0083] 図示しないが、ガラス基板により形成したカバー部 4にフェライトを蒸着およびバタ 一ユングしてヨーク 5を形成し、永久磁石 6をヨーク 5の上に接着し、カバー部 4を図 1 8Bの上に接着することにより、図 16に記載の電気音響変換装置が得られる。
[0084] この実施例では、図 18Bにおいて酸ィ匕膜 22の一部をエッチングする工程を行った 力 酸ィ匕膜 22をエッチングする工程を行わず、酸ィ匕膜 22と絶縁膜 24をダイァフラム 2としてもよい。また、図 18Aにおいて、シリコン基板 1をエッチングする際に、酸ィ匕膜 22を露出させずに、シリコンを薄膜ィ匕して、このシリコン基板を薄膜ィ匕した箇所と酸ィ匕 膜 22と絶縁膜 24とをダイァフラム 2としてもよぐこのようにして構成したダイァフラム 2 は、図 1の基板 1のような構造の別の基板に接着等によって支持させることができる。
[0085] 図 19Aは、本発明の第 2の実施例の電気音響変換装置の断面図であり、図 19Bの XIXA— XIXA線における断面図である。図 19Bは平面図であり、図 19Aの永久磁石 6が形成されたカバー部 4については図示を省略した。この実施例は、第 2の実施形 態における図 11の例に対応する。
[0086] シリコン力もなる基板 1上に酸ィ匕膜 22が形成され、その上に薄膜コイル 3の一端に 接続される銅からなる弓 Iき出し層 23が形成され、弓 Iき出し層 23を覆うようにダイアフラ ム 2となるポリイミドからなる絶縁膜 24が形成され、絶縁膜 24の上に、銅力もなる薄膜 コイル 3、銅力もなるノッド部 25、フェライトからなるコア 21および電気回路 9が形成さ れている。引き出し層 23と薄膜コイル 3およびパッド部 25とは銅力もなるコンタクト層 2 6により接続されている。ノ ッド部 25と電気回路 9は、図示しないボンディングワイヤな どで電気的に接続される。
[0087] 図 20A, B, C, Dおよび図 21A, B, Cは、本発明の第 2の実施例の電気音響変換 装置の製造方法における各工程を示す断面図である。
[0088] 図 20Aに示すように、シリコン基板 1の表面に熱酸ィ匕などにより酸ィ匕膜 22を形成す る。
[0089] その後、図 20Bに示すように、酸ィ匕膜 22の上にアルミ-ユウムを蒸着およびパター ユングして停止層 29を形成する。停止層 29および酸ィ匕膜 22の上に銅を蒸着および ノ ターニングして引き出し層 23を形成する。
[0090] その後、図 20Cに示すように、引き出し層 23を覆うようにポリイミドを塗布し絶縁層 2 4を形成する。絶縁層 24をパターユングしてコンタクト孔 27を形成する。
[0091] その後、図 20Dに示すように、銅を蒸着およびパターユングしてコンタクト層 26を形 成する。さら〖こ、銅を蒸着およびパターユングして薄膜コイル 3およびパッド 25を形成 する。フォトレジストをマスクとしてフェライトを蒸着しパターユングおよびエッチングし てコア 21を形成する。図示しないが、コンタクト孔 27の深さが浅い場合には、コンタク ト層 26と薄膜コイル 3およびパッド部 25を同時に形成することも可能である。この後、 絶縁膜 24の上に電気回路 9を接着し、ワイヤボンディングにより電気回路 9とパッド部 25を接続する。必要に応じて電気回路 9パッド部 25およびボンディングワイヤを榭脂 封止する。なお、電気回路 9をシリコン基板上に作り込む場合は、電気回路 9を形成 後に図 20の工程を行い、引き出し層 23および薄膜コイル 3を形成する際に電気回 路 9との接続を行う。この場合パッド部 25は形成しなくてよい。
[0092] その後、図 21 Aに示すように、フォトレジスト 28をマスクとしてシリコン基板 1をエッチ ングして、酸化膜 22を露出する。
[0093] その後、図 21Bに示すように、シリコン基板 1をマスクとして酸ィ匕膜 22をエッチングし て停止層 29を露出させる。
[0094] その後、図 21Cに示すように、停止層 29をエッチングにより除去して、絶縁膜 24お よび引き出し層 23を露出させる。
[0095] 図示しないが、ガラス基板により形成したカバー部 4に永久磁石 6を接着し、カバー 部 4を図 21Cの上に接着することにより、図 19に記載の電気音響変換装置が得られ る。
[0096] この実施例では、停止層 29を形成して製造した。停止層 29を形成する理由は、ェ ツチング方法に依らず、確実に酸ィ匕膜 22を含むシリコン基板 1だけをエッチングする ためである。停止層 29が無い場合には、エッチング方法により引き出し層 23や絶縁 膜 24を傷めることがある。
[0097] なお、図 19で示した電気音響変換装置は、図 17および図 18で示した製造方法に より製造することができる。逆に、図 16で示した電気音響変換装置は、図 20および図 21で示した製造方法により製造できる。
[0098] 図 22Aは、本発明の第 3の実施例の電気音響変換装置の断面図であり、図 22Bの ΧΧΠΑ— ΧΧΠΑ線における断面図である。図 22Bは平面図である。この実施例は、 第 3の実施形態における図 15の例に対応する。
[0099] シリコン力もなる基板 1上に酸ィ匕膜 22が形成され、その上に薄膜コイル 3の一端に 接続される銅からなる弓 Iき出し層 23が形成され、弓 Iき出し層 23を覆うようにダイアフラ ム 2となるポリイミドカもなる絶縁膜 24が形成され、絶縁膜 24の上で、かつ、ダイァフ ラム 2の回りに、銅力もなる薄膜コイル 3、銅力もなるパッド部 25電気回路 9が形成さ れている。ダイアフラム 2の中心上に永久磁石 6が接着されている。引き出し層 23と 薄膜コイル 3およびパッド部 25とは銅力もなるコンタクト層 26により接続されている。 ノッド部 25と電気回路 9は、図示しな 、ボンディングワイヤなどで電気的に接続され る。
[0100] この実施例の電気音響変換装置は、図 17および図 18に示した製造方法により製 造できる。また、図 20および図 21に示した製造方法でも製造できる。
[0101] 以上示した実施例において説明した製造方法は、 MEMS技術を用いて行う。 ME MS技術を用いることで、各部品の間隔を小さぐ安定して形成することが可能となり 、小さな磁力でも十分なダイァフラムの駆動が可能となる。

