WO2007014974A1 - Aseptic mycorrhization inoculant and in vitro and ex vitro application methods - Google Patents

Aseptic mycorrhization inoculant and in vitro and ex vitro application methods Download PDF

Info

Publication number
WO2007014974A1
WO2007014974A1 PCT/ES2006/070115 ES2006070115W WO2007014974A1 WO 2007014974 A1 WO2007014974 A1 WO 2007014974A1 ES 2006070115 W ES2006070115 W ES 2006070115W WO 2007014974 A1 WO2007014974 A1 WO 2007014974A1
Authority
WO
WIPO (PCT)
Prior art keywords
inoculant
mycorrhization
plants
vitro
mycorrhizal
Prior art date
Application number
PCT/ES2006/070115
Other languages
Spanish (es)
French (fr)
Inventor
Custodia Purificación CANO ROMERO
Alberto Bago Pastor
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2007014974A1 publication Critical patent/WO2007014974A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/10Mycorrhiza; Mycorrhizal associations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor

Definitions

  • “Sustainability” could be defined as the art of successfully managing the available natural resources in a way that meets social needs, while maintaining or increasing the quality of the natural environment and the conservation of its resources (Gianinazzi and Schüepp, 1994 ).
  • the continuous increase in environmental degradation and instability, and particularly in the fragility of natural and agricultural soils, are promoting a progressive awareness of the need to develop more rational and sustainable use practices of agroecosystems. It is precisely in these situations that the fundamental importance of rhizospheric microorganisms in general, and of mutualistic symbiotics in in particular, as natural stabilizers of soils.
  • arbuscular mycorrhizal fungi AMF
  • symbionts common inhabitants of the soils that establish mutualistic associations with the roots of more than 80% of the plants, and whose importance in the nutritional improvement of the plants, as well as In overcoming them by all types of biotic and abiotic stresses is widely documented (Smith and Read, 1997).
  • HMA-based inoculants that exist today in the market come, in the vast majority, from fungus-plant crops produced in a greenhouse or culture chamber, and use various types of "dirty" substrates such as soil, sand, attapulgite as support. , sepiolite, vermiculite, etc.
  • HMA inoculants The production of HMA inoculants through these methods encounters three fundamental problems: i) under these conditions (open cultures) it is practically impossible to control the presence in the substrate of Accompanying microorganisms (generally unwanted) in addition to AMF, which makes validation and quality controls of these products difficult; ii) the manipulation of substrates such as those mentioned above is cumbersome and laborious, requiring large areas for their preparation, high cost of transport in their commercialization and making it difficult to incorporate them massively in large-scale farms; and iii) by retaining part of the substrate in which they were produced (these are "raw” inoculums), the above-mentioned inoculants retain a large amount of the aforementioned accompanying microorganisms, so that their use for sterile mycorrhization is excluded , as it might be desirable in the case of the preparation of seedlings, and of plants obtained by massive production techniques (ie micropropagation of plants by in vitro culture).
  • the in vitro plant micropropagation technique currently represents the best alternative in the market for rapid cloning and mass and certified production of plants of fruit and vegetable interest.
  • the technique Based on the large-scale multiplication of plants within glass vessels containing sterile culture medium, the technique consists of five phases: multiplication, elongation, rooting, acclimatization and hardening, the first three phases in vitro and the next two phases being performed. ex vitro.
  • mycorrhizal inoculants in micropropagated plants can only be carried out in the acclimatization or hardening phase (that is, ex vitro; eg Estrada-Luna et al. 2000; Mar ⁇ n et al.
  • mycorrhizae at such an early age would involve the production of prepared (“vaccinated”) plants to resist other types of biotic and abiotic stresses, with the consequent reduction in the use of phytosanitary products; and would minimize delays in the establishment of mycorrhiza, the main determinant of the high variability obtained in the field results, which depend largely on the percentage of success in the establishment of the symbiosis.
  • transplantation of pre-mycorrhized plants to the natural environment would make them more competitive when it comes to acquiring nutrients from the natural environment, with the consequent benefits in terms of reducing chemical fertilizer application and / or adaptation to poor or degraded soils.
  • HMA and ROC establish mycorrhizal symbiosis, resulting in a large number of fungal propagules (resistance spores, mycorrhized root pieces, extraradical mycelium) in vitro (Bago and Cano, 2005).
  • This technique has been modified on several occasions (Declerck et al.
  • the present invention exploits the potential of the monoxenic culture by improving it to design an aseptic inoculant suitable for mycorrhising plants in the rooting phase, both in in vitro conditions (nursery production) and ex vitro (from planters or seedlings to farms and revegetation of degraded soils) .
  • it uses a medium-sized, semi-solid, low-viscosity, medium-sized culture medium that facilitates the penetration of the root into the inoculant, in addition to enhancing the infectivity of AMF.
  • the inoculum object of the present invention also has numerous advantages over commercial inocula already existing in the market, since its application is easier, faster and cleaner, in addition to allowing aseptic certification until the moment of application .
  • the present invention describes an inoculant of mycorrhization produced in vitro of semi-solid consistency, with a high content of HMA propagules, with high infectivity and colonization capacity of the roots, to mycorrhize plant both in vitro and ex vitro, which guarantees its aseptic conditions until the moment of its application.
  • an object of the present invention is an inoculant of mycorrhization produced in vitro of semi-solid consistency and low viscosity (less than 2700 centipoise / minute).
  • Said inoculant can originate from monoxenic or polygenic cultures of mycorrhizae that is maintained in aseptic conditions at least until the same moment of its application.
  • the inoculant comprises at least one arbuscular endomicorrhizal fungus (AMF), belonging to different families of fungi (Glomeraceae, Gigasporaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae, etc.), and may also comprise a combination of two or more endomicorrhizal fungi and other beneficial microorganisms of the ground.
  • Said mycorrhizal fungi may come from areas with ecophysiological characteristics similar to that of the final application, or may have been specifically isolated from the same area in which they will be reintroduced.
  • the average content of AMF propagules is very high, at least 500 propagules / ml_, preferably between 2000 and 5000 propagules / ml_, with high infectivity (up to 20% of MA colonization (mycorrhizae arbuscular) in the roots inoculated two weeks after application).
  • the inoculant object of the invention can be presented in the form of dehydrated powder and mixed with inert substrates usually used in nursery cultivation of plants.
  • the inoculant can also be a means aseptic mycorrhization that has one, two or more phases of different characteristics.
  • Another aspect of the present invention is the use of the inoculant described above to mycorrhize plants in vitro (micropropagated plants during or immediately after their rooting phase, and before the acclimatization phase), and ex vitro (micropropagated plants during the phase of acclimatization, and seedlings, alveoli, seedlings, nursery plants or any other plant obtainable from conventional nursery techniques).
  • Another aspect of the invention includes the application of the inoculum together with the irrigation water, at the same time as the sowing of seeds, and / or after the sowing of seeds by drip irrigation, irrigation trucks or sprinklers.
  • the application of the inoculum can be carried out both in standard or hydroponic seedbeds, as in agricultural farms.
  • the plants susceptible to being mycorrhized with the present inoculum are, among others, woody, shrubby plants, of fruit and vegetable interest, ornamental, flowers, vines, aromatic plants, medicinal plants, legumes, etc.
  • Another aspect of the present invention is the use of the inoculant for recovery and restoration by means of vegetative cover of degraded soils, and for the revegetation of altered areas subjected to biotic and abiotic stresses, highlighting as soils and degraded areas, among others, road slopes, mining areas, burned areas, desertified areas, contaminated soils, infested soils, soils degraded by excess salts, calcareous soils, extreme pH soils, etc.
  • FIG. 1 Arbuscular mycorrhization in olive roots (left) and peach tree (right) micropropagated after two and a half months of inoculation with the object of the invention.
  • Fig. 2. a. Comparison between micropropagated vines after six months of cultivation in a limestone-sandy agricultural soil in the absence (control) and presence (+ inoculant) of the inoculant object of the invention, b. Arbuscular mycorrhization in micropropagated vine roots after a year and a half of their inoculation with the object of the invention. Left, general view of the HMA colonization. Right, detail of symbiotic fungal structures.
  • Fig. 3. Comparison between lettuce plants obtained from seed and cultivated for three months in an agricultural soil in the absence (control) and presence (+ inoculant) of the inoculant object of the invention.
  • Fig. 4. Comparison between leek plants obtained from seed and cultivated for three months in an agricultural soil in absence (control) and presence (+ inoculant) of the inoculant object of the invention.
  • the object of the present invention is an inoculant of mycorrhization produced in vito, of semi-solid consistency, with a viscosity of less than 2700 centipoise / minute, preferably between 1800 and 100 centipoise / minute, and more preferably between 800 and 200 centipoise / minute.
  • Said reduced viscosity is one of the most interesting novelties of the invention, since it increases the viability and infectivity of the inoculant, facilitating its final application in its various forms (gel, irrigation water, aseptic mycorrhization medium for micropropagated plants or diluted dry powder with various inert substrates).
  • the semi-solid consistency and the viscosity of the inoculant are fundamental improvements with respect to the solid media (viscosity greater than 2700 c / minute) originally described for mycorrhizal monoxenic cultures, since this modification facilitates the penetration of the roots in the inoculant , leading to greater and more immediate contact of these with the HMA.
  • the high water content of the gel-type inoculant enhances the germination of seeds included therein, accelerating the HMA-root contact, and therefore also accelerating the establishment of mycorrhiza.
  • the inoculant object of the invention can originate from a monoxenic or polygenic mycorrhizal culture, and is maintained in aseptic conditions at least until the same moment of its application, which is another of the fundamental novelties of this invention.
  • the maintenance of said aseptic conditions throughout the production and even the application by the user makes this inoculant superior to all currently existing at the level of purity, certification, infectivity and validation.
  • the mycorrhizal inoculant object of the invention comprises at least one strain of endomicorrhizal fungus (preferably an arbuscular endomicorrhizal fungus, HMA) that may belong to the Phylum Glomeromycota, preferably to the Glomaceae Families, Acaulosporaceae, Archaeosporaceae, Paraglomaceae or Gigasporaceae, and in particular to Genus Glomus, Entrophospora, Acaulospora, Archaeospora, Paraglomus, Gigaspora, Pacispora or Scutellospora.
  • HMA arbuscular endomicorrhizal fungus
  • the endomicorrhizal fungus belongs to the genus Glomus, and in another particular embodiment of the invention the endomicorrhizal fungus belongs to the genus Gigaspora.
  • the following strains, in isolation or in variable combinations, may be part of the inoculant: MUCL 44632, MUCL 44633, CIMA10, CIMA12, CIMA13, CIMA07.
  • the mycorrhization inoculant object of the invention can comprise a combination of two or more AMF, preferably within the families, genera and strains mentioned above, as well as in a combination of one or more endomicorrhizal fungi and other beneficial soil microorganisms.
  • the average content of AMF propagules (spores, mycorrhized roots and extraradial mycelium) of the inoculant object of the invention is at least 500 propagules / ml_, and preferably between 2000 and 5000 propagules / ml_, which represents a substantial increase with respect to other existing mycorrhizal inoculants.
  • Another of the novel aspects of the present invention consists in the high infectivity of the inoculant object of this patent, which is always greater than that of dry mycorrhizal inoculants in any of its formulations (eg vermiculite, sepiolite, terragreen, perlite, sand, peat , clay minerals, etc.), presenting the roots entry points and up to 30% of colonization MA (arbuscular mycorrhizae) after two weeks of application of the inoculant.
  • dry mycorrhizal inoculants in any of its formulations (eg vermiculite, sepiolite, terragreen, perlite, sand, peat , clay minerals, etc.), presenting the roots entry points and up to 30% of colonization MA (arbuscular mycorrhizae) after two weeks of application of the inoculant.
  • the aseptic mycorrhization inoculant object of the invention can also be presented in the form of dehydrated powder, coming from the mixture of the inoculant-gel described above, with any inert substrate usually used in plant nursery cultivation.
  • the inoculant was mixed with vermiculite in an inoculant ratio: inert substrate of 1: 2
  • objects of the present invention are any mycorrhization composition and aseptic mycorrhization medium comprising an inoculant with the characteristics described above.
  • Said aseptic mycorrhization medium may have more than one phase, of which at least one is the inoculant object of the invention.
  • the phase that contains the inoculant is under another, consisting either of a gelsed medium, or an inert substrate of the vermiculite, sepiolite, terragreen, perlite, sand, peat, soil type , minerals of Ia clay, etc.
  • the reason for superimposing a phase on the inoculant object of the invention is based on several reasons, of which three are fundamental: i) the saving of inoculant that this implies; ii) since the AMF present in the inoculant phase is alive, during the mycorrhization process its external mycelium will grow and colonize the upper phase, with hyphae in full growth and eager to find a new root to mycorrhize, thus increasing even more the potential infective of the inoculant; and iii) the upper phase would act as a kind of "anti-stress buffer" allowing the roots to acclimatize to their new culture medium before coming into contact with the AMF in the inoculating phase.
  • Another use of the present invention is the use of the inoculant, the mycorrhization composition and the aseptic mycorrhization medium to mycorrhize plants, whether micropropagated or not, in various ways:
  • as an aseptic mycorrhization medium in which case it is presented in sterile bottles of those commonly used in the micropropagation of plants.
  • the mycorrhization procedure by aseptic means is characterized in that the roots of the plants are embedded in the mycorrhization medium.
  • the presentation of this aseptic means of mycorrhization in sterile bottles allows its use within the plant nursery production chain, with the consequent benefit, in terms of minimum cost increase, by the nurseryman.
  • the high potential of the aseptic mycorrhization medium allows its reuse under sterile conditions for at least twice successive.
  • the inoculant object of the invention can be used for inclusion in seedbeds, alveoli, pots, containers, etc.
  • inoculant object of the invention can also be applied by means of its distribution by irrigation water, or by the brief immersion of the roots of the plants in it before its transplantation to the seedbed.
  • plants susceptible to being mycorrhized with the inoculant object of the invention are, among others: woody, shrubby plants, of fruit and vegetable interest, ornamentals, flowers, vines, aromatic plants, medicinal plants, legumes, etc.
  • the use of the inoculant object of the invention in the aforementioned forms will promote the early establishment of the arbuscular mycorrhizal symbiosis, with the consequent benefit in terms of viability, survival, resistance to biotic and abiotic stresses, nutritional improvement, adaptability, productivity, etc. presented by mycorrhized plants with respect to those that are not.
  • the inoculant object of the invention can also be used to mycorrhize plants in agricultural holdings, in which case its application can be carried out: i) at the same time as the sowing of seeds and mixed with them in the application hopper; ii) after sowing seeds by drip irrigation, irrigation trucks or sprinklers; iii) by planting pre-mycorrhized seedlings from standard or hydroponic seedlings in which the inoculant object of the invention would have been previously included, as described; iv) by means of the brief immersion of the roots of the plants in the inoculant object of the invention before their transplantation to field.
  • the application of the inoculant will preferably be carried out in a proportion not less than 50 propagules per seed or seedling, and more preferably in a proportion not less than 100 propagules per seed or seedling.
  • the inoculant object of the invention can also be applied as an enhancer of the reestablishment (recovery and restoration) of the vegetation cover of degraded soils, and for the revegetation of altered areas subject to biotic and abiotic stresses.
  • the revegetar soils can be, among others, roadsides, mining areas, burned areas, desertified areas, contaminated soils, infested soils, soils degraded by excess salts, calcareous soils, extreme pH soils, etc.
  • mycorrhization procedures in vitro and ex vitro, that use at least one inoculant, mycorrhization composition and aseptic mycorrhization medium objects also objects of the present invention.
  • This test is intended to confirm the infectivity of the inoculant object of the invention under aseptic conditions.
  • twenty pregerminated seedlings from sterilized surface seeds and germinated in vitro
  • clover and tomato with incipient radicles were placed in in vitro culture bottles containing 100ml of the aseptic inoculant object of the invention ("mycorrhization medium"", produced according to the described technique, so that the radicles were fully embedded in it.
  • the inoculant was previously analyzed by direct stereomicroscopic counting according to the "gridline intersect method" of Giovanetti and Mosse (1980, with modifications), resulting in its average content of HMA propagules per ml of product in 935 1 ZS spores, 637 1 Colonized root fragments, and> 1000 fragments of external mycelium, which together assumes> 2500 HMA propagules / mL.
  • Clover seedlings were kept in the jars for two weeks, at 24 ° C and 12 h of sunlight, after which the type and percentage of colonization MA was analyzed.
  • EXAMPLE 2 Ex vitro mycorrhization of micropropagated plants
  • 20 commercial alveoli of about 5OmI capacity with low fertilization peat were prepared to which micropropagated olive and peach seedlings were transplanted, ready to begin their acclimatization phase.
  • Said inoculum has the same characteristics as that used in Example 1.
  • the seedlings were grown for a month in an acclimatization tunnel, and subsequently (a month and a half) in greenhouse conditions, with drip irrigation.
  • Fig. 2 shows how mycorrhized plants showed greater growth than controls.
  • 80 pots of about 20 Ohm capacity were prepared under clean conditions with a sterile mixture of agricultural soil: quartz sand (1: 9 v: v) added with a slow-release granulated fertilizer (Osmocote, 1g / l) . To these pots micropropagated vineyard seedlings were transplanted, ready to begin their acclimatization phase.
  • Table 1 Average and maximum increase in the growth parameters of mycorrhized plants with respect to control plants and percentage of mycorrhizal colonization.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Virology (AREA)
  • Mushroom Cultivation (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The invention relates to an aseptic mycorrhization inoculant which is produced in vitro, which is packed and distributed under sterile conditions and which, as such, is suitable for the mycorrhization of plants both in vitro (for use in the nursery production of plants, particularly in the case of micropropagated plants) and ex vitro (for use in the production of plants in pots and seedling nurseries, as well for use on farms and in soil revegatation programmes). For said purpose, a low-viscosity, light, semi-solid agar-type base culture medium is used to facilitate the penetration of the root in the inoculant, as well as to potentiate and preserve the infectiousness of arbuscular mycorrhizal fungi (AMF). The inventive inoculant has many advantages over commercial inoculants already on the market in that it can be applied more easily, quickly and cleanly, it produces immediate effects and it can be used directly in in vitro cultures and enables continuous asepsis certification until the moment of application thereof.

