EP2319053B1 - Composition ceramisable pour cable d'energie et/ou de telecommunication - Google Patents

Composition ceramisable pour cable d'energie et/ou de telecommunication Download PDF

Info

Publication number
EP2319053B1
EP2319053B1 EP09737074A EP09737074A EP2319053B1 EP 2319053 B1 EP2319053 B1 EP 2319053B1 EP 09737074 A EP09737074 A EP 09737074A EP 09737074 A EP09737074 A EP 09737074A EP 2319053 B1 EP2319053 B1 EP 2319053B1
Authority
EP
European Patent Office
Prior art keywords
weight
compound
composition
cable according
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09737074A
Other languages
German (de)
English (en)
Other versions
EP2319053A1 (fr
Inventor
Christelle Mazel
Arnaud Piechaczyk
Roland Avril
Stéphanie HOAREAU
Melek Kirli
Elisabeth Tavard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP2319053A1 publication Critical patent/EP2319053A1/fr
Application granted granted Critical
Publication of EP2319053B1 publication Critical patent/EP2319053B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to an energy and / or telecommunication cable comprising at least one electrically insulating layer which is also able to withstand extreme thermal conditions.
  • safety cables that is to say to energy or telecommunication cables intended to remain operational for a defined time when they are subjected to high heat and / or or directly to the fire.
  • a significant slowdown in the progression of the flames it is as much time gained to evacuate the places and / or to implement appropriate means of extinction.
  • the cable In case of fire, the cable must be able to withstand the fire in order to operate as long as possible and limit its degradation.
  • a safety cable must also not be dangerous for its environment, that is to say, not to release toxic fumes and / or too opaque when subjected to extreme thermal conditions.
  • a cable is schematically constituted of at least one conductive element, electrical or optical, surrounded by at least one electrically insulating layer.
  • the electrically insulating layer may be an insulation directly in contact with at least one conductive element of the cable. It can also be a protective sheath surrounding one or more insulated conductive elements.
  • a known fire-resistant cable insulating layer composition is described in the document WO 2004/035711 .
  • This composition comprises an organic polymer and several inorganic fillers which may be in particular mica, zinc borate, and metal oxides such as oxides of calcium, iron, magnesium, aluminum, zirconium, zinc, zinc tin or barium.
  • JP 2004-95373 discloses an insulating strip for flat flexible cable having flame retardance properties comprising as essential elements a polyester resin and a metal hydroxide.
  • the object of the present invention is to overcome the drawbacks of the solutions of the state of the art by providing in particular a cable comprising an insulating layer having an optimal compromise between its electrical insulation properties and mechanical strength in extreme thermal conditions. .
  • This combination of inorganic fillers (compounds b, c and d) is optimally adapted to react in the conditions of a fire and thus form a refractory ceramic compound: the insulating layer is said to be ceramizable.
  • the cable according to the present invention satisfies in particular the standards IEC 60331 part 21 or 23, DIN 4102 part 12 and EN 50200.
  • precursor of a metal oxide x (precursor of potassium oxide, boron oxide or calcium oxide) are understood to mean any inorganic element capable of forming under the action of an elevation temperature said metal oxide x.
  • said inorganic element forms the metal oxide at a temperature T lower than the temperature Tc of (beginning of) ceramization of the insulating layer.
  • the ceramization start temperature is considered to be the temperature sufficient to observe the rearrangement and sticking of the particles set forth in step i above.
  • It can be any type of organic polymer well known to those skilled in the art, especially capable of being extruded, of the thermoplastic or elastomeric polymer type.
  • the organic polymer may be a mixture of several organic polymers, or may be a mixture of polymers consisting of at least one major organic polymer in the mixture and at least one other polymer of different nature.
  • the organic polymer is preferably selected from an olefin polymer, an acrylate or methacrylate polymer, a vinyl polymer, and a fluoropolymer, or a mixture thereof.
  • the olefin polymer is especially chosen from a homopolymer or copolymer of ethylene, and a homopolymer or copolymer of propylene, or a mixture thereof.
  • the olefin polymer is chosen from an ethylene homopolymer, an ethylene-octene (PEO) copolymer, an ethylene-vinyl acetate (EVA) copolymer, a copolymer of propylene diene monomer (EPDM), a copolymer of ethylene and methyl acrylate (EMA), a copolymer of ethylene and butyl acrylate (EBA), and a copolymer of ethylene and acrylate ethyl (EEA), or a mixture thereof.
  • the compound b may advantageously be a potassium oxide as such or a phyllosilicate comprising a potassium oxide. More particularly, the phyllosilicate comprising a potassium oxide is preferably an aluminum phyllosilicate comprising a potassium oxide.
  • the potassium oxide preferably has the following chemical formula: K 2 O.
  • Other types of potassium oxides such as, for example, complex oxides, or in other words polyoxometalates, can also be considered in the context of the present invention. of the invention.
  • the phyllosilicates comprising a potassium oxide may be certain types of mica such as micas aluminoceladonite, boromuscovite, celadonite, chromphyllite, ferroaluminoceladonite, ferrocelatonite, muscovite, roscoelite, annite, biotite, eastonite, hendricksite, lepidolite, masutomilite, montdorite, norrishite , polylithionite, phlogopite, siderophyllite, tainiotite, tetra-ferri-annite, tetra-ferriphlogopite, trilithionite, zinnwaldite, anadite, glauconite, or illite.
  • Aluminum phyllosilicates comprising a potassium oxide such as micas aluminoceladonite, chromphyllite, ferroaluminoceladonite, muscovite, roscoelite, annite, biotite, eastonite, hendricksite, lepidolite, masutomilite, montdorite, polylithionite, phlogopite, siderophyllite, trilithionite, are preferred. zinnwaldite, anadite, glauconite, or illite.
  • a potassium oxide such as micas aluminoceladonite, chromphyllite, ferroaluminoceladonite, muscovite, roscoelite, annite, biotite, eastonite, hendricksite, lepidolite, masutomilite, montdorite, polylithionite, phlogopite, siderophyllite, trilith
  • aluminum phyllosilicates comprising a potassium oxide, the muscovite mica of the chemical formula 6SiO 2 -3AbO 3 -K 2 O-2H 2 O or the phlogopite mica of the chemical formula 6SiO 2 -AbO 3 -K 2 O- 6MgO-2H 2 O.
  • the amount of the compound b may be at least 2 parts by weight, preferably at least 3 parts by weight, and still more preferably at least 6 parts by weight, per 100 parts by weight of polymer (s) in the composition .
  • the amount of the compound b may be at least 2% by weight, preferably at least 5% by weight, and still more preferably at least 10% by weight, of the total weight of the compounds b, c and d in the composition.
  • the boron oxide may typically have the following formula: B 2 O 3 .
  • B 2 O 3 does not exist in this form in the free state.
  • a boron oxide precursor is generally used.
  • the precursor of boron oxide may be chosen for example from zinc borate, boron phosphate, boric acid, calcium borate (eg colemanite of chemical formula Ca 2 B 6 O 11 , 5H 2 O) and sodium borate (eg borax of the chemical formula Na 2 B 4 O 7 , 10H 2 O).
  • the boron oxide precursor is preferably dehydrated, especially when said precursor is zinc borate, in order to avoid dehydration of said precursor when the insulating layer is subjected to fire and thus to disturb the dimensional stability of the ceramic formed.
  • the amount of compound c may be at least 20 parts by weight, and preferably at least 25 parts by weight, per 100 parts by weight of polymer (s) in the composition.
  • the amount of compound c may be at least 10% by weight, preferably at least 15% by weight, and more preferably at least 20% by weight, of the total weight of compounds b, c and d in the composition.
  • One of the calcium oxide precursors CaO may be calcium carbonate. Between calcium oxide, a calcium oxide precursor and the calcium oxide and calcium oxide precursor mixture, calcium oxide as such is preferred.
  • the amount of the compound d may advantageously be at least 10 parts by weight, preferably at least 20 parts by weight, and still more preferably at least 25 parts by weight, per 100 parts by weight of polymer (s) in the composition.
  • the amount of the compound d can advantageously be at least 15% by weight, and preferably at least 20% by weight, of the total weight of the compounds b, c and d in the composition.
  • Potassium oxide is present in some types of mica as mentioned above.
  • the amount of compound b can be at least 40% by weight, the total weight of compounds b, c and d in the composition.
  • the composition may comprise an amount of compound b at most 80% by weight, an amount of compound c at most 30% by weight, and an amount of the compound of at most 50% by weight, said amounts being defined with respect to the total weight of compounds b, c and d in the composition.
  • the composition can thus comprise an amount of compound b of 40 to 80% by weight, an amount of compound c of 10 to 30% by weight, and an amount of compound d of 10 to 50% by weight, said amounts being defined relative to the total weight of compounds b, c and d in the composition.
  • the composition comprises an amount of the compound b of 60% by weight, a quantity of the compound c of 20% by weight, and a quantity of the compound d of 20% by weight, said amounts being defined in relation to the total weight of compounds b, c and d in the composition.
  • composition according to the present invention may furthermore comprise other inorganic fillers of the nanoparticle type.
  • Said nanoparticles typically have at least one of their nanometric dimensions (10 -9 meters). More particularly, the average size of the mineral nanoparticles is at most 400 nm, preferably at most 300 nm, and more preferably at most 100 nm.
  • the average size of the nanoparticles is conventionally determined by methods that are well known to those skilled in the art, for example by laser granulometry or by microscopy techniques, in particular by SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy).
  • These nanoparticles preferably have a form factor of at least 100, the form factor being the ratio of the largest dimension of a mineral nanoparticle to the smallest dimension of said nanoparticle.
  • the nanoparticles are phyllosilicates chosen in particular from montmorillonites, sepiolites, illites, attapulgites, talcs, and kaolins, or a mixture thereof.
  • the composition does not comprise halogenated inorganic fillers.
  • the composition may furthermore not include halogenated polymers such as, for example, fluorinated polymers or chlorinated polymers such as polyvinyl chloride (PVC).
