WO2007017613A1 - Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles - Google Patents

Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles Download PDF

Info

Publication number
WO2007017613A1
WO2007017613A1 PCT/FR2006/050790 FR2006050790W WO2007017613A1 WO 2007017613 A1 WO2007017613 A1 WO 2007017613A1 FR 2006050790 W FR2006050790 W FR 2006050790W WO 2007017613 A1 WO2007017613 A1 WO 2007017613A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon
semiconductor
partitions
monocrystalline
Prior art date
Application number
PCT/FR2006/050790
Other languages
English (en)
Inventor
Philippe Coronel
Jessy Bustos
Romain Wacquez
Original Assignee
Stmicroelectronics Crolles 2 Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics Crolles 2 Sas filed Critical Stmicroelectronics Crolles 2 Sas
Priority to US12/063,288 priority Critical patent/US8460978B2/en
Publication of WO2007017613A1 publication Critical patent/WO2007017613A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates

Definitions

  • the present invention relates to semiconductor component manufacturing techniques.
  • transistors are known whose active part (channel, base) is completely surrounded by a control electrode which, according to its polarization state, makes it possible to turn the transistor on or off. blocked.
  • US patent application 2002/0149031 discloses a transistor consisting of a silicon nanodigit completely surrounded by a gate electrode. This transistor has various drawbacks, in particular as regards the high value of the gate-source and gate-drain capacitors. Summary of the invention
  • an object of the present invention is to overcome at least some of the disadvantages of the processes leading to the aforementioned devices.
  • Another object of the present invention is to provide a method for manufacturing a parallel semiconductor nanodigit transistor which is particularly efficient and simple to implement and that lead to low gate-source and grid-drain capabilities.
  • the present invention provides a method of manufacturing a semiconductor transistor nanodoigts in parallel, comprising the steps: forming a monocrystalline layer of a semi ⁇ conductive material on a layer of underlying material selec ⁇ ively etchable with respect to the monocrystalline layer; etching parallel partitions in the monocrystalline layer and in the underlying layer, and hollowing out a portion of said layer of an underlying material; filling the gap between the partitions and the recessed portion of a first insulating material; defining a central portion of the partitions, and removing the first insulating material around the central portion of the monocrystalline layer, whereby a finger of said semiconductor material is formed; and filling and coating the central portion of a conductive material.
  • the partitions have a width of less than 100 nm, preferably less than 50 nm.
  • the method comprises, before the step of filling a conductive material, the step of coating with a second insulating material (22) the periphery of the finger.
  • an insulating coating consists of oxidation ther ⁇ nomic.
  • the method comprises, before the step of filling with a maté ⁇ riau conductor, the step of performing an annealing to round the periphery of the finger.
  • the semiconductor layer is a silicon layer and the underlying layer is a silicon-germanium layer.
  • the silicon-germanium layer rests on a thin lower layer of silicon constituting the upper part of an SOI-type structure and in which, during the step of etching the fingers, Fingers are also formed in the lower layer.
  • the method provides for several stages of semiconductor fingers.
  • FIG. partial perspective view of a structure according to the present invention at an intermediate stage of manufacture is a partial top view correspon ⁇ ing in Figure 1;
  • Figure 3 is a sectional view along the line III-III of Figure 2, corresponding to Figure 1;
  • Figure 4 is a top view showing the structure at a later stage of manufacture according to the present invention
  • Figure 5 is a sectional view along line VV of Figure 4 at a later stage of manufacture according to the present invention
  • Figure 6 is a sectional view similar to that of Figure 5 at a later stage of manufacture according to the present invention
  • Figures 7A and 7B are sectional views along line VII-VII of Figure 4 of two alternative embodiments at a later stage of manufacture according to the present invention.
  • Figure 1 is a perspective view of a structure at an intermediate stage of manufacture according to an exemplary implementation of the method according to the present invention.
  • SOI wafer a currently commercially available structure, called SOI wafer, comprising on a silicon substrate 1 an insulating thin layer 2, usually silicon oxide, and a layer of Monocrystalline silicon 3.
  • a monocrystalline silicon-germanium layer 4 and a monocrystalline silicon layer 5 were successively grown.
  • the assembly is coated with a layer serving as a hard etching mask 6, commonly silicon nitride.
  • This hard mask is etched according to the pattern shown in plan view in FIG. 2, so as to define openings 11 between partitions 12 which extend from a block 13 to a block 14.
  • an isotropic etching of the silicon-germanium 4 to eliminate it in the partitions 12 and partly beyond the openings 11 like this is indicated by the dashed lines 15 under blocks 13 and 14. As illustrated by the perspective view of FIG.
  • each partition extends verti cally ⁇ to the insulating layer 2 and therefore includes superimposing of corresponding portions of the monocrystalline silicon layer 3, the monocrystalline silicon layer 5, and the hard mask 6 (the monocrystalline silicon-germanium layer portion 4 has been eliminated).
