WO2007010988A1 - 高耐熱導線及び高耐熱電磁機器 - Google Patents

高耐熱導線及び高耐熱電磁機器 Download PDF

Info

Publication number
WO2007010988A1
WO2007010988A1 PCT/JP2006/314397 JP2006314397W WO2007010988A1 WO 2007010988 A1 WO2007010988 A1 WO 2007010988A1 JP 2006314397 W JP2006314397 W JP 2006314397W WO 2007010988 A1 WO2007010988 A1 WO 2007010988A1
Authority
WO
WIPO (PCT)
Prior art keywords
organosilicon
organosilicon polymer
polymer
coil
high heat
Prior art date
Application number
PCT/JP2006/314397
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Sugawara
Original Assignee
The Kansai Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Kansai Electric Power Co., Inc. filed Critical The Kansai Electric Power Co., Inc.
Priority to JP2007526049A priority Critical patent/JPWO2007010988A1/ja
Publication of WO2007010988A1 publication Critical patent/WO2007010988A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to a coated conductor having high heat resistance, and further relates to an electromagnetic device having high heat resistance.
  • electromagnetic equipment include transformers and rear tuttles.
  • the conductive wire is spirally wound. It is configured to be in a state. Insulation between adjacent conductors in such a coil has been realized by forming a coating film covering the conductors with a conductor covering material (for example, an insulating varnish) or a coil molding material.
  • a conductor covering material for example, an insulating varnish
  • a low-voltage secondary coil configured to surround each phase coil force iron core, and provided outside the secondary coil.
  • a high voltage primary coil Both coils were covered with a molding material.
  • the iron core mold rear tuttle was substantially the same.
  • a conventional motor or generator using a mold transformer, a mold rear tuttle, and a mold coil includes a coil made of a conductive wire and a coating film, and a covering made of a molding material. Yes.
  • An epoxy resin or silicon resin has been used as a coating material for a conductive wire.
  • Patent Document 1 JP 2003-158018
  • Patent Document 2 JP 2002-158118
  • Non-Patent Document 1 “Electrical Engineering No. Book (6th edition)” (published by the Institute of Electrical Engineers), pages 190-192, pages 699-701, pages 727-730
  • the heat resistance of epoxy resin is usually so high that it deteriorates at 180 ° C or higher, and becomes less flexible and stiff. Therefore, in the conventional mold transformer using epoxy resin, the upper limit of the coil operating temperature is set to about 70 to 120 ° C, and the fan may be cooled so that the upper limit temperature is not exceeded during use. Many. However, if a large short-circuit current or lightning surge current flows during use, the coil temperature may exceed the above upper limit temperature. In such a case, the epoxy resin may be hardened. For this reason, when the coil temperature returns from high temperature to room temperature, a large number of cracks may occur in the epoxy resin, that is, in the coating film or coating. If cracks occur in the coating film or the coated body, the coil will not be able to withstand a high electric field and leakage current will increase, resulting in poor voltage resistance.
  • silicon resin has better heat resistance than epoxy resin, the upper limit temperature is still about 200 ° C. Therefore, in the conventional mold transformer using silicon resin, when the coil temperature exceeds 200 ° C, the polymethylphenol siloxane contained in the silicon resin becomes less flexible, and the coil temperature When the temperature exceeds 220 ° C in air, the polymethylphenol siloxane surface vitrifies and becomes completely hard. This is presumed to be because the methyl groups and the phenyl groups in the side chain of polymethylphenol siloxane decompose and evaporate.
  • epoxy resin and silicon resin have a thermal conductivity of 0.1 to 1.
  • OWZmK Since it is relatively low, the heat generated in the coil cannot be sufficiently dissipated. For this reason, when the coil was coated with epoxy resin or silicone resin, the rated capacity had to be set smaller than when the coil was not coated. Also, when the coil is coated with epoxy resin or silicon resin, the heat dissipation is poor, and the coil temperature rises due to a relatively short-circuit current exceeding the rated current. As a result, in some cases, the coating film, the covering, and the anti-contact plate provided between the two to prevent contact between the primary coil and the secondary coil are thermally destroyed, resulting in loss of voltage resistance. It was.
  • molded electromagnetic devices such as motors and generators using conventional molded transformers, molded rear tuttles, and molded coils have a high electric field at high temperatures where heat resistance and heat dissipation are insufficient. Inability to withstand, and withstand voltage is poor!
  • An object of the present invention is to provide an electromagnetic device having high heat resistance, and further to provide a high heat resistant electromagnetic device having excellent heat dissipation.
  • the coating film covering the conductor connects at least one first organosilicon polymer and at least one second organosilicon polymer.
  • a synthetic polymer compound A composed of a plurality of third organosilicon polymers connected together, and the first organosilicon polymer has a crosslinked structure with siloxane bonds.
  • the organosilicon polymer has a linear linkage structure with siloxane bonds, and the third organosilicon polymer force S, the i-th organosilicon polymer, and the second organosilicon polymer are alternately and linearly linked by siloxane bonds.
  • the synthetic polymer compound A has a weight average molecular weight of 20,000 to 800,000, and the synthetic polymer compound A is a covalent bond formed by the addition reaction of a plurality of third organosilicon polymers. Concatenated by, three It has a three-dimensional structure! /, Characterized by that!
  • the second invention of the present application is a high heat-resistant electromagnetic device comprising a coil having a spirally wound conductive wire and a covering body covering the coil, and between the adjacent conductive wires of the coil, Insulating tape is provided along the conductors to insulate adjacent conductors.
  • the insulating tape may be formed of, for example, an epoxy resin film. It is preferable to form a film containing the polymer compound A.
  • a third invention of the present application is the above-mentioned second invention, wherein the insulating tape is affixed to the conducting wire with an adhesive.
  • a fourth invention of the present application is a high heat-resistant electromagnetic device including a coil having a spirally wound conductive wire and a covering body covering the coil, wherein the coil covers the conductive wire and the conductive wire.
  • a third organosilicon polymer formed by linking at least one first organosilicon polymer and at least one second organosilicon polymer. It contains a synthetic polymer compound A composed of multiple linkages. It has a crosslinked structure with 1st organosilicon polymer, 1S siloxane bond, and 2nd organosilicon polymer has a linear structure with siloxane bond.
  • the third organosilicon polymer is constructed by alternately and linearly connecting the first organosilicon polymer and the second organosilicon polymer by siloxane bonds, and is Has a weight average molecular weight of 800,000
  • the synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers by covalent bonds generated by an addition reaction.
  • a fifth invention of the present application is the third or third invention, wherein the insulating tape is formed by connecting at least one first organosilicon polymer and at least one second organosilicon polymer. It contains a synthetic polymer compound A composed of a plurality of organosilicon polymers linked together, the first organosilicon polymer has a crosslinked structure with siloxane bonds, and the second organosilicon polymer is It has a linear linking structure with siloxane bonds, and is composed of third organosilicon polymer force, first organosilicon polymer and second organosilicon polymer alternately and linearly linked by siloxane bonds,
  • the synthetic polymer compound A has a weight average molecular weight of 20,000 to 800,000, and is composed of a plurality of third organosilicon polymers linked by covalent bonds generated by an addition reaction. of Those Ru has a body structure.
  • a sixth invention of the present application is the invention according to any one of the second to fifth inventions, wherein the covering physical strength connects at least one first organosilicon polymer and at least one second organosilicon polymer.
  • a synthetic polymer compound A composed of a plurality of linked third organosilicon polymers, and the first organosilicon polymer has a crosslinked structure with siloxane bonds.
  • the second organosilicon polymer has a linear connection structure with siloxane bonds, and the third organosilicon polymer alternates between the first organosilicon polymer and the second organosilicon polymer by siloxane bonds.
  • the synthetic polymer compound A is produced by the addition reaction of multiple third organosilicon polymers, and has a weight average molecular weight of 20,000 to 800,000. It has a three-dimensional structure composed of covalent bonds.
  • the first organosilicon polymer may be polyphenylsilsesquioxane, polymethylsilsesquioxane, polymethylphenylsilsesquioxane, polyethylsilsesquioxane, And at least one selected from polypropylsilsesquioxane.
  • the second organosilicon polymer is at least one selected from the internal forces of polydimethylsiloxane, polyjetylsiloxane, polydifursiloxane, and polymethylfursiloxane.
  • a siloxane bond is a Si-O bond.
  • the third organosilicon polymer is constituted by connecting the first organosilicon polymer and the second organosilicon polymer alternately and linearly by siloxane bonds.
  • the first organic silicon polymer is “X” and the second organic silicon polymer is “Y”, the third organic silicon polymer has a structure of “- ⁇ - ⁇ -X- ⁇ -”. ing.
  • the first organosilicon polymer is designated as “XI”, “ ⁇ 2”, and the second organosilicon polymer is designated as “ Assuming “ ⁇ 1” and “ ⁇ 2”, the third organosilicon polymer has a structure such as “—XI—Yl— ⁇ 2— ⁇ 2—” and “—XI— ⁇ 2— ⁇ 2—Y1—”.
  • the synthetic polymer compound ⁇ preferably has a force in which a plurality of third organosilicon polymers are linked by an alkylene group.
  • the insulating tape slightly protrudes from both side edges of the conductor, and the covering is adjacent to the protruding portion. It's something that fills the space!
  • the eighth invention of the present application is based on any one of the first invention and the fourth to sixth inventions.
  • the first organosilicon polymer has a weight average molecular weight of 200 to 70,000
  • the second organic silicon polymer has a weight average molecular weight of 5,000 to 200,000
  • the first organosilicon polymer The weight average molecular weight of the polymer is smaller than the weight average molecular weight of the second organosilicon polymer.
  • the synthetic polymer compound A contains insulating ceramic fine particles having a thermal conductivity of 4 WZmK or more, for example, a thermal conductivity of 4 to 2500 WZmK. It's something to reap.
  • the tenth invention of the present application is the above ninth invention, wherein the insulating ceramic is at least one of aluminum nitride, beryllium oxide, alumina, silicon carbide, diamond, boron nitride, and silicon nitride. It is one kind.
  • An eleventh invention of the present application is the above ninth invention, wherein the insulating ceramic fine particles are 0.01.
  • It has a particle size of ⁇ 50 ⁇ m.
  • the volume filling rate of the insulating ceramic fine particles with respect to the synthetic polymer compound A is 15% to 85% vol.
  • the fine particles include a plurality of types of fine particles having different particle diameters, and the particle diameter ratio of these fine particles is 1: 1/10 to 1: 1. It is in the range of / 200.
  • the synthetic polymer compound A constituting the coating film includes a third organosilicon polymer formed by linking a first organosilicon polymer and a second organosilicon polymer. Therefore, it is possible to achieve both flexibility, heat resistance and voltage resistance of the coating film itself.
  • the first organosilicon polymer has excellent insulating properties and heat resistance, and has poor fluidity and flexibility after curing.
  • the second organosilicon polymer has good fluidity and flexibility. Therefore, by linking both polymers, the advantages of both polymers can be exhibited.
  • the first invention it is possible to improve the characteristics of the coating film such as heat resistance and voltage resistance.
  • the synthetic polymer compound A has a strong force against metals such as copper, aluminum, and stainless steel. Adhesiveness is very good and adheres firmly to these. Therefore, the synthetic polymer compound A adheres firmly to the surface of the conductive wire. Therefore, it is possible to realize a strong adhesion state without a gap between the conducting wire and the coating film and to obtain high moisture resistance. As a result, the reliability of the conductor can be improved.
  • the first invention it is possible to improve the characteristics, such as heat resistance and voltage resistance, and reliability of the conducting wire.
  • the synthetic polymer compound A has high translucency with respect to ultraviolet rays and visible rays. Therefore, in the conductor coating step, it can be visually confirmed that there are no bubbles or voids before and after the synthetic polymer compound A is adhered to the conductor and cured. Therefore, productivity can be remarkably improved.
  • insulation between adjacent conductive wires of the coil can be realized with a simple configuration and with certainty.
  • the insulation can be realized only by configuring the coil by spirally winding the conducting wire and the insulating tape in a state where the conductive wire and the insulating tape are overlapped, the manufacture is easy.
  • the insulating tape and the conductive wire can be handled as an integral object, so that the productivity of the coil can be remarkably improved. Since the insulation tape can be reliably positioned between the adjacent conductors of the coil, the insulation between the adjacent conductors of the coil can be reliably ensured.
  • the synthetic polymer compound A constituting the coating film includes a third organosilicon polymer formed by linking a first organosilicon polymer and a second organosilicon polymer. Therefore, it is possible to achieve both flexibility, heat resistance and voltage resistance of the coating film itself.
  • the first organosilicon polymer is excellent in insulating properties and heat resistance, but has a very high viscosity, and therefore has poor fluidity and flexibility after curing.
  • the second organosilicon polymer has good fluidity and flexibility. Therefore, by linking both polymers, the advantages of both polymers can be exhibited.
  • the synthetic polymer compound A includes (a) a metal such as copper, aluminum, and stainless steel, and (b) an aroma. Insulating material such as aromatic polyamide (charamide paper), enamel, (C) Epoxy resin, acrylic resin, phenol resin, and (d) glass. It is good and adheres firmly to them. Therefore, the synthetic polymer compound A adheres firmly to the surface of the conductive wire or the surface of the molding molding material. Therefore, it is possible to realize a strong adhesion state without a gap between the conductive wire and the coating film, and between the coating film and the coating body, and to obtain high moisture resistance. As a result, the reliability of the molded electromagnetic device can be improved.
  • Insulating material such as aromatic polyamide (charamide paper), enamel, (C) Epoxy resin, acrylic resin, phenol resin, and (d) glass. It is good and adheres firmly to them. Therefore, the synthetic polymer compound A adheres firmly to the surface of the conductive wire or the surface of the molding molding material. Therefore, it is possible to realize a strong
  • the properties such as heat resistance and voltage resistance and reliability of the molded electromagnetic device can be improved.
  • the synthetic polymer compound A has high translucency with respect to ultraviolet rays and visible rays. Therefore, in the coating process of the conductive wire, when the synthetic polymer compound A is poured into the case or mold and the synthetic polymer compound A is poured in, it is confirmed that there are no bubbles or voids before the synthetic polymer compound A is cured. It can be confirmed visually. Therefore, productivity can be significantly improved.
  • the synthetic polymer compound A constituting the insulating tape includes the third organosilicon polymer formed by linking the first organic silicon polymer and the second organosilicon polymer. Therefore, it is possible to achieve both flexibility, heat resistance and voltage resistance of the insulating tape itself.
  • the first organosilicon polymer is excellent in insulating properties and heat resistance, but has a very high viscosity, and therefore has poor fluidity and flexibility after curing.
  • the second organosilicon polymer has good fluidity and flexibility. Therefore, by linking both polymers, the advantages of both polymers can be exhibited.
  • the characteristics of the coil such as heat resistance and voltage resistance can be improved.
  • Synthetic polymer compound A has extremely good adhesion to metals such as copper, aluminum, and stainless steel, and adheres firmly to these. Therefore, the synthetic polymer compound A adheres firmly to the surface of the coil conductor. Therefore, it is possible to realize a strong adhesion state without a gap between the conducting wire and the insulating tape, and to obtain high moisture resistance. As a result, the reliability of the coil can be improved. [0049] Therefore, according to the fifth invention, the properties such as heat resistance and voltage resistance and reliability of the molded electromagnetic device can be improved.
  • the synthetic polymer compound A constituting the covering includes a third organosilicon polymer formed by linking a first organosilicon polymer and a second organosilicon polymer. Therefore, it is possible to achieve both flexibility, heat resistance and voltage resistance of the covering itself.
  • the first organosilicon polymer is excellent in insulating properties and heat resistance, but has a very high viscosity, and therefore has poor fluidity and flexibility after curing.
  • the second organosilicon polymer has good fluidity and flexibility. Therefore, by linking both polymers, the advantages of both polymers can be exhibited.
  • the characteristics such as heat resistance and voltage resistance of the covering can be improved.
  • the synthetic polymer compound A includes (a) a metal such as copper, aluminum and stainless steel, (b) an insulating material such as aromatic polyamide (aramid paper) and enamel, and (c) an epoxy resin. It has excellent adhesion to fats, acrylics, phenols such as phenols, and (d) glass, and adheres firmly to them. Therefore, the synthetic polymer compound A adheres firmly to the surface of the coil wire and the insulating tape and the surface of the case. Therefore, it is possible to realize a strong adhesion state without a gap between the coil and the covering, and to obtain high moisture resistance. As a result, the reliability of the molded electromagnetic device can be improved.
  • the synthetic polymer compound A has high translucency with respect to ultraviolet rays and visible rays. Therefore, in the coil coating process, when the synthetic high molecular compound A is poured into the case or mold and the synthetic high molecular compound A is poured, it is visually confirmed that there are no bubbles or voids before the synthetic high molecular compound A is cured. Can be confirmed. Therefore, productivity can be significantly improved.