  • the amounts of inorganic fillers in the composition can be defined in that the composition comprises at least 20 parts by weight, preferably at least 40 parts by weight preferably at least 60 parts by weight, and even more preferably at least 90 parts by weight of inorganic fillers, per 100 parts by weight of polymer (s).
  • the lower limit of 90 parts by weight is especially taken into account when the compound b is mica (i.e. phyllosilicate comprising a potassium oxide).
  • the composition comprises at most 200 parts by weight of inorganic fillers per 100 parts by weight of polymer (s), in order to limit the problems of rheologies in the composition.
  • the composition may be crosslinked to obtain a crosslinked insulating layer.
  • the crosslinking of the composition can be carried out by conventional crosslinking techniques well known to those skilled in the art such as, for example, silane crosslinking in the presence of a crosslinking agent, peroxide crosslinking under the action of heat, or photochemically cross-linking such as irradiation with beta radiation, or irradiation with ultraviolet radiation in the presence of a photoinitiator.
  • the figure 1 represents an electric cable 1 comprising a solid-type conducting element 2, surrounded by an insulating-type insulating layer 3 directly in contact with the conductive element, the latter being itself surrounded by an insulating layer of the protective sheath type 4.
  • the figure 2 also represents an electrical cable 10 comprising at least two conductive elements 12 of multi-strand type. Each strand 12 is surrounded by an insulation insulating layer 13 directly in contact with the conductive element, all of these isolated strands being surrounded by an insulating layer of the protective sheath type 14.
  • the insulating layer 3, 13 and / or the protective sheath 4, 14 can be obtained from the composition according to the present invention.
  • the insulation 3, 13 has a thickness of 0.6 to 2.4 mm and the protective sheath 4, 14 has a thickness of 1 to 2.5 mm.
  • composition according to the invention is conventionally shaped by extrusion around or conductive elements to form the insulation 3, 13 and / or the protective sheath 4, 14.
  • the extrusion of said composition may be an extrusion said compression or stuffing, or a so-called tubing extrusion.
  • the tubular extrusion makes it possible to obtain a tubular insulating layer, that is to say a tube-shaped layer of a certain thickness whose inner surface and the outer surface are respectively two substantially concentric cylinders.
  • the tubular insulating layer does not fill the interstices between the conductive elements (isolated or not) and thus provides empty spaces between it and the insulated or insulated conductive elements that it surrounds, especially the empty spaces occupy at least 10% of the section of the cable.
  • the insulating layer leaves the free conductive elements within said layer.
  • the stuffing extrusion makes it possible to obtain a stuffing layer, that is to say a layer filling the interstices between the conductive elements (isolated or not) whose volumes are accessible, and thus said layer is directly in contact with the elements isolated conductors or not.
  • Tables 1a and 1b below detail the compositions used to obtain said insulating layers.
  • the composition may typically further comprise additives in an amount of from 5 to 20 phr.
  • additives are well known to those skilled in the art and may be chosen for example from protection agents (antioxidants, anti-UV, anti-copper), processing agents (plasticizers or lubricants), and pigments .
  • melt polymer (s) is continuously blended with the various inorganic fillers detailed in Tables 1a and 1b.
  • the mixing is carried out using a Buss single-screw mixer or a twin-screw extruder and the inorganic fillers are added to the polymer (s) using a conventional metering hopper.
  • the mixture of the charged polymer (s) is extruded directly onto a solid or multi-stranded copper wire with a cross-section of 1.5 mm 2 , the extruded insulating layer having a thickness of 0.8 mm.
  • the polymers of Table 1a in the molten state are continuously mixed and heated with a silane crosslinking agent of the alkoxysilane or carboxysilane type together with an organic peroxide, using a Buss single-screw mixer or of a twin-screw extruder.
  • the crosslinking agent is added in an amount of 1 to 2.5% and that used in the compositions B1 to B4 is Silfin 59 sold by the company Evonik.
  • the temperature of the mixture of this first step is such that it typically allows the polymer mixture to be used while decomposing the organic peroxide.
  • This first step makes it possible to obtain a mixture of silane graft polymers in the form of granules.
  • the molar silane graft polymer is continuously blended and heated to the various inorganic fillers detailed in Table 1a.
  • This second step makes it possible to obtain a grafted silane graft polymer, the charged silane graft polymer being typically obtained in the form of granules.
  • the granules of charged silane graft polymer are used in the molten state in a single-screw extruder in the presence of a catalyst for the condensation reaction of silanol groups, such as, for example, dibutyltin dilaurate. (DBTL) well known to those skilled in the art.
  • DBTL dibutyltin dilaurate.
  • the catalyst is typically added to the charged silane graft polymer in the form of a masterbatch based on a polyolefin compatible with said graft polymer.
  • the masterbatch containing said catalyst is added in an amount of about 2% by weight to the loaded silane graft polymer.
  • the mixture of the charged silane graft polymer and the silanol condensation catalyst is extruded directly onto a 1.5 mm 2 multi-stranded copper wire, the extruded insulating layer having a thickness of 0.8 mm.
  • melt polymer (s) is continuously blended with the various inorganic fillers and peroxide detailed in Table 1a.
  • the mixing is carried out using a Buss single-screw mixer or a twin-screw extruder and the inorganic fillers and peroxide are added to the polymer (s) using a conventional metering hopper.
  • the mixture of the charged polymer (s) is extruded directly onto a solid or multi-stranded copper wire with a cross-section of 1.5 mm 2 , the extruded insulating layer having a thickness of 0.8 mm.
  • the mixing and extrusion temperature conditions are such that the temperature is sufficient to soften and homogenize the peroxide and the inorganic fillers in the polymer (s) while avoiding initiating the decomposition of the peroxide.
  • the insulating layer thus formed is crosslinked by the peroxide route under the action of heat, in a salt bath, in a vapor tube or in a fluidized bed at atmospheric pressure or at a pressure close to the latter.
  • the fire resistance tests are carried out according to the following three standards: IEC 60331 part 21 or 23, DIN 4102 part 12, and EN 50200.
  • the standard IEC 60331 part 21 or 23 consists of subjecting an electric cable to its nominal voltage when it is suspended horizontally over a flame of at least 750 ° C for a determined period but without mechanical stress.
  • This period is checked whether there is a short-circuit or breakage of the electrical conductors.
  • the test is successful when there is no short circuit or breakage of the electrical conductors during the test and the next 15 minutes.
  • the electrical cable that has passed the test for 30 minutes is then classified FE30. When it passes the test for 90 minutes or 180 minutes, it is respectively classified FE90 and FE180.
  • DIN 4102 part 12 consists in subjecting an electric cable with its fixing devices in an oven of at least 3 meters in length for a determined period of time according to a standard temperature curve (ISO 834).
  • the electrical cable having passed the test for 30 minutes at 842 ° C is then classified E30.
  • it passes the test for 60 minutes at 945 ° C or for 90 minutes at 1006 ° C it is then respectively classified E60 and E90.
  • the EN 50200 standard consists of mounting and fixing by means of metal rings an electric cable in the form of a U on a plate of refractory material.
  • the electrical cable during the test is subjected to a flame (850 ° C) as well as a metal shock delivered via a metal bar which falls on the plate of refractory material every 5 minutes. Electrical conductors being under their operating voltage must not break or give rise to short circuits.
  • the electrical cable having satisfied the test for 15, 30, 60, 90 or 120 minutes is then respectively classified PH15, PH30, PH60 PH90 or PH120.
  • Table 2 shows the very satisfactory results of the fire resistance tests of insulating layers of electric cables according to the present invention.
  • the electrical cables used for said tests consist of at least two copper wires respectively insulated, all of these insulated copper son being surrounded by a conventional type of protection HFFR well known to those skilled in the art.
  • the electrically insulating layers of the copper wires of each set are respectively obtained from compositions A1 to A3, B1 to B4 and C1 to C3. ⁇ b> ⁇ u> Table 2 ⁇ / u> ⁇ /b> standards IEC 60331 part 31 EN 50200 DIN 4102 Results FE 180 PH 90 E30
  • the extruded insulation layers obtained respectively from the compositions A2, A4, A5 and A6 were subjected to a mechanical penetration resistance test.
  • the procedure consists mainly in driving a penetrating member at constant speed into each combustion residue, and simultaneously measuring, by means of a force sensor, the resistance of the burnt material as a function of the effective depth of penetration.
  • the penetrating member is concretely in the form of a cylinder 6mm in diameter and 20mm in length. In order to provide a convex contact surface, this cylinder is used in a position parallel to the outer surface of the residue to be tested, and with a direction of displacement perpendicular to said outer surface.
  • the penetration speed is set at 10mm / min.
  • the cylindrical geometry of the penetrating member makes it possible simultaneously to quantify the compressive strength and the creep resistance.
  • a Zwick / Roel Z010 ® type compression machine is used to continuously perform series of resistance measurements from which the characteristic value of the residual cohesion, ie the maximum resistance force, will be deduced each time. reached after penetrating 50% of the thickness of the sample.
  • Table 3 below collates the characteristic values of residual cohesion, denoted Fmax-50% expressed in Newton, for the insulating layers extruded after a combustion at 920 ° C. ⁇ b> ⁇ u> Table 3 ⁇ / u> ⁇ /b> Extruded insulating layers obtained from the following compositions: A2 A4 AT 5 A6 Fmax-50% after combustion at 920 ° C 231 338 125 215
  • compositions A2, A4 and A6 have excellent residual cohesion after being burned at 920 ° C.
  • the residual cohesion result (125N after combustion at 920 ° C.) corresponding to the insulating layer obtained from the composition A5 is much lower than those obtained from the insulating layers of the invention.