  • each of the blocks 13 and 14 comprises a portion of the stack of layers 3, 5 and 6.
  • FIG. 3 also shows the result of a subsequent step during which the openings 11 between the partitions 12 have been filled with an insulating material 16 that is selectively etchable with respect to the various materials constituting the partitions 12.
  • the insulating material 16 may for example be vapor deposited silicon oxide, the deposition step being followed by a physicochemical polishing step to bring the upper surface of the material 16 to the upper surface of the hard mask 6. It will be noted that the insulating material fills the spaces from which portions of the silicon-germanium layer 4 have been removed.
  • FIG. 5 is a sectional view along the line VV of FIG. 4, that is to say along the length of a partition 12.
  • the vertical lines in dashed lines indicate the longitudinal limits between a partition and the blocks 13 and 14 (see Figure 4).
  • a filling is performed by a conductive material which then fills all the gaps between the fingers and the recessed portion 28 and which covers the structure.
  • This conductive material may be a metal, or a highly doped polycrystalline silicon, preferably at least partially converted into a metal silicide.
  • planarization for example by physico-chemical polishing.
  • a conductive ring 29 is formed around the central part of the finger 21.
  • FIG. 7A is a sectional view, in the sectional plane VII-VII illustrated in FIGS. 4 and 6, of the structure obtained in the step of FIG. in section the upper silicon fingers 21 and the lower silicon fingers 25.
  • the fingers 21 and 25 are surrounded by insulation, respectively 22 and 23, and are embedded in the conductive layer made of the material 29.
  • the present invention is capable of many variations which will be described hereinafter and some of which are aspects of the present invention. It should be noted that these various variants can be used separately or in combination.
  • a first variant of the present invention the result of which is illustrated in FIG. 7B, after having freed the semiconductor fingers 21 at the stages described with reference to FIGS. 4 and 5, an annealing is performed to transform the fingers with substantially square sections. or rectangular in fingers with rounded, round or oval sections.
  • the other steps of the present invention are unchanged.
  • This variant makes it possible to obtain an even better quality of control by the gate of the fingers of the MOS transistor.
  • the annealing occurs while only the active portions of the silicon fingers that will be surrounded by the control conductor are in suspension. It limits the risk of sagging fingers that would appear if the fingers had long lengths in suspension.
  • the present invention provides two means.
  • the first means consists in using a structure in which the layer 3 does not exist, that is to say in which the silicon-germanium 4 rests directly on an insulating support 2. In this case, all the steps described previously can be used identically.
  • the upper layer of silicon 5 is not used.
  • the structure then comprises only the monocrystalline silicon layer 3 coated with the monocrystalline silicon-germanium layer 4, and instead of selectively etching the silicon-germanium compared to silicon, we Selectively grinds silicon with respect to silicon-germanium.
  • a SOI multi-stage structure is used as starting structure in which a first insulating layer, a first semiconductor layer, a second insulating layer and a second semiconductor layer have been assembled on a substrate.
  • the fingers are obtained by selectively etching the insulator relative to the semiconductor.
  • several stages are provided by alternating the selectively etchable semiconductor layers. For example, by making an Si-SiGe-Si-SiGe-Si-SiGe-Si sandwich or an Si-SiO 2 Si-SiO 2 Si-SiO 2 O-Si sandwich. This process can be implemented without modifying in any way the previously described steps of carrying out the present invention.
  • the invention has been described more particularly in the context of the production of a parallel nanodigit MOS transistor.
  • the invention also allows the production of bipolar tran sistors in ⁇ nanodoigts parallel.
  • the method remains substantially the same with the difference that the doping levels will be suitably chosen and that the control electrode instead of being an insulated gate will be a conductive portion (possibly a silicide) in direct contact with the central portion of each finger which then forms the basis ⁇ tran sistor bipolar.
  • the present invention readily lends itself to assure that ⁇ sation dopings adapted to the channel regions, source and drain or base, emitter and collector.
  • the doping steps may be provided at various stages of the process. These steps will not be detailed here because they are quite apparent to the skilled person. It will be possible in particular to realize LDD-type MOS transistor structures, including less doped source and drain zones in the immediate vicinity. of the channel region, using standard spacer techniques, or the like.
  • the silicon layers 3 and 5 may have thicknesses of 10. at 20 nm and the layer 4 of silicon-germanium a thickness of the order of 20 to 30 nm.
  • the width of the partitions 12 may be 10 to 20 nm.
  • the space between partitions can be 30 to 40 nm.
  • the active parts of the fingers constitute a channel or base zone and have for example a length of the order of 5 to 30 nm.