Description

TÍTULOTITLE
INOCULANTE ASÉPTICO DE MICORRIZACIÓN, Y PROCEDIMIENTOS DEASEPTIC MICORRIZATION INOCULANT, AND PROCEDURES FOR
APLICACIÓN EN CONDICIONES IN VITROY EX VITRO.APPLICATION IN CONDITIONS IN VITROY EX VITRO.
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Agricultura ecológica, producción viverística, revegetación. Biofertilizante natural para Ia mayoría de plantas de interés económico y ecológico (horto-frutícolas, ornamentales, utilizadas para revegetación, etc.) que aumenta su supervivencia, vitalidad y producción, y reduce Ia necesidad de aplicación de fertilizantes químicos, pesticidas y fitosanitarios.Organic farming, nursery production, revegetation. Natural biofertilizer for most plants of economic and ecological interest (horticultural, ornamental, used for revegetation, etc.) that increases their survival, vitality and production, and reduces the need for chemical fertilizers, pesticides and phytosanitary applications.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Las prácticas agrícolas utilizadas en los países desarrollados han tendido, en los últimos años, hacia Ia explotación intensiva de los recursos disponibles (e.g. riegos localizados, cultivos bajo plástico, etc.) con vistas a optimizar los rendimientos minimizando los costes tanto económicos como medioambientales (López-Gorgé, 1991 ). El riesgo de sobreexplotación derivado de estas prácticas intensivas ha dado Ia voz de alarma frente al impacto negativo que sobre Ia calidad de los suelos y acuíferos naturales tiene el empleo masivo, y frecuentemente indiscriminado, de fertilizantes químicos y productos fitosanitarios. Es por ello que va tomando cada vez mas fuerza Ia denominada "agricultura sostenible" (Harwood, 1991 ), que se integra dentro de un concepto mas amplio, el de los llamados "ecosistemas sostenibles" (Jeffries y Barea, 2001). La "sostenibilidad" se podría definir como el arte de gestionar con éxito los recursos naturales disponibles de manera que satisfagan las necesidades sociales, y al mismo tiempo mantengan o aumenten Ia calidad del medio natural y Ia conservación de sus recursos (Gianinazzi y Schüepp, 1994). El incremento continuo de Ia degradación e inestabilidad medioambiental, y particularmente de Ia fragilidad de los suelos naturales y agrícolas están propiciando una progresiva concienciación sobre Ia necesidad de desarrollar prácticas de utilización más racional y sostenible de los agroecosistemas. Es precisamente en estas situaciones donde se ha descrito Ia importancia fundamental de los microorganismos rizosféricos en general, y de los simbióticos mutualistas en particular, como estabilizadores naturales de los suelos. Entre dichos microorganismos destacan los hongos formadores de micorrizas arbusculares (HMA), simbiontes obligados habitantes comunes de los suelos que establecen asociaciones mutualistas con las raíces de mas del 80% de las plantas, y cuya importancia en Ia mejora nutritiva de las plantas, así como en Ia superación por éstas de todo tipo de estreses bióticos y abióticos está ampliamente documentada (Smith y Read, 1997). Estos efectos beneficiosos son especialmente notorios para Ia práctica totalidad de plantas de interés horto- frutícola, ornamental, así como para plantas utilizadas en programas de revegetación y recuperación de suelos degradados.Agricultural practices used in developed countries have tended, in recent years, towards the intensive exploitation of available resources (eg localized irrigation, crops under plastic, etc.) with a view to optimizing yields minimizing both economic and environmental costs ( López-Gorgé, 1991). The risk of overexploitation derived from these intensive practices has given the alarm against the negative impact on the quality of soils and natural aquifers has the massive and often indiscriminate use of chemical fertilizers and phytosanitary products. That is why the so-called "sustainable agriculture" (Harwood, 1991), which is integrated into a broader concept, is called "sustainable ecosystems" (Jeffries and Barea, 2001). "Sustainability" could be defined as the art of successfully managing the available natural resources in a way that meets social needs, while maintaining or increasing the quality of the natural environment and the conservation of its resources (Gianinazzi and Schüepp, 1994 ). The continuous increase in environmental degradation and instability, and particularly in the fragility of natural and agricultural soils, are promoting a progressive awareness of the need to develop more rational and sustainable use practices of agroecosystems. It is precisely in these situations that the fundamental importance of rhizospheric microorganisms in general, and of mutualistic symbiotics in in particular, as natural stabilizers of soils. Among these microorganisms, arbuscular mycorrhizal fungi (AMF) stand out, obligate symbionts common inhabitants of the soils that establish mutualistic associations with the roots of more than 80% of the plants, and whose importance in the nutritional improvement of the plants, as well as In overcoming them by all types of biotic and abiotic stresses is widely documented (Smith and Read, 1997). These beneficial effects are especially noticeable for almost all plants of horticultural, ornamental interest, as well as for plants used in revegetation and recovery programs of degraded soils.
Teóricamente Ia utilización extensiva de los HMA como biofertilizantes naturales tendría enorme interés, puesto que mejoraría en mucho el desarrollo y producción de plantas con mínimas enmiendas agroquímicas (Mosse, 1986). De hecho los HMA han demostrado ampliamente su eficacia incrementando Ia supervivencia y producción vegetal en muchas y muy diversas plantas de alto interés económico en ensayos científicos y a escala piloto (Gianinazzi et al. 2002), Sin embargo, Ia aplicación e inoculación a gran escala de HMA se ha visto siempre paralizada por i) Ia dificultad en Ia obtención de un inoculo puro, ligero, libre de contaminantes y con alta densidad de propágulos infectivos; ii) los resultados muy variables obtenidos con los inoculantes micorrícicos hasta ahora utilizados, producidos por un sistema "convencional" (ver siguiente párrafo), y cuya aplicación ha de realizarse en plantas relativamente maduras y ya preaclimatadas. En efecto, Ia ausencia en el mercado de inoculantes micorrícicos asépticos hace imposible que Ia planta salga micorrizada inmediatamente después del enraizamiento in vitro y previamente a su aclimatación, en el caso de plantas micropropagadas.Theoretically, the extensive use of AMF as natural biofertilizers would be of great interest, since it would greatly improve the development and production of plants with minimal agrochemical amendments (Mosse, 1986). In fact, HMAs have demonstrated their effectiveness by increasing plant survival and production in many and very diverse plants of high economic interest in scientific trials and at pilot scale (Gianinazzi et al. 2002), However, the application and large-scale inoculation of HMA has always been paralyzed by i) the difficulty in obtaining a pure inoculum, light, free of contaminants and with high density of infective propagules; ii) the very variable results obtained with the mycorrhizal inoculants hitherto used, produced by a "conventional" system (see next paragraph), and whose application must be carried out in relatively mature and already pre-acclimatized plants. In fact, the absence in the market of aseptic mycorrhizal inoculants makes it impossible for the plant to leave mycorrhized immediately after in vitro rooting and prior to acclimatization, in the case of micropropagated plants.
Los escasos inoculantes con base HMA existentes hoy en día en el mercado provienen, en su inmensa mayoría, de cultivos hongo-planta producidos en invernadero o cámara de cultivo, y utilizan como soporte diversos tipos de sustratos "sucios" tipo suelo, arena, atapulgita, sepiolita, vermiculita, etc. La producción de inoculantes HMA mediante estos métodos encuentra tres problemas fundamentales: i) bajo esas condiciones (cultivos abiertos) es prácticamente imposible controlar Ia presencia en el sustrato de microorganismos acompañantes (generalmente indeseados) además de los HMA, Io que dificulta Ia validación y controles de calidad de estos productos; ii) Ia manipulación de sustratos como los arriba mencionados es engorrosa y laboriosa, requiriendo de grandes superficies para su preparación, alto coste de transporte en su comercialización y dificultándose su incorporación masiva en explotaciones agrícolas a gran escala; y iii) al retener parte del sustrato en que fueron producidos (se trata de inóculos "brutos"), los inoculantes arriba mencionados retienen una gran cantidad de los ya mencionados microorganismos acompañantes, por Io que queda excluido su empleo para Ia micorrización en condiciones estériles, como podría ser deseable en el caso de Ia preparación de semilleros, y de plantas obtenidas por técnicas masivas de producción (i.e. micropropagación de plantas por cultivo in vitro). Precisamente Ia técnica de micropropagación de plantas in vitro representa en Ia actualidad Ia mejor alternativa existente en el mercado para Ia clonación rápida y producción masiva y certificada de plantas de interés horto-frutícola. Basada en Ia multiplicación a gran escala de plantas dentro de vasos de cristal que contienen medio de cultivo estéril, Ia técnica consta de cinco fases: multiplicación, elongación, enraizamiento, aclimatación y endurecimiento, debiendo realizarse las tres primeras fases in vitro y las dos siguientes ex vitro. Como se deduce de Io expuesto anteriormente, en Ia actualidad Ia introducción de inoculantes micorrícicos en plantas micropropagadas sólo puede realizarse en Ia fase de aclimatación o endurecimiento (es decir, ex vitro; e.g. Estrada-Luna et al. 2000; Marín et al. 2003), ya que esos inoculantes proceden de condiciones no estériles que impiden su introducción en las fases in vitro anteriores. Esto supone un gran retraso en Ia introducción de Ia micorriza, y un estrés añadido a Ia planta micropropagada, que además de tener que adaptarse a las nuevas y duras condiciones externas, debe soportar el drenaje de carbono que Ie demanda el HMA, inicialmente importante hasta que el equilibrio simbiótico queda establecido (Bago et al. 2000). Se hace necesario, por tanto, encontrar soluciones técnicas que permitan micorrizar plantas tanto al inicio del semillero (producción de plantas ex vitro), o bien antes de Ia fase de aclimatación (plantas micropropagadas, producción in vitro), es decir, poder diseñar un inoculo estéril de HMA que compatibilice micorrización y enraizamiento. De esta manera se disminuiría el estrés y las consiguientes pérdidas que se producen durante Ia fase de aclimatación de las plantas (se han fijado en hasta un 60% en el caso de micropropagadas) al medio natural. Además, Ia formación de Ia micorriza a tan temprana edad supondría Ia producción de plantas preparadas ("vacunadas") para resistir otros tipos de estreses bióticos y abióticos, con Ia consiguiente reducción en el uso de fitosanitarios; y minimizaría los retrasos en el establecimiento de Ia micorriza, principal determinante de Ia alta variabilidad obtenida en los resultados de campo, que dependen en gran medida del porcentaje de éxito en el establecimiento de Ia simbiosis. Por último, el transplante a medio natural de plantas pre-micorrizadas haría a éstas mas competitivas a Ia hora de adquirir nutrientes del medio natural, con los consiguientes beneficios en términos de reducción de aplicación fertilizantes químicos y/o adaptación a suelos pobres o degradados. En 1975 se ideó un sistema de co-cultivo in vitro de raíces de plantas y HMA (Mosse y Hepper, 1975), más tarde desarrollado y patentado (Mugnier y Mosse, 1987; FR-2528865). Este sistema, conocido en Ia actualidad como "cultivo monoxénico de micorrizas arbusculares" (CMMA) (Williams, 1992; Bago, 1998), consiste en co-cultivar en condiciones estériles explantos de raíz in vitro ("root organ cultures", ROC), junto con propágulos de HMA aislados del suelo y esterilizados en superficie. En estas condiciones controladas HMA y ROC establecen Ia simbiosis micorrícica produciendo como consecuencia de ello, un gran número de propágulos fúngicos (esporas de resistencia, trozos de raíz micorrizada, micelio extrarradical) in vitro (Bago y Cano, 2005). Esta técnica ha sido después modificada en diversas ocasiones (Declerck et al. 2005), dando lugar a diversas patentes mas recientes: obtención de propágulos HMA en ausencia física de Ia raíz utilizando compartimentos de medio (St-Arnaud et al, 1996; US-5554530); Ia replicación como material de partida de trozos de raíz micorrizada conteniendo vesículas de HMA (Strullu y Romand, 1987; FR- 2568094); y el establecimiento de micorrizas in vitro utilizando células vegetales indiferenciadas (callos vegetales, WO2005000008). Sin embargo, ninguna de las patentes o productos arriba mencionados se ha comercializado o se comercializa en el presente en CONDICIONES ESTÉRILES, siendo Ia producción del HMA in vitro sólo un sistema de producción a gran escala de propágulos HMA que, en el procesado pre-venta, se diluyen con sustratos no estériles. Con esto se pierde una de las ventajas fundamentales de estos productos, que siguen sin poder ser aplicados en condiciones asépticas en Ia cadena viverística de producción de plantas. El único intento de micorrizar plantas micropropagadas en condiciones in vitro (Elmeskaoui et al. 1995) se llevó a cabo utilizando un medio de cultivo sólido en el que se superponían plantas cuyas raíces iban envueltas en cilindros de celulosa, Io que dificultaba su crecimiento y reducía de manera importante el contacto de Ia raíz con el inoculante.The few HMA-based inoculants that exist today in the market come, in the vast majority, from fungus-plant crops produced in a greenhouse or culture chamber, and use various types of "dirty" substrates such as soil, sand, attapulgite as support. , sepiolite, vermiculite, etc. The production of HMA inoculants through these methods encounters three fundamental problems: i) under these conditions (open cultures) it is practically impossible to control the presence in the substrate of Accompanying microorganisms (generally unwanted) in addition to