Description

  • La présente invention se rapporte à un câble d'énergie et/ou de télécommunication comportant au moins une couche électriquement isolante qui est en outre en mesure de résister à des conditions thermiques extrêmes.
  • Elle s'applique typiquement, mais non exclusivement, aux câbles de sécurité, c'est-à-dire à des câbles d'énergie ou de télécommunication destinés à rester opérationnels pendant un temps défini lorsqu'ils sont soumis à de fortes chaleurs et/ou directement au feu.
  • Aujourd'hui, un des enjeux majeurs de l'industrie du câble est l'amélioration du comportement et des performances des câbles dans des conditions thermiques extrêmes, notamment celles rencontrées lors d'un incendie. Pour des raisons essentiellement de sécurité, il est en effet indispensable de maximiser les capacités du câble à retarder la propagation des flammes d'une part, et à résister au feu d'autre part afin d'assurer une continuité de fonctionnement.
  • Un ralentissement significatif de la progression des flammes, c'est autant de temps gagné pour évacuer les lieux et/ou pour mettre en oeuvre des moyens d'extinction appropriés. En cas d'incendie, le câble doit pouvoir résister au feu afin de fonctionner le plus longtemps possible et limiter sa dégradation. Un câble de sécurité se doit en outre de ne pas être dangereux pour son environnement, c'est-à-dire de ne pas dégager de fumées toxiques et/ou trop opaques lorsqu'il est soumis à des conditions thermiques extrêmes.
  • Qu'il soit électrique ou optique, destiné au transport d'énergie ou à la transmission de données, un câble est schématiquement constitué d'au moins un élément conducteur, électrique ou optique, entouré par au moins une couche électriquement isolante.
  • A titre d'exemple, la couche électriquement isolante peut être une isolation directement en contact avec au moins un élément conducteur du câble. Elle peut être également une gaine de protection entourant un ou plusieurs éléments conducteurs isolés.
  • Une composition connue de couche isolante pour câble, susceptible de résister au feu, est décrite dans le document WO 2004/035711 . Cette composition comprend un polymère organique et plusieurs charges inorganiques qui peuvent être notamment du mica, du borate de zinc, et des oxydes métalliques tels que des oxydes de calcium, de fer, de magnésium, d'aluminium, de zirconium, de zinc, d'étain ou de baryum.
  • Toutefois, ce type de composition ne permet pas d'assurer une intégrité mécanique et électrique du câble, c'est-à-dire la poursuite de son fonctionnement de manière optimale en cas d'incendie.
  • JP 2004-95373 décrit une bande isolante pour câble flexible plat présentant des propriétés de retardement à la flamme comprenant comme éléments essentiels une résine polyester et un hydroxyde métallique.
  • L'objet de la présente invention est de pallier les inconvénients des solutions de l'état de la technique en offrant notamment un câble comprenant une couche isolante présentant un compromis optimal entre ses propriétés d'isolation électrique et de tenue mécanique dans des conditions thermiques extrêmes.
  • La solution selon la présente invention est de proposer un câble d'énergie et/ou de télécommunication comportant au moins un élément conducteur entouré par au moins une couche isolante, notamment une couche électriquement isolante, s'étendant le long du câble, la couche isolante étant obtenue à partir d'une composition comprenant les composés suivants :
    1. a) un polymère organique,
    2. b) un composé inorganique comprenant un oxyde de potassium et/ou un de ses précurseurs,
    3. c) un oxyde de bore et/ou un de ses précurseurs, et
    4. d) de l'oxyde de calcium CaO et/ou un de ses précurseurs,
    caractérisé en ce que la quantité du composé d est au moins de 10 % en poids, de préférence au moins de 20 % en poids, du poids total des composés b, c et d dans la composition.
  • Cette association de charges inorganiques (composés b, c et d) est adaptée de façon optimale pour réagir dans les conditions d'un incendie et former ainsi un composé céramique réfractaire : la couche isolante est dite céramisable.
  • Avantageusement, le câble selon la présente invention satisfait notamment aux normes IEC 60331 part 21 ou 23, DIN 4102 part 12 et EN 50200.
  • On entend par les termes « précurseur d'un oxyde métallique x» (cf. précurseur d'oxyde de potassium, d'oxyde de bore ou d'oxyde de calcium) tout élément inorganique apte à former sous l'action d'une élévation de température ledit oxyde métallique x. Notamment, ledit élément inorganique forme l'oxyde métallique à une température T inférieure à la température Tc de (début de) céramisation de la couche isolante.
  • La céramisation correspond classiquement à la consolidation par l'action de la chaleur d'un agglomérat granulaire (particules) plus ou moins compact, avec ou sans fusion d'un des constituants. Elle comprend typiquement trois étapes successives, à savoir :
    1. i. le réarrangement et le collage des particules,
    2. ii. la densification et l'élimination des porosités intergranulaires, et
    3. iii. le grossissement des grains et l'élimination progressive des porosités fermées.
  • La température de début de céramisation est considérée comme étant la température suffisante pour observer le réarrangement et le collage des particules énoncées à l'étape i ci-dessus.
  • Composé a
  • La nature du polymère organique de la composition selon la présente invention n'est nullement limitative.
  • Ce peut être tout type de polymère organique bien connu de l'homme du métier, notamment apte à pouvoir être extrudé, du type polymère thermoplastique ou élastomère.
  • Bien entendu, le polymère organique peut être un mélange de plusieurs polymères organiques, ou peut être un mélange de polymères constitué d'au moins un polymère organique majoritaire dans le mélange et d'au moins un autre polymère de nature différente.
  • Le polymère organique est de préférence choisi parmi un polymère d'oléfine, un polymère d'acrylate ou méthacrylate, un polymère de vinyle, et un polymère fluoré, ou un de leurs mélanges.
  • Le polymère d'oléfine est notamment choisi parmi un homopolymère ou copolymère d'éthylène, et un homopolymère ou copolymère de propylène, ou un de leurs mélanges.
  • A titre d'exemple préféré, le polymère d'oléfine est choisi parmi un homopolymère d'éthylène, un copolymère d'éthylène-octène (PEO), un copolymère d'éthylène et d'acétate de vinyle (EVA), un copolymère d'éthyle propylène diène monomère (EPDM), un copolymère d'éthylène et d'acrylate de méthyle (EMA), un copolymère d'éthylène et d'acrylate de butyle (EBA), et un copolymère d'éthylène et d'acrylate d'éthyle (EEA), ou un de leurs mélanges.
  • Composé b
  • Le composé b peut être avantageusement un oxyde de potassium en tant que tel ou un phyllosilicate comprenant un oxyde de potassium. Plus particulièrement, le phyllosilicate comprenant un oxyde de potassium est préférentiellement un phyllosilicate d'aluminium comprenant un oxyde de potassium.
  • L'oxyde de potassium a de préférence la formule chimique suivante : K2O. D'autres types d'oxydes de potassium tels que par exemple des oxydes complexes, ou en d'autres termes des polyoxométallates, peuvent être également considérés dans le cadre de l'invention.
  • Les phyllosilicates comprenant un oxyde de potassium peuvent être certains types de mica tels que les micas aluminoceladonite, boromuscovite, celadonite, chromphyllite, ferro-aluminoceladonite, ferrocelatonite, muscovite, roscoelite, annite, biotite, eastonite, hendricksite, lepidolite, masutomilite, montdorite, norrishite, polylithionite, phlogopite, siderophyllite, tainiotite, tetra-ferri-annite, tetra-ferriphlogopite, trilithionite, zinnwaldite, anadite, glauconite, ou illite.
  • On préférera les phyllosilicates d'aluminium comprenant un oxyde de potassium tels que les micas aluminoceladonite, chromphyllite, ferro-aluminoceladonite, muscovite, roscoelite, annite, biotite, eastonite, hendricksite, lepidolite, masutomilite, montdorite, polylithionite, phlogopite, siderophyllite, trilithionite, zinnwaldite, anadite, glauconite, ou illite.
