WO2007007735A1 - 光照射による金属酸化物表面上への有機導電性重合性材料の合成 - Google Patents

光照射による金属酸化物表面上への有機導電性重合性材料の合成 Download PDF

Info

Publication number
WO2007007735A1
WO2007007735A1 PCT/JP2006/313730 JP2006313730W WO2007007735A1 WO 2007007735 A1 WO2007007735 A1 WO 2007007735A1 JP 2006313730 W JP2006313730 W JP 2006313730W WO 2007007735 A1 WO2007007735 A1 WO 2007007735A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
composite material
organic conductive
butyl
monomer
Prior art date
Application number
PCT/JP2006/313730
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Tachibana
Original Assignee
Osaka University
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Kansai Technology Licensing Organization Co., Ltd. filed Critical Osaka University
Priority to JP2007524651A priority Critical patent/JPWO2007007735A1/ja
Publication of WO2007007735A1 publication Critical patent/WO2007007735A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes

Definitions

  • the present invention relates to a composite of a metal oxide and an organic conductive polymerizable material and a method for producing the same.
  • an electronic device such as a solar cell 'light emitting device' display device'transistor, a fuel cell, It can be applied as an electrochemical device such as solar cell, lithium secondary battery, electric double layer capacitor, electrochemical sensor device, electrochemical display element (electric chromic), electronic paper, or as artificial bone muscle.
  • the present invention relates to a composite of a suitable nanostructure-controlled metal oxide and an organic conductive polymerizable material, and a method for producing the same. Background art
  • Nanotechnology which is expected to develop new functions by controlling materials at nanometer size, has recently attracted attention.
  • a structure control method research on a microfabrication technique called a top-down type has been actively conducted, but this technique is expected to be limited to several tens of nanometers. Therefore, it is necessary to produce a structure by controlling in smaller units using a technology called build-up type that accumulates atomic level forces.
  • Organic conductive polymerizable materials such as conductive polymers have features such as low-cost 'light-weight' and easy molding, and their electrical and electronic properties are being studied for application in various fields.
  • metal oxides typified by titanium oxide have many resource-rich and inexpensive ones.
  • Nanostructure-controlled composites of organic conductive polymerizable materials and metal oxides are attractive when applied to nanotechnology, and are expected to be applied particularly to solar cells and display elements.
  • Non-Patent Document 1 a method of forming a structure by mixing an organic conductive polymerizable material with a substrate for producing an oxide, and then proceeding with an inorganic reaction. is doing.
  • this method has problems that the purity of the metal oxide is deteriorated, and that it cannot be conducted between the oxides for use in electronic devices such as solar cells.
  • a method not using a chemical reaction has also been reported.
  • a metal oxide nanostructure is prepared in advance, and a conductive polymer dissolved in the structure is filled by a cast method or a spin coating method.
  • these methods have a problem that the conductive polymer does not sufficiently penetrate into the structure.
  • Huisman et al. Reported that even when an attempt was made to fill polyoctylthiophene into a titanium oxide nanostructure film, it penetrated only about 1 m from the film surface (Non-patent Document 4).
  • these methods are limited to those in which the conductive polymer is dissolved in the solvent and the polymerization degree is relatively low.
  • Non-Patent Document 1 Advanced Materials, 15 (2), 118, 2003
  • Non-Patent Document 2 Journal of the American Chemical Society (125, 1269, 2003)
  • Non-Patent Document 3 Huisman et al., Macromolecules, 37, 5557, 2004
  • Non-Patent Document 4 Chemistry of Materials, 15, 4617, 2003
  • Non-Patent Document 5 Chemistry Letters 1986, 469; Journal of Electrochemical Society 134 ( 4), 837, 1987
  • An object of the present invention is to provide a composite material of a metal oxide and an organic conductive polymerizable material whose structure is controlled at the nano level and a method for producing the same.
  • Another object of the present invention is to provide an electronic device using the composite material.
  • the present inventor utilizes the oxidizing power of holes generated by irradiating light to a microstructure or nanostructure of a metal oxide metal oxide, which is electrically conductive, typified by acid titanium.
  • organic oxides and organic oxides with controlled micro- or nanostructures are formed by sequentially oxidizing monomers such as thiophene, arylene, pyrrole, furan and fluorene to form an organically conductive polymerizable material. It has been found that a composite material of a functional material can be obtained.
  • the present invention relates to the following composite materials, methods for producing the same, and electronic devices.
  • the organic conductive polymerizable material is polythiophene or a derivative thereof, polypyrrole or a derivative thereof, polyaniline or a derivative thereof, polyfuran or a derivative thereof, polyfluorene or a derivative thereof, Item 5.
  • a raw material monomer of an organic conductive polymerizable material having an adsorptive functional group for the metal oxide is allowed to act on the metal oxide fine particle structure to adsorb the monomer, and then the adsorptivity is used as necessary.
  • Item 7. The method for producing a composite material according to any one of Items 1 to 6, wherein a raw material monomer having no functional group is allowed to act.
  • Raw material monomer of organic conductive polymerizable material with adsorptive functional group is made into 2, 3, and tetramer, irradiated with visible light, excited monomer and electron transfer at metal oxide interface Item 7.
  • An electronic device comprising the composite material according to any one of Items 1 to 6, or the composite material obtained by the method according to any one of Items 7 to 9.
  • a display device comprising the composite material according to any one of Items 1 to 6, or the composite material obtained by the method according to any one of Items 7 to 9.
  • the present invention relates to the following composite material, a manufacturing method thereof, an electronic device, and a display device.
  • a composite material comprising a nanostructure containing metal oxide fine particles and an organic conductive polymerizable material, wherein the metal oxide fine particles are bonded to each other and are present in the gaps between the fine particles.
  • An organic conductive polymer material, and the organic conductive polymerizable material is polythiophene or a derivative thereof, polypyrrole or a derivative thereof, polyarine or a derivative thereof, polyfuran or a derivative thereof, polyfluorene or a derivative thereof or thiophene,
  • a composite material which is a copolymer composed of at least two kinds selected from pyrrole, arylene, furan, fluorene, or a group force consisting of derivatives thereof.
  • a raw material monomer of an organic conductive polymerizable material having an adsorptive functional group for the metal oxide is allowed to act on the metal oxide fine particle structure to adsorb the monomer, and then the adsorptive functional group as necessary.
  • Item 6. The method for producing a composite material according to any one of Items 1A to 5A, wherein a raw material monomer that does not contain is allowed to act.
  • the raw material monomer of the organic conductive polymerizable material having an adsorptive functional group is made into 2, 3, and tetramers, and the visible light is irradiated to excite the monomer to cause an electron transfer reaction at the metal oxide interface.
  • Item 5 The method for producing a composite material according to any one of Items 1 to 5A, wherein polymerization is performed by the method.
  • An electronic device comprising the composite material according to any one of Items 1A to 5A, or the composite material obtained by the method according to any one of Items 6A to 8A.
  • a display device comprising the composite material according to any one of Items 1A to 5A or the composite material obtained by the method according to any one of Items 6A to 8A.
  • a method for forming an organic conductive polymerizable material on the surface of a metal oxide nanostructure having a gap of nanometer level by light irradiation could be established. Furthermore, when photopolymerization is carried out in the state in which a monomer having a functional group adsorbing on the surface of the metal oxide is introduced, the metal oxide and the organic conductive polymerizable material are joined more closely, and the adhesiveness is high. It became possible to produce composites.
  • the method shown in this study can be applied not only to high-performance organic conductive polymer-sensitized solar cells, but also to photoelectric conversion elements such as new organic solar cells, electoric chromism and light-emitting diodes, It can be applied to display devices such as electronic paper and electronic devices such as transistors and memory elements. Furthermore, application to artificial bones' artificial muscles is also possible.
  • electrically contacted means a structure in which metal oxides are in contact with each other, and a nanostructure having metal contacts including metal oxide fine particles.
  • the body include nanoparticles (particularly nanoparticle films), nanowires, nanotubes, and nanorods.
  • a metal oxide having the characteristics of an n-type semiconductor such as titanium oxide produces electrons in the conduction band and holes in the valence band when excited by light.
  • On the surface of the semiconductor if there is a monomer of an organic conductive polymerizable material in which the reaction proceeds due to the acid-acid reaction and the acid-acid potential of the monomer is more negative than the potential of the valence band edge. Due to the light generated hall The monomer is oxidized quickly. Polymerization proceeds when the oxidized monomer reacts with the adjacent monomer.
  • Figure 1 shows the polymerization mechanism of polythiophene. From this, the reaction by light proceeds with any combination of a metal oxide and an organic conductive polymerizable material that satisfy the above potential conditions.
  • the generated hole travel distance can only react at a position irradiated with light. At this time, the photogenerated electrons are obtained from the base electrode through the n-type semiconductor.
  • Examples of light used in the polymerization reaction include visible light and ultraviolet light, and the wavelength is usually about 300 to 800 nm, preferably about 300 to 600 nm.
  • Examples of the structure of the metal oxide include a structure made of metal oxide fine particles (nanoparticles) and a structure made of metal oxide nanotubes and rods, but are not limited to these structures.
  • the average particle size is preferably 5 ⁇ ! About ⁇ 1000 nm, what is more preferable? ⁇ 100.
  • a method for producing these structures for example, a film shape, a sheet shape, a granular shape, a cylindrical shape, etc.
  • a method already introduced in a paper that is, an existing method is used.
  • the point with respect to the structure may be a structure in which fine particle (nanometer level) metal oxides come into contact and exchange electrons between metal oxides.
  • n-type semiconductors As a material for the metal oxide, there are an n-type semiconductor in which carriers are electrons and a p-type semiconductor in which carriers are holes. It is preferable to use an n-type semiconductor.
  • n-type semiconductors include titanium oxide, zinc oxide, tin oxide, tungsten oxide, niobium oxide, indium oxide, silicon oxide, magnesium oxide, aluminum oxide, cerium oxide, bismuth oxide, manganese oxide, Yttrium oxide, tantalum oxide, lanthanum oxide, iron oxide, copper oxide, etc. and oxide complexes (eg, strontium titanate (TiSr03), calcium titanate, sodium titanate, barium titanate, potassium niobate, Indium tin oxide (ITO)).
  • titanium oxide and tin oxide are preferable from the viewpoint of stability and acid potential.
  • Monomers for forming the organic conductive polymerizable material are not particularly limited, but are preferably oxidized by an acid maker of holes generated on the metal oxide.
  • Such compounds for example, thiophene and its derivatives, pyrrole and its derivatives, aniline and its derivatives, furan or its derivatives, fluorene and its derivatives, furan and And derivatives thereof. More specifically, for thiophene and its derivatives, pyrrole and its derivatives, furan and its derivatives, the following general formula (1), and for fluorene and its derivatives, the following general formula ( ⁇ )
  • 1 ⁇ to 1 ⁇ ° each independently represents a hydrogen atom, hydroxymethyl, hydroxyethyl, an aryl group which may have a substituent, or a substituent.
  • X represents O (oxygen atom), S (sulfur atom) or NR a
  • R a represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms
  • R 1 and R 2 are bonded to each other. It may form a saturated or unsaturated 5- or 6-membered ring together with the carbon atom.
  • R 9 and R 1Q together with the carbon atom to which they are attached may form a carbonyl group or a saturated or unsaturated 5- or 6-membered ring. ).
  • the oligomer Z macromonomer in which two or more, for example, 2 to: LO, preferably 2 to 8, more preferably 2 to 6 of the monomer are linked can also be a thiophene derivative as long as it can be polymerized. Included in pyrrole derivatives, furan derivatives, and fluorene derivatives.
  • the “raw material monomer” means an oligomer / macromonomer in which two or more rings are linked together with a monomer having only one thiophene ring, pyrrole ring, furan ring or fluorene ring. (Preferably dimer to hexamer) are also included (however, the oligomer 'One can be polymerized by light irradiation) (
  • R 3 and R 4 are each independently an alkyl group having 1 to 18 carbon atoms, n is an arbitrary integer).
  • the aryl group which may have a substituent is a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen atom (F, Cl, Br, I), a hydroxyl group, A straight or branched alkoxy group having 1 to 4 carbon atoms, a acetyl group, an amino group, a acetylylamino group, a cyano group, a nitro group, etc., a phenyl group or a naphthyl group that may be substituted by 1, 2 or 3 Is mentioned.
  • the aralkyl group which may have a substituent is a linear or branched alkyl group having 1 to 4 carbon atoms, a halogen atom (F, Cl, Br, I), a hydroxyl group, carbon Examples thereof include a straight-chain or branched alkoxy group having 1 to 4 groups, a acetyl group, an amino group, an acetylylamino group, a cyano group, a nitro group and the like, a benzyl group and a phenethyl group which may be substituted by 1, 2 or 3 It is done.
