WO2007009927A1 - Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial - Google Patents

Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial Download PDF

Info

Publication number
WO2007009927A1
WO2007009927A1 PCT/EP2006/064178 EP2006064178W WO2007009927A1 WO 2007009927 A1 WO2007009927 A1 WO 2007009927A1 EP 2006064178 W EP2006064178 W EP 2006064178W WO 2007009927 A1 WO2007009927 A1 WO 2007009927A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst material
catalysts
hydrogenation
dehydrogenation
Prior art date
Application number
PCT/EP2006/064178
Other languages
English (en)
French (fr)
Inventor
Christian Walsdorff
Christophe Houssin
Gerald Vorberg
Reinhard KÖRNER
Otto Hofstadt
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US11/996,372 priority Critical patent/US8003837B2/en
Priority to EP06792498A priority patent/EP1919614A1/de
Priority to JP2008521945A priority patent/JP4934134B2/ja
Publication of WO2007009927A1 publication Critical patent/WO2007009927A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a catalyst for the dehydrogenation or hydrogenation of hydrocarbons containing 10 to 70 wt .-% ground, secondary catalyst material of a used (de) hydrogenation catalyst containing iron oxide and 30 to 90 wt .-% of the corresponding fresh catalyst material containing iron oxide, wherein the iron oxide of fresh catalyst material predominantly in the form of hematite or potassium ferrite phases. Furthermore, the invention relates to a process for the preparation of the catalyst according to the invention. Furthermore, the invention relates to a process for the dehydrogenation or hydrogenation of hydrocarbons using the catalyst according to the invention.
  • DD 268 631 A1 describes dehydrogenation catalysts, wherein the catalysts
  • Waste 1 and 2 arise, for example, in the production of pigments for data carriers due to the high quality requirements with regard to the magnetic properties.
  • a conversion of about 40% with a selectivity of about 92% is achieved in the dehydrogenation of ethylbenzene to styrene.
  • WO 94/11104 discloses a process for the preparation of iron, potassium and cerium containing dehydrogenation catalysts from such used catalysts by milling the used material, optionally cleaning, restoring the original effect by adjusting the composition and restoring the external form by adding the ground used Material is added to an effective amount of potassium and such an amount of cerium, so that the total amount of cerium is higher than the original amount.
  • the used material is calcined prior to grinding in the presence of oxygen.
  • the process described dehydrogenation catalysts are obtained which in the dehydrogenation of ethylbenzene to styrene at a conversion of 70% reach a selectivity of 94 to 95%.
  • DE 103 05 650 A1 describes the regeneration of mixed oxide catalysts which are used in the ammoxidation for the preparation of nitriles.
  • the deactivated catalyst is optionally ground and calcined at 300 to 900 0 C under sow erstoff.
  • the described (de) hydrogenation catalysts are typically offered in the form of strands, rings, tablets, ring tablets, extrudates, honeycomb bodies or similar shaped bodies.
  • the active composition of the catalysts mentioned contains predominantly metals selected from the group consisting of iron, alkali compounds, in particular potassium, molybdenum, magnesium, calcium, cerium, tungsten, titanium, vanadium, copper, manganese, nickel, zinc, palladium, platinum, cobalt, aluminum , Tin, silicon, lead, ruthenium, silver, gold, zirconium, rhodium, lanthanum, chromium, cadmium or barium.
  • the fresh feedstocks in the form of metal oxides, nitrates, carbonates, hydroxides or the like are mixed directly in a mixer, kneader or MixMuller. Furthermore, the starting materials can also be slurried in a spray mixture and processed in a spray dryer into a spray powder. The extrudable mass is then extruded, dried and calcined.
  • the fresh starting materials are obtained via precipitation reactions, processed in a spray dryer into a spray powder, calcined and deformed, or first deformed and then calcined.
  • the catalyst When a catalytic converter is operated after a period of typically two to five years in a technical plant, such as isoprene, butadiene or styrene Plant, the catalyst has undergone a number of changes.
  • the removed catalyst usually has iron oxide in a reduced form, ie as magnetite.
  • Part of the catalysts removed is usually depleted of potassium compounds, while in other areas, in particular in the interior of the shaped catalyst body, an accumulation of potassium compounds may also be present in the form of separate deposits between the catalyst strands.
  • the potassium is typically in the form of potassium carbonate or potassium bicarbonate.
  • the degraded catalysts usually have virtually no organic hydrocarbons or coke deposits, ie carbon, which is not present as carbonate or bicarbonate on.
  • the Cerkistallitility the expansion catalysts is about 40 to 60 nm.
  • the shaped catalyst bodies are often damaged by the mechanical stresses during installation, operation and removal. Furthermore, the catalyzed catalyst may contain a high proportion of dust or debris.
  • the catalysts prepared using secondary catalyst material should have comparable properties, in particular with regard to activity, selectivity and, in particular, mechanical hardness, as are the catalysts of the prior art.
  • the secondary catalyst material should be directly usable without the addition of doping elements.
  • the invention relates to catalysts for the dehydrogenation or hydrogenation of hydrocarbons containing 10 to 70 wt .-% ground, secondary catalyst material of a used (de) hydrogenation catalyst containing iron oxide and 30 to 90 wt .-% of the corresponding fresh catalyst material containing iron oxide, wherein the iron oxide of the fresh catalyst material is present predominantly in the form of hematite or potassium ferrite phases.
  • secondary catalyst material is understood in the present invention to be used / used / deactivated, optionally treated catalyst material, and the secondary catalyst material has thus already been incorporated into a chemical plant which operates the chemical plant for a period of several days to several years
  • the secondary catalyst material was operated for a typical lifetime of (de) hydrogenation catalysts of 1 to 3 years.
  • the secondary catalyst material advantageously has no organic hydrocarbons or coke deposits.
  • such deposits should advantageously constitute less than 2% by weight, preferably less than 1% by weight, in particular less than 0.1% by weight, based on the secondary catalyst material.
  • a small amount of deposits can be achieved by a special shutdown of the isoprene, butadiene or styrene plant known to those skilled in the art.
  • the temperature is lowered to 580 to 610 0 C when shutting down a system.
  • the ethylbenzene feed is reduced to give a steam / ethylbenzene weight ratio of at least 2/1.
  • the temperature is lowered further to 550 to 575 ° C and at the same time the ethylbenzene feed is gradually reduced and finally switched off.
  • the nitrogen cycle is switched on and the temperature continues to be countersunk to a minimum of 360 0 C, preferably from 400 0 C.
  • the temperature is lowered to 50 0 C under nitrogen. At least 30 0 C, preferably at about 50 0 C controlled air is added.
  • thermocouples which detect local temperature increases, ie re-oxidation. If no temperature increases can be detected, then the further addition of air can take place until no further temperature increases are more noticeable. Finally, it is cooled with air and nitrogen or only with air.
  • the recovered secondary catalyst material is subjected to a thermal treatment under oxygen-containing atmosphere prior to reuse.
  • the thermal treatment is advantageously carried out at temperatures of 100 to 1500 0 C, preferably from 300 to 1200 0 C, more preferably from 500 to 1000 0 C, further preferably from 700 to 1000 0 C and in particular from 850 to 1000 0 C, performed.
  • the thermal treatment is carried out for a period of 30 minutes to 10 hours, preferably for a period of 1 to 3 hours.
  • the iron is advantageously present after the thermal treatment substantially in the form of hematite, magnetite and potassium ferrite phases.
  • the secondary catalyst material therefore advantageously has iron predominantly in the form of Hematite and magnetite, where x is advantageously between 1 and 11 and y is advantageously between 2 and 17.
  • Preferred potassium ferrite phases are K2FeioOi6 and KFeÜ2.
  • the iron oxide is advantageously present at 15 to 85% by weight, based on the sum of the iron oxides, in the form of K 2 Fe x O y , advantageously from 20 to 60% by weight.
  • the remaining iron oxides are advantageously present as hematite and / or magnetite.
  • the secondary catalyst material advantageously has a cerium crystallite size of 15 to 90 nm, preferably 40 to 60 nm.
  • oxygen-containing gas air is preferably used.
  • their composition may vary within the limits known to those skilled in the art. Particular preference is given to using lean air.
  • the thermal treatment may be carried out batchwise or continuously in various apparatuses, for example in ovens or rotary kilns. Preferably, the thermal treatment is carried out continuously in rotary tubes. In particular, in heavily pulverized or powder-containing expansion catalyst, it may be useful to carry out the calcination in a rotary kiln equipped with knockers. Furthermore, the oxidative treatment may also be carried out prior to the removal of the secondary catalyst material directly in the production plant.
  • the secondary catalyst material is advantageously ground, if appropriate after a thermal treatment, in suitable mills.
  • the material can be comminuted, for example, with a spiral jet mill.
  • the grinding gas pressure during grinding is typically 1 to 10 bar.
  • the grinding throughput is usually at 1 to 30 kg / h.
  • the mean particle diameters have a value in the range from 1 to 700 ⁇ m, preferably 5 to 500 ⁇ m, in particular 10 to 200 ⁇ m.
  • the milled secondary catalyst powder can then be used for the preparation of new catalysts.
  • the catalyst according to the invention advantageously contains 15 to 70% by weight ground, secondary catalyst material, based on the total catalyst material, and 30 to 85% by weight of the corresponding fresh catalyst material, based on the Total catalyst material, preferably 25 to 65 wt .-% ground, secondary catalyst lysatormaterial and 35 to 75 wt .-% of the corresponding fresh catalyst matrials, in particular 35 to 55 wt .-% ground, secondary catalyst material and 45 to 65 parts by weight. % of the corresponding fresh catalyst material.
  • the catalyst according to the invention advantageously contains exclusively secondary and fresh catalyst material in the stated ratios.
  • the bulk density of the catalyst according to the invention is advantageously 1.2 to 2 kg / l, in particular 1.3 to 1.7 kg / l.
  • the shaking weight is advantageously 1 to 1.7 kg / l, in particular 1.1 to 1.5 kg / l.
  • the catalytic composition of the fresh feeds corresponds to the catalytic composition known in the art for (de) hydrogenation catalysts.
  • the amount and the typical composition of the fresh feedstock can be changed.
  • the catalysts according to the invention advantageously contain starting materials in the form of oxides, nitrates, carbonates, hydroxides and the like, preferably in the form of oxides, in particular iron, preferably as iron oxide, advantageously in an amount of 40 to 90 wt .-% based on the sum of all starting materials , Furthermore, the catalysts of the invention advantageously contain alkali metal compound (s), preferably potassium compound (s) such as potassium oxide, suitably in an amount of 1 to 40 wt .-% based on the sum of all starting materials. Typically, the catalysts of the invention advantageously contain a number of promoters, depending on their field of use.