  • Dans les phyllosilicates d'aluminium comprenant un oxyde de potassium, on préférera le mica muscovite de formule chimique 6SiO2-3AbO3-K2O-2H2O ou le mica phlogopite de formule chimique 6SiO2-AbO3-K2O-6MgO-2H2O.
  • La quantité du composé b peut être au moins de 2 parties en poids, de préférence au moins de 3 parties en poids, et encore plus préférentiellement au moins de 6 parties en poids, pour 100 parties en poids de polymère(s) dans la composition.
  • Par ailleurs, la quantité du composé b peut être au moins de 2% en poids, de préférence au moins de 5% en poids, et encore plus préférentiellement au moins de 10% en poids, du poids total des composés b, c et d dans la composition.
  • Composé c
  • L'oxyde de bore peut avoir typiquement la formule suivante : B2O3. Toutefois, B2O3 n'existe pas sous cette forme à l'état libre. De ce fait, on utilise généralement un précurseur d'oxyde de bore.
  • Le précurseur d'oxyde de bore peut être choisi par exemple parmi le borate de zinc, le phosphate de bore, l'acide borique, le borate de calcium (e.g. la colémanite de formule chimique Ca2B6O11,5H2O) et le borate de sodium (e.g. le borax de formule chimique Na2B4O7,10H2O).
  • Le précurseur d'oxyde de bore est de préférence déshydraté, notamment lorsque ledit précurseur est le borate de zinc, afin d'éviter la déshydratation dudit précurseur lorsque la couche isolante est soumise au feu et ainsi perturber la stabilité dimensionnelle de la céramique formée.
  • La quantité du composé c peut être au moins de 20 parties en poids, et de préférence au moins de 25 parties en poids, pour 100 parties en poids de polymère(s) dans la composition.
  • Par ailleurs, la quantité du composé c peut être au moins de 10 % en poids, de préférence au moins de 15 % en poids, et plus préférentiellement au moins de 20 % en poids, du poids total des composés b, c et d dans la composition.
  • Composé d
  • Un des précurseurs d'oxyde de calcium CaO peut être le carbonate de calcium. Entre l'oxyde de calcium, un précurseur d'oxyde de calcium et le mélange oxyde de calcium et précurseur d'oxyde de calcium, l'oxyde de calcium en tant que tel est préféré.
  • La quantité du composé d peut être avantageusement au moins de 10 parties en poids, de préférence au moins de 20 parties en poids, et encore plus préférentiellement au moins de 25 parties en poids, pour 100 parties en poids de polymère(s) dans la composition.
  • Par ailleurs, la quantité du composé d peut être, quant à elle, avantageusement au moins de 15 % en poids, et de préférence au moins de 20 % en poids, du poids total des composés b, c et d dans la composition.
  • Mode de réalisation particulier : le composé b est du mica
  • L'oxyde de potassium est présent dans certains types de mica comme mentionné ci-avant. Lors de l'utilisation de mica en tant que composé b, la quantité du composé b peut être au moins de 40 % en poids, du poids total des composés b, c et d dans la composition.
  • De préférence, la composition peut comprendre une quantité du composé b au plus de 80 % en poids, une quantité du composé c au plus de 30 % en poids, et une quantité du composé d au plus de 50 % en poids, lesdites quantités étant définies par rapport au poids total des composés b, c et d dans la composition.
  • Pour résumé, et selon ce mode de réalisation, la composition peut ainsi comprendre une quantité du composé b de 40 à 80 % en poids, une quantité du composé c de 10 à 30 % en poids, et une quantité du composé d de 10 à 50 % en poids, lesdites quantités étant définies par rapport au poids total des composés b, c et d dans la composition.
  • Selon un exemple préféré de réalisation, la composition comprend une quantité du composé b de 60 % en poids, une quantité du composé c de 20 % en poids, et une quantité du composé d de 20 % en poids, lesdites quantités étant définies par rapport au poids total des composés b, c et d dans la composition.
  • Autres charges inorganiques
  • La composition selon la présente invention peut comprendre en outre d'autres charges inorganiques du type nanoparticules.
  • Lesdites nanoparticules ont typiquement au moins l'une de leurs dimensions de taille nanométrique (10-9 mètre). Plus particulièrement, la dimension moyenne des nanoparticules minérales est d'au plus 400 nm, de préférence d'au plus 300 nm, et plus préférentiellement d'au plus 100 nm.
  • La dimension moyenne des nanoparticules est classiquement déterminée par des méthodes bien connues de l'homme du métier comme par exemple par granulométrie laser ou par des techniques de microscopies, notamment par MEB (Microscopie Electronique à Balayage) ou MET (Microscopie Electronique en Transmission).
  • Ces nanoparticules ont de préférence un facteur de forme d'au moins 100, le facteur de forme étant le rapport de la plus grande dimension d'une nanoparticule minérale sur la plus petite dimension de ladite nanoparticule.
  • De préférence, les nanoparticules sont des phyllosilicates choisis notamment parmi les montmorillonites, les sépiolites, les illites, les attapulgites, les talcs, et les kaolins, ou un de leurs mélanges.
  • Afin de garantir une couche isolante dite HFFR (pour l'anglicisme « Hologen Free Flame Retardant »), la composition ne comprend pas de charges inorganiques halogénées. La composition peut en outre ne pas comprendre de polymères halogénés tels que par exemple des polymères fluorés ou des polymères chlorés tels que le polychlorure de vinyle (PVC).
  • Les quantités de charges inorganiques dans la composition (composés b, c et d, ainsi qu'optionnellement d'autres charges inorganiques) peuvent être définies en ce que la composition comprend au moins 20 parties en poids, de préférence au moins 40 parties en poids, de préférence au moins 60 parties en poids, et encore plus préférentiellement au moins 90 parties en poids de charges inorganiques, pour 100 parties en poids de polymère(s).
  • La limite inférieure de 90 parties en poids est notamment prise en compte lorsque le composé b est du mica (i.e. phyllosilicate comprenant un oxyde de potassium).
  • De préférence, la composition comprend au plus 200 parties en poids de charges inorganiques pour 100 parties en poids de polymère(s), afin de limiter les problèmes de rhéologies dans la composition.
  • Selon une particularité de la présente invention, la composition peut être réticulée afin d'obtenir une couche isolante réticulée. La réticulation de la composition peut s'effectuer par les techniques classiques de réticulation bien connues de l'homme du métier telles que par exemple la réticulation silane en présence d'un agent de réticulation, la réticulation peroxyde sous l'action de la chaleur, ou la réticulation par voie photochimique telle que l'irradiation sous rayonnement béta, ou irradiation sous rayonnement ultraviolet en présence d'un photoamorceur.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière des exemples qui vont suivre en référence aux figures annotées, lesdits exemples et figures étant donnés à titre illustratif et nullement limitatif.
    • La figure 1 représente de manière schématique une perspective en coupe d'un câble électrique ayant au moins une couche isolante conforme à l'invention.
    • La figure 2 représente de manière schématique une perspective en coupe d'un autre câble électrique ayant au moins une couche isolante conforme à l'invention.
  • Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle.
  • Dans un premier exemple de réalisation, la figure 1 représente un câble électrique 1 comprenant un élément conducteur 2 de type massif, entouré par une couche isolante du type isolation 3 directement en contact avec l'élément conducteur, cette dernière étant elle-même entourée par une couche isolante du type gaine de protection 4.
  • Dans un second exemple de réalisation, la figure 2 représente également un câble électrique 10 comprenant au moins deux éléments conducteurs 12 de type multibrin. Chaque multibrin 12 est entouré par une couche isolante du type isolation 13 directement en contact avec l'élément conducteur, l'ensemble de ces multibrins isolés étant entouré par une couche isolante du type gaine de protection 14.
  • Que ce soit dans la figure 1 ou 2, la couche isolante 3, 13 et/ou la gaine de protection 4, 14 peuvent être obtenue(s) à partir de la composition selon la présente invention.
