WO2007015516A1 - 樹脂粒子 - Google Patents

樹脂粒子 Download PDF

Info

Publication number
WO2007015516A1
WO2007015516A1 PCT/JP2006/315299 JP2006315299W WO2007015516A1 WO 2007015516 A1 WO2007015516 A1 WO 2007015516A1 JP 2006315299 W JP2006315299 W JP 2006315299W WO 2007015516 A1 WO2007015516 A1 WO 2007015516A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
particle
acid
particles
fat
Prior art date
Application number
PCT/JP2006/315299
Other languages
English (en)
French (fr)
Inventor
Takao Mukai
Tsuyoshi Izumi
Original Assignee
Sanyo Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries, Ltd. filed Critical Sanyo Chemical Industries, Ltd.
Priority to EP06782168.6A priority Critical patent/EP1925632B1/en
Priority to US11/997,746 priority patent/US8722298B2/en
Priority to CN200680028732.5A priority patent/CN101238168B/zh
Publication of WO2007015516A1 publication Critical patent/WO2007015516A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08724Polyvinylesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a resin particle. More particularly, the present invention relates to resin particles useful for various applications such as powder coatings, electrophotographic toners, electrostatic recording toners and the like. Background art
  • a resin particle obtained by using polymer fine particles as a dispersion stabilizer is known as a resin particle having a uniform particle size and excellent electrical characteristics, thermal characteristics, chemical stability, etc. (See Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002- 284881
  • the present invention has been made in view of the above-mentioned circumstances in the prior art. That is, it is an object of the present invention to provide a resin particle having a uniform particle size excellent in charge characteristics, heat storage stability and thermal characteristics.
  • the present inventors arrived at the present invention as a result of intensive studies to solve the above problems.
  • the first resin (a) having a temperature of 60 to 300 ° C, an outflow temperature of 0 to 120 ° C, and a difference between the glass transition temperature and the outflow temperature
  • a resin particle (D) having a structure in which the coating (P) of a) is attached to the surface of the second resin (b) and also the surface of the resin particle (B) which is also a force Or a resin particle characterized in that the surface coverage of (B) by the coating (P) is 0.1 to 4.
  • a first resin (a) which also has a glass transition temperature of 20 to 250 ° C., an outflow temperature of 60 to 300 ° C., and a difference between the glass transition temperature of 0 to 120 ° C.
  • a method for producing a sebum particle comprising separating and removing Z and dissolving away a part to obtain an aqueous dispersion of a sebum particle (D), and further removing an aqueous medium from the a
  • the grease particle of the present invention has the following effects.
  • FIG. 1 is a conceptual view showing a flow chart in flow tester measurement of fat particles.
  • the first resin (a) has the above-mentioned softening start temperature, glass transition temperature, outflow temperature, and the difference between the glass transition temperature and the outflow temperature, and is an aqueous dispersion.
  • a resin that can form liquid (W) any resin can be used, and any resin can be used, whether it is thermoplastic resin or thermosetting resin.
  • Examples of (a) include vinyl-based resins, polyurethane-based resins, epoxy-based resins, polyester-based resins, polyamide-based resins, polyimide-based resins, silicone-based resins, phenolic-based resins, and melamine-based resins.
  • Urea resin, phosphorus resin, ionomer resin, polycarbonate resin and the like Urea resin, phosphorus resin, ionomer resin, polycarbonate resin and the like.
  • the resin (a) two or more of the above resins may be used in combination.
  • preferred V is that an aqueous dispersion of fine spherical resin particles is easily obtained, and the viewpoints of boule type resins, polyester resins, polyurethane resins, epoxy resins and combinations thereof. More preferably, they are vinyl resins.
  • the glass transition temperature (Tg), the softening onset temperature (Ts) and the outflow temperature (T1Z2) of resin (a) are the molecular weight of (a) and the monomer composition constituting Z or (a). It can be easily adjusted by changing it.
  • the polymerization is carried out by a known method, for example, by a sequential reaction such as polyurethane resin or polyester resin.
  • adjustment of the charging ratio of the monomers may be mentioned, and in the case of polymerization by chain reaction such as vinyl resin, adjustment of the amount of polymerization initiator and amount of chain transfer agent, reaction temperature, reaction concentration Adjustment is mentioned.
  • a combination of the molecular weight of (a) and the monomer composition constituting (a) may be appropriately selected. ⁇ ⁇ .
  • the fat (a) in order to obtain an aqueous dispersion of fine spherical fat particles (A), the fat (a) preferably contains a carboxyl group.
  • the carboxyl group may be at least partially neutralized with a base. 20:
  • the LOO equivalent% is preferable, and 40 to 100 equivalent% is still more preferable.
  • the content of the carboxyl group [when neutralized with a base!
  • the content converted to the carboxyl group (CO OH group)] is preferably 1 to 50% based on the weight of (a).
  • the lower limit is more preferably 1%, particularly preferably 5%, most preferably 10%, and the upper limit is further preferably 45%, particularly preferably 40%, most preferably 35%.
  • % means weight% unless otherwise noted.
  • the resin (a) is dispersed in the aqueous medium, and the aqueous dispersion of the fine spherical resin particles (A) (W Can easily be obtained. In addition, the charging characteristics of the obtained resin particles (D) are improved.
  • the base that forms the above neutralization salt include ammonia, monoamines having 1 to 30 carbon atoms, polyamine (16) described later, quaternary ammonium, alkali metals (sodium, potassium etc.), and Alkaline earth metals (calcium salts, magnesium salts etc.) and the like can be mentioned.
  • monoamines having 1 to 30 carbon atoms As the monoamines having 1 to 30 carbon atoms, primary and Z or secondary amines having 1 to 30 carbons (such as ethylamine, n -butylamine and isobutylamine), and tertiary amines having 3 to 30 carbon atoms Trimethylamine, trytilamine, lauryldimethylamine and the like).
  • quaternary ammonium include trialkyl ammonium (such as lauryl trimethyl ammonium) having 4 to 30 carbon atoms.
  • alkali metals preferred are alkali metals, quaternary ammonium, monoamines, and polyamines, more preferably sodium and monoamines having 1 to 20 carbon atoms, and particularly preferably 3 to 20 carbon atoms. Tertiary monoamines.
  • the preferred carbon number of the monomer containing a vinyl-based resin and a carboxyl group forming a polyester resin or a salt thereof is 3 to 30, more preferably 3 to 15, particularly preferably 3 to 8. .
  • aqueous dispersion (W) of fine spherical resin particles (A) it is excellent in heat-resistant storage stability, charging characteristics, and uniform in particle diameter.
  • fat oil (a) contains sulfonic acid ion groups (one SO-).
  • the total content of sulfonic acid ion groups (one SO one) is based on the weight of (a)
  • the lower limit is more preferably 0.0002%, and the upper limit is more preferably 5%, particularly preferably 2%, most preferably 1%.
  • a monomer containing a sulfonic acid anion group (one SO _) that forms a resin is preferably used, and the carbon number is 3 to 3
  • Sulfonic acid-on group (one SO-) group content exceeds the lower limit of the above range and forms a resin.
  • the carbon number of the monomer containing sulfonic acid ion group (one SO.sub .--) is higher than the above range.
  • the aqueous dispersion (W) of fine spherical resin particles (A) can be easily obtained as soon as the resin (a) is dispersed in the aqueous medium.
  • the blocking resistance and chargeability of the resulting resin particles (D) are improved.
  • vinyl resins, polyester resins and polyurethanes which are preferred as (a) are resins. Detailed explanations will be given to resins and epoxy resins.
  • the boule based resin is a polymer obtained by homopolymerizing or copolymerizing a vinyl based monomer.
  • the following (1) to (10) may be mentioned as the boule based monomer.
  • Aliphatic boule hydrocarbons alkenes such as ethylene, propylene, butane, isobutylene, pentene, heptene, diisobutylene, otaten, dodecene, octadecene, ⁇ -olefyne other than the above, alkadienes, For example butadiene, isoprene, 1,4 pentagen, 1,6 hexagen, 1,7-octadiene.
  • alkenes such as ethylene, propylene, butane, isobutylene, pentene, heptene, diisobutylene, otaten, dodecene, octadecene, ⁇ -olefyne other than the above, alkadienes, For example butadiene, isoprene, 1,4 pentagen, 1,6 hexagen, 1,7-octadiene.
  • Alicyclic buryl hydrocarbons mono- or dicycloalkenes and alkadienes, such as cyclohexene, (di) cyclopentadiene, bulcyclohexene, ethyidenebicycloheptene, etc .; terpenes , Eg, binen, limonene, indene etc.
  • Aromatic butyl-based hydrocarbon Styrene and its hydrocarbyl (alkyl, cycloalkyl, alkyl and alkyl or alkyl) substituted products such as ⁇ -methylstyrene, butyltoluene, 2,4 dimethylstyrene, Cetyl styrene, isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzylene styrene, crotinole benzene, divinyl one benzene, divinyl toluene, divinyl one xylene, trivinyl benzene, etc .; and vinyl naphthalene.
  • (meth) acrylic acid as used herein means acrylic acid and oxalic acid or methacrylic acid, and the same description will be used hereinafter.
  • Sulfone group-containing burl monomer, burl sulfuric acid monoester and salts thereof Alkene sulfonic acid having 2 to 14 carbon atoms, such as vinyl sulfonic acid, (meth) aryl sulfonic acid, methyl vinyl sulfonic acid , Styrene sulfonic acid; and its carbon number 2 to 24 Alkyl derivatives such as ⁇ -methylstyrene sulfonic acid and the like; sulfo (hydroxy) alkyl- (meth) atalylate or (meth) acrylamides such as sulfopropyl (meth) acrylate, 2 hydroxy-3- (meth) atal Roxypropyl sulfonic acid, 2- (Meth) ataloyl amino-one 2,2-dimethyl ethane sulfonic acid, 2- (Meth) ataryloyl oxetane sulfonic acid, 3- (Meth) ataryl
  • R represents an alkyl group having 1 to 15 carbon atoms
  • A represents an alkylene group having 2 to 4 carbon atoms
  • n may be the same or different when two or more, and may be random or block when different
  • Ar represents a benzene ring
  • n represents an integer of 1 to 50
  • R ′ represents an alkyl group having 1 to 15 carbon atoms which may be substituted by a fluorine atom.
  • Ataryloyl oxyalkyl (C1-C24) phosphoric acid monoesters such as, for example, 2 hydroxyethyl (meth) ataryloyl phosphates, phenyl 2-aryloyl oxyethyl phosphates, (meth) ataryloyl oxyalkyls (C1-24) phosphonic acids, for example, 2 ataryloinole quinic acid phosphonic acid.
  • the salts of (2) to (4) above include metal salts, ammonium salts, and amine salts (including quaternary ammonium salts). Examples of the metal that forms the metal salt include Al, Ti, Cr, Mn, Fe, Zn, Ba, Zr, Ca, Mg, Na, and K.
  • alkali metal salts and amine salts Preferred are alkali metal salts and amine salts, and more preferred are sodium salts and salts of tertiary monoamines having 3 to 20 carbon atoms.
  • Hydroxystyrene N-methylol (meth) acrylamide, hydroxyl (meth) atarylate, hydroxypropyl (meth) atarylate, polyethylene glycol mono (meth) atarylate, (meth) aryl alcohol, crotyl alcohol, iso Crothyl alcohol, 1-butene-3-ol, 2-butene, 1-ol, 2-butene 1, 4-diol, propargyl alcohol, 2-hydroxypropyl ether, sucrose aryl ether, etc.
  • Amino group-containing burl monomers aminoethyl (meth) atalylate, dimethylamino ethyl (meth) atalylate, jetylaminoethyl (meth) atalylate, t-butylaminoethyl methacrylate, N aminoethyl (meth) ) Acrylamide, (meth) arylamine, morpholinoethyl (meth) atalylate, 4-Burylpyridine, 2-Burylpyridine, crotylamine, N, N-Dimethylaminostyrene, Methyl ⁇ -acetoaminoacrylate, Buylimidazole, Bibylpyrrole, Biphenyl Lucio pyrrolidone, phthaloyl phenamide, amino carbazole, amino thiazol, amino indole, amino vinylol, amino imidazole, amino mercapto thiazole, salts thereof, etc.
  • a quaternizing agent such as chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.
  • Vinyl chloride vinyl bromide, vinylidene chloride, allyl chloride, chlorostyrene, bromthylene, dichronolestyrene, chloromethinolestyrene, tetraphenolostyrene, croupprene, etc.
  • Bulsulfone such as dibuhl sulfide, p-biphenyl hydrosulfide, bulul chil sulfide, bulul sulfole, divinyl sulfone, dibul sulphoxide, etc.
  • any monomer of the above (1) to (10) may be binary or more, preferably the content of the carboxyl group in the resin particle (A) is 1
  • the polymer includes polymers copolymerized in an arbitrary proportion so that it becomes 50%, for example, styrene (meth) acrylic acid ester-(meth) acrylic acid copolymer, styrene-butadiene-(meth) acrylic acid Acid copolymer, (Meth) acrylic acid / acrylic acid ester copolymer, Styrene Atari-triru (meth) acrylic acid-divinyl benzene copolymer, Styrene Styrene sulfonic acid (meth) acrylic acid ester copolymer, acetic acid Bulle crotonic acid copolymer, vinegar Acid Bulcrotonic acid (meth) acrylic acid ester copolymer, vinyl acetate-(meth) acrylic acid copolymer, vinyl acetate-(meth) acrylic acid copolymer,
  • the ratio of the hydrophobic monomer to the hydrophilic monomer constituting the boule based resin is preferably 30% or more, which is generally 10% or more of the hydrophobic monomer, depending on the kind of monomer selected. More preferable.
  • the relative strength of the hydrophobic monomer is less than 10%, the boule based resin becomes water soluble and the particle size uniformity of (C) and (D) may be impaired.
  • the hydrophilic monomer refers to a monomer that dissolves in water at an arbitrary ratio
  • the hydrophobic monomer refers to other monomers (basically immiscible with water, monomers).
  • polyester resins include polycondensates of polyols and polycarboxylic acids or their acid anhydrides or their lower alkyl esters, and metal salts of these polycondensates.
  • a polyol a diol (11) and a tri- to octa- or higher-valent polyol (12) polycarboxylic acid or an acid anhydride thereof or a lower alkyl ester thereof, a dicarboxylic acid (13) and a tri- to hexa-valent or Further polycarboxylic acids (14) and their acid anhydrides or lower alkyl esters are mentioned.
  • the ratio of the polyol and the polycarboxylic acid is preferably 2Zl to 1Z5, more preferably 1.5 / 1 to 1Z4, and particularly preferably, as the equivalent ratio [OH] Z [COOH] of hydroxyl group [OH] and carboxyl group [COOH].
  • lZl.3 LZ3.
  • the polyester having an excess of hydroxyl groups may be treated with a polycarboxylic acid.
  • alkylene glycols having 2 to 36 carbon atoms ethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol, 1,4 butanediol, 1,6 hexanediol, octanediol, Decanediol, dodecanediol, tetradecanediol, neopentyl glycol, 2,2 cetyl-1,3 propane Diol and the like); C4-C36 alkylene ether glycol (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polyethylene glycol, polytetramethylene ether glycol and the like); C4-C36 alicyclic Formula diols (1, 4-cyclohexanedimethanol, hydrogenated potassium bisphenol A, etc.); alkylene oxides of the above-mentioned alkylene glycols or alicyclic diols (hereinafter ab
  • adducts (additional mole number: 1 to 120); AO (EO, EO, bisphenols (bisphenol 8, bisphenol F, bisphenol S, etc.) PO, BO, etc. Attached caloric matter (additional number of moles 2 to 30); These include poly (such as poly ⁇ monoprolatatone diol); and polybutadiene diol and the like.
  • diol (11a) which has other functional groups other than a diol which does not have functional groups other than said hydroxyl group.
  • examples of (11a) include diols having a carboxyl group, diols having a sulfonic acid group or a sulfamic acid group, and salts thereof.
  • diols having a carboxyl group examples include dialkylolalkanoic acids [C6-24 ones, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid And 2, 2-dimethylol octanoate etc.].
  • DMPA 2,2-dimethylolpropionic acid
  • 2,2-dimethylolbutanoic acid 2,2-dimethylolheptanoic acid And 2, 2-dimethylol octanoate etc.
  • a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (alkyl group of C 1 to 6) or an AO adduct thereof (AO as Is the addition mole number of AO, such as EO or PO, 1 to 6): for example, N, N-bis (2-hydroxy ethyl) snorephamic acid and N, N- bis (2-hydroxytytyl) sulfamic acid P02 Kazoku etc.]; bis (2-hydroxyl) phosphate etc. may be mentioned.
  • alkylene glycols having 2 to 12 carbon atoms and carboxyl.
  • the trivalent to octavalent or higher polyol (12) is a trivalent to octavalent or higher polyhydric aliphatic alcohol having 3 to 36 carbon atoms (alkane polyol and intramolecular or intermolecular dehydrated product thereof)
  • alkane polyol and intramolecular or intermolecular dehydrated product thereof For example, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerin; saccharides and derivatives thereof such as sucrose and methyl dalcoside; AO adducts of polyhydric aliphatic alcohols AO adduct of trisphenols (such as trisphenol PA) with AO (with 2 to 30 calomol); AO adducts of novolak resin (such as phenol novolak and cresone novolac) (addition) Number of moles 2 to 30); acrylic
  • trivalent or higher polyhydric aliphatic alcohols and novolac resin / AO adducts are preferred, and more preferred are novolac resin / AO adducts.
  • dicarboxylic acid (13) examples include alkanedicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.) and -Rusuccinic acid (dodecs-resuccinic acid, pentadecsuccinic acid, octa decsuccinic acid, etc.); alicyclic dicarboxylic acids having 6 to 40 carbon atoms [such as dimer acids (dimerized linoleic acid)], carbons 4 to 36 Alkene dicarboxylic acid (maleic acid, fumaric acid, citraconic acid etc.); aromatic dicarboxylic acid having 8 to 36 carbon atoms (phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxy
  • Examples of the tri- to hexa-hydric or higher polycarboxylic acids (14) include aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.).
  • dicarboxylic acid (13) or the polycarboxylic acid having 3 to 6 or more valences (14), acid anhydrides of the above-mentioned or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester, isopropyl ester) Etc.) may be used.
  • polyurethane resin polyisocyanate (15) and an active hydrogen-containing compound ⁇ water
  • poly diols (11) [including diols having functional groups other than hydroxyl groups (1 la)], and tri- to octahydric or higher polyols (12)]
  • polycarboxylic acids [dicarboxylic acids (13), and 3- to 6-valent or higher polycarboxylic acids (14)]
  • polyester polyols obtained by polycondensation of polyols and polycarboxylic acids, ring-opened polymers of ratatones having 6 to 12 carbon atoms, polyamines (16), polythiols 17) and polyadducts of these combinations etc.
  • examples include amino group-containing polyurethane resins obtained by reacting primary and Z or secondary amino amines (18). The content of the carboxyl group in
  • polyisosocyanate an aromatic polyisocyanate having 6 to 20 carbon atoms (same after removing carbon in NCO group) and an aliphatic polyisocyanate having 2 to 18 carbon atoms
  • aromatic polyisocyanate examples include: 1, 3 and Z or 1,4 benzene diisocyanate, 2,4 and Z or 2,6 tolylene diisocyanate (TDI), Crude TDI, 2,4 'mono- and / or 4,4' diphenylmethane diisocyanate (M DI), crude MDI [crude diaminomethane (formaldehyde and aromatic amine (aurein) or mixtures thereof) Condensation product; a mixture of diaminodiphenylmethane and a small amount (eg 5 to 20%) of a trifunctional or higher polyamine] phosgene: polyaminolepolyisocyanate (PAPI)], 1,5 There may be mentioned range isocyanato, 4, 4 ', 4' '-triphenylmethane triisocyanate, m- and p-isocyanatophenyl sulfoisocyanate and the like.
  • TDI 1, 3 and Z or 1,4
  • aliphatic polyisocyanate examples include ethylene diisocyanate and tetrame Thiylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1, 6, 11-undecanetriisocyanate, 2, 2, 4-trimethylhexadienediisocyanate Lysine diisocyanate, 2,6-diisocyanatomethyl caproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl 2, 6 -Aliphatic polyisocyanates such as diisocyanato hexanoate and the like.
  • HDI hexamethylene diisocyanate
  • dodecamethylene diisocyanate 1, 6, 11-undecanetriisocyanate
  • 2, 2, 4-trimethylhexadienediisocyanate Lysine diisocyanate 2,6-di
  • alicyclic polyisocyanates include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate and methylcyclohexylene.
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4'-diisocyanate
  • MDI dicyclohexylene diisocyanate
  • cyclohexylene diisocyanate methylcyclohexylene.
  • Ranged isocyanato (hydrogenated TDI) bis (2-bisocyanatoethyl) -4-cyclohexylene 1, 2-dicarboxylate, 2, 5- and Z or 2, 6-norbornane diisosyanate, etc.
  • araliphatic polyisocyanates include m- and Z- or P-xylylene diisocyanate (XDI), a, a, ', a'-tetramethyl xylylene diisocyanate (TMXDI) Etc.
  • modified products of the above-mentioned polyisosocyanates include urethane groups, carbodiimide groups, alophanate groups, urea groups, biuret groups, uretdione groups, uretimine groups, isocyanurate groups, oxazolidone group-containing modified products and the like.
  • modified MDI urethane modified MDI, carbodiimide modified MDI, trihydrocarbyl phosphate modified MDI, etc.
  • modified polyisocyanate such as urethane modified TDI
  • a mixture of two or more of them eg modified MDI and urethane In combination with denatured TDI (isomer containing isocyanate).
  • aromatic polyisocyanates of 6 to 15, aliphatic polyisocyanates of 4 to 12 carbon atoms, and alicyclic polyisocyanates of 4 to 15 carbon atoms Particularly preferred are TDI, MDI, HDI, hydrogenated MDI, and IPDI.
  • polyamine (16) examples include aliphatic polyamines (C2 to C18): [1] aliphatic polyamine ⁇ C2 to C6 alkylenediamine (ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, Hexamethylenediamine, etc., Polyalkylene (C2 to C6) Polyamines [Diethylenetriamine, Iminobispropylamine, Bis (hexamethylene) tri] , Triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine etc. ⁇ ; [2] their alkyl (C1 to C4) or hydroxyalkyl (C2 to C4) substituted [dialkyl (C1 to C3) amino acids Propylamine, trimethylhexamethylenediamine, aminoethylethanolamine, 2,5 dimethyl-2,5 hexamethylenediamine, methyliminobispropylamine etc.]; [3] containing an alicyclic or hetero
  • polyamide polyamine dicarboxylic acid
  • Polyether polyamines Poly, such as low molecular weight polyamide polyamines obtained by the condensation of dimer acids and the like with an excess (more than 2 moles per mole of acid) of polyamines (the above-mentioned alkylene diamine, polyalkylene polyamine etc.) For example, hydrides of cyanoethylates of ether polyols (polyalkylene glycol etc.)
  • Examples of the polythiol (17) include alkanedithiol having 2 to 36 carbon atoms (such as ethylene dithiol, 1,4 butanedithiol, 1,6 hexane dithiol, etc.).
  • alkylamines having 2 to 24 carbon atoms Such as acetylamine, n-butylamine and isobutylamine.
  • epoxy resin a ring-opening polymer of polyepoxide (19), polyepoxide (19) and active hydrogen group-containing compound ⁇ water, polyol [the above-mentioned diol (11) and polyol having 3 to 8 or more valences or more] (12), polycarboxylic acid (13), polycarboxylic acid (14) having 3 to 6 or more valences, polyaddition with polyamine (16), polythiol (17), etc. ⁇ or polyepoxide (12) 19) and cured products of dicarboxylic acids (13) or acid anhydrides of tri- to hexa-hydric or higher polycarboxylic acids (14), and the like.
  • polyol the above-mentioned diol (11) and polyol having 3 to 8 or more valences or more
  • polycarboxylic acid 13
  • polycarboxylic acid (14) having 3 to 6 or more valences
  • the polyepoxide (19) used in the present invention is not particularly limited as long as it has two or more epoxy groups in the molecule.
  • Preferred as the polyepoxide (19) are those having 2 to 6 epoxy groups in the molecule in view of the mechanical properties of the cured product.
  • the epoxy equivalent (molecular weight per epoxy group) of polyepoxide (19) is usually 65 to: LOOO, preferably 90 to 500. When the epoxy equivalent exceeds 1000, the crosslinked structure becomes loose and the physical properties such as water resistance, chemical resistance and mechanical strength of the cured product deteriorate, while it is difficult to synthesize one having an epoxy equivalent of less than 65. It is.
  • polyepoxide (19) examples include aromatic polyepoxy compounds, heterocyclic polyepoxy compounds, alicyclic polyepoxy compounds or aliphatic polyepoxy compounds.
  • the aromatic polyepoxy compound may, for example, be a glycidyl ether or glycidyl ester of polyhydric phenols, a glycidyl aromatic polyamine, a glycidyl compound of aminophenol and the like.
  • glycidyl ether of polyhydric phenol bisphenol F diglycidyl ether, bis phenol A diglycidyl ether, bis phenol B diglycidyl ether, bis phenol AD diglycidyl ether, bis phenol S diglycidyl ether, halogenated bis phenol A diglycidyl tetrachlorobisphenol A diglycidyl ether, force kin diglycidyl ether, resorcinol diglycidyl ether, hydrophoric quinone diglycidyl ether, pyrogallol triglycidyl ether, 1,5-dihydroxynaphthalene diglycidyl ether, dihydroxy Biphenyl diglycidyl ether, Octachloro-4,4 dihydroxybiphenyl diglycidyl ether, tetramethyl biphenyl diglycidyl ether, Hydrate Loki Sina border Le cresol triglycidyl ether, tris (
  • Examples of glycidyl esters of polyhydric phenols include phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, and telephthalic acid diglycidyl ester.
  • Examples of glycidyl aromatic polyamines include N, N diglycidinoarediphosphorus, N, N, N ', N'-tetraglycidyl xylylene diamine, N, N, N ', N'-tetraglycidyl diphenylmethane diamine, etc.
  • a diglycidyl urethane compound obtained by the addition reaction of glycidol with triglycidyl ether, tolylene diisocyanate or diphenylmethane diisocyanate of p-aminophenol as the above-mentioned aromatic system.
  • a glycidyl group-containing polyurethane (pre) polymer obtained by reacting a polyol also with the above two reactants, and a diglycidyl ether of a phenoloxenoxide (ethylene oxide or propylene oxide) with bisphenone A. Including the body.
  • heterocyclic polyepoxy compounds include trisglycidylmelamine; and examples of alicyclic polyepoxy compounds include vinylcyclohexylene, limonene dioxide, dicyclopentadiene dioxide, bis (2, 3 Epoxy Cyclopentyl) Ether, Ethylene Glycol Bis-Epoxy Dicyclopentenole Nole
  • the nuclear hydrogenation thing of the said aromatic polyepoxide compound is also included;
  • the polyglycidyl ether body of polyvalent aliphatic alcohol polyvalent oil
  • polyglycidyl esters of fatty acids and glycidyl aliphatic amines may be mentioned.
  • polyglycidyl ether of polyhydric aliphatic alcohol examples include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, Polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl Ether etc.
  • Examples of polyglycidyl ester of polyvalent fatty acid include diglycidyl oxalate, diglycidyl maleate, diglycidyl nodecyl succinate, diglycidyl nolegrelate, diglycidyl noadiate, diglycidyl pimelate and the like. It can be mentioned.
  • Examples of glycidyl aliphatic amines include N, N, N 'and ⁇ '-tetraglycidylhexamethylenediamine.
  • the aliphatic type also includes (co) polymers of diglycidyl ether and glycidyl (meth) atarylate. Among these, aliphatic polyepoxy compounds and aromatic polyepoxy compounds are preferred.
  • the polyepoxides of the present invention can be used in combination of two or more.
  • the fat particle (D) of the first invention is a coating (P) of a fat particle (A) or a fat (a) consisting of a first fat (a) having specific fat physical properties.
  • a part of the resin particles (A) may be coated, and (A) and (P) may coexist.
  • the coating (P) coats the surface of (B), the point power of smoothness of the surface of the resin particle be
  • the resin particle (D) is obtained by the following production method of the second invention, U, which is preferable because it results in resin particles with uniform particle size.
  • the aqueous dispersion (W) of the resin particle (A), the resin (b) or its solvent solution (01), or the precursor of the resin (b) (b0) or its solvent solution (O 2) is mixed, and (Ol) or (02) is dispersed in (W) to form the fat particle (B) consisting of (b)
  • the adsorption of the resin particle (A) on the surface of the resin particle (B) prevents the resin particle (C) from coalescing with each other, and (C) is difficult to be fragmented under high shear conditions. Do.
  • the particle diameter of (C) is converged to a constant value, and the effect of improving the uniformity of the particle diameter is exhibited.
  • the resin particles (A) should have a strength that is not broken by shearing at the temperature at which it is dispersed, be difficult to dissolve in water or swell, (b) or its solution It is cited as a preferable characteristic that the agent is hardly soluble in the agent solution (b0) or the solvent solution thereof.
  • the number average molecular weight of the resin (a) is usually 100 to 5,000,000, preferably 200 to 5,000,000, and more preferably 500 to 500, 000, sp value is usually 7-18, preferably 8-14.
  • the melting point of the resin (a) is usually 50 ° C. or higher, preferably 80 to 200 ° C.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of a non-polyurethane resin such as polyester resin are the same as the tetrahydrofuran (THF) soluble content. It is measured using gel permeation chromatography (GPC) under the following conditions.
  • Tosoh standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 1900 00 355000 1090000 2890000)
  • Mn and Mw of the polyurethane resin are measured using GPC under the following conditions.
  • Tosoh standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 1900 00 355000 1090000 2890000)
  • the glass transition temperature (Tg) of resin (a) is usually 20 from the viewpoints of particle size uniformity of resin particles (C) and (D), powder flowability, heat resistance during storage, and stress resistance. ° C to 250 ° C, preferably 30 ° C to 230 ° C, more preferably 40 ° C to 200 ° C, particularly preferably 50 ° C to 100 ° C.
  • Tg is lower than the temperature at which the aqueous resin dispersion is prepared, the effect of preventing the unification and the prevention of the fragmentation becomes small and the effect of enhancing the uniformity of the particle diameter becomes small.
  • the Tg of the resin particle (A) comprising the (a) or the film (P) of the resin (a) is preferably 20 to 200 ° C., more preferably 30 to 100 ° C., for the same reason. Preferably 40 to 85 ° C It is.
  • Tg is a value for which a DSC measurement or a flow tester measurement (if it can not be measured by DSC) is also required.
  • point A (the temperature at which the sample begins to deform under compressive load) in the flowchart shown in FIG. 1 is a glass transition temperature (Tg), and point B (the internal void disappears to give an uneven distribution of stress).
  • Tg glass transition temperature
  • point B the internal void disappears to give an uneven distribution of stress.
  • Ts softening start temperature
  • point C after a slight rise of the piston due to the thermal expansion of the sample is made
  • the temperature at which the piston clearly starts to fall is the outflow start temperature (Tfb)
  • the point D (in the figure, the difference 1Z2 (X) between the outflow end point Smax and the minimum value Smin) is calculated.
  • T1Z2 the outflow temperature
  • the softening start temperature (Ts) of the resin (a) is generally 40 ° C. to 270 ° C., preferably 50 ° C., from the viewpoints of heat resistance during storage, stress resistance, and fixing properties to paper etc. C to 250 ° C., more preferably 60 ° C. to 220 ° C., particularly preferably 70 ° C. to 160 ° C.
  • the outflow temperature (T1Z2) is usually 60 ° C. to 300 ° C., preferably 65 ° C to 280 ° C, more preferably 70 ° C to 250 ° C, particularly preferably 80 ° C to 190 ° C.
  • the softening start temperature (Ts) and outflow temperature (T1Z2) of the resin (a) remaining on the surface are high temperatures, deterioration factors such as low temperature fixability and high lightness will result.
  • the softening start temperature and the outflow temperature in the present invention are values for which the flow tester measurement force is also required.
  • the temperature difference between the glass transition temperature (Tg) of the resin (a) and the outflow temperature (T1Z2) is usually 0 ° C. to 120 ° C., preferably 0 ° C. to 115 ° C., more preferably The temperature is 0 ° C to 110 ° C, particularly preferably 0 ° C to 105 ° C.