  • the catalyst according to the invention is particularly suitable for the dehydrogenation of hydrocarbons which have at least one saturated functional group, for example alkenes to the corresponding 1,3-alkadienes, preferably alkylaromatic compounds to the corresponding alkenylaromatic compounds.
  • Suitable alkylaromatic compounds are all aromatic and heteroaromatic alkyl compounds, preferred are those in which the alkyl radical is unbranched or branched and contains two to six carbon atoms.
  • Suitable aromatic radicals are mono-, di- or trinuclear, preferably mono- or binuclear, particularly preferably monocyclic aromatics.
  • isopropylbenzene cumene
  • ethylbenzene 1,1-diphenylbenzene and 1,2-diphenylethane
  • bibenzyl preferably isopropylbenzene (cumene), ethylbenzene and 1,1-diphenylbenzene, particularly preferably ethylbenzene.
  • heteroaromatic radicals are mono-, di- or trinuclear, preferably one or two- Ruminent, particularly preferably mononuclear, five-membered heteroaromatic compounds having one to three nitrogen atoms and / or one oxygen or sulfur atom, mono-, di- or trinuclear, preferably mononuclear or dinuclear, particularly preferably mononuclear, six-membered heteroaromatic compounds having one to three nitrogen atoms as heteroatoms, in particular pyridines, such as 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine and 5-ethyl-2-methylpyridine, preferably 2-ethylpyridine and 5-ethyl-2-methylpyridine.
  • pyridines such as 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine and 5-ethyl-2-methylpyridine, preferably 2-ethylpyridine and 5-ethyl-2-methylpyridine.
  • Suitable promoters for the catalysts according to the invention are, in addition to cerium compounds, compounds of calcium, magnesium, molybdenum, tungsten, chromium and titanium.
  • Vanadium, copper, manganese, nickel, zinc, palladium, platinum, cobalt, aluminum, tin, silicon, lead, ruthenium, silver, gold, zirconium, rhodium, lanthanum, chromium, cadmium, barium or mixtures thereof are also suitable as further promoters .
  • Copper oxide corresponding to 0 - 80 wt .-% CuO, aluminum corresponding to 0 - 80 wt .-% Al2O3 and iron, corresponding to 0 - 90 wt .-% Fe 2 O 3 furthermore, copper oxide corresponding to 0 - 80 wt .-% CuO, aluminum corresponding to 0 - 80 wt .-% Al2O3 and iron, corresponding to 0 - 90 wt .-% Fe 2 O 3 further
  • the dehydrogenation catalyst according to the invention particularly preferably has the following composition with respect to the sum of the fresh and secondary starting materials:
  • Iron corresponding to 40-90% by weight of Fe 2 O 3
  • potassium corresponding to 1-40% by weight as K 2 O
  • Cerium corresponding to 1-25% by weight of Ce 2 O 4 , in particular 5-15% by weight of Ce 2 O 4 , magnesium, corresponding to 0-10% by weight of MgO,
  • Vanadium corresponding to 0 - 10 wt .-% V2O5 wherein said components add up to 100 wt .-%.
  • the weight ratio of potassium (calculated as K 2 O) to iron oxide (calculated as Fe 2 U 3) is generally 0.01: 1 to 2: 1, preferably from 0.1: 1 to 1: 1.
  • the catalysts preferably contain further promoters (calculated as oxides) in a weight ratio to the iron oxide of from 0.01: 1 to 1: 1, preferably from 0.02: 1 to 0.5: 1.
  • no doping elements are added to the secondary catalyst material.
  • the invention further relates to catalyst beds which consist of at least 25% by weight of catalyst according to the invention, based on the total amount of catalyst of the corresponding catalyst bed.
  • the catalyst beds consist of at least 30% by weight, preferably at least 50% by weight, of catalysts according to the invention.
  • the catalysts of the invention may be uniformly mixed with prior art catalysts dispersed throughout the catalyst bed or concentrated at one or more locations.
  • a catalyst system consisting of several reactors, i. consists of several catalyst beds, for example, one or more reactor (s) is filled with the catalysts of the invention and the remaining reactors with the catalysts of the prior art. Preference is given to using exclusively catalysts according to the invention.
  • the invention further relates to the process for the preparation of the catalyst according to the invention, which is characterized in that secondary catalyst material of a used (de) hydrogenation catalyst is optionally calcined and then ground and then in a ratio of 1: 9 to 7: 3 with fresh starting materials of the corresponding (De) hydrogenation catalyst is mixed, deformed and calcined.
  • the secondary catalyst material prior to milling and mixing with the fresh feedstock to a thermal treatment under oxygen atmosphere at 100 stoff Anlagenr is advantageously subjected to 1500 0 C.
  • the mixing of the secondary catalyst powder with the fresh starting materials is advantageously carried out in a mixer, for example in a Mix-Müller.
  • the shaping and calcination is expediently carried out as described in the prior art (see, for example, DE-A 101 54 718).
  • the catalysts according to the invention can be used as starting materials in addition to the secondary catalyst powder compounds of the promoters, such as those present in the finished catalyst, or compounds that convert during the manufacturing process in compounds as present in the finished catalyst.
  • Auxiliaries may also be added to the starting materials in order to improve processability, mechanical strength or pore structure. Examples of such substances are potato starch, cellulose, stearic acid, graphite and / or Portland cement.
  • the starting materials can be mixed directly in a mixer, kneader or preferably a Mix-Muller.
  • the starting materials can also be slurried in a spray mixture and processed in a spray dryer into a spray powder.
  • the starting materials are preferably processed in a Mix-Muller or kneader with the addition of water to form an extrudable mass.
  • the extrudable mass is then extruded, dried and calcined.
  • Preferred catalyst forms are strands, rings, tablets, ring tablets, extrudates or honeycombs. Particular preference is given to shaped catalyst bodies or catalyst extrudates having a diameter and a height of less than or equal to 10 mm.
  • Preferred strand molds comprise catalyst spheres with a diameter of less than 6 mm or catalyst honeycomb bodies with a cell diameter of less than 5 mm or extrudates with 2 to 10 mm diameter, in particular 2.5 to 6 mm.
  • the cross-section of the extrudates may be round or in other forms.
  • Particularly preferred are extrudates with rotationally symmetrical cross-section, in particular with a diameter of 2 to 4 mm, preferably of 3 mm, and extrudates with a star-shaped or those with a gear-toothed ("toothed-wheel") cross-section, in particular with diameters of 3 to 7, preferably 3.5 mm, 4.5 mm or 6 mm.
  • the shaping of the catalysts can also be achieved by a
  • the extruded or optionally tabletted shaped catalyst bodies are then usually dried and subjected to calcination.
  • the drying is preferably carried out on a belt dryer at temperatures between 100 and 200 0 C.
  • the calcination is preferably carried out in a rotary kiln at temperatures between 500 and 1000 ° C., preferably between 700 and 1000 ° C., in particular between 800 and 950 ° C., and particularly preferably between 850 and 900 ° C.
  • carbonate-containing feedstocks convert to oxides. Potassium and iron oxides typically form mixed potassium ferrite crystal structures in the most preferred temperature range.
  • the dehydrogenation of hydrocarbons can be carried out by all methods known to those skilled in the art. Preference is given to the dehydrogenation of alkylaromatics to alkenylaromatics in adiabatic or isothermal processes, in particular in US Pat adiabatic method.
  • the reaction is usually distributed to several series-connected reactors, preferably radial flow reactors. Preferably, two to four reactors are connected in series. In each reactor is a fixed bed with dehydrogenation catalysts.
  • ethylbenzene In the dehydrogenation of ethylbenzene to styrene, as is generally practiced today in so-called adiabatic multi-stage method, is typically ethylbenzene together with water vapor, advantageously in an amount of less than 30 wt .-% based on ethylbenzene, to temperatures around 500 0 C. heated by means of a heat exchanger and mixed directly before entering the first reactor with superheated steam from a steam superheater, so that the desired inlet temperature in the first reactor is usually between 600 and 650 0 C.
  • the mass ratio of water vapor (total steam) to ethylbenzene when entering the bed of the dehydrogenation catalyst in the first reactor is advantageously 0.7: 1 to 2.5: 1. Preference is given to using a steam / ethylbenzene ratio of 0.75: 1 to 1.8: 1, in particular 0.8: 1 to 1.5: 1.
  • the process is preferably operated at reduced pressure, typical reactor pressures are in the range of 300 to 1000 mbar.
  • the preferably hollow-cylindrical catalyst beds (radial flow reactors) are flowed through from the inside to the outside.
  • the reaction mixture Before entering the next reactor, the reaction mixture is advantageously brought back to temperatures of usually 600 and 650 0 C via a heat exchanger by means of superheated steam.
  • the pressure at the outlet of the last reactor should not be more than 700 mbar, more preferably not more than 600 mbar and in particular not more than 500 mbar.
  • a bed of an oxidation catalyst with oxygen supply for combustion of a subset of the hydrogen formed in the previous reactor may be configured, as described for example in WO 2005/097715 and in the German application with WO 2006/018133.
  • the unsaturated compounds obtainable in the process according to the invention for example alkenylaromatics or 1,3-alkadienes, can advantageously be polymerized to give plastics or used as building blocks for organic-chemical syntheses.
  • the catalyst according to the invention has significantly lower production costs at a comparable activity and selectivity through the use of secondary catalyst material. Furthermore, the cost of disposal of the secondary catalyst material can be reduced.
  • Example 1 Process for the dehydrogenation of ethylbenzene
  • Example A Inventive catalyst
  • Secondary styrene catalyst strands were calcined at a temperature of 700 ° C. under an oxygen-containing atmosphere for 90 minutes.
  • the thermally treated secondary catalyst strands were milled to give a particle distribution of 1 to 700 microns. An elemental analysis was performed.
  • Magnesium corresponding to 2.1% by weight of MgO
  • Molybdenum corresponding to 2.4% by weight of MoO 3 , iron, corresponding to Fe 2 O 3 , difference to 100% by weight (calculated)
  • the catalyst powder was processed according to Example 8 of DE-A 101 54 718 into catalyst strands.
  • Example B Inventive catalyst
  • Catalyst strands according to Example 1 were prepared from secondary catalyst material, wherein the secondary catalyst material was not subjected to thermal treatment.
  • Table 1 Test conditions and results of the dehydrogenation of ethylbenzene to styrene under isothermal conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft einen Katalysator zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen enthaltend 10 bis 70 Gew.-% gemahlenes, sekundäres Katalysatormaterial eines gebrauchten (De)Hydrierkatalysators enthaltend Eisenoxid und 30 bis 90 Gew.-% des korrespondierenden frischen Katalysatormaterials enthaltend Eisenoxid, wobei das Eisenoxid des frischen Katalysatormaterials überwiegend in Form von Hämatit oder Kaliumferritphasen vorliegt. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen Katalysators. Des weiteren betrifft die Erfindung ein Verfahren zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen unter Verwendung des erfindungsgemäßen Katalysators.