Abstract

L'invention concerne un procédé de fabrication d'un transistor à nanodoigts semiconducteurs en parallèle, comprenant les étapes suivantes : former une couche monocristalline d'un matériau semi-conducteur (5) sur une couche d'un matériau sous-jacent (4) sélectivement gravable par rapport à cette couche mono-cristalline ; graver des cloisons parallèles (12) dans la couche monocristalline (5) et dans la couche (4) sous-jacente, et poursuivre la gravure pour évider une partie de ladite couche d'un matériau sous-jacent ; remplir l'intervalle (11) entre les cloisons et la partie évidée d'un premier matériau isolant (16) ; délimiter une partie centrale des cloisons, et éliminer le premier matériau isolant autour de la partie centrale de la couche monocristalline (5), d'où il résulte qu'un doigt (21) dudit matériau semiconducteur est formé ; et remplir et revêtir la partie centrale d'un matériau conducteur (29).

Description

PROCEDE DE FABRICATION D'UN TRANSISTOR A NANODOIGTS SEMICONDUCTEURS PARALLELES
Domaine de l' invention
La présente invention concerne des techniques de fabrication de composants semiconducteurs. Exposé de l'art antérieur Dans le domaine des composants semiconducteurs, on connaît des transistors dont une partie active (canal, base) est complètement entourée d'une électrode de commande permettant selon son état de polarisation de mettre le transistor dans un état passant ou bloqué. La demande de brevet US 2002/0149031 (Samsung) décrit un transistor constitué d'un nanodoigt de silicium totalement entouré d'une électrode de grille. Ce transistor présente divers inconvénients, notamment en ce qui concerne la valeur élevée des capacités grille-source et grille-drain. Résumé de l'invention
Ainsi, un objet de la présente invention est de pallier au moins certains des inconvénients des procédés conduisant aux dispositifs susmentionnés.
Un autre objet de la présente invention est de prévoir un procédé de fabrication d'un transistor à nanodoigts semiconducteurs parallèles qui soit particulièrement efficace et simple à mettre en oeuvre et qui conduise à de faibles capacités grille-source et grille-drain.
Pour atteindre ces objets, la présente invention prévoit un procédé de fabrication d'un transistor à nanodoigts semiconducteurs en parallèle, comprenant les étapes suivantes : former une couche monocristalline d'un matériau semi¬ conducteur sur une couche d'un matériau sous-jacent sélec¬ tivement gravable par rapport à la couche monocristalline ; graver des cloisons parallèles dans la couche monocristalline et dans la couche sous-jacente, et évider une partie de ladite couche d'un matériau sous-jacent ; remplir l'intervalle entre les cloisons et la partie évidée d'un premier matériau isolant ; délimiter une partie centrale des cloisons, et éliminer le premier matériau isolant autour de la partie centrale de la couche monocristalline, d'où il résulte qu'un doigt dudit matériau semiconducteur est formé ; et remplir et revêtir la partie centrale d'un matériau conducteur . Selon un mode de réalisation de la présente invention, les cloisons ont une largeur inférieure à 100 nm, de préférence inférieure à 50 nm.
Selon un mode de réalisation de la présente invention, le procédé comprend, avant l'étape de remplissage d'un matériau conducteur, l'étape consistant à revêtir d'un deuxième matériau isolant (22) la périphérie du doigt.
Selon un mode de réalisation de la présente invention, le revêtement par un isolant consiste en une oxydation ther¬ mique. Selon un mode de réalisation de la présente invention, le procédé comprend, avant l'étape de remplissage par un maté¬ riau conducteur, l'étape consistant à procéder à un recuit pour arrondir la périphérie du doigt. Selon un mode de réalisation de la présente invention, la couche de semiconducteur est une couche de silicium et la couche sous-jacente est une couche de silicium-germanium.
Selon un mode de réalisation de la présente invention, la couche de silicium-germanium repose sur une couche inférieure mince de silicium constituant la partie supérieure d'une structure de type SOI et dans lequel, lors de l'étape de gravure des doigts, des doigts sont également formés dans la couche inférieure . Selon un mode de réalisation de la présente invention, le procédé prévoit plusieurs étages de doigts semiconducteurs. Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 est une vue partielle en perspective d'une structure selon la présente invention à un stade intermédiaire de fabrication ; la figure 2 est une vue de dessus partielle correspon¬ dant à la figure 1 ; la figure 3 est une vue en coupe selon la ligne III- III de la figure 2, correspondant à la figure 1 ; la figure 4 est une vue de dessus représentant la structure à un stade ultérieur de fabrication selon la présente invention ; la figure 5 est une vue en coupe selon la ligne V-V de la figure 4 à un stade ultérieur de fabrication selon la présente invention ; la figure 6 est une vue en coupe analogue à celle de la figure 5 à un stade ultérieur de fabrication selon la présente invention ; et les figures 7A et 7B sont des vues en coupe selon la ligne VII-VII de la figure 4 de deux variantes de réalisation à un stade ultérieur de fabrication selon la présente invention.