  • Tg glass transition temperature
  • T1Z2 outflow temperature
  • a preferable temperature difference between the glass transition temperature (Tg) of the resin (a) and the softening start temperature (Ts) is 0 ° C. to 100 ° C., more preferably 0 ° C. to 70 ° C. More preferably, it is 0 ° C to 50 ° C, particularly preferably 0 ° C to 35 ° C.
  • the resin particles (D) is a resin particle (A) consisting of the resin (a) attached to the surface or a film (P) of the resin (a).
  • Softening start temperature (Ts), outflow temperature (T1Z2), and glass transition temperature (Tg) of a resin (a) obtained by part removal and Z removal or dissolution removal but not completely removed and remaining on the surface If the force is out of the above range, it may be a deteriorating factor such as low temperature fixability and high glossiness when it is used for toner and the like.
  • the resin (a) used in the present invention has a softening temperature of 40 to 270 ° C., a glass transition temperature of 20 to 250 ° C., an outflow temperature of 60 to 300 ° C., and 0 to 120 ° C. It is a resin that has the difference between the glass transition temperature of ° C and the outflow temperature.
  • the hardness of the coating (P) of the resin particle (A) or the resin (a) is usually 30 or more, particularly 45 to: LOO in accordance with the hardness D of the standard for hardness, Cho D. Preferably there. In addition, it is preferable that the hardness in the case of immersion in a solvent in water for a certain time is also in the above range.
  • the aqueous dispersion (W) of the resin particles (A) contains a solvent miscible with water (acetone, methyl ketone etc.) among the solvents (u) described later. It is also good. At this time, the contained solvent does not cause aggregation of the resin particle (A), does not dissolve the resin particle (A), and does not prevent granulation of the resin particle (C). No matter what kind of substance it is or what kind of content it does not force, but it is 40% or less of the total amount with water and remains in the after-dried salt particles (D). I like it.
  • the method for converting the resin (a) into the aqueous dispersion (W) of the resin particles (A) is not particularly limited, and the following [1] to [8] may be mentioned.
  • the aqueous dispersion of resin particles (A) is directly carried out by the polymerization reaction such as suspension polymerization method, emulsion polymerization method, seed polymerization method or dispersion polymerization method using a monomer as a starting material.
  • the polymerization reaction such as suspension polymerization method, emulsion polymerization method, seed polymerization method or dispersion polymerization method using a monomer as a starting material.
  • a suitable dispersant is present if necessary (precursor (monomer, oligomer, etc.) or its solvent solution).
  • a condensation type resin such as polyester resin
  • a precursor monomer, oligomer, etc.
  • a solvent solution thereof liquid, preferably liquid when heated.
  • Solution is dissolved in water, then phase inversion emulsification is carried out by adding water, curing agent is added or curing is carried out to produce an aqueous dispersion of tallow particles (A).
  • Resins prepared in advance by polymerization reaction are mechanically rotated or jetted, etc. Crushed with a fine mill and then classified to obtain sugar particles, which are then dispersed in water in the presence of a suitable dispersant
  • a solution prepared by dissolving a resin solution prepared in advance by polymerization reaction (addition polymerization, ring opening polymerization, polyaddition, addition condensation, condensation polymerization, or any other polymerization reaction method) in a solvent
  • Resin solution prepared by dissolving resin prepared in advance by polymerization reaction may be used. After adding a poor solvent, or cooling the resin solution which has been heated and dissolved in a crude organic solvent, the resin particles are deposited, and then the solvent is removed to obtain a resin particle, Method of dispersing resin particles in water in the presence of a suitable dispersant
  • a resin solution prepared by dissolving a resin solution prepared in advance by polymerization reaction may be used.
  • Addpolymerization, ring opening polymerization, polyaddition, addition condensation, condensation polymerization, or any other polymerization reaction method may be used.
  • a resin solution obtained by dissolving in advance a resin prepared by a polymerization reaction (addition polymerization, ring opening polymerization, polyaddition, addition condensation, condensation polymerization, or any other polymerization reaction system).
  • a suitable emulsifier is dissolved in water and then water is added to carry out phase inversion emulsification
  • known emulsifiers (s), water-soluble polymers (t), etc. can be used as the emulsifier or dispersant to be used in combination.
  • a solvent (u), a plasticizer (V) and the like can be used in combination as an aid for emulsification or dispersion.
  • the surfactant (s) may be a combination of two or more surfactants. Specific examples of (s) include those described in JP-A-2002- 284881 in addition to those described below.
  • surfactant (s-1) carboxylic acid or a salt thereof, sulfate ester salt, carboxymethylated salt, sulfonate, phosphate ester salt and the like are used.
  • a saturated or unsaturated fatty acid having 8 to 22 carbon atoms or a salt thereof can be used, and for example, puritanic acid, lauric acid, myristic acid, palmitic acid, stearic acid, lacakizin
  • examples thereof include acids, behenic acid, oleic acid, linoleic acid and ricinoleic acid, as well as coconut oil, palm kernel oil, rice bran oil and mixtures of higher fatty acids obtained by saponification of beef tallow and the like.
  • sodium salts, potassium salts, amine salts, ammonium salts, quaternary ammonium salts and alkanolamine salts (monoethanolamine salt, diethanolamine salt, triethanolamine salt etc.) And salt.
  • sulfuric acid ester salts higher alcohol sulfuric acid ester salts (sulfuric acid ester salts of aliphatic alcohols having 8 to 18 carbon atoms), higher alkyl ether sulfuric acid ester salts (aliphatic alcohols having 8 to 18 carbon atoms) EO or 1 10 to 10 moles of sulfuric acid ester of kaolin)
  • Sulfuric acid oil Naturally unsaturated fat or oil having 12 to 50 carbon atoms or unsaturated wax as it is, neutralized by sulfuric acid
  • Sulfated Fatty acid ester lower alcohol of unsaturated fatty acid (C6 to C40) (C1 to C8) ester neutralized with sulfuric acid and sulfuric acid (C12 to C18 olefin) It is possible to use one neutralized with sulfuric acid, etc.).
  • the salt examples include sodium salt, potassium salt, amine salt, ammonium salt, quaternary ammonium salt, alkanolamine salt (monoethanolamine salt, diethanolamine salt, triethanolamine salt etc.) and the like.
  • the higher alcohol sulfate ester salt for example, octyl alcohol sulfate ester salt, decyl alcohol sulfate ester salt, lauryl alcohol sulfate ester salt, stearyl alcohol sulfate ester salt, alcohol synthesized using Ziegler catalyst (For example, trade name: ALFOL 1214: manufactured by CONDEA) Sulfuric acid ester salt and alcohol synthesized by the oxo method (for example, trade name: Dobanol 23, 25, 45, Diadall 115-L, 115H, 135: Mitsubishi (Trade name: Tridecanol: manufactured by Kyowa Hakko Co., Ltd., trade name: Oxocor 1213, 1215, 1415: manufactured by Nissan Chemical Industries,
  • higher alkyl ether sulfuric acid ester salts examples include lauryl alcohol E02 molar adduct sulfuric acid ester salt and octyl alcohol E03 molar adduct sulfuric acid ester salt and the like.
  • sulfuric acid soy sauce examples include castor oil, peanut oil, olive oil, rapeseed oil, rapeseed oil, salts of sulfuric acid salt such as beef tallow and sheep fat, and the like.
  • sulfuric acid and fatty acid esters include salts of sulfuric acid salts such as butyl oleate and butyl ricinoleate.
  • sulfuric acid sulfate examples include, for example, trade name: tee pole (manufactured by Shell).
  • salts of carboxymethylated compounds salts of carboxylated compounds of aliphatic alcohols having 8 to 16 carbon atoms, and carboxylates of EO or aliphatic hydroxides having 8 to 16 carbon atoms, which are adducts of EO or 1 to 10 moles, can be used. Salt etc. can be used.
  • Examples of salts of carboxymethylated fatty alcohols include fatty alcohol carboxymethylated sodium salt, lauryl alcohol carboxymethylated sodium salt, carboxymethylated sodium salt of dobanol 23, and tridecanol carboxymethyl ester.
  • An example is sodium salt and the like.
  • salts of carboxymethylated products of 1 to 10 moles of aliphatic alcohol adducts include, for example, carboxyethylated sodium salt of octyle alcohol E03 with potassium carbonate, lauryl alcohol E04 with potassium carboxylate. And the tridecanol E05 molar adduct carboxymethylated sodium salt and the like.
  • alkyl benzene sulfonate alkyl naphthalene sulfo It is possible to use an acid salt, a sulfosuccinic acid diester salt, an alpha-refinesulphonate, a igepon T-type, and a sulfonate of another aromatic ring-containing complex.
  • alkyl benzene sulfonate examples include sodium salt of dodecyl benzene sulfonic acid and the like.
  • alkyl naphthalene sulfonate examples include dodecyl naphthalene sulfonate sodium salt and the like.
  • sulfosuccinic acid diester salt for example, di 2-ethyl-sulfosuccinate sodium salt and the like can be mentioned.
  • sulfonates of aromatic ring-containing compounds include mono- or disulfonates of alkylated diphenyl ethers and styrenated phenol sulfonates.
  • phosphoric acid ester salt higher alcohol phosphoric acid ester salt, higher alcohol EO adduct phosphoric acid ester salt and the like can be used.
  • higher alcohol phosphoric acid ester salts examples include lauryl alcohol phosphoric acid monoester disodium salt, lauryl alcohol phosphoric acid diester sodium salt and the like.
  • oleyl alcohol E05 molar adduct phosphoric acid monoester disodium salt and the like can be mentioned.
  • cationic surfactant (s 2) a quaternary ammonium salt surfactant, an amine salt surfactant and the like can be used.
  • quaternary ammonium salt type surfactants include tertiary amine having 3 to 40 carbon atoms and a quaternizing agent (eg, methyl chloride, methyl bromide, ethyl chloride, benzyl chloride and dimethyl sulfate).
  • a quaternizing agent eg, methyl chloride, methyl bromide, ethyl chloride, benzyl chloride and dimethyl sulfate.
  • lauryl trimethyl ammonium chloride didecyl dimethyl ammonium chloride, dimethyl dimethyl ammonium bromide, stearyl trimethyl ammonium bromide, lauryl dimethyl benzyl ammonium
  • lauryl trimethyl ammonium chloride didecyl dimethyl ammonium chloride, dimethyl dimethyl ammonium bromide, stearyl trimethyl ammonium bromide, lauryl dimethyl benzyl ammonium
  • these include, but are not limited to, um chloride (benzalkoum chloride), cetyl pyridinium chloride, polyoxyethylene trimethyl ammonium chloride, stearamide ethyl jetyl methyl ammonium sulfate and the like.
  • a primary to tertiary amine can be used as an inorganic acid (for example, hydrochloric acid, nitric acid, sulfuric acid Hydroiodic acid, phosphoric acid and perchloric acid etc) or organic acids (acetic acid, formic acid, boric acid, lactic acid
  • Examples of primary amine salt type surfactants include inorganic acids of aliphatic higher amines having 8 to 40 carbon atoms (eg, laurylamine, stearylamine, cetylamine, hardened bovine albumin, and higher amines such as rosinamine). Salts or salts of organic acids and salts of lower amines (with 2 to 6 carbon atoms) of higher fatty acids (with 8 to 40 carbon atoms such as stearic acid and oleic acid)
  • secondary amine salt type surfactants include inorganic acid salts or organic acid salts such as EO adducts of aliphatic amine having 4 to 40 carbon atoms.
  • a tertiary amine salt type surfactant for example, aliphatic amine having 4 to 40 carbon atoms (eg, triethylamine, ethyldimethylamine, N, N, N ', N'-tetramethylethylenediamine) Etc.), EO (2 mol or more) adduct of aliphatic amine (2 to 40 carbon atoms), alicyclic amine having 6 to 40 carbon atoms (eg, N-methylpyrrolidine, N-methylbiperidine, N-methylhexa) Methyleneimine, N-methylmorpholine and 1,8-diazabicyclo (5,4,0) 7 undecene, etc., nitrogen-containing heterocyclic aromatic amine having 5 to 30 carbon atoms (eg, 4 dimethylaminopyridine, N- Inorganic acid salts or organic acid salts such as methylimidazole and 4,4'-dipyridyl and inorganic acid salts of tert
  • amphoteric surfactant (s 3) carboxylic acid salt type amphoteric surfactant, sulfuric acid ester salt type amphoteric surfactant, sulfonic acid salt type amphoteric surfactant and phosphoric acid ester salt type amphoteric surfactant Etc. can be used.
  • an amino acid type amphoteric surfactant As the carboxylate type amphoteric surfactant, an amino acid type amphoteric surfactant, a betaine type amphoteric surfactant, an imidazoline type amphoteric surfactant and the like are used.
  • the amino acid type amphoteric surfactant is an amphoteric surfactant having an amino group and a carboxyl group in the molecule, and examples thereof include a compound represented by the general formula (2) and the like.
  • R is a monovalent hydrocarbon group; n is 1 or 2; m is 1 or 2; M is a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, an ammonium cation, an amine cation, an alkanol It is an amine cation etc. ]
  • Examples of the double-sided active agent represented by the general formula (2) include alkyl (having 6 to 40 carbon atoms) aminopropionic acid-type amphoteric surfactant (sodium stearylaminopropionate, sodium laurylaminopropionate, etc. Alkyl (C4-24) amino acid type amphoteric surfactant (sodium lauryl aminoacetate etc.) and the like.
  • the betaine type amphoteric surfactant is an amphoteric surfactant having a cationic moiety of quaternary ammonium salt type and an anion moiety of carboxylic acid type in the molecule, and, for example, an alkyl group.
  • C6-C40 Dimethyl betaines (such as stearyl dimethylamino aminoacetate betaine and lauryl dimethyl amino acetate betaine), C6-C40 amide betaines (such as coconut oil fatty acid amide propyl betaine), alkyl (with carbon number 6-40) dihydroxy alkyl (C6-40 carbon) betaine (such as lauryl dihydroxy betaine) and the like.
  • the imidazoline type amphoteric surfactant is an amphoteric surfactant having a cation moiety having an imidazoline ring and an anion moiety of a carboxylic acid type, and, for example, 2-undecenoylated N-canoreboxymethic acid Nore N hydroxyl imidazol-um betaine and the like.
  • amphoteric surfactants include, for example, glycine-type amphoteric surfactants such as sodium lauroylglycine, sodium lauryldiaminoethyl dalysin, lauryl diaminoethyl dalysin hydrochloride, dioctyyl diamino ethyl glycine hydrochloride and the like; Examples thereof include sulfobetaine type amphoteric surfactants such as pentadecyl sulfotaurine, sulfonate type amphoteric surfactants, and phosphate ester type amphoteric surfactants.
  • glycine-type amphoteric surfactants such as sodium lauroylglycine, sodium lauryldiaminoethyl dalysin, lauryl diaminoethyl dalysin hydrochloride, dioctyyl diamino ethyl glycine hydroch
  • nonionic surfactant (s4) an AO-added nonionic surfactant, a polyhydric alcohol-type nonionic surfactant and the like can be used.
  • the AO addition type nonionic surfactant adds AO (2 to 20 carbon atoms) directly to a higher alcohol having 8 to 40 carbon atoms, a higher fatty acid having 8 to 40 carbon atoms, or an alkylamine having 8 to 40 carbon atoms.
  • the polyalkylene glycol obtained by adding AO to the glycol is reacted with a higher fatty acid or the like, or the polyhydric alcohol is reacted with a higher fatty acid.
  • the resulting ester cake is obtained by adding AO to a higher fatty acid amide.
  • AO for example, EO, PO and BO can be mentioned.
  • EO and EO and PO with random or block deposits.
  • the preferred molar ratio of AO is 10 to 50, and preferably 50 to 100% of the AO is EO.
  • AO addition type nonionic surfactant for example, oxyalkylene alkyl ether (having 2 to 24 carbon atoms of alkylene and 8 to 40 carbon atoms of alkyl) (for example, octal alcohol EO with 20 moles) , Lauryl alcohol EO 20 mol with kaolin, stearyl alcohol EO 10 mol with kaolin, oleyl alcohol EO 5 mol with kaolin, lauryl alcohol E 010 mol PO with a 20 mol-block kaolin etc; Alkylene higher fatty acid ester (alkylene carbon number 2 to 24, higher fatty acid carbon number 8 to 40) (for example, stearyl acid EO with 10 moles of kaolin, lauric acid EO with 10 moles of kaolin, etc.); Alkylene polyhydric alcohol higher fatty acid ester (alkylene carbon number 2 to 24, polyhydric alcohol carbon number 3 to 40, higher fatty acid carbon number 8 to 40) (for example, polyethylene glycol (La
  • polyhydric alcohol type nonionic surfactants polyhydric alcohol fatty acid esters, Polyhydric alcohol fatty acid ester AO-clad product, polyhydric alcohol alkyl ether and polyhydric alcohol alkyl ether AO-clad product can be used.
  • the carbon number of polyhydric alcohol is 3 to 24, the carbon number of fatty acid is 8 to 40, and the carbon number of AO is 2 to 24.
  • polyhydric alcohol fatty acid esters for example, pentaerythritol monolaurate, pentaerythrithololemonoolate, sorbitan monolaurate, sonorevitan monostearate, sorbitan dilaurate, sorbitan dioleate and sucrose.
  • examples include sugar monostearate.
  • polyhydric alcohol fatty acid ester AO adduct for example, 10 mol of ethylene glycol monoborate EO, 20 mol of ethylene glycol monostearate EO, 10 mol of trimethylolpropane monostearate PO, 10 mol random
  • examples thereof include kabuto, sorbitan monolaurate EO with 10 moles, sorbitan distearate EO with 20 moles of caro, and sorbitan dilaurate E 012 moles and P024 mole random attachments.
  • polyhydric alcohol alkyl ether examples include pentaerythritol monobutyl norethenore, pentaerythritol monolauryl ether, sorbitan monomethyl ether, sorbitan monostearyl ether, methyl daricoside, lauryl glycoside and the like.
  • polyhydric alcohol alkyl ether AO additive examples include, for example, sorbitan monostearic ether EO 10 moles, methyl dalicoside EO 20 moles PO 10 moles random adduct, lauryl glycoside EO 10 moles And stearyl glycoside EO 20 mol PO 20 mol random adduct and the like.
  • water-soluble polymer (t) cellulose-based compounds (eg, methyl cellulose, ethenonoresulose, hydroxyenocerenolesulose, ethinorehydroxyethinoresenoreulose, trile carboxymethylcellulose, hydroxypropyl cellulose And their saponified products), gelatin, starch, dextrin, gum arabic, chitin, chitosan, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethylene amine, polyacrylamide, acrylic acid (salt) containing polymer (poly acrylic) Sodium acid, potassium polyacrylate, Ammonium polyacrylic acid, partially neutralized sodium hydroxide of polyacrylic acid, sodium acrylic acid / acrylic acid ester copolymer), sodium hydroxide (partially) neutralized styrene / maleic anhydride copolymer And water-soluble polyurethanes (polyethylene glycol, reaction products of polyvinyl alcohol and the like with
  • the solvent (u) used in the present invention may be added to an aqueous medium as required during emulsifying and dispersing, and the oil phase containing resin (b) or (bO) may be added to the emulsified dispersion. O) inside] may be added.
  • the solvent (u) include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetralin; and aliphatic or alicyclic ones such as n-hexane, n-heptane, mineral spirits and cyclohexene Hydrocarbon solvents; methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene, perchlorethylene and other halogen solvents; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl se Ester or ester ether solvents such as acetate and isobutyl ester soluto acetate; Ether solvents such as jetyl ether, tetrahydrofuran, dioxan, ether ether such as tetrahydrofuran, dioxan, ether moiety sorb, butyls
  • the plasticizer (V) may be added to the aqueous dispersion as needed, even if it is added to the aqueous medium at the time of emulsifying and dispersing.
  • In oil phase (O) containing resin (b) or (bO) May be added to
  • the plasticizer (V) is not particularly limited, and the following may be mentioned.
  • the particle diameter of the fat particle (A) used in the present invention is usually from the viewpoint of particle size uniformity smaller than that of the fat particle (B) to be formed. It is preferable that the value of [volume average particle diameter of resin particles (A)] Z [volume average particle diameter of resin particles (B)] be in the range of 0.10-0.3.
  • the lower limit of the particle size ratio is more preferably 0.003 and the upper limit is still more preferably 0.25. If the particle size ratio is larger than 0.3, (A) will not efficiently adsorb on the surface of (B), and the particle size distribution of (C) and (D) obtained tends to be broad.
  • the volume average particle diameter of the fat particle (A) is appropriately adjusted within the above range of particle size ratio so as to obtain a particle size suitable for obtaining the fat particle (D) having a desired particle size. be able to.
  • the volume average particle size of (A) is preferably from 0. 0005 to 30 m force S.
  • the upper limit is more preferably 20 m, preferably 10 m, and the lower limit is more preferably 0.10 ⁇ m, preferably 0.20 ⁇ m, most preferably 0. It is 04 ⁇ m.
  • the average particle diameter is m: 0.50-0.500 / zm, particularly preferably 0.00-10.2.
  • particles (D) of preferably 0.005 to 3 m, particularly preferably 0.5 to 2 m and 100 m are obtained.
  • the volume average particle size is determined by using a laser type particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.) or Multisizer III (Coulter Co.), or ELS-800 (manufactured by Otsuka Electronics Co., Ltd.) using a laser Doppler method as an optical system It can be measured by If there is a difference in particle size measurement between measuring devices, use the measurement value with ELS-800.
  • LA-920 manufactured by Horiba, Ltd.
  • Multisizer III Coulter Co.
  • ELS-800 manufactured by Otsuka Electronics Co., Ltd.
  • the volume average particle diameter of the resin particle (B) mentioned later is 0.1-300111. More preferably, 0.5 to 250 m, particularly preferably 1 to 2 It is 00 ⁇ m.
  • any known resin can be used as long as it is a well-known resin.
  • those similar to (a) are used. it can.
  • preferred ones can be selected according to the purpose and purpose.
  • the resin (b) preferred as the resin (b) are boule based resins, polyester resins, polyurethane oils, epoxy resins, and combinations thereof, and more preferred are polyurethane oils and polyester resins. Particularly preferred are polyester resins and polyurethane resins which contain 1,2-propylene glycol as a structural unit.
  • the Mn, melting point, Tg, and sp value of the resin (b) may be appropriately adjusted within the preferable range depending on the application.
  • the sp value of the resin (b) is usually 7 to 18, preferably 8 to 14, and more preferably 9 to 14.
  • ⁇ in (b) is usually 2,000 to 500,000, preferably 4,000 to 200,000.
  • the melting point of (b) is usually 0 ° C to 200 ° C, preferably 35 ° C to 150 ° C.
  • the Tg of (b) is usually ⁇ 60 ° C. to 100 ° C., preferably ⁇ 30 ° C. to 60 ° C.
  • the Mn of (b) When used as a standard particle for manufacturing electronic components such as liquid crystal displays and electronic measuring machines, the Mn of (b) is usually 20,000 to 10,000,000, preferably 40,000 to 2,000,000.
  • the melting point of (b) (measured by DSC, hereinafter the melting point is measured by DSC) is usually 40 ° C to 300 ° C, preferably 70 ° C to 250 ° C.
  • the Tg of (b) is generally -0 ° C to 250 ° C, preferably 50 ° C to 200 ° C.
  • the Mn of (b) is usually 1,000 to 5,000,000, preferably 2,000 to 500,000.
  • the melting point of (b) (measured by DSC, hereinafter the melting point is a measured value by DSC) is usually 20 ° C to 300 ° C, preferably 80 ° C to 250 ° C.
  • the Tg of (b) is usually 20 ° C to 200 ° C, preferably 40 ° C to 200 ° C.
  • the sp value of (b) is usually 8-16, preferably 9-14.
  • the solvent solution (Ol) is mixed, and (Ol) is dispersed in (W) to form a resin particle (B) consisting of (b) in an aqueous dispersion (W) of (A).
  • an aqueous dispersion of the resin particle (C) having a structure in which the resin particle (A) or the coating (P) of the resin (a) is attached to the surface of (B).
  • the adsorption power of the fat particle (A) to the fat particle (B) to obtain the fat particle (C) can be controlled by the following method.
  • a resin (a) is a resin having an acidic functional group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group (generally per acidic functional group In the case where the molecular weight is preferably 1,000 or less), the lower the pH of the aqueous medium, the higher the coverage. Conversely, the higher the pH, the smaller the coverage.
  • the resin (a) has a basic functional group such as primary amino group, secondary amino group, tertiary amino group, quaternary ammonium base, etc.
  • a basic functional group such as primary amino group, secondary amino group, tertiary amino group, quaternary ammonium base, etc.
  • a dispersing device In the case of dispersing the resin (b) or its solvent solution, or the precursor (bO) of the resin (b) or its solvent, a dispersing device can be used.
  • the dispersing apparatus used in the present invention is not particularly limited as long as it is generally marketed as an emulsifying machine or dispersing machine, and, for example, a homogenizer (manufactured by IKA), Polytron (manufactured by Kinematica), TK autohomomixer Batch-type emulsification machines such as Tokushu Kika Kogyo Co., Ltd., Enola Milder (made by Tokihara Seisakusho Co., Ltd.), TK Filmix, TK pipeline homomixer (Tokushu Kika Kogyo Co., Ltd.), Colloid Mill (Shinko Pantech Co., Ltd.) Continuous emulsification machine such as Slasher, Trigonal wet type fine pulverizer (Mitsui Miike Kako Co., Ltd.), CAPITRON (Eurotech Co., Ltd.), Fine-Flo 1 mill (Pacific Kiko Co., Ltd.), Microfluidizer Mizuho Kogyo Co., Ltd., Nano
  • Sir Hiyai ⁇ industry Co.
  • vibrating emulsifier such as, ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.).
  • ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.).
  • APV Gaulin a homogenizer
  • TK autohomomixer an Ebara milder
  • a TK film mix a TK pipeline homomixer from the viewpoint of uniformizing the particle size.
  • the resin (b) When the resin (b) is dispersed in the aqueous dispersion (W) of the resin particles (A), the resin (b) is preferably a liquid. If resin (b) is solid at normal temperature, it may be dispersed in the liquid state at a high temperature above the melting point, or a solvent solution of (b) may be used!
  • the viscosity of the resin (b) or its solvent solution, or its precursor (bO) or its solvent solution is usually 100 to 50000 mPa's (measured with a B-type viscometer), preferably from the viewpoint of particle size uniformity, preferably The viscosity is 1 000 to 10 000 mPa s.
  • the temperature at the time of dispersion is usually 0 to 150 ° C. (under pressure), preferably 5 to 98 ° C.
  • the viscosity of the dispersion is high, it is preferable to perform emulsification and dispersion by reducing the viscosity to the above-mentioned preferable range by raising the temperature.
  • the solvent used for the solvent solution of resin (b) or precursor (bO) is not particularly limited as long as it can dissolve resin (b) at normal temperature or under heating. Specifically, the solvent (u Similar to) Are illustrated.
  • the sp value difference with the force (b) which differs depending on the type of resin (b) is preferably not more than S3.
  • the observation point of the particle size uniformity of the resin particles (C) and (D) also dissolves the resin (b) but dissolves the resin particles (A) which also becomes the resin (a). Solvents that are difficult to remove are preferred.
  • the precursor (bO) of the resin (b) is not particularly limited as long as it can become the resin (b) by a chemical reaction, and for example, the resin (b) is a condensed resin.
  • the resin (b) is a condensed resin.
  • (bO) is a combination of a prepolymer () having a reactive group and a curing agent ( ⁇ ).
  • the resin is a resin
  • (bO) includes the above-mentioned boule monomers (which may be used alone or in combination) and their solvent solutions.
  • the precursor (bO) is reacted to
  • an oil phase comprising an oil-soluble initiator, monomers and, if necessary, a solvent (u) is dispersed and suspended in water in the presence of a water-soluble polymer (t) and heated by heating.
  • a combination of a prepolymer (ex) having a reactive group and a curing agent ( ⁇ ) can also be used.
  • reactive group means a group capable of reacting with the curing agent ( ⁇ ).
  • a resin particle (B) is dispersed in an aqueous dispersion of resin particles ( ⁇ ⁇ ), and the reactive group-containing prepolymer (a) is reacted with a curing agent ( ⁇ ) by heating to become resin (b)
  • Examples of combinations of the reactive group contained in the reactive group-containing prepolymer (a) and the curing agent ( ⁇ ) include the following [1], [2] and the like.
  • the reactive group contained in the reactive group-containing prepolymer (a) is a functional group (H1) capable of reacting with an active hydrogen compound, and the curing agent ( ⁇ ) is an active hydrogen group-containing compound ( ⁇ ⁇ ) There is a combination!
  • the reactive group contained in the reactive group-containing prepolymer (a) is an active hydrogen-containing group ( ⁇ 2), and the curing agent ( ⁇ ) is a compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group , Combination.
  • [1] is more preferable.
  • an isocyanate group ( ⁇ la) capable of reacting with the active hydrogen compound
  • a blocked isocyanate group ( ⁇ lb) an epoxy group ( ⁇ lc)
  • an acid anhydride examples include a group (a Id) and an acid group, a lide group (a le) and the like. Of these, preferred are (a la), lb) and lc), and particularly preferred are la) and (alb).
  • a blocked isocyanate group refers to an isocyanate group blocked by a blocking agent.
  • the skeleton of the reactive group-containing prepolymer (oc) includes polyether (aw), polyester X), epoxy resin (ay) and polyurethane (az). Of these, preferred are (ax), (ay) and (a a), and particularly preferred are (ax) and az.
  • polyether ( aw ) examples include polyethylene oxide, polypropylene oxide, polybutylene oxide, polytetramethylene oxide and the like.
  • polyester ( ax ) examples include polycondensates of diol (11) and dicarboxylic acid (13), bollira tatone ( ⁇ -ring-opening polymer of ⁇ -force prorataton) and the like.
  • epoxy resin examples include addition condensation products of bisphenols (bisphenol A, bisphenol F, bisphenol S, etc.) and epichlorohydrin.
  • polyurethane (az) examples include polyadducts of diols (11) and polyisocyanates (15) and polyadducts of polyisocyanates ( a ) and polyisocyanates (15).
  • polyester X As a method for incorporating reactive groups into polyester X), epoxy resin (a y), polyurethane (a z), etc.,
  • the functional group of the component is left at the end by using one of the two or more components in excess, and further contains a functional group and a reactive group capable of reacting with the remaining functional group.
  • the method of making a compound react etc. are mentioned.
  • a hydroxyl group-containing polyester prepolymer a carboxyl group-containing polyester prepolymer, an acid group-containing polyester prepolymer, a hydroxyl group-containing epoxy resin prepolymer, an epoxy group-containing epoxy resin prepolymer, a hydroxyl group-containing polymer
  • the ratio of the polyol (1) to the polycarboxylic acid (2) is a hydroxyl group [polyurethane prepolymer, an isocyanate group-containing polyurethane prepolymer, etc.
  • the equivalent ratio [OH] Z [COOH] of OH] to carboxyl group [COOH] is usually 2Z1 to: LZ1, preferably 1.5 / 1 to: LZ1, more preferably 1.3 Z1 to 1. 02Z1. is there. In the case of other backbones, end group preformers Also, the ratio is the same except that the component changes.
  • an isocyanate group-containing prepolymer is obtained by reacting the polyisocyanate obtained in the above method [1] with a polyisocyanate, and a blocked isocyanate group is contained by reacting a blocked polyisocyanate.
  • the prepolymer is obtained, and the epoxide is reacted to obtain an epoxy group-containing prepolymer, and the polyanhydride is reacted to obtain an acid anhydride group-containing prepolymer.
  • the amount of the compound containing a functional group and a reactive group is, for example, when a hydroxyl group-containing polyester is reacted with a polyisosocyanate to obtain an isocyanate group-containing polyester prepolymer, the ratio of the polyisocyanate is an isocyanate
  • the equivalent ratio [NCO] / [OH] of the group [NCO] and the hydroxyl group [OH] of the hydroxyl group-containing polyester is usually 5Z1 to: LZ1, preferably 4Zl to l.2Z1, more preferably 2.5zl to l.5Z1. It is.
  • the ratio is the same except for the change of the component.
  • the number of reactive groups contained per molecule in the reactive group-containing prepolymer is usually 1 or more, preferably 1.5 to 3 on average, more preferably 1. 8 to 2.5 on average. Is one. By setting it in the above range, the molecular weight of the cured product obtained by reacting with the curing agent ( ⁇ ) becomes high.