Description

Katalysator zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen enthaltend sekundäres Katalysatormaterial
Beschreibung
Die Erfindung betrifft einen Katalysator zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen enthaltend 10 bis 70 Gew.-% gemahlenes, sekundäres Katalysatormaterial eines gebrauchten (De)Hydrierkatalysators enthaltend Eisenoxid und 30 bis 90 Gew.-% des korrespondierenden frischen Katalysatormaterials enthaltend Eisenoxid, wobei das Eisenoxid des frischen Katalysatormaterials überwiegend in Form von Hä- matit oder Kaliumferritphasen vorliegt. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen Katalysators. Des weiteren betrifft die Erfindung ein Verfahren zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen unter Verwendung des erfindungsgemäßen Katalysators.
Die Regenerierung von sekundärem Katalysatormaterial ist seit Jahren in der chemischen Industrie von besonderem Interesse, da die Wiederverwendung eine Ressourcen- und Kosteneinsparung in sich birgt.
Auf dem Gebiet der Dehydrierkatalysatoren findet sich folgender Stand der Technik:
DD 268 631 A1 beschreibt Dehydrierkatalysatoren, wobei die Katalysatoren aus
50 bis 90 Teilen Abfalleisenoxiden mit der Zusammensetzung 10 bis 40 % Magnetit, 50 bis 80 % Goethit und 10 bis 30 % Lepidocrocit (Abfall 1), 1 bis 20 Teilen Abfalleisen- oxiden mit der Zusammensetzung 85 bis 95 % Magnetit (Abfall 2) und 5 bis 15 %
Wüstit und 49 bis 10 Teile gemahlenen Styrenaltkatalysator bestehen. Eine thermische Behandlung der gemahlenen Altkatalysatoren wird nicht beschrieben; dieser wird vor der Weiterverarbeitung lediglich mit den anderen Abfällen gemischt. Abfall 1 und 2 entsteht beispielsweise bei der Produktion von Pigmenten für Datenträger aufgrund der hohen qualitativen Anforderungen bezüglich der magnetischen Eigenschaften. Mit dem beschriebenen Dehydrierkatalysator wird bei der Dehydrierung von Ethylbenzol zu Sty- rol ein Umsatz von ca. 40 % bei einer Selektivität von ca. 92 % erreicht.
WO 94/11104 offenbart ein Verfahren zur Herstellung von Eisen, Kalium und Cer ent- haltenden Dehydrierkatalysatoren aus ebensolchen gebrauchten Katalysatoren durch Vermählen des gebrauchten Materials, gegebenenfalls Reinigung, Wiederherstellen der ursprünglichen Wirkung durch Einstellen der Zusammensetzung und Wiederherstellen der äußeren Form, indem dem vermahlenen gebrauchten Material eine wirksame Menge an Kalium und eine solche Menge an Cer zugesetzt wird, so dass die Ge- samtmenge an Cer höher als die ursprünglich vorhandene Menge. Gegebenenfalls wird das gebrauchte Material vor dem Vermählen in Gegenwart von Sauerstoff kalziniert. Durch das beschriebene Verfahren werden Dehydrierkatalysatoren erhalten, die bei der Dehydrierung von Ethylbenzol zu Styrol bei einem Umsatz von 70 % eine Selektivität von 94 bis 95 % erreichen.
Auch bei anderen katalytischen Verfahren, wie beispielweise bei der Entfernung von Stickoxiden aus Verbrennungsabgasen durch Umsetzung mit Ammoniak bei erhöhter Temperatur, wird eine Regenerierung des gebrauchten Katalysatormaterials beschrieben (DE 40 06 918 A1), indem man die gebrauchten Katalysatoren auf Korngrößen von 5 bis 20 μm vermahlt und das erhaltende Pulver bei der Herstellung von Katalysatoren mit frischem Ausgangsmaterial in Mengen von bis zu 80 Gew.-%, bezogen auf das gesamte eingesetzte Material, vor der Verformung zusetzt.
In DE 103 05 650 A1 wird die Regenerierung von Mischoxidkatalysatoren, die bei der Ammonoxidation zur Herstellung von Nitrilen eingesetzt werden, beschrieben. Der deaktivierte Katalysator wird gegebenenfalls gemahlen und bei 300 bis 9000C unter Sau- erstoff kalziniert.
Im Stand der Technik sind verschiedene Katalysatoren und Verfahren zur Dehydrierung und Hydrierung von Kohlenwasserstoffen beschrieben. Die beschriebenen (De)Hydrierkatalysatoren werden typischerweise in Form von Strängen, Ringen, Tab- letten, Ringtabletten, Extrudaten, Wabenkörpern oder ähnlichen Formkörpern angeboten. Die Aktivmasse der genannten Katalysatoren beinhaltet vorwiegend Metalle ausgewählt aus der Gruppe bestehend aus Eisen, Alkaliverbindungen, insbesondere Kalium, Molybdän, Magnesium, Calcium, Cer, Wolfram, Titan, Vanadium, Kupfer, Mangan, Nickel, Zink, Palladium, Platin, Kobalt, Aluminium, Zinn, Silizium, Blei, Ruthenium, SiI- ber, Gold, Zirkonium, Rhodium, Lanthan, Chrom, Cadmium oder Barium.
Die (De)Hydrier-Katalysatoren werden in jüngerem Stand der Technik und im industriellen Maßstab allerdings nach wie vor nach folgenden Verfahren hergestellt (siehe u.a. EP-A 1 379 470):
a) Die frischen Einsatzstoffe in Form von Metalloxiden, -nitraten, -carbonate, -hydroxide oder dergleichen werden direkt in einem Mischer, Kneter oder Mix- Muller gemischt. Ferner können die Einsatzstoffe auch in einer Sprühmaische aufgeschlämmt und in einem Sprühtrockner zu einem Sprühpulver verarbeitet werden. Die extrudierbare Masse wird anschließend extrudiert, getrocknet und kalziniert. b) Die frischen Einsatzstoffe werden via Fällungsreaktionen gewonnen, in einem Sprühtrockner zu einem Sprühpulver verarbeitet, kalzinert und verformt, bzw. erst verformt und dann kalziniert.
Wenn ein Katalysator nach einer Laufzeit von typischerweise zwei bis fünf Jahren Betrieb in einer technischen Anlage, wie beispielsweise Isopren-, Butadien- oder Styrol- Anlage, ausgebaut wird, hat der Katalysator eine Reihe von Veränderungen erfahren. Der ausgebaute Katalysator weist in der Regel Eisenoxid in einer reduzierten Form, d.h. als Magnetit auf. Ein Teil der ausgebauten Katalysatoren ist in der Regel an Kaliumverbindungen verarmt, während in anderen Bereichen, insbesondere im Inneren der Katalysatorformkörper, eine Anreicherung von Kaliumverbindungen auch in Form von separaten Ablagerungen zwischen den Katalysatorsträngen vorliegen kann. Das Kalium liegt typischerweise in Form von Kaliumcarbonat oder Kaliumhydrogencarbonat vor. Die ausgebauten Katalysatoren weisen in der Regel praktisch keinerlei organische Kohlenwasserstoffe oder Koksablagerungen, d.h. Kohlenstoff, der nicht als Carbonat oder Hydrogencarbonat vorliegt, auf. Die Cerkistallitgröße der Ausbaukatalysatoren liegt bei ungefähr 40 bis 60 nm.
Die Katalysatorformkörper sind oftmals durch die mechanischen Belastungen beim Einbau, Betrieb und Ausbau geschädigt. Ferner kann der ausgebaute Katalysator ei- nen hohen Anteil von Staub oder Bruchstücken enthalten.
Aufgrund der aufgezeigten Veränderungen des sekundären Katalysatormaterials und den allgemeinen Schwierigkeiten beim Verarbeiten von sekundärem Katalysatormaterial, insbesondere beim Verstrangen, wurden bislang bei den industriellen (De)Hydrierungsverfahren überwiegend Katalysatoren eingesetzt, die aus frischen Einsatzstoffen hergestellt wurden.
Angesichts hoher Rohstoffpreise und steigender Anforderungen an die Nachhaltigkeit wirtschaftlichen Handelns stehen Verfahren zur Verwendung von Sekundär-Rohstoffen zunehmend im Fokus der chemischen Forschung. Ferner werden an die Entsorgung von gebrauchten Katalysatoren aus der chemischen Industrie zunehmend höhere Anforderungen gestellt.
Der vorliegenden Erfindung lag deshalb die Aufgabe zugrunde, ein Verfahren aufzufin- den, um Katalysatoren für bedeutsame Prozesse in der chemischen Industrie unter Verwendung von sekundärem Katalysatormaterial als Einsatzstoff herzustellen. Insbesondere war es Aufgabe der vorliegenden Erfindung, Katalysatoren enthaltend Eisenoxide unter Verwendung von sekundärem Katalysatormaterial herzustellen. Die unter Verwendung von sekundärem Katalysatormaterial hergestellten Katalysatoren sollten vergleichbare Eigenschaften insbesondere hinsichtlich der Aktivität, Selektivität und insbesondere mechanischer Härte aufweisen wie die Katalysatoren aus dem Stand der Technik. Ferner soll das sekundäre Katalysatormaterial ohne Zugabe von Dotierelementen direkt verwendbar sein.