  • alkyl group having 1 to 18 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, Examples thereof include linear or branched alkyl groups having 1 to 18 carbon atoms such as decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl and the like.
  • alkoxy group having 1 to 18 carbon atoms examples include: -O- (alkyl group having 1 to 18 carbon atoms), (the alkyl group having 1 to 18 carbon atoms is the same as described above).
  • the perhaloalkyl group having 1 to 18 carbon atoms may be a linear or branched perhaloalkyl group such as a perfluoroalkyl group having 1 to 18 carbon atoms (CnF2n + 1, n is an integer of 1 to 18). Can be mentioned.
  • the fluorene derivatives include alkylfluorenes such as fluorenone and methylfluorene, dialkylfluorenes such as dimethylfluorene, jetylfluorene and dioctylfluorene, mono- or di-phenolfluorene, bisphenolfluorene, and bistalesol.
  • alkylfluorenes such as fluorenone and methylfluorene
  • dialkylfluorenes such as dimethylfluorene, jetylfluorene and dioctylfluorene
  • mono- or di-phenolfluorene bisphenolfluorene
  • bisphenolfluorene bisphenolfluorene
  • bistalesol bistalesol
  • oligomers can also be used.
  • an electrochemical cell when an electrochemical cell is produced by a polymerization reaction of a monomer for forming an organic conductive polymerizable material, a supporting salt and an electrolytic solvent are added in addition to the monomers described above.
  • the supporting salt is not particularly limited as long as the potential window is widely reduced by excited electrons or not oxidized by holes. If the electrochemical cell is a photoelectrochemical cell such as a solar cell, it must not be decomposed by light irradiation. is there.
  • the cation of the supporting salt includes quaternary ammonia such as Li +, Na + , K +, Rb + , Cs +, tetraalkyl ammonium (R N +), pyridinium, imidazolium, triazolium.
  • quaternary ammonia such as Li +, Na + , K +, Rb + , Cs +, tetraalkyl ammonium (R N +), pyridinium, imidazolium, triazolium.
  • Examples of anions include C10-, PF-, and BF-. Support salt concentration
  • the degree is about 0.1 to 5 M, preferably about 0.2 to 1 M.
  • the electrolytic solvent is not particularly limited as long as the potential window is widely reduced by excited electrons or is not oxidized to holes, like the supporting salt. Furthermore, in the case of a photoelectrochemical cell (for example, a solar cell), it must not be decomposed by light irradiation. For example, acetonitrile, N, N-dimethylformamide, sulfolane, nitromethane and the like are exemplified as preferred electrolytic solvents, and most preferred is acetonitrile. It is also possible to use an ionic liquid instead of the electrolyte. In this case, the electrolytic solvent is not necessary and is easy to handle.
  • ionic liquid there is no particular limitation as long as the potential window is not reduced by excited electrons or is not oxidized to holes, and if necessary, it is not decomposed by light irradiation, as with the electrolytic solvent. .
  • ionic liquids that also form pyridinium or imidazolium salts and analogs thereof.
  • polymerization is possible even in a system that does not use an electrolyte. For example, an electrochemical cell is fabricated, a platinum plate is used as a counter electrode, and the monomer and redox potential are more negative than the acid-potential of the monomer and more positive than the potential at the conduction band edge of the metal oxide.
  • the type of the organic conductive polymerizable material to be formed it is possible to combine two or more types of monomers by using only a single type of monomer.
  • a thiophene-pyrrole copolymer can be produced by reacting with thiophene or a derivative thereof and a solution obtained by mixing pyrrole or a derivative thereof.
  • polythiophene is first prepared on a metal oxide and then polypyrrole is deposited. With such a film, it is possible to control the flow of electrons and holes in the polymer when the organic conductive polymerizable material is photoexcited. That is, application to a photoelectric conversion device is possible.
  • Irradiation wavelength about 300-800 nm
  • Irradiation wavelength about 300-600nm
  • an organic conductive polymerizable material is formed on a metal oxide
  • a monomer having a functional group previously introduced is adsorbed to the metal oxide through the functional group to form a nucleus (functional group-containing monomer).
  • a method of forming an adsorbed metal oxide) and growing a conductive polymer / conductive oligomer from the nucleus (adsorbed monomer) by light irradiation is also preferred.
  • the functional group of the monomer of the organic conductive polymerizable material is not particularly limited as long as it is adsorbed to the metal oxide through a chemical bond or an electrostatic bond.
  • Examples thereof include a carboxyl group, a phosphoric acid group, a sulfonic acid group, a sulfonyl group, a sulfuric acid group, and a hydroxyl group. Most preferred are a carboxyl group and a phosphate group.
  • the monomer species to be adsorbed (adsorbed species) is not particularly limited as long as it is a compound that can be oxidized by the oxidizing power of holes generated on the metal oxide to form a conductive polymer. Examples include thiophene and its derivatives, pyrrole and its derivatives, aniline and its derivatives, furan and its derivatives, fluorene and its derivatives, and the like. These oligomers can also be used.
  • thiophene and its derivatives, and further oligothiophene derivatives are preferably used from the viewpoint of acid potential.
  • the oligothiophene derivative 2, 3, and tetramers having the structure represented by the above general formula 1 are preferable.
  • the distance between the metal oxide and the organic conductive polymerizable material to be produced can be controlled by inserting a group having a carbon bond such as an alkyl or a phenol between the functional group and the monomer. Is possible.
  • the structure inserted between these is not particularly limited as long as it is stable during the polymerization reaction and when used in subsequent devices. Particularly preferred are straight chain alkyls with a chain length of 1 to 30.
  • Preferred adsorbing species include 2-thiophenecarboxylic acid, 2,2, -bithiophene-5-carboxylic acid, 2,2,2,2, -terthiophene-5-carboxylic acid, 2-thiophenephosphoric acid, 2 , 2, -Bithiophene-5-phosphate, 2,2 ', 2', -Terophene-5-phosphate, 2-pyrrolecarboxylic acid, 2,2, -bipyrrole-5-carboxylic acid, 2, 2,2,2, -terpyrrole-5-carboxylic acid, 2-pyrrole phosphate, 2,2, -bipyrrole-5-phosphate, 2, 2 ,, 2, -terpyrrole-5-phosphate, arlin Examples thereof include carboxylic acid, arylphosphoric acid, fluorenecarboxylic acid, and fluorenephosphoric acid.
  • the molecular weight of the conductive polymer is about 500 to 500,000, preferably about 650 to 50,000.
  • the electrochemical cell a fuel cell, a solar cell, a lithium secondary battery, an electric double layer capacitor, an electrochemical sensor device, an electrochemical display element (electric chromic), electronic paper, etc.
  • Photoelectrochemical elements such as solar cells are particularly preferable.
  • the cell temperature is set to -20 ° C to 50 ° C, preferably 0 ° C to 10 ° C.
  • the amount of the organic conductive polymerizable material coated on the metal oxide is controlled by the light irradiation time or the photoelectric flow rate. For example, if it is necessary to generate only oligomers, the light irradiation time is shortened. As an application, it is a polymerization method suitable for oligomer-sensitized solar cells. On the other hand, if a metal oxide is filled with an organic conductive polymerizable material, a p-n barta heterojunction type solar cell can be fabricated. From this, it is possible to control the coating amount of the organic conductive polymerizable material according to the application.
  • the wavelength of light to be irradiated not only white light but also X-ray 'ultraviolet rays' visible light can be selected, or monochromatic light can be irradiated by splitting the light. Furthermore, if the characteristics of light are used, the distribution of the organic conductive polymerizable material generated in the metal oxide nanostructure can be changed, and the usefulness of the metal oxide / organic conductive polymerizable material composite can be improved. spread.
  • the absorption spectrum of titanium oxide rises from around 400 nm and the absorption peak is located at about 340 to 350 nm.
  • the filling property of the organic conductive polymer material in the titanium oxide film For example, when the monochromatic light of 350 nm is irradiated onto the film, it is possible to deposit more organic conductive polymerizable material at a position close to the irradiated surface because of its high absorbance.
  • the organic conductive polymerizable material when monochromatic light close to 400 ° is irradiated, the organic conductive polymerizable material is uniformly deposited in the film because the absorbance of the film itself is small. In other words, it is possible to control the distribution of the generated organic conductive polymerizable material by selecting the wavelength of light that irradiates the film. Since this method makes it possible to deposit different polymers at different positions in the film, it can be expected to be applied to photoelectric conversion devices as described above.
  • an acid titanium nanoparticle film was used.
  • purchase paste (Solaronix, Ti-Nanoxide HT / SP) with particle size of ⁇ 30 nm, print it with a screen printer, and then bake at 500 ° C for 1 hour. It was produced by. The particle size is 7-30 nm.
  • This electrode is used as a working electrode, a Pt counter electrode, an Ag / 0.1M AgNO reference electrode, a acetonitrile containing 0.1 to 5 M LiCIO and 0.01 to 5 M 3-methylthiophene.
  • An electrochemical cell was prepared using a tolyl electrolyte and irradiated with white light of Xe lamp power while applying a potential of 0 to +0.7 V. Simultaneously with the irradiation, a green-black polythiophene-acid titanium nanocomposite was obtained. In addition, a titanium oxide nanoparticle film on which 2-thiophenecarboxylic acid was adsorbed was also used. The polymerization amount was controlled by the light irradiation time and evaluated from the observed photoelectric flow rate. Figure 2 shows the relationship between the photocurrent and the applied potential observed during dark and light irradiation. It can be seen that the polymerization reaction does not proceed in the dark. By measuring the absorption spectrum and IR ⁇ vector of the prepared film, it was confirmed that pure poly (3-methylthiophene) was polymerized. ⁇ Example 2 ⁇
  • a green-black polythiophene-acid-titanium nanocomposite could be obtained by performing the same operation as in Example 1 except that thiophene-3-acetic acid was used as the adsorbing species instead of Example 1. By measuring the absorption spectrum and IR ⁇ vector of the prepared film, it was confirmed that pure (3-methylthiophene) was polymerized.
  • Example 2 The same procedure as in Example 1 was performed except that 2,2′-bithiophene-5, -carboxylic acid was used as the adsorbing species instead of Example 1, and red poly (3-methylthiophene) -acid ⁇ We were able to obtain a titanium nanocomposite.
  • a red polythiophene-titanium oxide nanocomposite can be obtained by performing the same operation as in Example 1 except that thiophenecarboxylic acid is used as the adsorbing species and bitophene is used as the thiophene reactant instead of Example 1. did it.
  • a photoelectric chemical cell (polymer-sensitized solar cell) was prepared.
  • a sandwich cell was fabricated by sandwiching a working electrode carrying a composite film and a platinum counter electrode, and a solar cell was fabricated by injecting iodine electrolyte into the gap.
  • Figure 3 shows the external quantum yield or IPCE (probability that one photon is converted to a current).
  • IPCE quantum yield
  • Example 2 3,3, -dimethyl-2,2, -bithiophene was used as a monomer, and bithiophene force norlevonic acid was used as an adsorbing species. Specifically, 10mM of biothiophene norevonic acid A sol solution was prepared, and a titanium oxide film was immersed in the solution for 1 minute. Then, using 3,3, -dimethyl-2,2, -bithiophene as a monomer and performing photopolymerization for 10 minutes, a composite film of 02 / PT was prepared.
  • a photoelectrochemical cell (polymer-sensitized solar cell) was produced.
  • a sandwich cell was made by sandwiching a working electrode carrying a composite film and a platinum counter electrode, and a solar cell was made by injecting iodine electrolyte into the gap.
  • Figure 4 shows the external quantum yield or IPCE (probability that one photon is converted to a current).
  • a battery made by adsorbing the surface of titanium dioxide with no vitrophene carboxylic acid and a battery made by polymerizing polythiophene and using only titanium oxalate-titanium. The spectrum of is also shown. Obviously, a photocurrent is generated in the visible light region due to absorption of polythiophene.
  • IPCE is dramatically improved by using 3,3, -dimethyl-2,2, -bithiophene as a monomer and bithiophene carboxylic acid as an adsorbing species. Kanata.
  • 2-pyrrolecarboxylic acid (Wako, special grade) is adsorbed on the surface of the titanium oxide nanoparticle film, 0.01-5 M pyrrole (Wako, special grade) as a raw material monomer, and 0.01-5 M sodium dodecyl sulfate (Wako Pure) as an electrolyte.
  • An electrolytic aqueous solution containing a medicine and a special grade was filled in the titanium oxide pores.
  • a three-electrode cell was constructed using a titanium oxide electrode as the working electrode, a Pt counter electrode, and an Ag / AgCl reference electrode, and light was applied for 10 minutes using an Xe lamp while applying OV vs Ag / AgCl to the titanium oxide electrode.
  • the production amount is small, the light absorption efficiency of the film is not sufficient, and thus the photocurrent may be lower than that of a ruthenium dye-sensitized solar cell.
  • the amount is too large, the efficiency of electron injection from the organic conductive polymerizable material to the metal oxide due to the increase in size will decrease.
  • the size of the organic conductive polymerizable material is preferably 1-50 thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Hybrid Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、金属酸化物微粒子を含むナノ構造体と有機導電性重合性材料を有する複合材料であって、前記金属酸化物微粒子同士が接合し、且つ該微粒子間の間隙に有機導電性重合体材料を含有し、しかも前記有機導電性重合性材料がポリチオフェン誘導体或いはチオフェンもしくはその誘導体とピロール、アニリン、フルオレン、フラン又はその誘導体から構成される共重合体である複合材料とその製造方法に関する。本発明の複合材料は、電子ペーパー等の表示素子として有用である。