Claims

請求の範囲
[1] 開口を有する基板と、前記基板に前記開口に一方の面が臨むように支持されたダイ ァフラムと、前記ダイァフラムの他方の面上に形成された薄膜コイルと、永久磁石が 設けられたカバー部とを有する電気音響変 であって、前記薄膜コイルは 1つの 軸の周りを周回し、前記永久磁石は前記軸上に位置し、かつ、その極性の方向が前 記軸の方向と同一であることを特徴とする電気音響変換装置。
[2] 請求項 1に記載の電気音響変換装置にお!ヽて、前記カバー部が非磁性材料からな り、その内側面に強磁性材料をメツキしたことを特徴とする電気音響変換装置。
[3] 請求項 1に記載の電気音響変換装置において、前記カバー部が強磁性材力 なるこ とを特徴とする電気音響変換装置。
[4] 請求項 1に記載の電気音響変換装置にぉ 、て、前記永久磁石と前記カバー部との 間にヨークを備えたことを特徴とする電気音響変換装置。
[5] 請求項 4に記載の電気音響変換装置にぉ ヽて、前記ヨークが強磁性材料であること を特徴とする電気音響変換装置。
[6] 請求項 1に記載の電気音響変換装置にぉ 、て、前記ダイァフラムに前記永久磁石と 対向するように形成される軟磁性体カゝらなるコアを備えたことを特徴とする電気音響 変換装置。
[7] 請求項 1〜6のいずれか一項に記載の電気音響変換装置において、前記ダイアフラ ムの材料が、前記基板と異なることを特徴とする電気音響変換装置。
[8] 開口を有する基板と、前記基板に前記開口に一方の面が臨むように支持されたダイ ァフラムと、前記ダイァフラムの他方の面上に設けられた永久磁石と、前記ダイアフラ ムを周回するように前記基板上に形成された薄膜コイルとを有する電気音響変換器 であって、前記薄膜コイルは前記永久磁石の中心を軸とするように周回し、前記永久 磁石は極性の方向が前記軸の方向と同一であることを特徴とする電気音響変換装置
[9] 請求項 8に記載の電気音響変換装置において、前記ダイァフラムの材料が、前記基 板と異なることを特徴とする電気音響変換装置。
[10] 請求項 1に記載の電気音響変換装置において、前記基板が半導体からなり、前記基 板に直接形成され、前記薄膜コイルと接続された電気回路を備えたことを特徴とする 電気音響変換装置。
[11] 請求項 1に記載の電気音響変換装置にぉ 、て、前記基板上に絶縁膜を介して設け られ、前記薄膜コイルと接続された電気回路を備えたことを特徴とする電気音響変換 装置。
[12] 請求項 1に記載の電気音響変換装置において、当該電気音響変換装置のパッケ一 ジを、前記カバー部と共通化したことを特徴とする電気音響変換装置。
[13] 請求項 1に記載の電気音響変換装置において、前記開口を介して外部力 入射した 音波を感知して前記ダイァフラムおよび前記薄膜コイルが前記永久磁石による磁界 中で振動することにより、当該薄膜コイルカゝら音波に対応した音響信号を得ることを 特徴とする電気音響変換装置。
[14] 請求項 1に記載の電気音響変換装置において、前記永久磁石による磁界と前記薄 膜コイルに流れる音響信号に基づく電流との電磁力により前記ダイァフラムが振動し 、音波を発生させることを特徴とする電気音響変換装置。
PCT/JP2006/316046 2005-08-17 2006-08-15 電気音響変換装置 WO2007020925A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007530999A JPWO2007020925A1 (ja) 2005-08-17 2006-08-15 電気音響変換装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005236225 2005-08-17
JP2005-236225 2005-08-17
JP2005334452 2005-11-18
JP2005-334452 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007020925A1 true WO2007020925A1 (ja) 2007-02-22