Die Erfindung betrifft demnach Katalysatoren zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen enthaltend 10 bis 70 Gew.-% gemahlenes, sekundäres Katalysatormaterial eines gebrauchten (De)Hydrierkatalysators enthaltend Eisenoxid und 30 bis 90 Gew.-% des korrespondierenden frischen Katalysatormaterials enthaltend Eisenoxid, wobei das Eisenoxid des frischen Katalysatormaterials überwiegend in Form von Hämatit oder Kaliumferritphasen vorliegt.
Unter dem Begriff „sekundäres Katalysatormaterial" wird in der vorliegenden Erfindung bereits gebrauchtes/verwendetes/deaktiviertes, gegebenenfalls aufbereitetes Katalysatormaterial verstanden. Das sekundäre Katalysatormaterial wurde somit bereits einmal in eine chemische Anlage eingebaut, die chemische Anlage für einen Zeitraum von mehreren Tagen bis mehreren Jahren betrieben und das Katalysatormaterial wieder ausgebaut. Insbesondere wurde das sekundäre Katalysatormaterial für eine typische Lebenszeit von (De)Hydrierkatalysatoren von 1 bis 3 Jahren betrieben.
Das sekundäre Katalysatormaterial weist vorteilhaft keine organischen Kohlenwasserstoffe oder Koksablagerungen auf. In Summe sollten solche Ablagerungen vorteilhaft weniger als 2 Gew.-%, bevorzugt weniger als 1 Gew.-%, insbesondere weniger als 0,1 Gew.-% bezogen auf das sekundäre Katalysatormaterial ausmachen.
Eine geringe Menge an Ablagerungen kann durch ein spezielles, dem Fachmann bekanntes, Herunterfahren der Isopren-, Butadien- oder Styrol-Anlage erreicht werden.
Vorteilhaft wird beim Herunterfahren einer Anlage die Temperatur auf 580 bis 6100C verringert. Anschließend wird der Ethylbenzol-Feed verringert, so dass ein Dampf/Ethylbenzol-Gewichtsverhältnis von mindestens 2/1 entsteht. Nach dem Abstellen des Vakuums wird die Temperatur weiter auf 550 bis 575°C abgesenkt und gleich- zeitige wird stufenweise der Ethylbenzol-Feed verringert und schließlich abgeschaltet. Anschließend wird der Stickstoff-Kreislauf eingeschaltet und die Temperatur weiter bis auf minimal 3600C angesenkt, bevorzugt 4000C. Nach dem Abstellen des Dampfkreislaufes wird die Temperatur unter Stickstoff auf 500C abgesenkt. Bei mindestens 300C, bevorzugt bei ca. 500C wird kontrolliert Luft zugegeben. Die Kontrolle erfolgt mit Hilfe von Thermoelemente, die lokale Temperaturerhöhungen, d.h. Re-oxidation, feststellen. Wenn keine Temperaturerhöhungen mehr erkennbar ist, dann kann die weitere Zugabe von Luft erfolgen, bis keine weiteren Temperaturerhöhungen mehr erkennbar sind. Abschließend wird mit Luft und Stickstoff oder nur mit Luft abgekühlt.
Vorteilhaft wird das ausgebaute sekundäre Katalysatormaterial vor der Neuverwendung einer thermischen Behandlung unter sauerstoffhaltiger Atmosphäre ausgesetzt. Die thermische Behandlung wird vorteilhaft bei Temperaturen von 100 bis 15000C, bevorzugt von 300 bis 12000C, besonders bevorzugt von 500 bis 10000C, ferner bevorzugt von 700 bis 10000C und insbesondere von 850 bis 10000C, durchgeführt. Zweckmäßigerweise wird die thermische Behandlung für einen Zeitraum von 30 Minuten bis 10 Stunden durchgeführt, bevorzugt für einen Zeitraum von 1 bis 3 Stunden. Das Eisen liegt nach der thermischen Behandlung vorteilhaft im wesentlichen in Form von Hämatit, Magnetit und Kaliumferritphasen vor. Das sekundäre Katalysatormaterial weist demnach vorteilhaft Eisen überwiegend in Form von
Figure imgf000007_0001
Hämatit und Magnetit auf, wobei x vorteilhaft zwischen 1 und 11 und y vorteilhaft zwischen 2 und 17 liegt. Bevorzugte Kaliumferritphasen sind K2FeioOi6 und KFeÜ2. Das Eisenoxid liegt vorteilhaft mit 15 bis 85 Gew.-%, bezogen auf die Summe der Eisenoxide, in Form von K2FexOy vor, vorteilhaft mit 20 bis 60 Gew.-%. Die restlichen Eisenoxide liegen vorteilhaft als Hämatit und/oder Magnetit vor.
Das sekundäre Katalysatormaterial weist nach der thermischen Behandlung vorteilhaft eine Cerkristallitgröße von 15 bis 90 nm, bevorzugt von 40 bis 60 nm auf.
Als sauerstoffhaltiges Gas wird bevorzugt Luft eingesetzt. Je nach Quelle, aus der die Luft stammt, kann deren Zusammensetzung im Rahmen der dem Fachmann geläufi- gen Grenzen schwanken. Besonders bevorzugt wird Magerluft verwendet.
Die thermische Behandlung kann diskontinuierlich oder kontinuierlich in verschiedenen Vorrichtungen, beispielsweise in Hordenöfen oder Drehrohren durchgeführt werden. Bevorzugt wird die thermische Behandlung kontinuierlich in Drehrohren durchgeführt. Insbesondere bei stark pulverisiertem oder pulverhaltigem Ausbau-Katalysator kann es sinnvoll sein, die Kalzination in einem mit Klopfern ausgestatteten Drehrohr durchzuführen. Ferner kann die oxidative Behandlung auch vor dem Ausbau des sekundären Katalysatormaterials direkt in der Produktionsanlage durchgeführt werden.
Das sekundäre Katalysatormaterial wird vorteilhaft, gegebenenfalls nach einer thermischen Behandlung, in geeigneten Mühlen gemahlen. Gegebenenfalls kann es von Vorteil sein, das Material zunächst vorzubrechen. Diese Vorbrechung kann beispielsweise in Daumenbrecher oder Hammermühlen mit beispielsweise einem 3 mm Quadratloch- Sieb bei beispielsweise 3000 Umdrehungen pro Minute erfolgen. Anschließend kann das Material beispielsweise mit einer Spiralstrahlmühle endzerkleinert werden. Das Mahlgasdruck beträgt beim Zermahlen typischerweise 1 bis 10 bar. Der Mahldurchsatz liegt in der Regel bei 1 bis 30 kg/h.
Die mittleren Partikeldurchmesser weisen einen Wert im Bereich von 1 bis 700 μm auf, bevorzugt 5 bis 500 μm, insbesondere 10 bis 200 μm.
Das gemahlene sekundäre Katalysatorpulver kann anschließend für die Herstellung von neuen Katalysatoren verwendet werden.
Der erfindungsgemäße Katalysator enthält vorteilhaft 15 bis 70 Gew.-% gemahlenes, sekundäre Katalysatormaterial, bezogen auf das Gesamtkatalysatormaterial, und 30 bis 85 Gew.-% des korrespondierenden frischen Katalysatormaterials, bezogen auf das Gesamtkatalysatormaterial, bevorzugt 25 bis 65 Gew.-% gemahlenes, sekundäre Kata- lysatormaterial und 35 bis 75 Gew.-% des korrespondierenden frischen Katalysatorma- terials, insbesondere 35 bis 55 Gew.-% gemahlenes, sekundäre Katalysatormaterial und 45 bis 65 Gew.-% des korrespondierenden frischen Katalysatormaterials.
Der erfindungsgemäße Katalysator enthält vorteilhaft ausschließlich sekundäres und frisches Katalysatormaterial in den genannten Verhältnissen.
Das Schüttgewicht des erfindungsgemäßen Katalysators beträgt vorteilhaft 1 ,2 bis 2 kg/l, insbesondere 1,3 bis 1 ,7 kg/l. Das Rüttelgewicht beträgt vorteilhaft 1 bis 1 ,7 kg/l, insbesondere 1 ,1 bis 1 ,5 kg/l.
Gegebenenfalls wird an dem gemahlenen sekundären Katalysatorpulver eine Elementaranalyse durchgeführt. Normalerweise entspricht die katalytische Zusammensetzung der frischen Einsatzstoffe der aus dem Stand der Technik für (De)Hydrierkatalysatoren bekannten katalytischen Zusammensetzung. In Ausnahmefällen kann aufgrund der analysierten Zusammensetzung des gemahlenen sekundären Katalysatorpulvers die Menge und die typische Zusammensetzung der frischen Einsatzstoffe geändert werden.
Die erfindungsgemäßen Katalysatoren enthalten vorteilhaft Einsatzstoffe in Form von Oxiden, Nitraten, Carbonaten, Hydroxiden und dergleichen, bevorzugt in Form von Oxiden, insbesondere Eisen, bevorzugt als Eisenoxid, zweckmäßigerweise in einer Menge von 40 bis 90 Gew.-% bezogen auf die Summe aller Einsatzstoffe. Ferner ent- halten die erfindungsgemäßen Katalysatoren vorteilhaft Alkalimetallverbindung(en), bevorzugt Kaliumverbindung(en) wie beispielsweise Kaliumoxid, zweckmäßigerweise in einer Menge von 1 bis 40 Gew.-% bezogen auf die Summe aller Einsatzstoffe. Typischerweise enthalten die erfindungsgemäßen Katalysatoren vorteilhaft eine Reihe von Promotoren in Abhängigkeit von ihrem Einsatzgebiet.