  • Typiquement, l'isolation 3, 13 a une épaisseur de 0,6 à 2,4 mm et la gaine de protection 4, 14 a une épaisseur de 1 à 2,5 mm.
  • La composition selon l'invention est classiquement mise en forme par extrusion autour de ou des éléments conducteurs pour former l'isolation 3, 13 et/ou la gaine de protection 4, 14.
  • L'extrusion de ladite composition peut être une extrusion dite en compression ou bourrante, ou une extrusion dite tubante.
  • L'extrusion tubante permet d'obtenir une couche isolante tubante, c'est-à-dire une couche en forme de tube d'une certaine épaisseur dont la surface interne et la surface externe sont respectivement deux cylindres sensiblement concentriques.
  • Ainsi, la couche isolante tubante ne remplit pas les interstices entre les éléments conducteurs (isolés ou non) et ménage ainsi des espaces vides entre elle et les éléments conducteurs isolés ou non qu'elle entoure, notamment les espaces vides occupent au moins 10% de la section du câble.
  • Dans certains modes de réalisation, la couche isolante laisse les éléments conducteurs libres à l'intérieur de ladite couche.
  • L'extrusion bourrante permet d'obtenir une couche bourrante, c'est-à-dire une couche remplissant les interstices entre les éléments conducteurs (isolés ou non) dont les volumes sont accessibles, et ainsi ladite couche est directement en contact avec les éléments conducteurs isolés ou non.
  • Exemples
  • Différentes couches isolantes selon la présente invention et selon l'art antérieur ont été préparées afin de montrer le maintient de l'intégrité électrique desdits couches pendant des essais de résistances au feu.
  • Pour ce faire, les tableaux 1a et 1b ci-après détaillent les compositions mise en oeuvre pour obtenir lesdites couches isolantes.
  • Il est à noter que les quantités mentionnées dans les tableaux 1a et 1b sont classiquement exprimées en parties en poids pour cent parties en poids de polymère(s) (pcr). Tableau 1a
    Compositions A1 A2 A3 B1 B2 B3 B4 C1 C2 C3
    EVA 28 100 / 20 / / / / 50 57,5 /
    EVA 28 greffé silane 1,5% / / / / / 30 30 / / /
    EVA 40 greffé silane 1,5% / / / / / 70 70 / / /
    PEO / 100 70 / / / / / / 55
    PEO greffé silane 1,2% / / / 50 / 1 / / / /
    PEO greffé silane 2% / / / / 100 / / / / /
    EPDM / / / / / / / 50 37,5 25
    EPDM greffé silane z / / / 50 / / / / / /
    EVA greffé AM / / / / / / / / 5 /
    LLDPE greffé AM / / 10 / / / / / / /
    EMA / / / / / / / / / 20
    Borate de zinc 30 30 26 30 30 30 25 30 30 30
    Mica 1 90 90 78 90 90 90 75 90 90 90
    Oxyde de calcium 30 30 26 30 30 30 25 30 30 30
    Phyllosilicates 100 / / 20 20 / / / 20 20 20
    Peroxyde / / / / / / / 6 6 4,5
    Tableau 1b
    Compositions A4 A5 A6
    PEO 100 100 100
    Borate de zinc 30 30 30
    Mica 2 90 / /
    Phyllosilicate 1 / 90 /
    Phyllosilicate 2 / / 90
    Oxyde de calcium 30 30 30
  • L'origine des différents constituants des tableaux 1a et 1b est la suivante :
    • EVA 28 est un copolymère d'éthylène vinyle acétate comprenant 28 % de groupements d'acétate de vinyle, commercialisé par la société Arkema sous la référence Evatane 2803 ;
    • EVA 28 greffé silane 1,5% est un copolymère d'éthylène vinyle acétate comprenant 28 % de groupements d'acétate de vinyle, commercialisé par la société Arkema sous la référence Evatane 2803, ce copolymère ayant ensuite été greffé silane avec 1,5 % d'un agent de réticulation silane (voir détails ci-après) ;
    • EVA 40 greffé silane 1,5% est un copolymère d'éthylène vinyle acétate comprenant 40 % de groupements d'acétate de vinyle, commercialisé par la société Arkema sous la référence Evatane 2803, ce copolymère ayant ensuite été greffé silane avec 1,5 % d'un agent de réticulation silane (voir détails ci-après) ;
    • PEO est un copolymère d'éthylène-octène commercialisé par la société Dow sous la référence Engage 8003 ;
    • PEO greffé silane 1,2% est un copolymère d'éthylène-octène commercialisé par la société Dow sous la référence Engage 8003, ce copolymère ayant ensuite été greffé silane avec 1,2 % d'un agent de réticulation silane (voir détails ci-après) ;
    • PEO greffé silane 2% est un copolymère d'éthylène-octène commercialisé par la société Dow sous la référence Engage 8003, ce copolymère ayant ensuite été greffé silane avec 2 % d'un agent de réticulation silane (voir détails ci-après) ;
    • EPDM est un copolymère d'éthylène propylène diène monomère commercialisé par la société Dow sous la référence Nordel 4725 ;
    • EPDM greffé silane 1,5% est un copolymère d'éthylène propylène diène monomère commercialisé par la société Dow sous la référence Nordel 4725, ce copolymère ayant ensuite été greffé silane avec 1,5 % d'un agent de réticulation silane (voir détails ci-après) ;
    • EVA greffé AM est un copolymère d'éthylène vinyle acétate greffé anhydride maléique commercialisé par la société Arkema sous la référence Orevac 18211 ;
    • LLDPE greffé AM est un homopolymère d'éthylène linéaire de basse densité greffé anhydride maléique commercialisé par la société Arkema sous la référence Orevac 18302 ;
    • EMA est un copolymère d'éthylène et d'acrylate de méthyle commercialisé par la société Arkema sous la référence Lotryl 24 MA 005 ;
    • Borate de zinc est du borate de zinc déshydraté commercialisé par la société Rio Tinto Minerals sous la référence Fire brake 500 ;
    • Mica 1 est du mica de type muscovite commercialisé par la société Microfine sous la référence Mica sx300 ; Mica 1 comprend de 7 à 10% en poids de K2O ;
    • Mica 2 est du mica commercialisé par la société Imerys sous la référence Mica Mu M2/1 ; Mica 2 comprend environ 8,5% en poids de K2O ;
    • Phyllosilicate 1 est de la kaolinite commercialisée par la société Imerys sous la référence Argirec B24 ; Phyllosilicate 1 ne comprend pas de K2O ;
    • Phyllosilicate 2 est des phyllosilicates d'aluminium commercialisés par la société Imerys sous la référence Hexafil ; Phyllosilicate 2 comprend de 2,3 à 3,2% en poids de K2O ;
    • Oxyde de calcium est de l'oxyde de calcium CaO commercialisé par la société Omya sous la référence Caloxol PG ;
    • Phyllosilicates 100 sont des nanoparticules de Montmorillonite, commercialisées par la société Rockwood sous la référence Nanofil 5 ; Phyllosilicates 100 ne comprend pas d'oxyde de potassium ;
    • Peroxyde est du peroxyde de dicumyle commercialisé par la société Akzo Nobel sous la référence Perkadox BC40 (peroxyde de dicumyle) ou Perkadox 14/40 (1.3 bis (t- butyle peroxyisopropyl) benzène).
  • La composition peut typiquement comprendre en outre des additifs en une quantité de 5 à 20 pcr. Les additifs sont bien connus de l'homme du métier et peuvent être par exemple choisis parmi des agents de protection (antioxydants, des anti-UV, anti-cuivre), des agents de mise en oeuvre (plastifiants ou lubrifiants), et des pigments.
  • Préparation de couches isolantes à partir des compositions A1 à A6 des tableaux 1a et 1b
  • On mélange en continu et en chauffant le ou les polymères à l'état fondu aux différentes charges inorganiques détaillées dans les tableaux 1a et 1 b.
  • Le mélange est effectué à l'aide d'un mélangeur monovis Buss ou d'une extrudeuse bivis et les charges inorganiques sont ajoutés au(x) polymère(s) à l'aide d'une trémie doseuse classique.
  • Le mélange du ou des polymères chargés est extrudé directement sur un fil de cuivre massif ou multibrin d'une section de 1,5 mm2, la couche isolante extrudée ayant une épaisseur de 0,8 mm.
  • Préparation de couches isolantes à partir des compositions B1, B2, B3 et B4 du tableau 1a
  • Dans une première étape, on mélange en continu et en chauffant les polymères du tableau 1a à l'état fondu avec un agent de réticulation silane du type alkoxysilane ou carboxysilane ensemble avec un peroxyde organique, à l'aide d'un mélangeur monovis Buss ou d'une extrudeuse bivis.
  • L'agent de réticulation est ajouté en une quantité de 1 à 2,5 % et celui utilisé dans les compositions B1 à B4 est le Silfin 59 commercialisé par la société Evonik.
  • La température du mélange de cette première étape est telle qu'elle permet typiquement de mettre en oeuvre le mélange de polymères tout en décomposant le peroxyde organique.