  • ⁇ of the reactive group-containing prepolymer ( ⁇ ) is usually 500 to 30,000, preferably 1,000. -20, 000, more preferably ⁇ 20000 to 10000;
  • the weight average molecular weight of the reactive group-containing prepolymer ( ⁇ ) is 1,000 to 50,000, preferably ⁇ 20,000 to 40,000, and more preferably 4,000 to 20,000.
  • the viscosity of the reactive group-containing prepolymer ( ⁇ ) is usually at most 2,000 Boise, preferably at most 1,000 Boise, at 100 ° C. It is preferable that sharp oil particles (C) and (D) with a small particle size distribution can be obtained with a small amount of solvent by scouring up to 2,000 Boise or less.
  • 81) As the active hydrogen group-containing compound (
  • Examples of (j8 la) include the same as the polyamine (16).
  • Preferred as (.sup.8 la) are 4,4'-diaminodiphenyl methane, xylylene diamine, isophorone diamine, ethylene didiamine, diethylenetriamine, triethylenetetramine and mixtures thereof.
  • Examples of the case where ( ⁇ la) is a polyamine blocked with a removable compound include the above-mentioned polyamines and ketones having 3 to 8 carbon atoms (acetone, methyl ethyl ketone, methyl isopropyl ketone, etc.
  • the obtained ketimine compound, the aldehyde compound having 2 to 8 carbon atoms (formaldehyde, acetaldehyde) power, the aldimine compound obtained, the enamine compound, the oxazolidine compound and the like can be mentioned.
  • a reaction terminator ( ⁇ s) can be used together with the active hydrogen group-containing compound ( ⁇ 1), if necessary. It is possible to adjust (b) to a predetermined molecular weight by using a reaction terminator in combination with ( ⁇ 81) at a constant ratio.
  • monoamines eg, getilamine, dibutylamine, butylamine, laurylamine, monoethanolamine, diethanolamine
  • Blocked monoamines such as ketimine blends
  • Monools methanol, ethanol, isopropanol, butanol, phenol, etc.
  • monomercaptans butyl mercaptan, lauryl mercaptan, etc.
  • Monoisosocyanates (lauryl isocyanate, phenyl isocyanate, etc.); monoepoxides (butyl dalysidyl ether, etc.) and the like.
  • examples thereof include an acid group 2b), a mercapto group 2c), a carboxyl group (a 2d), and an organic group (group 2e) blocked with a compound which can be removed therefrom.
  • V is an (a 2a), (a 2b) and an organic group 2e blocked with a compound capable of leaving an amino group, and particularly preferable is ((X 2b).
  • Examples of the organic group blocked with a compound capable of removing an amino group include the same ones as in the case of the above (
  • Examples of the compound ( ⁇ 2) capable of reacting with the active hydrogen-containing group include polyisocyanate (
  • Examples of the polyisocyanate (j82a) include the same as the polyisocyanate (15).
  • the preferred ones are also the same.
  • polyepoxide (2b) examples include those similar to the polyepoxide (19), and preferred examples are also the same.
  • polycarboxylic acid (j8 2c) examples include dicarboxylic acids (j8 2c-1) and trivalent or higher polybasic carboxylic acids (j8 2c-2), (j8 2c-1) alone, and A mixture of j8 2c-1) and small amounts of (j8 2c 2) is preferred.
  • Examples of the dicarboxylic acid (j82c-1) include the same as the dicarboxylic acid (13), and examples of the polycarboxylic acid include the same as the polycarboxylic acid (5), and preferred examples are also the same.
  • polycarboxylic acid anhydride examples include pyromellitic acid anhydride.
  • polyacid halides examples include the acid halides (acid chloride, acid bromide, acid iodide) of the above ( ⁇ 2c) and the like.
  • reaction terminator ( ⁇ s) can be used together with ( ⁇ 2) if necessary.
  • the ratio of the curing agent (j8) is the equivalent weight of the reactive group [H] in the reactive group-containing prepolymer ( ⁇ ) and the equivalent weight of the active hydrogen-containing group [] 8 in the curing agent ( ⁇ )
  • the ratio [ ⁇ ] ⁇ [] 8] is usually 1Z2 to 2Z1, preferably 1.5Z1 to: LZ1.5, and more preferably 1.2Z1 to: LZ1.2.
  • the resin particles (B) and resin particles (C) are obtained by reacting a resin (b) obtained by reacting a precursor (bO) comprising a reactive group-containing prepolymer (ex) and a curing agent ( ⁇ ) in an aqueous medium. And (D).
  • the weight average molecular weight of the resin (b) obtained by reacting the reactive group-containing prepolymer (a) and the curing agent ( ⁇ ) is usually 3,000 or more, preferably ⁇ 3,000 to 10,000,000, and more preferably ⁇ Is 50 00 to: L 000 000.
  • (b) is a mixture of a resin obtained by reacting the reactive group-containing prepolymer (a) and the curing agent ( ⁇ ) in an aqueous medium and a resin which has not been reacted.
  • the amount of the aqueous dispersion (W) used per 100 parts of the resin (b) or the precursor (bO) is preferably 50 to 2,000 parts by weight, and more preferably 100 to 10,000 parts by weight. It is. Above 50 parts by weight, the dispersed state of (b) is good, and less than 2,000 parts by weight is economical.
  • the resin (a) having a predetermined softening start temperature, a glass transition temperature, an outflow temperature, and a difference between the glass transition temperature and the outflow temperature is preferably used.
  • a solvent solution of (bO) in particular preferably the following solvents
  • the solvent is preferably used in an aqueous resin dispersion at 10 to 50% (especially 20 to 40%) at 40 ° C.
  • the resin particles (A) are dissolved in a solvent and formed into a film, and the surface of (B)
  • an aqueous resin dispersion of resin particles (C) on which a coating (P) of oil (a) is formed can be obtained.
  • the same as the above-mentioned solvent (u) can be mentioned.
  • (u) preferred are tetrahydrofuran, toluene, acetone, methyl ethyl ketone, and ethyl acetate, and more preferably ethyl acetate, from the viewpoint of coating properties.
  • the control of the shape of the fat particle (D) obtained by the production method of the second aspect of the present invention is controlled by the difference in sp value between the fat particle (A) and the fat particle (B), and the fat particle (A)
  • the particle shape and particle surface properties can be controlled by controlling the molecular weight of As the difference in sp value is small, a smooth particle with smooth surface is obtained as soon as possible, and when the difference in sp value is large, particles with spherical surface and rough surface are obtained. Cheap. Also, when the molecular weight of (A) is large, particles with a rough surface are obtained, and when the molecular weight is small, particles with a smooth surface are easily obtained.
  • the difference in sp value between (A) and (B) is 0.01 to 5.0, more preferably 0.1 to 3.0, and still more preferably 0.2 to 2.0.
  • the weight average molecular weight of the preferable fat particle (A) is 100 to 1,000,000, more preferably 1000 to 500,000, still more preferably 2000 to 200,000, particularly preferably 300 to 100,000.
  • the intermediate is an intermediate from the viewpoint of particle diameter uniformity of the resin particles (C) and (D), storage stability of the resin particles (D), etc.
  • Some fat particles (C) are preferred to have a coating (P) of 0. 01 to 60% fat particles (A) or fat (a) and also a force of 40 to 99. 99% (B). More preferably, 0.1 to 50% of (A) or (P) and 50 to 99.9% of (B), particularly preferably 1 to 45% of (A) or (P) and 55 to 50%. It consists of 99% (B).
  • the resin particles (C) At least 5%, preferably at least 30%, more preferably at least 50%, particularly preferably at least 80% of the surface of the fat particle (B) is coated with the fat particle (A) or fat (a) (P) It is covered with the sun.
  • the surface coverage of (C) is the same as that of the aqueous resin dispersion power of (D) described later, except that the aqueous medium is removed by a method similar to the method of removing the aqueous medium. From the image analysis of the image obtained by SEM), it can be obtained based on the following equation.
  • the amount of the coating (P) of the resin particle (A) or resin (a) is the weight of (D) Preferably, it is 0.1 to 5%, more preferably 0.12 to 3%, particularly preferably 0.15 to 1%, and most preferably 0.2 to 0.9%.
  • the amount of (A) or (P) can be determined from the heat of fusion measured by DSC according to the following equation.
  • the amount (%) of the resin particles (A) or the coating (P) [the heat of fusion Z of (A) or (P) Heat of fusion of (P) + heat of fusion of resin particles (B)] X 100
  • the resin particles (A) or resin (a) The coverage of the surface of the fat particle (B) with the coating (P) is usually 0.1 to 4 9%, preferably 0.1 to 4%, more preferably 0.12 to 3%, particularly preferably 0.1 to 1%, most preferably 0.2 to 0.9%.
  • the surface coverage can be determined from the image analysis of the image obtained with a scanning electron microscope (SEM) based on the above equation.
  • the fat dispersion particles containing a small amount of fat (a) can be added to the aqueous dispersion of the fat particles (A And mixing the aqueous dispersion (W) containing the aqueous solution (W), and adhering the resin particle (A) to the surface of the resin particle.
  • the coefficient of variation of the volume distribution of the resin particles (C) and (D) is preferably 30% or less, and further preferably 0.1 to 15%. preferable.
  • the value of [volume average particle diameter Z number average particle diameter] of the resin particles (C) and (D) is preferably 1. to 1. 4. More preferably, it is 0 to 1.2.
  • the volume-average particle size of (D) varies depending on the application. In general, it is preferable to use 0.1 to 300 / ⁇ .
  • the upper limit is more preferably 250 / ⁇ , particularly preferably 200 / z m, and the lower limit is more preferably 0.5 m, particularly preferably 1 ⁇ m.
  • the volume average particle diameter and the number average particle diameter can be simultaneously measured by Multisizer III (manufactured by Coulter Co., Ltd.).
  • the fat particle (D) of the present invention is the particle size of the fat particle (A) and the fat particle (B), and the coating of the fat particle (A) or the fat (a) (P (P) Desired unevenness can be imparted to the particle surface by changing the coverage of the surface of the resin particle (B).
  • the BET specific surface area of (D) is preferably 0.5 to 5.0 m 2 Zg.
  • the surface average center line roughness Ra of (D) is preferably 0.01 to 0.8 ⁇ m.
  • Ra is a value obtained by arithmetically averaging the absolute value of the deviation between the roughness curve and its center line, and can be measured, for example, with a scanning probe microscope system (manufactured by Toyo Technology Co., Ltd.).
  • the shape of the resin particles (D) is preferably spherical in view of powder flowability, melt leveling property and the like. In that case, it is the coating (P) of the resin (a) that adheres to the resin particles (B), and it is not preferred that (B) is spherical or adheres to (B). In the case of fat particles (A), it is preferred that (A) and (B) are also spherical.
  • the average circularity is preferably 0.95 to L 00.
  • the average circularity is more preferably 0.96 to: L0, particularly preferably 0.97 to: L0.
  • the average degree of circularity is a value obtained by optically detecting particles and dividing them by the peripheral length of the equivalent circle having the same projected area.
  • FPIA-2000 flow type particle image analyzer
  • SYSMETAS flow type particle image analyzer
  • a surfactant Dywell; manufactured by Fuji Photo Film Co., Ltd.
  • the suspension in which the sample is dispersed is subjected to dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser (Ultrasonic Cleaner model VS-150; manufactured by WELVO CRYA CORPORATION), and the dispersion concentration is 3, 000 to 10, 000 pieces ZL Measure the shape and distribution of grease particles.
  • an ultrasonic disperser Ultrasonic Cleaner model VS-150; manufactured by WELVO CRYA CORPORATION
  • the resin particle (D) obtained by the production method of the second aspect of the present invention is a film (P) adhering to the resin particle (B).
  • the particle diameter ratio of the fat particle (A) to the fat particle (B), and the coverage of the fat particle (B) surface with the fat particle (A) in the aqueous fat dispersion is changed by changing the depth at which the resin particle (A) is embedded in the resin particle (B) side on the interface of the aqueous resin medium (B) Z aqueous medium. Can be smoothed, or the surface of the particle can be provided with desired irregularities.
  • the coverage of the surface of the resin particle (B) by the resin particle (A), and the depth at which the resin particle (A) is embedded in the resin particle (B) side should be controlled by the following method. Can.
  • the coverage is generally increased by using the active agent (s) and Z or the water-soluble polymer (t) [particularly, those having a reverse charge to the fat particle (A) and the fat particle (B)]. Also, when using a water soluble polymer (t), the greater the molecular weight of the water soluble polymer (t), the smaller the depth.
  • aqueous resin dispersion consisting of resin particles (C), a resin (a) containing an acidic functional group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group (generally In the case where the molecular weight per acidic functional group is preferably 1,000 or less), the lower the pH of the aqueous medium, the greater the coverage and depth. Conversely, the higher the pH, the smaller the coverage and depth.
  • an acidic functional group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group
  • the resin (a) is a base such as primary amino group, secondary amino group, tertiary amino group, quaternary ammonium base, etc.
  • the molecular weight per basic functional group is preferably 1,000 or less
  • the higher the pH of the aqueous medium the larger the coverage and the depth.
  • the lower the pH the smaller the coverage and depth.
  • the aqueous dispersion of the fat particle (D) is attached to each other from the fat particle (C)! After desorbing the coating (P) and the resin particle (B) of (a), separating the resin particle (A) or the coating (P) from the aqueous dispersion, or in the aqueous dispersion Then, the resin particle (A) or the film (P) is dissolved without dissolving the resin particle (B). The melt of the resin particles (A) or the coating (P) may be separated and removed as required. Furthermore, by removing the aqueous medium from the aqueous dispersion of the resin particle (D), the resin particle (D) can be obtained.
  • Resin (a) is a resin having an acidic functional group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group (generally, the molecular weight per acidic functional group is preferably 1,000 or less).
  • an acidic functional group such as a carboxyl group, a phosphoric acid group or a sulfonic acid group (generally, the molecular weight per acidic functional group is preferably 1,000 or less).
  • alkali such as sodium hydroxide, potassium hydroxide, ammonia, DBU or their aqueous solutions in an aqueous dispersion
  • a method of dissolving the fat particle is preferable, and more preferably, a method of adding an alkali or an aqueous solution thereof to the fat having an acidic functional group. And a method of adding an acid or an aqueous solution thereof to a resin having a basic functional group, and particularly preferably a method of adding an alkali or an aqueous solution thereof to a resin having an acidic functional group. If the resin particle (A) or the film (P) is to be completely removed to strengthen the removal process too much, the surface of the resin particle (D) will be deteriorated, resulting in poor fixing and charging. There is. Therefore, the resin particle (A) or the coating (P) is on the surface of the resin particle (B) It is preferable to remove (A) or (P) under the condition that 0.1% or more remains.
  • [1] A method of filtering using a filter paper, filter cloth, mesh or the like having a certain opening, and filtering off only the resin particle (B)
  • classification can be performed using an air classifier or the like to obtain a predetermined particle size distribution.
  • Additives in the resin particle (A) or the coating (P) and Z or (B) constituting the resin particle (D)
  • a charge control agent an ultraviolet light absorber, an antioxidant, an antiblocking agent, a heat resistant stabilizer, a flame retardant, etc.
  • the additive may be added after forming the particles which are not necessarily mixed when forming the particles in the aqueous medium.
  • the colorant may be added by a known method of dyeing, or the above additives may be impregnated with the solvent (u) and Z or the plasticizer (V). .
  • the wax particles (c) and the modified wax (d) grafted with a vinyl polymer chain are contained in the resin particles (B) together with the resin particles (B) as an additive, the heat resistance is achieved. Storage stability is further improved and preferred.
  • the content of (c) in (B) is preferably 20% or less, more preferably 1 to 15%.
  • the content of (d) is preferably 10% or less, more preferably 0.5 to 8%.
  • the total content of (c) and (d) is preferably 25% or less, more preferably 1 to 20%.
  • the wax (c) is dispersed in the resin (b) after being melt-kneaded in advance in the presence of the modified wax (d) and the solvent, and heated and dissolved and mixed in the presence of Z or the solvent (u).
  • wax (c) examples include polyolefin wax, paraffin wax, wax containing a carboxyl group, and a mixture thereof. Among them, particularly preferable is waxy wax (cl).
  • waxy wax (cl) examples include petroleum waxes having a linear saturated hydrocarbon having a melting point of 50 to 90 ° C. and a carbon number of 20 to 36 as a main component.
  • the Mn of (c) is preferably 400 to 5,000, more preferably 100 to 3,000, and particularly preferably 1,500 to 2,000.
  • Mn of above / below and wax is measured using GPC (solvent: orthodichlorobenzene, reference substance: polystyrene).
  • Wax (c) is resin-free after melt-kneading treatment in the absence of a solvent, melting with a modified wax (d) to which a vinyl-based polymer chain is grafted, and Z or the above-mentioned solvent (u). Preferably it is dispersed in b).
  • the coexistence of the modified wax (d) at the time of the wax dispersion treatment allows the wax base portion of (d) to be efficiently adsorbed on the surface (c) or partially entangled in the wax matrix structure.
  • the affinity between the wax (c) surface and the resin (b) is improved, and (c) can be more uniformly contained in the resin particle (B), and control of the dispersion state is achieved. It will be easier.
  • the modified wax (d) is obtained by grafting a burled polymer chain to a wax.
  • the wax used in (d) include the same as the above-mentioned wax (c), and preferred ones are also the same.
  • the vinyl-based monomer constituting the boule-based polymer chain of (d) the same monomers as the monomers (1) to (10) constituting the above-mentioned vinyl resin can be mentioned. (1), (2), and (6).
  • the bule polymer chain is a vinyl monomer One homopolymer or copolymer may be used.
  • the amount of the wax component (including unreacted wax) in the modified wax (d) is from 0.5 to 99.
  • the Tg of (d) is preferably 40 to 90 ° C., more preferably 50 to 80 ° C., from the viewpoint of the heat resistant storage stability of the fat particle (D).
  • the Mn of (d) is preferably 1500 to 10000, in particular 1800 to 9000. In the range of the Mn force of 1500 to 10000, the mechanical strength of the resin particle (D) is good.
  • the modified wax (d) is prepared, for example, by dissolving or dispersing the wax (c) in a solvent (for example, toluene or xylene) and heating to 100 to 200 ° C. It is obtained by dripping together with benzil peroxide, di-tert-butyl peroxide, tert-butyl peroxide benzoate and the like), and then distilling off the solvent after polymerization.
  • a solvent for example, toluene or xylene
  • the amount of peroxide initiator in the synthesis of the modified wax (d) is preferably 0.2 to 10%, more preferably 0.5 to 5%, based on the total weight of the raw material of (d). .
  • peroxide polymerization initiator an oil-soluble peroxide polymerization initiator, a water-soluble peroxide polymerization initiator and the like are used.
  • the solvents (c) and (d) and (b) are respectively converted into solvent solutions or dispersions, The method of mixing etc. are mentioned.
  • the volume average particle sizes of [fine particle dispersion W1] measured by LA-920 and ELS-800 were both 0.11 / z m. A portion of the [fine particle dispersion W1] was dried to isolate the resin component.
  • the Tg of the resin component measured by DSC measurement was 71 ° C.
  • the temperature at which the soft potato started was 105 ° C.
  • the outflow temperature was 169 ° C.
  • the volume average particle sizes of [fine particle dispersion W2] measured by LA-920 and ELS-800 were both 0.10 m. A part of the [fine particle dispersion W2] was dried to separate the resin component.
  • the Tg of the resin component measured by DSC measurement was 73.degree. C.
  • the softening temperature was 102.degree. C.
  • the outflow temperature was 178.degree.
  • the Tg of the resin component measured by DSC measurement was 60.degree. C., the temperature at which soft start was 97.degree. C., and the outflow temperature was 159.degree.
  • the volume average particle diameters of [fine particle dispersion W4] measured by LA-920 and ELS-800 were both 0.10 / z m. A portion of the [fine particle dispersion W4] was dried to isolate the resin component.
  • the Tg of the resin component determined by DSC measurement was 82 ° C., the softening start temperature was 119 ° C., and the outflow temperature was 189 ° C.
  • the volume average particle sizes of [fine particle dispersion W5] measured by LA-920 and ELS-800 were both 0.10 / z m. A portion of the [fine particle dispersion W5] was dried to isolate the resin component.
  • the Tg of the resin component determined by DSC measurement was 67 ° C.
  • the softening start temperature was 103 ° C.
  • the outflow temperature was 171 ° C.
  • the volume average particle sizes of [fine particle dispersion W6] measured by LA-920 and ELS-800 were both 0.10 m. A portion of [fine particle dispersion W6] was dried to isolate the oil content.
  • the Tg of the resin component measured by DSC was 70.degree. C., the temperature at which soft start was 104.degree. C., and the outflow temperature was 170.degree.
  • the volume average particle sizes of [fine particle dispersion W7] measured by LA-920 and ELS-800 were both 0.10 m. A portion of [fine particle dispersion W7] was dried to isolate the oil content.
  • the Tg of the fatty acid component measured by DSC measurement was 61 ° C., the temperature at which soft start was 99 ° C., and the outflow temperature was 157 ° C.
  • aqueous dispersion W8 30 parts of a 1% aqueous ammonium persulfate solution was added, followed by aging at 75 ° C. for 5 hours to obtain an aqueous dispersion [fine particle dispersion W8].
  • the Tg of the above-mentioned fatty acid by DSC measurement was 65 ° C.
  • the onset temperature of soft cracking was 109 ° C.
  • the outflow temperature was 192 ° C.
  • aqueous dispersion W9 an aqueous dispersion [fine particle dispersion W9].
  • the volume average particle sizes of [fine particle dispersion W9] measured by LA-920 and ELS-800 were both 0.05 m.
  • a portion of the [fine particle dispersion W9] was dried to isolate a fat component.
  • the Tg by DSC measurement of the fat content was 62 ° C.
  • the onset temperature of soft cracking was 110 ° C.
  • the outflow temperature was 198 ° C.
  • the number of moles in () means a relative molar ratio (the same applies to the following).
  • aqueous resin dispersion (XF1) of a resin particle obtained by coating resin particles derived from solution W1] was obtained. Then add 100 parts of a 5% aqueous solution of sodium hydroxide to 100 parts of (XF1) and heat to 40 ° C using a TK homomixer (manufactured by Tokushu Kika Co., Ltd.). After mixing for 10 minutes to dissolve the fine particles derived from [fine particle dispersion W1] adhering to the surface, the fine particles are separated by filtration and dried for 18 hours at 40 ° CX, and the volatile content is made 0.5% or less. Particles (F1) were obtained.
  • aqueous resin dispersion (XF3) of a resin particle obtained by coating resin particles derived from solution W1] was obtained. Then add 100 parts of a 5% aqueous solution of sodium hydroxide to 100 parts of (XF3) and heat to 40 ° C using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • Example 2 The same procedure as in Example 1 was carried out except that [fine particle dispersion W1] was changed to [fine particle dispersion W2], and a coated small particle of [fine particle dispersion W2] derived from the resin particles attached from the resin particle ( I got F4).
  • Example 2 The same procedure as in Example 1 was carried out, except that [fine particle dispersion W1] was changed to [fine particle dispersion W3], to form a coated resin particle with a small amount of [fine particle dispersion W3] -derived resin particles attached ( I got F5).
  • Example 2 The same procedure as in Example 1 was carried out, except that [fine particle dispersion W1] was changed to [fine particle dispersion W4], to form a coated resin particle with a small amount of [fine particle dispersion W4] -derived resin particles attached ( I got F6).
  • Example 2 The same procedure as in Example 1 was carried out except that [fine particle dispersion W1] was changed to [fine particle dispersion W5], and a coated small amount of coated fine particles of [fine particle dispersion W5] derived from the resin particles attached thereto. I got F7).
  • Example 2 The same procedure as in Example 1 was carried out except that [fine particle dispersion W1] was changed to [fine particle dispersion W6], and a coated small particle of [fine particle dispersion W6] derived from the resin particles attached from the resin particle ( I got F8).
  • Example 2 The same procedure as in Example 1 was carried out except that [fine particle dispersion W1] was changed to [fine particle dispersion W7], and a coated small amount of the resin particles to which the resin particles derived from [fine particle dispersion W7] were attached ( I got F9).
  • Example 2 The same procedure as in Example 1 is carried out except that [fine particle dispersion W1] is changed to [fine particle dispersion W8]. A small amount of [fine particle dispersion W8] derived from the resin particles (F '1) was obtained.
  • Example 2 In the same manner as in Example 1, except that the 5% aqueous solution of sodium hydroxide is changed to a 0.5% aqueous solution of sodium hydroxide, a small amount of coated resin particles derived from [fine particle dispersion W1] is used. A resin particle (F '3) attached to the resin was obtained.
  • the particle size distribution was measured with Coulter Counter by dispersing the fat particles (F1) to (F9) and (F'1) to (F'4) obtained in Examples 1 to 9 and Comparative Examples 1 to 4 in water. did. Also, the average roundness and low temperature fixability of the resin particles were measured. The results are shown in Table 1.
  • the measurement of the average circularity is according to the method described above.
  • the measurement of surface coverage is according to the method described above.
  • the measurement methods of the charging characteristics, the heat resistant storage stability, the low temperature fixability, and the surface smoothness are as follows.
  • TURBRASHI 1-force mixer manufactured by Willie A. Bashioffen
  • the resin particles were allowed to stand in a dryer adjusted to 50 ° C. for 15 hours, and the degree of blocking was evaluated according to the following criteria.
  • Disperses easily when force that causes blocking is applied.
  • Blocking occurs and does not disperse even if the force is applied.