Der erfindungsgemäße Katalysator eignet sich insbesondere zur Dehydrierung von Kohlenwasserstoffen, die mindestens eine gesättigte funktionelle Gruppe aufweisen, beispielsweise Alkenen zu den entsprechenden 1 ,3-Alkadienen, bevorzugt alkylaroma- tischen Verbindungen zu den entsprechenden alkenylaromatischen Verbindungen. Als alkylaromatische Verbindungen eignen sich alle aromatischen und heteroaromatischen Alkylverbindungen, bevorzugt sind solche, in denen der Alkylrest unverzweigt oder verzweigt ist und zwei bis sechs C-Atome enthält. Als aromatische Reste eignen sich ein-, zwei- oder dreikernige, bevorzugt ein- oder zweikernige, besonders bevorzugt einkernige Aromaten. Beispielhaft seien Isopropylbenzol (Cumol), Ethylbenzol, 1 ,1-Diphenyl- benzol und 1 ,2-Diphenylethan (Bibenzyl), bevorzugt Isopropylbenzol (Cumol), Ethylbenzol und 1 ,1-Diphenylbenzol, besonders bevorzugt Ethylbenzol genannt. Als heteroaromatische Reste eignen sich ein-, zwei- oder dreikernige, bevorzugt ein- oder zwei- kernige, besonders bevorzugt einkernige Fünfring-Heteroaromaten mit ein bis drei Stickstoffatomen und/oder einem Sauerstoff- oder Schwefelatom, ein-, zwei- oder dreikernige, bevorzugt ein- oder zweikernige, besonders bevorzugt einkernige Sechsring- Heteroaromaten mit ein bis drei Stickstoffatome als Heteroatome, insbesondere Pyridi- ne, wie 2-Ethylpyridin, 3-Ethylpyridin, 4-Ethylpyridin und 5-Ethyl-2-methylpyridin, bevorzugt 2-Ethylpyridin und 5-Ethyl-2-methylpyridin.
Beispielsweise sei die Dehydrierung von Ethylbenzol zu Styrol, von Cumol zu α- Methyl-Styrol, von Buten zu Butadien und von Isopenten zu Isopentadien (Isopren), insbesondere die Dehydrierung von Ethylbenzol zu Styrol, genannt.
Als Promotoren für die erfindungsgemäßen Katalysatoren eignen sich neben Cer- Verbindungen vorteilhaft Verbindungen von Calcium, Magnesium, Molybdän, Wolfram, Chrom und Titan.
Als weitere Promotoren sind ferner Vanadium, Kupfer, Mangan, Nickel, Zink, Palladium, Platin, Kobalt, Aluminium, Zinn, Silizium, Blei, Ruthenium, Silber, Gold, Zirkonium, Rhodium, Lanthan, Chrom, Cadmium, Barium oder Mischungen hieraus geeignet.
Der erfindungsgemäße Hydier-Katalysator weist vorteilhaft folgende Zusammensetzung im Bezug auf die Summe der frischen und sekundären Einsatzstoffe auf:
Kupferoxid entsprechend 0 - 80 Gew.-% CuO, Aluminium entsprechend 0 - 80 Gew.-% AI2O3 und Eisen, entsprechend 0 - 90 Gew.-% Fe2O3 ferner
Oxide ausgewählt aus der Gruppe bestehend aus
Kalium, Cer, Magnesium, Calcium, Lanthans, Wolframs, Molybdäns, Titans, Zinn, Vanadium, Mangan, Nickel, Zink, Palladium, Platin, Kobalt, Zinn, Silizium, Blei, Ruthenium, Silber, Gold, Zirkonium, Rhodium, Chrom, Cadmium, Barium, entsprechend 0 - 20 Gew.-% wobei sich die genannten Komponenten auf 100 Gew.-% addieren.
Der erfindungsgemäße Dehydrier-Katalysator weist besonders bevorzugt folgende Zusammensetzung im Bezug auf die Summe der frischen und sekundären Einsatzstof- fe auf:
Eisen, entsprechend 40 - 90 Gew.-% Fe2O3, Kalium, entsprechend 1 - 40 Gew.-% als K2O,
Cer, entsprechend 1 - 25 Gew.-% Ce2O4, insbesondere 5 - 15 Gew.-% Ce2O4, Magnesium, entsprechend 0 - 10 Gew.-% MgO,
Calcium, entsprechend 0 - 10 Gew.-% CaO, Wolfram, entsprechend 0 - 10 Gew.-% WO3, Molybdän, entsprechend 0 - 10 Gew.-% Moθ3,
Vanadium, entsprechend 0 - 10 Gew.-% V2O5 wobei sich die genannten Komponenten auf 100 Gew.-% addieren.
Das Gewichtsverhältnis von Kalium (berechnet als K2O) zu Eisenoxid (berechnet als Fe2Ü3) beträgt in der Regel 0,01 :1 bis 2:1, bevorzugt von 0,1 :1 bis 1 :1. Bevorzugt enthalten die Katalysatoren darüber hinaus weitere Promotoren (berechnet als Oxide) in einem Gewichtsverhältnis zum Eisenoxid von 0,01 :1 bis 1 :1 , bevorzugt von 0,02:1 bis 0,5:1.
Bevorzugt werden dem sekundären Katalysatormaterial keine Dotierelemente zugesetzt.
Die Erfindung betrifft ferner Katalysatorbetten, die zu mindestens 25 Gew.-% aus erfin- dungsgemäßen Katalysator, bezogen auf die gesamte Katalysatormenge des entsprechenden Katalysatorbettes, bestehen. Vorteilhaft bestehen die Katalysatorbetten aus mindestens 30 Gew.-%, bevorzugt mindestens 50 Gew.-% aus erfindungsgemäßen Katalysatoren. Die erfindungsgemäßen Katalysatoren können gleichmäßig mit Katalysatoren aus dem Stand der Technik vermischt über das Katalysatorbett verteilt oder an einem oder mehreren Orten konzentriert sein. Bei einem Katalysatorsystem, das aus mehreren Reaktoren, d.h. mehreren Katalysatorbetten besteht, wird beispielsweise ein oder mehrere Reaktor(en) mit den erfindungsgemäßen Katalysatoren gefüllt und die verbleibenden Reaktoren mit den Katalysatoren aus dem Stand der Technik. Bevorzugt werden ausschließlich erfindungsgemäße Katalysatoren eingesetzt.
Die Erfindung betrifft ferner das Verfahren zur Herstellung des erfindungsgemäßen Katalysators, das dadurch gekennzeichnet ist, dass sekundäres Katalysatormaterial eines gebrauchten (De)Hydrierkatalysator gegebenenfalls kalziniert und dann gemahlen wird und anschließend in einem Verhältnis von 1 :9 bis 7:3 mit frischen Einsatzstoffen des korrespondierenden (De) Hydrierkatalysators vermischt, verformt und kalziniert wird.
Vorteilhaft wird das sekundäre Katalysatormaterial vor dem Vermählen und dem Vermischen mit den frischen Einsatzstoffen einer thermischen Behandlung unter sauer- stoffhaltiger Atmosphäre bei 100 bis 15000C unterzogen.
Das Vermischen des sekundären Katalysatorpulvers mit den frischen Einsatzstoffen erfolgt vorteilhaft in einem Mischer, beispielsweise in einem Mix-Müller.
Das Verformen und Kalzinieren erfolgt zweckmäßigerweise wie im Stand der Technik beschrieben (siehe beispielsweise DE-A 101 54 718). Zur Herstellung der erfindungsgemäßen Katalysatoren können als Einsatzstoffe neben dem sekundären Katalysatorpulver Verbindungen der Promotoren, wie sie im fertigen Katalysator vorliegen, eingesetzt werden, oder Verbindungen, die sich während des Herstellungsprozess in Verbindungen, wie sie im fertigen Katalysator vorliegen, um- wandeln. Den Einsatzstoffen können auch Hilfsstoffe zugesetzt werden, um die Verar- beitbarkeit, die mechanische Festigkeit oder die Porenstruktur zu verbessern. Beispiele für solche Stoffe sind Kartoffelstärke, Zellulose, Stearinsäure, Graphit und/oder Portland-Zement. Die Einsatzstoffe können direkt in einem Mischer, Kneter oder vorzugsweise einem Mix-Muller gemischt werden. Ferner können die Einsatzstoffe auch in einer Sprühmaische aufgeschlämmt und in einem Sprühtrockner zu einem Sprühpulver verarbeitet werden. Die Einsatzstoffe werden vorzugsweise in einem Mix-Muller oder Kneter unter Zugabe von Wasser zu einer extrudierbaren Masse verarbeitet. Die extru- dierbare Masse wird anschließend extrudiert, getrocknet und kalziniert. Bevorzugte Katalysatorformen sind Stränge, Ringe, Tabletten, Ringtablette, Extrudate oder Wa- benkörper. Besonders bevorzugt sind Katalysatorformkörper oder Katalysatorextrudate mit einem Durchmesser und einer Höhe von kleiner gleich 10 mm. Bevorzugte Strangformen umfassen Katalysatorkugeln mit einem Durchmesser von kleiner 6 mm oder Katalysatorwabenkörper mit einem Zellendurchmesser von kleiner 5 mm oder Extrudate mit 2 bis 10 mm Durchmesser, insbesondere 2,5 bis 6 mm. Der Querschnitt der Extrudate kann rund oder in anderen Formen ausgeführt sein. Besonders bevorzugt sind Extrudate mit rotationssymmetrischem Querschnitt, insbesondere mit einem Durchmesser von 2 bis 4 mm, bevorzugt von 3 mm, sowie Extrudate mit einem sternförmigen oder solche mit einem zahnradförmigen ("toothed-wheel") Querschnitt, insbesondere mit Durchmessern von 3 bis 7, bevorzugt 3,5 mm, 4,5 mm oder 6 mm. Alter- nativ zu einer Extrusion kann die Formgebung der Katalysatoren auch durch eine