  • the insulation of the coil can be further improved.
  • both the insulating tape and the covering contain the synthetic polymer compound A, it is possible to more reliably realize the adhesion between the insulating tape and the covering. Therefore, the insulation of the coil can be further improved.
  • the synthetic polymer compound A in particular, can be compatible with both flexibility, heat resistance and voltage resistance at a good level.
  • the first organosilicon polymer has excellent insulating properties and heat resistance, and has poor fluidity and flexibility after curing. Therefore, for example, in the case where the covering also has the power of only the first organosilicon polymer, the covering cannot be made thick and the voltage resistance cannot be improved.
  • the second organosilicon polymer has fluidity and flexibility. Therefore, by linking both polymers, the advantages of both polymers can be exhibited. By the way, when the weight average molecular weight of the first organosilicon polymer is increased, the heat resistance is improved, but the flexibility is deteriorated. On the other hand, when the molecular weight of the second organosilicon polymer is increased, the flexibility is improved, but the heat resistance is lowered.
  • the flexibility, heat resistance, and voltage resistance of the synthetic polymer compound A are set to desired levels. Can be adjusted.
  • the weight average molecular weight of each of the first organosilicon polymer and the second organosilicon polymer is set to a desired size, the flexibility of the coating film or the insulating tape or the covering of the conductive wire, Both heat resistance and voltage resistance can be achieved at a good level.
  • the thermal conductivity of the synthetic polymer compound A constituting the covering can be increased, the thermal conductivity of the covering can be increased. Therefore, the heat dissipation of the covering can be improved, and a molded electromagnetic device with excellent heat dissipation can be obtained.
  • an air cooling device or the like can be eliminated, the configuration of the electromagnetic device can be simplified, and the size and cost of the device can be reduced.
  • the rated capacity can be increased by increasing the current density. Therefore, when a small rated capacity is sufficient, a small and lightweight electromagnetic device can be obtained.
  • the insulating ceramic fine particles can be effectively filled in the space between the three-dimensional structures of the synthetic polymer compound A.
  • the volume filling rate of the fine particles with respect to the synthetic polymer compound A is reduced, and even if the particle size is too small, the fine particles are agglomerated with each other. For this reason, the volume filling rate decreases.
  • the particle size is as described above, the volume filling rate does not decrease. Therefore, according to the eleventh aspect, a volume filling factor of 40% vol or more can be realized. When the volume filling rate is 40% vol or more, the rate at which the ceramic fine particles come into contact with each other significantly increases, and thus high thermal conductivity can be obtained.
  • the thermal conductivity of the covering can be sufficiently increased.
  • the volume filling factor of the ceramic fine particles with respect to the synthetic polymer compound A can be set to 50% vol or more.
  • the ceramic fine particles have few sharp parts, are close to a sphere, and have a shape. According to this, local electric field concentration due to fine particles can be avoided, so that the withstand voltage of the covering can be improved.
  • the filled ceramic fine particles do not affect the binding of the synthetic polymer compound A, the heat resistance of the synthetic polymer compound A is not impaired.
  • the ceramic fine particles within the volume filling rate and shape range slightly affect the voltage resistance and viscosity of the synthetic polymer compound A, but hardly cause any practical problems.
  • ceramic fine particles within the above volume filling ratio and particle size range slightly affect the translucency of the synthetic polymer compound A and the adhesion between the synthetic polymer compound A and the constituent materials. Almost no problem.
  • FIG. 1 is a perspective view showing an air-core rear tuttle which is a high heat resistance electromagnetic device according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a molded transformer which is a high heat resistance electromagnetic device according to a fourth embodiment of the present invention.
  • FIG. 1 is a perspective view showing an air-core rear tuttle which is a high heat resistance electromagnetic device according to a first embodiment of the present invention.
  • This air-core rear tuttle 70 is of the circular shoreline type, 3kV, 80A, 10 ⁇
  • the specific dimensions of the air-core rear tuttle 70 are 58mm for the outer diameter and S46mm for the inner diameter.
  • the air-core rear tuttle 70 is a mold rear tuttle in which a coil is coated with a molding material, a coil 700 having a copper wire 71 wound in a spiral shape, and a covering (not shown) covering the coil 700 And.
  • the copper wire 71 itself is not covered.
  • the copper wire 71 has a flat plate shape and has a thickness of about 1.5 mm and a width of about 6 mm.
  • the insulating tape 72 is provided between the adjacent copper wires 71 of the coil 700 along the copper wires 71 so as to insulate the adjacent copper wires 71 from each other.
  • the insulating tape 72 is formed of a polyimide resin film.
  • the coil 700 is configured by winding a copper wire 71 and an insulating tape 72 in a spiral shape in an overlapping state.
  • the insulating tape 72 has a width of about 10 mm and is wound so as to protrude about 2 mm from both side edges of the copper wire 71. That is, the insulating tape 72 has a protruding portion (not shown) from the copper wire 71.
  • Connection terminals 73a and 73b are attached to both ends of the copper wire 71, respectively.
  • Insulating tape 72 is terminated approximately 30 mm before the boundary between copper wire 71 and terminals 73a and 73b. Yes.
  • the covering body covers the entire coil 700 except for the terminals 73a and 73b.
  • the entire coil 700 means the inner surface, outer surface, upper surface, and lower surface of the coil 700.
  • the covering is filled between the protruding portions of the adjacent insulating tape 72 in the coil 700.
  • the covering includes a synthetic polymer compound A configured by connecting a plurality of third organosilicon polymers formed by connecting the first organosilicon polymer and the second organosilicon polymer. Yes.
  • the first organosilicon polymer is a phenylsilsesquioxane having a molecular weight of about 500.
  • the second organosilicon polymer is a methylphenol siloxane having a molecular weight of about 30,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 70,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the coil 700 is coated with the synthetic polymer A as follows.
  • the coil 700 is immersed for a predetermined time in the first bathtub of the synthetic polymer compound A installed in the vacuum vessel. At this time, most of the terminals 73a and 73b are prevented from being immersed in the first bathtub. At this time, by setting the viscosity of the synthetic polymer compound A in the first bath to a predetermined value, the synthetic polymer compound A is completely filled between the protruding portions of the adjacent insulating tape 72. be able to.
  • the coil 700 is also taken out of the first bath force, placed in a thermostatic bath, held at a predetermined temperature in the range of 100 ° C. to 350 ° C., and the synthetic polymer compound A is thermoset.
  • the coil 700 is immersed in a second bathtub of the synthetic polymer compound A installed in the vacuum vessel for a predetermined time. Then, the coil 700 is taken out from the second bath, placed in a thermostatic bath, maintained at a predetermined temperature, and the synthetic polymer compound A is thermoset. This completes the formation of the covering.
  • the insulation strength between the adjacent copper wires 71 of the coil 700 is achieved by the insulating tape 72. Therefore, according to the present embodiment, the insulation between the adjacent copper wires 71 of the coil 700 can be reliably realized with a simple configuration. [0082]
  • the coil 700 can be easily manufactured because the coil 700 can be formed simply by winding the copper wire 71 and the insulating tape 72 in a spiral manner.
  • the covering body fills between the protruding portions of the adjacent insulating tape 72 in the coil 700, so that the insulating tape 72 and the covering body are reliably integrated. I can do it.
  • the synthetic polymer compound A has good adhesion to copper and polyimide resin, the covering, the copper wire 71 and the insulating tape 72 can be bonded well. Therefore, the insulation of the coil 700 can be improved, and as a result, the reliability of the air-core rear tuttle 70 can be improved.
  • the heat resistance of the synthetic polymer compound A and the polyimide resin is about 300 ° C, which is about twice the heat resistance of the copper wire enamel coating material and the epoxy coating material. Therefore, when a high voltage is applied to the air-core rear tuttle 70 and the rear tuttle operation is performed, even if the heat generation of the copper wire 71 is doubled, dielectric breakdown does not occur. Therefore, in the air core rear tuttle 70 having the above configuration, the same rear tuttle value as that of the conventional rear tuttle can be realized even if the thickness of the copper wire 71 is slightly larger than half the thickness of the copper wire of the conventional rear tuttle. .
  • the exact thickness of the copper wire 71 needs to be set in consideration of the temperature dependence of the resistance of the copper wire 71. Further, when the thickness of the copper wire 71 is the same as that of the conventional rear tuttle, the same rear tuttle value as that of the conventional rear tuttle can be realized even if the diameter of the air-core rear tuttle is reduced to about half. Furthermore, even if the number of windings of the coil 700 is reduced to about 1Z 2 of the conventional rear tuttle, the same rear tuttle value as the conventional rear tuttle can be realized.
  • the size and weight of the rear tuttle that does not impair the performance of the rear tuttle can be significantly reduced as compared with the conventional rear tuttle, thus achieving good economic efficiency and resource saving. it can.
  • the conventional reactor used for comparison does not use an insulating tape, the covering is made of epoxy resin, and the rest is the same as the air-core rear tuttle 70.
  • the adhesive need not necessarily have high heat resistance, and may be any adhesive as long as it has a function of preventing the insulation tape from peeling off during the production. Even if the adhesive decomposes at a high temperature after the coil is completed, the coil itself is completely covered with the synthetic polymer compound A, so that the insulation is not impaired.
  • the coil 700 is fixed by winding a plurality of portions of the coil 700 in the vertical direction with tape.
  • the tape for example, a tape made of polyimide resin can be used. According to this, the shape of the air-core rear tuttle 70 can be reliably maintained against the impact of electromagnetic force or external force when the coil 700 is in operation.
  • This embodiment is an air-core rear tuttle having the same configuration as that of the first embodiment, but in this embodiment, the insulating tape 72 is made of a film containing the first synthetic polymer compound A, and The second synthetic polymer compound A constituting the covering contains the insulating ceramic fine particles, and the others are the same as in the first embodiment.
  • the first synthetic polymer compound A is constituted by linking a plurality of third organosilicon polymers obtained by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is polyphenylsilsesquioxane having a molecular weight of about 1600.
  • the second organosilicon polymer is polymethylphenol siloxane with a molecular weight of about 25,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of approximately 60,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the second synthetic polymer compound A is constituted by linking a plurality of third organosilicon polymers obtained by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is a polysilsilsesquioxane having a molecular weight of about 5000.
  • the second organosilicon polymer is polymethylphenol siloxane having a molecular weight of about 30,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly linked by a siloxane bond. As a result, a third organosilicon polymer is formed.
  • the third organosilicon polymer has a molecular weight of about 70,000.
  • the second synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the second synthetic polymer compound A contains fine particles of aluminum nitride which is an insulating ceramic.
  • the aluminum nitride fine particles have a particle size of about 2 m and are filled in the second synthetic polymer compound A at a volume filling rate of about 49% vol.
  • the thermal conductivity of the second synthetic polymer compound A increased from about 0.3 WZmK to about 6.9 WZmK with almost no loss of heat resistance, voltage resistance, and flexibility.
  • the air core rear outer lure of the present embodiment exhibits the same functions and effects as those of the first embodiment, and particularly exhibits the following functions and effects.
  • the first synthetic polymer compound A constituting the insulating tape 72 is the same kind of material as the second synthetic polymer compound A constituting the covering and has a similar composition. Compared with the case of one embodiment, the adhesiveness between the insulating tape and the covering can be further improved. As a result, the air-core rear tuttle of the present embodiment can achieve better insulation even at a high temperature of about 330 ° C., and can obtain better reliability.
  • the air core rear tuttle of the present embodiment can increase the current capacity and reduce the force when the rated allowable temperature is the same as that of the conventional rear tuttle.
  • the air-core rear tuttle of this embodiment even if the rating is increased to 3 kV, 100 A, 10 / z H, the outer shape and inner diameter can be reduced by about 10%, so that even better economy and savings can be achieved. Resources can be achieved.
  • the insulating tape 72 may be attached to the copper wire 71 with an adhesive.
  • This embodiment is an air-core rear tuttle having the same configuration as that of the second embodiment, but in this embodiment, the insulating tape is not used, and the copper wire 71 is covered with the first synthetic polymer compound A. The rest is the same as in the second embodiment. That is, the coil 700 is composed of the copper wire 71 and the coating film containing the first synthetic polymer compound A. Note that The 700 is made of spirally coated copper wire 71! RU
  • This embodiment can be applied particularly effectively when the copper wire 71 has a round cross-sectional shape or a narrow cross-sectional flat plate shape.
  • FIG. 2 is a perspective view showing a molded transformer which is a high heat resistance electromagnetic device according to a fourth embodiment of the present invention.
  • the molded transformer 20 is a three-phase molded transformer, and has three molded coils 10 that are coils of each phase.
  • the molded transformer 20 is, for example, an inner iron type molded transformer having a primary side voltage of 6 kV, a secondary side voltage of 210 V, and a rated capacity of 750 kVA.
  • the rated current is 65A on the primary side and 2060A on the secondary side.
  • the mold coil 10 is formed in a columnar shape having a substantially oval cross section.
  • the mold coil 10 is provided with an iron core 15 penetrating in the vertical direction in the figure.
  • the molded coil 10 is configured such that the low voltage secondary coil is on the inside and the high voltage primary coil is on the outside.
  • the secondary coils of the three molded coils 10 are respectively connected to the low voltage terminal 25, and the primary coils are respectively connected to the high voltage terminal 26.
  • An upper frame 18 and a lower frame 19 are provided so as to sandwich the upper and lower ends of the three iron cores 15. On both ends of the lower frame 19, installation plates 21 are attached via vibration-proof rubbers 22.
  • the primary coil of the molded coil 10 is configured by spirally winding a coated copper wire. That is, the primary coil is composed of a copper wire and a coating film covering the copper wire.
  • the thickness of the coating film is, for example, m ⁇ : LOOO / z m.
  • the coating film contains the first synthetic polymer compound A.
  • the first synthetic polymer A is composed of a plurality of third organosilicon polymers formed by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is polyphenylsilsesquioxane having a molecular weight of about 1600.
  • the second organosilicon polymer is polymethylphenol siloxane having a molecular weight of about 25,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 60,000.
  • the first synthetic polymer compound A includes a plurality of third organosilicon polymers formed by alkylene groups. It has a three-dimensional structure that is connected and configured.
  • the secondary coil of the molded coil 10 is also composed of the same copper wire as the primary coil and a coating film containing the first synthetic polymer compound A.
  • the mold coil 10 is, for example, a long cylinder having a height of 84 cm and a major axis of 50 cm.
  • a covering body having a thickness of about 4 to 5 cm is formed on the upper and lower end surfaces and side surfaces of the molded coil 10.
  • the covering contains the second synthetic polymer compound A.
  • the second synthetic polymer compound A is constituted by linking a plurality of third organosilicon polymers formed by linking the first organosilicon polymer and the second organosilicon polymer.
  • the first organosilicon polymer is a polysilsilsesquioxane having a molecular weight of about 3000.
  • the second organosilicon polymer is polymethylphenol siloxane with a molecular weight of about 10,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly linked by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 40,000.
  • the second synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the molded coil 10 is manufactured as follows.
  • a secondary coil and a primary coil are manufactured.
  • An incompatibility plate made of polyimide resin or the like is provided between the primary coil and the secondary coil in order to maintain insulation between them.
  • both the coils are inserted into a cylindrical mold (not shown) having a substantially oval cross section. At this time, the dimensions of the mold are set so that a gap of 4 to 5 cm is formed between the mold and the primary coil.
  • the mold is placed in the vacuum chamber, the air in the vacuum chamber is evacuated to a low pressure, and the second synthetic polymer compound A is placed in the gap in the mold, that is, between the mold and the primary coil. And between the coils.
  • the mold and both coils are heated to a temperature of about 60 ° C., the viscosity of the second synthetic polymer compound A is lowered and held for a predetermined time, and the second synthetic polymer compound A is sufficiently placed in the gap. Spread.
  • the mold and both coils are heated to about 200 ° C. and held for a predetermined time to cure the second synthetic polymer compound A. After curing, take out the mold force of both coils and remove the mold. As a result, both the primary and secondary coils are coated, and the molded coil 10 having both the coil, the covering, and the force is obtained.
