WO2007012703A1 - Cable de securite resistant au feu, sensiblement plat - Google Patents

Cable de securite resistant au feu, sensiblement plat Download PDF

Info

Publication number
WO2007012703A1
WO2007012703A1 PCT/FR2005/001988 FR2005001988W WO2007012703A1 WO 2007012703 A1 WO2007012703 A1 WO 2007012703A1 FR 2005001988 W FR2005001988 W FR 2005001988W WO 2007012703 A1 WO2007012703 A1 WO 2007012703A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable according
cable
fire
insulating layer
outer sheath
Prior art date
Application number
PCT/FR2005/001988
Other languages
English (en)
Inventor
Thierry Jorand
Jean-Louis Pons
Original Assignee
Prysmian Energie Cables Et Systemes France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prysmian Energie Cables Et Systemes France filed Critical Prysmian Energie Cables Et Systemes France
Priority to EP05793426A priority Critical patent/EP1911044B1/fr
Priority to ES05793426T priority patent/ES2395199T3/es
Priority to NZ565743A priority patent/NZ565743A/en
Priority to US11/989,290 priority patent/US8859903B2/en
Priority to AU2005334975A priority patent/AU2005334975B2/en
Priority to PCT/FR2005/001988 priority patent/WO2007012703A1/fr
Priority to CA2617098A priority patent/CA2617098C/fr
Priority to BRPI0520479-8A priority patent/BRPI0520479B1/pt
Publication of WO2007012703A1 publication Critical patent/WO2007012703A1/fr
Priority to US14/485,026 priority patent/US9659685B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/446Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile

Definitions

  • the present invention relates to a fire-resistant security cable. More particularly, the present invention relates to a substantially flat fire-resistant cable, which comprises at least two electrical conductors which are adjacent to one another.
  • the safety cables are in particular power transmission or data transmission cables, such as for control or signaling applications.
  • the fire-resistant safety cables must, during a fire, maintain an electrical function. Preferably, said cables must also not spread the fire. Said security cables are used, for example, for emergency exit lighting and elevator installations.
  • the fire resistant cables must meet criteria set in particular by the French standard NF C 32-070. According to this standard, the cable is deposited horizontally in a tubular furnace which is mounted in temperature up to 920 0 C for 50 minutes. The cable must not present a short circuit during this rise in temperature and for 15 minutes at 920 0 C. During all this time, to simulate falling objects during a fire, the cable is subjected periodically to a shock by a metal bar to shake the cable.
  • the cables satisfying the test defined by NF C 32-070, paragraph 2-3 belong to category CRl.
  • JP 01-117204 and JP 01- 030106 discloses two flat fire-resistant cables, said cables comprising a plurality of conductors surrounded by an insulator and an outer sheath of polyethylene, the insulating layer of each electrical conductor being made of mica ribbons.
  • a flat fire-resistant cable that has an insulating layer made of mica ribbons. had several disadvantages.
  • such a cable may have a gap (or space revealing the conductor) at the level of the mica ribbon envelope, resulting in a defect in the protection of conductors leading to a short circuit.
  • Fire resistant cables having a substantially round cross section are also known.
  • the document EP 942 439 describes a security cable, round, fire-resistant and halogen-free, comprising at least one conductor, an insulator around each conductor and an outer sheath, empty spaces being provided between said sheath and said insulation of each electrical conductor.
  • each conductor is made of a composition formed of a polymeric material containing at least one ceramic-forming filler and able to transform at least superficially in the ceramic state at high temperatures corresponding to fire conditions .
  • the outer sheath is made of a polyolefinic composition containing at least one charge of metal hydroxide.
  • a fire resistant cable having a round cross section has several disadvantages.
  • a fire-resistant cable having a round cross section has a high risk of pollution of the insulating layer by the ashes resulting from the combustion of the outer sheath.
  • This was due in part to the reciprocal arrangement of the isolated elements. Indeed, in the case of a cable having more than two insulated elements, at least one insulated element is superimposed on the others so as to ensure a round cross section of the cable.
  • An insulated member generally comprises an electrical conductor and an insulating layer surrounding said conductor.
  • the outer sheath is generally converted, under the action of a fire, into ashes which may hinder the transformation of the polymeric material of the ceramic insulator, resulting in cracks in the driver's insulation.
  • the superposition of the isolated elements can cause a significant increase in the size of the cracks, resulting from a crushing of (s) layer (s) insulating (s) contaminated (s) by said ash.
  • These disadvantages lead to a reduction of the insulating protection by the insulating layer (s) of the cable and to an increase in the risk of short-circuiting the conductors.
  • These risks concern, in particular, superposed isolated elements.
  • insulated electrical conductors used in round, fire-resistant safety cables are generally twisted.
  • the twisting of the isolated elements leads to the existence of multiple contact zones between said isolated elements, in particular from three elements, causing risks of short-circuiting, for example when the insulation has defects in its structure, as cracks that can be created during the ceramic transformation of the high temperature insulation on the conductors.
  • objects such as a beam or elements of a building structure
  • objects can fall and come to hit the cable and thus damage the latter and alter the mechanical strength of the insulation transformed into ceramic , or being transformed into ceramic, of each element.
  • the falling of such an object can lead, in the case of twisted elements, to an isolated element being compressed between said object and another element of the same cable, coming to damage the insulation transformed into ceramic or in the process of ceramic transformation, and thus causing a short circuit of the two conductors.
  • twisting of the cable elements generally leads to the formation of mechanical stresses which remain inside the cable and are released during a fire, which can damage the cable insulation material during its transformation. in ceramic layer.
  • a fire-resistant cable which is flat and whose insulating layer is formed from at least one polymeric material capable of being transformed at least superficially in the ceramic state to high temperatures in fires overcomes the disadvantages mentioned above.
  • the flat fire resistant cable according to the present invention overcomes the disadvantages of a round section cable and those of a cable whose insulating layer is made of mica ribbons as a barrier to fire spread.
  • the subject of the present invention is therefore a safety cable, fire resistant, comprising: at least two electrical conductors,
  • the insulating layer being constituted from at least one polymeric material able to transform at least superficially in the ceramic state at high temperatures in the fires, and
  • halogen-free cable is meant a cable whose components are not substantially halogenated. Even more preferentially, the constituents do not comprise any halogenated compound. ⁇ "
  • the fire-resistant cable according to the present invention is substantially flat, that is to say it comprises at least two substantially plane faces and substantially parallel to each other, the isolated elements being adjacent between them and their axes being in the same plane which is between said at least two faces.
  • the sheath of the cable in cross section, has an outer contour (or outer profile) which substantially follows the shape of the envelope of the insulated elements which are located inside the sheath of the cable, their axes lying in the same plane.
  • the sheath of the cable preferably has a thickness which is substantially constant on the extrados of the insulated members and which can be reduced to a minimum value sufficient to provide the cable with the typical protection of a cable sheath. In this way, the cable of the present invention leads to a reduction in the amount of sheath material used for making the cable, especially for the two-conductor cable.
  • this reduces the manufacturing cost of the cable, and on the other hand a reduction in the incandescent time, the heat energy released during a fire and the amount of ash resulting from the combustion. of the sheath.
  • the outer surface of the sheath is larger in the present invention, which allows for better heat exchange and better and faster combustion of the sheath that will less disturb the ceramic transformation of the insulation during the fire.
  • the particular arrangement of the insulated elements as defined in the invention also makes it possible to increase the electrical resistance of the conductors by reducing any short-circuiting of the conductors.
  • This aligned arrangement of isolated elements in the same plane i.e. the arrangement that the insulated elements are adjacent to each other and side by side
  • This aligned arrangement of isolated elements in the same plane furthermore makes it easier to manufacture the cables by eliminating them. Twisting step, and a stack of cables during installation, less cumbersome than that obtained with round cables.
  • the cable according to the present invention has, in cross-section, a substantially rectangular outer profile, and more particularly two substantially plane faces substantially parallel to the plane comprising the axes of the conductors, and two substantially rounded lateral portions which are connected to said two faces.