Tablettierung erfolgen. Die extrudierten oder gegebenenfalls tablettierten Katalysatorformkörper werden anschließend in der Regel getrocknet und einer Kalzinierung unterzogen. Die Trocknung wird vorzugsweise auf einem Bandtrockner bei Temperaturen zwischen 100 und 2000C durchgeführt. Die Kalzinierung wird vorzugsweise in einem Drehrohr bei Temperaturen zwischen 500 und 10000C, bevorzugt zwischen 700 und 10000C, insbesondere zwischen 800 und 9500C, und besonders bevorzugt zwischen 850 und 9000C durchgeführt. Insbesondere bei der Kalzinierung im besonders bevorzugten Temperaturbereich wandeln sich carbonathaltige Einsatzstoffe in Oxide um. Kalium- und Eisenoxid bilden im besonders bevorzugten Temperaturbereich typi- scherweise gemischte Kaliumferrit-Kristallstrukturen aus.
Die Erfindung wird im folgenden am Beispiel des Verfahrens zur Dehydrierung von Ethylbenzol zu Styrol im Detail erläutert.
Die Dehydrierung von Kohlenwasserstoffen kann nach allen dem Fachmann bekannten Verfahren durchgeführt werden. Bevorzugt wird die Dehydrierung von Alkylaroma- ten zu Alkenylaromaten in adiabaten oder isothermen Verfahren, insbesondere in adiabaten Verfahren, durchgeführt. Die Reaktion wird in der Regel auf mehrere in Reihe geschaltete Reaktoren, vorzugsweise Radialstromreaktoren, verteilt. Bevorzugt sind zwei bis vier Reaktoren in Reihe geschaltet. In jedem Reaktor befindet sich ein Festbett mit Dehydrierkatalysatoren.
Bei der Dehydrierung von Ethylbenzol zu Styrol, wie sie heute in der Regel in sogenannten adiabaten Verfahren mehrstufig ausgeübt wird, wird typischerweise Ethylbenzol zusammen mit Wasserdampf, vorteilhaft in einer Menge von kleiner 30 Gew.-% bezogen auf Ethylbenzol, auf Temperaturen um 5000C mittels eines Wärmetauschers erhitzt und direkt vor dem Eintritt in den ersten Reaktor mit überhitztem Wasserdampf aus einem Dampfüberhitzer gemischt, so dass die gewünschte Eintrittstemperatur im ersten Reaktor üblicherweise zwischen 600 und 6500C liegt. Das Massen-Verhältnis Wasserdampf (Gesamtwasserdampf) zu Ethylbenzol liegt bei Eintritt in die Schüttung des Dehydrierungskatalysators im ersten Reaktor vorteilhaft bei 0,7:1 bis 2,5:1. Bevor- zugt wird bei einem Wasserdampf/Ethylbenzol-Verhältnis von 0,75:1 bis 1 ,8:1 gearbeitet, insbesondere 0,8:1 bis 1 ,5:1. Das Verfahren wird bevorzugt bei reduziertem Druck betrieben, typische Reaktordrücke liegen im Bereich von 300 bis 1000 mbar. Die Raumgeschwindigkeit (LHSV = liquid hourly space velocity) bezogen auf das aktive Volumen der Betten (also das Volumen der Betten abzüglich etwaiger nicht oder kaum durchströmter Totzonen) mit Dehydrierkatalysator liegt in der Regel bei 0,2 bis 0,7 1/h, bevorzugt 0,3 bis 0,6 1/h und insbesondere 0,32 bis 0,58 1/h. Die vorzugsweise hohl- zylinderförmig angeordneten Katalysatorbetten (Radialstromreaktoren) werden von innen nach außen durchströmt.
Vor Eintritt in den nächsten Reaktor wird das Reaktionsgemisch vorteilhaft über einen Wärmetauscher mittels überhitztem Dampf erneut auf Temperaturen von üblicherweise 600 und 6500C gebracht. Bevorzugt sollte der Druck am Ausgang des letzten Reaktors nicht mehr als 700 mbar, besonders bevorzugt nicht mehr als 600 mbar und insbesondere nicht mehr als 500 mbar betragen.
Alternativ kann an Stelle des Wärmetauschers am Eingang des zweiten und gegebenenfalls folgende Reaktoren auch eine Schüttung eines Oxidationskatalysators mit Sauerstoffzufuhr zur Verbrennung einer Teilmenge des im vorangegangenen Reaktor gebildeten Wasserstoffs eingerichtet sein, wie sie beispielsweise in der WO 2005/097715 und in der deutschen Anmeldung mit der WO 2006/018133 ist.
Die bei dem erfindungsgemäßen Verfahren erhältlichen ungesättigten Verbindungen, beispielsweise Alkenylaromaten oder 1 ,3-Alkadiene, können vorteilhaft zu Kunststoffen polymerisiert oder als Bausteine für organisch-chemische Synthesen eingesetzt wer- den. Der erfindungsgemäße Katalysator weist bei einer vergleichbaren Aktivität und Selektivität durch die Verwendung von sekundärem Katalysatormaterial deutlich geringere Herstellkosten auf. Ferner können die Kosten für die Entsorgung des sekundären Katalysatormaterials reduziert werden.
Beispiele
Beispiel 1 : Verfahren zur Dehydrierung von Ethylbenzol
Beispiel A: Erfindungsgemäßer Katalysator
Sekundäre Styrol-Katalysatorstränge wurden bei einer Temperatur von 7000C unter sauerstoffhaltiger Atmosphäre für 90 Minuten kalziniert. Die thermisch behandelten sekundären Katalysatorstränge wurden gemahlen, um eine Partikelverteilung von 1 bis 700 μm zu erhalten. Es wurde eine Elementaranalyse durchgeführt.
Sekundäres Katalysatorpulver und frische Einsatzstoffe wurden in einem Verhältnis von 40 : 60 Gew.-% gemischt, so dass der erhaltende Katalysator folgende Zusammensetzung aufwies:
Kalium, entsprechend 9,3 Gew.-% als K2O,
Cer, entsprechend 10,7 Gew.-% Ce2O4,
Magnesium, entsprechend 2,1 Gew.-% MgO,
Calcium, entsprechend 2,2 Gew.-% CaO,
Molybdän, entsprechend 2,4 Gew.-% MoO3, Eisen, entsprechend Fe2O3, Differenz zu 100 Gew.-% (rechnerisch)
Das Katalysatorpulver wurde gemäß Beispiel 8 der DE-A 101 54 718 zu Katalysatorstränge verarbeitet.
Beispiel B: Erfindungsgemäßer Katalysator
Es wurden Katalysatorstränge gemäß Beispiel 1 aus sekundärem Katalysatormaterial hergestellt, wobei das sekundäre Katalysatormaterial keiner thermischen Behandlung ausgesetzt wurde.
Beispiel C: Vergleichsbeispiel
Es wurden Katalysatoren gemäß dem Beispiel 8 der DE-A 101 54 718 hergestellt. Dehydrierung von Ethylbenzol zu Styrol:
a) Dehydrierung unter isothermen Bedingungen
In einer einstufigen isothermen Test-Anlage wurden jeweils 13,3 ml des Katalysators aus den Beispielen A bis C unter den in Tabelle 1 angegebenen Bedingungen getestet.
Tabelle 1 : Versuchsbedingungen und Ergebnisse der Dehydrierung von Ethylbenzol zu Styrol unter isothermen Bedingungen
Figure imgf000014_0001
b) Dehydrierung unter adiabatischen Bedingungen
In einer zweistufigen adiabatischen Test-Anlage wurden jeweils 434 ml des Katalysators aus den Beispielen A und C pro Reaktor unter den in Tabelle 2 angegebenen Bedingungen getestet.
Tabelle 2: Versuchsbedingungen und Ergebnisse der Dehydrierung von Ethylbenzol zu Styrol unter adiabatischen Bedingungen
Figure imgf000014_0002
Beispiel 2: Performance-Beurteilung von Katalysatoren unterschiedlicher Mischungsverhältnisse zwischen sekundären und frischem Katalysatormaterial
Um die Performance der einzelnen Katalysatoren zu bewerten, wurden folgende Parameter berücksichtigt:
1. Schnitthärte (SH)
2. Verformbarkeit (V) mittels (Masse der erhaltenden geformten Strän- ge)/(eingesetzte Gesamtmasse)
3. Ausbeute (A)
4. Wirtschaftlichkeit (W) mittels Berücksichtigung der jeweiligen eingesparten Materialkosten und der entstehenden Kosten durch Vermahlung und Kalzinierung des sekundären Katalysatormaterials und Lagerung dieses regenerierten Materials 5. Performance mittels Multiplikation der Faktoren 1 bis 4/100
In der Tabelle 3 sind die genannten Faktoren für die jeweiligen Katalysatoren aufgelistet, die Figur 1 zeigt die ermittelte Performance in Abhängigkeit vom Mischungsverhältnis.
Für die Ermittlung der Ausbeute wurde die Dehydrierung von Ethylbenzol zu Styrol unter isothermen Bedingungen gemäß Beispiel a durchgeführt.
Tabelle 3: Performancedaten unterschiedlicher Katalysatoren
Figure imgf000015_0001