La figure 1 est une vue en perspective d'une structure à un stade intermédiaire de fabrication selon un exemple de mise en oeuvre du procédé selon la présente invention. Dans cet exemple de mise en oeuvre, on part d'une structure actuellement commercialement disponible de façon courante, dite plaquette SOI, comprenant sur un substrat de silicium 1 une couche mince isolante 2, couramment de l'oxyde de silicium, et une couche de silicium monocristallin 3. Sur la couche de silicium monocristallin 3, on a fait croître successivement une couche de silicium-germanium monocristallin 4 et une couche de silicium monocristallin 5. L'ensemble est revêtu d'une couche servant de masque dur de gravure 6, couramment du nitrure de silicium. Ce masque dur est gravé selon le motif représenté en vue de dessus en figure 2, de façon à définir des ouvertures 11 entre des cloisons 12 qui s'étendent d'un bloc 13 à un bloc 14.
Selon un aspect de la présente invention, lors de la formation des ouvertures 11 entre des cloisons 12, on procède à une gravure isotrope du silicium-germanium 4 pour l'éliminer dans les cloisons 12 et en partie au-delà des ouvertures 11 comme cela est indiqué par les traits en pointillés 15 sous les blocs 13 et 14. Comme l'illustrent la vue en perspective de la figure
1 et la vue en coupe de la figure 3, qui est une coupe selon le plan III-III de la figure 2, chaque cloison s'étend verti¬ calement jusqu'à la couche isolante 2 et comprend donc la superposition de portions correspondantes de la couche de silicium monocristallin 3, de la couche de silicium monocristallin 5, et du masque dur 6 (la portion de couche de silicium-germanium monocristallin 4 a été éliminée) . De même, chacun des blocs 13 et 14 comprend une portion de l'empilement de couches 3, 5 et 6. On a également illustré en figure 3, le résultat d'une étape ultérieure au cours de laquelle on a rempli les ouvertures 11 entre les cloisons 12 d'un matériau isolant 16 sélectivement gravable par rapport aux divers matériaux constitutifs des cloisons 12. Le matériau isolant 16 peut par exemple être de l'oxyde de silicium déposé par voie chimique en phase vapeur, l'étape de dépôt étant suivie d'une étape de polissage physicochimique pour amener la surface supérieure du matériau 16 au niveau de la surface supérieure du masque dur 6. On notera que le matériau isolant vient remplir les espaces d'où des portions de la couche de silicium-germanium 4 ont été éliminées.
Ensuite, comme l'illustre la vue de dessus de la figure 4, on masque la partie extérieure à une zone centrale des cloisons selon le contour désigné par les traits en pointillés 20. On élimine alors entre les traits en pointillés 20 tout le matériau isolant 16 et le masque dur 6 décrit précédemment. La gravure de l'isolant 16 est poursuivie jusqu'à la couche isolante 2. On a ainsi dégagé la partie centrale des cloisons 12 sur toute la longueur et la profondeur de cette zone centrale. La figure 5 est une vue en coupe selon la ligne V-V de la figure 4, c'est-à-dire selon la longueur d'une cloison 12. Dans cette figure, on a indiqué par des traits verticaux en pointillés les limites longitudinales entre une cloison et les blocs 13 et 14 (voir figure 4). A l'étape illustrée en figure 5, après avoir éliminé le matériau isolant 16 entre les cloisons 12 dans la partie centrale de celles-ci, on procède à une gravure sélective isotrope de la couche de matériau isolant 16 intermédiaire comprise entre les couches de silicium 3 et 5. On dégage ainsi un doigt de silicium supérieur 21 mais il reste en place des régions isolantes 16-1 et 16-2 sous les prolongements du doigt de silicium au voisinage des régions de source et de drain. On procède alors à un revêtement isolant autour du doigt 21 pour former une bague isolante désignée en figure 5 par la référence 22. Cet isolant est formé par tout moyen choisi, par exemple par oxydation thermique. Lors de la même étape, on a formé un isolant 23 du côté supérieur et autour des parties apparentes d'un doigt de silicium inférieur 25 formé dans la couche de silicium 3 et reposant sur la couche isolante 2. Lors d'une même étape ou lors d'une étape ultérieure, on revêt éventuellement d'un isolant 24 les parties exposées des régions isolantes 16-1 et 16-2. La partie évidée initialement occupée par la région de silicium-germanium puis par du matériau isolant 16 est désignée par la référence 28.