  • the substantially flat fire-resistant cable of the present invention comprises a cable jacket having an outer contour which substantially conforms to the shape of the envelope of the insulated members. For example, for a cable with two conductors, the cable thus has a cross section of "8".
  • the material of the outer sheath preferably comprises an ethylene / vinyl alcohol (or EVA) copolymer, a polysiloxane, a polyolefin such as polyethylene, polyvinyl chloride (or
  • the material of the outer sheath may further comprise mineral fillers capable of turning into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides such as magnesium hydroxide, metal oxides or hydroxides that can serve as flame retardant fillers.
  • mineral fillers capable of turning into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides such as magnesium hydroxide, metal oxides or hydroxides that can serve as flame retardant fillers.
  • the material of the outer sheath may optionally be expanded so as to improve in particular the impact resistance of the cable, shock to which it may be caused following the fall of an object during the fire.
  • the outer sheath may be in the form of a single layer or of several layers of polymeric material (s), for example, 2, 3 or 4 layers.
  • polymeric material for example, 2, 3 or 4 layers.
  • the insulating layer is constituted in particular from at least one polymeric material able to transform at least superficially in the ceramic state at high temperatures in the fires, especially in the interval ranging from 400 0 C to 1200 0 C. This transformation in the ceramic state of the polymeric material of the insulating layer ensures the maintenance of the physical integrity of the cable and its electrical operation in the conditions of the fire .
  • the polymeric material of the insulating layer is preferably a polysiloxane such as a cross-linked silicone rubber.
  • the insulating material may furthermore preferably comprise a forming charge ceramic under the effect of high fire temperatures, such as silica or metal oxides.
  • the polymeric material of the insulating layer may be foamed. This expansion makes it possible in particular to improve the impact resistance of the insulated conductor, shock to which it may be subjected during a fire following the fall of an object such as a beam.
  • the insulating layer may be in the form of a single layer or multiple layers of polymeric material (s), such as 2 or 3 or more layers.
  • a stuffing material may further be included between the insulating layer of each conductor and the outer sheath.
  • the stuffing material is preferably selected from an ethylene / vinyl alcohol copolymer (or EVA), a polysiloxane, a polyolefin such as polyethylene, polyvinyl chloride (or
  • the material of the stuffing may further comprise mineral fillers capable of turning into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides such as magnesium hydroxide, metal oxides or hydroxides which can serve as flame retardant fillers.
  • mineral fillers capable of turning into residual ash under the effect of high temperatures of a fire, such as chalk, kaolin, metal oxides such as hydrated alumina, or metal hydroxides such as magnesium hydroxide, metal oxides or hydroxides which can serve as flame retardant fillers.
  • the cable comprises at least two isolated elements, each isolated element comprising an insulating layer surrounding an electrical conductor, said elements being arranged side by side and separated from each other by a gap.
  • the space is in a position transverse to the axes of the cable conductors.
  • said gap is about 0.1 mm to about 20 mm, more preferably about 1 mm to about 3 mm.
  • This axial space is preferably filled by the material of the sheath as defined above, or by a polymeric material capable of transforming at least superficially in the ceramic state at high temperatures in the fires, the same or different from that used in the insulating layer, or by a stuffing material.
  • the cable sheath is fed, for example by extrusion, so that it completely surrounds the insulated elements. This embodiment further limits the risks of short-circuiting mentioned above.
  • insulated members are disposed next to one another and are substantially in contact with one another so that no gaps are present between two adjacent insulated members.
  • Fig. 1 shows a side view of a cable according to the invention.
  • Fig. 2 shows a sectional view of a cable with two electrical conductors, according to a first embodiment.
  • Fig. 3 shows a sectional view of a cable with three electrical conductors, according to a second embodiment.
  • Fig. 4 shows a sectional view of a cable with four electrical conductors, according to a third embodiment.
  • Fig. 5 shows a sectional view of a cable with two electrical conductors, according to a fourth embodiment.
  • Fig. 6 shows a sectional view of a three-conductor cable according to a fifth embodiment.
  • FIG. 7 shows a sectional view of a four-conductor cable according to a sixth embodiment.
  • a cable 1 having an axis of symmetry 2.
  • the cable 1 according to a first embodiment, shown in FIG. 2, comprises two electrical conductors 3, two insulators 4 - each insulator 4 located around each conductor 3 and thus forming two insulated conductors (or elements) 5 - and an outer sheath 6.
  • the two insulated conductors 5 are arranged parallel to one another, and side by side in the longitudinal median plane P of the cable 1. They are in contact with each other, which leads to no space is present between the adjacent elements.
  • the outer sheath 6 is deposited on the insulated elements 5 and surrounds the insulated elements 5 so as to define at least two faces which are substantially flat, and parallel to each other and to the longitudinal median plane P.
  • the cable has a substantially rectangular shape, and in particular a profile having two flat faces parallel to the plane P which contains the axes of the two conductors 3 and two rounded side portions.
  • the material of the insulator 4 is preferably a polysiloxane comprising in particular a silica-type reinforcing filler, and the insulator 4 preferably comprises a single layer of polysiloxane.
  • the outer sheath 6 preferably consists of an EVA, optionally comprising fillers such as metal oxides or hydroxides.
  • the outer sheath 6 has an outer contour which substantially matches the shape of the envelope of the insulated elements 5 so that the cable has in cross section a shape of "8".
  • the cable of FIG. 3 differs from that of FIG. 2 in that an additional insulated element 5 is introduced inside the outer sheath 6, the axis of this additional insulated element 5 being in the longitudinal median plane P of the cable 1.
  • the cable of FIG. 4 differs from that of FIG. 3 in that an additional insulated element 5 is introduced inside the outer sheath 6, the axis of this additional insulated conductor 5 being in the longitudinal median plane P of the cable 1.
  • the cable of FIG. 5 differs from that of FIG. 2 in that a space 7 separates the two insulated elements 5 and in that the profile of the outer sheath substantially follows the envelope of the insulating layers 4.
  • the cable of FIG. 6 differs from that of FIG. In that three isolated elements 5 are shown.
  • the cable of FIG. 7 differs from that of FIG. 5 in this four isolated elements 5 are shown.
  • the spaces 7 in Figs. 5, 6 and 7 are preferably filled with the material of the sheath, such as an EVA. These spaces 7 preferably measure from 0.1 mm to 20 mm, more preferably from 1 mm to 3 mm.
  • Cable A is a substantially flat fire-resistant cable according to the invention.
  • Cable B (comparative) is a fire-resistant cable identical to cable A except that cable B is round. Two different compositions of cables A and B were tested:
  • composition 1 2 x 1.5 mm 2 (composition 1) and 3 x 1.5 mm 2 (composition 2).
  • a fire-resistant cable must withstand a voltage of approximately 500 V during the rise in temperature up to 920 0 C for 50 minutes, then at a constant temperature of approximately 920 0 C for about 15 minutes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Conductors (AREA)