Claims

Patentansprüche
1. Katalysator zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen enthaltend 10 bis 70 Gew.-% gemahlenes, sekundäres Katalysatormaterial eines ge- brauchten (De)Hydrierkatalysators enthaltend Eisenoxid und 30 bis 90 Gew.-% des korrespondierenden frischen Katalysatormaterials enthaltend Eisenoxid, wobei das Eisenoxid des frischen Katalysatormaterials überwiegend in Form von Hämatit oder Kaliumferritphasen vorliegt.
2. Katalysator nach Anspruch 1 , wobei der Katalysator bei Temperaturen von 500 bis 10000C kalziniertes und anschließend gemahlenes sekundäres Katalysatormaterials enthält.
3. Katalysator nach Anspruch 1 , wobei der Katalysator bei Temperaturen von 700 bis 10000C kalziniertes und anschließend gemahlenes sekundäres Katalysatormaterial enthält.
4. Katalysator nach den Ansprüchen 1 bis 3, wobei das Eisenoxid des sekundären Katalysatormaterials 15 bis 85 Gew.-%
Figure imgf000016_0001
bezogen auf die Summe der Ei- senoxide, und als Rest Hämatit und/oder Magnetit enthält.
5. Katalysator nach den Ansprüchen 1 bis 4, wobei der Katalysator 25 bis 65 Gew.- % gemahlenes, sekundäres Katalysatormaterial und 35 bis 75 Gew.-% des korrespondierenden frischen Katalysatormaterials enthält.
6. Verfahren zur Herstellung des Katalysators nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass sekundäres Katalysatormaterial eines gebrauchten (De)Hydrierkatalysator gegebenenfalls kalziniert und dann gemahlen wird und anschließend in einem Verhältnis von 1 :9 bis 7:3 mit frischen Einsatzstoffen des korrespondierenden (De)Hydrierkatalysators vermischt, verformt und kalziniert wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das sekundäre Katalysatormaterial unter sauerstoffhaltiger Atmosphäre bei Temperaturen von 500 bis 10000C kalziniert wird.
8. Verfahren nach den Ansprüchen 6 oder 7, dadurch gekennzeichnet, dass dem sekundären Katalysatormaterial keine Dotiermetalle zugesetzt werden.
9. Verfahren nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, dass das sekundäre Katalysatormaterial in einem Verhältnis von 2,5:7,5 bis 6,5:3,5 mit fri- sehen Einsatzstoffen des korrespondierenden (De)Hydrierkatalysators vermischt, verformt und kalziniert wird.
10. Katalysatorbett, das mindestens 25 Gew.-% Katalysatoren gemäß den Ansprü- chen 1 bis 5 enthält.
11. Verfahren zur Dehydrierung oder Hydrierung von Kohlenwasserstoffen unter Verwendung von Katalysatoren gemäß der Ansprüche 1 bis 5.
PCT/EP2006/064178 2005-07-22 2006-07-13 Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial WO2007009927A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,372 US8003837B2 (en) 2005-07-22 2006-07-13 Catalysts for dehydrogenation and/or hydrogenation of hydrocarbons, processes for preparing the same, and uses therefor
EP06792498A EP1919614A1 (de) 2005-07-22 2006-07-13 Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial
JP2008521945A JP4934134B2 (ja) 2005-07-22 2006-07-13 二次触媒材料を含有する、炭化水素の脱水素または水素化触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005034978 2005-07-22
DE102005034978.1 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007009927A1 true WO2007009927A1 (de) 2007-01-25

Family

ID=37052551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064178 WO2007009927A1 (de) 2005-07-22 2006-07-13 Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial

Country Status (4)

Country Link
US (1) US8003837B2 (de)
EP (1) EP1919614A1 (de)
JP (1) JP4934134B2 (de)
WO (1) WO2007009927A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003731A1 (en) * 2006-07-07 2008-01-10 Shell Internationale Research Maatschappij B.V. Process for preparing a catalyst
EP1954394A1 (de) * 2005-10-26 2008-08-13 Albemarle Netherlands B.V. Verfahren zur herstellung eines geformten vollkatalysators
WO2008137583A3 (en) * 2007-05-03 2009-11-05 Shell Oil Company A catalyst, its preparation and use