Family

ID=37757585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316046 WO2007020925A1 (ja) 2005-08-17 2006-08-15 電気音響変換装置

Country Status (3)

Country Link
JP (1) JPWO2007020925A1 (ja)
TW (1) TW200715892A (ja)
WO (1) WO2007020925A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038246A1 (en) * 2007-09-19 2009-03-26 Em-Tech. Co., Ltd. Ultra slim type acoustic transducer
CN101803403A (zh) * 2007-09-19 2010-08-11 易音特电子株式会社 超薄型声换能器
FR2955443A1 (fr) * 2010-01-19 2011-07-22 Univ Maine Structure de haut-parleur electrodynamique a technologie mems
WO2012114536A1 (ja) * 2011-02-21 2012-08-30 オムロン株式会社 マイクロフォン
JP2012169592A (ja) * 2011-01-28 2012-09-06 Kyushu Institute Of Technology 弾性操作で駆動するスピンデバイス
JP2013516329A (ja) * 2009-12-31 2013-05-13 日本テキサス・インスツルメンツ株式会社 マイクロ・エレクトロ・メカニカル・システム(MEMS)デバイスのための音響(acoustic)エアチャネルを有するリードフレームベースのプリモールドされたパッケージ
WO2015178760A1 (en) * 2014-05-20 2015-11-26 Universiti Kebangsaan Malaysia Electrodynamics (mems) micro speaker
EP2908552A4 (en) * 2012-10-15 2016-06-08 Nec Corp ELECTRIC ACOUSTIC CONVERTER, MANUFACTURING METHOD AND ELECTRONIC DEVICE THEREFOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463881B (zh) * 2012-01-13 2014-12-01 Sound Cheers Ltd Vibrating horn
CN106612485B (zh) * 2015-10-23 2024-03-29 钰太芯微电子科技(上海)有限公司 一种mems麦克风及收音装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238897U (ja) * 1988-09-08 1990-03-15
JP2003305409A (ja) * 2002-04-12 2003-10-28 Tokyo Parts Ind Co Ltd 移動体通信装置用薄型電磁音響変換器とその使用方法
WO2003094571A2 (en) * 2002-05-02 2003-11-13 Harman International Industries, Incorporated Electro-dynamic planar loudspeakers
JP2004056771A (ja) * 2002-05-27 2004-02-19 Audio Technica Corp 電気音響変換器用振動膜および電気音響変換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899651B2 (ja) * 1998-03-20 2007-03-28 ソニー株式会社 スピーカ装置
JP2005184084A (ja) * 2003-12-16 2005-07-07 Alps Electric Co Ltd システムモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238897U (ja) * 1988-09-08 1990-03-15
JP2003305409A (ja) * 2002-04-12 2003-10-28 Tokyo Parts Ind Co Ltd 移動体通信装置用薄型電磁音響変換器とその使用方法
WO2003094571A2 (en) * 2002-05-02 2003-11-13 Harman International Industries, Incorporated Electro-dynamic planar loudspeakers
JP2004056771A (ja) * 2002-05-27 2004-02-19 Audio Technica Corp 電気音響変換器用振動膜および電気音響変換器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803403A (zh) * 2007-09-19 2010-08-11 易音特电子株式会社 超薄型声换能器
CN101803403B (zh) * 2007-09-19 2013-06-05 易音特电子株式会社 超薄型声换能器
WO2009038246A1 (en) * 2007-09-19 2009-03-26 Em-Tech. Co., Ltd. Ultra slim type acoustic transducer
JP2013516329A (ja) * 2009-12-31 2013-05-13 日本テキサス・インスツルメンツ株式会社 マイクロ・エレクトロ・メカニカル・システム(MEMS)デバイスのための音響(acoustic)エアチャネルを有するリードフレームベースのプリモールドされたパッケージ
WO2011089345A1 (fr) 2010-01-19 2011-07-28 Universite Du Maine Structure de haut-parleur électrodynamique à technologie mems
JP2013517729A (ja) * 2010-01-19 2013-05-16 ユニベルシテ デュ メーヌ Mems技術を有する動電型スピーカ構造
FR2955443A1 (fr) * 2010-01-19 2011-07-22 Univ Maine Structure de haut-parleur electrodynamique a technologie mems
US20130156253A1 (en) * 2010-01-19 2013-06-20 Universite Paris-Sud 11 Electrodynamic speaker structure having mems technology
US9327961B2 (en) 2010-01-19 2016-05-03 Universite Du Maine Electrodynamic speaker structure having MEMS technology
JP2012169592A (ja) * 2011-01-28 2012-09-06 Kyushu Institute Of Technology 弾性操作で駆動するスピンデバイス
WO2012114536A1 (ja) * 2011-02-21 2012-08-30 オムロン株式会社 マイクロフォン
US8917897B2 (en) 2011-02-21 2014-12-23 Omron Corporation Microphone
EP2908552A4 (en) * 2012-10-15 2016-06-08 Nec Corp ELECTRIC ACOUSTIC CONVERTER, MANUFACTURING METHOD AND ELECTRONIC DEVICE THEREFOR
WO2015178760A1 (en) * 2014-05-20 2015-11-26 Universiti Kebangsaan Malaysia Electrodynamics (mems) micro speaker