Abstract

La présente invention concerne un câble de sécurité (1) plat, résistant au feu, comportant : - au moins deux conducteurs électriques (3), - une couche isolante (4) autour de chaque conducteur électrique (3) pour obtenir au moins deux éléments isolés (5), la couche isolante (4) étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et - une gaine extérieure (6) entourant lesdits éléments isolés (5), ledit câble présentant, en section droite, un profil extérieur comprenant au moins deux faces sensiblement planes et sensiblement parallèles entre elles, et les conducteurs isolés étant adjacents entre eux, côte à côte et leurs axes se trouvant dans un même plan compris entre lesdites au moins deux faces.

Description

Câble de sécurité résistant au feu, sensiblement plat
La présente invention concerne un câble de sécurité résistant au feu. Plus particulièrement, la présente invention concerne un câble sensiblement plat résistant au feu, qui comprend au moins deux conducteurs électriques qui sont adjacents les uns par rapport aux autres.
Les câbles de sécurité sont notamment des câbles de transport d'énergie ou de transmission de données, tels que pour des applications de contrôle ou de signalisation.
Les câbles de sécurité résistant au feu doivent, pendant un incendie, maintenir une fonction électrique. De préférence, lesdits câbles doivent en outre ne pas propager le feu. Lesdits câbles de sécurité sont utilisés, par exemple, pour les éclairages des sorties de secours et dans les installations d'ascenseurs.
Les câbles résistant au feu doivent répondre à des critères fixés notamment par la norme française NF C 32-070. Selon cette norme, le câble est déposé horizontalement dans un four tubulaire qui est monté en température jusqu' à 9200C pendant 50 minutes. Le câble ne doit pas présenter de court-circuit durant cette montée en température ainsi que pendant 15 minutes à 920 0C. Durant tout ce temps, pour simuler les chutes d' objet lors d'un incendie, le câble est soumis périodiquement à un choc par une barre métallique pour ébranler le câble.
Les câbles satisfaisant à l'essai défini par NF C 32-070, paragraphe 2-3 appartiennent à la catégorie CRl .
Des critères similaires à ceux qui sont définis dans la norme française NF C 32-070 sont également définis par des normes internationales, telles que IEC 60331 , ou des normes européennes, telles que EN 50200. Les documents JP 01- 117204 et JP 01-030106 divulguent deux câbles plats résistant au feu, lesdits câbles comprenant plusieurs conducteurs entourés d'un isolant et d'une gaine extérieure de polyéthylène, la couche isolante de chaque conducteur électrique étant constituée de rubans de mica.
Le demandeur a remarqué qu'un câble plat résistant au feu qui est doté d'une couche isolante constituée de rubans de mica. présentait plusieurs inconvénients. En particulier, un tel câble peut présenter un déjoint (ou espace laissant apparaître le conducteur) au niveau de l'enveloppe en ruban de mica, ce qui entraîne un défaut dans la protection des conducteurs conduisant à un court-circuit.
Les câbles résistant au feu présentant une section transversale sensiblement ronde sont également connus.
Par exemple, le document EP 942 439 décrit un câble de sécurité, rond, résistant au feu et sans halogène, comportant au moins un conducteur, un isolant autour de chaque conducteur et une gaine extérieure, des espaces vides étant prévus entre ladite gaine et ledit isolant de chaque conducteur électrique.
L'isolant de chaque conducteur est réalisé en une composition formée d'une matière polymérique contenant au moins une charge formatrice de céramique et apte à se transformer au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie.
La gaine extérieure est réalisée en une composition polyoléfinique contenant au moins une charge d'hydroxyde métallique.
Le demandeur a remarqué qu'un câble résistant au feu ayant une section transversale ronde présentait plusieurs inconvénients. Par exemple, lors d'un incendie, un câble résistant au feu ayant une section transversale ronde présente un risque élevé de pollution de la couche isolante par les cendres résultant de la combustion de la gaine extérieure. Le demandeur a noté que cela était notamment dû à la disposition réciproque des éléments isolés. En effet, dans le cas d'un câble comportant plus de deux éléments isolés, au moins un élément isolé est superposé sur les autres de manière à assurer une section transversale ronde du câble. Un élément isolé comprend généralement un conducteur électrique et une couche isolante entourant ledit conducteur. Dans le cas d'un câble résistant au feu ayant une section transversale ronde, la gaine extérieure se transforme généralement, sous l'action d'un feu, en cendres qui peuvent gêner la transformation de la matière polymérique de l'isolant en céramique, entraînant l'apparition de fissures dans l'isolation du conducteur.
En outre, la superposition des éléments isolés peut entraîner une augmentation notable de la taille des fissures, résultant d'un écrasement de(s) couche(s) isolante(s) contaminée(s) par lesdites cendres. Ces inconvénients conduisent à une réduction de la protection isolante par la ou les couche(s) isolante(s) du câble et à une augmentation du risque de mise en court-circuit des conducteurs. Ces risques concernent notamment les éléments isolés superposés.
En outre, ces cendres peuvent conduire à une augmentation de la conductivité volumique et superficielle de l'isolation, ce qui nuit au bon fonctionnement du câble.
De plus, les conducteurs électriques isolés (ou éléments isolés) utilisés dans les câbles de sécurité ronds, résistant au feu, sont généralement torsadés.
Le torsadage des éléments isolés conduit à l'existence de multiples zones de contact entre lesdits éléments isolés, notamment à partir de trois éléments, entraînant des risques de mise en court- circuit, par exemple lorsque l'isolant présente des défauts dans sa structure, comme des fissures qui peuvent se créer lors de la transformation en céramique de l' isolant à haute température sur les conducteurs.
Par ailleurs, lors d'un incendie, des objets tels qu' une poutrelle ou des éléments d'une structure de bâtiment, peuvent tomber et venir heurter le câble et ainsi endommager ce dernier et altérer la tenue mécanique de l'isolant transformé en céramique, ou en cours de transformation en céramique, de chaque élément. La chute d' un tel objet peut conduire, dans le cas d'éléments torsadés, à ce qu'un élément isolé soit comprimé entre ledit objet et un autre élément du même câble, venant endommager l'isolant transformé en céramique ou en cours de transformation en céramique, et entraînant ainsi une mise en court-circuit des deux conducteurs.
En outre, le torsadage des éléments de câble conduit généralement à la formation de contraintes mécaniques qui restent à l'intérieur du câble et se libèrent au cours d'un feu, ce qui peut endommager le matériau d'isolation du câble lors de sa transformation en couche céramique.
Il existe donc un besoin pour un câble résistant au feu permettant de pallier les inconvénients présentés ci-dessus. Selon l'invention, le demandeur a trouvé qu'un câble résistant au feu qui est plat et dont la couche isolante est constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies permet de surmonter les inconvénients mentionnés ci-dessus. En particulier, le demandeur a trouvé que le câble plat résistant au feu selon la présente invention permet de pallier les inconvénients d'un câble de section ronde et ceux d'un câble dont la couche isolante est constituée de rubans de mica comme barrière à la propagation du feu. La présente invention a donc pour objet un câble de sécurité, résistant au feu, comprenant : au moins deux conducteurs électriques,