  • Cette première étape permet d'obtenir un mélange de polymères greffé silane sous forme de granulés.
  • Dans une deuxième étape, on mélange en continu et en chauffant le polymère greffé silane à l'état fondu aux différentes charges inorganiques détaillées dans le tableau 1a.
  • Le mélange est effectué à l'aide d'un autre mélangeur monovis Buss ou d'une autre extrudeuse bivis et les charges inorganiques sont ajoutées au polymère greffé silane à l'aide d'une trémie doseuse classique.
  • Cette deuxième étape permet d'obtenir un polymère greffé silane chargé, le polymère greffé silane chargé étant typiquement obtenu sous forme de granulés.
  • Dans une troisième étape, les granulés de polymère greffé silane chargé sont mis en oeuvre à l'état fondu dans une extrudeuse monovis en présence d'un catalyseur de la réaction de condensation de groupements silanols, tel que par exemple le dibutyl dilaurate d'étain (DBTL) bien connu de l'homme du métier.
  • Le catalyseur est typiquement ajouté au polymère greffé silane chargé sous forme d'un mélange maître à base d'une polyoléfine compatible avec ledit polymère greffé.
  • A titre d'exemple, le mélange maître contenant ledit catalyseur est ajouté en une quantité d'environ 2 % en poids au polymère greffé silane chargé.
  • Le mélange du polymère greffé silane chargé et du catalyseur de condensation des silanols est extrudé directement sur un fil de cuivre multibrin d'une section de 1,5 mm2, la couche isolante extrudée ayant une épaisseur de 0,8 mm.
  • Préparation de couches isolantes à partir des compositions C1, C2 et C3 du tableau 1a
  • Dans une première étape, on mélange en continu et en chauffant le ou les polymères à l'état fondu aux différentes charges inorganiques et au peroxyde détaillés dans le tableau 1a.
  • Le mélange est effectué à l'aide d'un mélangeur monovis Buss ou d'une extrudeuse bivis et les charges inorganiques et le peroxyde sont ajoutés au(x) polymère(s) à l'aide d'une trémie doseuse classique.
  • Le mélange du ou des polymères chargés est extrudé directement sur un fil de cuivre massif ou multibrin d'une section de 1,5 mm2, la couche isolante extrudée ayant une épaisseur de 0,8 mm.
  • Les conditions de température de mélange et d'extrusion sont telles que la température est suffisante pour ramollir et homogénéiser le peroxyde et les charges inorganiques dans le ou les polymères tout en évitant d'amorcer la décomposition du peroxyde.
  • Dans une deuxième étape, la couche isolante ainsi formée est réticulée par voie peroxyde sous l'action de la chaleur, en bain de sel, en tube vapeur ou en lit fluidisé à la pression atmosphérique ou à une pression voisine de cette dernière.
  • Essais de résistances au feu
  • Les essais de résistances au feu sont effectués selon les trois normes suivantes : IEC 60331 part 21 ou 23, DIN 4102 part 12, et EN 50200.
  • La norme IEC 60331 part 21 ou 23 consiste à soumettre un câble électrique à sa tension nominale lorsqu'il est suspendu horizontalement au-dessus d'une flamme d'au moins 750°C pendant une durée déterminée mais sans contrainte mécanique.
  • On vérifie sur cette période s'il y a court-circuit ou rupture des conducteurs électriques. L'essai est réussit lorsqu'il n'y a ni court-circuit, ni rupture des conducteurs électriques pendant l'essai et les 15 minutes qui suivent. Le câble électrique ayant satisfait au test pendant 30 minutes est alors classé FE30. Lorsqu'il satisfait au test pendant 90 minutes ou pendant 180 minutes, il est respectivement classé FE90 et FE180.
  • La norme DIN 4102 part 12 consiste à soumettre un câble électrique avec ses dispositifs de fixation dans un four de 3 mètres de long minimum pendant une durée déterminée selon une courbe de température normalisée (ISO 834).
  • De plus, le câble électrique et ses dispositifs de fixation sont soumis au poids maximal admissible et aux charges prescrites. Les conducteurs électriques étant sous leur tension de service ne doivent ni se rompre, ni donner lieu à des court-circuits.
  • Ce type d'essai proche de la réalité d'un incendie porte non seulement sur le câble électrique mais aussi sur les systèmes de fixation dudit câble.
  • Le câble électrique ayant satisfait à l'essai pendant 30 minutes à 842°C est alors classé E30. Lorsqu'il satisfait à l'essai pendant 60 minutes à 945°C ou pendant 90 minutes à 1006°C, il est alors respectivement classé E60 et E90.
  • La norme EN 50200 consiste à monter et à fixer par des bagues métalliques un câble électrique présentant la forme d'un U sur une plaque de matériau réfractaire.
  • Le câble électrique pendant l'essai est soumis à une flamme (850°C) ainsi qu'à un choc métallique asséné via une barre métallique qui tombe sur la plaque de matériau réfractaire toutes les 5 minutes. Les conducteurs électriques étant sous leur tension de service ne doivent ni se rompre, ni donner lieu à des courts-circuits.
  • Le câble électrique ayant satisfait à l'essai pendant 15, 30, 60, 90 ou 120 minutes est alors respectivement classé PH15, PH30, PH60 PH90 ou PH120.
  • Le tableau 2 ci-après montre les résultats très satisfaisants des essais de résistance au feu de couches isolantes de câbles électriques selon la présente invention. Les câbles électriques utilisés pour lesdits essais sont constitués au moins de deux fils de cuivre respectivement isolés, l'ensemble des ces fils de cuivre isolés étant entouré par une gaine classique de protection de type HFFR bien connu de l'homme du métier. Les couches électriquement isolantes des fils de cuivre de chaque ensemble sont respectivement obtenues à partir des compositions A1 à A3, B1 à B4 et C1 à C3. Tableau 2
    Normes IEC 60331 part 31 EN 50200 DIN 4102
    Résultats FE 180 PH 90 E30
  • Essais de cohésion
  • Afin de caractériser la cohésion (cohésion résiduelle) d'un matériau après combustion, les couches isolantes extrudées obtenues respectivement à partir des compositions A2, A4, A5 et A6 ont subi un test de résistance mécanique à la pénétration.
  • Le mode opératoire consiste principalement à enfoncer un organe pénétrant à vitesse constante dans chaque résidu de combustion, et concomitamment à mesurer au moyen d'un capteur de force, la résistance de la matière brûlée en fonction de la profondeur de pénétration effective.
  • L'organe pénétrant se présente concrètement sous la forme d'un cylindre de 6mm de diamètre et de 20mm de longueur. Afin d'offrir une surface de contact convexe, ce cylindre est utilisé suivant une position parallèle à la surface extérieure du résidu à tester, et avec une direction de déplacement perpendiculaire à ladite surface extérieure. La vitesse de pénétration est fixée à 10mm/min.
  • La géométrie cylindrique de l'organe pénétrant permet de quantifier simultanément la résistance à la compression et la résistance au fluage.
  • Dans la pratique, une machine de compression de type Zwick/Roel Z010® est utilisée pour effectuer en continu des séries de mesures de résistance à partir desquelles sera déduite à chaque fois la valeur caractéristique de la cohésion résiduelle, à savoir la force de résistance maximale atteinte après avoir pénétré 50% de l'épaisseur de l'échantillon.
  • Le tableau 3 ci-après rassemble les valeurs caractéristiques de cohésion résiduelle, notées Fmax-50% exprimée en Newton, pour les couches isolantes extrudées après une combustion à 920°C. Tableau 3
    Couches isolantes extrudées obtenues à partir des compositions suivantes : A2 A4 A5 A6
    Fmax-50% après combustion à 920°C 231 338 125 215
  • Au vu des résultats du tableau 3, la couche isolante obtenue à partir des compositions selon l'invention (compositions A2, A4 et A6) présente une excellente cohésion résiduelle après avoir subi une combustion à 920°C.
  • Au contraire, le résultat de cohésion résiduelle (125N après une combustion à 920°C) correspondant à la couche isolante obtenue à partir de la composition A5 (composée entre autres de kaolinite c'est-à-dire d'un phyllosilicate ne comprenant pas d'oxyde de potassium) est bien inférieur à ceux obtenus à partir des couches isolantes de l'invention.
  • Par conséquent, ces résultats permettent avantageusement de montrer l'existence d'une réelle synergie d'action de l'association des composés b, c et d sur le paramètre mesuré (i.e. cohésion résiduelle).