AMF, which makes validation and quality controls of these products difficult; ii) the manipulation of substrates such as those mentioned above is cumbersome and laborious, requiring large areas for their preparation, high cost of transport in their commercialization and making it difficult to incorporate them massively in large-scale farms; and iii) by retaining part of the substrate in which they were produced (these are "raw" inoculums), the above-mentioned inoculants retain a large amount of the aforementioned accompanying microorganisms, so that their use for sterile mycorrhization is excluded , as it might be desirable in the case of the preparation of seedlings, and of plants obtained by massive production techniques (ie micropropagation of plants by in vitro culture). Precisely, the in vitro plant micropropagation technique currently represents the best alternative in the market for rapid cloning and mass and certified production of plants of fruit and vegetable interest. Based on the large-scale multiplication of plants within glass vessels containing sterile culture medium, the technique consists of five phases: multiplication, elongation, rooting, acclimatization and hardening, the first three phases in vitro and the next two phases being performed. ex vitro. As can be deduced from the above, at present the introduction of mycorrhizal inoculants in micropropagated plants can only be carried out in the acclimatization or hardening phase (that is, ex vitro; eg Estrada-Luna et al. 2000; Marín et al. 2003 ), since these inoculants come from non-sterile conditions that prevent their introduction into the previous in vitro phases. This supposes a great delay in the introduction of the mycorrhizae, and an added stress to the micropropagated plant, which in addition to having to adapt to the new and harsh external conditions, must support the carbon drainage that the HMA demands, initially important until that the symbiotic balance is established (Bago et al. 2000). It is necessary, therefore, to find technical solutions that allow mycorrhizing plants both at the beginning of the seedbed (production of ex vitro plants), or before the acclimatization phase (micropropagated plants, in vitro production), that is, to be able to design a sterile HMA inoculum that makes compatible mycorrhization and rooting. This would reduce stress and the consequent losses that occur during the acclimatization phase of the plants (they have been set at up to 60% in the case of micropropagates) to the natural environment. In addition, the formation of mycorrhizae at such an early age would involve the production of prepared ("vaccinated") plants to resist other types of biotic and abiotic stresses, with the consequent reduction in the use of phytosanitary products; and would minimize delays in the establishment of mycorrhiza, the main determinant of the high variability obtained in the field results, which depend largely on the percentage of success in the establishment of the symbiosis. Finally, the transplantation of pre-mycorrhized plants to the natural environment would make them more competitive when it comes to acquiring nutrients from the natural environment, with the consequent benefits in terms of reducing chemical fertilizer application and / or adaptation to poor or degraded soils. In 1975 a system of in vitro co-cultivation of plant roots and HMA was devised (Mosse and Hepper, 1975), later developed and patented (Mugnier and Mosse, 1987; FR-2528865). This system, currently known as "monoxenic culture of arbuscular mycorrhizae" (CMMA) (Williams, 1992; Bago, 1998), consists of co-cultivating in vitro sterile explant root conditions ("root organ cultures", ROC) , together with HMA propagules isolated from the ground and sterilized on the surface. Under these controlled conditions, HMA and ROC establish mycorrhizal symbiosis, resulting in a large number of fungal propagules (resistance spores, mycorrhized root pieces, extraradical mycelium) in vitro (Bago and Cano, 2005). This technique has been modified on several occasions (Declerck et al. 2005), giving rise to several more recent patents: obtaining HMA propagules in physical absence of the root using medium compartments (St-Arnaud et al, 1996; US- 5554530); Ia replication as a starting material of mycorrhized root pieces containing HMA vesicles (Strullu and Romand, 1987; FR-2568094); and the establishment of mycorrhizae in vitro using undifferentiated plant cells (plant calluses, WO2005000008). However, none of the aforementioned patents or products have been marketed or marketed herein under STERILE CONDITIONS, the production of HMA being in In vitro only a large-scale production system of HMA propagules that, in pre-sale processing, is diluted with non-sterile substrates. With this one of the fundamental advantages of these products is lost, which still cannot be applied under aseptic conditions in the nursery chain of plant production. The only attempt to mycorrhize micropropagated plants under in vitro conditions (Elmeskaoui et al. 1995) was carried out using a solid culture medium in which plants whose roots were wrapped in cellulose cylinders were superimposed, which hindered their growth and reduced importantly the contact of the root with the inoculant.
La presente invención aprovecha el potencial del cultivo monoxénico mejorándolo hasta diseñar un inoculante aséptico apto para micorrizar plantas en fase de enraizamiento, tanto en condiciones in vitro (producción viverística) como ex vitro (desde planteras o semilleros hasta explotaciones agrícolas y revegetación de suelos degradados). Para ello utiliza un medio de cultivo base de tipo gelosado y semisólido, ligero, de baja viscosidad que facilita Ia penetración de Ia raíz en el inoculante, además de potenciar Ia infectividad del HMA. El inoculo objeto de Ia presente invención presenta además numerosas ventajas frente a los inóculos comerciales ya existentes en el mercado, ya que su aplicación resulta más fácil, más rápida y más limpia, además de permitir Ia certificación de asepsia hasta el mismo momento de su aplicación. The present invention exploits the potential of the monoxenic culture by improving it to design an aseptic inoculant suitable for mycorrhising plants in the rooting phase, both in in vitro conditions (nursery production) and ex vitro (from planters or seedlings to farms and revegetation of degraded soils) . To do this, it uses a medium-sized, semi-solid, low-viscosity, medium-sized culture medium that facilitates the penetration of the root into the inoculant, in addition to enhancing the infectivity of AMF. The inoculum object of the present invention also has numerous advantages over commercial inocula already existing in the market, since its application is easier, faster and cleaner, in addition to allowing aseptic certification until the moment of application .
Referencias:References:
Bago B. (1998) AM monoxenic cultures using tomato non-transformed roots.Bago B. (1998) AM monoxenic cultures using tomato non-transformed roots.
Development and Function of the Mycelium of Arbuscular Mycorrhizal Fungí.Development and Function of the Mycelium of Arbuscular Mycorrhizal Fungí.
Method Manual. Kling, M. (ed.). Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Suecia, pp. 41 -44.Method Manual Kling, M. (ed.). Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden, pp. 41-44.
Bago B., Cano C. (2005) Breaking myths on arbuscular mycorrhizas In vitro biology. En: In vitro biology of mycorrhizal symbiosis. Declerck S., StrulluBago B., Cano C. (2005) Breaking myths on arbuscular mycorrhizas In vitro biology. In: In vitro biology of mycorrhizal symbiosis. Declerck S., Strullu
D. G., Fortín A. (eds). SoN Biology Series, Springer-Verlag VoI. 4. pp.111-138D. G., Fortín A. (eds). SoN Biology Series, Springer-Verlag VoI. 4. pp. 111-138
Bago B, Shachar-Hill Y, Pfeffer PE (2000). Carbón metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124: 949-957Bago B, Shachar-Hill Y, Pfeffer PE (2000). Coal metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124: 949-957
Declerck S., Strullu D. G., Fortín A. (eds). (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. En: In vitro biology of mycorrhizal symbiosis. Soil Biology Series, Springer-Verlag VoI. 4.Declerck S., Strullu D. G., Fortín A. (eds). (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: In vitro biology of mycorrhizal symbiosis. Soil Biology Series, Springer-Verlag VoI. Four.
Elmeskaoui A, Damont JP, Poulin MJ, Piché Y, Desjardins Y (1995) A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5: 313-319 Estrada-Luna AA, Davies FT, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas Exchange of micropropagated guava (Psidium gujava L.) plantlets during ex vitro acclimatization and plant establishment. Mycorrhiza 10: 1 -8Elmeskaoui A, Damont JP, Poulin MJ, Piché Y, Desjardins Y (1995) A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5: 313-319 Estrada-Luna AA, Davies FT, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas Exchange of micropropagated guava (Psidium gujava L.) plantlets during ex vitro acclimatization and plant establishment. Mycorrhiza 10: 1-8
Gianinazzi S, Schüepp H (eds.) (1994) Impact of Arbuscular Mycorrhizas onGianinazzi S, Schüepp H (eds.) (1994) Impact of Arbuscular Mycorrhizas on
Sustainable Agriculture and Natural Ecosystems. Birkhauser-Verlag, Basel.Sustainable Agriculture and Natural Ecosystems. Birkhauser-Verlag, Basel.
226 pp226 pp
Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhiza Technology: From Genes to Bioproducts -Achievements and Hurdles inGianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhiza Technology: From Genes to Bioproducts -Achievements and Hurdles in
Arbuscular Mycorrhizal Research. 296 pp. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84: 489-500 Harwood, RR (1991 ) A history of sustainable agriculture. En: LaI, R y Pierce FJ (eds.) Soil Management for Sustainability. Soil and Water ConservationArbuscular Mycorrhizal Research. 296 pp. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84: 489-500 Harwood, RR (1991) A history of sustainable agriculture. In: LaI, R and Pierce FJ (eds.) Soil Management for Sustainability. Soil and Water Conservation
Society of America, Ankeny, pp. 3-19 Jeffries P, Barea JM (2001 ) Arbuscular mycorrhiza -a key component of sustainable plant-soil ecosystems. En: The Mycota IX. Fungal Associations. Hock B (ed.). Springer Verlag, Berlín, pp. 95-113Society of America, Ankeny, pp. 3-19 Jeffries P, Barea JM (2001) Arbuscular mycorrhiza -a key component of sustainable plant-soil ecosystems. In: The Mycota IX. Fungal Associations Hock B (ed.). Springer Verlag, Berlin, pp. 95-113
López-Gorgé, J (1991 ) Fijación y movilización biológica de nutrientes: fotosíntesis, fijación de nitrógeno, micorrizas. En: Fijación y MovilizaciónLópez-Gorgé, J (1991) Fixation and biological mobilization of nutrients: photosynthesis, nitrogen fixation, mycorrhizae. In: Fixation and Mobilization
Biológica de Nutrientes (VoI. I). López-Gorge, J (ed.). CSIC-Nuevas Tendencias, Madrid, pp.XI-XIIBiological Nutrient (VoI. I). López-Gorge, J (ed.). CSIC-New Trends, Madrid, pp. XI-XII
Marin M, Mari A, lbarra M, García-Ferriz L (2003) Arbuscular mycorrhizal inoculation of micropropagated persimmon plantlets. J. Hort. Sci. Biotechnol. 78: 734-738.Marin M, Mari A, lbarra M, García-Ferriz L (2003) Arbuscular mycorrhizal inoculation of micropropagated persimmon plantlets. J. Hort. Sci. Biotechnol. 78: 734-738.
Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agrie Hortic 3: 191 -Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agrie Hortic 3: 191 -
209 Mosse B, Hepper C (1975) Vesicular-arbuscular infections in root organ cultures.209 Mosse B, Hepper C (1975) Vesicular-arbuscular infections in root organ cultures.
Physiol Plant Pathol 5: 215-223 Mugnier J, Mosse B (1987) Vesicular-arbuscular infections in transformed root- inducing T-DNA roots grown axenically. Phytopathol 77: 1045-1050 Sieverding E, Barea JM (1991) Perspectivas de Ia inoculación de sistemas de producción vegetal con hongos formadores de micorrizas VA. En: Fijación y Movilización Biológica de Nutrientes (VoI. II). Olivares J, Barea JM (eds.). CSIC-Nuevas Tendencias, Madrid, pp. 221 -245Physiol Plant Pathol 5: 215-223 Mugnier J, Mosse B (1987) Vesicular-arbuscular infections in transformed root-inducing T-DNA roots grown axenically. Phytopathol 77: 1045-1050 Sieverding E, Barea JM (1991) Perspectives of the inoculation of plant production systems with mycorrhizal fungi VA. In: Fixation and Biological Mobilization of Nutrients (VoI. II). Olivares J, Barea JM (eds.). CSIC-New Trends, Madrid, pp. 221-24
St-Amaud M, Hamel C, Vimard B, Carón M, Fortín JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:St-Amaud M, Hamel C, Vimard B, Carón M, Fortín JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:
328-332 Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, London, 605328-332 Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, London, 605
PPPP
Strullu DG, Romand C (1987) Culture axénique de vésicules ¡solees á partir d'endomycorhizes et ré-association in vitro á des racines de Tomate. C R Acad Sci París 305: 15-19 Williams PG (1992) Axenic culture of arbuscular mycorrhizal fungi. Methods Mic EXPLICACIÓN DE LA INVENCIÓNStrullu DG, Romand C (1987) Axénique de vesicules culture solemn from the random and in-house re-association of tomato rabbits. CR Acad Sci Paris 305: 15-19 Williams PG (1992) Axenic culture of arbuscular mycorrhizal fungi. Methods Mic EXPLANATION OF THE INVENTION
Tal como se ha mencionado anteriormente, sería conveniente disponer de un inoculo estéril de HMA para micorrizar planta eficazmente, que se mantenga aséptico hasta por Io menos el momento de su aplicación. La presente invención describe un inoculante de micorrización producido in vitro de consistencia semisólida, con un alto contenido en propágulos de HMA, con alta infectividad y capacidad de colonización de las raíces, para micorrizar planta tanto in vitro como ex vitro, que garantiza sus condiciones asépticas hasta el mismo momento de su aplicación.As mentioned above, it would be convenient to have a sterile HMA inoculum to effectively mycorrhize plant, which remains aseptic for at least the time of its application. The present invention describes an inoculant of mycorrhization produced in vitro of semi-solid consistency, with a high content of HMA propagules, with high infectivity and colonization capacity of the roots, to mycorrhize plant both in vitro and ex vitro, which guarantees its aseptic conditions until the moment of its application.