  • the resin particle of the present invention has a uniform particle diameter and is excellent in charging characteristics, heat-resistant storage stability, etc. Therefore, the resin particle of the resin for slush molding, powder coating, liquid crystal, etc. It is extremely useful as standard particles for measurement equipment, toners used in electrophotography, electrostatic recording, electrostatic printing, etc., various types of hot melt adhesives, and resin particles used in other molding materials, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】 帯電特性、耐熱保存安定性、および熱特性に優れた粒径が均一である樹脂粒子を提供する。 【解決手段】 40~270°Cの軟化開始温度、20~250°Cのガラス転移温度、60~300°Cの流出温度、および0~120°Cのガラス転移温度と流出温度の差を有する第1の樹脂(a)からなる樹脂粒子(A)もしくは樹脂(a)の被膜(P)が、第2の樹脂(b)からなる樹脂粒子(B)の表面に付着されてなる構造の樹脂粒子(D)であって、樹脂粒子(A)もしくは被膜(P)による(B)の表面被覆率が0.1~4.9%であることを特徴とする樹脂粒子。

Description

明 細 書
樹脂粒子
技術分野
[0001] 本発明は榭脂粒子に関する。さらに詳しくは、粉体塗料、電子写真トナー、静電記 録トナー等の各種用途に有用な、榭脂粒子に関する。 背景技術
[0002] 粒径が均一で、かつ、電気的特性、熱的特性、化学的安定性等に優れた榭脂粒 子として、ポリマー微粒子を分散安定剤として得られた榭脂粒子が知られている (特 許文献 1参照)。
特許文献 1 :特開 2002— 284881号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、このポリマー微粒子を分散安定剤として用いる方法では、榭脂粒子 表面に付着したポリマー微粒子を分離除去および Zまたは溶解除去したとしても、十 分に除去できずに、それが残存して榭脂表面上に付着して、定着、帯電の阻害物質 となることがあった。また、除去工程を強化すると、榭脂粒子の表面が劣化するため、 定着、帯電が悪ィ匕することがあった。そのため、このような方法で得られた榭脂粒子 の場合、粉体塗料や電子写真、静電記録、静電印刷などに用いられるトナーとして は、十分に主榭脂の性能 (帯電特性、耐熱保存安定性、低温定着性等)を発揮でき ているとは必ずしも言えなかった。
本発明は従来技術における上記の事情に鑑みてなされたものである。すなわち、 帯電特性、耐熱保存安定性、および熱特性に優れた粒径が均一である榭脂粒子を 提供することを目的とする。
課題を解決するための手段
[0004] 本発明者らは、上記の問題点を解決するべく鋭意検討した結果、本発明に到達し た。
すなわち本発明は、(I)40〜270°Cの軟ィ匕開始温度、 20〜250°Cのガラス転移温 度、 60〜300°Cの流出温度、および 0〜120°Cのガラス転移温度と流出温度の差を 有する第 1の榭脂 (a)カゝらなる榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が、第 2の榭 脂 (b)力もなる榭脂粒子 (B)の表面に付着されてなる構造の榭脂粒子 (D)であって、 榭脂粒子 (A)もしくは被膜 (P)による(B)の表面被覆率が 0. 1〜4. 9%であることを 特徴とする榭脂粒子;並びに、(II) 40〜270°Cの軟ィ匕開始温度、 20〜250°Cのガラ ス転移温度、 60〜300°Cの流出温度、および 0〜120°Cのガラス転移温度と流出温 度の差を有する第 1の榭脂 (a)力もなる榭脂粒子 (A)の水性分散液 (W)と、第 2の榭 脂 (b)もしくはその溶剤溶液 (01)、または、榭脂 (b)の前駆体 (bO)もしくはその溶剤 溶液 (02)とを混合し、(W)中に (Ol)又は (02)を分散させ、(bO)もしくはその溶剤 溶液を用いる場合には、さらに (bO)を反応させて、(W)中で (b)からなる榭脂粒子( B)を形成させることにより得られる、榭脂粒子 (B)の表面に榭脂粒子 (A)もしくは榭 脂 (a)の被膜 (P)が付着した構造の榭脂粒子 (C)の水性分散体中にぉ 、て、 (C)の 表面の榭脂粒子 (A)もしくは被膜 (P)の一部を分離除去および Zまたは溶解除去し て榭脂粒子 (D)の水性分散体を得て、さらに該水性分散体から水性媒体を除去する 榭脂粒子の製造方法;である。
発明の効果
[0005] 本発明の榭脂粒子は以下の効果を有する。
1.熱特性、帯電特性に優れ、粒径が均一である。
2.耐熱保存安定性、粉体流動性に優れる。
3.水中で分散により得ることが可能な榭脂粒子であるため、低コストで製造できる。
4.加熱溶融した塗膜の機械的物性も良好である。
図面の簡単な説明
[0006] [図 1]榭脂粒子のフローテスター測定におけるフローチャートを示す概念図である。
発明を実施するための最良の形態
[0007] 本発明にお ヽては、第 1の榭脂 (a)は、上記の軟化開始温度、ガラス転移温度、流 出温度、およびガラス転移温度と流出温度の差を有し、水性分散液 (W)を形成しうる 榭脂を選択すればよぐそのような榭脂であれば、いかなる榭脂であっても使用でき、 熱可塑性であっても熱硬化性榭脂であってもよい。 [0008] (a)としては、例えば、ビニル系榭脂、ポリウレタン榭脂、エポキシ榭脂、ポリエステ ル榭脂、ポリアミド榭脂、ポリイミド榭脂、ケィ素系榭脂、フエノール榭脂、メラミン榭脂 、ユリア榭脂、ァ-リン榭脂、アイオノマー榭脂、ポリカーボネート榭脂等が挙げられる 。榭脂(a)としては、上記樹脂の 2種以上を併用しても差し支えない。このうち好まし V、のは、微細球状榭脂粒子の水性分散体が得られやす 、と 、う観点力 ビュル系榭 脂、ポリエステル榭脂、ポリウレタン榭脂、エポキシ榭脂およびそれらの併用であり、さ らに好ましくはビニル系榭脂である。
[0009] 榭脂 (a)の、ガラス転移温度 (Tg)、軟化開始温度 (Ts)及び流出温度 (T1Z2)は 、(a)の分子量及び Z又は (a)を構成する単量体組成を変更することで、容易に調整 できる。(a)の分子量 (分子量が大きくなるほど、これらの温度は高くなる。)を調整す る方法としては、公知の方法でよぐ例えば、ポリウレタン榭脂ゃポリエステル榭脂の ような逐次反応で重合する場合には、単量体の仕込み比の調整が挙げられ、ビニル 榭脂のような連鎖反応で重合する場合には、重合開始剤量及び連鎖移動剤量の調 整、反応温度、反応濃度の調整が挙げられる。ガラス転移温度 (Tg)と流出温度 (T1 Z2)との温度差を好ましい範囲に調整するには、(a)の分子量と (a)を構成する単量 体組成との組合せを適切に選択すればょ ヽ。
[0010] 本発明において、微細な球状榭脂粒子 (A)の水性分散体を得るために、榭脂 (a) は、カルボキシル基を含有することが好ましい。カルボキシル基はその少なくとも一部 が塩基で中和されていてもよい。カルボキシル基の塩基中和率は、 20〜: LOO当量% が好ましく、 40〜 100当量%がさらに好まし 、。
カルボキシル基の含有量〔塩基で中和されて!ヽる場合は、カルボキシル基 ( CO OH基)に換算した含有量〕は、(a)の重量に基づいて 1〜50%が好ましい。下限は、 さらに好ましくは 1%、とくに好ましくは 5%、最も好ましくは 10%であり、上限は、さら に好ましくは 45%、とくに好ましくは 40%、最も好ましくは 35%である。なお、上記お よび以下において、%は、とくに断りのない限り、重量%を意味する。
塩基中和率や、カルボキシル基含有量が上記範囲の下限以上であると、榭脂(a) が水系媒体中に分散しやすぐ微細な球状の榭脂粒子 (A)の水性分散液 (W)を容 易に得ることができる。また、得られる榭脂粒子 (D)の帯電特性が向上する。 [0011] 上記の中和塩を形成する塩基としては、アンモニア、炭素数 1〜30のモノアミン、後 述のポリアミン(16)、 4級アンモ-ゥム、アルカリ金属(ナトリウム、カリウム等)、および アルカリ土類金属 (カルシウム塩、マグネシウム塩等)などが挙げられる。
上記炭素数 1〜30のモノアミンとしては、炭素数 1〜30の 1級および Zまたは 2級ァ ミン(ェチルァミン、 n—ブチルァミン、イソブチルァミン等)、炭素数 3〜30の 3級アミ ン(トリメチルァミン、トリェチルァミン、ラウリルジメチルァミン等)が挙げられる。 4級ァ ンモ -ゥムとしては炭素数 4〜30のトリアルキルアンモ-ゥム(ラウリルトリメチルアンモ ニゥム等)などが挙げられる。
これらの中で、好ましくは、アルカリ金属、 4級アンモニゥム、モノアミン、およびポリ ァミンであり、さらに好ましくは、ナトリウム、および炭素数 1〜20のモノアミンであり、と くに好ましくは、炭素数 3〜20の 3級モノアミンである。
また、ビニル系榭脂、およびポリエステル榭脂を形成するカルボキシル基またはそ の塩を含有するモノマーの好ましい炭素数は 3〜30であり、さらに好ましくは 3〜15、 とくに好ましくは 3〜8である。
[0012] 本第 2発明の製造方法にぉ 、て、微細な球状榭脂粒子 (A)の水性分散液 (W)を 得るため、かつ耐熱保存安定性、帯電特性に優れ、粒径が均一な榭脂粒子 (C)の 水性分散体を得るために、榭脂 (a)は、スルホン酸ァ-オン基(一 SO―)を含有する
3
ことが好ましい。スルホン酸ァ-オン基(一 SO一)の合計含有量は(a)の重量に基づ
3
いて 0. 001〜10%が好ましい。下限は、さらに好ましくは 0. 002%であり、上限は、 さらに好ましくは 5%、とくに好ましくは 2%、最も好ましくは 1%である。また、榭脂を形 成するスルホン酸ァニオン基(一 SO _)を含有するモノマーの好まし 、炭素数は 3〜
3
50、更に好ましくは 3〜30、特に好ましくは 4〜 15である。
スルホン酸ァ-オン基(一 SO―)基含有量が上記範囲の下限以上や榭脂を形成
3
するスルホン酸ァ-オン基(一 SO _)を含有するモノマーの炭素数が上記範囲の上
3
限以下であると、榭脂 (a)が水系媒体中に分散しやすぐ微細な球状の榭脂粒子 (A )の水性分散液 (W)を容易に得ることができる。また、得られる榭脂粒子 (D)の耐ブ ロッキング性、および帯電特性が向上する。
[0013] 以下、(a)として好ま 、榭脂であるビニル系榭脂、ポリエステル榭脂、ポリウレタン 榭脂、およびエポキシ榭脂にっき、詳細に説明する。
ビュル系榭脂は、ビニル系モノマーを単独重合または共重合したポリマーである。 ビュル系モノマーとしては、下記(1)〜(10)が挙げられる。
[0014] (1)ビニル系炭化水素:
(1 1)脂肪族ビュル系炭化水素:アルケン類、例えばエチレン、プロピレン、ブテ ン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オタテン、ドデセン、ォクタデ セン、前記以外の α—ォレフイン等;アルカジエン類、例えばブタジエン、イソプレン 、 1, 4 ペンタジェン、 1, 6 へキサジェン、 1, 7—ォクタジェン。
(1 - 2)脂環式ビュル系炭化水素:モノーもしくはジーシクロアルケンおよびアルカジ ェン類、例えばシクロへキセン、 (ジ)シクロペンタジェン、ビュルシクロへキセン、ェチ リデンビシクロヘプテン等;テルペン類、例えばビネン、リモネン、インデン等。
(1 - 3)芳香族ビュル系炭化水素:スチレンおよびそのハイドロカルビル(アルキル、 シクロアルキル、ァラルキルおよび Ζまたはァルケ-ル)置換体、例えば α—メチルス チレン、ビュルトルエン、 2, 4 ジメチルスチレン、ェチルスチレン、イソプロピルスチ レン、ブチルスチレン、フエニルスチレン、シクロへキシルスチレン、ベンジノレスチレン 、クロチノレベンゼン、ジビニノレベンゼン、ジビニルトノレェン、ジビニノレキシレン、トリビニ ルベンゼン等;およびビニルナフタレン。
[0015] (2)カルボキシル基含有ビニル系モノマーおよびその金属塩:
炭素数 3〜30の不飽和モノカルボン酸、不飽和ジカルボン酸ならびにその無水物お よびそのモノアルキル (炭素数 1〜24)エステル、例えば (メタ)アクリル酸、(無水)マ レイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステ ル、クロトン酸、ィタコン酸、ィタコン酸モノアルキルエステル、ィタコン酸グリコールモ ノエ一テル、シトラコン酸、シトラコン酸モノアルキルエステル、桂皮酸等のカルボキシ ル基含有ビュル系モノマー。なお、上記 (メタ)アクリル酸とは、アクリル酸および Ζま たはメタアクリル酸を意味し、以下同様の記載法を用いる。
[0016] (3)スルホン基含有ビュル系モノマー、ビュル系硫酸モノエステル化物およびこれら の塩:炭素数 2〜 14のアルケンスルホン酸、例えばビニルスルホン酸、(メタ)ァリルス ルホン酸、メチルビ-ルスルホン酸、スチレンスルホン酸;およびその炭素数 2〜24の アルキル誘導体、例えば α—メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキ ル—(メタ)アタリレートもしくは (メタ)アクリルアミド、例えば、スルホプロピル (メタ)ァク リレート、 2 ヒドロキシ— 3— (メタ)アタリロキシプロピルスルホン酸、 2— (メタ)アタリ ロイルァミノ一 2, 2—ジメチルエタンスルホン酸、 2— (メタ)アタリロイルォキシェタン スルホン酸、 3— (メタ)アタリロイルォキシ— 2 ヒドロキシプロパンスルホン酸、 2— (メ タ)アクリルアミド— 2—メチルプロパンスルホン酸、 3— (メタ)アクリルアミド— 2 ヒド ロキシプロパンスルホン酸、アルキル(炭素数 3〜18)ァリルスルホコハク酸、ポリ(η= 2〜30)ォキシアルキレン(エチレン、プロピレン、ブチレン:単独、ランダム、ブロック でもよ 、)モノ(メタ)アタリレートの硫酸エステル [ポリ(η = 5〜 15)ォキシプロピレンモ ノメタタリレート硫酸エステル等]、ポリオキシエチレン多環フエ-ルエーテル硫酸エス テル、および下記一般式(1 1)〜(1 3)で示される硫酸エステルもしくはスルホン 酸基含有モノマー;ならびそれらの塩等。 0017] 0-(AO)nSO,H
I
CH2 = CHCH2—〇CH2CHCH2〇一 Ar— R (1 1)
CH=CH-CH3
I
R A r— O— (AO)nS03H (1 2)
CH2 COOR'
H03SCHCOOCH2CH(OH)CH2OCH2CH=CH2 (1 - 3)
(式中、 Rは炭素数 1〜15のアルキル基、 Aは炭素数 2〜4のアルキレン基を示し、 n が複数の場合同一でも異なって ヽてもよく、異なる場合はランダムでもブロックでもよ い。 Arはベンゼン環を示し、 nは 1〜50の整数を示し、 R'はフッ素原子で置換されて いてもよい炭素数 1〜15のアルキル基を示す。 )
[0018] (4)燐酸基含有ビュル系モノマーおよびその塩:
(メタ)アタリロイルォキシアルキル(C1〜C24)燐酸モノエステル、例えば、 2 ヒドロ キシェチル(メタ)アタリロイルホスフェート、フエ-ルー 2—アタリロイロキシェチルホス フェート、(メタ)アタリロイルォキシアルキル(炭素数 1〜24)ホスホン酸類、例えば 2 アタリロイノレ才キシェチノレホスホン酸。 [0019] なお、上記(2)〜(4)の塩としては、金属塩、アンモ-ゥム塩、およびアミン塩 (4級 アンモ-ゥム塩を含む)が挙げられる。金属塩を形成する金属としては、 Al、 Ti、 Cr、 Mn、 Fe、 Zn、 Ba、 Zr、 Ca、 Mg、 Na、および K等が挙げられる。
好ましくはアルカリ金属塩、およびアミン塩であり、さらに好ましくは、ナトリウム塩およ び炭素数 3〜20の 3級モノアミンの塩である。
[0020] (5)ヒドロキシル基含有ビュル系モノマー:
ヒドロキシスチレン、 N—メチロール (メタ)アクリルアミド、ヒドロキシェチル (メタ)アタリ レート、ヒドロキシプロピル (メタ)アタリレート、ポリエチレングリコールモノ(メタ)アタリレ ート、(メタ)ァリルアルコール、クロチルアルコール、イソクロチルアルコール、 1ーブ テン 3 オール、 2 ブテン 1 オール、 2 ブテン 1, 4ージオール、プロパル ギルアルコール、 2—ヒドロキシェチルプロべ-ルエーテル、庶糖ァリルエーテル等
[0021] (6)含窒素ビュル系モノマー:
(6 1)アミノ基含有ビュル系モノマー:アミノエチル (メタ)アタリレート、ジメチルァミノ ェチル (メタ)アタリレート、ジェチルアミノエチル (メタ)アタリレート、 t—ブチルアミノエ チルメタタリレート、 N アミノエチル (メタ)アクリルアミド、(メタ)ァリルアミン、モルホリ ノエチル(メタ)アタリレート、 4 ビュルピリジン、 2 ビュルピリジン、クロチルァミン、 N, N ジメチルアミノスチレン、メチル α ァセトアミノアクリレート、ビュルイミダゾー ル、 Ν ビュルピロール、 Ν ビ-ルチオピロリドン、 Ν ァリールフエ-レンジァミン、 ァミノカルバゾール、ァミノチアゾール、ァミノインドール、アミノビロール、ァミノイミダ ゾール、ァミノメルカプトチアゾール、これらの塩等
(6— 2)アミド基含有ビュル系モノマー:(メタ)アクリルアミド、 Ν—メチル (メタ)アクリル アミド、 Ν ブチルアクリルアミド、ジアセトンアクリルアミド、 Ν—メチロール (メタ)アタリ ルアミド、 Ν, N' —メチレン ビス (メタ)アクリルアミド、桂皮酸アミド、 Ν, Ν ジメチ ルアクリルアミド、 Ν, Ν ジベンジルアクリルアミド、メタクリルホルムアミド、 Ν—メチ ル Ν -ビュルァセトアミド、 Ν -ビュルピロリドン等
(6— 3)二トリル基含有ビュル系モノマー:(メタ)アクリロニトリル、シァノスチレン、シァ ノアクリレート等
(6-4) 4級アンモ-ゥムカチオン基含有ビュル系モノマー:ジメチルアミノエチル (メ タ)アタリレート、ジェチルアミノエチル (メタ)アタリレート、ジメチルアミノエチル (メタ) アクリルアミド、ジェチルアミノエチル (メタ)アクリルアミド、ジァリルアミン等の 3級アミ ン基含有ビュル系モノマーの 4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロ ライド、ジメチルカーボネート等の 4級化剤を用いて 4級化したもの)
(6 5)ニトロ基含有ビュル系モノマー:ニトロスチレン等
[0022] (7)エポキシ基含有ビュル系モノマー:
グルシジル (メタ)アタリレート、テトラヒドロフルフリル (メタ)アタリレート、 p ビュルフエ -ルフヱ-ルオキサイド等
[0023] (8)ハロゲン元素含有ビュル系モノマー:
塩化ビニル、臭化ビニル、塩化ビ-リデン、ァリルクロライド、クロルスチレン、ブロムス チレン、ジクロノレスチレン、クロロメチノレスチレン、テトラフノレォロスチレン、クロ口プレン 等
[0024] (9)ビュルエステル、ビュル(チォ)エーテル、ビュルケトン、ビュルスルホン類:
(9— 1)ビュルエステル、例えば酢酸ビュル、ビュルブチレート、プロピオン酸ビュル 、酪酸ビュル、ジァリルフタレート、ジァリルアジペート、イソプロべ-ルアセテート、ビ -ノレメタタリレート、メチル 4ービ-ノレべンゾエート、シクロへキシノレメタタリレート、ベン ジルメタタリレート、フエ-ル (メタ)アタリレート、ビュルメトキシアセテート、ビュルベン ゾエート、ェチルひ エトキシアタリレート、炭素数 1〜50のアルキル基を有するアル キル (メタ)アタリレート [メチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピル( メタ)アタリレート、ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ド デシル (メタ)アタリレート、へキサデシル (メタ)アタリレート、ヘプタデシル (メタ)アタリ レート、エイコシル (メタ)アタリレート等]、ジアルキルフマレート(フマル酸ジアルキル エステル)(2個のアルキル基は、炭素数 2〜8の、直鎖、分枝鎖もしくは脂環式の基 である)、ジアルキルマレエート(マレイン酸ジアルキルエステル)(2個のアルキル基 は、炭素数 2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ポリ (メタ)ァリロキシ アルカン類 [ジァリロキシェタン、トリアリロキシェタン、テトラァリロキシェタン、テトラァ リロキシプロパン、テトラァリロキシブタン、テトラメタァリロキシェタン等]等、ポリアルキ レングリコール鎖を有するビュル系モノマー [ポリエチレングリコール(分子量 300)モ ノ(メタ)アタリレート、ポリプロピレングリコール(分子量 500)モノアタリレート、メチルァ ルコールエチレンオキサイド(エチレンオキサイドを以下 EOと略記する) 10モル付加 物(メタ)アタリレート、ラウリルアルコール EO30モル付加物(メタ)アタリレート等]、ポ リ(メタ)アタリレート類 [多価アルコール類のポリ(メタ)アタリレート:エチレングリコール ジ(メタ)アタリレート、プロピレングリコールジ (メタ)アタリレート、ネオペンチルグリコー ルジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ポリエチレンダリ コールジ (メタ)アタリレート等]等
(9 2)ビュル(チォ)エーテル、例えばビュルメチルエーテル、ビュルェチルエーテ ノレ、ビニノレプロピノレエーテノレ、ビニノレブチノレエーテノレ、ビニノレ 2—ェチノレへキシノレエ 一テル、ビニルフエニルエーテル、ビニル 2—メトキシェチルエーテル、メトキシブタジ ェン、ビニル 2 ブトキシェチルエーテル、 3, 4 ジヒドロ 1, 2 ピラン、 2 ブトキシ 2,ービニロキシジェチノレエーテノレ、ビュル 2—ェチルメルカプトェチルエーテル、 ァセトキシスチレン、フエノキシスチレン等
(9 3)ビ-ルケトン、例えばビュルメチルケトン、ビュルェチルケトン、ビュルフエ- ルケトン;
ビュルスルホン、例えばジビュルサルファイド、 p—ビュルジフヱ-ルサルファイド、 ビュルェチルサルファイド、ビュルェチルスルフォン、ジビニルスルフォン、ジビュル スルフオキサイド等
[0025] (10)その他のビュル系モノマー:
イソシアナトェチル(メタ)アタリレート、 m—イソプロべ-ルー α , aージメチルベン ジルイソシァネート等
[0026] ビュル系榭脂としては、上記(1)〜( 10)の任意のモノマー同士を、 2元またはそれ 以上の個数で、好ましくは榭脂粒子 (A)中のカルボキシル基の含量が 1〜50%にな るように、任意の割合で共重合したポリマーが挙げられる力 例えば、スチレン (メタ )アクリル酸エステル—(メタ)アクリル酸共重合体、スチレン—ブタジエン—(メタ)ァク リル酸共重合体、(メタ)アクリル酸 アクリル酸エステル共重合体、スチレン アタリ 口-トリルー(メタ)アクリル酸ージビュルベンゼン共重合体、スチレン スチレンスル ホン酸 (メタ)アクリル酸エステル共重合体、酢酸ビュル クロトン酸共重合体、酢 酸ビュル クロトン酸 (メタ)アクリル酸エステル共重合体、酢酸ビニルー(メタ)ァク リル酸共重合体、酢酸ビニルー(メタ)アクリル酸エステル共重合体、酢酸ビニルー(メ タ)アクリル酸 (メタ)アクリル酸エステル共重合体、酢酸ビュル 無水マレイン酸共 重合体、酢酸ビュル 無水マレイン酸 (メタ)アクリル酸エステル共重合体およびこ れらの共重合体の塩などが挙げられる。
[0027] なお、榭脂 (a)が、水性分散体中で榭脂粒子 (A)を形成する場合、少なくとも水性 分散体を形成する条件下で水に完全に溶解して ヽな ヽことが必要である。そのため 、ビュル系榭脂を構成する疎水性モノマーと親水性モノマーの比率は、選ばれるモノ マーの種類による力 一般に疎水性モノマーが 10%以上であることが好ましぐ 30% 以上であることがより好ましい。疎水性モノマーの比率力 10%未満になるとビュル 系榭脂が水溶性になり、(C)および (D)の粒径均一性が損なわれる場合がある。ここ で、親水性モノマーとは水に任意の割合で溶解するモノマーをいい、疎水性モノマ 一とは、それ以外のモノマー(基本的に水に混和しな 、モノマー)をいう。
[0028] ポリエステル榭脂としては、ポリオールと、ポリカルボン酸またはその酸無水物また はその低級アルキルエステルとの重縮合物、およびこれらの重縮合物の金属塩など が挙げられる。ポリオールとしてはジオール(11)および 3〜8価またはそれ以上のポ リオール(12)力 ポリカルボン酸またはその酸無水物またはその低級アルキルエス テルとしては、ジカルボン酸(13)および 3〜6価またはそれ以上のポリカルボン酸(1 4)およびこれらの酸無水物または低級アルキルエステルが挙げられる。
ポリオールとポリカルボン酸の比率は、水酸基 [OH]とカルボキシル基 [COOH]の 当量比 [OH]Z[COOH]として、好ましくは 2Zl〜lZ5、さらに好ましくは 1. 5/1 〜1Z4、とくに好ましくは lZl. 3〜: LZ3である。
カルボキシル基の含有量を前記の好ましい範囲内とするために、水酸基が過剰な ポリエステルをポリカルボン酸で処理してもよ 、。
[0029] ジオール(11)としては、炭素数 2〜36のアルキレングリコール(エチレングリコール 、 1, 2 プロピレングリコール、 1, 3 プロピレングリコール、 1, 4 ブタンジオール、 1, 6 へキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、 テトラデカンジオール、ネオペンチルグリコール、 2, 2 ジェチルー 1, 3 プロパン ジオールなど);炭素数 4〜36のアルキレンエーテルグリコール(ジエチレングリコー ル、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロ ピレンダリコール、ポリテトラメチレンエーテルグリコールなど);炭素数 4〜36の脂環 式ジオール(1, 4—シクロへキサンジメタノール、水素添カ卩ビスフエノール Aなど);上 記アルキレングリコールまたは脂環式ジオールのアルキレンオキサイド(以下 AOと略 記する)〔EO、プロピレンオキサイド(以下 POと略記する)、ブチレンオキサイド(以下 BOと略記する)など〕付加物(付加モル数 1〜 120);ビスフエノール類(ビスフエノー ル八、ビスフエノール F、ビスフエノール Sなど)の AO (EO、 PO、 BOなど)付カロ物(付 加モル数 2〜30);ポリラタトンジオール (ポリ ε一力プロラタトンジオールなど);および ポリブタジエンジオールなどが挙げられる。
ジオールとしては、上記のヒドロキシル基以外の官能基を有しな 、ジオール以外に 、他の官能基を有するジオール(11a)を用いてもよい。(11a)としては、カルボキシ ル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、お よびこれらの塩等が挙げられる。
カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸 [C6〜24の もの、例えば 2, 2—ジメチロールプロピオン酸(DMPA)、 2, 2—ジメチロールブタン 酸、 2, 2—ジメチロールヘプタン酸、 2, 2—ジメチロールオクタン酸など]が挙げられ る。
スルホン酸基もしくはスルファミン酸基を有するジオールとしては、スルフアミン酸ジ オール [N, N—ビス(2—ヒドロキシアルキル)スルファミン酸(アルキル基の C 1〜6) またはその AO付カ卩物(AOとしては EOまたは POなど、 AOの付加モル数 1〜6):例 えば N, N—ビス(2—ヒドロキシェチノレ)スノレファミン酸および N, N—ビス(2—ヒドロ キシェチル)スルファミン酸 P02モル付カ卩物など];ビス(2—ヒドロキシェチル)ホスフ エートなどが挙げられる。
これらの中和塩基を有するジオールの中和塩基としては、例えば前記炭素数 3〜3 0の 3級ァミン(トリエチルァミンなど)および Zまたはアルカリ金属(ナトリウム塩など) が挙げられる。
これらのうち好ましいものは、炭素数 2〜12のアルキレングリコール、カルボキシル 基を有するジオール、ビスフエノール類の AO付加物、およびこれらの併用である。
[0031] 3〜8価またはそれ以上のポリオール(12)としては、炭素数 3〜36の 3〜8価または それ以上の多価脂肪族アルコール (アルカンポリオールおよびその分子内もしくは分 子間脱水物、例えばグリセリン、トリメチロールェタン、トリメチロールプロパン、ペンタ エリスリトール、ソルビトール、ソルビタン、およびポリグリセリン;糖類およびその誘導 体、例えばショ糖、およびメチルダルコシド);多価脂肪族アルコールの AO付加物( 付加モル数 2〜 120);トリスフエノール類(トリスフエノール PAなど)の AO付カ卩物(付 カロモル数 2〜30);ノボラック榭脂(フエノールノボラック、クレゾ一ルノボラックなど)の AO付加物(付加モル数 2〜30);アクリルポリオール [ヒドロキシェチル (メタ)アタリレ ートと他のビュル系モノマーの共重合物など] ;などが挙げられる。
これらのうち好ましいものは、 3〜8価またはそれ以上の多価脂肪族アルコールおよ びノボラック樹脂の AO付加物であり、さらに好まし 、ものはノボラック樹脂の AO付カロ 物である。
[0032] ジカルボン酸(13)としては、炭素数 4〜36のアルカンジカルボン酸(コハク酸、アジ ピン酸、セバシン酸、ァゼライン酸、ドデカンジカルボン酸、ォクタデカンジカルボン 酸、デシルコハク酸など)およびァルケ-ルコハク酸(ドデセ -ルコハク酸、ペンタデ セ -ルコハク酸、ォクタデセ -ルコハク酸など);炭素数 6〜40の脂環式ジカルボン酸 〔ダイマー酸(2量化リノール酸)など〕、炭素数 4〜36のアルケンジカルボン酸(マレイ ン酸、フマール酸、シトラコン酸など);炭素数 8〜36の芳香族ジカルボン酸 (フタル 酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。こ れらのうち好ましいものは、炭素数 4〜20のアルケンジカルボン酸、および炭素数 8 〜20の芳香族ジカルボン酸である。
3〜6価またはそれ以上のポリカルボン酸(14)としては、炭素数 9〜20の芳香族ポ リカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。
なお、ジカルボン酸(13)または 3〜6価またはそれ以上のポリカルボン酸(14)とし ては、上述のものの酸無水物または炭素数 1〜4の低級アルキルエステル (メチルェ ステル、ェチルエステル、イソプロピルエステルなど)を用いてもよい。
[0033] ポリウレタン榭脂としては、ポリイソシァネート(15)と活性水素含有化合物 {水、ポリ オール [ジオール(11)〔ヒドロキシル基以外の官能基を有するジオール(1 la)を含む 〕、および 3〜8価またはそれ以上のポリオール(12) ]、ポリカルボン酸 [ジカルボン酸 (13)、および 3〜6価またはそれ以上のポリカルボン酸(14) ]、ポリオールとポリカル ボン酸の重縮合により得られるポリエステルポリオール、炭素数 6〜12のラタトンの開 環重合体、ポリアミン(16)、ポリチオール(17)、およびこれらの併用等 }の重付加物 、並びに(15)と活性水素含有ィ匕合物を反応させてなる末端イソシァネート基プレポリ マーと、該プレポリマーのイソシァネート基に対して等量の 1級および Zまたは 2級モ ノアミン(18)とを反応させて得られる、アミノ基含有ポリウレタン榭脂が挙げられる。 ポリウレタン榭脂中のカルボキシル基の含有量は、 0. 1〜10%が好ましい。