- une couche isolante autour de chaque conducteur électrique pour obtenir au moins deux éléments isolés, la couche isolante étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et
- une gaine extérieure entourant lesdits éléments isolés, ledit câble présentant, en section droite, un profil extérieur comprenant au moins deux faces sensiblement planes et sensiblement parallèles entre elles, les éléments isolés étant adjacents entre eux, côte à côte, et leurs axes se trouvant dans un même plan qui est compris entre lesdites au moins deux faces. Ce câble est de préférence sans halogène et non-propagateur d'incendie. Par "câble sans halogène", on entend un câble dont les constituants ne sont sensiblement pas halogènes. Encore plus préférentiellement, les constituants ne comportent aucun composé halogène. ~ "
Comme cela a été mentionné ci-dessus, le câble résistant au feu selon la présente invention est sensiblement plat, c'est-à-dire qu'il comprend au moins deux faces sensiblement planes et sensiblement parallèles entre elles, les éléments isolés étant adjacents entre eux et leurs axes se trouvant dans un même plan qui est compris entre lesdites au moins deux faces.
De préférence, la gaine du câble, en section droite, présente un contour extérieur (ou profil extérieur) qui suit sensiblement la forme de l'enveloppe des éléments isolés qui sont situés à l'intérieur de la gaine du câble, leurs axes se trouvant dans un même plan. De manière plus détaillée, la gaine du câble a de préférence une épaisseur qui est sensiblement constante sur l'extrados des éléments isolés et qui peut être réduite à une valeur minimale suffisante pour conférer au câble la protection typique d'une gaine de câble. De cette manière, le câble de la présente invention conduit à une réduction de la quantité de matière de gaine utilisée pour la réalisation du câble, notamment pour le câble à deux conducteurs. Cela entraîne d'une part la réduction du coût de fabrication du câble, et d'autre part une diminution de la durée d'incandescence, de l'énergie calorifique dégagée lors d'un incendie et de la quantité de cendres résultant de la combustion de la gaine. Ces aspects sont particulièrement avantageux car le risque d' apparition de fissures pouvant être provoquées par les cendres lors de la transformation en céramique de l' isolant aux températures élevées d'un incendie peut être réduit de manière importante.
D'autre part, pour les câbles à partir de trois conducteurs, la surface extérieure de la gaine est plus grande dans la présente invention, ce qui permet un meilleur échange thermique et une meilleure et plus rapide combustion de la gaine qui perturbera moins la transformation en céramique de l'isolant lors de l' incendie.
La disposition particulière des éléments isolés telle que définie dans l'invention, permet aussi d'augmenter la tenue électrique des conducteurs en réduisant toute mise en court-circuit des conducteurs.
En effet, lors d'un incendie, cette disposition particulière des éléments isolés permettant de limiter le nombre de zones de contact entre les éléments isolés, en particulier pour un câble à partir de trois éléments isolés, conduit également à une limitation des risques de mise en court-circuit lors de la transformation en céramique de l'isolant ou lorsque l'isolant est déjà sous forme de céramique.
De plus, le fait de ne plus avoir de torsadage des éléments isolés, permet de supprimer les contraintes mécaniques résiduelles sur chaque élément, dues à ce torsadage, qui pourraient se libérer durant l'incendie et altérer l'intégrité du câble et surtout celle de l 'isolant en cours de transformation en céramique ou déjà sous forme de céramique.
Cette disposition alignée d'éléments isolés dans un même plan (c'est-à-dire la disposition consistant en ce que les éléments isolés sont adjacents entre eux et côte à côte) permet en outre une fabrication plus facile des câbles par suppression de l'étape de torsadage, ainsi qu'un empilement de câbles, lors de leur installation, moins encombrant que celui obtenu avec des câbles ronds.
Avantageusement, le câble selon la présente invention présente, en section droite, un profil extérieur sensiblement rectangulaire, et plus particulièrement deux faces sensiblement planes et sensiblement parallèles au plan comprenant les axes des conducteurs, et deux portions latérales sensiblement arrondies qui sont reliées auxdites deux faces. De préférence, comme cela est mentionné ci-dessus, le câble résistant au feu, sensiblement plat de la présente invention, comprend une gaine de câble ayant un contour extérieur qui épouse sensiblement la forme de l'enveloppe des éléments isolés. Par exemple, pour un câble à deux conducteurs, le câble présente ainsi en section droite une forme de "8 ".
Le matériau de la gaine extérieure comprend de préférence un copolymère éthylène/alcool vinylique (ou EVA), un polysil oxane, une polyoléfine telle qu' un polyéthylène, un poly(chlorure de vinyle) (ou
PVC), ou un de leurs mélanges. Le matériau de la gaine extérieure peut comprendre en outre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie, telles que de la craie, du kaolin, des oxydes métalliques comme l'alumine hydratée, ou des hydroxydes métalliques comme l'hydroxyde de magnésium, les oxydes ou hydroxydes métalliques pouvant servir de charges ignifugeantes.
Le matériau de la gaine extérieure peut éventuellement être expansé de manière à améliorer notamment la résistance au choc du câble, choc auquel elle peut être soumi s suite à la chute d'un objet pendant l ' incendie.
La gaine extérieure peut se présenter sous la forme d'une seule couche ou de plusieurs couches de matière(s) polymérique(s), par exemple, 2, 3 ou 4 couches. Par exemple, il est possible de doter le câble d'une couche de gaine appropriée permettant de conférer une fonction technique particulière, par exemple, pour absorber des chocs accidentels sur le câble ou améliorer la résistance aux fluides du câble.
Dans les câbles de l'invention, la couche isolante est constituée notamment à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, notamment comprises dans l'intervalle allant de 4000C à 12000C. Cette transformation à l'état de céramique de la matière polymérique de la couche isolante permet d'assurer le maintien de l'intégrité physique du câble et son fonctionnement électrique dans les conditions de l'incendie.
La matière polymérique de la couche isolante est de préférence un polysiloxane tel qu'un caoutchouc de silicone réticulé. Le matériau isolant peut comprendre en outre de préférence une charge formatrice de céramique sous l'effet des températures élevées des incendies, telle que la silice ou des oxydes métalliques.
Selon un autre mode de réalisation la présente invention, la matière polymérique de la couche isolante peut être expansée. Cette expansion permet notamment d'améliorer la résistance au choc du conducteur isolé, choc auquel il peut être soumis lors d'un incendie suite à la chute d'un objet tel qu'une poutrelle.