Constituye, por tanto, un objeto de Ia presente invención un inoculante de micorrización producido in vitro de consistencia semisólida y viscosidad baja (inferior a 2700 centipoises/minuto). Dicho inoculante puede originarse a partir de cultivos monoxéncos o polixénicos de micorrizas que se mantiene en condiciones asépticas al menos hasta el mismo momento de su aplicación. El inoculante comprende al menos un hongo endomicorrícico arbuscular (HMA), perteneciente a distintas familias de hongos (Glomeraceae, Gigasporaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae, etc.), pudiendo comprender también una combinación de dos o más hongos endomicorrícicos y otros microorganismos beneficiosos del suelo. Dichos hongos micorrícicos pueden provenir de zonas con características ecofisiológicas similares a Ia de aplicación final, o bien haber sido específicamente aislados de Ia misma zona en Ia que se van a reintroducir.Therefore, an object of the present invention is an inoculant of mycorrhization produced in vitro of semi-solid consistency and low viscosity (less than 2700 centipoise / minute). Said inoculant can originate from monoxenic or polygenic cultures of mycorrhizae that is maintained in aseptic conditions at least until the same moment of its application. The inoculant comprises at least one arbuscular endomicorrhizal fungus (AMF), belonging to different families of fungi (Glomeraceae, Gigasporaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae, etc.), and may also comprise a combination of two or more endomicorrhizal fungi and other beneficial microorganisms of the ground. Said mycorrhizal fungi may come from areas with ecophysiological characteristics similar to that of the final application, or may have been specifically isolated from the same area in which they will be reintroduced.
El contenido medio de propágulos de HMA (esporas, raíces micorrizadas y micelio extraradical) es muy alto, al menos 500 propágulos / ml_, preferentemente entre 2000 y 5000 propágulos / ml_, con una gran infectividad (hasta un 20% de colonización MA (micorrizas arbusculares) en las raíces inoculadas a las dos semanas de su aplicación).The average content of AMF propagules (spores, mycorrhized roots and extraradical mycelium) is very high, at least 500 propagules / ml_, preferably between 2000 and 5000 propagules / ml_, with high infectivity (up to 20% of MA colonization (mycorrhizae arbuscular) in the roots inoculated two weeks after application).
El inoculante objeto de Ia invención puede presentarse en forma de polvo deshidratado y mezclado con sustratos inertes habitualmente utilizados en el cultivo viverístico de plantas. Asimismo el inoculante puede constituir un medio aséptico de micorrización que presente una, dos o más fases de distintas características.The inoculant object of the invention can be presented in the form of dehydrated powder and mixed with inert substrates usually used in nursery cultivation of plants. The inoculant can also be a means aseptic mycorrhization that has one, two or more phases of different characteristics.
Otro aspecto de Ia presente invención es Ia utilización del inoculante descrito anteriormente para micorrizar plantas in vitro (plantas micropropagadas durante o inmediatamente después de su fase de enraizamiento, y antes de Ia fase de aclimatación), y ex vitro (plantas micropropagadas durante Ia fase de aclimatación, y semilleros, alvéolos, plantones, plantas de vivero o cualquier otra planta obtenible a partir de técnicas convencionales viverísticas).Another aspect of the present invention is the use of the inoculant described above to mycorrhize plants in vitro (micropropagated plants during or immediately after their rooting phase, and before the acclimatization phase), and ex vitro (micropropagated plants during the phase of acclimatization, and seedlings, alveoli, seedlings, nursery plants or any other plant obtainable from conventional nursery techniques).
Otro aspecto de Ia invención incluye Ia aplicación del inoculo junto con el agua de riego, al mismo tiempo que Ia siembra de semillas, y/o tras Ia siembra de semillas mediante riego por goteo, camiones de riego o aspersores. Igualmente Ia aplicación del inoculo puede realizarse tanto en semilleros estándar o semilleros hidropónicos, como en explotaciones agrícolas.Another aspect of the invention includes the application of the inoculum together with the irrigation water, at the same time as the sowing of seeds, and / or after the sowing of seeds by drip irrigation, irrigation trucks or sprinklers. Likewise, the application of the inoculum can be carried out both in standard or hydroponic seedbeds, as in agricultural farms.
Las plantas susceptibles de ser micorrizadas con el presente inoculo son, entre otras, plantas leñosas, arbustivas, de interés hortofrutícola, ornamentales, flores, vid, plantas aromáticas, plantas medicinales, leguminosas, etc.The plants susceptible to being mycorrhized with the present inoculum are, among others, woody, shrubby plants, of fruit and vegetable interest, ornamental, flowers, vines, aromatic plants, medicinal plants, legumes, etc.
Otro aspecto de Ia presente invención es Ia utilización del inoculante para recuperación y restauración mediante cubierta vegetal de suelos degradados, y para Ia revegetación de zonas alteradas sometidas a estreses bióticos y abióticos, destacando como suelos y zonas degradadas, entre otros, taludes de carreteras, zonas mineras, zonas quemadas, zonas desertificadas, suelos contaminados, suelos infestados, suelos degradados por exceso de sales, suelos calcáreos, suelos de pH extremos, etc. Another aspect of the present invention is the use of the inoculant for recovery and restoration by means of vegetative cover of degraded soils, and for the revegetation of altered areas subjected to biotic and abiotic stresses, highlighting as soils and degraded areas, among others, road slopes, mining areas, burned areas, desertified areas, contaminated soils, infested soils, soils degraded by excess salts, calcareous soils, extreme pH soils, etc.
BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS Fig. 1. Micorrización arbuscular en raíces de olivo (izquierda) y melocotonero (derecha) micropropagados tras dos meses y medio de su inoculación con el objeto de Ia invención. Fig. 2. a. Comparación entre viñas micropropagadas tras seis meses de cultivo en un suelo agrícola calizo-arenoso en ausencia (control) y presencia (+ inoculante) del inoculante objeto de Ia invención, b. Micorrización arbuscular en raíces de viña micropropagada tras año y medio de su inoculación con el objeto de Ia invención. Izquierda, vista general de Ia colonización HMA. Derecha, detalle de las estructuras fúngicas simbióticas.BRIEF DESCRIPTION OF THE CONTENT OF THE FIGURES Fig. 1. Arbuscular mycorrhization in olive roots (left) and peach tree (right) micropropagated after two and a half months of inoculation with the object of the invention. Fig. 2. a. Comparison between micropropagated vines after six months of cultivation in a limestone-sandy agricultural soil in the absence (control) and presence (+ inoculant) of the inoculant object of the invention, b. Arbuscular mycorrhization in micropropagated vine roots after a year and a half of their inoculation with the object of the invention. Left, general view of the HMA colonization. Right, detail of symbiotic fungal structures.
Fig. 3. Comparación entre plantas de lechuga obtenidas de semilla y cultivadas durante tres meses en un suelo agrícola en ausencia (control) y presencia (+ inoculante) del inoculante objeto de Ia invención. Fig. 4. Comparación entre plantas de puerro obtenidas de semilla y cultivadas durante tres meses en un suelo agrícola en ausencia (control) y presencia (+ inoculante) del inoculante objeto de Ia invención.Fig. 3. Comparison between lettuce plants obtained from seed and cultivated for three months in an agricultural soil in the absence (control) and presence (+ inoculant) of the inoculant object of the invention. Fig. 4. Comparison between leek plants obtained from seed and cultivated for three months in an agricultural soil in absence (control) and presence (+ inoculant) of the inoculant object of the invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
El objeto de Ia presente invención es un inoculante de micorrización producido in vito, de consistencia semisólida, con una viscosidad inferior a 2700 centipoises/minuto, preferentemente comprendida entre 1800 y 100 centipoises/minuto, y más preferentemente comprendida entre 800 y 200 centipoises/minuto. Dicha viscosidad reducida es una de las novedades mas interesantes de Ia invención, puesto que incrementa Ia viabilidad e infectividad del inoculante, facilitando su aplicación final en sus diversas formas (gel, agua de riego, medio aséptico de micorrización para plantas micropropagadas o polvo seco diluido con diversos sustratos inertes). La consistencia semisólida y Ia viscosidad del inoculante son mejoras fundamentales con respecto a los medios sólidos (viscosidad superior a 2700 c/ minuto) descritos originariamente para los cultivo monoxénicos de micorrizas, puesto que con esta modificación se facilita Ia penetración de las raíces en el inoculante, propiciándose un contacto mayor y más inmediato de éstas con el HMA. Así mismo, el elevado contenido en agua del inoculante tipo gel potencia Ia germinación de semillas en él incluidas, acelerando el contacto HMA-raíz, y por tanto acelerando también el establecimiento de Ia micorriza.The object of the present invention is an inoculant of mycorrhization produced in vito, of semi-solid consistency, with a viscosity of less than 2700 centipoise / minute, preferably between 1800 and 100 centipoise / minute, and more preferably between 800 and 200 centipoise / minute. . Said reduced viscosity is one of the most interesting novelties of the invention, since it increases the viability and infectivity of the inoculant, facilitating its final application in its various forms (gel, irrigation water, aseptic mycorrhization medium for micropropagated plants or diluted dry powder with various inert substrates). The semi-solid consistency and the viscosity of the inoculant are fundamental improvements with respect to the solid media (viscosity greater than 2700 c / minute) originally described for mycorrhizal monoxenic cultures, since this modification facilitates the penetration of the roots in the inoculant , leading to greater and more immediate contact of these with the HMA. Also, the high water content of the gel-type inoculant enhances the germination of seeds included therein, accelerating the HMA-root contact, and therefore also accelerating the establishment of mycorrhiza.
El inoculante objeto de Ia invención puede originarse a partir de un cultivo monoxénico o polixénico de micorrizas, y se mantiene en condiciones asépticas al menos hasta el mismo momento de su aplicación, Io que es otra de las novedades fundamentales de esta invención. El mantenimiento de dichas condiciones asépticas durante toda Ia producción y hasta Ia aplicación por parte del usuario hacen que este inoculante sea superior a todos los existentes en Ia actualidad a nivel de pureza, certificación, infectividad y validación.The inoculant object of the invention can originate from a monoxenic or polygenic mycorrhizal culture, and is maintained in aseptic conditions at least until the same moment of its application, which is another of the fundamental novelties of this invention. The maintenance of said aseptic conditions throughout the production and even the application by the user makes this inoculant superior to all currently existing at the level of purity, certification, infectivity and validation.
El inoculante de micorrización objeto de Ia invención comprende al menos una cepa de hongo endomicorrícico (preferentemente un hongo endomicorrícico arbuscular, HMA) que puede pertenecer al Phylum Glomeromycota, preferentemente a las Familias Glomaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae o Gigasporaceae, y en particular a los Géneros Glomus, Entrophospora, Acaulospora, Archaeospora, Paraglomus, Gigaspora, Pacispora o Scutellospora. En una realización particular de Ia invención el hongo endomicorrícico pertenece al género Glomus, y en otra realización particular de Ia invención el hongo endomicorrícico pertenece al género Gigaspora. En otra realización particular de Ia invención las siguientes cepas, de forma aislada o en combinaciones variables, pueden formar parte del inoculante: MUCL 44632, MUCL 44633, CIMA10, CIMA12, CIMA13, CIMA07.The mycorrhizal inoculant object of the invention comprises at least one strain of endomicorrhizal fungus (preferably an arbuscular endomicorrhizal fungus, HMA) that may belong to the Phylum Glomeromycota, preferably to the Glomaceae Families, Acaulosporaceae, Archaeosporaceae, Paraglomaceae or Gigasporaceae, and in particular to Genus Glomus, Entrophospora, Acaulospora, Archaeospora, Paraglomus, Gigaspora, Pacispora or Scutellospora. In a particular embodiment of the invention the endomicorrhizal fungus belongs to the genus Glomus, and in another particular embodiment of the invention the endomicorrhizal fungus belongs to the genus Gigaspora. In another particular embodiment of the invention, the following strains, in isolation or in variable combinations, may be part of the inoculant: MUCL 44632, MUCL 44633, CIMA10, CIMA12, CIMA13, CIMA07.
Igualmente el inoculante de micorrización objeto de Ia invención puede comprender una combinación de dos o más HMA, preferentemente dentro de las familias, géneros y cepas arriba mencionados, así como en una combinación de uno o más hongos endomicorrícicos y otros microorganismos beneficiosos del suelo.Likewise, the mycorrhization inoculant object of the invention can comprise a combination of two or more AMF, preferably within the families, genera and strains mentioned above, as well as in a combination of one or more endomicorrhizal fungi and other beneficial soil microorganisms.