[0034] ジオール(11)、 3〜8価またはそれ以上のポリオール(12)、ジカルボン酸(13)、 および 3〜6価またはそれ以上のポリカルボン酸(14)としては、前記のものが挙げら れ、好ましいものも同様である。
[0035] ポリイソシァネート(15)としては、炭素数 (NCO基中の炭素を除ぐ以下同様) 6〜 20の芳香族ポリイソシァネート、炭素数 2〜18の脂肪族ポリイソシァネート、炭素数 4 〜 15の脂環式ポリイソシァネート、炭素数 8〜 15の芳香脂肪族ポリイソシァネートお よびこれらのポリイソシァネートの変性物(ウレタン基、カルボジイミド基、ァロファネー ト基、ウレァ基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシァヌレート基、ォ キサゾリドン基含有変性物など)およびこれらの 2種以上の混合物が挙げられる。
[0036] 上記芳香族ポリイソシァネートの具体例としては、 1, 3 および Zまたは 1, 4 フエ 二レンジイソシァネート、 2, 4 および Zまたは 2, 6 トリレンジイソシァネート(TDI) 、粗製 TDI、 2, 4' 一および/または 4, 4' ージフエ-ルメタンジイソシァネート(M DI)、粗製 MDI [粗製ジァミノフエ-ルメタン〔ホルムアルデヒドと芳香族ァミン (ァユリ ン)またはその混合物との縮合生成物;ジアミノジフエ-ルメタンと少量 (たとえば 5〜2 0%)の 3官能以上のポリアミンとの混合物〕のホスゲンィ匕物:ポリアリノレポリイソシァネ ート(PAPI) ]、 1, 5 ナフチレンジイソシァネート、 4, 4' , 4' ' —トリフエ-ルメタ ントリイソシァネート、 m—および p—イソシアナトフェニルスルホ-ルイソシァネートな どが挙げられる。
上記脂肪族ポリイソシァネートの具体例としては、エチレンジイソシァネート、テトラメ チレンジイソシァネート、へキサメチレンジイソシァネート(HDI)、ドデカメチレンジィ ソシァネート、 1, 6, 11—ゥンデカントリイソシァネート、 2, 2, 4—トリメチルへキサメ チレンジイソシァネート、リジンジイソシァネート、 2, 6—ジイソシアナトメチルカプロェ ート、ビス(2—イソシアナトェチル)フマレート、ビス(2—イソシアナトェチル)カーボネ ート、 2—イソシアナトェチルー 2, 6—ジイソシアナトへキサノエートなどの脂肪族ポリ イソシァネートなどが挙げられる。
上記脂環式ポリイソシァネートの具体例としては、イソホロンジイソシァネート (IPDI )、ジシクロへキシルメタン一 4, 4' —ジイソシァネート(水添 MDI)、シクロへキシレ ンジイソシァネート、メチルシクロへキシレンジイソシァネート(水添 TDI)、ビス(2—ィ ソシアナトェチル)ー4ーシクロへキセン一 1, 2—ジカルボキシレート、 2, 5—および Zまたは 2, 6—ノルボルナンジイソシァネートなどが挙げられる。
上記芳香脂肪族ポリイソシァネートの具体例としては、 m—および Zまたは P—キシ リレンジイソシァネート(XDI)、 a , a , ' , a ' —テトラメチルキシリレンジイソシァ ネート (TMXDI)などが挙げられる。
また、上記ポリイソシァネートの変性物には、ウレタン基、カルポジイミド基、ァロファ ネート基、ウレァ基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシァヌレート 基、ォキサゾリドン基含有変性物などが挙げられる。
具体的には、変性 MDI (ウレタン変性 MDI、カルボジイミド変性 MDI、トリヒドロカル ビルホスフェート変性 MDIなど)、ウレタン変性 TDIなどのポリイソシァネートの変性 物およびこれらの 2種以上の混合物 [たとえば変性 MDIとウレタン変性 TDI (イソシァ ネート含有プレボリマー)との併用]が含まれる。
これらのうちで好まし 、ものは 6〜 15の芳香族ポリイソシァネート、炭素数 4〜 12の 脂肪族ポリイソシァネート、および炭素数 4〜 15の脂環式ポリイソシァネートであり、と くに好ましいものは TDI、 MDI、 HDI、水添 MDI、および IPDIである。
ポリアミン(16)の例としては、脂肪族ポリアミン類 (C2〜C18):〔1〕脂肪族ポリアミ ン {C2〜C6アルキレンジァミン(エチレンジァミン、プロピレンジァミン、トリメチレンジ ァミン、テトラメチレンジァミン、へキサメチレンジァミンなど)、ポリアルキレン(C2〜C 6)ポリアミン〔ジエチレントリァミン、イミノビスプロピルァミン、ビス(へキサメチレン)トリ ァミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンへキサミンな ど〕 };〔2〕これらのアルキル(C1〜C4)またはヒドロキシアルキル(C2〜C4)置換体〔 ジアルキル(C1〜C3)ァミノプロピルァミン、トリメチルへキサメチレンジァミン、ァミノ ェチルエタノールァミン、 2, 5 ジメチルー 2, 5 へキサメチレンジァミン、メチルイミ ノビスプロピルァミンなど〕;〔3〕脂環または複素環含有脂肪族ポリアミン〔3, 9—ビス( 3 ァミノプロピル) 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカンなど〕;〔4〕 芳香環含有脂肪族ァミン類 (C8〜C 15) (キシリレンジァミン、テトラクロル—p キシ リレンジァミンなど)、脂環式ポリアミン(C4〜C15): 1, 3 ジァミノシクロへキサン、ィ ソホロンジァミン、メンセンジァミン、 4, 4' ーメチレンジシクロへキサンジァミン(水添 メチレンジァ-リン)など、複素環式ポリアミン(C4〜C15):ピペラジン、 N—アミノエ チルピペラジン、 1, 4ージアミノエチルピペラジン、 1, 4ビス(2 アミノー 2 メチル プロピル)ピぺラジンなど、芳香族ポリアミン類 (C6〜C20):〔1〕非置換芳香族ポリア ミン〔1, 2—、 1, 3 および 1, 4 フエ二レンジァミン、 2, 4' —および 4, 4' —ジフ ェニルメタンジァミン、クルードジフエニルメタンジァミン(ポリフエ二ルポリメチレンポリ ァミン)、ジアミノジフエニルスルホン、ベンジジン、チォジァニリン、ビス(3, 4—ジアミ ノフエ-ル)スルホン、 2, 6 ジァミノピリジン、 m—ァミノベンジルァミン、トリフエ-ル メタン— 4, 4' , 4' ' —トリァミン、ナフチレンジァミンなど;〔2〕核置換アルキル基〔 メチル,ェチル, n—および i—プロピル、ブチルなどの C1〜C4アルキル基)を有す る芳香族ポリアミン、たとえば 2, 4 および 2, 6 トリレンジァミン、クルードトリレンジ ァミン、ジェチルトリレンジァミン、 4, 4' —ジァミノ一 3, 3' —ジメチルジフエニルメ タン、 4, 4' —ビス(o トルィジン)、ジァ-シジン、ジアミノジトリルスルホン、 1, 3— ジメチルー 2, 4 ジァミノベンゼン、 1, 3 ジメチルー 2, 6 ジァミノベンゼン、 1, 4 ージイソプロピル 2, 5 ジァミノベンゼン、 2, 4 ジアミノメシチレン、 1ーメチルー 3, 5 ジェチル一 2, 4 ジァミノベンゼン、 2, 3 ジメチル一 1, 4 ジァミノナフタレ ン、 2, 6 ジメチルー 1, 5 ジァミノナフタレン、 3, 3' , 5, 5' ーテトラメチルベン ジジン、 3, 3' , 5, 5' —テトラメチルー 4, 4' ージアミノジフエニルメタン、 3, 5—ジ ェチルー 3' —メチルー 2' , 4 ジアミノジフエニルメタン、 3, 3' ジェチルー 2, 2' ージアミノジフエニルメタン、 4, 4' ージアミノー 3, 3' —ジメチルジフエニルメタ ン、 3, 3' , 5, 5' —テトラェチルー 4, 4' ージァミノべンゾフエノン、 3, 3' , 5, 5 ' ーテトラェチルー 4, 4' ージアミノジフエニルエーテル、 3, 3' , 5, 5' ーテトライ ソプロピル 4, 4' ージアミノジフエ-ルスルホンなど〕、およびこれらの異性体の種 々の割合の混合物;〔3〕核置換電子吸引基 (CI, Br, I, Fなどのハロゲン;メトキシ、 エトキシなどのアルコキシ基;ニトロ基など)を有する芳香族ポリアミン〔メチレンビス— o クロロア-リン、 4 クロ口一 o フエ-レンジァミン、 2 クロノレ一 1, 4 フエ-レン ジァミン、 3 アミノー 4 クロロア-リン、 4ーブロモー 1, 3 フエ-レンジァミン、 2, 5 ージクロル 1, 4 フエ二レンジァミン、 5 二トロー 1, 3 フエ二レンジァミン、 3— ジメトキシー 4 アミノア二リン; 4, 4' ージアミノー 3, 3' —ジメチルー 5, 5' —ジブ 口モージフエ二ノレメタン、 3, 3' ージクロ口べンジジン、 3, 3' ージメトキシベンジジン 、ビス(4 アミノー 3 クロ口フエ-ル)ォキシド、ビス(4 アミノー 2 クロ口フエ-ル) プロパン、ビス(4 アミノー 2 クロ口フエ-ル)スルホン、ビス(4 アミノー 3—メトキ シフエニル)デカン、ビス(4—ァミノフエ-ル)スルフイド、ビス(4—ァミノフエ-ル)テ ルリド、ビス(4—ァミノフエ-ル)セレニド、ビス(4—アミノー 3—メトキシフエ-ル)ジス ノレフイド、 4, 4' ーメチレンビス(2 ョードア-リン)、 4, 4' ーメチレンビス(2 ブロ モア-リン)、 4, 4' —メチレンビス(2 フルォロア-リン)、 4 ァミノフエ-ルー 2— クロロア-リンなど〕;〔4〕 2級アミノ基を有する芳香族ポリアミン〔上記〔1〕〜〔3〕の芳 香族ポリアミンの— NHの一部または全部が— NH— (R' はアルキル基たとえ
2
ばメチル,ェチルなどの低級アルキル基)で置き換ったもの〕〔4, 4' —ジ (メチルアミ ノ)ジフエ-ルメタン、 1—メチル 2—メチルアミノー 4 ァミノベンゼンなど〕、ポリアミ ドポリアミン:ジカルボン酸(ダイマー酸など)と過剰の(酸 1モル当り 2モル以上の)ポリ アミン類 (上記アルキレンジァミン,ポリアルキレンポリアミンなど)との縮合により得ら れる低分子量ポリアミドポリアミンなど、ポリエーテルポリアミン:ポリエーテルポリオ一 ル(ポリアルキレングリコールなど)のシァノエチル化物の水素化物などが挙げられる
[0038] ポリチオール(17)としては、炭素数 2〜36のアルカンジチオール(エチレンジチォ ール、 1, 4 ブタンジチオール、 1, 6 へキサンジチオールなど)等が挙げられる。
[0039] 1級および Zまたは 2級モノアミン(18)としては、炭素数 2〜24のアルキルアミン( ェチルァミン、 n—ブチルァミン、イソブチルァミンなど)等が挙げられる。
[0040] エポキシ榭脂としては、ポリエポキシド(19)の開環重合物、ポリエポキシド(19)と活 性水素基含有化合物 {水、ポリオール [前記ジオール(11)および 3〜8価またはそれ 以上のポリオール(12) ]、前記ジカルボン酸(13)、前記 3〜6価またはそれ以上の ポリカルボン酸(14)、前記ポリアミン(16)、前記ポリチオール(17)等 }との重付加物 、またはポリエポキシド(19)とジカルボン酸(13)または 3〜6価またはそれ以上のポ リカルボン酸(14)の酸無水物との硬化物などが挙げられる。
[0041] 本発明に用いるポリエポキシド(19)は、分子中に 2個以上のエポキシ基を有してい れば、特に限定されない。ポリエポキシド(19)として好ましいものは、硬化物の機械 的性質の観点力も分子中にエポキシ基を 2〜6個有するものである。ポリエポキシド( 19)のエポキシ当量(エポキシ基 1個当たりの分子量)は、通常 65〜: LOOOであり、好 ましいのは 90〜500である。エポキシ当量が 1000を超えると、架橋構造がルーズに なり硬化物の耐水性、耐薬品性、機械的強度等の物性が悪くなり、一方、エポキシ当 量が 65未満のものを合成するのは困難である。
[0042] ポリエポキシド(19)の例としては、芳香族系ポリエポキシィ匕合物、複素環系ポリエ ポキシ化合物、脂環族系ポリエポキシィ匕合物あるいは脂肪族系ポリエポキシィ匕合物 が挙げられる。芳香族系ポリエポキシィ匕合物としては、多価フエノール類のグリシジル エーテル体およびグリシジルエステル体、グリシジル芳香族ポリアミン、並びに、ァミノ フエノールのグリシジル化物等が挙げられる。多価フエノールのグリシジルエーテル 体としては、ビスフエノール Fジグリシジルエーテル、ビスフエノール Aジグリシジルェ 一テル、ビスフエノール Bジグリシジルエーテル、ビスフエノール ADジグリシジルエー テル、ビスフエノール Sジグリシジルエーテル、ハロゲン化ビスフエノール Aジグリシジ ル、テトラクロ口ビスフエノール Aジグリシジルエーテル、力テキンジグリシジルエーテ ル、レゾルシノールジグリシジルエーテル、ハイド口キノンジグリシジルエーテル、ピロ ガロールトリグリシジルエーテル、 1, 5—ジヒドロキシナフタリンジグリシジルエーテル 、ジヒドロキシビフエ-ルジグリシジルエーテル、ォクタクロロー 4, 4' ージヒドロキシビ フエ二ルジグリシジルエーテル、テトラメチルビフエ二ルジグリシジルエーテル、ジヒド ロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフエ-ル)メタントリ グリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4—ヒド ロキシフエ-ル)エタンテトラグリシジルエーテル、 p グリシジルフエ-ルジメチルトリ 一ルビスフヱノール Aグリシジルエーテル、トリスメチル tret ブチル ブチルヒドロ キシメタントリグリシジルエーテル、 9, 9' —ビス(4—ヒドロキシフエ-ル)フロオレンジ グリシジルエーテル、 4, 4' ォキシビス(1, 4 フエ-ルェチル)テトラクレゾールグ リシジルエーテル、 4, 4' —ォキシビス(1, 4 フエ-ルェチル)フエ-ルグリシジル エーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、フエノールまたは クレゾ一ルノボラック榭脂のグリシジルエーテル体、リモネンフエノールノボラック榭脂 のグリシジルエーテル体、ビスフエノール A2モルとェピクロロヒドリン 3モルの反応から 得られるジグリシジルエーテル体、フエノールとダリオキザール、グルタールアルデヒ ド、またはホルムアルデヒドの縮合反応によって得られるポリフヱノールのポリグリシジ ルエーテル体、およびレゾルシンとアセトンの縮合反応によって得られるポリフエノー ルのポリグリシジルエーテル体等が挙げられる。多価フエノールのグリシジルエステル 体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレ フタル酸ジグリシジルエステル等が挙げられる。グリシジル芳香族ポリアミンとしては、 N, N ジグリシジノレア二リン、 N, N, N' , N' —テトラグリシジルキシリレンジァミン 、 N, N, N' , N' —テトラグリシジルジフエ-ルメタンジァミン等が挙げられる。さら に、本発明において前記芳香族系として、 p ァミノフエノールのトリグリシジルエーテ ル、トリレンジイソシァネートまたはジフエ-ルメタンジイソシァネートとグリシドールの 付加反応によって得られるジグリシジルウレタンィ匕合物、前記 2反応物にポリオールも 反応させて得られるグリシジル基含有ポリウレタン (プレ)ポリマーおよびビスフエノー ノレ Aのァノレキレンォキシド(エチレンォキシドまたはプロピレンォキシド)付カ卩物のジグ リシジルエーテル体も含む。複素環系ポリエポキシィ匕合物としては、トリスグリシジルメ ラミンが挙げられる;脂環族系ポリエポキシィ匕合物としては、ビニルシクロへキセンジ ォキシド、リモネンジ才キシド、ジシクロペンタジェンジ才キシド、ビス(2, 3 エポキシ シクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチノレエーノレ
、 3, 4 エポキシ 6—メチルシクロへキシルメチルー 3' , 4' エポキシ 6' — メチルシクロへキサンカルボキシレート、ビス(3, 4—エポキシ 6—メチルシクロへキ シルメチル)アジペート、およびビス(3, 4—エポキシー6—メチルシクロへキシルメチ ル)プチルァミン、ダイマー酸ジグリシジルエステル等が挙げられる。また、脂環族系 としては、前記芳香族系ポリエポキシド化合物の核水添ィ匕物も含む;脂肪族系ポリエ ポキシィ匕合物としては、多価脂肪族アルコールのポリグリシジルエーテル体、多価脂 肪酸のポリグリシジルエステル体、およびグリシジル脂肪族ァミンが挙げられる。多価 脂肪族アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシ ジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコール ジグリシジルエーテル、 1, 6—へキサンジオールジグリシジルエーテル、ポリエチレン グリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポ リテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジ ルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジ ルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジル エーテルおよびポリグリセロールポリグリシジルエーテル等が挙げられる。多価脂肪 酸のポリグリシジルエステル体としては、ジグリシジルォキサレート、ジグリシジルマレ ート、ジグリシジノレスクシネート、ジグリシジノレグノレタレート、ジグリシジノレアジペート、 ジグリシジルピメレート等が挙げられる。グリシジル脂肪族ァミンとしては、 N, N, N' , Ν' ーテトラグリシジルへキサメチレンジァミンが挙げられる。また、本発明において 脂肪族系としては、ジグリシジルエーテル、グリシジル (メタ)アタリレートの(共)重合 体も含む。これらのうち、好ましいのは、脂肪族系ポリエポキシ化合物および芳香族 系ポリエポキシ化合物である。本発明のポリエポキシドは、 2種以上併用しても差し支 えない。
[0043] 本第 1発明の榭脂粒子 (D)は、特定の榭脂物性を有する第 1の榭脂 (a)からなる榭 脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が、第 2の榭脂 (b)力もなる榭脂粒子 (B)の表 面の 0. 1〜4. 9%を被覆するものであれば、いかなる製造方法で得られたものであ つてもよい。また、榭脂粒子 (A)の一部が被膜化され、(A)と (P)が並存するものであ つてもよい。(B)の表面を被覆するのが被膜 (P)であることが、榭脂粒子表面の平滑 性の点力も好ましい
[0044] 榭脂粒子 (D)は、以下の本第 2発明の製造方法により得られたものであることが、 粒径が均一な榭脂粒子となることから好ま U、。
本第 2発明の製造方法にお 、ては、榭脂粒子 (A)の水性分散液 (W)と、榭脂 (b) もしくはその溶剤溶液 (01)、または榭脂 (b)の前駆体 (b0)もしくはその溶剤溶液 (O 2)とを混合し、(W)中に (Ol)又は (02)を分散させて、(b)からなる榭脂粒子 (B)が 形成される際に、榭脂粒子 (B)の表面に榭脂粒子 (A)を吸着させることで榭脂粒子( C)同士が合一するのを防ぎ、また、高剪断条件下で (C)が分裂され難くする。これに より、(C)の粒径を一定の値に収斂させ、粒径の均一性を高める効果を発揮する。そ のため、榭脂粒子 (A)は、分散する際の温度において、剪断により破壊されない程 度の強度を有すること、水に溶解したり、膨潤したりしにくいこと、(b)もしくはその溶 剤溶液、(b0)もしくはその溶剤溶液に溶解しにくいことが好ましい特性としてあげら れる。
(b)および (b0)の中では、生産性の点から、(b)またはその溶剤溶液を用いる方法 が好ましい。
[0045] 榭脂粒子 (A)が水や分散時に用いる溶剤に対して、溶解したり、膨潤したりするの を低減する観点から、榭脂(a)の分子量、 sp値 (sp値の計算方法は Polymer Engi neering and Science, Feburuary, 1974, Vol. 14、 No. 2 P. 147〜154に よる)、結晶性、架橋点間分子量等を適宜調整するのが好ましい。
[0046] 榭脂(a)の数平均分子量 (ゲルパーミエーシヨンクロマトグラフィーにて測定、以下 Mnと略記)は、通常 100〜500万、好ましくは 200〜500万、さらに好ましくは 500〜 500, 000、 sp値は、通常 7〜18、好ましくは 8〜14である。榭脂(a)の融点(DSCに て測定)は、通常 50°C以上、好ましくは 80〜200°Cである。
[0047] 本発明にお 、て、ポリエステル榭脂等のポリウレタン榭脂以外の榭脂の、数平均分 子量 (Mn)、および重量平均分子量 (Mw)は、テトラヒドロフラン (THF)可溶分につ いて、ゲルパーミエーシヨンクロマトグラフィー(GPC)を用いて以下の条件で測定さ れる。
装置(一例) : 東ソー製 HLC— 8120
カラム(一例): TSKgelGMHXL (2本)
TSKgelMultiporeHXL— M (1本) 試料溶液 : 0. 25%の THF溶液
溶液注入量 : 100 1
流量 : lmlZ分
測定温度 : 40°C
検出装置 : 屈折率検出器
基準物質 : 東ソー製 標準ポリスチレン (TSKstandard POLYSTYRENE ) 12点(Mw 500 1050 2800 5970 9100 18100 37900 96400 1900 00 355000 1090000 2890000)
また、ポリウレタン榭脂の Mnおよび Mwは、 GPCを用いて以下の条件で測定され る。
装置(一例) : 東ソー製 HLC— 8220GPC
カラム (一 (列): Guardcolumn a
TSKgel a ~M
試料溶液 : 0. 125%のジメチルホルムアミド溶液
溶液注入量 : 100 1
流量 : lmlZ分
温度 : 40°C
検出装置 : 屈折率検出器
基準物質 : 東ソー製 標準ポリスチレン (TSKstandard POLYSTYRENE ) 12点(Mw 500 1050 2800 5970 9100 18100 37900 96400 1900 00 355000 1090000 2890000)
榭脂 (a)のガラス転移温度 (Tg)は、榭脂粒子 (C)および (D)の粒径均一性、粉体 流動性、保存時の耐熱性、耐ストレス性の観点から、通常 20°C〜250°C、好ましくは 30°C〜230°C、より好ましくは 40°C〜200°C、とくに好ましくは 50°C〜100°Cある。 水性榭脂分散体を作成する温度より Tgが低いと、合一を防止したり、分裂を防止し たりする効果が小さくなり、粒径の均一性を高める効果が小さくなる。
また、(a)からなる榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)の Tgは、同様の理由で 、好ましくは 20〜200°C、さらに好ましくは 30〜100°C、とく〖こ好ましくは 40〜85°C である。
なお、本発明における Tgは、 DSC測定またはフローテスター測定 (DSCで測定で きな 、場合)力も求められる値である。
[0049] フローテスター測定には、島津製作所製の高架式フローテスター CFT500型を用 いる。フローテスター測定の条件は下記のとおりであり、以下測定は全てこの条件で 行われる。
(フローテスター測定条件)
荷重: 30kgZcm2、昇温速度: 3. 0°CZmin、
ダイ口径: 0. 50mm、ダイ長さ: 10. Omm
[0050] また図 1に示すフローチャートにある A点 (試料が圧縮荷重を受け変形し始める温 度)をガラス転移温度 (Tg)とし、 B点(内部空隙が消失し不均一な応力の分布を持つ たまま外観均一な 1個の透明体ある!/、は相になる点)の温度を軟化開始温度 (Ts)、 C点 (試料の熱膨張によるピストンのわずかな上昇が行われた後、再びピストンが明ら かに下降し始める点)の温度を流出開始温度 (Tfb)、そして D点(図において流出終 了点 Smaxと最低値 Sminの差の 1Z2 (X)を求め、 Xと Sminをカ卩えた点)の温度を 流出温度 (T1Z2)とする。
[0051] 榭脂 (a)の軟化開始温度 (Ts)は、保存時の耐熱性、耐ストレス性、紙面などへの 定着特性の観点から、通常 40°C〜270°C、好ましくは 50°C〜250°C、さらに好ましく は 60°C〜220°C、とくに好ましくは 70°C〜160°Cあり、また流出温度 (T1Z2)は、通 常 60°C〜300°C、好ましくは 65°C〜280°C、さらに好ましくは 70°C〜250°C、とくに 好ましくは 80°C〜190°Cある。トナーなどとして用いる場合、表面に残留している榭 脂 (a)の軟化開始温度 (Ts)、流出温度 (T1Z2)が高温であると低温定着性や高光 沢性などの悪ィ匕因子となることがある。なお、本発明における軟化開始温度、流出温 度は、上記フローテスター測定力も求められる値である。
[0052] 榭脂(a)のガラス転移温度 (Tg)と流出温度 (T1Z2)との温度差は、通常 0°C〜12 0°C、好ましくは 0°C〜115°C、さらに好ましくは 0°C〜110°C、とくに好ましくは 0°C〜 105°Cである。表面に残留して 、る榭脂(a)のガラス転移温度と軟化開始温度の温 度差が上記範囲内であると、榭脂粒子をトナーとして用いる場合、榭脂粒子の低温 定着性と高光沢の両立が容易である。
[0053] また、榭脂 (a)のガラス転移温度 (Tg)と軟化開始温度 (Ts)との好ま ヽ温度差は 、 0°C〜100°C、より好ましくは 0°C〜70°C、さらに好ましくは 0°C〜50°C、とくに好ま しくは 0°C〜35°Cである。表面に残留して 、る榭脂(a)のガラス転移温度と軟化開始 温度の温度差が上記範囲内であると、榭脂粒子をトナーとして用いる場合、榭脂粒 子の低温定着性と高光沢の両立が容易である。
[0054] 本第 2発明の製造方法において、榭脂粒子 (D)は、表面に付着した榭脂 (a)からな る榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)の一部を分離除去および Zまたは溶解 除去して得られるが、完全に除去できずに表面に残留した榭脂 (a)の軟化開始温度 (Ts)、流出温度 (T1Z2)およびガラス転移温度 (Tg)が上記の範囲力 外れると、ト ナーなどに用いる場合、低温定着性や高光沢性などの悪ィ匕因子となることがある。
[0055] 本発明に用いる榭脂(a)は、 40〜270°Cの軟ィ匕開始温度、 20〜250°Cのガラス転 移温度、 60〜300°Cの流出温度、および 0〜120°Cのガラス転移温度と流出温度の 差をすベて有する榭脂である。
[0056] 硬さの規格であるショァ D硬度にぉ 、て、榭脂粒子 (A)もしくは榭脂(a)の被膜 (P) の硬さは通常 30以上、とくに 45〜: LOOの範囲であるのが好ましい。また、水中、溶剤 中に一定時間浸漬した場合における硬度も上記範囲にあるのが好まし 、。
[0057] 榭脂粒子 (A)の水性分散液 (W)中に、水以外に後述の溶剤 (u)のうち水と混和性 の溶剤(アセトン、メチルェチルケトン等)が含有されていてもよい。この際、含有され る溶剤は、榭脂粒子 (A)の凝集を引き起こさないもの、榭脂粒子 (A)を溶解しないも の、および榭脂粒子(C)の造粒を妨げることがな 、ものであればどの種であっても、 またどの程度の含有量であっても力まわないが、水との合計量の 40%以下用いて、 乾燥後の榭脂粒子 (D)中に残らな 、ものが好ま 、。
[0058] 榭脂 (a)を榭脂粒子 (A)の水性分散液 (W)にする方法は、とくに限定されな 、が、 以下の〔1〕〜〔8〕が挙げられる。
〔1〕ビュル系榭脂の場合において、モノマーを出発原料として、懸濁重合法、乳化 重合法、シード重合法または分散重合法等の重合反応により、直接、榭脂粒子 (A) の水性分散液を製造する方法 〔2〕ポリエステル榭脂等の重付加ある!/、は縮合系榭脂の場合にお!、て、前駆体 (モ ノマー、オリゴマー等)またはその溶剤溶液を必要であれば適当な分散剤存在下で 水性媒体中に分散させ、その後に加熱したり、硬化剤を加えたりして硬化させて榭脂 粒子 (A)の水性分散体を製造する方法
〔3〕ポリエステル榭脂等の重付加ある 、は縮合系榭脂の場合にお!、て、前駆体 (モ ノマー、オリゴマー等)またはその溶剤溶液 (液体であることが好ましい。加熱により液 状ィ匕してもよい)中に適当な乳化剤を溶解させた後、水を加えて転相乳化し、硬化剤 を加えたりして硬化させて榭脂粒子 (A)の水性分散体を製造する方法
〔4〕あらかじめ重合反応 (付加重合、開環重合、重付加、付加縮合、縮合重合等い ずれの重合反応様式であってもよ ヽ)により作成した榭脂を機械回転式またはジエツ ト式等の微粉砕機を用いて粉砕し、次いで、分級するすることによって榭脂粒子を得 た後、適当な分散剤存在下で水中に分散させる方法
〔5〕あらかじめ重合反応 (付加重合、開環重合、重付加、付加縮合、縮合重合等い ずれの重合反応様式であってもよい)により作成した榭脂を溶剤に溶解した榭脂溶 液を霧状に噴霧することにより榭脂粒子を得た後、該榭脂粒子を適当な分散剤存在 下で水中に分散させる方法
〔6〕あらかじめ重合反応 (付加重合、開環重合、重付加、付加縮合、縮合重合等い ずれの重合反応様式であってもよい)により作成した榭脂を溶剤に溶解した榭脂溶 液に貧溶剤を添加するか、またはあらカゝじめ溶剤に加熱溶解した榭脂溶液を冷却す ることにより榭脂粒子を析出させ、次いで、溶剤を除去して榭脂粒子を得た後、該榭 脂粒子を適当な分散剤存在下で水中に分散させる方法
〔7〕あらかじめ重合反応 (付加重合、開環重合、重付加、付加縮合、縮合重合等い ずれの重合反応様式であってもよい)により作成した榭脂を溶剤に溶解した榭脂溶 液を、適当な分散剤存在下で水性媒体中に分散させ、これを加熱または減圧等によ つて溶剤を除去する方法
〔8〕あらかじめ重合反応 (付加重合、開環重合、重付加、付加縮合、縮合重合等い ずれの重合反応様式であってもよい)により作成した榭脂を溶剤に溶解した榭脂溶 液中に適当な乳化剤を溶解させた後、水を加えて転相乳化する方法 [0059] 上記〔1〕〜〔8〕の方法において、併用する乳化剤または分散剤としては、公知の界 面活性剤 (s)、水溶性ポリマー (t)等を用いることができる。また、乳化または分散の 助剤として溶剤 (u)、可塑剤 (V)等を併用することができる。
[0060] 界面活性剤 (s)としては、ァ-オン界面活性剤(s— 1)、カチオン界面活性剤 (s - 2 )、両性界面活性剤 (s— 3)、非イオン界面活性剤 (s— 4)などが挙げられる。界面活 性剤(s)は 2種以上の界面活性剤を併用したものであってもよ ヽ。 (s)の具体例として は、以下に述べるものの他特開 2002— 284881号公報に記載のものが挙げられる
[0061] ァ-オン界面活性剤 (s- 1)としては、カルボン酸またはその塩、硫酸エステル塩、 カルボキシメチル化物の塩、スルホン酸塩およびリン酸エステル塩等が用いられる。
[0062] カルボン酸またはその塩としては、炭素数 8〜22の飽和または不飽和脂肪酸また はその塩が使用でき、例えば、力プリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ス テアリン酸、ァラキジン酸、ベヘン酸、ォレイン酸、リノール酸およびリシノール酸並び にヤシ油、パーム核油、米ぬか油および牛脂などをケン化して得られる高級脂肪酸 の混合物等が挙げられる。