Description

明 細 書
光照射による金属酸化物表面上への有機導電性重合性材料の合成 技術分野
[0001] 本発明は、金属酸化物と有機導電性重合性材料の複合体及びその製造方法に関 し、詳しくは、太陽電池 '発光素子'表示素子'トランジスタなどの電子素子や燃料電 池、太陽電池、リチウム二次電池、電気二重層キャパシタ、電気化学センサーデバイ ス、電気化学表示素子 (エレクト口クロミック)、電子ペーパーなどの電気化学デバイス として応用したり、人工骨'筋肉として応用するのに好適なナノ構造制御された金属 酸化物と有機導電性重合性材料の複合体及びその製造方法に関するものである。 背景技術
[0002] 材料をナノメートルサイズで制御することによる新たな機能の発現が期待されるナノ テクノロジーが最近注目されている。このような構造制御の方法として、トップダウン型 と呼ばれる微細加工技術の研究が活発に行われて 、るが、この技術では数十ナノメ 一トルが限度と予想されている。そのため、原子レベル力も積み上げていくビルドアッ プ型と呼ばれる技術を用いて、より小さい単位で制御を行い、構造体を作製すること が必要とされる。
[0003] 導電性高分子などの有機導電性重合性材料は、安価 '軽量'成形容易などの特徴 を有し、また、その電気 ·電子特性力 様々な分野への応用が検討されている。一方 、酸化チタンに代表される金属酸化物は、資源豊富で安価なものが多ぐ最近特に 太陽電池 ·発光素子 ·透明電極など幅広 ヽ研究が活発に行われて ヽる。有機導電性 重合性材料と金属酸化物のナノ構造制御された複合体は、ナノテクノロジーへの応 用を考えると魅力的であり、特に太陽電池や表示素子への応用が期待される。
[0004] ナノ構造複合体の作製方法につ!ヽて、 Janssenらは(非特許文献 1)、初めに酸化物 を作製するための基質と有機導電性重合性材料を混合し、それから無機物の反応を 進行させて構造体を形成する方法を報告している。ところが、この方法では、金属酸 化物の純度が悪くなり、また太陽電池などの電子デバイスに用いるためには、酸ィ匕物 間での導通が取れないなどの問題がある。一方、 Brinkerらは、非特許文献 2に、ァセ チレンモノマーと金属酸ィ匕物の基質を反応させて、その生成物からナノ構造体を作 製し、その後モノマーに光を照射して導電性高分子 (ポリジアセチレン)を重合する方 法を報告した。ところが、この方法では、モノマーがそれ自身の光化学反応により重 合するタイプに限られ、またモノマー配列が原子レベルで揃って 、なければならず、 技術的にも困難であることが予想される。さらに、酸ィ匕チタンナノ構造体をあら力じめ 作製しておき、その構造体内部でモノマーに光照射を行うことによって光化学反応を 誘起する方法も最近報告されている(非特許文献 3)。ただこの場合には、モノマー同 士一つ一つが反応するだけで終わってしまう。
[0005] 作製方法として、化学反応を用いない方法も報告されている。例えば、あらかじめ 金属酸化物のナノ構造体を作製し、その構造内に溶解した導電性高分子をキャスト 法'スピンコート法などにより充填させる方法である。しかし、これらの方法では、導電 性高分子が構造体中に十分に浸透しない問題点があった。例えば、 Huismanらは、 ポリオクチルチオフェンを酸ィ匕チタンナノ構造膜内に充填させる試みを行っても、膜 表面から 1 m程度にしか浸透しないことを報告 (非特許文献 4)している。また、たと え技術的に充填する方法が向上したとしても、これらの方法では、導電性高分子が 溶剤に溶解するもの並びに重合度も比較的低いものに限定されてしまう。
[0006] また、ナノ構造体ではなぐ平面の酸ィ匕チタン板上に水溶液中で光照射によりポリ ピロールを作製する方法が藤嶋らによって報告されている (非特許文献 5)。ただ著 者らは、酸ィ匕チタンのトラップ準位を介してピロールが酸ィ匕されていると考えており、 この方法では、ピロールなどの比較的酸ィ匕電位の低 、モノマーの重合に限られてし まう。事実、本発明者はこの方法でポリチォフェンの重合を試みたが、反応が進行せ ず、むしろ水存在下で光触媒反応 (モノマーが分解される反応)が進行することを示 す結果を得ている。つまり、水溶液中で重合することは非常に困難である。
非特許文献 1 : Advanced Materials, 15(2), 118, 2003
非特許文献 2 Journal of the American Chemical Society (125, 1269, 2003) 非特許文献 3 : Huisman et al., Macromolecules, 37, 5557, 2004
非特許文献 4 : Chemistry of Materials, 15, 4617, 2003
非特許文献 5 : Chemistry Letters 1986, 469; Journal of Electrochemical Society 134( 4), 837, 1987
発明の開示
発明が解決しょうとする課題
[0007] このように、現状の技術では、金属酸化物と有機導電性重合性材料をナノレベルで 制御した緻密な構造体を作製する方法がなぐ電子デバイスなどに応用するための 構造制御は困難であった。
[0008] 本発明は、ナノレベルで構造制御された金属酸化物と有機導電性重合性材料の 複合材料及びその製造法を提供することを目的とする。
[0009] また、本発明は該複合材料を使用した電子デバイスを提供することを目的とする。
課題を解決するための手段
[0010] 本発明者は、酸ィ匕チタンに代表される電気的導通の取れる金属酸ィ匕物のマイクロ 構造体ないしナノ構造体に光を照射することにより発生するホールの酸化力を利用 して、チォフェン、ァ-リン、ピロール、フラン、フルオレンなどのモノマーを順に酸化 して有機導電性重合性材料を形成することにより、マイクロないしナノ構造制御され た金属酸ィ匕物と有機導電性重合性材料の複合材料が得られることを見出した。また 、あらかじめ金属酸ィ匕物表面に吸着する官能基を持つモノマーを導入した状態で光 重合を行うと、金属酸ィ匕物と有機導電性重合性材料のより緻密に接合した複合体を 作製することが可能であることを見出した。
[0011] 本発明は、以下の複合材料及びその製造方法並びに電子デバイスに関する。
1. 金属酸化物微粒子を含む電気的接触の取れたナノ構造体と有機導電性重合 性材料を有する複合材料。
2. 金属酸化物ナノ構造体がナノ粒子、ナノワイヤー、ナノチューブ及びナノロッドか らなる群力 選択される構造を有する項 1に記載の複合材料。
3. 金属酸化物が酸化チタンおよび酸化スズからなる群から選択される少なくとも 1 種である項 1又は 2に記載の複合材料。
4. 有機導電性重合性材料の末端に吸着種由来の吸着性官能基を有し、該吸着 性官能基を介して該重合性材料が金属酸ィ匕物微粒子に吸着な 、し結合されて!、る 、項 1〜3のいずれかに記載の複合材料。 5. 有機導電性重合性材料がポリチォフェン又はその誘導体、ポリピロール又はそ の誘導体、ポリア二リン又はその誘導体、ポリフラン又はその誘導体、ポリフルオレン 又はその誘導体或いはチォフェン、ピロール、ァ-リン、フラン、フルオレン又はそれ らの誘導体力 なる群力 選ばれる少なくとも 2種力 構成される共重合体である項 1 〜4の 、ずれかに記載の複合材料。
6. 有機導電性重合性材料が、原料モノマーの導電性オリゴマーおよび Zまたは導 電性ポリマーである項 1〜5のいずれかに記載の複合材料。
7. 金属酸化物微粒子構造体の間隙に有機導電性重合性材料の原料モノマーを 充填し、次いで光照射を行うことを特徴とする、項 1〜6のいずれかに記載の複合材 料の製造方法。
8. 金属酸化物微粒子構造体に、該金属酸化物に対する吸着性官能基を有する有 機導電性重合性材料の原料モノマーを作用させて該モノマーを吸着させ、次いで必 要に応じて該吸着性官能基を有しない原料モノマーを作用させることを特徴とする項 1〜6の 、ずれかに記載の複合材料の製造方法。
9. 吸着性官能基を有する有機導電性重合性材料の原料モノマーを 2, 3, 4量体と して、可視光を照射し、モノマーを励起して金属酸ィ匕物界面での電子移動反応を引 き起こすことにより重合を行うことを特徴とする項 1〜6のいずれかに記載の複合材料 の製造方法。
10. 項 1〜6のいずれかに記載の複合材料、または項 7〜9のいずれかに記載の方 法により得られた複合材料を備えた電子デバイス。
11. 電子デバイスが太陽電池である項 10に記載のデバイス。
12. 項 1〜6のいずれかに記載の複合材料、または項 7〜9のいずれかに記載の方 法により得られた複合材料を備えた表示素子。
13. 表示素子が電子ペーパーである項 12に記載の表示素子。
さらに本発明は、以下の複合材料及びその製造方法、電子デバイス並びに表示装 置に関する。
1A. 金属酸化物微粒子を含むナノ構造体と有機導電性重合性材料を有する複合 材料であって、前記金属酸ィ匕物微粒子同士が接合し、且つ該微粒子間の間隙に有 機導電性重合体材料を含有し、しかも前記有機導電性重合性材料がポリチォフェン 又はその誘導体、ポリピロール又はその誘導体、ポリア-リン又はその誘導体、ポリフ ラン又はその誘導体、ポリフルオレン又はその誘導体或いはチォフェン、ピロール、 ァ-リン、フラン、フルオレン又はそれらの誘導体力 なる群力 選ばれる少なくとも 2 種から構成される共重合体である複合材料。
2A. 金属酸化物ナノ構造体がナノ粒子、ナノワイヤー、ナノチューブ及びナノロッド 力 なる群力 選択される構造を有する項 1Aに記載の複合材料。
3A. 金属酸ィ匕物が酸ィ匕チタンおよび酸化スズからなる群力 選択される少なくとも 1種である項 1A又は 2Aに記載の複合材料。
4A. 有機導電性重合性材料の末端に吸着種由来の吸着性官能基を有し、該吸着 性官能基を介して該重合性材料が金属酸ィ匕物微粒子に吸着な 、し結合されて!、る 、項 1A〜3Aのいずれかに記載の複合材料。
5A. 有機導電性重合性材料が、原料モノマーの導電性オリゴマーおよび Zまたは 導電性ポリマーである項 1A〜4Aのいずれか〖こ記載の複合材料。
6A. 金属酸化物微粒子構造体の間隙に有機導電性重合性材料の原料モノマー を充填し、次いで光照射を行うことを特徴とする、項 1A〜5Aのいずれかに記載の複 合材料の製造方法。
7A. 金属酸化物微粒子構造体に、該金属酸化物に対する吸着性官能基を有する 有機導電性重合性材料の原料モノマーを作用させて該モノマーを吸着させ、次いで 必要に応じて該吸着性官能基を有しない原料モノマーを作用させることを特徴とする 項 1A〜5Aのいずれかに記載の複合材料の製造方法。
8A. 吸着性官能基を有する有機導電性重合性材料の原料モノマーを 2, 3, 4量体 として、可視光を照射し、モノマーを励起して金属酸化物界面での電子移動反応を 引き起こすことにより重合を行うことを特徴とする項 1〜5Aのいずれかに記載の複合 材料の製造方法。
9A. 項 1A〜5Aのいずれかに記載の複合材料、または項 6A〜8Aのいずれかに 記載の方法により得られた複合材料を備えた電子デバイス。
10A. 電子デバイスが太陽電池である項 9Aに記載のデバイス。 11 A. 項 1A〜5Aのいずれかに記載の複合材料、または項 6A〜8Aのいずれかに 記載の方法により得られた複合材料を備えた表示素子。