  • Such a second synthetic polymer A has a viscosity of about 10,000 cp. However, since the viscosity strongly depends on the temperature, in this embodiment, the second synthetic polymer compound A is heated to 60 ° C. as described above at the time of manufacture, and about 3000 to 5000 cp. The viscosity is maintained at about 3 hours, and after sufficiently spreading the gap in the mold, it is heated to 200 ° C. to be cured.
  • the operation of the mold transformer 20 of the present embodiment will be described below, focusing on the characteristic points different from those of the conventional mold transformer.
  • the copper wire is coated with an epoxy resin-based varnish
  • the coated body is configured with epoxy resin
  • the others are the same as the mold transformer 20 of the present embodiment. It is.
  • the molded transformer 20 of the present embodiment was able to increase the rated current and the short circuit current by about 1.6 times compared to the conventional molded transformer of the same standard.
  • the temperature of the mold coil 10 is considerably increased, but the electromechanical abnormality does not occur.
  • the second synthetic polymer compound A has a high 5% by weight reduction temperature of 4 10 ° C., and can maintain flexibility and flexibility even at high temperatures.
  • the temperature of the primary and secondary coils of the mold transformer 20 of the present embodiment rises to near 340 ° C by 1.5 times the short circuit current in the case of the conventional mold transformer.
  • the second synthetic polymer compound A around both the coils does not deteriorate at this temperature, the molded transformer 20 of the present embodiment was able to maintain a high withstand voltage.
  • the second synthetic polymer compound A can maintain high flexibility even at a high temperature close to 340 ° C. Therefore, the second synthetic polymer compound A was able to absorb the electromagnetic repulsive force generated between the primary coil and the secondary coil. Therefore, cracks did not occur in the covering of the molded transformer 20.
  • the mold transformer 20 of this embodiment has an efficiency of 98.2%, a voltage fluctuation rate of 1.7%, a no-load current of 3.5%, and a short-circuit impedance of 4.5%, which are high. The characteristic was able to be demonstrated.
  • the molded transformer 20 of the present embodiment was able to obtain results equivalent to or higher than those of the conventional molded transformer in the AC withstanding voltage application test, lightning pulse test, reliability test, and the like.
  • the molded transformer 20 of the present embodiment has other characteristics compared to the conventional molded transformer having substantially the same shape and higher heat resistance than the conventional molded transformer.
  • the rated current that is, the rated capacity without sacrificing power, can be increased by about 1.6 times.
  • the present embodiment is a molded transformer having the same configuration as that of the fourth embodiment, but the present embodiment is different from the fourth embodiment in the following points, and is otherwise the same as the fourth embodiment. .
  • the primary coil force of the molded coil 10 is composed of a spirally wound copper wire and an insulating tape.
  • the copper wire itself is not covered.
  • the insulating tape is provided along the copper wires so as to insulate the adjacent copper wires between the adjacent copper wires in the primary coil.
  • the copper wire and the insulating tape are spirally wound in a stacked state.
  • the insulating tape has a slightly larger width than the copper wire, and is wound so as to protrude slightly from each side edge of the copper wire (for example, about 2 mm). That is, the insulating tape has a protruding portion from the copper wire.
  • the insulating tape is formed of a film containing the first synthetic polymer compound A.
  • the first synthetic polymer compound A is composed of a plurality of third organosilicon polymers formed by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is a polysilsilsesquioxane having a molecular weight of about 1600.
  • the second organosilicon polymer is polymethylphenol siloxane with a molecular weight of about 250,000. 1st organosilica
  • the base polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 60,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the secondary coil of the molded coil 10 is also composed of a copper wire wound in the same spiral shape as the primary coil and an insulating tape containing the first synthetic polymer compound A! Speak.
  • This embodiment can be applied particularly effectively when the copper wire has a wide cross-sectional plate shape.
  • the present embodiment is a molded transformer having the same configuration as that of the fifth embodiment, but in this embodiment, the insulating tape is wound around the copper wire so that the surface of the copper wire is not exposed. Is wound spirally to form a primary coil and a secondary coil of the molded coil 10, and the others are the same as in the fifth embodiment.
  • This embodiment is particularly effective when the copper wire has a round cross-sectional shape or a narrow cross-sectional flat plate shape, and further when the copper wire is thick and the primary and secondary coils are large. it can.
  • the present embodiment is a mold transformer having the same form as that of the fourth embodiment, but in this embodiment, the second synthetic polymer compound A constituting the covering contains insulating ceramic fine particles.
  • the insulating ceramic aluminum nitride is used.
  • the aluminum nitride fine particles have a particle size of about 2 m and are packed in the second synthetic polymer compound A at a volume filling rate of about 48% vol.
  • the thermal conductivity of the second synthetic polymer compound A increased from about 0.3 WZmK to about 6.7 W ZmK without substantially impairing heat resistance, voltage resistance, and flexibility.
  • the heat dissipation of the covering of the molded coil 10 is further improved as compared with the case of the fourth embodiment. Even if it was about 2.1 times that of a mold transformer, no electromechanical abnormality occurred.
  • the molded transformer according to the present embodiment is compared with the conventional molded transformer having substantially the same shape and size with higher heat dissipation than the molded transformer according to the fourth embodiment.
  • the rated current that is, the rated capacity could be further increased.
  • the present embodiment is an air-core rear tuttle having the same configuration as that of the third embodiment, but in this embodiment, the composition of the first synthetic polymer compound A is different from that of the third embodiment, and the others are the first. The same as the third embodiment.
  • the first synthetic polymer compound A is constituted by linking a plurality of third organosilicon polymers obtained by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is polymethylphenol silsesquioxane having a molecular weight of about 1800.
  • the second organosilicon polymer is polydimethylphenol siloxane having a molecular weight of about 30,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute the third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of approximately 60,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the present embodiment is a molded transformer having the same configuration as that of the fourth embodiment, but in this embodiment, the composition of the first synthetic polymer compound A constituting the coating film is different from that of the fourth embodiment. Others are the same as in the fourth embodiment.
  • the first synthetic polymer compound A is constituted by linking a plurality of third organosilicon polymers obtained by linking a first organosilicon polymer and a second organosilicon polymer.
  • 1st organosilicon poly Mer is a polymethylphenol silsesquioxane having a molecular weight of about 1800.
  • the second organosilicon polymer is polydimethylphenol siloxane having a molecular weight of about 30,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute the third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of approximately 60,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • This embodiment is a high heat-resistant conductive wire used for an insulated wire for wiring of a large industrial machine used in a high temperature environment.
  • the high temperature environment refers to a nearby environment such as a blast furnace, a forging device, and a rolling mill.
  • Examples of large industrial machines include electric traveling cranes.
  • the operating voltage is 600V AC.
  • the highly heat-resistant conductive wire of this embodiment also has a force with a copper wire and a coating film covering the copper wire.
  • the copper wire is nickel plated and has a diameter of about 4 mm.
  • the coating film has a thickness of about 1. Omm.
  • the coating film contains the synthetic polymer compound A.
  • Synthetic polymer compound A is composed of a plurality of third organosilicon polymers formed by linking a first organic silicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is a polymethylsilsesquioxane having a molecular weight of about 2000.
  • the second organosilicon polymer is polydimethylphenylsiloxane having a molecular weight of about 10,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 50,000.
  • the synthetic polymer compound A has a three-dimensional structure constituted by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the highly heat-resistant conductive wire of this embodiment is manufactured by extruding a coating film on the outer periphery of a copper wire and curing it in a high-temperature nitrogen gas at about 220 ° C.
  • the high heat resistance conductor of this embodiment has a conductor resistance of 1.38 ⁇ / km at 20 ° C and an insulation resistance of 5 It was 5 ⁇ ⁇ 'km, and good characteristics could be demonstrated.
  • the coating film contains the synthetic polymer compound A in the high heat-resistant lead of this embodiment, compared to a normal insulated wire in which the coating film has a cross-linked polyethylene force, The following characteristics were demonstrated. In other words, it is highly flexible and can flexibly respond to bending during wiring, and therefore cracks and the like do not occur in the coating film. In addition, it has excellent heat resistance, and has achieved continuous use at 280 ° C, which was impossible to achieve with conventional insulated wires. Moreover, even at 410 ° C, if it was used intermittently, thermal decomposition hardly occurred and it could withstand sufficiently. In addition, the resistance to corona discharge could be greatly improved. Furthermore, since the adhesion between the copper wire and the coating film was good, high moisture resistance was achieved, and reliability was improved.
  • the synthetic polymer compound A has high transparency to ultraviolet rays and visible light and is V, the presence of bubbles and voids can be easily opticalized in the coating process of the conductive wire. Can be detected automatically. Therefore, productivity can be improved, and the state of deterioration of the conductors during use can be easily observed non-destructively with an optical device, and maintenance can be performed remarkably easily.
  • This embodiment is a highly heat-resistant conducting wire having the same configuration as that of the tenth embodiment, but in this embodiment, the synthetic polymer compound A constituting the coating film contains insulating ceramic fine particles.
  • the insulating ceramic aluminum nitride is used.
  • the aluminum nitride fine particles have a particle size of about 0.3 m and are filled in the synthetic polymer compound A at a volume filling rate of about 25% vol.
  • the synthetic polymer compound A contains aluminum nitride fine particles
  • the thermal conductivity can be improved, and the current capacity is reduced as compared with the tenth embodiment. Increased by 18%.
  • the dielectric breakdown time can be extended by about 10 times or more compared to the tenth embodiment, and the dielectric breakdown life is greatly increased. I was able to improve.
  • This embodiment is used for power supply cables of large industrial machines used in high temperature environments. It is a high heat resistance lead wire used.
  • the high temperature environment refers to a nearby environment such as a blast furnace, a forging device, and a rolling mill.
  • the working voltage is 3.3 kV AC.
  • the highly heat-resistant conductive wire of this embodiment also has a force with a copper wire and a coating film covering the copper wire.
  • the copper wire is nickel plated and has a diameter of about 5 mm.
  • the coating film has a three-layer structure, and is composed of a first coating film that is an inner layer, a thin semiconductive film that is an intermediate layer, and a second coating film that is an outer layer. .
  • the first coating film has a thickness of about 2.5 mm.
  • the second coating film has a thickness of about 1.5 mm.
  • the first coating film contains the first synthetic polymer compound A.
  • the first synthetic polymer compound A is constituted by connecting a plurality of third organosilicon polymers formed by connecting a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is polymethylphenylsilsesquioxane having a molecular weight of about 1500.
  • the second organosilicon polymer is polydimethylphenol siloxane having a molecular weight of about 10,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 40,000.
  • the first synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with alkylene groups.
  • the second coating film contains the second synthetic polymer compound A.
  • the second synthetic polymer compound A is constituted by connecting a plurality of third organosilicon polymers formed by linking a first organosilicon polymer and a second organosilicon polymer.
  • the first organosilicon polymer is polymethylphenylsilsesquioxane having a molecular weight of about 4000.
  • the second organosilicon polymer is polydimethylphenol siloxane having a molecular weight of about 20,000.
  • the first organosilicon polymer and the second organosilicon polymer are alternately and linearly connected by a siloxane bond to constitute a third organosilicon polymer.
  • the third organosilicon polymer has a molecular weight of about 80,000.
  • the second synthetic polymer compound A has a three-dimensional structure formed by connecting a plurality of third organosilicon polymers with an alkylene group.
  • the high heat-resistant conductive wire of this embodiment is formed by extruding the first coating film, the semiconductive film, and the second coating film on the outer periphery of the copper wire and curing in a high-temperature nitrogen gas of about 200 ° C. To make.
  • the high heat resistance conductor of this embodiment has a conductor resistance of 0.82 ⁇ / km at 20 ° C and an insulation resistance of 2 500 ⁇ ⁇ km and capacitance of 0.26 ⁇ FZkm, which showed good characteristics.
  • the coating film contains the first synthetic polymer compound A and the second synthetic polymer compound A, and thus the coating film has a cross-linked polyethylene force.
  • the following characteristics were demonstrated compared to ordinary cables. In other words, it is flexible and can flexibly cope with bending during wiring, so that no cracks or the like occur in the coating film. In addition, it has excellent heat resistance and can be used continuously at 275 ° C. In addition, even at 400 ° C, if it was used intermittently, there was almost no thermal decomposition and it was able to withstand sufficiently. In addition, the resistance to corona discharge could be greatly improved. Furthermore, since the adhesion between the copper wire and the coating film is good, high moisture resistance can be achieved, and reliability can be improved.
  • the present embodiment is a high heat-resistant conducting wire having the same configuration as that of the twelfth embodiment, but in this embodiment, the first synthetic polymer compound A and the second coating film that constitute the first coating film are configured.
  • the second synthetic polymer compound A each contains insulating ceramic fine particles.
  • the insulating ceramic aluminum nitride is used.
  • the aluminum nitride fine particles have a particle size of about 0.1 ⁇ m and are packed in each of the first synthetic polymer compound A and the second synthetic polymer compound A at a volume filling rate of about 16% vol. ing.
  • the first synthetic polymer compound A and the second synthetic polymer compound A each contain aluminum nitride fine particles, so that the thermal conductivity can be improved.
  • the current capacity could be increased by about 13%.
  • the aluminum nitride fine particles can suppress the progress of the coating film deterioration due to partial discharge such as inverter surge, so that the dielectric breakdown time can be increased by about 10 times or more compared with the twelfth embodiment, and the insulation The failure life was greatly improved.
  • first synthetic polymer compound A and the second synthetic polymer compound A have high transparency to ultraviolet rays and visible rays, they are used in the coating process of the conductive wires!
  • the presence of bubbles and voids can be easily detected optically. Therefore, productivity can be improved, and the state of deterioration of the conductive wire during use can be easily observed non-destructively with an optical device, and maintenance can be performed remarkably easily.
  • the present invention may further employ the following configuration.
  • the present invention can be applied to either inner iron type or outer iron type transformers.
  • the present invention can also be applied to single-phase or three-phase offset transformers.
  • the present invention can also be applied to a transformer housed in a metal case, a transformer encapsulated in a case, a pole transformer, or a road transformer.
  • the present invention can be applied to, for example, a large-capacity molded transformer of 70,000 to 220,000 V class and a large-capacity molded transformer of 10 to: LOOMW class.
  • the present invention Since the present invention is suitable for miniaturization and light weight, it can be greatly applied by applying it to a transformer for vehicles such as trains and electric cars and an emergency portable transformer in case of an accident. That's right.
  • the present invention can be applied to an iron core rear tuttle in addition to an air core rear tuttle. It can also be applied to series rear tutors, shunt rear tuttles, arc extinguishing rear tuttles, neutral point rear tutors, and DC rear tuttles.
  • the coated conductor of the present invention that is, the conductor coated with the synthetic polymer compound A can be used even when constituting various electromagnetic coils such as motors and generators, and exhibits high heat resistance. it can.
  • CT current transformers
  • VT voltage transformers
  • Rogowski coils for current measurement etc.
  • transformers such as current transformers (CT) and voltage transformers (VT), Rogowski coils for current measurement, etc., and can exhibit high heat resistance and drought characteristics.
  • insulating ceramic beryllium oxide, alumina, silicon carbide, diamond, boron nitride, or silicon nitride can be used.
  • the present invention can achieve good economic efficiency and resource saving in high heat-resistant electromagnetic devices such as transformers and rear tuttles, it has great industrial utility value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulating Of Coils (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 螺旋状に巻かれた銅線(71)で構成されたコイル(700)と、コイル(700)を被覆した被覆体と、を備えた、空芯リアクトル(70)において、銅線(71)が合成高分子化合物Aを用いて被覆されていることを特徴としている。