その塩としては、これらのナトリウム塩、カリウム塩、アミン塩、アンモ-ゥム塩、 4級ァ ンモ -ゥム塩およびアルカノールァミン塩(モノエタノールアミン塩、ジエタノールアミ ン塩、トリエタノールアミン塩等)などの塩があげられる。
[0063] 硫酸エステル塩としては、高級アルコール硫酸エステル塩 (炭素数 8〜 18の脂肪族 アルコールの硫酸エステル塩)、高級アルキルエーテル硫酸エステル塩 (炭素数 8〜 18の脂肪族アルコールの EOまたは ΡΟ1〜10モル付カ卩物の硫酸エステル塩)、硫 酸ィ匕油(炭素数 12〜50の天然の不飽和油脂または不飽和のロウをそのまま硫酸ィ匕 して中和したもの)、硫酸化脂肪酸エステル (不飽和脂肪酸 (炭素数 6〜40)の低級 アルコール (炭素数 1〜8)エステルを硫酸ィ匕して中和したもの)および硫酸ィ匕ォレフ イン (炭素数 12〜18のォレフィンを硫酸ィ匕して中和したもの)等が使用できる。
塩としては、ナトリウム塩、カリウム塩、アミン塩、アンモ-ゥム塩、 4級アンモ-ゥム塩 およびアルカノールァミン塩(モノエタノールアミン塩、ジエタノールアミン塩、トリエタ ノールアミン塩等)等が挙げられる。 [0064] 高級アルコール硫酸エステル塩としては、例えば、ォクチルアルコール硫酸エステ ル塩、デシルアルコール硫酸エステル塩、ラウリルアルコール硫酸エステル塩、ステ ァリルアルコール硫酸エステル塩、チーグラー触媒を用いて合成されたアルコール( 例えば、商品名: ALFOL 1214: CONDEA社製)の硫酸エステル塩およびォキソ 法で合成されたアルコール(例えば、商品名:ドバノール 23、 25、 45、ダイヤドール 1 15— L、 115H、 135 :三菱ィ匕学製:、商品名:トリデカノール:協和発酵製、商品名: ォキソコール 1213、 1215、 1415 :日産化学製)の硫酸エステル塩等が挙げられる。
[0065] 高級アルキルエーテル硫酸エステル塩としては、例えば、ラウリルアルコール E02 モル付加物硫酸エステル塩およびォクチルアルコール E03モル付加物硫酸エステ ル塩等が挙げられる。
硫酸ィ匕油としては、例えば、ヒマシ油、落花生油、ォリーブ油、ナタネ油、牛脂およ び羊脂などの硫酸ィ匕物の塩等が挙げられる。
硫酸ィ匕脂肪酸エステルとしては、例えば、ォレイン酸ブチルおよびリシノレイン酸ブ チル等の硫酸ィ匕物の塩等が挙げられる。
硫酸ィ匕ォレフインとしては、例えば、商品名:ティーポール (シェル社製)等が挙げら れる。
[0066] カルボキシメチル化物の塩としては、炭素数 8〜16の脂肪族アルコールのカルボキ シメチル化物の塩および炭素数 8〜16の脂肪族アルコールの EOまたは ΡΟ1〜10 モル付加物のカルボキシメチル化物の塩等が使用できる。
[0067] 脂肪族アルコールのカルボキシメチル化物の塩としては、例えば、ォクチルアルコ ールカルボキシメチル化ナトリウム塩、ラウリルアルコールカルボキシメチル化ナトリウ ム塩、ドバノール 23のカルボキシメチル化ナトリウム塩、トリデカノールカルボキシメチ ルイ匕ナトリウム塩等が挙げられる。
[0068] 脂肪族アルコールの ΕΟ1〜10モル付加物のカルボキシメチル化物の塩としては、 例えば、ォクチルアルコール E03モル付カ卩物カルボキシメチル化ナトリウム塩、ラウリ ルアルコール E04モル付カ卩物カルボキシメチル化ナトリウム塩、およびトリデカノール E05モル付加物カルボキシメチル化ナトリウム塩などが挙げられる。
[0069] スルホン酸塩としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホ ン酸塩、スルホコハク酸ジエステル塩、 aーォレフインスルホン酸塩、ィゲポン T型お よびその他芳香環含有ィ匕合物のスルホン酸塩等が使用できる。
アルキルベンゼンスルホン酸塩としては、例えば、ドデシルベンゼンスルホン酸ナトリ ゥム塩等が挙げられる。
[0070] アルキルナフタレンスルホン酸塩としては、例えば、ドデシルナフタレンスルホン酸 ナトリウム塩等が挙げられる。
スルホコハク酸ジエステル塩としては、例えば、スルホコハク酸ジ 2—ェチルへキ シルエステルナトリウム塩などが挙げられる。
芳香環含有化合物のスルホン酸塩としては、アルキル化ジフヱ-ルエーテルのモノ またはジスルホン酸塩およびスチレン化フエノールスルホン酸塩などが挙げられる。
[0071] リン酸エステル塩としては、高級アルコールリン酸エステル塩および高級アルコー ル EO付加物リン酸エステル塩等が使用できる。
高級アルコールリン酸エステル塩としては、例えば、ラウリルアルコールリン酸モノエ ステルジナトリウム塩およびラウリルアルコールリン酸ジエステルナトリウム塩等が挙げ られる。
高級アルコール EO付カ卩物リン酸エステル塩としては、例えば、ォレイルアルコール E05モル付加物リン酸モノエステルジナトリウム塩等が挙げられる。
[0072] カチオン界面活性剤(s 2)としては、第 4級アンモ-ゥム塩型界面活性剤および アミン塩型界面活性剤等が使用できる。
第 4級アンモ-ゥム塩型界面活性剤としては、炭素数 3〜40の 3級ァミンと 4級化剤 (例えば、メチルクロライド、メチルブロマイド、ェチルクロライド、ベンジルクロライドお よびジメチル硫酸などのアルキル化剤並びに EOなど)との反応等で得られ、例えば 、ラウリルトリメチルアンモ -ゥムクロライド、ジデシルジメチルアンモ -ゥムクロライド、 ジォクチルジメチルアンモ -ゥムブロマイド、ステアリルトリメチルアンモ-ゥムブロマイ ド、ラウリルジメチルベンジルアンモ -ゥムクロライド(塩化べンザルコ-ゥム)、セチル ピリジ-ゥムクロライド、ポリオキシエチレントリメチルアンモ -ゥムクロライドおよびステ ァラミドエチルジェチルメチルアンモ-ゥムメトサルフェートなどが挙げられる。
[0073] アミン塩型界面活性剤としては、 1〜3級ァミンを無機酸 (例えば、塩酸、硝酸、硫酸 、ヨウ化水素酸、リン酸および過塩素酸など)または有機酸 (酢酸、ギ酸、蓚酸、乳酸
、ダルコン酸、アジピン酸、炭素数 2〜24のアルキルリン酸、リンゴ酸およびクェン酸 など)で中和すること等により得られる。
第 1級アミン塩型界面活性剤としては、例えば、炭素数 8〜40の脂肪族高級アミン( 例えば、ラウリルァミン、ステアリルァミン、セチルァミン、硬化牛脂ァミンおよび、ロジ ンァミンなどの高級ァミン)の無機酸塩または有機酸塩および低級アミン (炭素数 2〜 6)の高級脂肪酸 (炭素数 8〜40、ステアリン酸、ォレイン酸など)塩などが挙げられる
[0074] 第 2級アミン塩型界面活性剤としては、例えば炭素数 4〜40の脂肪族ァミンの EO 付加物などの無機酸塩または有機酸塩が挙げられる。
また、第 3級アミン塩型界面活性剤としては、例えば、炭素数 4〜40の脂肪族ァミン (例えば、トリエチルァミン、ェチルジメチルァミン、 N, N, N' , N' —テトラメチルェ チレンジァミンなど)、脂肪族ァミン (炭素数 2〜40)の EO (2モル以上)付加物、炭素 数 6〜40の脂環式ァミン(例えば、 N—メチルピロリジン、 N—メチルビペリジン、 N— メチルへキサメチレンィミン、 N—メチルモルホリンおよび 1, 8 ジァザビシクロ(5, 4 , 0) 7 ゥンデセンなど)、炭素数 5〜30の含窒素へテロ環芳香族ァミン (例えば、 4 ジメチルァミノピリジン、 N—メチルイミダゾールおよび 4, 4' ジピリジルなど)の 無機酸塩または有機酸塩およびトリエタノールアミンモノステアレート、ステアラミドエ チルジェチルメチルエタノールァミンなどの 3級ァミンの無機酸塩または有機酸塩な どが挙げられる。
[0075] 両性界面活性剤(s 3)としては、カルボン酸塩型両性界面活性剤、硫酸エステル 塩型両性界面活性剤、スルホン酸塩型両性界面活性剤およびリン酸エステル塩型 両性界面活性剤などが使用できる。
[0076] カルボン酸塩型両性界面活性剤は、アミノ酸型両性界面活性剤、ベタイン型両性 界面活性剤およびイミダゾリン型両性界面活性剤などが用いられる。アミノ酸型両性 界面活性剤は、分子内にアミノ基とカルボキシル基を持って ヽる両性界面活性剤で あり、例えば、一般式 (2)で示される化合物等が挙げられる。
[0077] [R-NH-(CH )n— COO]mM (2) [式中、 Rは 1価の炭化水素基; nは 1または 2 ;mは 1または 2 ;Mは水素イオン、アル カリ金属イオン、アルカリ土類金属イオン、アンモ-ゥムカチオン、アミンカチオン、ァ ルカノールアミンカチオンなどである。 ]
[0078] 一般式(2)で表される両面活性剤としては、例えば、アルキル (炭素数 6〜40)アミ ノプロピオン酸型両性界面活性剤 (ステアリルアミノプロピオン酸ナトリウム、ラウリルァ ミノプロピオン酸ナトリウムなど);アルキル (炭素数 4〜24)ァミノ酢酸型両性界面活 性剤 (ラウリルアミノ酢酸ナトリウムなど)などが挙げられる。
[0079] ベタイン型両性界面活性剤は、分子内に第 4級アンモ-ゥム塩型のカチオン部分と カルボン酸型のァ-オン部分を持っている両性界面活性剤であり、例えば、アルキ ル(炭素数 6〜40)ジメチルベタイン (ステアリルジメチルァミノ酢酸べタイン、ラウリル ジメチルァミノ酢酸べタインなど)、炭素数 6〜40のアミドべタイン(ヤシ油脂肪酸アミ ドプロピルべタインなど)、アルキル(炭素数 6〜40)ジヒドロキシアルキル(炭素数 6〜 40)ベタイン (ラウリルジヒドロキシェチルベタインなど)などが挙げられる。
[0080] イミダゾリン型両性界面活性剤としては、イミダゾリン環を有するカチオン部分とカル ボン酸型のァ-オン部分を持っている両性界面活性剤であり、例えば、 2—ゥンデシ ノレ N カノレボキシメチノレ N ヒドロキシェチルイミダゾリ-ゥムベタインなどが挙 げられる。
[0081] その他の両性界面活性剤として、例えば、ナトリウムラウロイルグリシン、ナトリウムラ ゥリルジアミノエチルダリシン、ラウリルジアミノエチルダリシン塩酸塩、ジォクチルジァ ミノェチルグリシン塩酸塩などのグリシン型両性界面活性剤;ペンタデシルスルホタウ リンなどのスルホベタイン型両性界面活性剤、スルホン酸塩型両性界面活性剤およ びリン酸エステル塩型両性界面活性剤などが挙げられる。
[0082] 非イオン界面活性剤(s 4)としては、 AO付加型非イオン界面活性剤および多価 アルコ—ル型非イオン界面活性剤などが使用できる。
AO付加型非イオン界面活性剤は、炭素数 8〜40の高級アルコール、炭素数 8〜4 0の高級脂肪酸または炭素数 8〜40のアルキルアミン等に直接 AO (炭素数 2〜20) を付加させる力、グリコールに AOを付加させて得られるポリアルキレングリコールに 高級脂肪酸などを反応させるか、あるいは多価アルコールに高級脂肪酸を反応して 得られたエステルイ匕物に AOを付加させるカゝ、高級脂肪酸アミドに AOを付加させるこ とにより得られる。
[0083] AOとしては、たとえば EO、 POおよび BOが挙げられる。
これらのうち好ましいものは、 EOおよび EOと POのランダムまたはブロック付カ卩物で ある。
AOの付カ卩モル数としては 10〜50モルが好ましぐ該 AOのうち 50〜100%が EO であるものが好ましい。
[0084] AO付加型非イオン界面活性剤としては、例えば、ォキシアルキレンアルキルエー テル(アルキレンの炭素数 2〜24、アルキルの炭素数 8〜40) (例えば、ォクチルアル コール EO 20モル付カ卩物、ラウリルアルコール EO20モル付カ卩物、ステアリルアルコ ール EO10モル付カ卩物、ォレイルアルコール EO 5モル付カ卩物、ラウリルアルコール E 010モル PO20モルブロック付カ卩物など);ポリオキシアルキレン高級脂肪酸エステ ル (アルキレンの炭素数 2〜24、高級脂肪酸の炭素数 8〜40) (例えば、ステアリル 酸 EO 10モル付カ卩物、ラウリル酸 EO 10モル付カ卩物など);ポリオキシアルキレン多価 アルコール高級脂肪酸エステル(アルキレンの炭素数 2〜24、多価アルコールの炭 素数 3〜40、高級脂肪酸の炭素数 8〜40) (例えば、ポリエチレングリコール (重合度 20)のラウリン酸ジエステル、ポリエチレングリコール(重合度 20)のォレイン酸ジエス テルなど);ポリオキシアルキレンアルキルフエ-ルエーテル(アルキレンの炭素数 2〜 24、アルキルの炭素数 8〜40) (例えば、ノ-ルフエノール E04モル付カ卩物、ノ-ル フエノール E08モル PO20モルブロック付カ卩物、ォクチルフエノール EO 10モル付カロ 物、ビスフエノール A ·ΕΟ 10モル付カ卩物、スチレン化フエノール ΕΟ20モル付カ卩物な ど);ポリオキシアルキレンアルキルアミノエ一テル(アルキレンの炭素数 2〜24、アル キルの炭素数 8〜40)および(例えば、ラウリルアミン EO10モル付加物、ステアリル ァミン EO10モル付カ卩物など);ポリオキシアルキレンアル力ノールアミド(アルキレン の炭素数 2〜24、アミド(ァシル部分)の炭素数 8〜24) (例えば、ヒドロキシェチルラ ゥリン酸アミドの EO10モル付カ卩物、ヒドロキシプロピルォレイン酸アミドの ΕΟ20モル 付加物など)が挙げられる。
[0085] 多価アルコール型非イオン界面活性剤としては、多価アルコール脂肪酸エステル、 多価アルコール脂肪酸エステル AO付カ卩物、多価アルコールアルキルエーテルおよ び多価アルコールアルキルエーテル AO付カ卩物等が使用できる。多価アルコールの 炭素数としては 3〜24、脂肪酸の炭素数としては 8〜40、 AOの炭素数としては 2〜2 4である。
[0086] 多価アルコール脂肪酸エステルとしては、例えば、ペンタエリスリトールモノラウレー ト、ペンタエリスリトーノレモノォレート、ソルビタンモノラウレート、ソノレビタンモノステアレ ート、ソルビタンジラウレート、ソルビタンジォレートおよびショ糖モノステアレートなど が挙げられる。
[0087] 多価アルコール脂肪酸エステル AO付加物としては、例えば、エチレングリコール モノォレート EO10モル付カ卩物、エチレングリコールモノステアレート EO20モル付カロ 物、トリメチロールプロパンモノステアレート EO20モル PO 10モルランダム付カ卩物、ソ ルビタンモノラウレート EO10モル付カ卩物、ソルビタンジステアレート EO20モル付カロ 物およびソルビタンジラウレート E012モル P024モルランダム付カ卩物などが挙げら れる。
[0088] 多価アルコールアルキルエーテルとしては、例えば、ペンタエリスリトールモノブチ ノレエーテノレ、ペンタエリスリトールモノラウリルエーテル、ソルビタンモノメチルエーテ ル、ソルビタンモノステアリルエーテル、メチルダリコシドおよびラウリルグリコシドなど が挙げられる。
[0089] 多価アルコールアルキルエーテル AO付カ卩物としては、例えば、ソルビタンモノステ ァリルエーテル EO 10モル付カ卩物、メチルダリコシド EO 20モル PO 10モルランダム 付加物、ラウリルグリコシド EO 10モル付カ卩物およびステアリルグリコシド EO20モル P O20モルランダム付加物などが挙げられる。
[0090] 水溶性ポリマー(t)としては、セルロース系化合物(例えば、メチルセルロース、ェチ ノレセノレロース、ヒドロキシェチノレセノレロース、ェチノレヒドロキシェチノレセノレロース、力ノレ ボキシメチルセルロース、ヒドロキシプロピルセルロースおよびそれらのケン化物など) 、ゼラチン、デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコ ール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンィミン、ポリアクリル アミド、アクリル酸 (塩)含有ポリマー(ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、 ポリアクリル酸アンモ-ゥム、ポリアクリル酸の水酸化ナトリウム部分中和物、アクリル 酸ナトリウム アクリル酸エステル共重合体)、スチレン 無水マレイン酸共重合体の 水酸ィ匕ナトリウム (部分)中和物、水溶性ポリウレタン (ポリエチレングリコール、ポリ力 プロラタトンジオール等とポリイソシァネートの反応生成物等)などが挙げられる。
[0091] 本発明に用いる溶剤 (u)は、乳化分散の際に必要に応じて水性媒体中に加えても 、被乳化分散体中 [榭脂 (b)または (bO)を含む油相 (O)中]に加えてもよい。
溶剤(u)の具体例としては、トルエン、キシレン、ェチルベンゼン、テトラリン等の芳 香族炭化水素系溶剤; n—へキサン、 n—ヘプタン、ミネラルスピリット、シクロへキサ ン等の脂肪族または脂環式炭化水素系溶剤;塩化メチル、臭化メチル、ヨウ化メチル 、メチレンジクロライド、四塩化炭素、トリクロロエチレン、パークロロエチレンなどのハ ロゲン系溶剤;酢酸ェチル、酢酸ブチル、メトキシブチルアセテート、メチルセ口ソル ブアセテート、ェチルセ口ソルブアセテートなどのエステル系またはエステルエーテ ル系溶剤;ジェチルエーテル、テトラヒドロフラン、ジォキサン、ェチルセ口ソルブ、ブ チルセ口ソルブ、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤;ァ セトン、メチルェチルケトン、メチルイソブチルケトン、ジー n—ブチルケトン、シクロへ キサノンなどのケトン系溶剤;メタノール、エタノール、 n—プロパノール、イソプロパノ ール、 n—ブタノール、イソブタノール、 tーブタノール、 2—ェチルへキシルアルコー ル、ベンジルアルコールなどのアルコール系溶剤;ジメチルホルムアミド、ジメチルァ セトアミドなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤、 N—メ チルピロリドンなどの複素環式ィ匕合物系溶剤、ならびにこれらの 2種以上の混合溶剤 が挙げられる。
[0092] 可塑剤 (V)は、乳化分散の際に必要に応じて水性媒体中に加えても、被乳化分散 体中 [榭脂 (b)または (bO)を含む油相(O)中]に加えてもよ 、。
可塑剤 (V)としては、何ら限定されず、以下のものが例示される。
(vl)フタル酸エステル [フタル酸ジブチル、フタル酸ジォクチル、フタル酸ブチルべ ンジル、フタル酸ジイソデシル等];
(v2)脂肪族 2塩基酸エステル [アジピン酸ジー 2—ェチルへキシル、セバシン酸 2 ェチルへキシル等] ; (v3)トリメリット酸エステル [トリメリット酸トリ一 2—ェチルへキシル、トリメリット酸トリオク チル等];
(v4)燐酸エステル [リン酸トリェチル、リン酸トリー 2—ェチルへキシル、リン酸トリタレ ジール等];
(v5)脂肪酸エステル [ォレイン酸ブチル等];
(v6)およびこれらの 2種以上の混合物が挙げられる。
[0093] 本発明にお ヽて用いる榭脂粒子 (A)の粒径は、通常、形成される榭脂粒子 (B)の 粒径よりも小さぐ粒径均一性の観点から、粒径比 [榭脂粒子 (A)の体積平均粒径] Z [榭脂粒子(B)の体積平均粒径]の値が 0. 001-0. 3の範囲であるのが好ましい 。粒径比の下限は、さらに好ましくは 0. 003であり、上限は、さらに好ましくは 0. 25 である。粒径比が、 0. 3より大きいと (A)が(B)の表面に効率よく吸着しないため、得 られる (C)および (D)の粒度分布が広くなる傾向がある。
[0094] 榭脂粒子 (A)の体積平均粒径は、所望の粒径の榭脂粒子 (D)を得るのに適した 粒径になるように、上記粒径比の範囲で適宜調整することができる。
(A)の体積平均粒径は、一般的には、 0. 0005〜30 m力 S好ましい。上限は、さら に好ましくは 20 m、とく〖こ好ましくは 10 mであり、下限は、さら〖こ好ましくは 0. 01 μ m、とく〖こ好ましくは 0. 02 μ m、最も好ましくは 0. 04 μ mである。ただ、し、 f列えば、 体積平均粒径: mの榭脂粒子 (D)を得たい場合には、好ましくは 0. 0005-0. 3 /z m、とくに好ましくは 0. 001〜0. 2 mの範囲、 10 mの榭脂粒子(D)を得た場 合には、好ましくは 0. 005〜3 m、とくに好ましくは 0. 05〜2 m、 100 mの粒 子(D)を得たい場合には、好ましくは 0. 05〜30 m、とくに好ましくは 0. 1〜20 mである。
なお、体積平均粒径は、レーザー式粒度分布測定装置 LA— 920 (堀場製作所製 )やマルチサイザ一 III (コールター社製)、光学系としてレーザードップラー法を用い る ELS— 800 (大塚電子社製)などで測定できる。もし、各測定装置間で粒径の測定 値に差を生じた場合は、 ELS— 800での測定値を採用する。
なお、上記粒径比が得やすいことから、後述する榭脂粒子 (B)の体積平均粒径は 、0. 1〜300 111カ 子ましい。さらに好ましくは 0. 5〜250 m、特に好ましくは 1〜2 00 μ mである。
[0095] 本発明の榭脂 (b)としては、公知の榭脂であれば!/、かなる榭脂であっても使用でき 、その具体例については、(a)と同様のものが使用できる。 (b)は、用途 ·目的に応じ て適宜好まし ヽものを選択することができる。
一般に、榭脂 (b)として好ましいものは、ビュル系榭脂、ポリエステル榭脂、ポリウレ タン榭脂、エポキシ榭脂、およびそれらの併用であり、さらに好ましいのは、ポリウレタ ン榭脂、およびポリエステル榭脂であり、とくに好ましいのは、 1, 2—プロピレングリコ ールを構成単位として含有する、ポリエステル榭脂およびポリウレタン榭脂である。
[0096] 榭脂 (b)の Mn、融点、 Tg、 sp値は、用途によって好ましい範囲に適宜調整すれば よい。
榭脂(b)の sp値は、通常 7〜18、好ましくは 8〜14、さらに好ましくは 9〜14である。 例えば、榭脂粒子 (D)をスラッシュ成形用榭脂、粉体塗料として用いる場合、(b)の Μηは、通常 2, 000〜50万、好ましくは 4, 000〜20万である。(b)の融点(DSCに て測定、以下融点は DSCでの測定値)、通常 0°C〜200°C、好ましくは、 35°C〜15 0°Cである。 (b)の Tgは通常— 60°C〜100°C、好ましくは、—30°C〜60°Cである。 液晶ディスプレイ等の電子部品製造用スぺーサ一、電子測定機の標準粒子として 用いる場合、(b)の Mnは、通常 2万〜 1, 000万、好ましくは 4万〜 200万である。 (b )の融点(DSCにて測定、以下融点は DSCでの測定値)は、通常 40°C〜300°C、好 ましくは、 70°C〜250°Cである。(b)の Tgは通常— 0°C〜250°C、好ましくは、 50°C 〜200°Cである。
電子写真、静電記録、静電印刷などに使用されるトナーとして用いる場合、(b)の Mnは、通常 1, 000〜500万、好ましくは 2, 000〜50万である。(b)の融点(DSC にて測定、以下融点は DSCでの測定値)は、通常 20°C〜300°C、好ましくは、 80°C 〜250°Cである。 (b)の Tgは通常 20°C〜200°C、好ましくは、 40°C〜200°Cである。 (b)の sp値は、通常 8〜16、好ましくは 9〜 14である。
[0097] 本第 2発明の製造方法にぉ 、ては、第 1の榭脂 (a)力もなる榭脂粒子 (A)の水性分 散液 (W)と、第 2の榭脂 (b)またはその溶剤溶液 (Ol)を混合し、(W)中に (Ol)を 分散させて、(A)の水性分散液 (W)中で、(b)からなる榭脂粒子 (B)を形成させるこ とにより、(B)の表面に榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が付着されてなる構 造の榭脂粒子 (C)の水性分散体を得た後、榭脂粒子 (B)の表面に付着する榭脂粒 子 (A)もしくは被膜 (P)の一部を分離除去および Zまたは溶解除去して榭脂粒子 (D )の水性分散体を得る。
または、榭脂 (a)力もなる榭脂粒子 (A)の水性分散液 (W)と、榭脂 (b)の前駆体 (b 0)またはその溶剤溶液 (02)を混合し、(W)中に(02)を分散させて、さらに、 (bO) を反応させて、(A)の水性分散液 (W)中で、(b)からなる榭脂粒子 (B)を形成させる こと〖こより、(B)の表面に榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が付着されてなる 構造の榭脂粒子 (C)の水性分散体を得た後、榭脂粒子 (B)の表面に付着する榭脂 粒子 (A)もしくは被膜 (P)の一部を分離除去および Zまたは溶解除去して榭脂粒子 (D)の水性分散体を得る。
榭脂粒子 (C)を得るための榭脂粒子 (A)の榭脂粒子 (B)に対する吸着力は、以下 のような方法で制御することができる。
〔1〕水性分散液 (W)を製造する際に、榭脂粒子 (A)と榭脂粒子 (B)が正負逆の電 荷を持つようにすると吸着力が発生し、この場合、榭脂粒子 (A)、榭脂粒子 (B)各々 の電荷を大きくするほど、吸着力が強くなり榭脂粒子 (A)の榭脂粒子 (B)に対する被 覆率が大きくなる。
〔2〕水性分散液 (W)を製造する際に、榭脂粒子 (A)と榭脂粒子 (B)が同極性 (どち らも正、またはどちらも負)の電荷を持つようにすると、被覆率は下がる傾向にある。こ の場合、一般に界面活性剤 (s)および Zまたは水溶性ポリマー (t) [とくに榭脂粒子( A)および榭脂粒子 (B)と逆電荷を有するもの]を使用すると被覆率が上がる。
〔3〕水性分散液 (W)を製造する際に、榭脂 (a)がカルボキシル基、リン酸基、スル ホン酸基等の酸性官能基を有する榭脂 (一般に酸性官能基 1個当たりの分子量が 1 , 000以下であるのが好ましい)である場合に、水性媒体の pHが低いほど被覆率が 大きくなる。逆に、 pHを高くするほど被覆率が小さくなる。
〔4〕水性分散液 (W)を製造する際に、榭脂 (a)が 1級ァミノ基、 2級ァミノ基、 3級ァ ミノ基、 4級アンモニゥム塩基等の塩基性官能基を有する榭脂 (一般に塩基性官能基 1個当たりの分子量が 1, 000以下であるのが好ましい)である場合に、水性媒体の p Hが高いほど被覆率が大きくなる。逆に、 pHを低くするほど被覆率が小さくなる。
[5]榭脂粒子 (A)と榭脂粒子 (B)の Δ sp値を小さくすると被覆率が大きくなる。
[0099] 榭脂 (b)もしくはその溶剤溶液、または、榭脂 (b)の前駆体 (bO)もしくはその溶剤 溶液を分散させる場合には、分散装置を用いることができる。
本発明で使用する分散装置は、一般に乳化機、分散機として市販されているもの であればとくに限定されず、例えば、ホモジナイザー (IKA社製)、ポリトロン (キネマ ティカ社製)、 TKオートホモミキサー (特殊機化工業社製)等のバッチ式乳化機、ェ ノ ラマイルダー (在原製作所社製)、 TKフィルミックス、 TKパイプラインホモミキサー (特殊機化工業社製)、コロイドミル (神鋼パンテック社製)、スラッシャー、トリゴナル湿 式微粉砕機 (三井三池化工機社製)、キヤピトロン (ユーロテック社製)、ファインフロ 一ミル (太平洋機工社製)等の連続式乳化機、マイクロフルイダィザー (みずほ工業 社製)、ナノマイザ一(ナノマイザ一社製)、 APVガウリン (ガウリン社製)等の高圧乳 ィ匕機、膜乳化機 (冷ィ匕工業社製)等の膜乳化機、パイブ口ミキサー (冷ィ匕工業社製) 等の振動式乳化機、超音波ホモジナイザー (ブランソン社製)等の超音波乳化機等 が挙げられる。このうち粒径の均一化の観点で好ましいものは、 APVガウリン、ホモジ ナイザー、 TKオートホモミキサー、ェバラマイルダー、 TKフィルミックス、 TKパイプラ インホモミキサーが挙げられる。
[0100] 榭脂 (b)を榭脂粒子 (A)の水性分散液 (W)に分散させる際、榭脂 (b)は液体であ ることが好ましい。榭脂 (b)が常温で固体である場合には、融点以上の高温下で液 体の状態で分散させたり、 (b)の溶剤溶液を用いてもよ!、。
榭脂 (b)もしくはその溶剤溶液、または、前駆体 (bO)もしくはその溶剤溶液の粘度 は、粒径均一性の観点力も通常 10〜5万 mPa' s (B型粘度計で測定)、好ましくは 1 00〜 1万 mPa · sである。
分散時の温度としては、通常、 0〜150°C (加圧下)、好ましくは 5〜98°Cである。分 散体の粘度が高い場合は、高温にして粘度を上記好ましい範囲まで低下させて、乳 化分散を行うのが好ましい。
榭脂 (b)もしくは前駆体 (bO)の溶剤溶液に用いる溶剤は、榭脂 (b)を常温もしくは 加熱下で溶解しうる溶剤であればとくに限定されず、具体的には、溶剤 (u)と同様の ものが例示される。好ましいものは榭脂 (b)の種類によって異なる力 (b)との sp値差 力 S3以下であるのが好適である。また、榭脂粒子 (C)および (D)の粒径均一性の観 点力もは、榭脂 (b)を溶解させるが、榭脂 (a)力もなる榭脂粒子 (A)を溶解'膨潤させ にくい溶剤が好ましい。
[0101] 榭脂 (b)の前駆体 (bO)としては、化学反応により榭脂 (b)になりうるものであれば特 に限定されず、例えば、榭脂 (b)が縮合系榭脂 (例えば、ポリウレタン榭脂、エポキシ 榭脂、ポリエステル榭脂)である場合は、(bO)は、反応性基を有するプレボリマー( )と硬化剤 ( β )の組み合わせが、榭脂 (b)がビュル系榭脂である場合は、 (bO)は、 先述のビュル系モノマー(単独で用いても、混合して用いてもよい)およびそれらの溶 剤溶液が挙げられる。
[0102] ビュル系モノマーを前駆体 (bO)として用いた場合、前駆体 (bO)を反応させて榭脂
(b)にする方法としては、例えば、油溶性開始剤、モノマー類および必要により溶剤( u)からなる油相を水溶性ポリマー (t)存在下、水中に分散懸濁させ、加熱によりラジ カル重合反応を行わせる方法 (いわゆる懸濁重合法)、モノマー類および必要により 溶剤 (u)カゝらなる油相を乳化剤 (界面活性剤 (s)と同様のものが例示される)、水溶性 開始剤を含む榭脂粒子 (A)の水性分散液 (W)中に乳化させ、加熱によりラジカル重 合反応を行わせる方法 ( ヽゎゆる乳化重合法)等が挙げられる。
[0103] 前駆体 (bO)としては、反応性基を有するプレボリマー( ex )と硬化剤 ( β )の組み合 わせを用いることもできる。ここで「反応性基」とは硬化剤 ( β )と反応可能な基のことを いう。この場合、前駆体 (bO)を反応させて榭脂 (b)を形成する方法としては、反応性 基含有プレボリマー( oc )および硬化剤 ( β )および必要により溶剤 (u)を含む油相を 、榭脂粒子 (Α)の水系分散液中に分散させ、加熱により反応性基含有プレボリマー( a )と硬化剤 ( β )を反応させて榭脂 (b)カゝらなる榭脂粒子 (B)を形成させる方法;反 応性基含有プレボリマー( )またはその溶剤溶液を榭脂粒子 (A)の水系分散液中 に分散させ、ここに水溶性の硬化剤 ( β )を加え反応させて、榭脂 (b)力もなる榭脂粒 子 (B)を形成させる方法;反応性基含有プレボリマー( a )が水と反応して硬化するも のである場合は、反応性基含有プレボリマー(ひ )またはその溶剤溶液を榭脂粒子( A)の水性分散液 (W)に分散させることで水と反応させて、 (b)力もなる榭脂粒子 (B) を形成させる方法等が例示できる。
反応性基含有プレボリマー( a )が有する反応性基と、硬化剤 ( β )の組み合わせと しては、下記〔1〕、〔2〕などが挙げられる。
〔1〕反応性基含有プレボリマー( a )が有する反応性基が、活性水素化合物と反応 可能な官能基(ひ 1)であり、硬化剤 ( β )が活性水素基含有化合物 ( β ΐ)であると!/、 う組み合わせ。
〔2〕反応性基含有プレボリマー( a )が有する反応性基が活性水素含有基( α 2)で あり、硬化剤 ( β )が活性水素含有基と反応可能な化合物( β 2)であると 、う組み合 わせ。