La couche isolante peut se présenter sous la forme d'une seule couche ou de plusieurs couches de matière(s) polymérique(s), comme 2 ou 3 couches ou plus.
Une matière de bourrage peut en outre être comprise entre la couche isolante de chaque conducteur et la gaine extérieure.
La matière du bourrage est de préférence choisie parmi un copolymère éthylène/alcool vinylique (ou EVA), un polysiloxane, une polyoléfine telle qu' un polyéthylène, un poly(chlorure de vinyle) (ou
PVC), ou un de leurs mélanges. La matière du bourrage peut comprendre en outre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie, telles que de la craie, du kaolin, des oxydes métalliques comme l'alumine hydratée, ou des hydroxydes métalliques comme l'hydroxyde de magnésium, les oxydes ou hydroxydes métalliques pouvant servir de charges ignifugeantes.
Selon un mode particulier de l'invention, le câble comprend au moins deux éléments isolés, chaque élément isolé comprenant une couche isolante entourant un conducteur électrique, lesdits éléments étant disposés côte à côte et séparés entre eux par un espace.
L'espace se trouve en position transversale par rapport aux axes des conducteurs de câble. De préférence, ledit espace mesure environ 0, 1 mm à environ 20 mm, mieux encore environ 1 mm à environ 3 mm. Cet espace axial est de préférence rempli par la matière de la gaine telle que définie ci-dessus, ou par une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, identique ou différente de celle utilisée dans la couche isolante, ou encore par une matière de bourrage.
Dans le cas où ledit espace est rempli avec le matériau de la gaine de câble, la gaine de câble est amenée, par exemple par extrusion, de telle manière qu'elle entoure complètement les éléments isolés. Ce mode de réalisation permet de limiter encore les risques de mise en court-circuit évoqués ci-dessus.
Un autre mode de réalisation préféré consiste en ce que les éléments isolés sont disposés les uns à côté des autres et sont sensiblement en contact les uns avec les autres de sorte qu'aucun espace n'est présent entre deux éléments isolés adjacents.
L'invention et les avantages qu'elle apporte seront mieux compris grâce aux exemples de réalisation donnés ci-après à titre indicatif et non-limitatif, et qui sont illustrés par les dessi ns annexés sur lesquels :
La Fig. 1 représente une vue de côté d'un câble selon l'invention.
La Fig. 2 représente une vue en coupe d'un câble à deux conducteurs électriques, selon un premier mode de réalisation. La Fig. 3 représente une vue en coupe d'un câble à trois conducteurs électriques, selon un deuxième mode de réalisation.
La Fig. 4 représente une vue en coupe d'un câble à quatre conducteurs électriques, selon un troisième mode de réalisation.
La Fig. 5 représente une vue en coupe d'un câble à deux conducteurs électriques, selon un quatrième mode de réalisation.
La Fig. 6 représente une vue en coupe d'un câble à trois conducteurs, selon un cinquième mode de réalisation.
La Fig. 7 représente une vue en coupe d'un câble à quatre conducteurs, selon un sixième mode de réalisation. Sur la Fig. 1 est représenté de manière schématique et partielle un câble 1 présentant un axe de symétrie 2.
Le câble 1 selon un premier mode de réalisation, représenté sur la Fig. 2, comprend deux conducteurs électriques 3, deux isolants 4 - chacun des isolants 4 se trouvant autour de chaque conducteur 3 et formant ainsi deux conducteurs isolés (ou éléments) 5 - et une gaine extérieure 6.
Les deux conducteurs isolés 5 sont disposés parallèlement l'un par rapport à l'autre, et côte à côte dans le plan médian longitudinal P du câble 1. Ils sont en contact l'un avec l'autre, ce qui conduit à ce qu'aucun espace ne soit présent entre les éléments adjacents.
La gaine extérieure 6 est déposée sur les éléments isolés 5 et entoure les éléments isolés 5 de manière à définir au moins deux faces qui sont sensiblement planes, et parallèles entre elles et au plan médian longitudinal P.
En section, le câble a une forme sensiblement rectangulaire, et en particulier un profil présentant deux faces planes parallèles au plan P qui contient les axes des deux conducteurs 3 et deux portions latérales arrondies. Le matériau de l'isolant 4 est de préférence un polysiloxane comprenant notamment une charge de renforcement de type silice, et l'isolant 4 comporte de préférence une seule couche de polysiloxane.
La gaine extérieure 6 est constituée de préférence par un EVA, comprenant éventuellement des charges telles que des oxydes ou hydroxydes métalliques.
Selon un autre mode de réalisation (non représenté) similaire à celui représenté sur la Fig. 2 à l'exception de la forme de la gaine extérieure 6 en section droite, la gaine extérieure 6 présente un contour extérieur qui épouse sensiblement la forme de l'enveloppe des éléments isolés 5 de sorte que le câble présente en section droite une forme de "8 ".
Le câble de la Fig. 3 diffère de celui de la Fig. 2 en ce qu'un élément isolé 5 supplémentaire est introduit à l'intérieur de la gaine extérieure 6, l'axe de cet élément isolé 5 supplémentaire se trouvant dans le plan médian longitudinal P du câble 1.
Le câble de la Fig. 4 diffère de celui de la Fig. 3 en ce qu'un élément isolé 5 supplémentaire est introduit à l'intérieur de la gaine extérieure 6, l'axe de ce conducteur isolé 5 supplémentaire se trouvant dans le plan médian longitudinal P du câble 1. Le câble de la Fig. 5 diffère de celui de la Fig. 2 en ce qu'un espace 7 sépare les deux éléments isolés 5 et en ce que le profil de la gaine extérieure suit sensiblement l'enveloppe des couches isolantes 4. Le câble de la Fig. 6 diffère de celui de la Fig. 5 en ce que trois éléments isolés 5 sont représentés.
Le câble de la Fig. 7 diffère de celui de la Fig. 5 en ce quatre éléments isolés 5 sont représentés.
Les espaces 7 sur les Fig. 5, 6 et 7 sont remplis de préférence avec la matière de la gaine, comme un EVA. Ces espaces 7 mesurent de préférence de 0, 1 mm à 20 mm, mieux encore de 1 mm à 3 mm.
EXEMPLES
Exemple 1 On a testé deux types câbles A et B selon la norme française
NF C 32-070.
Le câble A est un câble résistant au feu sensiblement plat selon l'invention. Le câble B (comparatif) est un câble résistant au feu identique au câble A à l'exception près que le câble B est rond. Deux compositions différentes de câbles A et B ont été testées:
2 x 1.5 mm2 (composition 1) et 3 x 1.5 mm2 (composition 2) .
Selon la norme française NF C 32-070, un câble résistant au feu doit supporter une tension d'environ 500 V lors de la montée en température jusqu'à 920 0C durant 50 minutes, puis à une température constante d'environ 920 0C pendant environ 15 minutes.
Tous les câbles testés ont satisfait à cette valeur minimale requise par la norme.
On a ensuite testé les câbles en augmentant progressivement la tension jusqu'à ce qu'un court-circuit se produise. Les résultats de ces derniers essais - qui sont regroupés dans les tableaux 1 et 2 - montrent que le câble plat de la présente invention est capable de supporter des tensions plus élevées que celles supportées par le câble rond comparatif. En effet, les données des tableaux montrent que les câbles A selon l'invention supportent des tensions supérieures à celles supportées par les câbles B, ou alors qu'ils supportent la même tension mais pendant un laps de temps plus important que celui des câbles B.
Tableau 1
Figure imgf000013_0001
Tableau 2
Figure imgf000014_0001