Es importante reseñar que el hongo o combinación de hongos micorrícicos presentes en dicho inoculante provienen de zonas de características ecofisiológicas similares a Ia de aplicación final, o bien han sido específicamente aislados de Ia misma zona en Ia que se van a reintroducir, Io que supone otra de las novedades y puntos fuertes de Ia invención objeto de esta patente. En efecto, numerosos estudios científicos han demostrado que Ia eficacia de las cepas microbianas en general, y de los HMA en particularIt is important to note that the fungus or combination of mycorrhizal fungi present in said inoculant come from areas of ecophysiological characteristics similar to that of the final application, or have been specifically isolated from the same area in which they are to be reintroduced, which is another of the novelties and strengths of the invention object of this patent. Indeed, numerous scientific studies have shown that the efficacy of microbial strains in general, and of AMF in particular
El contenido medio de propágulos de HMA (esporas, raíces micorrizadas y micelio extrarradical) del inoculante objeto de Ia invención es de al menos 500 propágulos / ml_, y preferentemente entre 2000 y 5000 propágulos / ml_, Io que supone un incremento sustancial con respecto a otros inoculantes micorrícicos existentes. Otro de los aspectos novedosos de Ia presente invención consiste en Ia elevada infectividad del inoculante objeto de esta patente, que es siempre mayor que Ia de los inoculantes micorrícicos secos en cualquiera de sus formulaciones (e.g. vermiculita, sepiolita, terragreen, perlita, arena, turba, minerales de arcilla, etc.), presentando las raíces puntos de entrada y hasta un 30% de colonización MA (micorrizas arbusculares) tras dos semanas de aplicación del inoculante. La obtención de dicho porcentaje de micorrización a tiempos tan cortos supone una mejora sustancial otorgada por el inoculante objeto de Ia invención con respecto a otros inoculantes HMA, y asegura el establecimiento funcional de Ia micorriza en Ia planta, y por tanto Ia obtención de los beneficios que de ello se derivan, cuando dicha planta sea transplantada a su sustrato definitivo.The average content of AMF propagules (spores, mycorrhized roots and extraradial mycelium) of the inoculant object of the invention is at least 500 propagules / ml_, and preferably between 2000 and 5000 propagules / ml_, which represents a substantial increase with respect to other existing mycorrhizal inoculants. Another of the novel aspects of the present invention consists in the high infectivity of the inoculant object of this patent, which is always greater than that of dry mycorrhizal inoculants in any of its formulations (eg vermiculite, sepiolite, terragreen, perlite, sand, peat , clay minerals, etc.), presenting the roots entry points and up to 30% of colonization MA (arbuscular mycorrhizae) after two weeks of application of the inoculant. Obtaining said percentage of mycorrhization in such short times implies a substantial improvement granted by the inoculant object of the invention with respect to other HMA inoculants, and ensures the functional establishment of the mycorrhizae in the plant, and therefore obtaining the benefits that is derived from it, when said plant is transplanted to its final substrate.
El inoculante aséptico de micorrización objeto de Ia invención puede también presentarse bajo Ia forma de polvo deshidratado, proveniente de Ia mezcla del inoculante-gel descrito arriba, con cualquier sustrato inerte habitualmente utilizado en el cultivo viverístico de plantas. En una realización particular de Ia invención se mezcló el inoculante con vermiculita en una proporción inoculante : sustrato inerte de 1 :2 Constituyen asimismo objetos de Ia presente invención cualquier composición de micorrización y medio aséptico de micorrización que comprendan un inoculante con las características descritas anteriormente.The aseptic mycorrhization inoculant object of the invention can also be presented in the form of dehydrated powder, coming from the mixture of the inoculant-gel described above, with any inert substrate usually used in plant nursery cultivation. In a particular embodiment of the invention, the inoculant was mixed with vermiculite in an inoculant ratio: inert substrate of 1: 2 Likewise objects of the present invention are any mycorrhization composition and aseptic mycorrhization medium comprising an inoculant with the characteristics described above.
Dicho medio aséptico de micorrización puede presentar más de una fase, de las que al menos una es el inoculante objeto de Ia invención. En el caso de consistir en dos o mas fases, Ia fase que contiene el inoculante está debajo de otra, consistente bien en un medio gelosado, o bien en un sustrato inerte del tipo vermiculita, sepiolita, terragreen, perlita, arena, turba, suelo, minerales de Ia arcilla, etc. La razón de superponer una fase encima del inoculante objeto de Ia invención tiene su base en varios motivos, de los cuales tres son fundamentales: i) el ahorro de inoculante que ello supone; ii) puesto que el HMA presente en Ia fase inoculante está vivo, durante el proceso de micorrización su micelio externo crecerá y colonizará Ia fase superior, con hifas en pleno crecimiento y ávidas por encontrar una nueva raíz que micorrizar, incrementándose así más aun el potencial infectivo del inoculante; y iii) Ia fase superior actuaría como una especie de "tampón antiestrés" permitiendo que las raíces se aclimaten a su nuevo medio de cultivo antes de entrar en contacto con el HMA en Ia fase inoculante. Constituye otro objeto de Ia presente invención Ia utilización del inoculante, Ia composición de micorrización y el medio aséptico de micorrización para micorrizar plantas, ya sean éstas micropropagadas o no, de diversas maneras:Said aseptic mycorrhization medium may have more than one phase, of which at least one is the inoculant object of the invention. In the case of consisting of two or more phases, the phase that contains the inoculant is under another, consisting either of a gelsed medium, or an inert substrate of the vermiculite, sepiolite, terragreen, perlite, sand, peat, soil type , minerals of Ia clay, etc. The reason for superimposing a phase on the inoculant object of the invention is based on several reasons, of which three are fundamental: i) the saving of inoculant that this implies; ii) since the AMF present in the inoculant phase is alive, during the mycorrhization process its external mycelium will grow and colonize the upper phase, with hyphae in full growth and eager to find a new root to mycorrhize, thus increasing even more the potential infective of the inoculant; and iii) the upper phase would act as a kind of "anti-stress buffer" allowing the roots to acclimatize to their new culture medium before coming into contact with the AMF in the inoculating phase. Another use of the present invention is the use of the inoculant, the mycorrhization composition and the aseptic mycorrhization medium to mycorrhize plants, whether micropropagated or not, in various ways:
• In vitro, durante o inmediatamente después de Ia fase de enraizamiento, y antes de Ia fase de aclimatación de las plantas.• In vitro, during or immediately after the rooting phase, and before the acclimatization phase of the plants.
• Ex vitro, durante Ia fase de aclimatación de plantas micropropagadas, plantones, plantas de vivero o cualquier otra planta obtenible a partir de técnicas convencionales viverísticas.• Ex vitro, during the acclimatization phase of micropropagated plants, seedlings, nursery plants or any other plant obtainable from conventional nursery techniques.
• Como medio aséptico de micorrización, en cuyo caso se presenta en frascos estériles de los habitualmente utilizados en Ia micropropagación de plantas. El procedimiento de micorrización mediante medio aséptico está caracterizado porque las raíces de las plantas se embeben en el medio de micorrización. La presentación de este medio aséptico de micorrización en frascos estériles permite su utilización dentro de Ia cadena de producción viverística de plantas, con el consiguiente beneficio, en términos de incremento mínimo de costes, por parte del viverista. Además, el elevado potencial del medio aséptico de micorrización permite su reutilización en condiciones estériles por al menos dos veces sucesivas. El inoculante objeto de Ia invención se puede utilizar para su inclusión en semilleros, alvéolos, macetas, contenedores, etc. en los que se vayan a cultivar cualquier tipo de planta, preferentemente en sus estadios más juveniles. Su aplicación se puede llevar a cabo mediante Ia aplicación de alícuotas individualizadas de inoculante, preferentemente menores de 2 ml_, y más preferentemente menores de 1 ml_, al sustrato donde se coloca Ia semilla o el plantón de vivero, siendo dicho sustrato cualquiera de los utilizados habitualmente en los viveros, por ejemplo turba, arena, suelo, vermiculita, perlita, sepiolita, terragreen, minerales de Ia arcilla y sus derivados, y las mezclas de dichos sustratos en proporciones variables. El inoculante objeto de Ia invención también se puede aplicar mediante su distribución por agua de riego, o bien mediante Ia breve inmersión de las raíces de las plantas en él antes de su transplante al semillero.• As an aseptic mycorrhization medium, in which case it is presented in sterile bottles of those commonly used in the micropropagation of plants. The mycorrhization procedure by aseptic means is characterized in that the roots of the plants are embedded in the mycorrhization medium. The presentation of this aseptic means of mycorrhization in sterile bottles allows its use within the plant nursery production chain, with the consequent benefit, in terms of minimum cost increase, by the nurseryman. In addition, the high potential of the aseptic mycorrhization medium allows its reuse under sterile conditions for at least twice successive. The inoculant object of the invention can be used for inclusion in seedbeds, alveoli, pots, containers, etc. in which they are going to cultivate any type of plant, preferably in its more youthful stages. Its application can be carried out by means of the application of individual aliquots of inoculant, preferably less than 2 ml_, and more preferably less than 1 ml_, to the substrate where the seed or nursery seedling is placed, said substrate being any of those used usually in nurseries, for example peat, sand, soil, vermiculite, perlite, sepiolite, terragreen, clay minerals and their derivatives, and mixtures of said substrates in varying proportions. The inoculant object of the invention can also be applied by means of its distribution by irrigation water, or by the brief immersion of the roots of the plants in it before its transplantation to the seedbed.
Es de reseñar que como plantas susceptibles de ser micorrizadas con el inoculante objeto de Ia invención se encuentran, entre otras: plantas leñosas, arbustivas, de interés hortofrutícola, ornamentales, flores, vid, plantas aromáticas, plantas medicinales, leguminosas, etc. La utilización del inoculante objeto de Ia invención en las formas arriba indicadas promoverá el establecimiento temprano de Ia simbiosis micorrícica arbuscular, con el consiguiente beneficio en términos de viabilidad, supervivencia, resistencia a estreses bióticos y abióticos, mejora nutricional, adaptabilidad, productividad, etc. que presentan las plantas micorrizadas con respecto a las que no Io están.It should be noted that as plants susceptible to being mycorrhized with the inoculant object of the invention are, among others: woody, shrubby plants, of fruit and vegetable interest, ornamentals, flowers, vines, aromatic plants, medicinal plants, legumes, etc. The use of the inoculant object of the invention in the aforementioned forms will promote the early establishment of the arbuscular mycorrhizal symbiosis, with the consequent benefit in terms of viability, survival, resistance to biotic and abiotic stresses, nutritional improvement, adaptability, productivity, etc. presented by mycorrhized plants with respect to those that are not.
El inoculante objeto de Ia invención se puede utilizar también para micorrizar plantas en explotaciones agrícolas, en cuyo caso su aplicación se podrá llevar a cabo: i) al mismo tiempo que Ia siembra de semillas y mezclado con ellas en Ia tolva de aplicación; ii) tras Ia siembra de semillas mediante riego por goteo, camiones de riego o aspersores; iii) mediante Ia siembra de plántulas pre- micorrizadas procedentes de semilleros estándar o hidropónicos en los que se habría incluido previamente el inoculante objeto de Ia invención, según se ha descrito; iv) mediante Ia breve inmersión de las raíces de las plantas en el inoculante objeto de Ia invención antes de su transplante a campo. La aplicación del inoculante se efectuará preferentemente en proporción no inferior a 50 propágulos por semilla o plántula, y más preferentemente en proporción no inferior a 100 propágulos por semilla o plántula. El inoculante objeto de Ia invención se puede aplicar así mismo como potenciador del reestablecimiento (recuperación y restauración) de Ia cubierta vegetal de suelos degradados, y para Ia revegetación de zonas alteradas sometidas a estreses bióticos y abióticos. En este sentido los suelos a revegetar pueden ser, entre otros, taludes de carreteras, zonas mineras, zonas quemadas, zonas desertificadas, suelos contaminados, suelos infestados, suelos degradados por exceso de sales, suelos calcáreos, suelos de pH extremos, etc. La inoculación de plantas con aislados HMA originarios de los suelos a recuperar, y su reintroducción en esos mismos suelos, asegura el mantenimiento de Ia biodiversidad de los mismos, así como de sus condiciones fisico-químicas, favoreciendo Ia reinstauración de Ia cubierta vegetal propia del área en cuestión.The inoculant object of the invention can also be used to mycorrhize plants in agricultural holdings, in which case its application can be carried out: i) at the same time as the sowing of seeds and mixed with them in the application hopper; ii) after sowing seeds by drip irrigation, irrigation trucks or sprinklers; iii) by planting pre-mycorrhized seedlings from standard or hydroponic seedlings in which the inoculant object of the invention would have been previously included, as described; iv) by means of the brief immersion of the roots of the plants in the inoculant object of the invention before their transplantation to field. The application of the inoculant will preferably be carried out in a proportion not less than 50 propagules per seed or seedling, and more preferably in a proportion not less than 100 propagules per seed or seedling. The inoculant object of the invention can also be applied as an enhancer of the reestablishment (recovery and restoration) of the vegetation cover of degraded soils, and for the revegetation of altered areas subject to biotic and abiotic stresses. In this sense, the revegetar soils can be, among others, roadsides, mining areas, burned areas, desertified areas, contaminated soils, infested soils, soils degraded by excess salts, calcareous soils, extreme pH soils, etc. The inoculation of plants with HMA isolates originating from the soils to be recovered, and their reintroduction in those same soils, ensures the maintenance of their biodiversity, as well as their physico-chemical conditions, favoring the reinstatement of the own plant cover of the soil. area in question