これらのうち、水中での反応率の観点から、〔1〕がより好ましい。
上記組合せ〔1〕において、活性水素化合物と反応可能な官能基( α 1)としては、ィ ソシァネート基( α la)、ブロック化イソシァネート基( α lb)、エポキシ基( α lc)、酸 無水物基( a Id)および酸ノ、ライド基( a le)などが挙げられる。これらのうち好ましい ものは、 ( a la) , lb)および lc)であり、特に好ましいものは、 la)および( a lb)である。
ブロック化イソシァネート基( a lb)は、ブロック化剤によりブロックされたイソシァネ ート基のことをいう。
上記ブロック化剤としては、ォキシム類 [ァセトォキシム、メチルイソブチルケトォキシ ム、ジェチノレケトォキシム、シクロペンタノンォキシム、シクロへキサノンォキシム、メチ ルェチルケトォキシム等] ;ラタタム類 [ Ύ—プチ口ラタタム、 ε —力プロラタタム、 γ - バレロラタタム等];炭素数 1〜20の脂肪族アルコール類 [エタノール、メタノール、ォ クタノール等];フエノール類 [フエノール、 m—クレゾール、キシレノール、ノ-ルフエノ ール等];活性メチレン化合物 [ァセチルアセトン、マロン酸ェチル、ァセト酢酸ェチル 等] ;塩基性窒素含有化合物 [N, N—ジェチルヒドロキシルァミン、 2—ヒドロキシピリ ジン、ピリジン N—オキサイド、 2—メルカプトピリジン等];およびこれらの 2種以上の 混合物が挙げられる。
これらのうち好ましいのはォキシム類であり、特に好ましいものはメチルェチルケトォ キシムである。 [0105] 反応性基含有プレボリマー( oc )の骨格としては、ポリエーテル ( a w) ,ポリエステル X)、エポキシ榭脂 ( a y)およびポリウレタン( a z)などが挙げられる。これらのうち 好ましいものは、(a x)、(a y)および(a ζ)であり、特に好ましいものは(a x)および 、 a zノで teる。
ポリエーテル( a w)としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポ リブチレンオキサイド、ポリテトラメチレンオキサイドなどが挙げられる。
ポリエステル( a X)としては、ジオール(11)とジカルボン酸(13)の重縮合物、ボリラ タトン( ε—力プロラタトンの開環重合物)などが挙げらる。
エポキシ榭脂(a y)としては、ビスフエノール類(ビスフエノール A、ビスフエノール F 、ビスフエノール Sなど)とェピクロルヒドリンとの付加縮合物などが挙げられる。
ポリウレタン(a z)としては、ジオール(11)とポリイソシァネート(15)の重付加物、ポ リエステノレ ( a χ)とポリイソシァネート(15)の重付加物などが挙げられる。
[0106] ポリエステル X)、エポキシ榭脂 ( a y) ,ポリウレタン ( a z)などに反応性基を含有 させる方法としては、
〔1〕二以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末 端に残存させる方法、
〔2〕二以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末 端に残存させ、さらに残存した該官能基と反応可能な官能基および反応性基を含有 する化合物を反応させる方法などが挙げられる。
上記方法〔1〕では、水酸基含有ポリエステルプレボリマー、カルボキシル基含有ポ リエステルプレボリマー、酸ノヽライド基含有ポリエステルプレボリマー、水酸基含有ェ ポキシ榭脂プレポリマー、エポキシ基含有エポキシ榭脂プレポリマー、水酸基含有ポ リウレタンプレボリマー、イソシァネート基含有ポリウレタンプレボリマーなどが得られる 構成成分の比率は、例えば、水酸基含有ポリエステルプレボリマーの場合、ポリオ ール( 1 )とポリカルボン酸(2)の比率が、水酸基 [OH]とカルボキシル基 [COOH]の 当量比 [OH]Z[COOH]として、通常 2Z1〜: LZl、好ましくは 1. 5/1〜: LZl、さ らに好ましくは 1. 3Zl〜l. 02Z1である。他の骨格、末端基のプレボリマーの場合 も、構成成分が変わるだけで比率は同様である。
上記方法〔2〕では、上記方法〔1〕で得られたプレブリマーに、ポリイソシァネートを 反応させることでイソシァネート基含有プレボリマーが得られ、ブロック化ポリイソシァ ネートを反応させることでブロック化イソシァネート基含有プレボリマーが得られ、ポリ ェポキサイドを反応させることでエポキシ基含有プレボリマーが得られ、ポリ酸無水物 を反応させることで酸無水物基含有プレボリマーが得られる。
官能基および反応性基を含有する化合物の使用量は、例えば、水酸基含有ポリェ ステルにポリイソシァネートを反応させてイソシァネート基含有ポリエステルプレボリマ 一を得る場合、ポリイソシァネートの比率が、イソシァネート基 [NCO]と、水酸基含有 ポリエステルの水酸基 [OH]の当量比 [NCO] / [OH]として、通常 5Z1〜: LZ1、 好ましくは 4Zl〜l. 2Z1、さらに好ましくは 2. 5Zl〜l. 5Z1である。他の骨格、 末端基を有するプレボリマーの場合も、構成成分が変わるだけで比率は同様である
[0107] 反応性基含有プレボリマー )中の 1分子当たりに含有する反応性基は、通常 1 個以上、好ましくは、平均 1. 5〜3個、さらに好ましくは、平均 1. 8〜2. 5個である。 上記範囲にすることで、硬化剤 ( β )と反応させて得られる硬化物の分子量が高くなる 反応性基含有プレポリマー(α )の Μηは、通常 500〜30, 000、好ましくは 1, 000 〜20, 000、さらに好まし <は 2, 000〜10, 000である。
反応性基含有プレポリマー( α )の重量平均分子量は、 1, 000-50, 000、好まし <は 2, 000〜40, 000、さらに好まし <は 4, 000〜20, 000である。
反応性基含有プレボリマー(ひ)の粘度は、 100°Cにおいて、通常 2, 000ボイズ以 下、好ましくは 1, 000ボイズ以下である。 2, 000ボイズ以下〖こすることで、少量の溶 剤で粒度分布のシャープな榭脂粒子 (C)および (D)が得られる点で好ま 、。
[0108] 活性水素基含有化合物( |8 1)としては、脱離可能な化合物でブロック化されて 、て もよ ヽポリアミン( j8 la)、ポリオール( j8 lb)、ポリメルカプタン( 13 lc)および水( 13 Id )などが挙げられる。これらのうち好ましいものは、(j8 la)、( lb)および( Id)で あり、さらに好ましいもは、(j8 la)および( Id)であり、特に好ましいもは、ブロックィ匕 されたポリアミン類および( j8 Id)である。
( j8 la)としては、ポリアミン(16)と同様のものが例示される。( |8 la)として好ましい ものは、 4, 4' ージアミノジフエ二ノレメタン、キシリレンジァミン、イソホロンジァミン、ェ チレンジァミン、ジエチレントリァミン、トリエチレンテトラミンおよびそれらの混合物で ある。
[0109] ( β la)が脱離可能な化合物でブロック化されたポリアミンである場合の例としては、 前記ポリアミン類と炭素数 3〜8のケトン類 (アセトン、メチルェチルケトン、メチルイソ プチルケトンなど)力 得られるケチミンィ匕合物、炭素数 2〜8のアルデヒドィ匕合物(ホ ルムアルデヒド、ァセトアルデヒド)力 得られるアルジミン化合物、ェナミン化合物、 およびォキサゾリジンィ匕合物などが挙げられる。
[0110] ポリオール(j8 lb)としては、前記のジオール(11)およびポリオール(12)と同様の ものが例示される。ジオール(11)単独、またはジオール(11)と少量のポリオール(1
2)の混合物が好ましい。
ポリメルカプタン(j8 lc)としては、エチレンジチオール、 1 , 4 ブタンジチオール、
1 , 6 へキサンジチオールなどが挙げられる。
[0111] 必要により活性水素基含有化合物( β 1)と共に反応停止剤( β s)を用いることがで きる。反応停止剤を( ι8 1)と一定の比率で併用することにより、(b)を所定の分子量に 調整することが可能である。
反応停止剤( β s)としては、モノアミン (ジェチルァミン、ジブチルァミン、ブチルアミ ン、ラウリルァミン、モノエタノールァミン、ジエタノールァミンなど);
モノアミンをブロックしたもの(ケチミンィ匕合物など);
モノオール(メタノール、エタノール、イソプロパノール、ブタノール、フエノールなど) モノメルカプタン(プチルメルカプタン、ラウリルメルカプタンなど);
モノイソシァネート(ラウリルイソシァネート、フエ-ルイソシァネートなど); モノェポキサイド (ブチルダリシジルエーテルなど)などが挙げられる。
[0112] 上記組合せ〔2〕における反応性基含有プレボリマー( ex )が有する活性水素含有基
( a 2)としては、アミノ基( α 2a)、水酸基(アルコール性水酸基およびフ ノール性水 酸基) 2b)、メルカプト基 2c)、カルボキシル基 ( a 2d)およびそれらが脱離可 能な化合物でブロック化された有機基(ひ 2e)などが挙げられる。これらのうち好まし
V、ものは、 ( a 2a) , ( a 2b)およびァミノ基が脱離可能な化合物でブロック化された有 機基 2e)であり、特に好ましいものは、( (X 2b)である。
ァミノ基が脱離可能な化合物でブロック化された有機基としては、前記(|8 la)の場 合と同様のものが例示できる。
[0113] 活性水素含有基と反応可能な化合物( β 2)としては、ポリイソシァネート( |8 2a)、 ポリエポキシド( 2b)、ポリカルボン酸( j8 2c)、ポリカルボン酸無水物( 13 2d)および ポリ酸ノ、ライド( j8 2e)などが挙げられる。これらのうち好ましいものは、( β 2a)および
( j8 2b)であり、さらに好ましいものは、(j8 2a)である。
[0114] ポリイソシァネート(j8 2a)としては、ポリイソシァネート(15)と同様のものが例示され
、好ましいものも同様である。
ポリエポキシド( 2b)としては、ポリエポキシド(19)と同様のものが例示され、好ま しいものも同様である。
[0115] ポリカルボン酸( j8 2c)としては、ジカルボン酸( j8 2c— 1)および 3価以上のポリ力 ルボン酸( j8 2c— 2)が挙げられ、( j8 2c— 1)単独、および( j8 2c— 1)と少量の( j8 2 c 2)の混合物が好ましい。
ジカルボン酸( j8 2c— 1)としては、前記ジカルボン酸(13)と、ポリカルボン酸として は、前記ポリカルボン酸(5)と同様のものが例示され、好ましいものも同様である。
[0116] ポリカルボン酸無水物( 13 2d)としては、ピロメリット酸無水物などが挙げられる。
ポリ酸ノヽライド類( β 2e)としては、前記( β 2c)の酸ハライド (酸クロライド、酸ブロマ イド、酸アイオダイド)などが挙げられる。
さらに、必要により( β 2)と共に反応停止剤( β s)を用いることができる。
[0117] 硬化剤(j8 )の比率は、反応性基含有プレボリマー(α )中の反応性基の当量 [ひ]と 、硬化剤 ( β )中の活性水素含有基 [ )8 ]の当量の比 [ひ] Ζ[ ι8 ]として、通常 1Ζ2〜 2Z1、好ましくは 1. 5Z1〜: LZ1. 5、さらに好ましくは 1. 2Z1〜: LZ1. 2である。な お、硬化剤( j8 )が水( j8 Id)である場合は水は 2価の活性水素化合物として取り扱う [0118] 反応性基含有プレボリマー( ex )と硬化剤 ( β )からなる前駆体 (bO)を水系媒体中 で反応させた榭脂 (b)が榭脂粒子 (B)並びに榭脂粒子 (C)および (D)の構成成分と なる。反応性基含有プレボリマー( a )と硬化剤 ( β )を反応させた榭脂 (b)の重量平 均分子量は、通常 3, 000以上、好まし <は 3, 000〜1000万、さらに好まし <は, 50 00〜: L00万である。
[0119] また、反応性基含有プレボリマー( ex )と硬化剤 ( β )との水系媒体中での反応時に 、反応性基含有プレボリマー( )および硬化剤 ( β )と反応しな ヽポリマー 、わゆる デッドポリマー]を系内に含有させることもできる。この場合 (b)は、反応性基含有プレ ポリマー( a )と硬化剤 ( β )を水系媒体中で反応させて得られた榭脂と、反応させて いない榭脂の混合物となる。
[0120] 榭脂 (b)もしくは前駆体 (bO) 100部に対する水性分散液 (W)の使用量は、好まし くは 50〜2, 000重量部、さらに好ましくは 100〜1, 000重量部である。 50重量部以 上では (b)の分散状態が良好であり、 2, 000重量部以下であると経済的である。
[0121] 本第 2発明の製造方法においては、所定の軟化開始温度、ガラス転移温度、流出 温度、およびガラス転移温度と流出温度の差を有する榭脂 (a)を用いることにより、と くに (b)もしくは (bO)の溶剤溶液 (とくに下記の好ま 、溶剤)を用いる場合、溶剤を 水性榭脂分散体中に好ましくは 10〜50% (とくに 20〜40%)用い、 40°C以下で好 ましくは 1%以下(とくに 0. 5%以下)となるまで脱溶剤することで、榭脂粒子 (A)が溶 剤に溶解されて膜状ィ匕し、 (B)の表面に榭脂 (a)の被膜 (P)が形成された榭脂粒子( C)の水性榭脂分散体が得られる場合が多!、。
上記溶剤としては、(b)との親和性が高いものが好ましぐ具体例としては、前記の 溶剤 (u)と同様のものが挙げられる。(u)の中で好ましいものは、被膜ィ匕の点から、テ トラヒドロフラン、トルエン、アセトン、メチルェチルケトン、および酢酸ェチルであり、さ らに好ましくは酢酸ェチルである。
[0122] 本第 2発明の製造方法で得られる榭脂粒子 (D)の形状の制御は、榭脂粒子 (A)と 榭脂粒子 (B)の sp値差、また榭脂粒子 (A)の分子量を制御することで粒子形状や粒 子表面性を制御することができる。 sp値差が小さ 、と 、びつな形で表面平滑な粒子 が得られやすぐまた、 sp値差が大きいと球形で表面はザラつきのある粒子が得られ やすい。また、(A)の分子量が大きいと表面はザラつきのある粒子が得られやすぐ 分子量が小さいと表面平滑な粒子が得られやすい。ただし、(A)と (B)の sp値差は 小さすぎても大きすぎても造粒困難になる。また榭脂粒子 (A)の分子量も小さすぎる と造粒困難になる。このことから、好ましい (A)と(B)の sp値差は 0. 01〜5. 0で、より 好ましくは 0. 1〜3. 0、さらに好ましくは 0. 2〜2. 0である。また、好ましい榭脂粒子( A)の重量平均分子量は 100〜100万で、より好ましくは 1000〜50万、さらに好まし <は 2000〜20万、特に好まし <は 3000〜10万である。
[0123] 本第 2発明の製造方法にぉ 、て、榭脂粒子 (C)および (D)の粒径均一性、榭脂粒 子 (D)の保存安定性等の観点から、中間体である榭脂粒子 (C)は、 0. 01〜60%の 榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)と 40〜99. 99%の (B)力もなるのが好まし く、さらに好ましくは 0. 1〜50%の(A)もしくは(P)と 50〜99. 9%の(B)、とくに好ま しくは 1〜45%の(A)もしくは(P)と 55〜99%の(B)からなる。
[0124] また、榭脂粒子 (C)および (D)の粒径均一性、榭脂粒子 (D)の粉体流動性、保存 安定性等の観点からは、榭脂粒子 (C)において、榭脂粒子 (B)の表面の 5%以上、 好ましくは 30%以上、さらに好ましくは 50%以上、とくに好ましくは 80%以上が榭脂 粒子 (A)もしくは榭脂 (a)の被膜 (P)で覆われて 、るのがよ ヽ。 (C)の表面被覆率は 、後述する (D)の水性榭脂分散体力も水性媒体を除去する方法と同様の方法で水 性媒体を除去して得られる榭脂粒子の、走査電子顕微鏡 (SEM)で得られる像の画 像解析から下式に基づ 、て求めることができる。
表面被覆率 (%) = [榭脂粒子 (A)もしくは被膜 (P)に覆われている部分の面積 Z 榭脂粒子 (A)もしくは被膜 (P)に覆われて 、る部分の面積 +榭脂粒子 (B)が露出し ている部分の面積] X 100
[0125] 榭脂粒子 (D)の粒径均一性、粉体流動性等の観点から、榭脂粒子 (A)もしくは榭 脂(a)の被膜 (P)の量は、(D)の重量に対して、好ましくは 0. 1〜5%、さらに好ましく は 0. 12〜3%、特に好ましくは 0. 15〜1%、もっとも好ましくは 0. 2〜0. 9%である 。(A)もしくは (P)の量は DSCで測定された溶融熱量から下式に基づ 、て求めること ができる。
榭脂粒子 (A)もしくは被膜 (P)の量 (%) = [ (A)もしくは (P)の溶融熱量 Z ( もし くは (P)の溶融熱量 +榭脂粒子 (B)の溶融熱量] X 100
[0126] 榭脂粒子 (D)の粒径均一性、粉体流動性等の観点から、本第 1発明の榭脂粒子( D)において、榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)による榭脂粒子 (B)の表面 の被覆率は、通常 0. 1〜4. 9%、好ましくは 0. 1〜4%、さらに好ましくは 0. 12〜3 %、特に好ましくは 0. 15〜1%、もっとも好ましくは 0. 2〜0. 9%である。なお、表面 被覆率は、走査電子顕微鏡 (SEM)で得られる像の画像解析から前記の式に基づ いて求めることができる。
(A)もしくは (P)の表面被覆率を上記範囲内に調整する方法としては、もし所望の 被覆率より高い榭脂粒子が得られた場合は、前述の榭脂粒子 (A)もしくは榭脂 (a) の被膜 (P)の分離除去および Zまたは溶解除去の操作を繰り返せばよい。また、被 覆率が 0%など、所望の被覆率より低い榭脂粒子が得られた場合は、該榭脂粒子の 水性分散体に、少量の榭脂 (a)力もなる榭脂粒子 (A)を含有する水性分散液 (W)を 混合し、該榭脂粒子の表面に榭脂粒子 (A)を付着させればょ ヽ。
[0127] 粒径均一性の観点から、榭脂粒子 (C)および (D)の体積分布の変動係数は、 30 %以下であるのが好ましぐ 0. 1〜15%であるのがさらに好ましい。
また、粒径均一性から、榭脂粒子 (C)および (D)の [体積平均粒径 Z個数平均粒 径]の値は、 1. 0〜1. 4であるのが好ましぐ 1. 0〜1. 2であるのがさらに好ましい。
(D)の体積平均粒径は、用途により異なる力 一般的には 0. 1〜300 /ζ πιが好まし い。上限は、さらに好ましくは 250 /ζ πι、特に好ましくは 200 /z mであり、下限は、さら に好ましくは 0. 5 m、特に好ましくは 1 μ mである。
なお、体積平均粒径および個数平均粒径は、マルチサイザ一 III (コールター社製) で同時に測定することができる。
[0128] 本発明の榭脂粒子 (D)は、榭脂粒子 (A)と榭脂粒子 (B)の粒径、および、榭脂粒 子 (A)もしくは榭脂 (a)の被膜 (P)による榭脂粒子 (B)表面の被覆率を変えることで、 粒子表面に所望の凹凸を付与することができる。粉体流動性を向上させたい場合に は、(D)の BET値比表面積が 0. 5〜5. 0m2Zgであるのが好ましい。本発明の BET 比表面積は、比表面積計、例えば QUANTASORB (ュアサアイォ-タス製)を用い て測定(測定ガス: HeZKr= 99. 9/0. lvol%、検量ガス:窒素)したものである。 同様に粉体流動性の観点から、(D)の表面平均中心線粗さ Raが 0. 01〜0. 8 μ mであるのが好ましい。 Raは、粗さ曲線とその中心線との偏差の絶対値を算術平均 した値のことであり、例えば、走査型プローブ顕微鏡システム (東陽テク-力製)で測 定することができる。
[0129] 榭脂粒子 (D)の形状は、粉体流動性、溶融レべリング性等の観点から球状である のが好ましい。その場合、榭脂粒子 (B)に付着しているのが榭脂 (a)の被膜 (P)であ り、(B)が球状であるか、(B)に付着しているのが榭脂粒子 (A)の場合は、(A)およ び(B)も球状であるのが好ましい。(D)は平均円形度が 0. 95〜: L 00であるのが好 ましい。平均円形度は、さらに好ましくは 0. 96〜: L 0、とくに好ましくは 0. 97〜: L 0 である。なお、平均円形度は、光学的に粒子を検知して、投影面積の等しい相当円 の周囲長で除した値である。具体的には、フロー式粒子像分析装置 (FPIA— 2000 ;シスメッタス社製)を用いて測定する。所定の容器に、予め不純固形物を除去した水 100〜150mlを入れ、分散剤として界面活性剤(ドライゥエル;富士写真フィルム社 製) 0. 1〜0. 5mlをカ卩え、さらに測定試料 0. 1〜9. 5g程度をカ卩える。試料を分散し た懸濁液を超音波分散器(ウルトラソニッククリーナ モデル VS— 150 ;ゥエルボクリ ァ社製)で約 1〜3分間分散処理を行ない、分散濃度を 3, 000〜10, 000個 Z L にして榭脂粒子の形状および分布を測定する。
[0130] 本第 2発明の製造方法により得られる榭脂粒子 (D)は、榭脂粒子 (B)に付着してい るのが被膜 (P)であることが好ましいが、榭脂粒子 (A)である場合は、榭脂粒子 (A) の榭脂粒子 (B)に対する粒径比、および、水性榭脂分散体中における榭脂粒子 (A )による榭脂粒子 (B)表面の被覆率、水性榭脂分散体中における榭脂粒子 (B) Z水 性媒体界面上で榭脂粒子 (A)が榭脂粒子 (B)側に埋め込まれて 、る深さ、を変える ことで粒子表面を平滑にしたり、粒子表面に所望の凹凸を付与したりすることができ る。
榭脂粒子 (A)による榭脂粒子 (B)表面の被覆率ゃ榭脂粒子 (A)が榭脂粒子 (B) 側に埋め込まれている深さは、以下のような方法で制御することができる。
〔1〕樹脂粒子 (C)からなる水性樹脂分散体を製造する際に、樹脂粒子 (A)と樹脂 粒子 (B)が正負逆の電荷を持つようにすると被覆率、深さが大きくなる。この場合、榭 脂粒子 (A)、榭脂粒子 (B)各々の電荷を大きくするほど、被覆率、深さが大きくなる。 〔2〕樹脂粒子 (C)からなる水性樹脂分散体を製造する際に、樹脂粒子 (A)と樹脂 粒子 (B)が同極性 (どちらも正、またはどちらも負)の電荷を持つようにすると、被覆率 は下がり、深さが小さくなる傾向にある。この場合、一般に活性剤(s)および Zまたは 水溶性ポリマー (t) [とくに榭脂粒子 (A)および榭脂粒子 (B)と逆電荷を有するもの] を使用すると被覆率が上がる。また、水溶性ポリマー (t)を使用する場合には、水溶 性ポリマー (t)の分子量が大きいほど深さが小さくなる。
〔3〕榭脂粒子 (C)からなる水性榭脂分散体を製造する際に、榭脂 (a)がカルボキシ ル基、リン酸基、スルホン酸基等の酸性官能基を有する榭脂 (一般に酸性官能基 1 個当たりの分子量が 1, 000以下であるのが好ましい)である場合に、水性媒体の pH が低いほど被覆率、深さが大きくなる。逆に、 pHを高くするほど被覆率、深さが小さく なる。
〔4〕榭脂粒子 (C)からなる水性榭脂分散体を製造する際に、榭脂 (a)が 1級ァミノ 基、 2級ァミノ基、 3級ァミノ基、 4級アンモニゥム塩基等の塩基性官能基を有する榭 脂(一般に塩基性官能基 1個当たりの分子量が 1, 000以下であるのが好ましい)で ある場合に、水性媒体の pHが高いほど被覆率、深さが大きくなる。逆に、 pHを低く するほど被覆率、深さが小さくなる。
[5]榭脂 (a)と榭脂 (b)の SP値差を小さくするほど被覆率、深さが大きくなる。
[0131] 本第 2発明の製造方法において、榭脂粒子 (D)の水性分散体は、榭脂粒子 (C)か ら、互いに付着して!/ヽる榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)と榭脂粒子 (B)を 脱離させた後、該水性分散体から榭脂粒子 (A)もしくは被膜 (P)を分離除去したり、 または該水性分散体中にぉ ヽて、榭脂粒子 (B)を溶解させることなく榭脂粒子 (A)も しくは被膜 (P)を溶解させたりして得られる。榭脂粒子 (A)もしくは被膜 (P)の溶解物 は必要に応じて分離除去してもよい。さらに、榭脂粒子 (D)の水性分散体力も水性 媒体を除去することにより榭脂粒子 (D)が得られる。
[0132] 榭脂粒子 (C)の水性分散体中にぉ 、て、付着して!/、る榭脂粒子 (A)もしくは榭脂( a)の被膜 (P)と榭脂粒子 (B)を脱離させる方法としては、
〔1〕榭脂粒子 (C)の水性分散体を超音波処理する方法 〔2〕榭脂粒子 (C)の水性分散体を大量の水またはメタノール、エタノール若しくは アセトン等の水溶性の有機溶剤で希釈し、攪拌により剪断を与える方法
〔3〕榭脂粒子 (C)の水性分散体に酸、アルカリまたは無機塩類等を添加し、攪拌に より剪断を与える方法
〔4〕榭脂粒子 (C)の水性分散体を加熱し、攪拌により剪断を与える方法
[5]榭脂粒子 (C)の水性分散体が溶剤を含む場合 [榭脂 (a)の溶剤溶液および Z または榭脂 (b)溶剤溶液が水性媒体中に分散されて!ヽる場合や、水性媒体中に溶 剤が溶解している場合]に、脱溶剤を行う方法等が例示される。
榭脂粒子 (C)の水性分散体中にお!、て、榭脂粒子 (A)もしくは被膜 (P)を溶解さ せる方法としては、
〔1〕榭脂 (a)がカルボキシル基、リン酸基、スルホン酸基等の酸性官能基を有する 榭脂(一般に酸性官能基 1個当たりの分子量が 1, 000以下であるのが好ましい)で ある場合に、水性分散体中に水酸化ナトリウム、水酸ィ匕カリウム、アンモニア、 DBU 等のアルカリまたはそれらの水溶液をカ卩える方法
〔2〕榭脂(a)が 1級ァミノ基、 2級ァミノ基、 3級ァミノ基、 4級アンモ-ゥム塩基等の 塩基性官能基を有する榭脂 (一般に塩基性官能基 1個当たりの分子量が 1, 000以 下であるのが好ましい)である場合に、水性分散体中に塩酸、硫酸、リン酸、酢酸等 の酸またはそれらの水溶液をカ卩える方法
〔3〕榭脂 (a)が、特定の溶剤 (U)に溶解する場合 {一般に榭脂 (a)と溶剤 (U)の SP 値の差が 2. 5以下であるのが好ましい }に、水性分散体中に特定の溶剤 (U)を加え る方法等が例示される。
榭脂粒子 (A)もしくは被膜 (P)を除去する方法としては、榭脂粒子を溶解する方法 が好ましぐさらに好ましくは、酸性官能基を有する榭脂にアルカリまたはそれらの水 溶液を加える方法および塩基性官能基を有する榭脂に酸またはその水溶液を加え る方法であり、特に好ましくは、酸性官能基を有する榭脂にアルカリまたはその水溶 液を加える方法である。なお、榭脂粒子 (A)もしくは被膜 (P)を完全に除去しようとし て除去工程を強化し過ぎると、榭脂粒子 (D)の表面が劣化して、定着、帯電が悪ィ匕 することがある。したがって、榭脂粒子 (A)もしくは被膜 (P)が榭脂粒子 (B)の表面に 0. 1%以上残存するような条件で、(A)もしくは(P)を除去するのが好ましい。
[0134] 水性分散体力も榭脂粒子 (A)もしくは被膜 (P)またはその溶解物を分離除去する 方法としては、
〔1〕一定の目開きを有する濾紙、濾布、メッシュ等を用いて濾過し、榭脂粒子 (B)の みを濾別する方法
〔2〕遠心分離により榭脂粒子 (B)のみを沈降させ、上澄み中に含まれる榭脂粒子( A)もしくは被膜 (P)またはその溶解物を除去する方法等が例示される。
[0135] 榭脂粒子 (D)の水性榭脂分散体から水性媒体を除去する方法としては、
〔1〕水性榭脂分散体を減圧下または常圧下で乾燥する方法
〔2〕遠心分離器、スパクラフィルター、フィルタープレスなどにより固液分離し、得ら れた粉末を乾燥する方法
〔3〕水性榭脂分散体を凍結させて乾燥させる方法 (1、わゆる凍結乾燥) 等が例示される。
上記〔1〕、〔2〕において、得られた粉末を乾燥する際、流動層式乾燥機、減圧乾燥 機、循風乾燥機など公知の設備を用いて行うことができる。
また、必要に応じ、風力分級器などを用いて分級し、所定の粒度分布とすることもで きる。
[0136] 榭脂粒子 (D)を構成する榭脂粒子 (A)もしくは被膜 (P)および Zまたは (B)中に、 添加剤 (顔料、充填剤、帯電防止剤、着色剤、離型剤、荷電制御剤、紫外線吸収剤 、酸化防止剤、ブロッキング防止剤、耐熱安定剤、難燃剤など)を混合しても差し支 えない。(A)もしくは被膜 (P)または (B)中に添加剤を添加する方法としては、水系 媒体中で榭脂粒子 (C)力もなる水性榭脂分散体を形成させる際に混合してもよ!/、が 、あらかじめ榭脂 (a)または榭脂 (b)と添加剤を混合した後、水系媒体中にその混合 物を加えて分散させたほうがより好ましい。
また、本発明においては、添加剤は、必ずしも、水系媒体中で粒子を形成させる時 に混合しておく必要はなぐ粒子を形成せしめた後、添加してもよい。たとえば、着色 剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加したり、溶剤( u)および Zまたは可塑剤 (V)とともに上記添加剤を含浸させることもできる。 [0137] また、添加剤として、榭脂粒子 (B)中に、榭脂 (b)と共に、ワックス (c)、およびビ- ル系ポリマー鎖がグラフトした変性ワックス (d)を含有すると、耐熱保存安定性がより 向上し好ましい。
(B)中の(c)の含有量は、好ましくは 20%以下、さらに好ましくは 1〜15%である。 ( d)の含有量は、好ましくは 10%以下、さらに好ましくは 0. 5〜8%である。(c)と(d) の合計含有量は、好ましくは 25%以下、さらに好ましくは 1〜20%である。
[0138] ワックス(c)はあらかじめ変性ワックス (d)と溶剤不存在下の溶融混練処理および Z または溶剤 (u)存在下加熱溶解混合処理した後に榭脂 (b)に分散される。
ワックス(c)としては、ポリオレフインワックス、パラフィンワックス、カルボ-ル基含有 ワックスおよびこれらの混合物等が挙げられる力 このうち、とくに好ましいのはバラフ インワックス(cl)である。 (cl)としては、融点 50〜90°Cで炭素数 20〜36の直鎖飽 和炭化水素を主成分とする石油系ワックスが挙げられる。
また、離型性の観点から、(c)の Mnは、好ましくは 400〜5000、さら〖こ好ましくは 1 000〜3000、とくに 1500〜2000である。尚、上記および以下にお!/、てワックスの M nは、 GPCを用いて測定される(溶媒:オルソジクロ口ベンゼン、基準物質:ポリスチレ ン)。
[0139] ワックス (c)は、ビニル系ポリマー鎖がグラフトした変性ワックス (d)と無溶媒下溶融 混練処理および Zまたは前記の溶剤 (u)存在下の加熱溶解混合処理した後に、榭 脂 (b)に分散されるのが好ましい。この方法により、ワックス分散処理時に変性ヮック ス (d)を共存させることにより、(d)のワックス基部分が効率よく(c)表面に吸着、ある いはワックスのマトリクス構造内に一部絡みあうことにより、ワックス (c)表面と榭脂 (b) との親和性が良好になり、(c)をより均一に榭脂粒子 (B)中に内包することができ、分 散状態の制御が容易になる。
[0140] 変性ワックス(d)は、ワックスにビュル系ポリマー鎖がグラフトしたものである。 (d)に 用いられるワックスとしては上記ワックス(c)と同様のものが挙げられ、好ましいものも 同様である。 (d)のビュル系ポリマー鎖を構成するビニル系モノマーとしては、前記ビ -ル榭脂を構成するモノマー(1)〜(10)と同様のものが挙げられる力 この中でとく に好ましいのは(1)、(2)、および(6)である。ビュル系ポリマー鎖はビニル系モノマ 一の単独重合体でもよいし、共重合体でもよい。
[0141] 変性ワックス(d)におけるワックス成分の量(未反応ワックスを含む)は、 0. 5〜99.