Claims (15)

  1. Câble d'énergie et/ou de télécommunication comportant au moins un élément conducteur entouré par au moins une couche isolante s'étendant le long du câble, la couche isolante étant obtenue à partir d'une composition comprenant les composés suivants : a) un polymère organique, b) un composé inorganique comprenant un oxyde de potassium et/ou un de ses précurseurs, c) un oxyde de bore et/ou un de ses précurseurs, et d) de l'oxyde de calcium CaO et/ou un de ses précurseurs, caractérisé en ce que la quantité du composé d est au moins de 10 % en poids du poids total des composés b, c et d dans la composition.
  2. Câble selon la revendication 1, caractérisé en ce que la quantité du composé b est au moins de 2 parties en poids pour 100 parties en poids de polymère(s) dans la composition.
  3. Câble selon la revendication 1 ou 2, caractérisé en ce que la quantité du composé b est au moins de 2 % en poids du poids total des composés b, c et d dans la composition.
  4. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité du composé c est au moins de 20 parties en poids pour 100 parties en poids de polymère(s) dans la composition.
  5. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité du composé c est au moins de 10 % en poids du poids total des composés b, c et d dans la composition.
  6. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité du composé d est au moins de 10 parties en poids pour 100 parties en poids de polymère(s) dans la composition.
  7. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé b est un phyllosilicate comprenant un oxyde de potassium.
  8. Câble selon la revendication 7, caractérisé en ce que le composé b est un mica, de préférence du mica muscovite.
  9. Câble selon la revendication 7 ou 8, caractérisé en ce que la quantité du composé b est au moins de 40 % en poids du poids total des composés b, c et d dans la composition.
  10. Câble l'une quelconque des revendications 7 à 9, caractérisé en ce que la composition comprend une quantité du composé b de 40 à 80 % en poids, une quantité du composé c de 10 à 30 % en poids, et une quantité du composé d de 10 à 50 % en poids, lesdites quantités étant définies par rapport au poids total des composés b, c et d dans la composition.
  11. Câble selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la composition comprend une quantité du composé b de 60 % en poids, une quantité du composé c de 20 % en poids, et une quantité du composé d de 20 % en poids, lesdites quantités étant définies par rapport au poids total des composés b, c et d dans la composition.
  12. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le précurseur d'oxyde de bore est choisi parmi le borate de zinc, le phosphate de bore, l'acide borique, le borate de calcium, et le borate de sodium.
  13. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le précurseur d'oxyde de bore est déshydraté.
  14. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le précurseur d'oxyde de calcium est le carbonate de calcium.
  15. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition est réticulée.
EP09737074A 2008-07-28 2009-07-16 Composition ceramisable pour cable d'energie et/ou de telecommunication Not-in-force EP2319053B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855147A FR2934410A1 (fr) 2008-07-28 2008-07-28 Composition ceramisable pour cable d'energie et/ou de telecommunication
PCT/FR2009/051423 WO2010012932A1 (fr) 2008-07-28 2009-07-16 Composition ceramisable pour cable d'energie et/ou de telecommunication