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691779B2 (ja) * 2010-12-07 2015-04-01 株式会社デンソー 排ガス浄化装置
US20130165723A1 (en) * 2011-12-22 2013-06-27 Basf Se Catalyst for the dehydrogenation of hydrocarbons
EP2905275B1 (de) * 2012-10-01 2016-06-15 Asahi Kasei Chemicals Corporation Verfahren zum stoppen einer ammoxidation
KR101953919B1 (ko) * 2012-12-18 2019-03-04 에스케이이노베이션 주식회사 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
US10336667B2 (en) * 2014-05-09 2019-07-02 Basf Se Catalyst for dehydrogenating hydrocarbons
WO2015169825A1 (de) * 2014-05-09 2015-11-12 Basf Se Katalysator für die dehydrierung von kohlenwasserstoffen
KR101701973B1 (ko) * 2015-06-05 2017-02-03 금호석유화학 주식회사 페라이트 금속 산화물 촉매의 제조방법
BR102016022962B1 (pt) * 2016-10-03 2021-10-26 Petróleo Brasileiro S.A. - Petrobras Processo de preparação de um catalisador de ferro-cromo promovido com platina, e, catalisador composto de ferro-cromo promovido com platina
CN108203365B (zh) * 2016-12-16 2021-01-29 中国石油天然气股份有限公司 用于乙苯脱氢制苯乙烯的方法
RU2705574C1 (ru) * 2018-02-27 2019-11-08 Индийская Нефтяная Корпорация Лимитэд Каталитическая композиция для превращения алканов в алкены и способ ее получения
KR20240037335A (ko) * 2021-07-26 2024-03-21 더 트러스티즈 포 더 타임 비잉 오브 더 케이엠엔 풀필먼트 트러스트 연소용 연료 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB626742A (en) * 1947-02-14 1949-07-20 Standard Oil Dev Co Improvements in or relating to the catalytic synthesis of hydrocarbons
DD130793A2 (de) * 1977-03-28 1978-05-03 Manfred Weber Verfahren zur rejuvenierung gebrauchter hydrospaltkatalysatoren
DD268631A1 (de) * 1987-10-12 1989-06-07 Buna Chem Werke Veb Dehydrierungskatalysator fuer die styrensynthese
US20030144566A1 (en) * 2002-01-30 2003-07-31 Culp Robert Dielman Catalyst, its preparation and its use in a dehydrogenation process
WO2006067169A1 (en) * 2004-12-23 2006-06-29 Shell Internationale Research Maatschappij B.V. Method of preparing catalyst support from a waste catalyst

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1074773A (en) * 1975-07-03 1980-04-01 Gregor H. Riesser Dehydrogenation catalyst and process
CA1108114A (en) * 1977-04-14 1981-09-01 Gregor H. Riesser Dehydrogenation catalyst
US4888316A (en) * 1988-11-21 1989-12-19 Phillips Petroleum Company Preparation of hydrotreating catalyst from spent catalyst
DE4006918A1 (de) 1990-03-06 1991-09-12 Basf Ag Verfahren zum aufarbeiten von katalysatoren
US5242483A (en) * 1992-08-05 1993-09-07 Intevep, S.A. Process for the production of vanadium-containing steel alloys
DE4237740A1 (de) * 1992-11-09 1994-05-11 Basf Ag Verfahren zur Herstellung von Eisen, Kalium und Cer enthaltenden Katalysatoren
DE10154718A1 (de) 2001-11-09 2003-05-22 Basf Ag Eisenoxide mit höherem Veredelungsgrad
WO2002083569A2 (de) 2001-04-10 2002-10-24 Basf Aktiengesellschaft Eisenoxide mit höherem veredelungsgrad
DE10305650A1 (de) 2003-02-12 2004-08-26 Reilly Industries, Inc., Indianapolis Verfahren zur Regenerierung von Mischoxidkatalysatoren
DE102004015800A1 (de) 2004-03-29 2005-10-20 Basf Ag Katalysator für die Oxidation von Wasserstoff, sowie Verfahren zur Dehydrierung von Kohlenwasserstoffen
US7297402B2 (en) * 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
DE102004039603A1 (de) 2004-08-13 2006-02-23 Basf Ag Katalysator enthaltend Eisenoxid(e), Alkalimetallverbindung(en) und Ceroxid(e)
EP2083569A1 (de) 2008-01-22 2009-07-29 Avaya Inc. Anwendungsplattform mit offenem Kabel (OCAP) und auf einem Digitalempfänger (STB) basierte persönliche Profil- und Kommunikationsanwendungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB626742A (en) * 1947-02-14 1949-07-20 Standard Oil Dev Co Improvements in or relating to the catalytic synthesis of hydrocarbons
DD130793A2 (de) * 1977-03-28 1978-05-03 Manfred Weber Verfahren zur rejuvenierung gebrauchter hydrospaltkatalysatoren
DD268631A1 (de) * 1987-10-12 1989-06-07 Buna Chem Werke Veb Dehydrierungskatalysator fuer die styrensynthese
US20030144566A1 (en) * 2002-01-30 2003-07-31 Culp Robert Dielman Catalyst, its preparation and its use in a dehydrogenation process
WO2006067169A1 (en) * 2004-12-23 2006-06-29 Shell Internationale Research Maatschappij B.V. Method of preparing catalyst support from a waste catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1919614A1 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1954394A1 (de) * 2005-10-26 2008-08-13 Albemarle Netherlands B.V. Verfahren zur herstellung eines geformten vollkatalysators
EP1957197A1 (de) * 2005-10-26 2008-08-20 Albemarle Netherlands B.V. Vollkatalysatorzusammensetzung und verfahren zur herstellung der vollkatalysatorzusammensetzung
EP1957197B1 (de) * 2005-10-26 2016-07-13 Albemarle Netherlands B.V. Vollkatalysatorzusammensetzung und verfahren zu seiner herstellung
EP1954394B1 (de) * 2005-10-26 2016-08-03 Albemarle Netherlands B.V. Verfahren zur herstellung eines geformten vollkatalysators
EP3078417A1 (de) * 2005-10-26 2016-10-12 Albemarle Netherlands B.V. Vollkatalysatorzusammensetzung und verfahren zu seiner herstellung
EP3085441A1 (de) * 2005-10-26 2016-10-26 Albemarle Netherlands B.V. Verfahren zur herstellung eines geformten vollkatalysators
WO2008003731A1 (en) * 2006-07-07 2008-01-10 Shell Internationale Research Maatschappij B.V. Process for preparing a catalyst
WO2008137583A3 (en) * 2007-05-03 2009-11-05 Shell Oil Company A catalyst, its preparation and use
US8119559B2 (en) 2007-05-03 2012-02-21 Basf Corporation Catalyst, its preparation and use

Also Published As

Publication number Publication date
EP1919614A1 (de) 2008-05-14
JP2009502451A (ja) 2009-01-29
US8003837B2 (en) 2011-08-23
JP4934134B2 (ja) 2012-05-16
US20080200739A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1919614A1 (de) Katalysator zur dehydrierung oder hydrierung von kohlenwasserstoffen enthaltend sekundäres katalysatormaterial
DE2815812C2 (de) Katalysator für die Dehydrierung von Kohlenwasserstoffen zu ungesättigten Kohlenwasserstoffen und seine Verwendung für die Dehydrierung in Gegenwart von Dampf
DE69533409T2 (de) Verfahren zur herstellung eines dehydrierungskatalysators
EP2134465B1 (de) Verfahren zur herstellung eines katalysators bestehend aus einem trägerkörper und einer auf der oberfläche des trägerkörpers aufgebrachten katalytisch aktiven masse
EP1289919B1 (de) Verfahren zur herstellung von acrolein und/oder acrylsäure
DE102012019123B4 (de) Hydrierkatalysator und Verfahren zu dessen Herstellung durch die Verwendung von unkalziniertem Ausgangsmaterial
DE10060099A1 (de) Regenerierung eines Dehydrierkatalysators
EP3019458B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP0609751B1 (de) Verfahren zur Regenerierung von im Rahmen katalytischer Gasphasenoxidationen niederer organischer Verbindungen verbrauchten Multimetalloxid-Oxidationskatalysatoren
EP0394842B1 (de) Katalysator für die Hydrierung aliphatischer ungesättigter Verbindungen
DE60312484T2 (de) Auf eisenoxid basierender katalysator, seine herstellung und seine verwendung bei einem dehydrierungsverfahren
WO2015144548A1 (de) Hydrierkatalysator und verfahren zu dessen herstellung
WO1999049966A1 (de) Katalysator zur dehydrierung von ethylbenzol zu styrol
EP1732867A1 (de) Katalysator für die oxidation von wasserstoff, sowie verfahren zur dehydrierung von kohlenwasserstoffen
EP2271424A2 (de) Schalenkatalysatoren enthaltend ein molybdän enthaltendes multimetalloxid
DE102017121709A1 (de) Synthese eines MoVNbTe-Schalenkatalysators für die oxidative Dehydrierung von Ethan zu Ehtylen
EP3140267B1 (de) Katalysator für die dehydrierung von kohlenwasserstoffen
EP0009068B1 (de) Fliessbettkatalysatoren zur Herstellung von synthetischem Erdgas durch CO-Methanisierung
DE102012012510B4 (de) Graphithaltiger Katalysatorformkörper, dessen Herstellverfahren sowie Verwendung
DE60307844T2 (de) Verfahren zur dehydrierung eines ungesättigten kohlenwasserstoffs
EP3470139B1 (de) Verfahren zur katalytischen dehydrierung eines kohlenswasserstoffs
DE1817692B2 (de) Verfahren zur Dehydrierung von Monoolefinen und/oder alkylierten aromatische Kohlenwasserstoffen Ausscheidung aus 1800929
WO2016177764A1 (de) Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
DE1052979B (de) Verfahren zur Entfernung von Acetylen aus einem vorwiegend AEthylen enthaltenden Gasgemisch durch selektive Hydrierung
WO2006018133A1 (de) Katalysator enthaltend eisenoxid(e), alkalimetallverbindung(en) und ceroxid(e)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006792498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11996372

Country of ref document: US

Ref document number: 2008521945

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006792498

Country of ref document: EP