A l'étape suivante, illustrée en figure 6, on procède à un remplissage par un matériau conducteur qui remplit alors l'ensemble des intervalles entre doigts et la partie évidée 28 et qui recouvre la structure. Ce matériau conducteur peut être un métal, ou un silicium polycristallin fortement dopé, de préférence transformé au moins partiellement en un siliciure métallique. On procède ensuite à une planarisation, par exemple par polissage physico-chimique. On obtient ainsi, comme cela est illustré en figure 6, une bague conductrice 29 autour de la partie centrale du doigt 21.
On notera que la présence des régions isolantes 16-1 et 16-2 améliore l'isolement entre les grilles entourant les doigts et les structures solidaires des blocs de drain et de source. On réduit ainsi le couplage entre grille et source et entre grille et drain. En l'absence des régions isolantes 16-1 et 16-2, le couplage entre grille et source et entre grille et drain serait nettement plus élevé, les régions de silicium- germanium étant toujours plus ou moins conductrices et n'étant alors séparées de la grille que par la couche isolante mince 24. La figure 7A est une vue en coupe, dans le plan de coupe VII-VII illustré en figures 4 et 6, de la structure obtenue à l'étape de la figure 6. On y voit en coupe les doigts de silicium supérieurs 21 et les doigts de silicium inférieurs 25. Les doigts 21 et 25 sont entourés d'isolant, respectivement 22 et 23, et sont noyés dans la couche conductrice constituée du matériau 29. La présente invention est susceptible de nombreuses variantes qui seront décrites ci-après et dont certaines constituent des aspects de la présente invention. On notera que ces diverses variantes peuvent être utilisées séparément ou en combinaison.
Selon une première variante de la présente invention dont le résultat est illustré en figure 7B, après avoir dégagé les doigts de semiconducteur 21 aux étapes décrites en relation avec les figures 4 et 5, on procède à un recuit pour transformer les doigts à sections sensiblement carrées ou rectangulaires en doigts à sections arrondies, rondes ou ovales. Les autres étapes de la présente invention sont inchangées. Cette variante permet d'obtenir une encore meilleure qualité de commande par la grille des doigts du transistor MOS. On notera que, selon un aspect de la présente invention, le recuit intervient alors que seules les parties actives des doigts de silicium qui vont être entourées du conducteur de commande sont en suspension. On limite alors les risques de fléchissement des doigts qui apparaîtraient si les doigts présentaient de grandes longueurs en suspension. Selon une deuxième variante de la présente invention, on vise à supprimer les doigts inférieurs 25, de façon à obtenir une structure comportant uniquement des doigts 21 complètement entourés d'un conducteur. Pour cela, la présente invention propose deux moyens . Le premier moyen consiste à utiliser une structure dans laquelle la couche 3 n'existe pas, c'est-à-dire dans laquelle le silicium-germanium 4 repose directement sur un support isolant 2. Dans ce cas, toutes les étapes décrites précédemment peuvent être utilisées à l'identique. Selon un deuxième moyen, on n'utilise pas la couche supérieure de silicium 5. La structure comprend alors seulement la couche de silicium monocristallin 3 revêtue de la couche de silicium-germanium monocristallin 4, et, au lieu de graver sélectivement le silicium-germanium par rapport au silicium, on grave sélectivement le silicium par rapport au silicium- germanium.
Selon une troisième variante, on utilise comme structure de départ une structure de type SOI à plusieurs étages dans laquelle on a assemblé sur un substrat une première couche isolante, une première couche semiconductrice, une deuxième couche isolante et une deuxième couche semiconductrice. Les doigts sont obtenus en gravant sélectivement l'isolant par rapport au semiconducteur. Selon une quatrième variante de la présente invention, au lieu de prévoir un seul étage de doigts conducteurs, on prévoit plusieurs étages en alternant les couches semiconduc- trices sélectivement gravables . Par exemple, en faisant un sandwich Si-SiGe-Si-SiGe-Si-SiGe-Si... ou un sandwich Si-Siθ2~ Si-Siθ2-Si-Siθ2θ-Si .... Ce procédé peut être mis en oeuvre sans modifier en quoi que ce soit les étapes décrites précédemment de réalisation de la présente invention.