12A. 表示素子が電子ペーパーである項 11 Aに記載の表示素子。
発明の効果
[0013] 本発明により、ナノメートルレベルの隙間を持つ金属酸ィヒ物ナノ構造体の表面に有 機導電性重合性材料を光照射により形成する方法を確立することができた。さらに、 金属酸ィ匕物表面に吸着する官能基を持つモノマーを導入した状態で光重合を行うと 、金属酸ィ匕物と有機導電性重合性材料のより緻密に接合した、密着性の高い複合体 を作製することが可能になった。本研究に示した方法により、高性能の有機導電性重 合性材料増感太陽電池への応用が可能であるのみならず、新規有機太陽電池など の光電変換素子、エレクト口クロミズムゃ発光ダイオード、電子ペーパーなどの表示 素子、トランジスタや記憶素子などの電子デバイスへの応用が可能であると考えられ る。さらには、人工骨'人工筋肉への応用も可能である。
図面の簡単な説明
[0014] [図 1]金属酸ィ匕物への光照射によるポリチォフェンの合成
[図 2]酸化チタン電極から測定された光電流と暗電流の挙動
[図 3]太陽電池の外部量子収率 (IPCE)
[図 4]太陽電池の外部量子収率 (IPCE)
[図 5]エレクト口クロミズム(電子ペーパー用)の結果を示す。
発明を実施するための最良の形態
[0015] 本明細書において、「電気的接触の取れた」とは、金属酸ィ匕物同士が接触している 構造体を意味し、金属酸化物微粒子を含む電気的接触の取れたナノ構造体として は、例えばナノ粒子 (特にナノ粒子膜)、ナノワイヤー、ナノチューブ、ナノロッドなどが 挙げられる。
[0016] 酸ィ匕チタンなどの n型半導体の特性を持つ金属酸ィ匕物は、光によって励起されると 電子が伝導帯、ホールが価電子帯に生成する。この半導体の表面において、酸ィ匕反 応によって反応が進行し、かつモノマーの酸ィ匕電位が価電子帯端の電位より負側で あるような有機導電性重合性材料のモノマーが存在すれば、光発生したホールによ りモノマーは速やかに酸化される。酸ィ匕されたモノマーは隣にあるモノマーと反応す ることにより、重合が進行する。例えば、図 1に、ポリチォフェンの重合メカニズムを示 す。このことから、上記の電位条件を満たす金属酸化物と有機導電性重合性材料の 組み合わせであれば、全て光による反応が進行する。また、金属酸ィ匕物として、 n型 半導体を用いると、発生したホールの移動距離は短ぐ光を照射した位置にのみ反 応を起こすことが可能である。この時には、光生成した電子は、 n型半導体中を通つ て、基盤電極から得られる。
[0017] 重合反応に使用される光としては、可視光ないし紫外線が挙げられ、その波長とし ては通常 300〜800 nm程度、好ましくは 300〜600nm程度である。
[0018] 金属酸化物の構造は、金属酸化物の微粒子 (ナノ粒子)からなる構造や金属酸ィ匕 物のナノチューブ 'ロッドからなる構造が挙げられるが、これらの構造に限定されない 。例えば、微粒子を用いる場合、平均粒径は好ましくは 5 ηπ!〜 1000 nm程度、より好 ましくは?〜 100 應程度である。これらの構造体 (例えば膜状、シート状、粒状、筒状 などの形状)の作製方法は、すでに論文で紹介されている方法、つまり既存の方法を 用いる。構造に対するポイントは、微粒子状 (ナノメートルレベル)の金属酸ィ匕物が、 接触して電子を金属酸ィ匕物間でやり取りするような構造であればよい。金属酸化物 の材料としては、キャリアが電子である n型半導体とキャリアがホールである p型半導 体が存在するが、 n型半導体を用いるのが好ましい。 n型半導体としては、例えば、酸 化チタン、酸化亜鉛、酸化スズ、酸化タングステン、酸化ニオブ、酸化インジウム、酸 化シリコン、酸化マグネシウム、酸ィ匕アルミニウム、酸化セリウム、酸化ビスマス、酸ィ匕 マンガン、酸化イットリウム、酸ィ匕タンタル、酸ィ匕ランタン、酸化鉄、酸化銅などや酸化 物複合体(例えば、チタン酸ストロンチウム(TiSr03)、チタン酸カルシウム、チタン酸 ナトリウム、チタン酸バリウム、ニオブ酸カリウム、酸化インジウムスズ (ITO) )が挙げら れる。中でも、安定性や酸ィ匕電位の点から、酸ィ匕チタンと酸化スズが好ましい。
[0019] 有機導電性重合性材料を形成するためのモノマーは、特に限定されな!ヽが、好ま しくは、金属酸ィ匕物上に発生するホールの酸ィ匕カによって酸ィ匕されるような化合物が 挙げられる。例えば、チォフェン及びその誘導体、ピロール及びその誘導体、ァニリ ン及びその誘導体、フラン又はその誘導体、フルオレン及びその誘導体、フラン及び その誘導体などが挙げられる。より具体的には、チォフェン及びその誘導体、ピロ一 ル及びその誘導体、フラン及びその誘導体に関しては下記一般式 (1)、フルオレン及 びその誘導体に関しては下記一般式 (Π)
[0020] [化 1]
Figure imgf000009_0001
[0021] (式中、 1^〜1^°は、各々独立して水素原子、ヒドロキシメチル、ヒドロキシェチル、置 換基を有していてもよいァリール基、置換基を有していてもよいァラルキル基、炭素 数 1〜18のアルキル基、炭素数 1〜18のアルコキシ基、ポリエチレンォキシド、ポリプ ロピレンォキシド、エチレンォキシド Zプロピレンォキシド共重合体などのポリエーテ ル基、炭素数 1〜18のパーフルォロアルキル(C F 、 nは 1〜18の整数;例えば C F n 2n+l 6 1
, C F , C F , C F 等)などの炭素数 1〜18のパーハロアルキル、ポリシ口キシ基を
3 7 15 8 17 9 19
表わし、 Xは O (酸素原子)、 S (硫黄原子)または NRaを表わし、 Raは水素原子または 炭素数 1〜18のアルキル基を表わし、 R1と R2は、それらが結合している炭素原子と一 緒になって飽和または不飽和の 5または 6員環を形成しても良い。 R9と R1Qは、それら が結合している炭素原子と一緒になつてカルボニル基または飽和または不飽和の 5 または 6員環を形成しても良い。)で表される構造が挙げられる。
[0022] また、該モノマーが 2個以上、例えば 2〜: LO個、好ましくは 2〜8個、さらに好ましく は 2〜6個連結されたオリゴマー Zマクロモノマーも、重合し得る限りチォフェン誘導 体、ピロール誘導体、フラン誘導体、フルオレン誘導体に包含される。
[0023] 従って、本明細書にぉ 、て「原料モノマー」は、チォフェン環、ピロール環、フラン環 もしくはフルオレン環が 1つのみのモノマーだけでなぐ 2以上環が連結されたオリゴ マー/マクロモノマー (好ましくは二量体〜六量体)も包含する(但し、該オリゴマー '一は光照射により重合し得るものである) (
[0024] ポリシロキシ基としては、具体的には、
[0025] [化 2]
Figure imgf000010_0001
[0026] (式中、 R3と R4は、各々独立して炭素数 1〜18のアルキル基である。 nは任意の整数 である)が例示される。
[0027] 置換基を有して ヽてもよ ヽァリール基としては、炭素数 1〜4の直鎖または分枝を有 するアルキル基、ハロゲン原子 (F,Cl,Br,I)、水酸基、炭素数 1〜4の直鎖または分枝 を有するアルコキシ基、ァセチル基、アミノ基、ァセチルァミノ基、シァノ基、ニトロ基 などで 1、 2または 3置換されていてもよいフエ-ル基、ナフチル基が挙げられる。
[0028] 置換基を有して ヽてもよ ヽァラルキル基としては、炭素数 1〜4の直鎖または分枝を 有するアルキル基、ハロゲン原子 (F,Cl,Br,I)、水酸基、炭素数 1〜4の直鎖または分 枝を有するアルコキシ基、ァセチル基、アミノ基、ァセチルァミノ基、シァノ基、ニトロ 基などで 1、 2または 3置換されていてもよいべンジル基、フエネチル基が挙げられる。
[0029] 炭素数 1〜18のアルキル基としては、メチル、ェチル、 n-プロピル、イソプロピル、 n -ブチル、イソブチル、 sec-ブチル、 t-ブチル、ペンチル、へキシル、ヘプチル、オタ チル、ノニル、デシル、ゥンデシル、ドデシル、テトラデシル、へキサデシル、ォクタデ シルなどの炭素数 1〜18の直鎖又は分枝を有するアルキル基が挙げられる。
[0030] 炭素数 1〜18のアルコキシ基としては、— O— (炭素数 1〜18のアルキル基)、(炭 素数 1〜18のアルキル基は、前記に記載されるものと同じである)で表される基が挙 げられる。
[0031] 炭素数 1〜18のパーハロアルキル基としては、炭素数 1〜18のパーフルォロアル キル基 (CnF2n+l、nは 1〜18の整数)などの直鎖又は分枝を有するパーハロアルキル 基が挙げられる。 チォフェン及びその誘導体に関しては、 3,3,-ジメチル- 2,2,-ビチォフェン、チオフ ェン, 3-メチルチオフェン, 3-ェチルチオフェン, 3-n-プロピルチオフェン, 3-イソプロ ピルチオフ ン, 3-n-ブチルチオフェン, 3-イソブチルチオフェン, 3-sec-ブチルチオ フェン, 3-t-ブチルチオフェン, 3-ペンチルチオフェン, 3-へキシルチオフェン, 3-へ プチルチオフェン, 3-ォクチルチオフェン, 3-ノ-ルチオフェン, 3-デシルチオフェン, 3-ゥンデシルチオフェン, 3-ドデシルチオフェン, 3-テトラデシルチオフェン, 3-へキ サデシルチオフェン, 3-ォクタデシルチオフェン, 3,4-ジメチルチオフェン, 3-メチル- 4-ェチルチオフェン, 3-メチル -4-n-プロピルチオフェン, 3-メチル -4-イソプロピルチ オフ ン, 3-メチル -4-n-ブチルチオフェン, 3-メチル -4-イソブチルチオフェン, 3-メ チル- 4-sec-ブチルチオフェン, 3-メチル -4-t-ブチルチオフェン, 3-メチル -4-ペン チルチオフェン, 3-メチル -4-へキシルチオフェン, 3-メチル -4-へプチルチオフェン, 3-メチル -4-ォクチルチオフェン, 3-メチル -4-ノ-ルチオフェン, 3-メチル -4-デシル チォフェン, 3-メチル -4-ゥンデシルチオフェン, 3-メチル -4-ドデシルチオフェン, 3- メチル -4-テトラデシルチオフェン, 3-メチル -4-へキサデシルチオフェン, 3-メチル -4 -ォクタデシルチオフェン, 3, 4-ジェチルチオフェン, 3-ェチル -4-n-プロピルチオフ ェン, 3-ェチル -4-イソプロピルチオフェン, 3-ェチル -4-n-ブチルチオフェン, 3-ェ チル -4-イソブチルチオフェン, 3-ェチル -4-sec-ブチルチオフェン, 3-ェチル -4-t- ブチルチオフェン, 3-ェチル -4-ペンチルチオフェン, 3-ェチル -4-へキシルチオフエ ン, 3-ェチル -4-へプチルチオフェン, 3-ェチル -4-ォクチルチオフェン, 3-ェチル -4 -ノ-ルチオフェン, 3-ェチル -4-デシルチオフェン, 3-ェチル -4-ゥンデシルチオフエ ン, 3-ェチル -4-ドデシルチオフェン, 3-ェチル -4-テトラデシルチオフェン, 3-ェチル -4-へキサデシルチオフェン, 3-ェチル -4-ォクタデシルチオフェン, 3,4-ジ n—プロピ ルチオフェン, 3-n—プロピル- 4-イソプロピルチオフェン, 3-n—プロピル- 4-n-ブチ ルチオフェン, 3-n—プロピル- 4-イソブチルチオフェン, 3-n—プロピル- 