Asimismo, constituye otro objeto de Ia presente invención los procedimientos de micorrización, in vitro y ex vitro, que utilicen al menos un inoculante, composición de micorrización y medio aséptico de micorrización objetos igualmente de Ia presente invención.Likewise, it is another object of the present invention the mycorrhization procedures, in vitro and ex vitro, that use at least one inoculant, mycorrhization composition and aseptic mycorrhization medium objects also objects of the present invention.
Con el fin de comprobar los efectos del objeto de Ia invención descrito anteriormente, se realizaron diversas pruebas aplicando el inoculante sobre semillas y plantas micropropagadas en condiciones in vitro y ex vitro. Los resultados se muestran en los siguientes ejemplos.In order to verify the effects of the object of the invention described above, various tests were performed applying the inoculant on seeds and micropropagated plants under in vitro and ex vitro conditions. The results are shown in the following examples.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNEXAMPLES OF EMBODIMENT OF THE INVENTION
EJEMPLO 1. Micorrización rápida de plantas en condiciones estériles {in vitro)EXAMPLE 1. Rapid mycorrhization of plants under sterile conditions {in vitro)
Con este ensayo se pretende confirmar Ia infectividad del inoculante objeto de Ia invención en condiciones asépticas. En condiciones estériles, veinte plántulas pregerminadas (a partir de semillas esterilizadas en superficie y germinadas in vitro) de trébol y tomate con radículas incipientes se introdujeron en frascos de cultivo in vitro que contenían 100ml del inoculante aséptico objeto de Ia invención ("medio de micorrización"), producido según Ia técnica descrita, de manera que las radículas estuviesen totalmente embebidas en él. El inoculante se analizó previamente mediante conteo estereomicroscópico directo de acuerdo con el "gridline intersect method" de Giovanetti y Mosse (1980, con modificaciones), resultando su contenido medio de propágulos de HMA por mi de producto en 9351ZS esporas, 6371Se fragmentos colonizados de raíz, y >1000 fragmentos de micelio externo, Io que en conjunto supone >2500 propágulos HMA/mL. Las plántulas de trébol se mantuvieron en los frascos durante dos semanas, a 24° C y 12 h de luz solar, tras las cuales se analizó el tipo y porcentaje de colonización MA. Después de dos semanas de cultivo in vitro se encontró una colonización MA superior al 30%, siendo dicha colonización predominantemente joven y arbuscular, con alguna vesícula en las áreas mas maduras de Ia raíz. Las plántulas de tomate se dejaron en los frascos durante tres semanas, a 24° C y 12 h de luz solar, tras las cuales se llevaron a aclimatar ex vitro en una mezcla estéril de suelo agrícola :arena de cuarzo (1 :9 v:v), manteniéndose así durante aproximadamente un mes. La supervivencia a Ia aclimatación fue del 100%, y el porcentaje de colonización MA superior al 50%. Los porcentajes de micorrización obtenidos con las dos especies utilizadas aseguran Ia eficacia del inoculante objeto de Ia invención para el rápido establecimiento de Ia simbiosis micorrícica, con el consiguiente beneficio para Ia planta.This test is intended to confirm the infectivity of the inoculant object of the invention under aseptic conditions. Under sterile conditions, twenty pregerminated seedlings (from sterilized surface seeds and germinated in vitro) of clover and tomato with incipient radicles were placed in in vitro culture bottles containing 100ml of the aseptic inoculant object of the invention ("mycorrhization medium""), produced according to the described technique, so that the radicles were fully embedded in it. The inoculant was previously analyzed by direct stereomicroscopic counting according to the "gridline intersect method" of Giovanetti and Mosse (1980, with modifications), resulting in its average content of HMA propagules per ml of product in 935 1 ZS spores, 637 1 Colonized root fragments, and> 1000 fragments of external mycelium, which together assumes> 2500 HMA propagules / mL. Clover seedlings were kept in the jars for two weeks, at 24 ° C and 12 h of sunlight, after which the type and percentage of colonization MA was analyzed. After two weeks of in vitro culture, an MA colonization greater than 30% was found, said colonization being predominantly young and arbuscular, with some vesicle in the more mature areas of the root. The tomato seedlings were left in the jars for three weeks, at 24 ° C and 12 h of sunlight, after which they were acclimatized ex vitro in a sterile mixture of agricultural soil: quartz sand (1: 9 v: v), staying like this for about a month. The survival at acclimatization was 100%, and the percentage of MA colonization greater than 50%. The percentages of mycorrhization obtained with the two species used ensure the effectiveness of the inoculant object of the invention for the rapid establishment of mycorrhizal symbiosis, with the consequent benefit to the plant.
EJEMPLO 2. Micorrización ex vitro de plantas micropropagadas En condiciones limpias se prepararon 20 alvéolos comerciales de unos 5OmI de capacidad con turba de baja fertilización a los que se transplantaron plántulas micropropagadas de olivo y melocotonero, listas para iniciar su fase de aclimatación. A las radículas incipientes de cada planta se Ie adicionó 1 ml del inoculante aséptico objeto de Ia invención de manera que quedaran totalmente mojadas por él. Dicho inoculo presenta las mismas características que el utilizado en el ejemplo 1. Las plántulas se cultivaron durante un mes en túnel de aclimatación, y posteriormente (un mes y medio) en condiciones de invernadero, con riego por goteo. Al final del ensayo se evaluaron parámetros de crecimiento (peso fresco, altura) así como el porcentaje y tipo de micorrización HMA (Fig. 2), y se compararon con sus correspondientes plantas controles (no inoculadas). En Ia tabla 2 puede observarse cómo las plantas micorrizadas mostraban mayor crecimiento que los controles. Asimismo, se prepararon, en condiciones limpias, 80 macetas de unos 20OmI de capacidad con una mezcla estéril de suelo agrícola:arena de cuarzo (1 :9 v:v) adicionado con un fertilizante granulado de lenta liberación (Osmocote, 1g/l). A dichas macetas se transplantaron plántulas de viña micropropagada, listas para iniciar su fase de aclimatación. A las radículas incipientes de cada planta se Ie adicionó 1 ml del inoculante aséptico objeto de Ia invención de manera que quedaran totalmente mojadas por él. Las plántulas se cultivaron durante seis meses en cámara de cultivo de plantas (24° C, 12 horas luz), y posteriormente fueron transplantadas a macetas de 2kg que contenían un suelo agrícola arenoso, con un contenido de COsCa no inferior al 20%. Las plantas se cultivaron durante seis meses a campo abierto, con un régimen hídrico de tres riegos por semana. Al año del inicio de este ensayo, que todavía se mantiene en curso, se realizó Ia evaluación de parámetros no destructivos de crecimiento (altura), así como un muestreo parcial de raíces para Ia evaluación del porcentaje y tipo de micorrización HMA, y su comparación con las plantas controles (sin inocular). Los resultados se muestran en Ia Figura 3 y Tabla 1. Es importante notar que las diferencias obtenidas en términos de parámetros fisiológicos para Ia viña se mantienen tras seis meses de cultivo en condiciones de campo, Io que refuerza Ia consistencia de los datos obtenidos para olivo y melocotonero e indica Ia prevalencia de los efectos beneficiosos del inoculante objeto de Ia invención en condiciones agronómicas reales.EXAMPLE 2. Ex vitro mycorrhization of micropropagated plants In clean conditions, 20 commercial alveoli of about 5OmI capacity with low fertilization peat were prepared to which micropropagated olive and peach seedlings were transplanted, ready to begin their acclimatization phase. To the incipient radicles of each plant 1 ml of the aseptic inoculant object of the invention was added so that they were totally wetted by it. Said inoculum has the same characteristics as that used in Example 1. The seedlings were grown for a month in an acclimatization tunnel, and subsequently (a month and a half) in greenhouse conditions, with drip irrigation. At the end of the test, growth parameters (fresh weight, height) as well as the percentage and type of HMA mycorrhization were evaluated (Fig. 2), and compared with their corresponding control plants (not inoculated). Table 2 shows how mycorrhized plants showed greater growth than controls. Likewise, 80 pots of about 20 Ohm capacity were prepared under clean conditions with a sterile mixture of agricultural soil: quartz sand (1: 9 v: v) added with a slow-release granulated fertilizer (Osmocote, 1g / l) . To these pots micropropagated vineyard seedlings were transplanted, ready to begin their acclimatization phase. To the incipient radicles of each plant 1 ml of the aseptic inoculant object of the invention was added so that they were totally wetted by it. The seedlings were grown for six months in a plant culture chamber (24 ° C, 12 light hours), and subsequently transplanted into 2kg pots containing a sandy agricultural soil, with a COsCa content of not less than 20%. The plants were grown for six months in the open, with a water regime of three irrigations per week. One year after the start of this trial, which is still ongoing, the evaluation of non-destructive growth parameters (height) was performed, as well as a partial sampling of roots for the evaluation of the percentage and type of HMA mycorrhization, and its comparison with the control plants (without inoculation). The results are shown in Figure 3 and Table 1. It is important to note that the differences obtained in terms of physiological parameters for the vineyard are maintained after six months of cultivation in field conditions, which reinforces the consistency of the data obtained for olive trees and peach tree and indicates the prevalence of the beneficial effects of the inoculant object of the invention in real agronomic conditions.
Tabla 1. Incremento medio y máximo de los parámetros de crecimiento de las plantas micorrizadas respecto a las plantas control y porcentaje de colonización micorrícica.Table 1. Average and maximum increase in the growth parameters of mycorrhized plants with respect to control plants and percentage of mycorrhizal colonization.
OLIVO:OLIVE:
Figure imgf000019_0001
MELOCOTONERO:
Figure imgf000019_0001
PEACH TREE:
Figure imgf000020_0001
Figure imgf000020_0001
EJEMPLO 3. Micorrización ex vitro de semillasEXAMPLE 3. Ex vitro mycorrhization of seeds
En condiciones limpias, se prepararon 30 macetas de 30OmI de capacidad con una mezcla estéril de suelo agrícola:arena de cuarzo (1 :9 v:v) adicionado con un fertilizante granulado de lenta liberación (Osmocote, 1g/l). Aproximadamente a 6cm de Ia superficie se sembraron semillas de puerro y lechuga, a las que se les adicionó 1 ml del inoculante aséptico objeto de Ia invención por maceta, de manera que las semillas quedaran totalmente incluidas en él. El inoculante utilizado es el mismo que en los ejemplos 1 y 2. Tras Ia germinación se redujo el número de plántulas a una por maceta. Las plantas se cultivaron durante dos meses y medio en condiciones de invernadero, con un régimen hídrico de tres riegos por semana. Al final del ensayo se evaluaron parámetros de crecimiento de Ia planta (peso fresco, diámetro, altura) así como el porcentaje y tipo de micorrización HMA, y se compararon con sus correspondientes plantas controles (no inoculadas). Los resultados aparecen en las Figuras 4 y 5 y en Ia Tabla 2, donde puede observarse que las plantas micorrizadas presentaban mayor crecimiento que los controles. Tabla 2. Incremento medio y máximo de los parámetros de crecimiento de las plantas micorrizadas respecto a las plantas control y porcentaje de colonización micorrícica.Under clean conditions, 30 pots of 30OmI capacity were prepared with a sterile mixture of agricultural soil: quartz sand (1: 9 v: v) added with a slow-release granulated fertilizer (Osmocote, 1g / l). Approximately 6cm from the surface, leek and lettuce seeds were sown, to which 1 ml of the aseptic inoculant object of the invention was added per pot, so that the seeds were fully included in it. The inoculant used is the same as in examples 1 and 2. After germination, the number of seedlings was reduced to one per pot. The plants were grown for two and a half months in greenhouse conditions, with a water regime of three irrigations per week. At the end of the test, plant growth parameters (fresh weight, diameter, height) were evaluated, as well as the percentage and type of HMA mycorrhization, and they were compared with their corresponding control plants (not inoculated). The results appear in Figures 4 and 5 and in Table 2, where it can be seen that mycorrhized plants showed greater growth than controls. Table 2. Average and maximum increase in the growth parameters of mycorrhized plants with respect to control plants and percentage of mycorrhizal colonization.
LECHUGA:LETTUCE:
Figure imgf000021_0001
Figure imgf000021_0001