Claims

REVENDICATIONS
1. Câble de sécurité (1) résistant au feu comprenant : - au moins deux conducteurs électriques (3),
- une couche isolante (4) autour de chaque conducteur électrique (3) pour obtenir au moins deux éléments isolés (5), la couche isolante (4) étant constituée à partir d'au moins une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, et une gaine extérieure (6) entourant lesdits éléments isolés (5), ledit câble présentant, en section droite, un profil extérieur comprenant au moins deux faces sensiblement planes et sensiblement parallèles entre elles, les conducteurs isolés étant adjacents entre eux, côte à côte et leurs axes se trouvant dans un même plan compris entre lesdites au moins deux faces.
2. Câble selon la revendication 1 , caractérisé en ce que ledit profil extérieur est sensiblement rectangulaire.
3. Câble selon la revendication 1 , caractérisé en ce que ledit profil extérieur présente deux portions latérales arrondies reliées auxdites deux faces.
4. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la gaine extérieure épouse sensiblement la forme de l'enveloppe comprenant lesdits au moins deux éléments isolés (5).
5. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite gaine extérieure (6) a une épaisseur qui est sensiblement constante sur l'extrados de l'enveloppe comprenant lesdits au moins deux éléments isolés (5).
6. Câble selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits au moins deux éléments isolés (5) sont sensiblement en contact les uns avec les autres.
7. Câble selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'au moins deux éléments isolés (5) adjacents entre eux, côte à côte, sont séparés par un espace (7).
8. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine extérieure (6) comprend un copolymère éthylène/alcool vinylique, un polysiloxane, une polyoléfine, un poly(chlorure de vinyle) , ou un de leurs mélanges.
9. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine extérieure (6) comprend en outre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie.
10. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau de la gaine (6) est expansée.
11. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la gaine extérieure (6) se présente sous la forme de plusieurs couches de matières polymériques.
12. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (4), apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies, est un polysiloxane.
13. Câble selon . l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (4) contient une charge formatrice de céramique sous l'effet des températures élevées des incendies.
14. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymérique de la couche isolante (4) est expansée.
15. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une matière de bourrage entre la couche isolante (4) de chaque conducteur (3) et la gaine extérieure (6).
16. Câble selon la revendication 15, caractérisé en ce que ladite matière de bourrage est composée par un copolymère éthylène/alcool vinylique, un polysiloxane, une polyoléfine telle qu' un polyéthylène, un poly(chlorure de vinyle) , ou un de leurs mélanges.
17. Câble selon la revendication 15 ou 16, caractérisé en ce que ladite matière de bourrage comprend en outre des charges minérales susceptibles de se transformer en cendres résiduelles sous l'effet de températures élevées d'un incendie.
18. Câble selon la revendication 7, caractérisé en ce que ledit espace (7) est rempli par le matériau de la gaine (6).
19. .Câble selon les revendications 7, caractérisé en ce que ledit espace axial (7) est rempli par une matière polymérique apte à se transformer au moins superficiellement en l'état de céramique à des températures élevées dans les incendies.
20. Câble selon les revendications 7 et 15, caractérisé en ce que ledit espace axial (7) est rempli par la matière de bourrage.
PCT/FR2005/001988 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat WO2007012703A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP05793426A EP1911044B1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat
ES05793426T ES2395199T3 (es) 2005-07-29 2005-07-29 Cable de seguridad resistente al fuego, sensiblemente plano
NZ565743A NZ565743A (en) 2005-07-29 2005-07-29 Substantially flat fire-resistant safety cable where the insulating outer layer turns into a ceremic when heating, shielding the electrical conductor
US11/989,290 US8859903B2 (en) 2005-07-29 2005-07-29 Substantially flat fire-resistant safety cable
AU2005334975A AU2005334975B2 (en) 2005-07-29 2005-07-29 Substantially flat fire-resistant safety cable
PCT/FR2005/001988 WO2007012703A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat
CA2617098A CA2617098C (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat
BRPI0520479-8A BRPI0520479B1 (pt) 2005-07-29 2005-07-29 Fire-resistant security cable
US14/485,026 US9659685B2 (en) 2005-07-29 2014-09-12 Substantially flat fire-resistant safety cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2005/001988 WO2007012703A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/989,290 A-371-Of-International US8859903B2 (en) 2005-07-29 2005-07-29 Substantially flat fire-resistant safety cable
US14/485,026 Division US9659685B2 (en) 2005-07-29 2014-09-12 Substantially flat fire-resistant safety cables

Publications (1)

Publication Number Publication Date
WO2007012703A1 true WO2007012703A1 (fr) 2007-02-01

Family

ID=35788596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001988 WO2007012703A1 (fr) 2005-07-29 2005-07-29 Cable de securite resistant au feu, sensiblement plat

Country Status (7)

Country Link
US (2) US8859903B2 (fr)
EP (1) EP1911044B1 (fr)
AU (1) AU2005334975B2 (fr)
BR (1) BRPI0520479B1 (fr)
CA (1) CA2617098C (fr)
ES (1) ES2395199T3 (fr)
WO (1) WO2007012703A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005334975B2 (en) 2005-07-29 2012-02-02 Prysmian Energie Cables Et Systemes France Substantially flat fire-resistant safety cable
DE102010014530A1 (de) * 2010-04-10 2011-10-13 Woertz Ag Flachkabel-Umlenkvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
DE102010014532A1 (de) 2010-04-10 2011-10-13 Woertz Ag Brand-Funktionserhaltkabel und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
DE102010014531A1 (de) 2010-04-10 2011-10-13 Woertz Ag Anschlussvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
EP2568551B1 (fr) * 2011-09-07 2017-04-05 Woertz AG Goulotte de câbles et ensemble d'installation qui reste fonctionnelle en cas d'incendie
FR2996349B1 (fr) * 2012-09-28 2014-09-19 Nexans Cable multiconducteur a haute performance contre le feu
US9536635B2 (en) * 2013-08-29 2017-01-03 Wire Holdings Llc Insulated wire construction for fire safety cable
DE102014004678A1 (de) * 2014-03-31 2015-10-15 Woertz Engineering Ag FLACHKABEL MIT KURZSCHLUSSVERMElDUNG IM BRANDFALL SOWIE VERWENDUNG UND HERSTELLUNG EINES SOLCHEN FLACHKABELS
JP6092282B2 (ja) * 2015-03-18 2017-03-08 冨士電線株式会社 耐火ケーブル
US10278380B2 (en) * 2015-08-09 2019-05-07 A. I. Innovations N.V. Rodent, worm and insect resistant irrigation pipe and method of manufacture
CN114864159B (zh) * 2022-07-08 2022-09-13 建业电缆集团有限公司 中压耐火电缆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249252A1 (fr) * 1983-07-08 1987-12-16 Raychem Limited Fil et câble
EP0942439A1 (fr) * 1998-03-12 1999-09-15 Alcatel Câble de sécurité, resistant au feu et sans halogène
EP1000981A1 (fr) * 1998-05-29 2000-05-17 Sumitomo Electric Industries, Ltd. Composition de resine retardant la flamme, et fil electrique isolant, tube, tube thermoretractable, cable plat et fil electrique a haute tension cc fabriques avec ladite composition
US20040050578A1 (en) * 1999-12-24 2004-03-18 Plastic Insulated Cables Limited Communications cable