4-sec-ブチ ルチオフェン, 3-n—プロピル- 4-t-ブチルチオフェン, 3-n—プロピル- 4-ペンチルチ ォフェン, 3-n—プロピル- 4-へキシルチオフェン, 3-n-プロピル- 4-へプチルチオフエ ン, 3-n-プロピル- 4-ォクチルチオフェン, 3-n-プロピル- 4-ノニルチオフェン, 3-n-プ 口ピル- 4-デシルチオフェン, 3-n-プロピル- 4-ゥンデシルチオフェン, 3-n-プロピル- 4-ドデシルチオフェン, 3-n-プロピル- 4-テトラデシルチオフェン, 3-n-プロピル- 4-へ キサデシルチオフェン, 3-n-プロピル- 4-ォクタデシルチオフェン, 3, 4—ジイソプロピ ルチオフェン, 3-イソプロピル- 4-n-ブチルチオフェン, 3-イソプロピル- 4-イソブチル チォフェン, 3-イソプロピル- 4-sec-ブチルチオフェン, 3-イソプロピル- 4-t-ブチルチ ォフェン, 3-イソプロピル- 4-ペンチルチオフェン, 3-イソプロピル- 4-へキシルチオフ ェン, 3-イソプロピル- 4-へプチルチオフェン, 3-イソプロピル- 4-ォクチルチオフェン, 3-イソプロピル- 4-ノニルチオフェン, 3-イソプロピル- 4-デシルチオフェン, 3-イソプ 口ピル- 4-ゥンデシルチオフェン, 3-イソプロピル- 4-ドデシルチオフェン, 3-イソプロ ピル- 4-テトラデシルチオフェン, 3-イソプロピル- 4-へキサデシルチオフェン, 3-イソ プロピル- 4-ォクタデシルチオフェン, 3,4-ジ n-ブチルチオフェン, 3-n-ブチル -4-ィ ソブチルチオフ ン, 3-n-ブチル -4-sec-ブチルチオフ ン, 3-n-ブチル -4-t-ブチル チォフェン, 3-n-ブチル -4-ペンチルチオフェン, 3-n-ブチル -4-へキシルチオフェン , 3-n-ブチル -4-へプチルチオフェン, 3-n-ブチル -4-ォクチルチオフェン, 3-n-ブチ ル- 4-ノ-ルチオフェン, 3-n-ブチル -4-デシルチオフェン, 3-n-ブチル -4-ゥンデシ ルチオフェン, 3-n-ブチル -4-ドデシルチオフェン, 3-n-ブチル -4-テトラデシルチオ フェン, 3-n-ブチル -4-へキサデシルチオフェン, 3-n-ブチル -4-ォクタデシルチオフ ン, 3,4-ジイソプチルチオフェン, 3-イソブチル - 4-sec-ブチルチオフェン, 3_イソブ チル -4-t-ブチルチオフェン, 3-イソブチル -4-ペンチルチオフェン, 3-イソブチル -4- へキシルチオフェン, 3-イソブチル -4-へプチルチオフェン, 3-イソブチル -4-ォクチ ルチオフェン, 3-イソブチル -4-ノ-ルチオフェン, 3-イソブチル -4-デシルチオフェン , 3-イソブチル -4-ゥンデシルチオフェン, 3-イソブチル -4-ドデシルチオフェン, 3-ィ ソブチル- 4-テトラデシルチオフェン, 3-イソブチル -4-へキサデシルチオフェン, 3-ィ ソブチル- 4-ォクタデシルチオフェン, 3, 4-ジ sec-ブチルチオフェン, 3-sec-ブチル -4 -t-ブチルチオフェン, 3-sec-ブチル -4-ペンチルチオフェン, 3-sec-ブチル -4-へキ シルチオフ ン, 3-sec-ブチル -4-へプチルチオフ ン, 3-sec-ブチル -4-ォクチルチ ォフェン, 3-sec-ブチル -4-ノ-ルチオフェン, 3-sec-ブチル -4-デシルチオフェン, 3 -sec-ブチル -4-ゥンデシルチオフェン, 3-sec-ブチル -4-ドデシルチオフェン, 3-sec -ブチル- 4-テトラデシルチオフェン, 3-sec-ブチル -4-へキサデシルチオフェン, 3-se c-ブチル -4-ォクタデシルチオフェン, 3,4-ジ t-ブチルチオフェン, 3-t-ブチル -3-ぺ ンチルチオフェン, 3-t-ブチル -4-へキシルチオフェン, 3-t-ブチル -4-へプチルチオ フェン, 3-t-ブチル -4-ォクチルチオフェン, 3-t-ブチル -4-ノニルチオフェン, 3-t-ブ チル- 4-デシルチオフェン, 3-t-ブチル -4-ゥンデシルチオフェン, 3-t-ブチル -4-ド デシルチオフェン, 3-t-ブチル -4-テトラデシルチオフェン, 3-t-ブチル -4-へキサデ シルチオフェン, 3-t-ブチル -4-ォクタデシルチオフェン, 3,4-ジペンチルチオフェン,
3-ペンチル- 4-へキシルチオフェン, 3-ペンチル- 4-へプチルチオフェン, 3-ペンチ ル- 4-ォクチルチオフェン, 3-ペンチル- 4-ノ-ルチオフェン, 3-ペンチル- 4-デシル チォフェン, 3-ペンチル- 4-ゥンデシルチオフェン, 3-ペンチル- 4-ドデシルチオフエ ン, 3-ペンチル- 4-テトラデシルチオフェン, 3-ペンチル- 4-へキサデシルチオフェン,
3-ペンチル- 4-ォクタデシルチオフェン, 3,4-ジへキシルチオフェン, 3-へキシル -4- へプチルチオフェン, 3-へキシル -4-ォクチルチオフェン, 3-へキシル -4-ノニルチオ フェン, 3-へキシル -4-デシルチオフェン, 3-へキシル -4-ゥンデシルチオフェン, 3- へキシル -4-ドデシルチオフェン, 3-へキシル -4-テトラデシルチオフェン, 3-へキシ ル- 4-へキサデシルチオフェン, 3-へキシル -4-ォクタデシルチオフェン, 3,4-ジヘプ チルチオフェン, 3-ヘプチル -4-ォクチルチオフェン, 3-ヘプチル -4-ノニルチオフ ン, 3-ヘプチル- 4-デシルチオフェン, 3-ヘプチル- 4-ゥンデシルチオフェン, 3-ヘプ チル- 4-ドデシルチオフェン, 3-ヘプチル- 4-テトラデシルチオフェン, 3-ヘプチル- 4 -へキサデシルチオフェン, 3-ヘプチル- 4-ォクタデシルチオフェン, 3, 4-ジォクチル チォフェン, 3-ォクチル- 4-ノニルチオフェン, 3-ォクチル- 4-デシルチオフェン, 3-ォ クチル- 4-ゥンデシルチオフェン, 3-ォクチル- 4-ドデシルチオフェン, 3-ォクチル -4- テトラデシルチオフェン, 3-ォクチル- 4-へキサデシルチオフェン, 3-ォクチル- 4-オタ タデシルチオフェン, 3,4-ジノ-ルチオフェン, 3-ノ-ル -4-デシルチオフェン, 3-ノ- ル- 4-ゥンデシルチオフェン, 3-ノ-ル -4-ドデシルチオフェン, 3-ノ-ル -4-テトラデ シルチオフェン, 3-ノ-ル -4-へキサデシルチオフェン, 3-ノ-ル -4-ォクタデシルチ ォフェン, 3,4-ジデシルチオフェン, 3-デシル- 4-ゥンデシルチオフェン, 3-デシル -4 -ドデシルチオフェン, 3-デシル- 4-テトラデシルチオフェン, 3-デシル -4-へキサデシ ルチオフェン, 3-デシル- 4-ォクタデシルチオフェン, 3,4-ジゥンデシルチオフェン, 3 -ゥンデシル- 4-ドデシルチオフェン, 3-ゥンデシル- 4-テトラデシルチオフェン, 3-ゥ ンデシル- 4-へキサデシルチオフェン, 3-ゥンデシル- 4-ォクタデシルチオフェン, 3,4 -ジドデシルチオフェン, 3-ドデシル- 4-テトラデシルチオフェン, 3-ドデシル- 4-へキ サデシルチオフェン, 3-ドデシル- 4-ォクタデシルチオフェン, 3,4-ジテトラデシルチ ォフェン, 3-テトラデシル- 4-へキサデシルチオフェン, 3-テトラデシル- 4-ォクタデシ ルチオフェン, 3, 4-ジへキサデシルチオフェン, 3-へキサデシル- 4-ォクタデシルチオ フェンが好ましい。
ピロール及びその誘導体に関しては、 3,3,-ジメチル- 2,2,-ビピロール、ピロール, 3 -メチルピロール, 3-ェチルピロール, 3- n-プロピルピロール, 3-イソプロピルピロール , 3-n-ブチルピロール, 3-イソブチルピロール, 3-sec-ブチルピロール, 3-t-ブチルピ ローノレ, 3-ペンチルピロール, 3-へキシルピロール, 3-ヘプチルピロール, 3-ォクチ ルピロール, 3-ノ-ルピロール, 3-デシルピロール, 3-ゥンデシルピロール, 3-ドデシ ルピロール, 3-テトラデシルピロール, 3-へキサデシルピロール, 3-ォクタデシルピロ ール, 3,4-ジメチルピロール, 3-メチル -4-ェチルピロール, 3-メチル -4- n-プロピルピ ローノレ, 3-メチル -4-イソプロピルピロール, 3-メチル -4- n-ブチルピロール, 3-メチル -4-イソブチルピロール, 3-メチル - 4-sec-ブチルピロール, 3-メチル -4-t-ブチルピロ ール, 3-メチル -4-ペンチルピロール, 3-メチル -4-へキシルピロール, 3-メチル -4-へ プチノレピロ一ノレ, 3-メチル -4-ォクチルビロール, 3-メチル -4-ノ-ルピロール, 3-メチ ル- 4-デシルピロール, 3-メチル -4-ゥンデシルピロール, 3-メチル -4-ドデシルビロー ル, 3-メチル -4-テトラデシルビロール, 3-メチル -4-へキサデシルビロール, 3-メチル -4-ォクタデシルピロール, 3,4-ジェチルピロール, 3-ェチル -4- n-プロピルピロール, 3-ェチル -4-イソプロピルピロール, 3-ェチル -4- n-ブチルピロール, 3-ェチル -4-ィ ソブチノレピロ一ノレ, 3-ェチノレ- 4- sec-ブチノレピロ一ノレ, 3-ェチノレ- 4- 1-ブチノレピロ一ノレ , 3-ェチル -4-ペンチルピロール, 3-ェチル -4-へキシルピロール, 3-ェチル -4-ヘプ チルピロール, 3-ェチル -4-ォクチルビロール, 3-ェチル -4-ノ-ルピロール, 3-ェチ ル- 4-デシルピロール, 3-ェチル -4-ゥンデシルピロール, 3-ェチル -4-ドデシルピロ ール, 3-ェチル -4-テトラデシルピロール, 3-ェチル -4-へキサデシルピロール, 3-ェ チル -4-ォクタデシルビロール, 3,4-ジ n—プロピルピロール, 3-n—プロピル- 4-イソ プロピルピロール, 3-n—プロピル- 4-n-ブチルピロール, 3-n—プロピル- 4-イソブチ ルピロール, 3- n—プロピル- 4- sec-ブチルピロール, 3- n—プロピル- 4- 1-ブチルピロ ール, 3- n—プロピル- 4-ペンチルピロール, 3- n—プロピル- 4-へキシルピロール, 3- n-プロピル- 4-ヘプチルピロール, 3- n-プロピル- 4-ォクチルビロール, 3- n-プロピル -4-ノ-ルピロール, 3-n-プロピル- 4-デシルピロール, 3-n-プロピル- 4-ゥンデシルピ ロール, 3- n-プロピル- 4-ドデシルビロール, 3- n-プロピル- 4-テトラデシルピロール,
3- n-プロピル- 4-へキサデシルビロール, 3-n-プロピル- 4-ォクタデシルビロール, 3,4 ージイソプロピルピロール, 3-イソプロピル- 4-n-ブチルピロール, 3-イソプロピル- 4- イソブチルピロール, 3-イソプロピル- 4-sec-ブチルピロール, 3-イソプロピル- 4-t-ブ チルピロール, 3-イソプロピル- 4-ペンチルピロール, 3-イソプロピル- 4-へキシルピロ ール, 3-イソプロピル- 4-ヘプチルピロール, 3-イソプロピル- 4-ォクチルビロール, 3- イソプロピル- 4-ノ-ルピロール, 3-イソプロピル- 4-デシルピロール, 3-イソプロピル-