L'invention a été décrite plus particulièrement dans le cadre de la réalisation d'un transistor MOS à nanodoigts parallèles. L'invention permet aussi la réalisation de tran¬ sistors bipolaires à nanodoigts parallèles. Le procédé reste sensiblement le même à la différence que les niveaux de dopage seront convenablement choisis et que l'électrode de commande au lieu d'être une grille isolée sera une portion conductrice (éventuellement un siliciure) en contact direct avec la partie centrale de chaque doigt qui constitue alors la base du tran¬ sistor bipolaire.
La présente invention se prête facilement à la réali¬ sation de dopages adaptés pour les régions de canal, de source et de drain ou de base, d'émetteur et de collecteur. Les étapes de dopage peuvent être prévues à divers stades du procédé. Ces étapes ne seront pas détaillées ici car elles sont tout à fait apparentes pour l'homme du métier. On pourra notamment réaliser des structures de transistors MOS de type LDD, comprenant des zones de source et de drain moins dopées au voisinage immédiat de la région de canal, en utilisant des techniques classiques à espaceurs, ou autres.
Des assemblages de semiconducteurs autres que Si et SiGe peuvent être utilisés. Il convient seulement de prévoir un couple de matériaux tel que l'un de ces matériaux puisse servir de support à la croissance monocristalline d'un matériau semi¬ conducteur et soit sélectivement gravable par rapport à l'autre. A titre d'exemple de réalisation de la présente invention, et uniquement dans le cadre d'une technologie parti- culière, on notera, en se référant à la figure 1, que les couches de silicium 3 et 5 peuvent avoir des épaisseurs de 10 à 20 nm et la couche 4 de silicium-germanium une épaisseur de l'ordre de 20 à 30 nm. La largeur des cloisons 12 peut être de 10 à 20 nm. L'espace entre cloisons peut être de 30 à 40 nm. Les parties actives des doigts constituent une zone de canal ou de base et ont par exemple une longueur de l'ordre de 5 à 30 nm.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un transistor à nanodoigts semiconducteurs en parallèle, comprenant les étapes suivantes : former une couche monocristalline d'un matériau semiconducteur (5) sur une couche d'un matériau sous-jacent (4) sélec- tivement gravable par rapport à cette couche monocristalline ; graver des cloisons parallèles (12) dans la couche monocristalline (5) et dans la couche (4) sous-jacente, et évider une partie de ladite couche d'un matériau sous-jacent ; remplir l'intervalle (11) entre les cloisons et la partie évidée d'un premier matériau isolant (16); délimiter une partie centrale des cloisons, et éliminer le premier matériau isolant autour de la partie centrale de la couche monocristalline (5), d'où il résulte qu'un doigt (21) dudit matériau semiconducteur est formé ; et remplir et revêtir la partie centrale d'un matériau conducteur (29) .
2. Procédé selon la revendication 1, dans lequel les cloisons ont une largeur inférieure à 100 nm, de préférence inférieure à 50 nm.
3. Procédé selon la revendication 1, comprenant, avant l'étape de remplissage d'un matériau conducteur, l'étape consistant à revêtir d'un deuxième matériau isolant (22) la périphérie du doigt.
4. Procédé selon la revendication 3, dans lequel le revêtement par un isolant consiste en une oxydation thermique.
5. Procédé selon la revendication 1, comprenant, avant l'étape de remplissage par un matériau conducteur, l'étape consistant à procéder à un recuit pour arrondir la périphérie du doigt.
6. Procédé selon la revendication 1, dans lequel la couche de semiconducteur (5) est une couche de silicium et la couche sous-jacente est une couche de silicium-germanium (4) .
7. Procédé selon la revendication 6, dans lequel la couche de silicium-germanium (4) repose sur une couche inférieure mince de silicium (3) constituant la partie supé¬ rieure d'une structure de type SOI (1, 2) et dans lequel, lors de l'étape de gravure des doigts, des doigts sont également formés dans la couche inférieure.
8. Procédé selon la revendication 1, consistant à prévoir plusieurs étages de doigts semiconducteurs.
PCT/FR2006/050790 2005-08-08 2006-08-07 Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles WO2007017613A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/063,288 US8460978B2 (en) 2005-08-08 2006-08-07 Method for manufacturing a transistor with parallel semiconductor nanofingers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552460 2005-08-08
FR0552460A FR2889622A1 (fr) 2005-08-08 2005-08-08 Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles

Publications (1)

Publication Number Publication Date
WO2007017613A1 true WO2007017613A1 (fr) 2007-02-15

Family

ID=36498923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050790 WO2007017613A1 (fr) 2005-08-08 2006-08-07 Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles

Country Status (3)

Country Link
US (1) US8460978B2 (fr)
FR (1) FR2889622A1 (fr)
WO (1) WO2007017613A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803668B2 (en) 2006-02-24 2010-09-28 Stmicroelectronics (Crolles 2) Sas Transistor and fabrication process
US20140001441A1 (en) * 2012-06-29 2014-01-02 Seiyon Kim Integration methods to fabricate internal spacers for nanowire devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426489B2 (ja) * 2015-02-03 2018-11-21 東京エレクトロン株式会社 エッチング方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149031A1 (en) * 2001-04-12 2002-10-17 Samsung Electronics Co., Ltd. Semiconductor device having gate all around type transistor and method of forming the same
US20040016968A1 (en) * 2002-04-08 2004-01-29 Stmicroelectronics S.A. Surround-gate semiconductor device encapsulated in an insulating medium
US6713356B1 (en) * 1999-06-28 2004-03-30 FRANCE TéLéCOM Method for making a semiconductor device comprising a stack alternately consisting of silicon layers and dielectric material layers
US20040166642A1 (en) * 2003-02-20 2004-08-26 Hao-Yu Chen Semiconductor nano-rod devices
US20040209463A1 (en) * 2002-10-01 2004-10-21 Kim Sung-Min Methods of fabricating field effect transistors having multiple stacked channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713356B1 (en) * 1999-06-28 2004-03-30 FRANCE TéLéCOM Method for making a semiconductor device comprising a stack alternately consisting of silicon layers and dielectric material layers
US20020149031A1 (en) * 2001-04-12 2002-10-17 Samsung Electronics Co., Ltd. Semiconductor device having gate all around type transistor and method of forming the same
US20040016968A1 (en) * 2002-04-08 2004-01-29 Stmicroelectronics S.A. Surround-gate semiconductor device encapsulated in an insulating medium
US20040209463A1 (en) * 2002-10-01 2004-10-21 Kim Sung-Min Methods of fabricating field effect transistors having multiple stacked channels
US20040166642A1 (en) * 2003-02-20 2004-08-26 Hao-Yu Chen Semiconductor nano-rod devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803668B2 (en) 2006-02-24 2010-09-28 Stmicroelectronics (Crolles 2) Sas Transistor and fabrication process
US20140001441A1 (en) * 2012-06-29 2014-01-02 Seiyon Kim Integration methods to fabricate internal spacers for nanowire devices
US9484447B2 (en) * 2012-06-29 2016-11-01 Intel Corporation Integration methods to fabricate internal spacers for nanowire devices
US10121856B2 (en) 2012-06-29 2018-11-06 Intel Corporation Integration methods to fabricate internal spacers for nanowire devices
US10283589B2 (en) 2012-06-29 2019-05-07 Intel Corporation Integration methods to fabricate internal spacers for nanowire devices
US10580860B2 (en) 2012-06-29 2020-03-03 Intel Corporation Integration methods to fabricate internal spacers for nanowire devices
US10804357B2 (en) 2012-06-29 2020-10-13 Sony Corporation Integration methods to fabricate internal spacers for nanowire devices
US11302777B2 (en) 2012-06-29 2022-04-12 Sony Group Corporation Integration methods to fabricate internal spacers for nanowire devices
US11869939B2 (en) 2012-06-29 2024-01-09 Sony Group Corporation Integration methods to fabricate internal spacers for nanowire devices