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471752A (en) * 1945-12-22 1949-05-31 Whitney Blake Co Process of covering wire conductors
US3013109A (en) * 1961-03-16 1961-12-12 Anaconda Wire & Cable Co Electric cable
US3219752A (en) * 1965-02-17 1965-11-23 Columbia Wire And Supply Compa High frequency electrical lead-in cable
US4368214A (en) * 1981-06-12 1983-01-11 Electrostatic Equipment Corp. Method and apparatus for producing electrical conductors
US4468089A (en) 1982-07-09 1984-08-28 Gk Technologies, Inc. Flat cable of assembled modules and method of manufacture
US4549041A (en) * 1983-11-07 1985-10-22 Fujikura Ltd. Flame-retardant cross-linked composition and flame-retardant cable using same
JPH067450B2 (ja) 1987-07-24 1994-01-26 日立電線株式会社 積層布設平形ケ−ブル
JPH0668929B2 (ja) 1987-10-30 1994-08-31 日立電線株式会社 積層布設平形ケーブル
US5245134A (en) * 1990-08-29 1993-09-14 W. L. Gore & Associates, Inc. Polytetrafluoroethylene multiconductor cable and process for manufacture thereof
US5173960A (en) 1992-03-06 1992-12-22 At&T Bell Laboratories Cable having superior resistance to flame spread and smoke evolution
US5296648A (en) * 1992-04-27 1994-03-22 Belden Wire & Cable Company Flat cable
US5283390A (en) * 1992-07-07 1994-02-01 W. L. Gore & Associates, Inc. Twisted pair data bus cable
US6222129B1 (en) * 1993-03-17 2001-04-24 Belden Wire & Cable Company Twisted pair cable
US5760115A (en) * 1995-03-03 1998-06-02 Tosoh Corporation Fire-retardant polymer composition
US5641827A (en) * 1996-03-20 1997-06-24 Raychem Corporation Tracking and erosion resistant composition
KR100198020B1 (ko) 1996-06-12 1999-06-15 전기종 난연성을 갖는 평면 케이블과 그 제조방법
JP4876335B2 (ja) 2001-06-08 2012-02-15 大日本印刷株式会社 フラットケーブル用被覆材およびそれを用いたフラットケーブル
JP2004168878A (ja) 2002-11-19 2004-06-17 Fujikura Ltd エチレン系難燃性樹脂組成物および難燃性電線・ケーブル
US7304245B2 (en) 2003-03-31 2007-12-04 Ceram Polymerik Pry Ltd Cable and article design for fire performance
US7358436B2 (en) * 2004-07-27 2008-04-15 Belden Technologies, Inc. Dual-insulated, fixed together pair of conductors
AU2005334975B2 (en) * 2005-07-29 2012-02-02 Prysmian Energie Cables Et Systemes France Substantially flat fire-resistant safety cable
EP1911043A1 (fr) * 2005-07-29 2008-04-16 Prysmian Energie Cables et Systèmes France Cable de securite resistant au feu a une seule enveloppe isolante

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249252A1 (fr) * 1983-07-08 1987-12-16 Raychem Limited Fil et câble
EP0942439A1 (fr) * 1998-03-12 1999-09-15 Alcatel Câble de sécurité, resistant au feu et sans halogène
EP1000981A1 (fr) * 1998-05-29 2000-05-17 Sumitomo Electric Industries, Ltd. Composition de resine retardant la flamme, et fil electrique isolant, tube, tube thermoretractable, cable plat et fil electrique a haute tension cc fabriques avec ladite composition
US20040050578A1 (en) * 1999-12-24 2004-03-18 Plastic Insulated Cables Limited Communications cable

Also Published As

Publication number Publication date
EP1911044A1 (fr) 2008-04-16
CA2617098A1 (fr) 2007-02-01
CA2617098C (fr) 2016-10-18
BRPI0520479A2 (pt) 2009-09-29
US9659685B2 (en) 2017-05-23
BRPI0520479B1 (pt) 2017-11-21
ES2395199T3 (es) 2013-02-11
EP1911044B1 (fr) 2012-07-18
AU2005334975B2 (en) 2012-02-02
US8859903B2 (en) 2014-10-14
US20150000955A1 (en) 2015-01-01
US20090133897A1 (en) 2009-05-28
AU2005334975A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1911044B1 (fr) Cable de securite resistant au feu, sensiblement plat
WO2007014983A1 (fr) Cable de securite resistant au feu a une seule enveloppe isolante
EP1504887B1 (fr) Cable électrique ignifugé par une gaine externe multicouche
EP2441076B1 (fr) Câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie
EP3398194B1 (fr) Câble ayant une couche isolante résistante au feu
KR20150057560A (ko) 마이카 테이프 및 이를 포함하는 내화 케이블
EP2319053B1 (fr) Composition ceramisable pour cable d'energie et/ou de telecommunication
EP3764372A1 (fr) Câble comprenant une couche résistante au feu
CN110853825A (zh) 一种防火高压电缆
CN110634608A (zh) 一种消防用阻燃b1级电线电缆及其制造方法
FR2811802A1 (fr) Cable electrique de securite
EP3404673B1 (fr) Cable resistant au feu
CN212570435U (zh) 一种辐照型柔性矿物质绝缘防火电缆
CN113488278A (zh) 一种b1级高阻燃多芯电缆及其制造方法
EP2498264B1 (fr) Câble électrique à moyenne ou haute tension
CN110783036A (zh) 一种防火电力电缆及其制作工艺
FR2576709A1 (fr) Cable electrique a gaine exterieure ignifuge
EP3764373A1 (fr) Câble comprenant une couche céramique résistante au feu
EP2613326A1 (fr) Cable d'énergie et/ou de télécommunication apte à empecher la propagation d'un incendie
EP3503125A1 (fr) Câble comprenant au moins une couche métallisée d'un matériau carboné
NZ565743A (en) Substantially flat fire-resistant safety cable where the insulating outer layer turns into a ceremic when heating, shielding the electrical conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005793426

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2617098

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005334975

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 565743

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2005334975

Country of ref document: AU

Date of ref document: 20050729

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005334975

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005793426

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11989290

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0520479

Country of ref document: BR

Kind code of ref document: A2