Description

高耐熱導線及び高耐熱電磁機器
技術分野
[0001] 本発明は、高い耐熱性を有する被覆された導線、更には、高い耐熱性を有する電 磁機器に関するものである。電磁機器としては、例えば、変圧器、リアタトル等がある 背景技術
[0002] 変圧器、リア外ル、モーター、発電機等に代表される電磁機器では、火災防止等 の安全性の観点から、コイルを不燃性の容器内に設置するとともに不燃性の絶縁油 やガスを容器内に充満させていた。し力しながら、絶縁油として使用されるポリ塩ィ匕ビ フエニルゃガスとして使用される六弗化硫黄は、地球環境保護の観点から、使用が 制限されるようになってきた。そこで、近年では、不燃性ではない榭脂によってコイル 若しくは機器全体を被覆 (「モールド」とも言う)して絶縁した、モールド電磁機器が広 く使用され始めている。
[0003] 一方、変圧器、リアタトル、モーター、発電機等を構成するコイルには、各種の構造 のものがあり、製作方法にも違いがある力 最終的には、導線が螺旋状に巻かれた 状態となるよう構成されている。このようなコイルにおける隣接する導線間の絶縁は、 導線用被覆材 (例えば絶縁ワニス)やコイルのモールド材料によって、導線を被覆す る被覆膜を形成することにより、実現されていた。
[0004] また、従来のモールド変圧器、例えば、 3相の変圧器では、各相のコイル力 鉄芯 を取り巻くように構成された低電圧の二次コイルと、二次コイルの外側に設けられた 高電圧の一次コイルと、を有している。そして、両コイルは、モールド材料で被覆され ていた。鉄芯モールドリアタトルも略同様であった。
[0005] すなわち、従来のモールド変圧器、モールドリアタトル、モールドコイルを用いたモ 一ターや発電機は、導線と被覆膜とからなるコイルと、モールド材料からなる被覆体と 、を備えている。そして、導線用被覆材ゃモールド材料として、エポキシ榭脂ゃシリコ ン榭脂が用いられていた。 特許文献 1 :特開 2003— 158018
特許文献 2 :特開 2002— 158118
非特許文献 1 :「電気工学ノ、ンドブック (第 6版)」(電気学会発行)の 190頁〜 192頁、 699頁〜 701頁、 727頁〜 730頁
発明の開示
発明が解決しょうとする課題
[0006] ところで、エポキシ榭脂の耐熱性は、それほど高くなぐ通常 180°C以上で劣化して 、柔軟性が乏しくなり、堅くなる。そのため、エポキシ榭脂を用いた従来のモールド変 圧器では、コイルの使用温度の上限が 70〜120°C程度に設定されており、使用中に 上限温度を超えないようにファンで冷却する場合が多い。しかしながら、使用中に、 大きな短絡電流や雷サージ電流が流れると、コイルの温度が上記上限温度を超える ことがある。そのような場合には、エポキシ榭脂が堅くなる恐れがある。そのため、コィ ルの温度が高温から室温に戻る時に、エポキシ榭脂の内部すなわち被覆膜や被覆 体の内部に多数のクラックが発生する恐れがある。被覆膜や被覆体にクラックが発生 すると、コイルは、リーク電流が増大するとともに高電界にも耐えることができなくなり、 耐電圧性が悪くなる。
[0007] また、シリコン榭脂は、エポキシ榭脂に比して耐熱性が良 、が、それでも 200°C程 度が上限温度である。そのため、シリコン榭脂を用いた従来のモールド変圧器では、 コイルの温度が 200°C以上になると、シリコン榭脂に含まれているポリメチルフエ-ル シロキサンの柔軟性が乏しくなり、更に、コイルの温度が空気中で 220°C以上になる と、ポリメチルフエ-ルシロキサンの表面がガラス化して完全に堅くなつてしまう。これ は、ポリメチルフエ-ルシロキサンの側鎖のメチル基やフエ-ル基が分解して蒸発す るからであると推察される。そのような場合に、コイルの温度が高温から室温に戻ると 、ポリメチルフエニルシロキサンの内部すなわち被覆膜や被覆体の内部に多数のボ イドやクラックが発生する。被覆膜や被覆体にボイドゃクラックが発生すると、コイルは 、リーク電流が増大するとともに高電界にも耐えることができなくなり、耐電圧性が悪く なる。
[0008] 更に、エポキシ榭脂ゃシリコン榭脂は、熱伝導率が、 0. 1〜1. OWZmKであり、比 較的低いので、コイルで発生した熱を十分に放散できない。そのため、エポキシ榭脂 やシリコン榭脂でコイルを被覆した場合には、被覆しない場合よりも、定格容量を小さ く設定しなければならな力つた。また、エポキシ榭脂ゃシリコン榭脂でコイルを被覆し た場合には、熱の放散性が悪いので、定格電流を上回る比較的短時間の短絡電流 によって、コイルの温度が上昇する。その結果、場合によっては、被覆膜、被覆体、 更には、一次コイルと二次コイルとの接触を防ぐために両者間に設けた混触防止板 等が、熱破壊されて、耐電圧性が損なわれていた。
[0009] 以上のように、従来のモールド変圧器、モールドリアタトル、モールドコイルを用いた モーターや発電機等の、モールド電磁機器は、耐熱性や熱放散性が十分でなぐ高 温では高電界に耐えることができず、耐電圧性が悪 、と 、う問題を有して!/ヽた。
[0010] 本発明は、耐熱性が高い電磁機器を提供すること、更には、熱放散性にも優れて いる高耐熱電磁機器を提供すること、を目的としている。
課題を解決するための手段
[0011] 本願の第 1発明は、被覆された導線において、導線を被覆した被覆膜が、少なくと も 1種の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪素ポリマーとを連結してな る第 3有機珪素ポリマーを、複数連結して構成された、合成高分子化合物 Aを含有し ており、第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有しており、第 3有機 珪素ポリマー力 S、第 i有機珪素ポリマーと第 2有機珪素ポリマーとをシロキサン結合に よって交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の重量平均分 子量を有しており、合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反 応により生成される共有結合によって連結して構成された、三次元の立体構造を有 して!/、ることを特徴として!/、る。
[0012] 本願の第 2発明は、螺旋状に巻かれた導線を有するコイルと、コイルを被覆した被 覆体と、を備えた、高耐熱電磁機器において、コイルの隣接する導線の間に、隣接 する導線同士を絶縁するよう、導線に沿って、絶縁テープが設けられていることを特 徴としている。
[0013] 絶縁テープは、例えばエポキシ榭脂のフィルムで形成してもよいが、後述する合成 高分子化合物 Aを含有したフィルムで形成するのが好ましい。
[0014] 本願の第 3発明は、上記第 2発明において、絶縁テープが、接着剤によって導線に 貼り付けられて 、るものである。
[0015] 本願の第 4発明は、螺旋状に巻かれた導線を有するコイルと、コイルを被覆した被 覆体と、を備えた、高耐熱電磁機器において、コイルが、導線と、導線を被覆した被 覆膜とで、構成されており、上記被覆膜が、少なくとも 1種の第 1有機珪素ポリマーと 少なくとも 1種の第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを、複 数連結して構成された、合成高分子化合物 Aを含有しており、第 1有機珪素ポリマー 1S シロキサン結合による橋かけ構造を有しており、第 2有機珪素ポリマー力 シロキ サン結合による線状連結構造を有しており、第 3有機珪素ポリマーが、第 1有機珪素 ポリマーと第 2有機珪素ポリマーとをシロキサン結合によって交互に且つ線状に連結 して構成されており、且つ、 2万〜 80万の重量平均分子量を有しており、合成高分子 化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により生成される共有結合によ つて連結して構成された、三次元の立体構造を有して ヽることを特徴として 、る。
[0016] 本願の第 5発明は、上記第 2又は第 3発明において、絶縁テープが、少なくとも 1種 の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪素ポリマーとを連結してなる第 3 有機珪素ポリマーを、複数連結して構成された、合成高分子化合物 Aを含有しており 、第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、第 2有機 珪素ポリマーが、シロキサン結合による線状連結構造を有しており、第 3有機珪素ポ リマー力 第 1有機珪素ポリマーと第 2有機珪素ポリマーとをシロキサン結合によって 交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の重量平均分子量を 有しており、合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により 生成される共有結合によって連結して構成された、三次元の立体構造を有して ヽる ものである。
[0017] 本願の第 6発明は、上記第 2ないし第 5発明のいずれか 1つの発明において、被覆 体力 少なくとも 1種の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪素ポリマー とを連結してなる第 3有機珪素ポリマーを、複数連結して構成された、合成高分子化 合物 Aを含有しており、第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造 を有しており、第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有し ており、第 3有機珪素ポリマーが、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを シロキサン結合によって交互に且つ線状に連結して構成されており、且つ、 2万〜 80 万の重量平均分子量を有しており、合成高分子化合物 Aが、複数の第 3有機珪素ポ リマーを付加反応により生成される共有結合によって連結して構成された、三次元の 立体構造を有して ヽるものである。
[0018] 上記第 1発明及び第 4ないし第 6発明において、第 1有機珪素ポリマーは、ポリフエ 二ルシルセスキォキサン、ポリメチルシルセスキォキサン、ポリメチルフエ二ルシルセ スキォキサン、ポリェチルシルセスキォキサン、及びポリプロピルシルセスキォキサン の内から選択された少なくとも 1種類である。
[0019] また、第 2有機珪素ポリマーは、ポリジメチルシロキサン、ポリジェチルシロキサン、 ポリジフ -ルシロキサン、及びポリメチルフ -ルシロキサンの内力 選択された少 なくとも 1種類である。
[0020] また、シロキサン結合は、 Si— O結合のことである。
[0021] また、第 3有機珪素ポリマーは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを、 シロキサン結合によって交互に且つ線状に連結して構成されている。例えば、第 1有 機珪素ポリマーを「X」とし、第 2有機珪素ポリマーを「Y」とすると、第 3有機珪素ポリマ 一は、「-Χ— Υ— X— Υ -」の構造を有している。また、例えば、 2種類の第 1有機珪 素ポリマーと 2種類の第 2有機珪素ポリマーを用いる場合において、第 1有機珪素ポ リマーを「XI」、「Χ2」とし、第 2有機珪素ポリマーを「Υ1」、「Υ2」とすると、第 3有機珪 素ポリマーは、「― XI— Yl— Χ2— Υ2—」や「― XI— Υ2— Χ2— Y1—」等の構造を 有している。
[0022] 更に、合成高分子化合物 Αは、複数の第 3有機珪素ポリマーがアルキレン基によつ て連結されるの力 好ましい。
[0023] 本願の第 7発明は、上記第 2、第 3、第 5、又は第 6発明において、絶縁テープが、 導線の両側縁から僅かにはみ出しており、被覆体が、隣接する当該はみ出し部分の 間を埋めて!/ヽるものである。
[0024] 本願の第 8発明は、上記第 1発明及び第 4ないし第 6発明のいずれか 1つの発明に おいて、第 1有機珪素ポリマーが 200〜7万の重量平均分子量を有しており、第 2有 機珪素ポリマーが 5000〜20万の重量平均分子量を有しており、第 1有機珪素ポリ マーの重量平均分子量が第 2有機珪素ポリマーの重量平均分子量より小さいもので ある。
[0025] 本願の第 9発明は、上記第 6発明において、合成高分子化合物 Aが、 4WZmK以 上の熱伝導率、例えば 4〜2500WZmKの熱伝導率を有する絶縁性セラミックス微 粒子を含有して ヽるものである。
[0026] 本願の第 10発明は、上記第 9発明において、絶縁性セラミックスが、窒化アルミ- ゥム、酸ィ匕ベリリウム、アルミナ、炭化珪素、ダイヤモンド、窒化ホウ素、及び窒化ケィ 素の内の少なくとも 1種類であるものである。
[0027] 本願の第 11発明は、上記第 9発明において、絶縁性セラミックス微粒子が、 0. 01
〜50 μ mの粒径を有しているものである。
[0028] 本願の第 12発明は、上記第 9発明において、合成高分子化合物 Aに対する絶縁 性セラミックス微粒子の体積充填率が、 15%vol〜85%volであるものである。
[0029] 本願の第 13発明は、上記第 9発明において、微粒子が、粒径の異なる複数種類の 微粒子を含んでおり、それらの微粒子の粒径比が、 1: 1/10〜1: 1/200の範囲に あるものである。
発明の効果
[0030] 本願の第 1発明によれば、被覆膜を構成する合成高分子化合物 Aが、第 1有機珪 素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを含んでい るので、被覆膜自体の、柔軟性と、耐熱性及び耐電圧性とを、両立できる。
[0031] すなわち、第 1有機珪素ポリマーは、絶縁性及び耐熱性に優れている力 流動性 や硬化後の柔軟性が非常に悪い。これに対して、第 2有機珪素ポリマーは、流動性 や柔軟性が良好である。したがって、両ポリマーを連結することによって、両ポリマー の利点を発揮できる。
[0032] したがって、上記第 1発明によれば、被覆膜の、耐熱性及び耐電圧性等の特性を、 向上できる。
[0033] し力も、合成高分子化合物 Aは、銅、アルミニウム、ステンレス等の金属に対して、 接着性が極めて良好であり、これらに強固に付着する。したがって、合成高分子化合 物 Aは、導線の表面に、強固に付着する。それ故、導線と被覆膜との間に、隙間のな い強固な密着状態を実現でき、高い耐湿性を得ることができる。その結果、導線の信 頼性を向上できる。
[0034] したがって、上記第 1発明によれば、導線の、耐熱性及び耐電圧性等の特性、及び 信頼性を、向上できる。
[0035] 更に、合成高分子化合物 Aは、紫外線及び可視光線に対する高い透光性を有して いる。それ故、導線の被覆工程において、合成高分子化合物 Aを導線に付着させて 硬化させる前及び後に、気泡ゃボイド等が存在しないことを目視により確かめることが できる。したがって、生産性を著しく向上できる。
[0036] 本願の第 2発明によれば、コイルの隣接する導線同士の絶縁を、簡単な構成で且 つ確実に実現できる。
[0037] しカゝも、導線と絶縁テープとを重ねた状態で螺旋状に巻いてコイルを構成するだけ で、上記絶縁を実現できるので、製造が容易である。
[0038] 本願の第 3発明によれば、コイルを製作する際に、絶縁テープと導線とを一体物と して取り扱うことができるので、コイルの生産性を著しく向上できる。し力も、絶縁テー プを、コイルの隣接する導線間に確実に位置させることができるので、コイルの隣接 する導線間の絶縁を確実に確保できる。
[0039] 本願の第 4発明によれば、被覆膜を構成する合成高分子化合物 Aが、第 1有機珪 素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを含んでい るので、被覆膜自体の、柔軟性と、耐熱性及び耐電圧性とを、両立できる。