Claims

REIVINDICACIONES
1- Inoculante de micorrización producido in vitro, caracterizado porque su consistencia es semisólida, con una viscosidad inferior a 2700 centipoises/minuto, preferentemente comprendida entre 1800 y 100 centipoises/minuto, y más preferentemente comprendida entre 800 y 200 centipoises/minuto.1 - Inoculant of mycorrhization produced in vitro, characterized in that its consistency is semi-solid, with a viscosity of less than 2700 centipoise / minute, preferably between 1800 and 100 centipoise / minute, and more preferably between 800 and 200 centipoise / minute.
2- Inoculante de micorrización según Ia reivindicación 1 caracterizado porque dicho inoculante se origina a partir de un cultivo monoxénico de micorrizas.2- Mycorrhizal inoculant according to claim 1, characterized in that said inoculant originates from a mycorrhizal monoxenic culture.
3- Inoculante de micorrización según Ia reivindicación 1 caracterizado porque dicho inoculante se origina a partir de un cultivo polixénico de micorrizas.3- Mycorrhizal inoculant according to claim 1 characterized in that said inoculant originates from a mycorrhizal polygenic culture.
4- Inoculante de micorrización según las reivindicaciones 1 a 3 caracterizado porque dicho inoculante se mantiene en condiciones asépticas al menos hasta el mismo momento de su aplicación.4- Mycorrhization inoculant according to claims 1 to 3, characterized in that said inoculant is maintained in aseptic conditions at least until the same moment of its application.
5- Inoculante de micorrización según las reivindicaciones de Ia 1 a Ia 4 caracterizado porque dicho inoculante comprende al menos un hongo endomicorrícico, preferentemente un hongo endomicorrícico arbuscular (HMA).5- Mycorrhizal inoculant according to claims 1 to 4, characterized in that said inoculant comprises at least one endomicorrhizal fungus, preferably an arbuscular endomicorrhizal fungus (AMF).
6- Inoculante de micorrización según Ia reivindicación 5 caracterizado porque dicho hongo endomicorrícico pertenece a una única cepa, preferentemente una cepa de hongo endomicorrícico arbuscular. 7-lnoculante de micorrización según cualquiera de las reivindicaciones anteriores caracterizado porque el hongo endomicorrícico pertenece al Phylum Glomeromycota, preferentemente a Ia Clase Glomeromycetes, y más preferentemente a Ia Familia Glomeraceae.6- Mycorrhizal inoculant according to claim 5 characterized in that said endomicorrhizal fungus belongs to a single strain, preferably an arbuscular endomicorrhizal fungus strain. 7-mycorrhizal lnoculant according to any of the preceding claims characterized in that the endomicorrhizal fungus belongs to the Phylum Glomeromycota, preferably to the Glomeromycetes Class, and more preferably to the Glomeraceae Family.
8-lnoculante de micorrización según Ia reivindicación 7 caracterizado porque el hongo endomicorrízico pertenece al género Glomus, preferentemente a Ia especie G. intraradices8-mycorrhizal lnoculant according to claim 7 characterized in that the endomicorrhizal fungus belongs to the genus Glomus, preferably to the species G. intraradices
9-lnoculante de micorrización según Ia reivindicación 8 caracterizado porque el hongo endomicorrízico se selecciona entre las siguientes cepas: MUCL 44633, CIMA10, CIMA12, CIMA13, CIMA07. 10-lnoculante de micorrización según cualquiera de las reivindicaciones de Ia 1 a Ia 6 caracterizado porque el hongo endomicorrícico pertenece a Ia Familia Gigasporaceae, preferentemente al género Gigaspora, y más preferentemente a Ia especie G. margarita 11 -Inoculante de micorrización según Ia reivindicación 10 caracterizado porque el hongo endomicorrízico de Ia especie G. margarita pertenece a Ia cepa MUCL 44632.9-mycorrhizal lnoculant according to claim 8 characterized in that the endomicorrhizal fungus is selected from the following strains: MUCL 44633, CIMA10, CIMA12, CIMA13, CIMA07. 10-mycorrhizal lnoculant according to any one of claims 1 to 6, characterized in that the endomicorrhizal fungus belongs to the Gigasporaceae Family, preferably to the genus Gigaspora, and more preferably to the species G. margarita 11 -Micorrization inoculant according to claim 10 characterized in that the endomicorrhizal fungus of the G. margarita species belongs to the strain MUCL 44632.
12-lnoculante de micorrización según cualquiera de las reivindicaciones de Ia 1 a Ia 6 caracterizado porque el hongo endomicorrízico pertenece, entre otras, a una de las siguientes Familias: Glomaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae o Gigasporaceae, y preferentemente a los Géneros Glomus, Entrophospora, Acaulospora, Archaeospora, Paraglomus, Gigaspora, Pacispora o Scutellospora.12-mycorrhizal lnoculant according to any of claims 1 to 6, characterized in that the endomicorrhizal fungus belongs, among others, to one of the following Families: Glomaceae, Acaulosporaceae, Archaeosporaceae, Paraglomaceae or Gigasporaceae, and preferably to the Glomus genera, Entrophospora, Acaulospora, Archaeospora, Paraglomus, Gigaspora, Pacispora or Scutellospora.
13-lnoculante de micorrización según las reivindicaciones de Ia 1 a Ia 4 caracterizado porque dicho inoculante comprende una combinación de dos o más hongos endomicorrícicos, preferentemente hongos endomicorrícicos arbusculares de los citados en las reivindicaciones de Ia 1 a Ia 12.13-mycorrhizal lnoculant according to claims 1 to 4, characterized in that said inoculant comprises a combination of two or more endomicorrhizal fungi, preferably arbuscular endomicorrhizal fungi of those cited in claims 1 to 12.
14-lnoculante de micorrización según cualquiera de las reivindicaciones 1 a 13 caracterizado porque comprende una combinación de uno o más hongos endomicorrícicos y otros microorganismos beneficiosos del suelo.14-mycorrhizal lnoculant according to any of claims 1 to 13 characterized in that it comprises a combination of one or more endomicorrhizal fungi and other beneficial soil microorganisms.
15- Inoculante de micorrización según cualquiera de las reivindicaciones 1-14 caracterizado porque el hongo o combinación de hongos micorrícicos presentes en dicho inoculante provienen de zonas de características ecofisiológicas similares a Ia de aplicación final, o bien han sido específicamente aislados de Ia misma zona en Ia que se van a reintroducir.15 - Mycorrhizal inoculant according to any of claims 1-14, characterized in that the fungus or combination of mycorrhizal fungi present in said inoculant comes from areas of ecophysiological characteristics similar to that of final application, or have been specifically isolated from the same area in Ia that will be reintroduced.
16- Inoculante de micorrización según cualquiera de las reivindicaciones de Ia 1 a Ia 15 caracterizado porque su contenido medio de propágulos de HMA (esporas, raíces micorrizadas y micelio extraradical) es de al menos 500 propágulos / ml_, preferentemente entre 2000 y 5000 propágulos / ml_. 17- Inoculante de micorrización según cualquiera de las reivindicaciones de Ia 1 a Ia 16 caracterizado porque su infectividad es siempre mayor que Ia de un inoculante micorrícico seco en cualquiera de sus formulaciones (e.g. vermiculita, sepiolita, terragreen, perlita, arena, turba, minerales de arcilla, etc.), presentando puntos de entrada y hasta un 30% de colonización MA (micorrizas arbusculares) en las raíces inoculadas a las dos semanas de su aplicación.16 - Mycorrhizal inoculant according to any one of claims 1 to 15, characterized in that its average content of AMF propagules (spores, mycorrhized roots and extraradical mycelium) is at least 500 propagules / ml, preferably between 2000 and 5000 propagules. ml_. 17- Mycorrhizal inoculant according to any of claims 1 to 16, characterized in that its infectivity is always greater than that of a dry mycorrhizal inoculant in any of its formulations (eg vermiculite, sepiolite, terragreen, perlite, sand, peat, minerals of clay, etc.), presenting entry points and up to 30% of colonization MA (arbuscular mycorrhizae) in the inoculated roots two weeks after its application.
18- Inoculante aséptico de micorrización caracterizado porque dicho inoculante se presenta en forma de polvo deshidratado, proveniente de Ia mezcla del inoculante descrito en las reivindicaciones 1 -17 y sustratos inertes habitualmente utilizados en el cultivo viverístico de plantas.18- Aseptic mycorrhizal inoculant characterized in that said inoculant is presented in the form of dehydrated powder, from the mixture of the inoculant described in claims 1-17 and inert substrates commonly used in plant nursery culture.
19- Inoculante aséptico de micorrización según Ia reivindicación 18 caracterizado porque el sustrato inerte es vermiculita y Ia proporción de Ia mezcla (inoculante : vermiculita) es al menos de (1 :2).19- Aseptic mycorrhization inoculant according to claim 18 characterized in that the inert substrate is vermiculite and the proportion of the mixture (inoculant: vermiculite) is at least (1: 2).
20- Composición de micorrización caracterizada porque comprende al menos un inoculante según cualquiera de las reivindicaciones de Ia 1 a Ia 19.20 - Mycorrhization composition characterized in that it comprises at least one inoculant according to any one of claims 1 to 19.
21- Medio aséptico de micorrización caracterizado porque comprende al menos un inoculante según cualquiera de las reivindicaciones de Ia 1 a Ia 17.21- Aseptic mycorrhization medium characterized in that it comprises at least one inoculant according to any one of claims 1 to 17.
22- Medio aséptico de micorrización caracterizado porque comprende dos o más fases de las que al menos una de ellas es un inoculante según cualquiera de las reivindicaciones de Ia 1 a Ia 17.22- Aseptic mycorrhization medium characterized in that it comprises two or more phases of which at least one of them is an inoculant according to any one of claims 1 to 17.
23- Medio aséptico de micorrización según Ia reivindicación 22 caracterizado porque Ia fase que contiene el inoculante está debajo de otra fase consistente en un medio gelosado o un sustrato inerte.23- Aseptic mycorrhization medium according to claim 22, characterized in that the phase containing the inoculant is under another phase consisting of a gelsed medium or an inert substrate.
24- Medio aséptico de micorrización según Ia reivindicación 23 caracterizado porque el sustrato inerte es del tipo vermiculita, sepiolita, terragreen, perlita, arena, turba, suelo, minerales de Ia arcilla, etc.24- Aseptic mycorrhization medium according to claim 23, characterized in that the inert substrate is of the vermiculite, sepiolite, terragreen, perlite, sand, peat, soil, clay minerals, etc. type.
25- Utilización de un inoculante según las reivindicaciones de Ia 1 a Ia 20 para micorrizar plantas in vitro. 26- Utilización de un inoculante según Ia reivindicación 25 para micorrizar in vitro plantas micropropagadas durante o inmediatamente después de su fase de enraizamiento, y antes de Ia fase de aclimatación.25- Use of an inoculant according to claims 1 to 20 to mycorrhize plants in vitro. 26- Use of an inoculant according to claim 25 for in vitro mycorrhization of micropropagated plants during or immediately after their rooting phase, and before the acclimatization phase.
27- Utilización de un medio de micorrización según las reivindicaciones de Ia 21 a Ia 24 para micorrizar plantas in vitro.27- Use of a mycorrhization medium according to claims 21 to 24 to micorrizar plants in vitro.
28- Utilización de un medio de micorrización según Ia reivindicación 27 para micorrizar in vitro plantas micropropagadas durante o inmediatamente después de su fase de enraizamiento, y antes de Ia fase de aclimatación.28- Use of a mycorrhization medium according to claim 27 to in vitro mycorrhize micropropagated plants during or immediately after their rooting phase, and before the acclimatization phase.
29- Utilización de un inoculante según las reivindicaciones de Ia 1 a Ia 20 para micorrizar plantas ex vitro.29- Use of an inoculant according to claims 1 to 20 to mycorrhize ex vitro plants.
30- Utilización de un inoculante según Ia reivindicación 29 para micorrizar plantas micropropagadas durante Ia fase de aclimatación.30- Use of an inoculant according to claim 29 to mycorrhize micropropagated plants during the acclimatization phase.
31- Utilización de un inoculante según Ia reivindicación 29 para micorrizar semilleros, alvéolos, plantones, plantas de vivero o cualquier otra planta obtenible a partir de técnicas convencionales viverísticas.31- Use of an inoculant according to claim 29 to mycorrhize seedlings, alveoli, seedlings, nursery plants or any other plant obtainable from conventional nursery techniques.
32-Utilización de un inoculante según las reivindicaciones de Ia 1 a Ia 20 caracterizado porque dicho inoculante se aplica junto con el agua de riego.32-Use of an inoculant according to claims 1 to 20, characterized in that said inoculant is applied together with the irrigation water.
33-Utilización de un inoculante según cualquiera de las reivindicaciones de Ia 1 a Ia 20 caracterizado porque dicho inoculante se aplica en explotaciones agrícolas. 34-Utilización de un inoculante según Ia reivindicación 33 caracterizado porque Ia aplicación de dicho inoculante se realiza al mismo tiempo que Ia siembra de semillas y mezclado con ellas en Ia tolva de aplicación.33-Use of an inoculant according to any of claims 1 to 20, characterized in that said inoculant is applied in agricultural holdings. 34-Use of an inoculant according to claim 33 characterized in that the application of said inoculant is carried out at the same time as the sowing of seeds and mixed with them in the application hopper.
35-Utilización de un inoculante según Ia reivindicación 33 caracterizado porque Ia aplicación de dicho inoculante se realiza tras Ia siembra de semillas mediante riego por goteo, camiones de riego o aspersores.35-Use of an inoculant according to claim 33 characterized in that the application of said inoculant is carried out after seed sowing by drip irrigation, irrigation trucks or sprinklers.
36-Utilización de un inoculante según cualquiera de las reivindicaciones de Ia 1 a Ia 20 caracterizado porque Ia aplicación de dicho inoculante se realiza tanto en semilleros estándar como en semilleros hidropónicos. 37- Utilización de un inoculante según las reivindicaciones 34 a 36 caracterizado porque el inoculante se aplica preferentemente en proporción no inferior a 50 propágulos por semilla o plántula, y más preferentemente en proporción no inferior a 100 propágulos por semilla o plántula. 38- Utilización de un inoculante según las reivindicaciones de Ia 25 a Ia 37 caracterizado porque las plantas que se micorrizan son, entre otras, plantas leñosas, arbustivas, de interés hortofrutícola, ornamentales, flores, vid, plantas aromáticas, plantas medicinales, leguminosas, etc.36-Use of an inoculant according to any one of claims 1 to 20, characterized in that the application of said inoculant is carried out in both standard and hydroponic seedbeds. 37. Use of an inoculant according to claims 34 to 36 characterized in that the inoculant is preferably applied in a proportion not less than 50 propagules per seed or seedling, and more preferably in a proportion not less than 100 propagules per seed or seedling. 38- Use of an inoculant according to claims 25 to 37, characterized in that the plants that are mycorrhized are, among others, woody, shrubby plants, of fruit and vegetable interest, ornamental, flowers, vines, aromatic plants, medicinal plants, legumes, etc.
39- Utilización de un inoculante según las reivindicaciones de Ia 25 a Ia 38 para recuperación y restauración mediante cubierta vegetal de suelos degradados, y para Ia revegetación de zonas alteradas sometidas a estreses bióticos y abióticos.39- Use of an inoculant according to claims from Ia 25 to Ia 38 for recovery and restoration by vegetation cover of degraded soils, and for the revegetation of altered areas subjected to biotic and abiotic stresses.
40- Utilización de un inoculante según las reivindicación 39 caracterizado porque los suelos y zonas degradadas que se tratan son, entre otros, taludes de carreteras, zonas mineras, zonas quemadas, zonas desertificadas, suelos contaminados, suelos infestados, suelos degradados por exceso de sales, suelos calcáreos, suelos de pH extremos, etc.40- Use of an inoculant according to claim 39, characterized in that the soils and degraded areas that are treated are, among others, roadsides, mining areas, burned areas, desertified areas, contaminated soils, infested soils, degraded soils by excess salts. , calcareous soils, extreme pH soils, etc.
41- Procedimiento de micorrización in vito caracterizado porque se utiliza al menos un inoculante o medio aséptico de micorrización según las reivindicaciones de Ia 1 a Ia 24.41- In vito mycorrhization procedure characterized in that at least one inoculant or aseptic mycorrhization medium according to claims 1 to 24 is used.
42- Procedí miento de micorrización ex vitro caracterizado porque se aplica al menos un inoculante según las reivindicaciones de Ia 1 a Ia 20.42- Ex vitro mycorrhization procedure characterized in that at least one inoculant according to claims 1 to 20 is applied.
43- Procedimiento de micorrización según Ia reivindicación 42 caracterizado porque se añade una alícuota del inoculante, preferentemente menor de 2 ml_, y más preferentemente menor de 1 ml_, al sustrato donde se coloca Ia semilla o el plantón de vivero, siendo dicho sustrato cualquier sustrato usado habitualmente en los viveros, por ejemplo turba, arena, suelo, vermiculita, perlita, sepiolita, terragreen, minerales de Ia arcilla y sus derivados, y las mezclas de dichos sustratos en proporciones variables. 44- Procedimiento de micorrización in vitro caracterizado porque las raíces de las plantas se embeben en un medio de micorrización según las reivindicaciones de Ia 21 a Ia 24.43 - Mycorrhization method according to claim 42, characterized in that an aliquot of the inoculant, preferably less than 2 ml_, and more preferably less than 1 ml_, is added to the substrate where the seed or nursery plant is placed, said substrate being any substrate commonly used in nurseries, for example peat, sand, soil, vermiculite, perlite, sepiolite, terragreen, clay minerals and their derivatives, and mixtures of said substrates in varying proportions. 44- In vitro mycorrhization procedure characterized in that the roots of the plants are embedded in a mycorrhization medium according to claims from 21 to 24.
45- Procedimiento de micorrización ex vitro caracterizado porque las raíces de las plantas se sumergen brevemente en un medio de micorrización según las reivindicaciones de Ia 1 a Ia 20, antes de ser transplantadas a semillero o a su medio definitivo.45- Ex vitro mycorrhization procedure characterized in that the roots of the plants are briefly immersed in a mycorrhization medium according to claims 1 to Ia 20, before being transplanted to a seedbed or to its definitive medium.
46- Procedimiento de micorrización ex vitro caracterizado porque se aplica un inoculante según las reivindicaciones 1 a Ia 20, directamente al suelo de Ia explotación agrícola según las reivindicaciones de Ia 32 a Ia 37. 46- Ex vitro mycorrhization procedure characterized in that an inoculant according to claims 1 to Ia 20 is applied, directly to the soil of the agricultural holding according to claims from 32 to 37.
PCT/ES2006/070115 2005-07-29 2006-07-27 Aseptic mycorrhization inoculant and in vitro and ex vitro application methods WO2007014974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501878 2005-07-29
ES200501878A ES2268984B1 (en) 2005-07-29 2005-07-29 ASEPTIC INOCULATING MICORRIZATION AND APPLICATION PROCEDURES IN CONDITIONS IN VITRO AND EX VITRO.