Also Published As

Publication number Publication date
US8460978B2 (en) 2013-06-11
US20100184274A1 (en) 2010-07-22
FR2889622A1 (fr) 2007-02-09

Similar Documents

Publication Publication Date Title
WO2001001496A1 (fr) Procede de fabrication d'un dispositif semi-conducteur comprenant un empilement forme alternativement de couches de silicium et de couches de materiau dielectrique
FR3043837A1 (fr) Procede de realisation de transistor a nanofil semi-conducteur et comprenant une grille et des espaceurs auto-alignes
FR2891664A1 (fr) Transistor mos vertical et procede de fabrication
EP1589572B1 (fr) Procédé de fabrication d'un circuit intégré comprenant l'élaboration de tranchées d'isolation creuses
FR2823010A1 (fr) Procede de fabrication d'un transistor vertical a grille isolee a quadruple canal de conduction, et circuit integre comportant un tel transistor
EP1788635B1 (fr) Procédé de réalisation de transistor à double grilles auto-alignées par réduction de motifs de grille
FR3046290B1 (fr) Methode de realisation d'espaceurs a faible permittivite
EP2763177A1 (fr) Procédé de fabrication d'un transistor MOS à espaceurs d'air
EP2610915A1 (fr) Transistor et procédé de fabrication d'un transistor
WO2001001477A1 (fr) Procede de gravure laterale par trous pour fabriquer des dispositifs semi-conducteurs
EP2999001A2 (fr) Réalisation d'espaceurs au niveau de flancs d'une grille de transistor
FR2899381A1 (fr) Procede de realisation d'un transistor a effet de champ a grilles auto-alignees
EP1292991B1 (fr) Procédé de fabrication d'un transistor MOS vertical à grille enterrée
EP3442027B1 (fr) Procede de formation de regions d'extension dopees dans une structure a nanofils superposes
FR3040538A1 (fr) Transistor mos et son procede de fabrication
WO2007017613A1 (fr) Procede de fabrication d'un transistor a nanodoigts semiconducteurs paralleles
FR2799307A1 (fr) Dispositif semi-conducteur combinant les avantages des architectures massives et soi, procede de fabrication
EP1507286A2 (fr) Procédé de formation sous une couche mince d'un premier matériau de portions d'un autre matériau et/ou de zones de vide
EP0675544B1 (fr) Procédé de fabrication d'un transistor à effet de champ à grille isolée de longueur de canal réduite, et transistor correspondant
EP0413645B1 (fr) Procédé de fabrication de transistor MOS mésa de type silicium sur isolant
FR3049110A1 (fr) Procede de fabrication d'un transistor a effet de champ a capacite parasite reduite
WO2004057658A2 (fr) Transistor mis a grille auto-alignee et son procede de fabrication
EP3038149A1 (fr) Procede de realisation d'un circuit integre en trois dimensions
FR3035265A1 (fr) Procede de fabrication de transistors soi pour une densite d'integration accrue
EP1818973A1 (fr) Formation d'une portion de couche semiconductrice monocristalline séparée d'un substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06794531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12063288

Country of ref document: US