[0040] すなわち、第 1有機珪素ポリマーは、絶縁性及び耐熱性に優れているが、粘度が大 きすぎるので、流動性や硬化後の柔軟性が非常に悪い。これに対して、第 2有機珪 素ポリマーは、流動性や柔軟性が良好である。したがって、両ポリマーを連結すること によって、両ポリマーの利点を発揮できる。
[0041] したがって、上記第 4発明によれば、被覆膜の、耐熱性及び耐電圧性等の特性を、 向上できる。
[0042] し力も、合成高分子化合物 Aは、(a)銅、アルミニウム、ステンレス等の金属、(b)芳香 族ポリアミド (ァラミド紙)、エナメル等の絶縁材ゃ被覆材、(C)エポキシ榭脂、アクリル 榭脂、フエノール榭脂等の榭脂類、及び (d)ガラス類に対して、接着性が極めて良好 であり、これらに強固に付着する。したがって、合成高分子化合物 Aは、導線の表面 や被覆体のモールド材料の表面に、強固に付着する。それ故、導線と被覆膜との間 、及び被覆膜と被覆体との間に、隙間のない強固な密着状態を実現でき、高い耐湿 性を得ることができる。その結果、モールド電磁機器の信頼性を向上できる。
[0043] したがって、上記第 4発明によれば、モールド電磁機器の、耐熱性及び耐電圧性 等の特性、及び信頼性を、向上できる。
[0044] 更に、合成高分子化合物 Aは、紫外線及び可視光線に対する高!ヽ透光性を有して いる。それ故、導線の被覆工程において、ケースや金型に導線をセットして合成高分 子化合物 Aを流し込んだ時、合成高分子化合物 Aが硬化する前に、気泡ゃボイド等 が存在しないことを目視により確かめることができる。したがって、生産性を著しく向上 できる。
[0045] 本願の第 5発明によれば、絶縁テープを構成する合成高分子化合物 Aが、第 1有 機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを含 んでいるので、絶縁テープ自体の、柔軟性と、耐熱性及び耐電圧性とを、両立できる
[0046] すなわち、第 1有機珪素ポリマーは、絶縁性及び耐熱性に優れているが、粘度が大 きすぎるので、流動性や硬化後の柔軟性が非常に悪い。これに対して、第 2有機珪 素ポリマーは、流動性や柔軟性が良好である。したがって、両ポリマーを連結すること によって、両ポリマーの利点を発揮できる。
[0047] したがって、上記第 5発明によれば、コイルの、耐熱性及び耐電圧性等の特性を、 向上できる。
[0048] し力も、合成高分子化合物 Aは、銅、アルミニウム、ステンレス等の金属に対して、 接着性が極めて良好であり、これらに強固に付着する。したがって、合成高分子化合 物 Aは、コイルの導線の表面に、強固に付着する。それ故、導線と絶縁テープとの間 に、隙間のない強固な密着状態を実現でき、高い耐湿性を得ることができる。その結 果、コイルの信頼性を向上できる。 [0049] したがって、上記第 5発明によれば、モールド電磁機器の、耐熱性及び耐電圧性 等の特性、及び信頼性を、向上できる。
[0050] 本願の第 6発明によれば、被覆体を構成する合成高分子化合物 Aが、第 1有機珪 素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを含んでい るので、被覆体自体の、柔軟性と、耐熱性及び耐電圧性とを、両立できる。
[0051] すなわち、第 1有機珪素ポリマーは、絶縁性及び耐熱性に優れているが、粘度が大 きすぎるので、流動性や硬化後の柔軟性が非常に悪い。これに対して、第 2有機珪 素ポリマーは、流動性や柔軟性が良好である。したがって、両ポリマーを連結すること によって、両ポリマーの利点を発揮できる。
[0052] したがって、上記第 6発明によれば、被覆体の、耐熱性及び耐電圧性等の特性を、 向上できる。
[0053] し力も、合成高分子化合物 Aは、(a)銅、アルミニウム、ステンレス等の金属、(b)芳香 族ポリアミド (ァラミド紙)、エナメル等の絶縁材ゃ被覆材、(c)エポキシ榭脂、アクリル 榭脂、フエノール榭脂等の榭脂類、及び (d)ガラス類に対して、接着性が極めて良好 であり、これらに強固に付着する。したがって、合成高分子化合物 Aは、コイルの導 線及び絶縁テープの表面や、ケース等の表面に、強固に付着する。それ故、コイルと 被覆体との間に、隙間のない強固な密着状態を実現でき、高い耐湿性を得ることが できる。その結果、モールド電磁機器の信頼性を向上できる。
[0054] したがって、上記第 6発明によれば、モールド電磁機器の、耐熱性及び耐電圧性 等の特性、及び信頼性を、向上できる。
[0055] 更に、合成高分子化合物 Aは、紫外線及び可視光線に対する高い透光性を有して いる。それ故、コイルの被覆工程において、ケースや金型にコイルをセットして合成高 分子化合物 Aを流し込んだ時、合成高分子化合物 Aが硬化する前に、気泡ゃボイド 等が存在しないことを目視により確かめることができる。したがって、生産性を著しく向 上できる。
[0056] 本願の第 7発明によれば、絶縁テープと被覆体とを確実に一体ィ匕できるので、コィ ルの絶縁性をより向上できる。特に、絶縁テープ及び被覆体が共に合成高分子化合 物 Aを含有して ヽる場合には、絶縁テープと被覆体との接着をより確実に実現できる ので、コイルの絶縁性を更に向上できる。
[0057] 本願の第 8発明によれば、合成高分子化合物 Aの、特に、柔軟性と、耐熱性及び 耐電圧性とを、共に良好なレベルで両立できる。
[0058] すなわち、第 1有機珪素ポリマーは、絶縁性及び耐熱性に優れている力 流動性 や硬化後の柔軟性が非常に悪い。それ故、例えば被覆体が第 1有機珪素ポリマーの み力もなる場合は、被覆体を厚くすることができず、耐電圧性を向上できない。これに 対して、第 2有機珪素ポリマーは、流動性や柔軟性を有している。したがって、両ポリ マーを連結することにより、両ポリマーの利点を発揮できる。ところで、第 1有機珪素 ポリマーの重量平均分子量を大きくすると、耐熱性は向上するが、柔軟性が悪くなる 。一方、第 2有機珪素ポリマーの分子量を大きくすると、柔軟性は向上するが、耐熱 性は低下する。すなわち、第 1有機珪素ポリマー及び第 2有機珪素ポリマーの各々の 重量平均分子量を調節することにより、合成高分子化合物 Aの、柔軟性と、耐熱性及 び耐電圧性とを、所望のレベルに調節することができる。本発明では、第 1有機珪素 ポリマー及び第 2有機珪素ポリマーの各々の重量平均分子量を望ましい大きさに設 定しているので、導線の被覆膜又は絶縁テープ又は被覆体の、柔軟性と、耐熱性及 び耐電圧性とを、共に良好なレベルで両立できる。
[0059] 本願の第 9発明によれば、被覆体を構成する合成高分子化合物 Aの熱伝導率を増 大できるので、被覆体の熱伝導率を増大できる。したがって、被覆体の熱放散性を向 上でき、熱放散性が優れたモールド電磁機器を得ることができる。
[0060] したがって、上記第 9発明によれば、空冷装置等を不要にでき、電磁機器の構成を 簡略ィ匕でき、該機器の小型化及び低コストィ匕を達成できる。
[0061] また、上記第 9発明によれば、耐熱性及び熱放散性に優れて!/、るので、電流密度 を大きくして定格容量を増大させることができる。それ故、小さい定格容量で良い場 合には、小型で軽量な電磁機器を得ることができる。
[0062] 本願の第 10発明によれば、モールド形の電磁機器の、熱放散性を、確実に向上で きる。
[0063] 本願の第 11発明によれば、絶縁性セラミックス微粒子を、合成高分子化合物 Aの 立体構造の隙間に、効果的に充填できる。 [0064] すなわち、セラミックス微粒子は、粒径が大きすぎると、合成高分子化合物 Aに対す る微粒子の体積充填率が低下し、粒径が小さすぎても、微粒子同士がお互いに凝集 しゃすくなるために、体積充填率が低下する。し力しながら、上述の粒径であれば、 体積充填率が低下することはない。したがって、上記第 11発明によれば、 40%vol 以上の体積充填率を実現できる。体積充填率が 40%vol以上であると、セラミックス 微粒子同士が互いに接触する割合が大幅に増えるので、高い熱伝導率を得ることが できる。
[0065] 本願の第 12発明によれば、被覆体の熱伝導率を充分に増大できる。
[0066] 本願の第 13発明によれば、合成高分子化合物 Aに対するセラミックス微粒子の体 積充填率を、 50%vol以上に設定できる。
[0067] なお、セラミックス微粒子は、尖った部分が少な 、球形に近!、形状を有するものが 好ましい。これによれば、微粒子による局部的な電界集中を回避できるので、被覆体 の耐電圧性を向上できる。
[0068] また、上述のような絶縁性セラミックス微粒子を充填することにより、具体的には、 2 〜 120WZmKの高!、熱伝導率を実現できる。
[0069] 更に、充填されたセラミックス微粒子は、合成高分子化合物 Aの結合には影響しな いので、合成高分子化合物 Aの耐熱性を損ねることはない。また、上記体積充填率 や形状の範囲にあるセラミックス微粒子は、合成高分子化合物 Aの耐電圧性や粘度 に、若干影響を及ぼすが、実用上ほとんど問題を生じない。また、上記体積充填率 や粒径の範囲にあるセラミックス微粒子は、合成高分子化合物 Aの透光性や、合成 高分子化合物 Aと構成材料との接着性に、若干影響を及ぼすが、実用上ほとんど問 題を生じない。
図面の簡単な説明
[0070] [図 1]本発明の第 1実施形態の高耐熱電磁機器である空芯リアタトルを示す斜視図で ある。
[図 2]本発明の第 4実施形態の高耐熱電磁機器であるモールド変圧器を示す斜視図 である。
符号の説明 [0071] 20 モールド変圧器
10 モールドコイル
70 空芯リアタトル
71 銅線
72 絶縁テープ
700 コィノレ
発明を実施するための最良の形態
[0072] 以下、本発明の好適な実施形態を図に基づいて説明する。なお、各図において、 各構成部材の寸法は、各構成部材の理解を容易にするために、実際の寸法とは対 応していない。
[0073] (第 1実施形態)
図 1は、本発明の第 1実施形態の高耐熱電磁機器である空芯リアタトルを示す斜視 図である。この空芯リアタトル 70は、円形卷線タイプのものであり、 3kV、 80A、 10 ^
Hの定格を有している。また、空芯リアタトル 70の具体的寸法は、外形が 58mm、内 径カ S46mmである。
[0074] 空芯リアタトル 70は、コイルがモールド材料で被覆されたモールドリアタトルであり、 螺旋状に巻かれた銅線 71を有するコイル 700と、コイル 700を被覆した被覆体(図示 せず)と、を備えている。銅線 71自体は、被覆されていないものである。銅線 71は、 平板形状を有しており、厚さ約 1. 5mm及び幅約 6mmの寸法を有している。
[0075] そして、本発明では、コイル 700の隣接する銅線 71の間に、隣接する銅線 71同士 を絶縁するよう、銅線 71に沿って、絶縁テープ 72が設けられている。絶縁テープ 72 は、ポリイミド榭脂のフィルムで形成されている。コイル 700は、銅線 71と絶縁テープ 72とを、重ねた状態で螺旋状に巻いて、構成されている。絶縁テープ 72は、約 10m mの幅を有しており、銅線 71の両側縁から各々約 2mmはみ出すように巻かれている 。すなわち、絶縁テープ 72は、銅線 71からのはみ出し部分(図示せず)を有している
[0076] 銅線 71の両方の終端には、各々、結線用の端子 73a、 73bが取り付けられている。
絶縁テープ 72は、銅線 71と端子 73a、 73bとの境目よりも約 30mm手前で終端して いる。
[0077] 被覆体は、端子 73a、 73b以外のコイル 700全体を、被覆して!/、る。ここで、コイル 7 00の全体とは、コイル 700の内面、外面、上面、及び下面を意味する。被覆体は、コ ィル 700において隣接する絶縁テープ 72のはみ出し部分の間を埋めている。
[0078] そして、被覆体は、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる 第 3有機珪素ポリマーを、複数連結して構成された、合成高分子化合物 Aを含有して いる。
[0079] 合成高分子化合物 Aにお 、て、第 1有機珪素ポリマーは、分子量が約 500のポリフ ェニルシルセスキォキサンである。第 2有機珪素ポリマーは、分子量が約 3万のポリメ チルフエ-ルシロキサンである。第 1有機珪素ポリマーと第 2有機珪素ポリマーとは、 シロキサン結合によって、交互に且つ線状に連結されて、第 3有機珪素ポリマーを構 成している。第 3有機珪素ポリマーは、分子量が約 7万である。そして、第 1合成高分 子化合物 Aは、複数の第 3有機珪素ポリマーをアルキレン基によって連結して構成さ れた、三次元の立体構造を有している。
[0080] コイル 700の合成高分子化合物 Aによる被覆は、次のようにして行う。
まず、真空容器内に設置された合成高分子化合物 Aの第 1浴槽に、コイル 700を、 所定時間、浸す。この際、端子 73a、 73bは、その大部分が第 1浴槽に浸らないように する。また、この際、第 1浴槽の合成高分子化合物 Aの粘度を所定の値に設定するこ とにより、隣接する絶縁テープ 72のはみ出し部分の間に、合成高分子化合物 Aを完 全に充満させることができる。次に、コイル 700を、第 1浴槽力も取り出し、恒温槽に 入れ、 100°C〜350°Cの範囲の所定温度で保持し、合成高分子化合物 Aを熱硬化 させる。その後、真空容器内に設置された合成高分子化合物 Aの第 2浴槽に、コイル 700を、所定時間、浸す。そして、コイル 700を、第 2浴槽から取り出し、恒温槽に入 れ、所定温度で保持し、合成高分子化合物 Aを熱硬化させる。これにより、被覆体の 形成が完了する。
[0081] 上記構成の空芯リアタトル 70においては、コイル 700の隣接する銅線 71間の絶縁 力 絶縁テープ 72によって達成されている。したがって、本実施形態によれば、コィ ル 700の隣接する銅線 71間の絶縁を、簡単な構成で且つ確実に実現できる。 [0082] し力も、コイル 700は、銅線 71と絶縁テープ 72とを重ねた状態で螺旋状に卷くだけ で構成できるので、容易に製造できる。
[0083] 更に、上記構成の空芯リアタトル 70においては、被覆体が、コイル 700において隣 接する絶縁テープ 72のはみ出し部分の間を埋めているので、絶縁テープ 72と被覆 体とを確実に一体ィ匕できる。
[0084] し力も、合成高分子化合物 Aは、銅やポリイミド榭脂との接着性が良好であるので、 被覆体と、銅線 71及び絶縁テープ 72とを、良好に接着できる。したがって、コイル 70 0の絶縁性を向上でき、ひいては、空芯リアタトル 70の信頼性を向上できる。
[0085] また、合成高分子化合物 A及びポリイミド榭脂の耐熱性は、約 300°Cであり、銅線 のエナメル被覆材ゃエポキシ被覆材の耐熱性の約 2倍である。それ故、空芯リアタト ル 70に高電圧を印可してリアタトル動作をさせた時、銅線 71の発熱が 2倍程度にな つても、絶縁破壊等は生じない。したがって、上記構成の空芯リアタトル 70において は、銅線 71の厚さを、従来のリアタトルの銅線の厚さの半分より少し厚めの程度にし ても、従来のリアタトルと同じリアタトル値を実現できる。但し、銅線 71の正確な厚さは 、銅線 71の抵抗の温度依存性も考慮して設定する必要がある。また、銅線 71の厚さ を従来のリアタトルと同じにした場合には、空芯リアタトルの直径を約半分にしても、 従来のリアタトルと同じリアタトル値を実現できる。更に、コイル 700の巻き線の回数を 、従来のリアタトルの 1Z 2程度に低減しても、従来のリアタトルと同じリアタトル値を 実現できる。以上のように、上記構成の空芯リアタトル 70によれば、リアタトルの性能 を損なうことなぐリアタトルの大きさや重量を従来のリアタトルよりも大幅に低減できる ので、良好な経済性及び省資源化を達成できる。なお、比較対象とした従来のリアク トルでは、絶縁テープが用いられておらず、被覆体がエポキシ榭脂で構成されており 、その他が空芯リアタトル 70と同じである。