4-ゥンデシルピロール, 3-イソプロピル- 4-ドデシルビロール, 3-イソプロピル- 4-テト ラデシルビロール, 3-イソプロピル- 4-へキサデシルピロール, 3-イソプロピル- 4-オタ タデシルビロール, 3,4-ジ n-ブチルピロール, 3-n-ブチル -4-イソブチルピロール, 3- n-ブチル -4-sec-ブチルピロール, 3-n-ブチル -4-t-ブチルピロール, 3-n-ブチル -4 -ペンチルピロール, 3- n-ブチル -4-へキシルピロール, 3- n-ブチル -4-ヘプチルピロ ール, 3-n-ブチル -4-ォクチルビロール, 3-n-ブチル -4-ノ-ルピロール, 3-n-ブチル -4-デシルビロール, 3-n-ブチル -4-ゥンデシルビロール, 3-n-ブチル -4-ドデシルビ ロール, 3-n-ブチル -4-テトラデシルピロール, 3-n-ブチル -4-へキサデシルピロール , 3-n-ブチル -4-ォクタデシルピロール, 3,4-ジイソプチルピロール, 3-イソブチル -4- sec-ブチルビロール, 3-イソブチル -4-t-ブチルピロール, 3-イソブチル -4-ペンチル ピロ一ノレ, 3-イソブチル -4-へキシルピロール, 3-イソブチル -4-ヘプチルピロール, 3 -イソブチル -4-ォクチルビロール, 3-イソブチル -4-ノニルピロール, 3-イソブチル -4- デシルビロール, 3-イソブチル -4-ゥンデシルビロール, 3-イソブチル -4-ドデシルピロ ール, 3-イソブチル -4-テトラデシルビロール, 3-イソブチル -4-へキサデシルビロー ル, 3-イソブチル -4-ォクタデシルピロール, 3, 4-ジ sec-ブチルピロール, 3_sec_ブチ ル -4-t-ブチルピロール, 3-sec-ブチル - 4-ペンチルピロール, 3-sec-ブチル - 4-へキ シルピロール, 3-sec-ブチル - 4-ヘプチルピロール, 3-sec-ブチル - 4-ォクチルピロ一 ル, 3-sec-ブチル -4-ノ-ルピロール, 3-sec-ブチル -4-デシルピロール, 3-sec-ブチ ル- 4-ゥンデシルピロール, 3-sec-ブチル -4-ドデシルビロール, 3-sec-ブチル -4-テ トラデシルピロール, 3-sec-ブチル -4-へキサデシルピロール, 3-sec-ブチル -4-オタ タデシルビロール, 3, 4-ジ t-ブチルピロール, 3-t-ブチル -3-ペンチルピロール, 3-t- ブチル -4-へキシルピロール, 3-t-ブチル -4-ヘプチルピロール, 3-t-ブチル -4-オタ チルピロール, 3-t-ブチル -4-ノ-ルピロール, 3-t-ブチル -4-デシルピロール, 3-t- ブチル -4-ゥンデシルピロール, 3-t-ブチル -4-ドデシルビロール, 3-t-ブチル -4-テト ラデシルビロール, 3-t-ブチル -4-へキサデシルビロール, 3-t-ブチル -4-ォクタデシ ルピロール, 3,4-ジペンチルピロール, 3-ペンチル- 4-へキシルピロール, 3-ペンチ ル- 4-ヘプチルピロール, 3-ペンチル- 4-ォクチルビロール, 3-ペンチル- 4-ノ -ルピ ロール, 3-ペンチル- 4-デシルピロール, 3-ペンチル- 4-ゥンデシルピロール, 3-ペン チル- 4-ドデシルビロール, 3-ペンチル- 4-テトラデシルピロール, 3-ペンチル- 4-へ キサデシルピロール, 3-ペンチル- 4-ォクタデシルピロール, 3,4-ジへキシルピロール , 3-へキシル -4-ヘプチルピロール, 3-へキシル -4-ォクチルビロール, 3-へキシル -4 -ノ -ルピロール, 3-へキシル -4-デシルピロール, 3-へキシル -4-ゥンデシルピロー ル, 3-へキシル -4-ドデシルビロール, 3-へキシル -4-テトラデシルピロール, 3-へキ シル- 4-へキサデシルピロール, 3-へキシル -4-ォクタデシルピロール, 3,4-ジへプチ ルピロール, 3-ヘプチル- 4-ォクチルビロール, 3-ヘプチル- 4-ノニルピロール, 3-へ プチル- 4-デシルピロール, 3-ヘプチル- 4-ゥンデシルピロール, 3-ヘプチル- 4-ドデ シルピロール, 3-ヘプチル- 4-テトラデシルピロール, 3-ヘプチル- 4-へキサデシルピ ロール, 3-ヘプチル- 4-ォクタデシルピロール, 3,4-ジォクチルピロール, 3-ォクチル -4-ノ-ルピロール, 3-ォクチル- 4-デシルピロール, 3-ォクチル- 4-ゥンデシルピロー ル, 3-ォクチル -4-ドデシルビロール, 3-ォクチル- 4-テトラデシルビロール, 3-ォクチ ル- 4-へキサデシルピロール, 3-ォクチル- 4-ォクタデシルピロール, 3,4-ジノ -ルピ ロール, 3-ノニル -4-デシルピロール, 3-ノニル -4-ゥンデシルピロール, 3-ノニル -4- ドデシルビロール, 3-ノ-ル -4-テトラデシルピロール, 3-ノ-ル -4-へキサデシルピロ ール, 3-ノエル- 4-ォクタデシルビロール, 3,4-ジデシルビロール, 3-デシル -4-ゥン デシルビロール, 3-デシル -4-ドデシルビロール, 3-デシル -4-テトラデシルビロール, 3-デシル -4-へキサデシルビロール, 3-デシル -4-ォクタデシルビロール, 3,4-ジゥン デシルビロール, 3-ゥンデシル -4-ドデシルビロール, 3-ゥンデシル -4-テトラデシル ピロール, 3-ゥンデシル- 4-へキサデシルピロール, 3-ゥンデシル- 4-ォクタデシルピ ロール, 3,4-ジドデシルビロール, 3-ドデシル -4-テトラデシルビロール, 3-ドデシル -4 -へキサデシルビロール, 3-ドデシル- 4-ォクタデシルビロール, 3,4-ジテトラデシルビ ロール, 3-テトラデシル- 4-へキサデシルビロール, 3-テトラデシル- 4-ォクタデシルビ ロール, 3,4-ジへキサデシルピロール, 3-へキサデシル- 4-ォクタデシルピロールが 好ましい。
[0034] ァ-リン及びその誘導体に関しては、ァ-リン、 N-メチルァ-リン、 N-ェチルァ-リ ン、ジフエ二ルァニリン、 0-トルイジン、 m-トルイジン、 2-ェチルァニリン、 3-ェチルァ 二リン、 2, 4-ジメチルァニリン、 2,5-ジメチルァニリン、 2,6-ジメチルァニリン、 2,6-ジェ チノレア二リン、 2-メトキシァニリン、 4-メトキシァニリン、 2,4-ジメトキシァニリン、 0-フエ -レンジァミン、 m-フエ-レンジァミン、 2-アミノビフエ-ル、 Ν,Ν-ジフエ-ル- p-フエ- レンジァミンなどが挙げられる。
[0035] フルオレン誘導体としては、フルォレノン、メチルフルオレンなどのアルキルフルォ レン、ジメチルフルオレン、ジェチルフルオレン、ジォクチルフルオレンなどのジアル キルフルオレン、モノ-またはジ-フエ-ルフルオレン、ビスフエノールフルオレン、ビス タレゾールフルオレン ビスフエノキシエタノールフルオレン、 2, 7-ジブロモフルオレン 、ビスフエノールフルオレン、ビスクレゾールフルオレン、 9-フルォレニルメタノールな どが挙げられる。
[0036] また、これらのオリゴマーも用いることが可能である。特に、酸化電位の点からチォ フェン並びにその誘導体を用いるのが好まし 、。
[0037] 本発明の 1つの実施形態において、有機導電性重合性材料を形成するためのモノ マーの重合反応で電気化学セルを作製する場合、上記のモノマーの他に、支持塩と 電解溶媒を用いることができる。支持塩は、電位窓が広く励起電子によって還元され たり、またホールによって酸ィ匕されないならば、特に限定されない。電気化学セルが 太陽電池などの光電気化学セルの場合、光照射によって分解されないことが必要で ある。例えば、支持塩のカチオンとして、 Li+, Na+, K+, Rb+, Cs+ゃテトラアルキルアンモ -ゥム(R N+)、ピリジ-ゥム、イミダゾリゥム、トリアゾリゥムなどの第 4級アンモ-ゥムが
4
挙げられる。ァニオンについては、 C10―, PF―, BF—などが挙げられる。支持塩の濃
4 6 4
度は、 0.1〜5 M程度であり、好ましくは、 0.2〜1 M程度である。電解溶媒に関しては 、支持塩同様、電位窓が広く励起電子によって還元されたり、またホールに酸ィ匕され ない限り特に限定されない。さらに、光電気化学セル (例えば太陽電池)の場合光照 射によって分解されない必要がある。例えば、ァセトニトリル、 N, N-ジメチルホルムァ ミド、スルホラン、ニトロメタンなどが好ましい電解溶媒として例示され、最も好ましいの はァセトニトリルである。また、電解質の代わりにイオン液体を用いることも可能である 。この場合には、電解溶媒は不要となるので扱いやすい。イオン液体の種類に関して は、電解溶媒と同様に電位窓が広く励起電子によって還元されたり、またホールに酸 化されないこと、必要な場合には光照射によって分解されないならば、特に限定はさ れない。最も好ましいのは、ピリジ-ゥム塩またはイミダゾリゥム塩とその類似体力も形 成されるイオン液体である。更に、電解質を用いない系でも、重合は可能である。例 えば、電気化学セルを作製し、対極として白金板を用い、溶媒にモノマーと酸化還元 電位がモノマーの酸ィ匕電位よりも負で、金属酸化物の伝導帯端のポテンシャルよりも 正であるような酸化剤を多量に溶解すれば、光照射時には、発生した電子は作用極 カゝら外部回路を通って対極へ行き、対極で酸化剤が還元される。一方、光生成した ホールはモノマーを酸ィ匕するために消費される。
[0038] 形成される有機導電性重合性材料のタイプとして、単一種のモノマーを用いるだけ でなぐ 2種以上のモノマーを組み合わせることができる。例えば、チォフェンまたはそ の誘導体とピロールまたはその誘導体を混合した溶液を用いて反応させると、チオフ ェン-ピロール系共重合体を作製することが可能である。また、重合する電解溶液を 入れ換えて、 2種の異なるポリマーブロックを繋げることも可能である。例えば、最初に 金属酸ィ匕物上にポリチォフェンを作製し、その後ポリピロールを析出させる。このよう な膜では、有機導電性重合性材料を光励起した際の高分子中の電子やホールの流 れを制御することが可能である。つまり、光電変換デバイスへの応用が可能である。
[0039] 光照射によりモノマーを重合させて有機導電性重合性材料を得るための好ましい 条件は、
照射光の波長: 300〜800 nm程度;
温度 :- 20〜50°C程度;
時間 :1〜600分程度
である。
[0040] これらの条件は、原料モノマー、金属酸ィ匕物微粒子の種類によって異なり、例えば チォフェンと酸ィ匕チタンの組み合わせの場合には、
照射光の波長: 300〜600nm程度;
温度 :0〜10°C程度;
時間 :10〜120分程度
である。