Publications (1)

Publication Number Publication Date
WO2007014974A1 true WO2007014974A1 (en) 2007-02-08

Family

ID=37708552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070115 WO2007014974A1 (en) 2005-07-29 2006-07-27 Aseptic mycorrhization inoculant and in vitro and ex vitro application methods

Country Status (2)

Country Link
ES (1) ES2268984B1 (en)
WO (1) WO2007014974A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457669C2 (en) * 2010-11-13 2012-08-10 Общество с ограниченной ответственностью Научно-производственное предприятие "МИКРОКЛОН" Method for clonal micro-propagation of lilac in vitro
DE102013101452A1 (en) 2013-02-14 2014-08-14 Angelika Spindler Method for in-vitro production of VA mycorrhizae in e.g. bio agriculture, involves mechanically reducing spores containing nutrient medium, and harvesting roots based on incubation of roots multiple weeks in darkness and room temperature
CN104604386A (en) * 2015-02-09 2015-05-13 中国科学院南京土壤研究所 Method for repairing farmland soil polluted by cadmium through using combination of arbuscular mycorrhizal fungi and sedum plumbizincicola
CN107493896A (en) * 2017-09-06 2017-12-22 河南科技大学 The method grown using AMF promotion sugar grass in salt-soda soil
CN107493897A (en) * 2017-09-06 2017-12-22 河南科技大学 The method grown with AMF and organic fertilizer promotion sugar grass in salt-soda soil
CN110999703A (en) * 2019-12-20 2020-04-14 宜兴乾元黑色食品科技有限公司 Method for improving secondary metabolite content of vaccinium bracteatum by infecting with megasporocyst mould
CN111635010A (en) * 2020-05-21 2020-09-08 常州工程职业技术学院 Ecological floating bed and water body purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004653A1 (en) * 1983-05-25 1984-12-06 Nat Res Dev Method of culture of va mycorrhizal fungi
EP0172085A1 (en) * 1984-07-24 1986-02-19 Centre National De La Recherche Scientifique (Cnrs) Process for the culture of fungi in vitro starting from vesicular and arbuscular Mycorrhizae
US5554530A (en) * 1993-08-06 1996-09-10 Universite De Montreal Aseptic in vitro endomycorrhizal spore mass production
US20030203474A1 (en) * 2002-04-29 2003-10-30 Wen-Kai Wang Method of facilitating mass production and sporulation of arbuscular mycorrhizal fungi aseptic in vitro
WO2005000008A2 (en) * 2003-06-24 2005-01-06 Universite D'angers Method for in vitro production of mycorrhizal fungi mycocallus and mycorrhized biological support obtained thus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004653A1 (en) * 1983-05-25 1984-12-06 Nat Res Dev Method of culture of va mycorrhizal fungi
EP0172085A1 (en) * 1984-07-24 1986-02-19 Centre National De La Recherche Scientifique (Cnrs) Process for the culture of fungi in vitro starting from vesicular and arbuscular Mycorrhizae
US5554530A (en) * 1993-08-06 1996-09-10 Universite De Montreal Aseptic in vitro endomycorrhizal spore mass production
US20030203474A1 (en) * 2002-04-29 2003-10-30 Wen-Kai Wang Method of facilitating mass production and sporulation of arbuscular mycorrhizal fungi aseptic in vitro
WO2005000008A2 (en) * 2003-06-24 2005-01-06 Universite D'angers Method for in vitro production of mycorrhizal fungi mycocallus and mycorrhized biological support obtained thus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457669C2 (en) * 2010-11-13 2012-08-10 Общество с ограниченной ответственностью Научно-производственное предприятие "МИКРОКЛОН" Method for clonal micro-propagation of lilac in vitro
DE102013101452A1 (en) 2013-02-14 2014-08-14 Angelika Spindler Method for in-vitro production of VA mycorrhizae in e.g. bio agriculture, involves mechanically reducing spores containing nutrient medium, and harvesting roots based on incubation of roots multiple weeks in darkness and room temperature
DE102013101452B4 (en) * 2013-02-14 2016-05-25 Angelika Spindler Method and plant for in vitro production of VA mycorrhizal spores
CN104604386A (en) * 2015-02-09 2015-05-13 中国科学院南京土壤研究所 Method for repairing farmland soil polluted by cadmium through using combination of arbuscular mycorrhizal fungi and sedum plumbizincicola
CN107493896A (en) * 2017-09-06 2017-12-22 河南科技大学 The method grown using AMF promotion sugar grass in salt-soda soil
CN107493897A (en) * 2017-09-06 2017-12-22 河南科技大学 The method grown with AMF and organic fertilizer promotion sugar grass in salt-soda soil
CN110999703A (en) * 2019-12-20 2020-04-14 宜兴乾元黑色食品科技有限公司 Method for improving secondary metabolite content of vaccinium bracteatum by infecting with megasporocyst mould
CN111635010A (en) * 2020-05-21 2020-09-08 常州工程职业技术学院 Ecological floating bed and water body purification method

Also Published As

Publication number Publication date
ES2268984B1 (en) 2008-03-16
ES2268984A1 (en) 2007-03-16

Similar Documents

Publication Publication Date Title
ES2268984B1 (en) ASEPTIC INOCULATING MICORRIZATION AND APPLICATION PROCEDURES IN CONDITIONS IN VITRO AND EX VITRO.
CN102057833A (en) Application method of AM (Arhusclar Mycorrhiza) fungi in cultivation of tree peony
CN103508788A (en) Domestication cultivation medium for bletilla striata tissue culture seedlings
ES2656786A1 (en) Procedure of elaboration of an organic substrate for stimulation of growth in germination and development of plants and organic substrate (Machine-translation by Google Translate, not legally binding)
ES2364684B1 (en) PROCEDURE FOR OBTAINING A MICORRIZOGEN AGENT.
JP2022077963A (en) Plant seedling, seedling cultivation method, culture soil, and method of growing plant
ES2706099B2 (en) New strain of Trichoderma aggressivum fsp europaeum, compositions and applications thereof
CN102771350A (en) Method for cultivating mycorrhizal seedlings
KR20140057917A (en) Cultivation method of lily bulbs
Hwang et al. Changes in the growth of red pepper (Capsicum annuum L.) and soil moisture according to irrigation and cultivating methods
WO2012121579A1 (en) Arbuscular-mycorrhizae-forming endomycorrhizal inoculant applied to vegetable and fruit seedlings
Park et al. The effect of expanded rice hulls as a root substrate on the suppression of anthracnose crown rot in strawberry
JP7038451B6 (en) Plant seedlings, seedling raising methods, hilling, and plant growing methods
Mohandas et al. Popularization of arbuscular mycorrhizal (AM) inoculum production and application on-farm
JP5770897B1 (en) A method for cultivating vegetables using fertilizers and pesticides by using normal bacteria in the atmosphere
CN109121533A (en) A kind of vernalization type of seeding of pot marigold
TWI714499B (en) Method for inoculating economically valuable truffles to Castanea plants to form mycorrhizal seedlings
Ciorchina et al. Features of cultivation of blackberry in the Republic of Moldova
ES2684858B1 (en) New strain of Paecilomyces variotii, compositions and applications thereof
JP4721032B2 (en) Indoor cultivation method of Hatake shimeji
CN105052653B (en) A kind of method for culturing seedlings of Spondias axillaris tissue-cultured seedling
Shylla et al. Production of elite planting material of strawberry using soil-less substrates under protected condition
CN104969822A (en) Planting method for improving fruit plumpness of grapes
CN104488507A (en) Breeding method of purple potatoes
JP2005168479A (en) Grafted plant rooting cultivation from joint section in grafted nursery plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06778468

Country of ref document: EP

Kind code of ref document: A1