[0086] なお、本実施形態では、次のような構成を採用してもよ 、。
(1)第 2浴槽の合成高分子化合物 Aの第 1有機珪素ポリマーの分子量を第 1浴槽の それよりも大きくする。例えば、約 2500とする。これによれば、硬化後の硬度を高くす ることができ、外力からの保護性を向上できる。
[0087] (2)絶縁テープを接着剤によって平板状の銅線の一面に貼り付け、この銅線を巻い てコイルを構成する。これによれば、絶縁テープと銅線とを一体物として取り扱うこと ができるので、生産性を著しく向上できる。なお、接着剤は、必ずしも高い耐熱性を 有するものである必要はなぐ主に製作時に絶縁テープが銅線力 剥がれるのを防 止する機能を有するものであればよい。仮に、コイル完成後に接着剤が高温状態で 分解したとしても、コイル自体は合成高分子化合物 Aで完全に被覆されて ヽるので、 絶縁性が損なわれることはな 、。
[0088] (3)被覆体を形成した後に、コイル 700の複数個所を縦方向にテープで巻いて、コィ ル 700を固定する。テープとしては、例えば、ポリイミド榭脂からなるテープを使用で きる。これによれば、コイル 700の稼働時の電磁力や外部力もの衝撃に対して、空芯 リアタトル 70の形状を確実に維持できる。
[0089] (第 2実施形態)
本実施形態は、第 1実施形態と同じ構成を有する空芯リアタトルであるが、本実施 形態では、絶縁テープ 72が、第 1合成高分子化合物 Aを含有したフィルムで構成さ れており、また、被覆体を構成する第 2合成高分子化合物 Aが絶縁性セラミックス微 粒子を含有しており、その他は第 1実施形態と同じである。
[0090] 第 1合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連 結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素ポリ マーは、分子量が約 1600のポリフエ-ルシルセスキォキサンである。第 2有機珪素 ポリマーは、分子量が約 2. 5万のポリメチルフエ-ルシロキサンである。第 1有機珪素 ポリマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線状に 連結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、分子 量が約 6万である。そして、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポリマ 一をアルキレン基によって連結して構成された、三次元の立体構造を有して!/、る。
[0091] 第 2合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連 結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素ポリ マーは、分子量が約 5000のポリフエ-ルシルセスキォキサンである。第 2有機珪素 ポリマーは、分子量が約 3万のポリメチルフエ-ルシロキサンである。第 1有機珪素ポ リマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線状に連 結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、分子量 が約 7万である。そして、第 2合成高分子化合物 Aは、複数の第 3有機珪素ポリマー をアルキレン基によって連結して構成された、三次元の立体構造を有して!/、る。
[0092] 更に、第 2合成高分子化合物 Aは、絶縁性セラミックスである窒化アルミニウムの微 粒子を含有している。窒化アルミニウム微粒子は、約 2 mの粒径を有しており、約 4 9%volの体積充填率で第 2合成高分子化合物 Aに充填されている。これにより、第 2 合成高分子化合物 Aは、耐熱性、耐電圧性、及び柔軟性が殆ど損なわれることなぐ 熱伝導率が約 0. 3WZmKから約 6. 9WZmKまで増大した。
[0093] 本実施形態の空芯リア外ルは、第 1実施形態と同様の作用効果を発揮すると共に 、特に以下のような作用効果を発揮する。
(1)絶縁テープ 72を構成する第 1合成高分子化合物 Aが、被覆体を構成する第 2合 成高分子化合物 Aと、同種の材料であり且つ類似の組成を有しているので、第 1実 施形態の場合に比して、絶縁テープと被覆体との接着性をより向上できる。その結果 、本実施形態の空芯リアタトルは、約 330°Cの高温においても、より良好な絶縁性を 達成でき、より優れた信頼性を得ることができる。
[0094] (2)第 2合成高分子化合物 Aの熱伝導率が高 、ので、コイルにおける発熱を効率良 く外気に放散できる。その結果、本実施形態の空芯リアタトルは、定格許容温度を従 来のリアタトルと同じにした場合に、電流容量を増大でき、し力も、小型化できる。す なわち、本実施形態の空芯リアタトルによれば、定格を、 3kV、 100A、 10 /z Hに増 大しても、外形や内径を約 10%小型化できるので、更に良好な経済性及び省資源 化を達成できる。
[0095] なお、本実施形態においては、絶縁テープ 72を接着剤によって銅線 71に貼り付け てもよい。
[0096] (第 3実施形態)
本実施形態は、第 2実施形態と同じ構成を有する空芯リアタトルであるが、本実施 形態では、絶縁テープを用いておらず、銅線 71が、第 1合成高分子化合物 Aを用い て被覆されており、その他は第 2実施形態と同じである。すなわち、コイル 700が、銅 線 71と、第 1合成高分子化合物 Aを含有した被覆膜とで、構成されている。なお、コ ィル 700は、被覆された銅線 71を螺旋状に卷 、て構成されて!、る。
[0097] 本実施形態においても、第 1及び第 2実施形態と同様の作用効果を発揮できる。
[0098] 本実施形態は、銅線 71が断面丸形形状や幅狭の断面平板形状を有する場合に、 特に有効に適用できる。
[0099] (第 4実施形態)
図 2は、本発明の第 4実施形態の高耐熱電磁機器であるモールド変圧器を示す斜 視図である。このモールド変圧器 20は、 3相モールド変圧器であり、各相のコイルで ある 3つのモールドコイル 10を有している。このモールド変圧器 20は、例えば、一次 側電圧が 6kV、二次側電圧が 210V、定格容量が 750kVAの、内鉄形のモールド 変圧器である。定格電流は、一次側が 65A、二次側が 2060Aである。モールドコィ ル 10は、断面が略長円の柱状に形成されている。モールドコイル 10には、図の縦方 向に貫通する鉄心 15が設けられている。モールドコイル 10は、低電圧の二次コイル が内側に、高電圧の一次コイルが外側になるように、構成されている。 3つのモールド コイル 10の二次コイルは、低圧端子 25にそれぞれ接続されており、一次コイルは高 圧端子 26にそれぞれ接続されている。 3つの鉄心 15の上下端部分を挟み込むよう に、上部フレーム 18と下部フレーム 19が設けられている。下部フレーム 19の両端部 には、据付板 21が、防振ゴム 22を介して、取り付けられている。
[0100] モールドコイル 10の一次コイルは、被覆された銅線が螺旋状に巻かれて構成され ている。すなわち、一次コイルは、銅線と、銅線を被覆した被覆膜とで、構成されてい る。被覆膜の厚さは、例えば、 m〜: LOOO /z mである。
[0101] そして、被覆膜は、第 1合成高分子化合物 Aを含有している。第 1合成高分子化合 物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素 ポリマーを、複数連結して構成されている。第 1有機珪素ポリマーは、分子量が約 16 00のポリフエ-ルシルセスキォキサンである。第 2有機珪素ポリマーは、分子量が約 2. 5万のポリメチルフエ-ルシロキサンである。第 1有機珪素ポリマーと第 2有機珪素 ポリマーとは、シロキサン結合によって、交互に且つ線状に連結されて、第 3有機珪 素ポリマーを構成している。第 3有機珪素ポリマーは、分子量が約 6万である。そして 、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポリマーをアルキレン基によって 連結して構成された、三次元の立体構造を有している。
[0102] モールドコイル 10の二次コイルも、一次コイルと同じぐ銅線と、第 1合成高分子化 合物 Aを含有した被覆膜とで、構成されている。
[0103] モールドコイル 10は、例えば、高さ 84cm、長径 50cmの、長円柱である。そして、 モールドコイル 10の上下の端面及び側面には、厚さ約 4〜5cmの被覆体が形成され ている。被覆体は、第 2合成高分子化合物 Aを含有している。
[0104] 第 2合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連 結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素ポリ マーは、分子量が約 3000のポリフエ-ルシルセスキォキサンである。第 2有機珪素 ポリマーは、分子量が約 1万のポリメチルフエ-ルシロキサンである。第 1有機珪素ポ リマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線状に連 結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、分子量 が約 4万である。そして、第 2合成高分子化合物 Aは、複数の第 3有機珪素ポリマー をアルキレン基によって連結して構成された、三次元の立体構造を有して!/、る。
[0105] モールドコイル 10は、次のようにして製作する。
まず、二次コイルと一次コイルとを製作する。なお、一次コイルと二次コイルとの間に は、両者間の絶縁を保っためにポリイミド榭脂等で構成された混触防止板が設けら れている。次に、両コイルを、断面が略長円形の筒状の金型(図示せず)内に挿入す る。このとき、金型の寸法は、金型と一次コイルとの間に 4〜5cmの隙間ができるよう に、設定されている。次に、金型を真空チャンバ一に入れ、真空チャンバ一内の空気 を抜いて低圧とし、第 2合成高分子化合物 Aを、金型内の隙間に、すなわち、金型と 一次コイルとの間及び両コイルの間に、流し込む。次に、金型と両コイルを 60°C程度 の温度に加熱し、第 2合成高分子化合物 Aの粘度を下げて、所定時間保持し、第 2 合成高分子化合物 Aを上記隙間に十分に行き渡らせる。次に、金型と両コイルを約 2 00°Cに加熱して所定時間保持し、第 2合成高分子化合物 Aを硬化させる。硬化後、 両コイルを金型力 取り出し、型枠を除去する。これにより、一次及び二次の両コイル が被覆されて、両コイルと被覆体と力もなるモールドコイル 10が得られる。
[0106] ところで、両コイル全体を約 4〜5cmの肉厚で気泡ゃボイドや隙間がないように覆う ためには、第 2合成高分子化合物 Aの粘度を適切に調節することが重要である。合 成高分子化合物 Aの粘度が高すぎると、合成高分子化合物 Aが金型内に十分に行 き渡ららず、両コイルと被覆体との間に隙間ができることがある。逆に、合成高分子化 合物 Aの粘度を低くするために、その重量平均分子量を過度に小さくすると、耐熱性 が低下する。し力るに、第 2合成高分子化合物 Aにおいては、耐熱性が高く且つ硬 化後に高温でも適度の柔軟性を維持できるように、重量平均分子量を設定して!/、る。 このような第 2合成高分子化合物 Aの粘度は約 1万 cpである。しかし、粘度は温度に 強く依存するので、本実施形態では、製作の際に、第 2合成高分子化合物 Aを、上 記のようにー且 60°Cに加熱することによって、 3000〜5000cp程度の低い粘度とし 、それを約 3時間維持し、金型内の上記隙間に十分に行き渡らせた後に、 200°Cに 加熱して硬化させている。
[0107] 本実施形態のモールド変圧器 20の作動を、従来のモールド変圧器とは異なる特徴 的な点に着目して、以下に説明する。なお、従来のモールド変圧器では、銅線がェ ポキシ榭脂系ワニスで被覆されており、被覆体がエポキシ榭脂で構成されており、そ の他が本実施形態のモールド変圧器 20と同じである。
[0108] 本実施形態のモールド変圧器 20は、同一規格の従来のモールド変圧器に比して、 定格電流及び短絡電流を約 1. 6倍にすることができた。そして、その状態で本実施 形態のモールド変圧器 20を動作させると、モールドコイル 10の温度がかなり上昇す るが、電気的機械的な異常は生じな力つた。これは、第 2合成高分子化合物 Aが、 4 10°Cという高い 5重量%減少温度を有しており、し力も、高温でも柔軟性を維持でき るカゝらである。
[0109] モールドコイル 10の温度が上昇すると、鉄心 15の温度も上昇する力 鉄心 15の鉄 損は、温度が高くなると減少するので、本実施形態のモールド変圧器によれば、変換 効率を増大できるという効果も得ることができた。
[0110] 従来のモールド変圧器の場合の 1. 5倍の短絡電流によって、本実施形態のモー ルド変圧器 20の一次及び二次コイルの温度は、 340°C近くまで上昇すると推測され る。しかし、この程度の温度では両コイル周辺の第 2合成高分子化合物 Aは劣化しな いので、本実施形態のモールド変圧器 20は、高耐電圧を維持することができた。 [0111] また、第 2合成高分子化合物 Aは、 340°C近くの高温でも高い柔軟性を維持できる 。したがって、第 2合成高分子化合物 Aは、一次コイルと二次コイルとの間に生じる電 磁的な反発力を吸収することができた。それ故、モールド変圧器 20の被覆体には、 クラックが生じなかった。
[0112] 本実施形態のモールド変圧器 20は、効率が 98. 2%、電圧変動率が 1. 7%、無負 荷電流が 3. 5%、短絡インピーダンスが 4. 5%であり、高い特性を発揮できた。
[0113] また、本実施形態のモールド変圧器 20は、交流耐電圧印加試験、雷パルス試験、 及び信頼性試験等においても、従来のモールド変圧器と同等以上の結果を得ること ができた。
[0114] 以上のように、本実施形態のモールド変圧器 20は、従来のモールド変圧器に比し て、耐熱性が高ぐ略同形状の従来のモールド変圧器に比して、他の特性を損ねる ことなぐ定格電流すなわち定格容量を約 1. 6倍に増大できた。
[0115] (第 5実施形態)
本実施形態は、第 4実施形態と同じ構成を有するモールド変圧器であるが、本実施 形態では、次の点が第 4実施形態とは異なっており、その他は第 4実施形態と同じで ある。
[0116] すなわち、モールドコイル 10の一次コイル力 螺旋状に巻かれた銅線と、絶縁テー プとで、構成されている。銅線自体は、被覆されていないものである。絶縁テープは、 一次コイルにおいて隣接する銅線の間に、隣接する銅線同士を絶縁するよう、銅線 に沿って、設けられている。銅線と絶縁テープとは、重ねた状態で螺旋状に巻かれて いる。絶縁テープは、銅線より少し大きな幅を有しており、銅線の両側縁から各々少 しだけ (例えば約 2mm)はみ出すように巻かれている。すなわち、絶縁テープは、銅 線からのはみ出し部分を有して 、る。
[0117] そして、絶縁テープは、第 1合成高分子化合物 Aを含有したフィルムで形成されて いる。第 1合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを 連結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素 ポリマーは、分子量が約 1600のポリフエ-ルシルセスキォキサンである。第 2有機珪 素ポリマーは、分子量が約 2. 5万のポリメチルフエ-ルシロキサンである。第 1有機珪 素ポリマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線状 に連結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、分 子量が約 6万である。そして、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポリ マーをアルキレン基によって連結して構成された、三次元の立体構造を有して!/ヽる。