5%が好ましぐさらに好ましくは 1〜80%、とくに好ましくは 5〜50%、最も好ましくは 10〜30%である。また (d)の Tgは、榭脂粒子 (D)の耐熱保存安定性の観点から、 好ましくは 40〜90°C、さらに好ましくは 50〜80°Cである。
(d)の Mnは、好ましくは 1500〜10000、とくに 1800〜9000である。 Mn力 1500 〜10000の範囲では、榭脂粒子 (D)の機械強度が良好である。
[0142] 変性ワックス (d)は、例えばワックス(c)を溶剤(例えばトルエンまたはキシレン)に溶 解または分散させ、 100〜200°Cに加熱した後、ビュル系モノマーをパーオキサイド 系開始剤(ベンゾィルパーオキサイド、ジターシャリーブチルパーオキサイド、ターシ ヤリブチルパーオキサイドベンゾエート等)とともに滴下して重合後、溶剤を留去する こと〖こより得られる。
変性ワックス (d)の合成におけるパーオキサイド系開始剤の量は、(d)の原料の合 計重量に基づいて、好ましくは 0. 2〜10%、さらに好ましくは 0. 5〜5%である。
[0143] パーオキサイド重合開始剤としては、油溶性パーオキサイド重合開始剤および水溶 性パーオキサイド重合開始剤等が用いられる。
これらの開始剤の具体例としては、前記のものが挙げられる。
[0144] ワックス (c)と変性ワックス (d)を混合する方法としては、〔1〕それぞれの融点以上の 温度で溶融混練する方法、〔2〕 (c)と (d)を溶剤 (u)中に溶解ある!/、は懸濁させた後 、冷却晶析、溶剤晶析等により液中に析出、あるいはスプレードライ等により気体中 に析出させる方法、〔3〕(c)と (d)を溶剤 (u)中に溶解あるいは懸濁させた後、分散機 により機械的に湿式粉砕させる方法、等が挙げられる。これらの中では、〔2〕の方法 が好ましい。
ワックス (c)および変性ワックス (d)を (b)中に分散させる方法としては、(c)および( d)と、(b)とを、それぞれ溶剤溶液もしくは分散液とした後、それら同士を混合する方 法等が挙げられる。
実施例
[0145] 以下実施例により本発明をさらに説明する力 本発明はこれに限定されるものでは な 、。以下の記載にぉ 、て「部」は重量部を示す。
[0146] 製造例 1 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 下、ァクジノレ酸ブチノレ 31咅^醉酸ビ二ノレ 153咅^メタク!;ノレ酸 122咅^ァノレキノレア リルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過酸ィ匕 ベンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この重合 溶液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分散液 W1]を得た。 [微粒子分散液 W1]を LA— 920および ELS - 800で測定した体積平 均粒径は、いずれも 0. 11 /z mであった。 [微粒子分散液 W1]の一部を乾燥して榭 脂分を単離した。該榭脂分の DSC測定による Tgは 71°C、軟ィ匕開始温度は 105°Cで あり、流出温度は 169°Cであった。
[0147] 製造例 2 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 132部を仕込み、 攪拌下、スチレン 55部、メタクリル酸 110部、アクリル酸ブチル 110部、アルキルァリ ルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過酸化べ ンゾィル(25%含水品) 60部の混合溶液を、 120分かけて滴下した。この重合溶液 5 0部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分散液 W2]を 得た。 [微粒子分散液 W2]を LA— 920および ELS - 800で測定した体積平均粒径 は、いずれも 0. 10 mであった。 [微粒子分散液 W2]の一部を乾燥して榭脂分を単 離した。該榭脂分の DSC測定による Tgは 73°C、軟ィ匕開始温度は 102°Cであり、流 出温度は 178°Cであつた。
[0148] 製造例 3 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 攪拌下、アクリル酸ブチル 31部、酢酸ビュル 214部、メタクリル酸 61部、アルキルァリ ルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過酸化べ ンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この重合溶 液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分散液 W3 ]を得た。 [微粒子分散液 W3]を LA— 920および ELS— 800で測定した体積平均 粒径は、いずれも 0. 10 mであった。 [微粒子分散液 W3]の一部を乾燥して榭脂 分を単離した。該榭脂分の DSC測定による Tgは 60°C、軟ィ匕開始温度は 97°Cであり 、流出温度は 159°Cであった。
[0149] 製造例 4 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 攪拌下、アクリル酸ブチル 31部、酢酸ヒ、 ル 153部、無水マレイン酸 122部、アルキ ルァリルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過 酸ィ匕ベンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この 重合溶液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分 散液 W4]を得た。 [微粒子分散液 W4]を LA— 920および ELS— 800で測定した体 積平均粒径は、いずれも 0. 10 /z mであった。 [微粒子分散液 W4]の一部を乾燥し て榭脂分を単離した。該榭脂分の DSC測定による Tgは 82°C、軟化開始温度は 119 °Cであり、流出温度は 189°Cであった。
[0150] 製造例 5 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 攪拌下、アクリル酸ブチル 31部、酢酸ビュル 214部、無水マレイン酸 61部、アルキ ルァリルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過 酸ィ匕ベンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この 重合溶液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分 散液 W5]を得た。 [微粒子分散液 W5]を LA— 920および ELS— 800で測定した体 積平均粒径は、いずれも 0. 10 /z mであった。 [微粒子分散液 W5]の一部を乾燥し て榭脂分を単離した。該榭脂分の DSC測定による Tgは 67°C、軟化開始温度は 103 °Cであり、流出温度は 171°Cであった。
[0151] 製造例 6 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 枠下、ァクジノレ酸ブチノレ 31咅^醉酸ビ二ノレ 153咅^ク P卜ン酸 122咅^ァノレキノレアジ ルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過酸化べ ンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この重合溶 液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分散液 W6 ]を得た。 [微粒子分散液 W6]を LA— 920および ELS— 800で測定した体積平均 粒径は、いずれも 0. 10 mであった。 [微粒子分散液 W6]の一部を乾燥して榭脂 分を単離した。該榭脂分の DSC測定による Tgは 70°C、軟ィ匕開始温度は 104°Cであ り、流出温度は 170°Cであった。
[0152] 製造例 7 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール 130部を仕込み、 攪拌下、アクリル酸ブチル 31部、酢酸ビュル 214部、クロトン酸 61部、アルキルァリ ルスルホコハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、過酸化べ ンゾィル(25%含水品) 60部の混合溶液を、 120分間かけて滴下した。この重合溶 液 50部をさらに撹拌下のイオン水 60部に滴下して、水性分散液 [微粒子分散液 W7 ]を得た。 [微粒子分散液 W7]を LA— 920および ELS— 800で測定した体積平均 粒径は、いずれも 0. 10 mであった。 [微粒子分散液 W7]の一部を乾燥して榭脂 分を単離した。該榭脂分の DSC測定による Tgは 61°C、軟ィ匕開始温度は 99°Cであり 、流出温度は 157°Cであった。
[0153] 製造例 8 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、水 753部、アルキルァリルスルホコ ハク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、酢酸ビニル 88部、メ タクリル酸 88部、アクリル酸ブチル 42部、過硫酸アンモ-ゥム 1部、界面活性剤(モノ ォレイン酸ポリオキシソルビタン) 9部を仕込み、 400回転/粉で 15分攪拌したところ 、白色の乳濁液が得られた。加熱して、系内温度 75°Cまで昇温し 5時間反応させた。 さらに、 1%過硫酸アンモニゥム水溶液 30部加え、 75°Cで 5時間熟成して水性分散 液 [微粒子分散液 W8]を得た。 [微粒子分散液 W8]を LA— 920および ELS - 800 で測定した体積平均粒径は、いずれも 0. 10 mであった。 [微粒子分散液 W8]の 一部を乾燥して榭脂分を単離した。該榭脂分の DSC測定による Tgは 65°C、軟ィ匕開 始温度は 109°Cであり、流出温度は 192°Cであった。
[0154] 製造例 9 (榭脂粒子 (A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、水 753部、アルキルァリルスルホコ ノ、ク酸ナトリウム塩 (エレミノール JS— 2、三洋化成工業製) 8部、スチレン 48部、メタク リル酸 68部、アクリル酸ブチル 77部、過硫酸アンモ-ゥム 1部、界面活性剤(モノォ レイン酸ポリオキシソルビタン) 9部を仕込み、 400回転/粉で 15分攪拌したところ、 白色の乳濁液が得られた。加熱して、系内温度 75°Cまで昇温し 5時間反応させた。 さらに、 1%過硫酸アンモニゥム水溶液 30部加え、 75°Cで 5時間熟成して水性分散 液 [微粒子分散液 W9]を得た。 [微粒子分散液 W9]を LA— 920および ELS - 800 で測定した体積平均粒径は、いずれも 0. 05 mであった。 [微粒子分散液 W9]の 一部を乾燥して榭脂分を単離した。該榭脂分の DSC測定による Tgは 62°C、軟ィ匕開 始温度は 110°Cであり、流出温度は 198°Cであった。
[0155] 製造例 10 (榭脂 (b)の製造)
[線形ポリエステルの合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、 1, 2—プロピレングリコ ール(以下 1, 2—プロピレングリコールをプロピレングリコールと記載する。) 701部(1 8. 8モル)、テレフタル酸ジメチルエステル 716部(7. 5モル)、アジピン酸 180部(2 . 5モル)、および縮合触媒としてテトラブトキシチタネート 3部を入れ、 180°Cで窒素 気流下に、生成するメタノールを留去しながら 8時間反応させた。次いで 230°Cまで 徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去しな がら 4時間反応させ、さらに 5〜20mmHgの減圧下に反応させ、軟化点が 150°Cに なった時点で取り出した。回収されたプロピレングリコールは 316部(8. 5モル)であ つた。取り出した榭脂を室温まで冷却後、粉砕し粒子化し [ポリエステル bl]を得た。 [ ポリエステル bl]の Mnは 8000であった。
なお、( )内のモル数は、相対的なモル比を意味する(以下同様)。
[0156] 製造例 11 (榭脂 (b)の製造)
[非線形ポリエステルの合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、プロピレングリコール 557 部(17. 5モル)、テレフタル酸ジメチルエステル 569部(7. 0モル)、アジピン酸 184 部(3. 0モル)、および縮合触媒としてテトラブトキシチタネート 3部を入れ、 180°Cで 窒素気流下に、生成するメタノールを留去しながら 8時間反応させた。次いで 230°C まで徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去 しながら 4時間反応させ、さらに 5〜20mmHgの減圧下に 1時間反応させた。回収さ れたプロピレングリコールは 175部(5. 5モル)であった。次いで 180°Cまで冷却し、 無水トリメリット酸 121部(1. 5モル)を加え、常圧密閉下 2時間反応後、 220°C、常圧 で反応させ、軟ィ匕点が 180°Cになった時点で取り出し、室温まで冷却後、粉砕し粒 子化し [ポリエステル b2]を得た。 [ポリエステル b2]の Mnは 8500であった。
[0157] 製造例 12
撹拌棒および温度計をセットした反応容器に、ヒドロキシル価が 56のポリ力プロラタ トンジオール (プラタセル L220AL、ダイセルィ匕学工業社製) 2000部を投入し、 110 °Cに加熱して 3mmHgの減圧下で 1時間脱水を行った。続、て IPDI457部を投入し 、 110°Cで 10時間反応を行い、末端にイソシァネート基を有する [ウレタンプレボリマ 一 1]を得た。 [ウレタンプレポリマー 1]の NCO含量は 3. 6%であった。
[0158] 製造例 13
撹拌棒および温度計をセットした反応容器に、エチレンジァミン 50部と MIBK300 部を仕込み、 50°Cで 5時間反応を行い、ケチミンィ匕合物である [硬化剤 1]を得た。
[0159] 製造例 14(榭脂 (b)の製造)
温度計、撹拌機、窒素導入管の付いたオートクレープ反応槽中にキシレン 452部 を入れ、窒素置換後 170°Cでスチレン 845部、アクリル酸 n—ブチル 155部の混合モ ノマーと、開始剤としてジ一 t—ブチルパーオキサイド 6. 4部と、キシレン 125部の混 合物を 3時間で滴下した。滴下後 1時間 170°Cで熟成させ、重合を完結させた。その 後減圧下で脱溶剤することによって榭脂 [ビュル系榭脂 b3]を得た。 [ビュル系榭脂 b 3]の GPCによる重量平均分子量は 1. 4万、 Tgは 60°Cであった。
[0160] 製造例 15 (榭脂 (b)の製造)
冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフエノール Α·ΕΟ 2モル付カ卩物 343部、イソフタル酸 166部およびジブチルチンオキサイド 2部を入れ、 常圧で 230°Cで 8時間反応し、さらに 10〜15mmHgの減圧で 5時間反応した後、 1 10°Cまで冷却し、トルエン中にてイソホロンジイソシァネート 17部を入れて 110°Cで 5 時間反応を行い、次いで脱溶剤し、重量平均分子量 72, 000、 NCO含量 0. 7%の [ウレタン変性ポリエステル b4]を得た。
[0161] 製造例 16 (榭脂 (b)の製造)
製造例 13と同様に、ビスフエノール Α·Ε02モル付カ卩物 570部、テレフタル酸 217 部を常圧下、 230°Cで 6時間重縮合し、 Mn2, 400、水酸基価 51、酸価 5の変性さ れて ヽな ヽ [ポリエステル b5]を得た。
[0162] 製造例 17 (着色剤分散液の製造)
ビーカー内に銅フタロシアニン 20部と着色剤分散剤(ソルスパーズ 28000;アビシ ァ株式会社製) 4部、 [ポリエステル b2] 20部および酢酸ェチル 56部を入れ、攪拌し て均一分散させた後、ビーズミルによって銅フタロシアニンを微分散して、 [着色剤分 散液 1]を得た。 [着色剤分散液 1]を LA— 920で測定した体積平均粒径は 0.
であった。
[0163] 製造例 18 (変性ワックスの製造)
温度計および撹拌機の付いたオートクレープ反応槽中に、キシレン 454部、低分子 量ポリエチレン (三洋化成工業 (株)製 サンワックス 1^^ 400 :軟ィ匕点128° 15 0部を投入し、窒素置換後 170°Cに昇温して十分溶解し、スチレン 595部、メタクリル 酸メチル 255部、ジー t—ブチルパーォキシへキサヒドロテレフタレート 34部およびキ シレン 119部の混合溶液を 170°Cで 3時間で滴下して重合し、さらにこの温度で 30 分間保持した。次いで脱溶剤を行い、 [変性ワックス 1]を得た。 [変性ワックス 1]の グラフト鎖の sp値は 10. 35 (cal/cm3) 1/2、 Mnは 1872、 Mwは 5194、 Tgは 56. 9°Cであった。
[0164] 製造例 19 (ワックス分散液の製造)
温度計および撹拌機の付いた反応容器中に、パラフィンワックス (融点 73°C) 10部 、 [変性ワックス 1] 1部、酢酸ェチル 33部を投入し、 78°Cに加熱して充分溶解し、 1 時間で 30°Cまで冷却を行 、ワックスを微粒子状に晶析させ、さらにウルトラピスコミル (アイメッタス製)で湿式粉砕し、 [ワックス分散液 1]を得た。
[0165] 製造例 20 (榭脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、 [ポリエステル!^] 10部および酢酸 ェチル 10部を入れ、攪拌して均一分散させ、 [榭脂溶液 1]を得た。 [0166] 製造例 21 (榭脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、 [ポリエステル b2] 10部および酢酸 ェチル 10部を入れ、攪拌して均一分散させ、 [榭脂溶液 2]を得た。
[0167] 製造例 22 (榭脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、 [ビニル系榭脂 b3] 10部および酢酸 ェチル 10部を入れ、攪拌して均一分散させ、 [榭脂溶液 3]を得た。
[0168] 製造例 23 (榭脂溶液の製造)
[ウレタン変性ポリエステル b4] 200部と [ポリエステル b5] 800部を酢酸ェチル 1, 8 00部に溶解、混合し、 [榭脂溶液 4]を得た。 [榭脂溶液 4]の一部を減圧乾燥し、榭 脂分を単離した。該榭脂分の DSC測定での Tgは 55°Cであった。
[0169] 実施例 1
ビーカー内に [榭脂溶液 1]48部、 [榭脂溶液 2] 12部、 [ワックス分散液 1] 27部、 および [着色剤分散液 1] 10部を入れ、 25°Cにて TK式ホモミキサーで 8, OOOrpmで 撹拌し、均一に溶解、分散させて [榭脂溶液 1A]を得た。
ビーカー内にイオン交換水 97部、 [微粒子分散液 W1] 15. 4部、カルボキシメチル セルロースナトリウム 1部、およびドデシルジフエ-ルエーテルジスルホン酸ナトリウム の 48. 5%水溶液(三洋化成工業製、「エレミノール MON— 7」)10部を入れ均一に 溶解した。ついで 25°Cで、 TK式ホモミキサーを 10, OOOrpmに撹拌しながら、 [榭脂 溶液 1 A] 75部を投入し 2分間撹拌した。っ ヽでこの混合液を撹拌棒および温度計 付のコルベンに移し、昇温して 35°Cで濃度が 0. 5%以下となるまで酢酸ェチルを留 去し、表面に付着した [微粒子分散液 W1]由来の榭脂粒子が被膜化した榭脂粒子 の水性榭脂分散体 (XF1)を得た。次いで (XF1) 100部に対して 5%水酸ィ匕ナトリウ ム水溶液 100部を加え、 TKホモミキサー(特殊機化製)を使用し、 40°Cに温調し回 転数 12, OOOrpmで 10分間混合して、表面に付着した [微粒子分散液 W1]由来の 微粒子を溶解させた後、濾別し、 40°C X 18時間乾燥を行い、揮発分を 0. 5%以下 として、榭脂粒子 (F1)を得た。
[0170] 実施例 2
ビーカー内に [榭脂溶液 1]48部、 [ウレタンプレボリマー 1] 6部、 [硬化剤 1]0. 2部 、 [ワックス分散液 1] 27部、および [着色剤分散液 1] 10部を入れ、 25°Cにて TK式ホ モミキサーで 8, OOOrpmで撹拌し、均一に溶解、分散させて [榭脂溶液 1B]を得た。 ビーカー内にイオン交換水 97部、 [微粒子分散液 W1] 10. 5部、カルボキシメチル セルロースナトリウム 1部、およびドデシルジフエ-ルエーテルジスルホン酸ナトリウム の 48. 5%水溶液(三洋化成工業製、「エレミノール MON— 7」)10部を入れ均一に 溶解した。ついで 25°Cで、 TK式ホモミキサーを 10, OOOrpmに撹拌しながら、 [榭脂 溶液 1B] 75部を投入し 2分間撹拌した。っ 、でこの混合液を撹拌棒および温度計付 のコルベンに移し、昇温して 35°Cで濃度が 0. 5%以下となるまで酢酸ェチルを留去 し、表面に付着した [微粒子分散液 W1]由来の榭脂粒子が被膜化した榭脂粒子の 水性榭脂分散体 (XF2)を得た。次いで (XF2) 100部に対して 5%水酸ィ匕ナトリウム 水溶液 100部を加え、 TKホモミキサー(特殊機化製)を使用し、 40°Cに温調し回転 数 12, OOOrpmで 10分間混合して、表面に付着した [微粒子分散液 W1]由来の微 粒子を溶解させた後、濾別し、 40°C X 18時間乾燥を行い、揮発分を 0. 5%以下とし て、榭脂粒子 (F2)を得た。
実施例 3
ビーカー内に [榭脂溶液 3] 60部、 [ワックス分散液 1] 27部、および [着色剤分散液 1] 10部を入れ、 25°Cにて TK式ホモミキサーで 8, OOOrpmで撹拌し、均一に溶解、 分散させて [榭脂溶液 3A]を得た。
ビーカー内にイオン交換水 97部、 [微粒子分散液 W1] 10. 5部、カルボキシメチル セルロースナトリウム 1部、およびドデシルジフエ-ルエーテルジスルホン酸ナトリウム の 48. 5%水溶液(三洋化成工業製、「エレミノール MON— 7」)10部を入れ均一に 溶解した。ついで 25°Cで、 TK式ホモミキサーを 10, OOOrpmに撹拌しながら、 [榭脂 溶液 3A] 75部を投入し 2分間撹拌した。っ ヽでこの混合液を撹拌棒および温度計 付のコルベンに移し、昇温して 35°Cで濃度が 0. 5%以下となるまで酢酸ェチルを留 去し、表面に付着した [微粒子分散液 W1]由来の榭脂粒子が被膜化した榭脂粒子 の水性榭脂分散体 (XF3)を得た。次いで (XF3) 100部に対して 5%水酸ィ匕ナトリウ ム水溶液 100部を加え、 TKホモミキサー(特殊機化製)を使用し、 40°Cに温調し回 転数 12, OOOrpmで 10分間混合して、表面に付着した [微粒子分散液 W1]由来の 微粒子を溶解させた後、濾別し、 40°C X 18時間乾燥を行い、揮発分を 0. 5%以下 として、榭脂粒子 (F3)を得た。
[0172] 実施例 4
[微粒子分散液 W1]を [微粒子分散液 W2]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W2]由来の榭脂粒子が付着した榭脂粒子 ( F4)を得た。
[0173] 実施例 5
[微粒子分散液 W1]を [微粒子分散液 W3]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W3]由来の榭脂粒子が付着した榭脂粒子 ( F5)を得た。
[0174] 実施例 6
[微粒子分散液 W1]を [微粒子分散液 W4]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W4]由来の榭脂粒子が付着した榭脂粒子 ( F6)を得た。
[0175] 実施例 7
[微粒子分散液 W1]を [微粒子分散液 W5]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W5]由来の榭脂粒子が付着した榭脂粒子 ( F7)を得た。
[0176] 実施例 8
[微粒子分散液 W1]を [微粒子分散液 W6]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W6]由来の榭脂粒子が付着した榭脂粒子 ( F8)を得た。
[0177] 実施例 9
[微粒子分散液 W1]を [微粒子分散液 W7]に変更する以外、実施例 1と同様にし て、被膜化された少量の [微粒子分散液 W7]由来の榭脂粒子が付着した榭脂粒子 ( F9)を得た。
[0178] 比較例 1
[微粒子分散液 W1]を [微粒子分散液 W8]に変更する以外、実施例 1と同様にし て、少量の [微粒子分散液 W8]由来の榭脂粒子が付着した榭脂粒子 (F' 1)を得た。
[0179] 比較例 2
[微粒子分散液 W1]を [微粒子分散液 W9]に変更する以外、実施例 1と同様にし て、少量の [微粒子分散液 W9]由来の榭脂粒子が付着した榭脂粒子 (F' 2)を得た。
[0180] 比較例 3
5%水酸ィ匕ナトリウム水溶液を 0. 5%水酸ィ匕ナトリウム水溶液に変更する以外、実 施例 1と同様にして、被膜化された少量の [微粒子分散液 W1]由来の榭脂粒子が付 着した榭脂粒子 (F' 3)を得た。
[0181] 比較例 4
5%水酸ィ匕ナトリウム水溶液を 30%水酸ィ匕ナトリウム水溶液に変更する以外、実施 例 1と同様にして、被膜化された少量の [微粒子分散液 W1]由来の榭脂粒子が付着 した榭脂粒子 (F' 4)を得た。
[0182] 物性測定例
実施例 1〜9および比較例 1〜4で得た榭脂粒子 (F1)〜 (F9)、および (F' 1)〜 (F ' 4)を水に分散して粒度分布をコールターカウンターで測定した。また、榭脂粒子の 平均円形度および低温定着性を測定した。その結果を表 1に示す。
[0183] [表 1]
Figure imgf000063_0001
[0184] 平均円形度の測定は前記の方法による。
表面被覆率の測定は前記の方法による。
帯電特性、耐熱保存安定性、低温定着性、および表面平滑性の測定方法は以下 の通りである。
[0185] 〔帯電特性〕(帯電量)
50ccの共栓付ガラス瓶に、榭脂粒子 0. 5g、鉄粉(日本鉄粉株式会社製「F— 150 」)10gを精秤し、共栓をして 23°C、 50%RHの雰囲気下でターブラシェ一力ミキサー (ウィリー.ァ.バシヨッフェン社製)にセットし、回転数 90rpmで 2分攪拌した。攪拌後 の混合粉体 0. 2gを目開き 20 μ mステンレス金網がセットされたブローオフ粉体帯電 量測定装置 (京セラケミカル株式会社製 TB— 203)に装填し、ブロー圧 lOKPa,吸 引圧 5KPaの条件で、残存鉄粉の帯電量を測定し、定法により榭脂粒子の帯電量を 算出した。なお、トナー用としてはマイナス帯電量が高いほど帯電特性が優れている
[0186] 〔耐熱保存安定性〕
50°Cに温調された乾燥機に榭脂粒子を 15時間静置し、ブロッキングの程度により 下記の基準で評価した。
〇 : ブロッキングが発生しない。
△ : ブロッキングが発生する力 力を加えると容易に分散する。
X : ブロッキングが発生し、力をカ卩えても分散しない。
[0187] 〔低温定着性〕
榭脂粒子にァエロジル R972 (日本ァエロジル社製)を 1. 0%添カ卩し、よく混ぜて均 一にした後、この粉体を紙面上に 0. 6mgZcm2となるよう均一に載せた (このとき粉 体を紙面に載せる方法は、熱定着機を外したプリンターを用いる(上記の重量密度で 粉体を均一に載せることができるのであれば他の方法を用いてもょ 、)。この紙をカロ 圧ローラーに定着速度 (加熱ローラ周速) 213mm/sec,定着圧力 (加圧ローラ圧) 1 OkgZcm2の条件で通した時のコールドオフセットの発生温度を測定した。
[0188] 〔表面平滑性〕 走査電子顕微鏡 (SEM)を用い、榭脂粒子 (D)表面を 1万倍および 3万倍拡大した 写真にて評価した。
◎ : 表面に全く凹凸がなぐ非常に平滑である。
〇 : 表面に一部いびつな部位が観られるが、全体的には凹凸がほとんどなぐ平 滑である。
△ : 表面全体に凹凸があるが、榭脂 (a)由来の粒子状物体は確認できない。 X : 表面全体的にひどく凹凸である、または榭脂 (a)からなる粒子が確認できる 産業上の利用可能性
本発明の榭脂粒子は、粒径が均一で、帯電特性、耐熱保存安定性等に優れるた め、スラッシュ成形用榭脂、粉体塗料、液晶等の電子部品製造用スぺーサ一、電子 測定機器の標準粒子、電子写真、静電記録、静電印刷などに用いられるトナー、各 種ホットメルト接着剤、その他成形材料等に用いる榭脂粒子として極めて有用である

Claims

請求の範囲
[1] 40〜270°Cの軟化開始温度、 20〜250°Cのガラス転移温度、 60〜300°Cの流出 温度、および 0〜120°Cのガラス転移温度と流出温度の差を有する第 1の榭脂(a)か らなる樹脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が、第 2の榭脂 (b)カゝらなる榭脂粒子 (B)の表面に付着されてなる構造の榭脂粒子 (D)であって、榭脂粒子 (A)もしくは被 膜 (P)による(B)の表面被覆率が 0. 1〜4. 9%であることを特徴とする榭脂粒子。
[2] 榭脂 (a)および Zまたは榭脂 (b)が、ビュル系榭脂、ポリエステル榭脂、ポリウレタン 榭脂、およびエポキシ榭脂から選ばれる少なくとも 1種の榭脂である請求項 1記載の 榭脂粒子。
[3] (a)中に、少なくとも一部が塩基で中和されていてもよいカルボキシル基を 1〜50重 量%含有する請求項 1または 2記載の榭脂粒子。
[4] (a)がスルホン酸ァ-オン基(一 SO―)を(a)の重量に基づいて 0. 001
3 〜10重量0 /0 含有する請求項 1〜3のいずれか記載の榭脂粒子。
[5] (B)力 榭脂 (b)、ワックス (c)、およびビュル系ポリマー鎖がグラフトした変性ワックス
(d)力 なる請求項 1〜4の 、ずれか記載の榭脂粒子。
[6] スラッシュ成形用榭脂、粉体塗料、電子部品製造用スぺーサ一、電子測定機器の標 準粒子、電子写真トナー、静電記録トナー、静電印刷トナーまたはホットメルト接着剤 用である請求項 1〜5のいずれか記載の榭脂粒子。
[7] 榭脂粒子 (D)が、榭脂 (a)力もなる榭脂粒子 (A)の水性分散液 (W)と、榭脂 (b)もし くはその溶剤溶液 (01)、または、榭脂 (b)の前駆体 (b0)もしくはその溶剤溶液 (02 )とが混合され、(W)中に (Ol)又は (02)が分散され、(b0)もしくはその溶剤溶液を 用いる場合には、さらに (b0)が反応されて、(W)中で (b)からなる榭脂粒子 (B)が形 成されることにより得られる、榭脂粒子 (B)の表面に榭脂粒子 (A)もしくは榭脂 (a)の 被膜 (P)が付着した構造の榭脂粒子 (C)の水性分散体中で、 (C)の表面の榭脂粒 子 (A)もしくは被膜 (P)の一部が分離除去および Zまたは溶解除去されて得られる 榭脂粒子 (D)の水性分散体力 水性媒体が除去されてなる請求項 1〜6のいずれか 記載の榭脂粒子。
[8] 40〜270°Cの軟化開始温度、 20〜250°Cのガラス転移温度、 60〜300°Cの流出 温度、および 0〜120°Cのガラス転移温度と流出温度の差を有する第 1の榭脂(a)か らなる樹脂粒子 (A)の水性分散液 (W)と、第 2の榭脂 (b)もしくはその溶剤溶液 (Ol )、または、榭脂 (b)の前駆体 (bO)もしくはその溶剤溶液 (02)とを混合し、 (W)中に (Ol)又は(02)を分散させ、(bO)もしくはその溶剤溶液を用いる場合には、さらに( bO)を反応させて、 (W)中で (b)からなる榭脂粒子 (B)を形成させることにより得られ る、榭脂粒子 (B)の表面に榭脂粒子 (A)もしくは榭脂 (a)の被膜 (P)が付着した構造 の榭脂粒子 (C)の水性分散体中にぉ 、て、 (C)の表面の榭脂粒子 (A)もしくは被膜 (P)の一部を分離除去および Zまたは溶解除去して榭脂粒子 (D)の水性分散体を 得て、さらに該水性分散体から水性媒体を除去する樹脂粒子の製造方法。
PCT/JP2006/315299 2005-08-03 2006-08-02 樹脂粒子 WO2007015516A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06782168.6A EP1925632B1 (en) 2005-08-03 2006-08-02 Resin particle
US11/997,746 US8722298B2 (en) 2005-08-03 2006-08-02 Resin particle
CN200680028732.5A CN101238168B (zh) 2005-08-03 2006-08-02 树脂颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-226004 2005-08-03
JP2005226004 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007015516A1 true WO2007015516A1 (ja) 2007-02-08

Family

ID=37708796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315299 WO2007015516A1 (ja) 2005-08-03 2006-08-02 樹脂粒子

Country Status (4)

Country Link
US (1) US8722298B2 (ja)
EP (1) EP1925632B1 (ja)
CN (1) CN101238168B (ja)
WO (1) WO2007015516A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057487A (ja) * 2007-08-31 2009-03-19 Sanyo Chem Ind Ltd 樹脂粒子および樹脂粒子の製造方法
US20100216068A1 (en) * 2009-02-26 2010-08-26 Akihiro Kotsugai Toner, and developer, toner cartridge, image forming apparatus, process cartridge and image forming method using the same
EP2256557A1 (en) * 2008-03-10 2010-12-01 Canon Kabushiki Kaisha Toner
US20110104608A1 (en) * 2009-08-03 2011-05-05 Yukiko Nakajima Toner, developer, image forming method and image forming apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073288A1 (ja) * 2004-01-30 2005-08-11 Sanyo Chemical Industries, Ltd. 樹脂分散体および樹脂粒子
CN101950133B (zh) * 2010-08-31 2012-09-26 珠海思美亚碳粉有限公司 调色剂及制备该调色剂的方法
TWI586751B (zh) 2014-11-10 2017-06-11 財團法人工業技術研究院 熱塑性聚酯彈性體與其形成方法
CN106726162A (zh) * 2017-01-06 2017-05-31 广东川田卫生用品有限公司 一种新型卫生巾吸收体
CN108557916A (zh) * 2018-03-30 2018-09-21 河南金盾环保设备安装工程有限公司 一种高效污水处理剂及其制备方法
CN110172280A (zh) * 2019-06-27 2019-08-27 青岛科技大学 一种热塑性粉末涂料的制备方法
JP2021020371A (ja) * 2019-07-26 2021-02-18 株式会社リコー 立体造形用樹脂粉末、立体造形物の造形装置、及び立体造形物の造形方法
CN116426212B (zh) * 2023-04-20 2024-06-11 安徽国风新材料股份有限公司 一种哑光聚酰亚胺涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014491A (ja) * 2000-06-30 2002-01-18 Seiko Epson Corp 電子写真用乾式トナーの製造方法
JP2002148868A (ja) * 2000-11-09 2002-05-22 Seiko Epson Corp 電子写真用乾式トナーおよびその製造方法
JP2002174925A (ja) * 2000-12-08 2002-06-21 Seiko Epson Corp 電子写真用乾式トナーおよびその製造方法
JP2002284881A (ja) 2000-02-16 2002-10-03 Sanyo Chem Ind Ltd 粒径が均一である樹脂分散体、樹脂粒子およびそれらの製造方法
WO2003037964A1 (en) * 2001-11-02 2003-05-08 Sanyo Chemical Industries, Ltd. Composite resin particles
JP2004143418A (ja) * 2002-08-26 2004-05-20 Sanyo Chem Ind Ltd 樹脂粒子
JP2004226572A (ja) * 2003-01-21 2004-08-12 Ricoh Co Ltd 静電荷像現像用トナー、現像剤及びトナー容器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060893A1 (en) * 2000-02-16 2001-08-23 Sanyo Chemical Industries, Ltd. Resin dispersions having uniform particle diameters, resin particles and processes for producing both
WO2005073288A1 (ja) * 2004-01-30 2005-08-11 Sanyo Chemical Industries, Ltd. 樹脂分散体および樹脂粒子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284881A (ja) 2000-02-16 2002-10-03 Sanyo Chem Ind Ltd 粒径が均一である樹脂分散体、樹脂粒子およびそれらの製造方法
JP2002014491A (ja) * 2000-06-30 2002-01-18 Seiko Epson Corp 電子写真用乾式トナーの製造方法
JP2002148868A (ja) * 2000-11-09 2002-05-22 Seiko Epson Corp 電子写真用乾式トナーおよびその製造方法
JP2002174925A (ja) * 2000-12-08 2002-06-21 Seiko Epson Corp 電子写真用乾式トナーおよびその製造方法
WO2003037964A1 (en) * 2001-11-02 2003-05-08 Sanyo Chemical Industries, Ltd. Composite resin particles
JP2004143418A (ja) * 2002-08-26 2004-05-20 Sanyo Chem Ind Ltd 樹脂粒子
JP2004226572A (ja) * 2003-01-21 2004-08-12 Ricoh Co Ltd 静電荷像現像用トナー、現像剤及びトナー容器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER ENGINEERING AND SCIENCE, vol. 14, no. 2, February 1974 (1974-02-01), pages 147 - 154
See also references of EP1925632A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057487A (ja) * 2007-08-31 2009-03-19 Sanyo Chem Ind Ltd 樹脂粒子および樹脂粒子の製造方法
EP2256557A1 (en) * 2008-03-10 2010-12-01 Canon Kabushiki Kaisha Toner
EP2256557A4 (en) * 2008-03-10 2012-10-24 Canon Kk TONER
US20100216068A1 (en) * 2009-02-26 2010-08-26 Akihiro Kotsugai Toner, and developer, toner cartridge, image forming apparatus, process cartridge and image forming method using the same
US8603713B2 (en) * 2009-02-26 2013-12-10 Ricoh Company, Limited Toner, and developer, toner cartridge, image forming apparatus, process cartridge and image forming method using the same
US20110104608A1 (en) * 2009-08-03 2011-05-05 Yukiko Nakajima Toner, developer, image forming method and image forming apparatus
US8623580B2 (en) * 2009-08-03 2014-01-07 Ricoh Company, Ltd. Toner, developer, image forming method and image forming apparatus

Also Published As

Publication number Publication date
CN101238168A (zh) 2008-08-06
US20100221655A1 (en) 2010-09-02
EP1925632A1 (en) 2008-05-28
EP1925632B1 (en) 2015-12-23
CN101238168B (zh) 2012-05-30
US8722298B2 (en) 2014-05-13
EP1925632A4 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2007015516A1 (ja) 樹脂粒子
JP4457023B2 (ja) 樹脂粒子
US7405000B2 (en) Resin particle and process of producing the same
US8563650B2 (en) Method for producing resin dispersions and resin particles
WO2005073288A1 (ja) 樹脂分散体および樹脂粒子
JP4718392B2 (ja) 樹脂粒子及び樹脂分散体
JP4130639B2 (ja) 樹脂分散体の製造方法及び樹脂粒子
WO2006109653A1 (ja) 樹脂粒子および樹脂分散体
JP2009096994A (ja) 非水系樹脂分散液
JP4134057B2 (ja) 樹脂分散体および樹脂粒子
JP4740063B2 (ja) コア・シェル型樹脂粒子
JP2010254896A (ja) 樹脂粒子およびその水性分散体、並びにその製造方法
JP2009057487A (ja) 樹脂粒子および樹脂粒子の製造方法
JP2007056241A (ja) 樹脂粒子および樹脂分散体
JP4718391B2 (ja) 樹脂粒子
JP5032024B2 (ja) 樹脂粒子
JP4589284B2 (ja) 樹脂粒子
JP4643693B2 (ja) 樹脂粒子用顔料分散剤
JP4732981B2 (ja) コア・シェル型樹脂粒子
JP2008208346A (ja) 樹脂粒子
JP4672626B2 (ja) コア・シェル型樹脂粒子
JP4616218B2 (ja) 樹脂粒子の製造方法および樹脂粒子
JP5020529B2 (ja) 着色樹脂粒子
JP4629696B2 (ja) 樹脂粒子および樹脂粒子の製造方法
JP2007246676A (ja) 樹脂粒子の製造方法及び樹脂粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028732.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11997746

Country of ref document: US