Also Published As

Publication number Publication date
JPWO2007020925A1 (ja) 2009-02-26
TW200715892A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
WO2007020925A1 (ja) 電気音響変換装置
TWI711575B (zh) Mems裝置及製程
KR101520070B1 (ko) 압전형 마이크로 스피커 및 그 제조 방법
US20100156238A1 (en) Piezoelectric acoustic transducer and method of fabricating the same
US8526642B2 (en) Piezoelectric micro speaker including weight attached to vibrating membrane and method of manufacturing the same
JP2006157863A (ja) 容量型振動センサ及びその製造方法
US8114697B2 (en) Piezoelectric microphone, speaker, microphone-speaker integrated device and manufacturing method thereof
WO2006013717A1 (ja) 静電容量型超音波振動子、及びその製造方法
JP2011055474A (ja) ピストン・ダイアフラムを有した圧電型マイクロスピーカ及びその製造方法
WO2004107809A1 (ja) 音響検出機構
WO2005009077A1 (ja) 音響検出機構
CN101346014A (zh) 微机电系统麦克风及其制备方法
WO2009099168A1 (ja) マイクロホンユニット
US20090316937A1 (en) Monolithic micro magnetic device
CN112543408B (zh) 一种封闭式振动膜压电mems扬声器及其制备方法
KR101758017B1 (ko) 피에조 멤스 마이크로폰 및 그 제조방법
JP3714128B2 (ja) 圧電型電気音響変換器
JP2011049752A (ja) コンデンサマイクロホン
Wang et al. A piezoelectric MEMS loud speaker based on ceramic PZT
JP5065974B2 (ja) マイクロホンユニット及びその製造方法
JP5627279B2 (ja) 振動発電デバイスおよびその製造方法
JP5097603B2 (ja) マイクロホンユニット
US8682009B2 (en) Magnetostrictive microloudspeaker
US20100124352A1 (en) Micro magnetic device with magnetic spring
Wang et al. Piezoelectric mems speaker with rigid-flexible-coupling actuation layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007530999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796436

Country of ref document: EP

Kind code of ref document: A1