[0041] 金属酸化物上に有機導電性重合性材料を形成する際に、あらかじめ官能基を導 入したモノマーをその官能基を通して金属酸ィ匕物に吸着させて核 (官能基含有モノ マーが吸着した金属酸ィ匕物)を形成し、その核 (吸着モノマー)から導電性高分子 · 導電性オリゴマーを光照射により成長させる方法も好ましく例示される。有機導電性 重合性材料のモノマーが有するその官能基は、金属酸ィ匕物に化学結合または静電 結合を通して吸着するのであれば、特に限定されない。例えば、カルボキシル基、リ ン酸基、スルホン酸基、スルホニル基、硫酸基、ヒドロキシル基などが挙げられる。最 も好ましいのは、カルボキシル基とリン酸基である。また、吸着させるモノマー種(吸着 種)としては、金属酸化物上に発生するホールの酸化力によって酸化され、導電性ポ リマーが形成可能な化合物であれば、特に限定しない。例えば、チォフェン及びその 誘導体、ピロール及びその誘導体、ァニリン及びその誘導体、フラン及びその誘導体 、フルオレン及びその誘導体などが挙げられる。また、これらのオリゴマーも用いるこ とが可能である。特に、酸ィ匕電位の点からチォフェンとその誘導体、さらにはオリゴチ ォフェン誘導体を用いるのが好ましい。オリゴチォフェン誘導体に関しては、上記一 般式 1で表される構造の 2, 3, 4量体が好ましい。さらに、官能基とモノマーの間にァ ルキルやフエ-ルなどの炭素結合を持つグループを挿入することによって、金属酸 化物と作製する有機導電性重合性材料との間の距離を制御することが可能である。 この間に挿入する構造は、重合反応中並びにその後のデバイスに用いる際に安定 であれば、特に限定しない。ただ特に好ましいのは、直鎖アルキルであり、鎖長が 1か ら 30までである。
[0042] 好ましい吸着種としては、 2-チォフェンカルボン酸、 2,2,-ビチォフェン- 5-カルボン 酸、 2,2,,2,,-ターチォフェン- 5-カルボン酸、 2-チォフェンリン酸、 2,2,-ビチォフェン -5-リン酸、 2,2 ' ,2 ',-ターチォフェン- 5-リン酸、 2-ピロ一ルカルボン酸、 2,2,-ビピロ ール -5-カルボン酸、 2,2,,2,,-ターピロール- 5 -カルボン酸、 2-ピロールリン酸、 2,2, -ビピロール- 5-リン酸、 2, 2,, 2,,-ターピロール- 5-リン酸、ァ-リンカルボン酸、ァ-リ ンリン酸、フルオレンカルボン酸、フルオレンリン酸などが挙げられる。
[0043] 導電性ポリマーの分子量は、 500〜500000程度、好ましくは 650〜50000程度である
[0044] 本発明にお 、て、電気化学セルとしては、燃料電池、太陽電池、リチウム二次電池 、電気二重層キャパシタ、電気化学センサーデバイス、電気化学表示素子 (エレクト 口クロミック)、電子ペーパーなどが挙げられ、太陽電池などの光電気化学素子が特 に好ましい。
[0045] 太陽電池などの光電気化学セルに光を照射する際には、セルの温度は、 -20°Cか ら 50°C、好ましくは 0°Cから 10°Cに設定する。金属酸化物上に有機導電性重合性材 料を被覆する量は光照射時間または光電流量で制御する。例えば、オリゴマーのみ を発生させることが必要ならば、光照射時間を短縮する。応用として、オリゴマー増感 タイプの太陽電池に適した重合方法となる。一方、有機導電性重合性材料を金属酸 化物に充填すれば、 p-nバルタへテロ接合タイプの太陽電池を作製することが可能に なる。このことから、用途に応じて有機導電性重合性材料の被覆量を制御することが 可能である。
[0046] 照射する光の波長であるが、白色光のみならず、 X線 '紫外線'可視光線を選んだり 、その光線を分光することによって単色光を照射することも可能である。さらに、光の 特性を利用すれば、金属酸化物ナノ構造体内に生成する有機導電性重合性材料の 分布を変化させることができ、金属酸化物 ·有機導電性重合性材料複合体の有用性 が広がる。例えば、金属酸ィ匕物基盤として酸ィ匕チタンナノ粒子膜を用いる場合、通常 の導電性ガラス(日本板硝子 'NJFL4S-SM-S)を通して光照射を行うと、酸化チタンの 吸収スペクトルは 400 nm付近から立ち上がり、吸収ピークはおよそ 340〜350 nmに位 置する。この吸光度の波長依存性を利用すれば、酸化チタン膜内で有機導電性重 合性材料の充填性を制御することが可能である。例えば、 350 nmの単色光を膜に照 射すると、吸光度が大きいために照射面に近い位置でより多くの有機導電性重合性 材料を析出させることが可能である。一方、 400應に近い単色光を照射すれば、膜 自体の吸光度が小さいために、膜内で均一に有機導電性重合性材料が析出するこ とになる。つまり、生成した有機導電性重合性材料の分布を膜に照射する光の波長 を選択することによって制御することが可能になる。この方法により、膜内で異なる位 置に異なる高分子を析出することが可能であることから、上記と同様に光電変換デバ イスへの応用が期待できる。
実施例
以下、実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定 されるものではない。
{実施例 1 }
金属酸化物ナノ構造体として、酸ィ匕チタンナノ粒子膜を用いた。酸化チタンナノ粒 子膜は、粒子サイズカ^〜 30 nmであるペースト(Solaronix, Ti- Nanoxide HT/SP)を購 入し、スクリーン印刷機により、印刷を行い、その後 500°Cで 1時間焼成することにより 作製した。粒子サイズは、 7〜30 nmである。この電極を作用極とし、 Pt対極、 Ag/0.1M AgNO参照電極、 0.1〜5 M LiCIOと 0.01〜5 M 3-メチルチオフェンを含むァセトニ
3 4
トリル電解液を用いて電気化学セルを作製し、電位を 0〜+0.7 V印加しながら、 Xeラ ンプ力 の白色光を照射した。照射と同時に、緑黒色のポリチォフェン-酸ィ匕チタン ナノ複合体を得ることができた。また、あら力じめ 2-チォフェンカルボン酸を吸着させ ておいた酸ィ匕チタンナノ粒子膜も用いた。重合量は、光照射時間により制御し、観測 される光電流量から評価した。図 2に暗時と光照射時で観測される光電流と印加電位 との関係を示す。暗時においては、重合反応が進行しないことが分かる。作製した膜 の吸収スペクトル並びに IR ^ベクトルを測定することにより、純粋なポリ (3-メチルチオ フェン)が重合されて 、ることが確認できた。 {実施例 2}
実施例 1に替えて、吸着種としてチォフェン- 3-酢酸を用いた以外、実施例 1と同様 の操作を行うと、緑黒色のポリチォフェン-酸ィ匕チタンナノ複合体を得ることができた。 作製した膜の吸収スペクトル並びに IR ^ベクトルを測定することにより、純粋な (3-メチ ルチオフェン)が重合されて 、ることが確認できた。
{実施例 3}
実施例 1に替えて、吸着種として 2,2 ' -ビチオフェン -5, -カルボン酸を用いた以外、 実施例 1と同様の操作を行うと、赤色のポリ (3-メチルチオフェン)-酸ィ匕チタンナノ複合 体を得ることができた。
{実施例 4}
実施例 1に替えて、吸着種としてチォフェンカルボン酸、チォフェン反応物としてビ チォフェンを用いた以外、実施例 1と同様の操作を行うと、赤色のポリチォフェン-酸 化チタンナノ複合体を得ることができた。
{実施例 5}
実施例 1により作製したポリ (3-メチルチオフェン) ·酸ィ匕チタン複合膜を用いて、光電 気化学セル (高分子増感タイプの太陽電池)を作製した。複合膜を担持した作用極、 白金対極を挟み合わせサンドイッチセルを作製し、その隙間にヨウ素電解質を注入 することによって太陽電池を作製した。外部量子収率または IPCE (光子 1つが電流に 変換される確率)を図 3に示す。また、比較として、あらかじめ酸ィ匕チタン表面を 2-チ ォフェンカルボン酸で吸着しな 、で作製した電池並びにポリチォフェンを重合して ヽ ない酸ィ匕チタンのみを用いて作製した電池のスペクトルも同様に示す。明らかに、可 視光領域にポリチォフェンの吸収による光電流が発生して 、ることが分かる。さらに、 あら力じめチォフェンカルボン酸を吸着させた酸ィ匕チタン膜を用いてポリチォフェン を形成した複合体では、酸化チタンと有機導電性重合性材料のへテロ結合が形成さ れて 、るため、光電流の発生の効率が向上して 、ることが分かる。
{実施例 6}
実施例 1に替えて、モノマーとして 3,3,-ジメチル- 2,2,-ビチォフェン、吸着種として ビチォフェン力ノレボン酸を用いた。具体的には、 10mMビチォフェン力ノレボン酸のエタ ノール溶液を調製し、酸ィ匕チタン膜をこの溶液に 1分間浸漬した。その後、モノマーと して 3,3,-ジメチル- 2,2,-ビチォフェンを用い、光重合を 10分間行うことにより、 Ή02/ PTの複合膜を作製した。
{実施例 7}
実施例 6で得られた複合膜を用いて、光電気化学セル (高分子増感タイプの太陽 電池)を作製した。複合膜を担持した作用極、白金対極を挟み合わせサンドイッチセ ルを作製し、その隙間にヨウ素電解質を注入することによって太陽電池を作製した。 外部量子収率または IPCE (光子 1つが電流に変換される確率)を図 4に示す。また、 比較として、あら力じめ酸ィ匕チタン表面をビチォフェンカルボン酸で吸着しな 、で作 製した電池並びにポリチォフェンを重合して ヽな ヽ酸ィ匕チタンのみを用いて作製した 電池のスペクトルも同様に示す。明らかに、可視光領域にポリチォフェンの吸収によ る光電流が発生して 、ることが分かる。
また、図 3と比較すると、モノマーとして 3,3,-ジメチル- 2,2,-ビチォフェン、吸着種と してビチォフェンカルボン酸を用いることにより、 IPCEが飛躍的に向上することが明ら かになつた。
{実施例 8}
酸化チタンナノ粒子膜表面に、 2-ピロ一ルカルボン酸 (和光、特級)を吸着させ、原 料モノマーとして 0.01〜5 Mピロール(和光、特級)並びに電解質として 0.01〜5 Mド デシル硫酸ナトリウム (和光純薬、特級)を含む電解水溶液を酸化チタン細孔内に充 填した。酸化チタン電極を作用極とし、 Pt対極、 Ag/AgCl参照電極を用いて、三電極 式セルを構築し、酸化チタン電極に OV vs Ag/AgClを印加しながら、 Xeランプを用い て 10分間光照射を行い、ポリピロール '酸ィ匕チタンのナノハイブリッド膜を作製した。こ のナノハイブリッド電極を Pt対極、 Ag/AgCl参照電極とともに電解溶液として 0.01〜5 M KC1水溶液を用いて、三電極式セルを作製した。ナノハイブリッド電極に印加する 電位を +0.6から- IV vs Ag/AgClにスイープすると、膜の色が茶黒色から黄色に変化 した。図 5に- 0.8V vs Ag/AgCl並びに +0.4V vs Ag/AgClを印加したときの吸収スぺク トルの変化を示す。この色変化は可逆的に進行することが分力つた。
産業上の利用可能性 金属酸化物'有機導電性重合性材料ナノ構造体を光照射によって発生するホール の酸ィ匕カを利用して作製する本方法を用いると、様々なデバイス作製の応用が可能 である。例えば、上記実施例のように、作製した有機導電性重合性材料を増感剤とし て用いる高分子増感太陽電池への応用が好ましい。この場合は酸ィ匕チタンなどの n 型半導体表面に作製する有機導電性重合性材料を適当な量に調整する必要がある
。例えば、生成量が少なければ、膜の光吸収効率が十分でないため、ルテニウム色 素増感太陽電池に比べて光電流は低下する可能性がある。反対に生成量が多すぎ れば、サイズ増加による有機導電性重合性材料から金属酸化物への電子注入効率 が低下する原因となる。有機導電性重合性材料のサイズは、厚さ 1〜50應が好まし い。