[0118] モールドコイル 10の二次コイルも、一次コイルと同じぐ螺旋状に巻かれた銅線と、 第 1合成高分子化合物 Aを含有した絶縁テープとで、構成されて!ヽる。
[0119] 本実施形態においても、第 4実施形態と同様の作用効果を発揮できる。
[0120] 本実施形態は、銅線が幅広の断面平板形状を有する場合に、特に有効に適用で きる。
[0121] (第 6実施形態)
本実施形態は、第 5実施形態と同じ構成を有するモールド変圧器であるが、本実施 形態では、銅線に絶縁テープが銅線の表面が露出しないように巻き付けられており、 更に、絶縁テープが巻き付けられた銅線が螺旋状に巻かれて、モールドコイル 10の 一次コイル及び二次コイルが構成されており、その他は第 5実施形態と同じである。
[0122] 本実施形態においても、第 5実施形態と同様の作用効果を発揮できる。
[0123] 本実施形態は、銅線が断面丸形形状や幅狭の断面平板形状を有する場合、更に は、銅線が太くて一次及び二次コイルが大型である場合に、特に有効に適用できる。
[0124] (第 7実施形態)
本実施形態は、第 4実施形態と同じ形態を有するモールド変圧器であるが、本実施 形態では、被覆体を構成する第 2合成高分子化合物 Aが絶縁性セラミックス微粒子 を含有している。
[0125] 絶縁性セラミックスとしては、窒化アルミニウムを用いて 、る。窒化アルミニウム微粒 子は、約 2 mの粒径を有しており、約 48%volの体積充填率で第 2合成高分子化 合物 Aに充填されている。これにより、第 2合成高分子化合物 Aは、耐熱性、耐電圧 性、及び柔軟性が殆ど損なわれることなぐ熱伝導率が約 0. 3WZmKから約 6. 7W ZmKまで増大した。
[0126] 本実施形態のモールド変圧器によれば、モールドコイル 10の被覆体の熱放散性が 、第 4実施形態の場合よりも更に向上するので、定格電流及び短絡電流を、従来の モールド変圧器の場合の約 2. 1倍にしても、特に電気的機械的な異常は生じなかつ た。
[0127] 本実施形態のモールド変圧器の、効率、無負荷電流、及び短絡インピーダンス等 の、電気的性能は、従来のモールド変圧器と殆ど同じであり、信頼性は、従来のモー ルド変圧器よりも優れて!/、た。
[0128] 以上のように、本実施形態のモールド変圧器は、第 4実施形態のモールド変圧器 に比して、熱放散性がより高ぐ略同じ形状及び寸法の従来のモールド変圧器に比 して、定格電流すなわち定格容量を更に増大することができた。
[0129] (第 8実施形態)
本実施形態は、第 3実施形態と同じ構成を有する空芯リアタトルであるが、本実施 形態では、第 1合成高分子化合物 Aの組成が第 3実施形態とは異なっており、その 他は第 3実施形態と同じである。
[0130] 第 1合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連 結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素ポリ マーは、分子量が約 1800のポリメチルフエ-ルシルセスキォキサンである。第 2有機 珪素ポリマーは、分子量が約 3万のポリジメチルフエ-ルシロキサンである。第 1有機 珪素ポリマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線 状に連結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、 分子量が約 6万である。そして、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポ リマーをアルキレン基によって連結して構成された、三次元の立体構造を有して!/、る
[0131] 本実施形態においても、第 1ないし第 3実施形態と同様の作用効果を発揮できる。
[0132] (第 9実施形態)
本実施形態は、第 4実施形態と同じ構成を有するモールド変圧器であるが、本実施 形態では、被覆膜を構成する第 1合成高分子化合物 Aの組成が第 4実施形態とは異 なっており、その他は第 4実施形態と同じである。
[0133] 第 1合成高分子化合物 Aは、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連 結してなる第 3有機珪素ポリマーを、複数連結して構成されている。第 1有機珪素ポリ マーは、分子量が約 1800のポリメチルフエ-ルシルセスキォキサンである。第 2有機 珪素ポリマーは、分子量が約 3万のポリジメチルフエ-ルシロキサンである。第 1有機 珪素ポリマーと第 2有機珪素ポリマーとは、シロキサン結合によって、交互に且つ線 状に連結されて、第 3有機珪素ポリマーを構成している。第 3有機珪素ポリマーは、 分子量が約 6万である。そして、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポ リマーをアルキレン基によって連結して構成された、三次元の立体構造を有して!/、る
[0134] 本実施形態においても、第 4実施形態と同様の作用効果を発揮できる。
[0135] (第 10実施形態)
本実施形態は、高温環境下で使用される大型産業機械の、配線用絶縁電線に使 用される、高耐熱導線である。高温環境とは、例えば、溶鉱炉、鍛造装置、圧延機等 の、近傍の環境等を言う。大型産業機械としては、例えば、電動走行クレーン等があ る。
[0136] 使用電圧は、交流 600Vである。本実施形態の高耐熱導線は、銅線と、銅線を被 覆した被覆膜と、力もなつている。銅線は、ニッケルメツキされており、約 4mmの直径 を有している。被覆膜は、約 1. Ommの厚さを有している。
[0137] 被覆膜は、合成高分子化合物 Aを含有している。合成高分子化合物 Aは、第 1有 機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを、複 数連結して構成されている。第 1有機珪素ポリマーは、分子量が約 2000のポリメチ ルフエ二ルシルセスキォキサンである。第 2有機珪素ポリマーは、分子量が約 1万の ポリジメチルフエニルシロキサンである。第 1有機珪素ポリマーと第 2有機珪素ポリマ 一とは、シロキサン結合によって、交互に且つ線状に連結されて、第 3有機珪素ポリ マーを構成している。第 3有機珪素ポリマーは、分子量が約 5万である。そして、合成 高分子化合物 Aは、複数の第 3有機珪素ポリマーをアルキレン基によって連結して構 成された、三次元の立体構造を有している。
[0138] 本実施形態の高耐熱導線は、被覆膜を、銅線の外周に押し出し成形して約 220°C の高温窒素ガス中で硬化させて、作製する。
[0139] 本実施形態の高耐熱導線は、 20°Cでの導体抵抗が 1. 38 Ω /km,絶縁抵抗が 5 5Μ Ω 'kmであり、良好な特性を発揮できた。
[0140] また、本実施形態の高耐熱導線は、被覆膜が合成高分子化合物 Aを含有して ヽる ので、被覆膜が架橋ポリエチレン力もなつている通常の絶縁電線に比して、次のよう な特性を発揮できた。すなわち、柔軟性に富み、配線時の屈曲にフレキシブルに対 応でき、したがって、被覆膜にクラック等が発生しない。また、耐熱性に富み、従来の 絶縁電線では実現できな力つた 280°Cでの連続使用を達成できた。また、 410°Cで あっても、間欠的使用であれば、熱分解が殆ど発生せず、十分耐えることができた。 また、コロナ放電に対する耐性も、大幅に向上できた。更に、銅線と被覆膜との密着 性が良いので、高い耐湿性を達成でき、信頼性を向上できた。
[0141] また、合成高分子化合物 Aが、紫外線及び可視光線に対する高!ヽ透過性を有して V、るので、導線の被覆工程にお!ヽて気泡ゃボイド等の存在を容易に光学的に検出 することができる。したがって、生産性を向上でき、また、使用時の導線の劣化状況を 、 目視ゃ光学装置によって非破壊的に容易に観察でき、メンテナンスを著しく容易に 実行することができる。
[0142] (第 11実施形態)
本実施形態は、第 10実施形態と同じ構成を有する高耐熱導線であるが、本実施形 態では、被覆膜を構成する合成高分子化合物 Aが絶縁性セラミックス微粒子を含有 している。
[0143] 絶縁性セラミックスとしては、窒化アルミニウムを用いて 、る。窒化アルミニウム微粒 子は、約 0. 3 mの粒径を有しており、約 25%volの体積充填率で合成高分子化合 物 Aに充填されている。
[0144] 本実施形態の高耐熱導線によれば、合成高分子化合物 Aが窒化アルミニウム微粒 子を含有しているので、熱伝導性を向上でき、第 10実施形態に比して電流容量を約 18%増大できた。更に、窒化アルミニウム微粒子力 インバータサージ等の部分放 電による被覆膜の劣化の進展を抑制できるので、第 10実施形態に比して絶縁破壊 時間を約 10倍以上長くでき、絶縁破壊寿命を大幅に改善できた。
[0145] (第 12実施形態)
本実施形態は、高温環境下で使用される大型産業機械の、給電用ケーブルに使 用される、高耐熱導線である。高温環境とは、例えば、溶鉱炉、鍛造装置、圧延機等 の、近傍の環境等を言う。
[0146] 使用電圧は、交流 3. 3kVである。本実施形態の高耐熱導線は、銅線と、銅線を被 覆した被覆膜と、力もなつている。銅線は、ニッケルメツキされており、約 5mmの直径 を有している。被覆膜は、 3層構造を有しており、内層である第 1被覆膜と、中層であ る薄い半導電膜と、外層である第 2被覆膜と、カゝらなっている。第 1被覆膜は、約 2. 5 mmの厚さを有している。第 2被覆膜は、約 1. 5mmの厚さを有している。
[0147] 第 1被覆膜は、第 1合成高分子化合物 Aを含有している。第 1合成高分子化合物 A は、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリ マーを、複数連結して構成されている。第 1有機珪素ポリマーは、分子量が約 1500 のポリメチルフエ二ルシルセスキォキサンである。第 2有機珪素ポリマーは、分子量が 約 1万のポリジメチルフエ-ルシロキサンである。第 1有機珪素ポリマーと第 2有機珪 素ポリマーとは、シロキサン結合によって、交互に且つ線状に連結されて、第 3有機 珪素ポリマーを構成している。第 3有機珪素ポリマーは、分子量が約 4万である。そし て、第 1合成高分子化合物 Aは、複数の第 3有機珪素ポリマーをアルキレン基によつ て連結して構成された、三次元の立体構造を有している。
[0148] 第 2被覆膜は、第 2合成高分子化合物 Aを含有して ヽる。第 2合成高分子化合物 A は、第 1有機珪素ポリマーと第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリ マーを、複数連結して構成されている。第 1有機珪素ポリマーは、分子量が約 4000 のポリメチルフエ二ルシルセスキォキサンである。第 2有機珪素ポリマーは、分子量が 約 2万のポリジメチルフエ-ルシロキサンである。第 1有機珪素ポリマーと第 2有機珪 素ポリマーとは、シロキサン結合によって、交互に且つ線状に連結されて、第 3有機 珪素ポリマーを構成している。第 3有機珪素ポリマーは、分子量が約 8万である。そし て、第 2合成高分子化合物 Aは、複数の第 3有機珪素ポリマーをアルキレン基によつ て連結して構成された、三次元の立体構造を有している。
[0149] 本実施形態の高耐熱導線は、第 1被覆膜、半導電膜、及び第 2被覆膜を、銅線の 外周に押し出し成形して約 200°Cの高温窒素ガス中で硬化させて、作製する。
[0150] 本実施形態の高耐熱導線は、 20°Cでの導体抵抗が 0. 82 Ω /km,絶縁抵抗が 2 500Μ Ω 'km、静電容量が 0. 26 μ FZkmであり、良好な特性を発揮できた。
[0151] 本実施形態の高耐熱導線は、被覆膜が第 1合成高分子化合物 A及び第 2合成高 分子化合物 Aを含有して 、るので、被覆膜が架橋ポリエチレン力もなつて 、る通常の ケーブルに比して、次のような特性を発揮できた。すなわち、柔軟性に富み、配線時 の屈曲にフレキシブルに対応でき、したがって、被覆膜にクラック等が発生しない。ま た、耐熱性に富み、従来のケーブルでは実現できな力つた 275°Cでの連続使用を達 成できた。また、 400°Cであっても、間欠的使用であれば、熱分解が殆ど発生せず、 十分耐えることができた。また、コロナ放電に対する耐性も、大幅に向上できた。更に 、銅線と被覆膜との密着性が良いので、高い耐湿性を達成でき、信頼性を向上でき た。
[0152] (第 13実施形態)
本実施形態は、第 12実施形態と同じ構成を有する高耐熱導線であるが、本実施形 態では、第 1被覆膜を構成する第 1合成高分子化合物 A及び第 2被覆膜を構成する 第 2合成高分子化合物 Aがそれぞれ絶縁性セラミックス微粒子を含有している。
[0153] 絶縁性セラミックスとしては、窒化アルミニウムを用いて 、る。窒化アルミニウム微粒 子は、約 0. 1 μ mの粒径を有しており、約 16%volの体積充填率で第 1合成高分子 化合物 A及び第 2合成高分子化合物 Aのそれぞれに充填されている。
[0154] 本実施形態の高耐熱導線によれば、第 1合成高分子化合物 A及び第 2合成高分 子化合物 Aがそれぞれ窒化アルミニウム微粒子を含有して ヽるので、熱伝導性を向 上でき、第 12実施形態に比して電流容量を約 13%増大できた。更に、窒化アルミ- ゥム微粒子が、インバータサージ等の部分放電による被覆膜の劣化の進展を抑制で きるので、第 12実施形態に比して絶縁破壊時間を約 10倍以上長くでき、絶縁破壊 寿命を大幅に改善できた。
[0155] また、第 1合成高分子化合物 A及び第 2合成高分子化合物 Aが、紫外線及び可視 光線に対する高 ヽ透過性を有して ヽるので、導線の被覆工程にお!ヽて気泡ゃボイド 等の存在を容易に光学的に検出することができる。したがって、生産性を向上でき、 また、使用時の導線の劣化状況を、目視ゃ光学装置によって非破壊的に容易に観 察でき、メンテナンスを著しく容易に行うことができる。 [0156] (別の実施形態)
本発明は、更に次に示すような構成を採用してもよい。
(1)本発明は、内鉄形又は外鉄形のいずれの変圧器にも適用できる。
(2)本発明は、単相又は三相の 、ずれの変圧器にも適用できる。
(3)本発明は、金属ケースに収納された変圧器、ケースにモールド封入された変圧 器、柱上変圧器、又は路上変圧器にも、適用できる。
(4)本発明は、定格容量において、例えば、 7万〜 22万 V級の大容量のモールド変 圧器や 10〜: LOOMW級の大容量のモールド変圧器にも、適用できる。
(5)本発明は、小型化及び軽量ィ匕に好適であるので、電車や電気自動車等の車両 用変圧器や事故時の応急用可搬型変圧器に適用することによって、大きな利点を得 ることがでさる。
(6)本発明は、空芯リアタトル以外に鉄心リアタトルにも適用できる。また、直列リアタト ル、分路リアタトル、消弧リアタトル、中性点リアタトル、直流リアタトルにも適用できる。
(7)本発明の被覆された導線、すなわち合成高分子化合物 Aで被覆された導線は、 モータ、発電機等の各種の電磁コイルを構成する場合にも使用でき、高耐熱性という 特性を発揮できる。
(8)電流トランスフォーマ(CT)や電圧トランスフォーマ (VT)等の変成器、電流測定 用のロゴスキーコイル等にも適用でき、高耐熱性と ヽぅ特性を発揮できる。
(9)絶縁性セラミックスとしては、酸ィ匕ベリリウム、アルミナ、炭化珪素、ダイヤモンド、 窒化ホウ素、又は窒化ケィ素を、用いることができる。
産業上の利用可能性
[0157] 本発明は、変圧器やリアタトルのような高耐熱電磁機器において、良好な経済性及 び省資源化を達成できるので、産業上の利用価値が大である。