Publications (2)

Publication Number Publication Date
EP2319053A1 EP2319053A1 (fr) 2011-05-11
EP2319053B1 true EP2319053B1 (fr) 2012-10-31

Family

ID=40276112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09737074A Not-in-force EP2319053B1 (fr) 2008-07-28 2009-07-16 Composition ceramisable pour cable d'energie et/ou de telecommunication

Country Status (8)

Country Link
US (1) US20110186330A1 (fr)
EP (1) EP2319053B1 (fr)
KR (1) KR20110053439A (fr)
CN (1) CN102113063A (fr)
AU (1) AU2009275738A1 (fr)
CL (1) CL2011000106A1 (fr)
FR (1) FR2934410A1 (fr)
WO (1) WO2010012932A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032370A1 (fr) 2010-09-10 2012-03-15 Prysmian S.P.A. Câble optique résistant au feu
RU2567955C2 (ru) * 2013-07-24 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (ИСПМ РАН) Композиция на основе жидкого низкомолекулярного силоксанового каучука для огнестойкого материала
KR101696339B1 (ko) * 2016-04-26 2017-01-17 주식회사 호니시스 전자밀도 증가를 통한 에너지 효율 개선 장치
KR102067665B1 (ko) * 2018-05-10 2020-01-17 넥쌍 고분자 조성물로부터 획득된 가교된 층을 포함하는 케이블

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225649A (en) * 1978-09-27 1980-09-30 The Flamemaster Corporation Fire retardant composition and cables coated therewith
JPS6213486A (ja) * 1985-07-10 1987-01-22 Hitachi Cable Ltd パテ状防火組成物
US6043312A (en) * 1989-06-27 2000-03-28 The Furon Company Low flame and smoke compositions for plenum cables
ATE191740T1 (de) * 1995-01-23 2000-04-15 Bayer Ag Gelbildner, brandschutzgele und brandschutzgläser
CA2368750C (fr) * 1999-04-01 2010-09-28 Imerys Pigments, Inc. Pigments a base d'argile kaolinique, leur preparation et leur utilisation
KR20050039838A (ko) * 2002-08-01 2005-04-29 폴리머스 오스트레일리아 프로프라이어터리 리미티드 내화성 실리콘 폴리머 조성물
JP2004095373A (ja) * 2002-08-30 2004-03-25 Tokai Rubber Ind Ltd フレキシブルフラットケーブル用絶縁テープおよびそれを用いたフレキシブルフラットケーブル
TWI322176B (en) * 2002-10-17 2010-03-21 Polymers Australia Pty Ltd Fire resistant compositions
US7138448B2 (en) * 2002-11-04 2006-11-21 Ciba Specialty Chemicals Corporation Flame retardant compositions
FR2859814A1 (fr) * 2003-09-12 2005-03-18 Nexans Composition electriquement isolante et thermiquement resistante
WO2005121234A2 (fr) * 2005-08-22 2005-12-22 Solvay Advanced Polymers, L.L.C. Composition polymere ignifuge presentant une stabilite thermique accrue

Also Published As

Publication number Publication date
KR20110053439A (ko) 2011-05-23
EP2319053A1 (fr) 2011-05-11
FR2934410A1 (fr) 2010-01-29
US20110186330A1 (en) 2011-08-04
CN102113063A (zh) 2011-06-29
WO2010012932A1 (fr) 2010-02-04
CL2011000106A1 (es) 2011-04-29
AU2009275738A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
EP2224459B1 (fr) Câble électrique à haute tension
EP2441076B1 (fr) Câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie
EP1885793A2 (fr) Cable resistant au feu
EP2319053B1 (fr) Composition ceramisable pour cable d'energie et/ou de telecommunication
EP2346931B1 (fr) Cable electrique resistant au feu
EP1674514A1 (fr) Composition résistante au feu notamment pour matériau de câble d'énergie et/ou de télécommunication
EP3398194B1 (fr) Câble ayant une couche isolante résistante au feu
EP2752855B1 (fr) Câble électrique comprenant une couche polymérique facilement pelable
EP3670602A1 (fr) Composition polymère comprenant au moins deux polymeres homophasiques
FR2859814A1 (fr) Composition electriquement isolante et thermiquement resistante
EP1752490B1 (fr) Composition résistante au feu notamment pour matériau de câble d'énergie et/ou de télécommunication
EP2447323B1 (fr) Composition élastomère réticulable
EP3806112A1 (fr) Accessoire pour câble à rigidité diélectrique améliorée
FR3067160B1 (fr) Cable resistant au feu
FR3066637B1 (fr) Cable resistant au feu
EP2862896B1 (fr) Câble d'énergie et/ou de télécommunication comprenant une couche polymère résistante aux rayures
EP3764373A1 (fr) Câble comprenant une couche céramique résistante au feu
FR2870542A1 (fr) Composition polymerique chargee resistante au feu et revetement isolant de cable la contenant
EP2924694B1 (fr) Cable comportant une couche isolante ou de protection exterieure a faible indice de degagement de fumee
EP2498264B1 (fr) Câble électrique à moyenne ou haute tension
EP3503125A1 (fr) Câble comprenant au moins une couche métallisée d'un matériau carboné
EP2148335A1 (fr) Couche tubante electriquement isolante pour cable electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 582399

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009010847

Country of ref document: DE

Effective date: 20121227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 582399

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009010847

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

BERE Be: lapsed

Owner name: NEXANS

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130716

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090716

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180724

Year of fee payment: 10

Ref country code: FR

Payment date: 20180725

Year of fee payment: 10

Ref country code: DE

Payment date: 20180723

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009010847

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190716