Claims

請求の範囲
[1] 被覆された導線において、
導線を被覆した被覆膜が、少なくとも 1種の第 1有機珪素ポリマーと少なくとも 1種の 第 2有機珪素ポリマーとを連結してなる第 3有機珪素ポリマーを、複数連結して構成 された、合成高分子化合物 Aを含有しており、
第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、 第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有しており、 第 3有機珪素ポリマーが、第 1有機珪素ポリマーと第 2有機珪素ポリマーとをシロキ サン結合によって交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の 重量平均分子量を有しており、
合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により生成される 共有結合によって連結して構成された、三次元の立体構造を有して ヽることを特徴と する高耐熱導線。
[2] 螺旋状に巻かれた導線を有するコイルと、コイルを被覆した被覆体と、を備えた、高 耐熱電磁機器において、
コイルの隣接する導線の間に、隣接する導線同士を絶縁するよう、導線に沿って、 絶縁テープが設けられていることを特徴とする高耐熱電磁機器。
[3] 絶縁テープが、接着剤によって導線に貼り付けられている、請求項 2記載の高耐熱 電磁機器。
[4] 螺旋状に巻かれた導線を有するコイルと、コイルを被覆した被覆体と、を備えた、高 耐熱電磁機器において、
コイルが、導線と、導線を被覆する被覆膜とで、構成されており、
上記被覆膜が、少なくとも 1種の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪 素ポリマーとを連結してなる第 3有機珪素ポリマーを、複数連結して構成された、合 成高分子化合物 Aを含有しており、
第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、 第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有しており、 第 3有機珪素ポリマーが、第 1有機珪素ポリマーと第 2有機珪素ポリマーとをシロキ サン結合によって交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の 重量平均分子量を有しており、
合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により生成される 共有結合によって連結して構成された、三次元の立体構造を有して ヽることを特徴と する高耐熱電磁機器。
[5] 絶縁テープが、少なくとも 1種の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪 素ポリマーとを連結してなる第 3有機珪素ポリマーを、複数連結して構成された、合 成高分子化合物 Aを含有しており、
第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、 第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有しており、 第 3有機珪素ポリマーが、第 1有機珪素ポリマーと第 2有機珪素ポリマーとをシロキ サン結合によって交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の 重量平均分子量を有しており、
合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により生成される 共有結合によって連結して構成された、三次元の立体構造を有している、請求項 2 又は 3に記載の高耐熱電磁機器。
[6] 被覆体が、少なくとも 1種の第 1有機珪素ポリマーと少なくとも 1種の第 2有機珪素ポ リマーとを連結してなる第 3有機珪素ポリマーを、複数連結して構成された、合成高 分子化合物 Aを含有しており、
第 1有機珪素ポリマーが、シロキサン結合による橋かけ構造を有しており、 第 2有機珪素ポリマーが、シロキサン結合による線状連結構造を有しており、 第 3有機珪素ポリマーが、第 1有機珪素ポリマーと第 2有機珪素ポリマーとをシロキ サン結合によって交互に且つ線状に連結して構成されており、且つ、 2万〜 80万の 重量平均分子量を有しており、
合成高分子化合物 Aが、複数の第 3有機珪素ポリマーを付加反応により生成される 共有結合によって連結して構成された、三次元の立体構造を有している、請求項 2な いし 5のいずれか 1つに記載の高耐熱電磁機器。
[7] 絶縁テープが、導線の両側縁から僅かにはみ出しており、 被覆体が、隣接する当該はみ出し部分の間を埋めている、請求項 2、 3、 5、又は 6 に記載の高耐熱電磁機器。
[8] 第 1有機珪素ポリマーが 200〜7万の重量平均分子量を有しており、
第 2有機珪素ポリマーが 5000〜20万の重量平均分子量を有しており、 第 1有機珪素ポリマーの重量平均分子量が第 2有機珪素ポリマーの重量平均分子 量より小さい、請求項 1及び 4ないし 6のいずれか 1つに記載の高耐熱電磁機器。
[9] 合成高分子化合物 Aが、 4WZmK以上の熱伝導率を有する絶縁性セラミックス微 粒子を含有している、請求項 6記載の高耐熱電磁機器。
[10] 絶縁性セラミックス力 窒化アルミニウム、酸ィ匕ベリリウム、アルミナ、炭化珪素、ダイ ャモンド、窒化ホウ素、及び窒化ケィ素の内の少なくとも 1種類である、請求項 9記載 の高耐熱電磁機器。
[11] 絶縁性セラミックス微粒子力 0. 01〜50 mの粒径を有している、請求項 9記載 の高耐熱電磁機器。
[12] 合成高分子化合物 Aに対する絶縁性セラミックス微粒子の体積充填率が、 15%vo l〜85%volである、請求項 9記載の高耐熱電磁機器。
[13] 微粒子が、粒径の異なる複数種類の微粒子を含んでおり、それらの微粒子の粒径 比が、 1 : 1Z10〜1 : 1Z200の範囲にある、請求項 9記載の高耐熱電磁機器。
PCT/JP2006/314397 2005-07-21 2006-07-20 高耐熱導線及び高耐熱電磁機器 WO2007010988A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526049A JPWO2007010988A1 (ja) 2005-07-21 2006-07-20 高耐熱導線及び高耐熱電磁機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-211577 2005-07-21
JP2005211577 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007010988A1 true WO2007010988A1 (ja) 2007-01-25

Family

ID=37668860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314397 WO2007010988A1 (ja) 2005-07-21 2006-07-20 高耐熱導線及び高耐熱電磁機器

Country Status (2)

Country Link
JP (1) JPWO2007010988A1 (ja)
WO (1) WO2007010988A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018812A1 (ja) * 2011-08-01 2013-02-07 矢崎総業株式会社 ワイヤハーネス
KR20150056771A (ko) * 2012-09-14 2015-05-27 마그네틱 컴포넌츠 스웨덴 에이비 최적의 인덕터
EP3364432A1 (en) * 2017-02-21 2018-08-22 ABB Schweiz AG Fire protection of a dry power transformer winding
KR102582104B1 (ko) * 2023-08-18 2023-09-22 주식회사 케이피 일렉트릭 고열전도성 절연 수지 조성물을 적용한 변압기 권선의구조 및 제조방법
JP7482763B2 (ja) 2020-11-30 2024-05-14 日本特殊陶業株式会社 コイル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117914A (ja) * 1988-06-24 1990-05-02 Somar Corp エポキシ樹脂組成物
JPH07106161A (ja) * 1993-02-18 1995-04-21 Toshiba Corp 静止誘導機器
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117914A (ja) * 1988-06-24 1990-05-02 Somar Corp エポキシ樹脂組成物
JPH07106161A (ja) * 1993-02-18 1995-04-21 Toshiba Corp 静止誘導機器
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018812A1 (ja) * 2011-08-01 2013-02-07 矢崎総業株式会社 ワイヤハーネス
US9390837B2 (en) 2011-08-01 2016-07-12 Yazaki Corporation Wire harness
KR20150056771A (ko) * 2012-09-14 2015-05-27 마그네틱 컴포넌츠 스웨덴 에이비 최적의 인덕터
CN104823251A (zh) * 2012-09-14 2015-08-05 磁性元件瑞典公司 最佳电感器
JP2015532011A (ja) * 2012-09-14 2015-11-05 マグネティック コンポネンツ スウェーデン アクチエボラグMagnetic Components Sweden AB 最適なインダクタ
CN104823251B (zh) * 2012-09-14 2018-08-24 磁性元件瑞典公司 电感器
KR102122813B1 (ko) * 2012-09-14 2020-06-18 콤시스 에이비 최적의 인덕터
US10734145B2 (en) 2012-09-14 2020-08-04 Comsys Ab Optimal inductor
EP3364432A1 (en) * 2017-02-21 2018-08-22 ABB Schweiz AG Fire protection of a dry power transformer winding
JP7482763B2 (ja) 2020-11-30 2024-05-14 日本特殊陶業株式会社 コイル
KR102582104B1 (ko) * 2023-08-18 2023-09-22 주식회사 케이피 일렉트릭 고열전도성 절연 수지 조성물을 적용한 변압기 권선의구조 및 제조방법

Also Published As

Publication number Publication date
JPWO2007010988A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4339267B2 (ja) 高耐熱電力用静止機器
US4760296A (en) Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors
AU729780B2 (en) Electromagnetic device
US11228215B2 (en) System of a conductor disposed within an insulator
CN101039049A (zh) 旋转电机的定子绕组以及用于制造这种定子绕组的方法
WO2013133334A1 (ja) 絶縁ワイヤ、電気機器及び絶縁ワイヤの製造方法
US10796814B2 (en) Insulated winding wire with conformal coatings
JP2009118719A (ja) 電気絶縁材として用いられる非線形誘電体
WO2007010988A1 (ja) 高耐熱導線及び高耐熱電磁機器
JP4530927B2 (ja) 高耐熱フィルムコンデンサ
JP2000510316A (ja) 大型電気機械の導体巻線構造
CN104185876B (zh) 旋转机械用的绝缘材料
WO2013054738A1 (ja) 重層コ-トの電気絶縁電線
US11145455B2 (en) Transformer and an associated method thereof
CN112564364B (zh) 一种高压电机的绝缘结构
EP3096442B1 (en) Dynamo-electric machine
JP2007200986A (ja) 電磁コイル、その製造方法および回転電機
KR102290141B1 (ko) 절연성 및 방열성이 우수한 각형 권선의 제조방법
EP3544032B1 (en) Transformer with gel composite insulation
CN1326157C (zh) 耐电晕的导线
CN109643604B (zh) 用于绕组的高压电缆以及包括该电缆的电磁感应装置
CN107644731B (zh) 包含绝缘材料的电力变压器和制造这种变压器的方法
JP2008091034A (ja) 高耐熱導線及び高耐熱電磁機器
US20220247288A1 (en) Small-fraction nanoparticle resin for electric machine insulation systems
EP3364432A1 (en) Fire protection of a dry power transformer winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007526049

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768325

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)