Claims

請求の範囲
[1] 金属酸化物微粒子を含む電気的接触の取れたナノ構造体と有機導電性重合性材 料を有する複合材料。
[2] 金属酸化物ナノ構造体がナノ粒子、ナノワイヤー、ナノチューブ及びナノロッドからな る群から選択される構造を有する請求項 1に記載の複合材料。
[3] 金属酸化物が酸化チタンおよび酸化スズからなる群から選択される少なくとも 1種で ある請求項 1又は 2に記載の複合材料。
[4] 有機導電性重合性材料の末端に吸着種由来の吸着性官能基を有し、該吸着性官 能基を介して該重合性材料が金属酸ィ匕物微粒子に吸着な 、し結合されて 、る、請 求項 1〜3の 、ずれかに記載の複合材料。
[5] 有機導電性重合性材料がポリチォフェン又はその誘導体、ポリピロール又はその誘 導体、ポリア-リン又はその誘導体、ポリフラン又はその誘導体、ポリフルオレン又は その誘導体或いはチォフェン、ピロール、ァ-リン、フラン、フルオレン又はそれらの 誘導体からなる群から選ばれる少なくとも 2種から構成される共重合体である請求項 1
〜4の 、ずれかに記載の複合材料。
[6] 有機導電性重合性材料が、原料モノマーの導電性オリゴマーおよび Zまたは導電性 ポリマーである請求項 1〜5のいずれかに記載の複合材料。
[7] 金属酸化物微粒子構造体の間隙に有機導電性重合性材料の原料モノマーを充填 し、次いで光照射を行うことを特徴とする、請求項 1〜6のいずれかに記載の複合材 料の製造方法。
[8] 金属酸化物微粒子構造体に、該金属酸化物に対する吸着性官能基を有する有機 導電性重合性材料の原料モノマーを作用させて該モノマーを吸着させ、次 、で必要 に応じて該吸着性官能基を有しない原料モノマーを作用させることを特徴とする請求 項 1〜6の 、ずれかに記載の複合材料の製造方法。
[9] 吸着性官能基を有する有機導電性重合性材料の原料モノマーを 2, 3, 4量体として、 可視光を照射し、モノマーを励起して金属酸ィ匕物界面での電子移動反応を引き起こ すことにより重合を行うことを特徴とする請求項 1〜6のいずれかに記載の複合材料の 製造方法。
[10] 請求項 1〜6のいずれかに記載の複合材料、または請求項?〜 9のいずれかに記載の 方法により得られた複合材料を備えた電子デバイス。
[11] 電子デバイスが太陽電池である請求項 10に記載のデバイス。
[12] 請求項 1〜6のいずれかに記載の複合材料、または請求項?〜 9のいずれかに記載の 方法により得られた複合材料を備えた表示素子。
[13] 表示素子が電子ペーパーである請求項 12に記載の表示素子。
PCT/JP2006/313730 2005-07-12 2006-07-11 光照射による金属酸化物表面上への有機導電性重合性材料の合成 WO2007007735A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524651A JPWO2007007735A1 (ja) 2005-07-12 2006-07-11 光照射による金属酸化物表面上への有機導電性重合性材料の合成

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005202394 2005-07-12
JP2005-202394 2005-07-12
JP2006-091339 2006-03-29
JP2006091339 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007007735A1 true WO2007007735A1 (ja) 2007-01-18

Family

ID=37637124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313730 WO2007007735A1 (ja) 2005-07-12 2006-07-11 光照射による金属酸化物表面上への有機導電性重合性材料の合成

Country Status (2)

Country Link
JP (1) JPWO2007007735A1 (ja)
WO (1) WO2007007735A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108405A1 (ja) * 2007-03-07 2008-09-12 Sumitomo Chemical Company, Limited ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
JP2008251419A (ja) * 2007-03-30 2008-10-16 Katsumi Yoshino 固体色素増感太陽電池
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池
JP2009245887A (ja) * 2008-03-31 2009-10-22 Nippon Chemicon Corp 電極材料とその製造方法、電気化学素子用電極及び電気化学素子
JP2011198628A (ja) * 2010-03-19 2011-10-06 Dainippon Printing Co Ltd 色素増感型太陽電池、及び色素増感型太陽電池モジュール
WO2013008889A1 (ja) * 2011-07-14 2013-01-17 積水化学工業株式会社 光電変換素子用材料、光電変換素子の製造方法及び光電変換素子
WO2014046145A1 (ja) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 光電変換素子およびその製造方法
WO2014109355A1 (ja) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 光電変換素子の製造方法
WO2015001984A1 (ja) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 光電変換素子モジュールおよびその製造方法
CN109622987A (zh) * 2019-02-13 2019-04-16 济南大学 一步法制备核壳结构的聚吡咯包裹的铜纳米线的方法
US10823691B2 (en) 2017-01-11 2020-11-03 Winbond Electronics Corp. Sensor, composite material and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253333A (ja) * 2003-02-21 2004-09-09 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2005353318A (ja) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp 色素増感型太陽電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253333A (ja) * 2003-02-21 2004-09-09 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2005353318A (ja) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp 色素増感型太陽電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108405A1 (ja) * 2007-03-07 2008-09-12 Sumitomo Chemical Company, Limited ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
JP2008248228A (ja) * 2007-03-07 2008-10-16 Sumitomo Chemical Co Ltd ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
US8114956B2 (en) 2007-03-07 2012-02-14 Sumitomo Chemical Company, Limited Polymer having unit obtained by condensation of difluorocyclopentanedione ring and aromatic ring, organic thin film using the same, and organic thin film device
JP2008251419A (ja) * 2007-03-30 2008-10-16 Katsumi Yoshino 固体色素増感太陽電池
WO2009119428A1 (ja) * 2008-03-25 2009-10-01 日産化学工業株式会社 色素増感太陽電池用色素および色素増感太陽電池
JP5494473B2 (ja) * 2008-03-25 2014-05-14 日産化学工業株式会社 色素増感太陽電池の半導体電極作製用ワニスおよび色素増感太陽電池
JP2009245887A (ja) * 2008-03-31 2009-10-22 Nippon Chemicon Corp 電極材料とその製造方法、電気化学素子用電極及び電気化学素子
JP2011198628A (ja) * 2010-03-19 2011-10-06 Dainippon Printing Co Ltd 色素増感型太陽電池、及び色素増感型太陽電池モジュール
JP5369238B2 (ja) * 2011-07-14 2013-12-18 積水化学工業株式会社 光電変換素子用材料、光電変換素子の製造方法及び光電変換素子
WO2013008889A1 (ja) * 2011-07-14 2013-01-17 積水化学工業株式会社 光電変換素子用材料、光電変換素子の製造方法及び光電変換素子
WO2014046145A1 (ja) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 光電変換素子およびその製造方法
CN104662026A (zh) * 2012-09-24 2015-05-27 柯尼卡美能达株式会社 光电转换元件及其制造方法
CN104662026B (zh) * 2012-09-24 2017-08-25 柯尼卡美能达株式会社 光电转换元件及其制造方法
US9959982B2 (en) 2012-09-24 2018-05-01 Konica Minolta, Inc. Photoelectric conversion element and method for producing the same
WO2014109355A1 (ja) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 光電変換素子の製造方法
WO2015001984A1 (ja) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 光電変換素子モジュールおよびその製造方法
CN105340099A (zh) * 2013-07-01 2016-02-17 柯尼卡美能达株式会社 光电转换元件模块及其制造方法
US10823691B2 (en) 2017-01-11 2020-11-03 Winbond Electronics Corp. Sensor, composite material and method of manufacturing the same
CN109622987A (zh) * 2019-02-13 2019-04-16 济南大学 一步法制备核壳结构的聚吡咯包裹的铜纳米线的方法

Also Published As

Publication number Publication date
JPWO2007007735A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007007735A1 (ja) 光照射による金属酸化物表面上への有機導電性重合性材料の合成
Chen et al. Photocatalytic polymerization of 3, 4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots
Janáky et al. The role of (photo) electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: From fundamental concepts to practical applications
Jia et al. Synthesis and Properties of 2D Carbon Graphdiyne
Mor et al. Visible to near-infrared light harvesting in TiO2 nanotube array− P3HT based heterojunction solar cells
Shankar et al. Self-assembled hybrid polymer− TiO2 nanotube array heterojunction solar cells
Saranya et al. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells–An overview
Petrella et al. Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: photo (electro) chemical study
Malinauskas et al. Conducting polymer-based nanostructurized materials: electrochemical aspects
Cho et al. Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application
Das et al. Enhancement of energy storage and photoresponse properties of folic acid–polyaniline hybrid hydrogel by in situ growth of Ag nanoparticles
Kim et al. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells
Ates et al. Conducting polymers and their applications
Millstone et al. Synthesis, properties, and electronic applications of size-controlled poly (3-hexylthiophene) nanoparticles
Zotti et al. Monolayers and multilayers of conjugated polymers as nanosized electronic components
Valter et al. Synthesis of multiwalled carbon nanotubes and poly (o-anisidine) nanocomposite material: fabrication and characterization of its Langmuir− Schaefer films
Nie et al. Layered and Pb-free organic–inorganic perovskite materials for ultraviolet photoresponse:(010)-oriented (CH3NH3) 2MnCl4 thin film
Barpuzary et al. Two-dimensional growth of large-area conjugated polymers on ice surfaces: high conductivity and photoelectrochemical applications
Zhang et al. Mesoporous TiO2-based photoanode sensitized by BiOI and investigation of its photovoltaic behavior
Wei et al. Hybrid electrochromic fluorescent poly (DNTD)/CdSe@ ZnS composite films
Yang et al. Langmuir− Blodgett Films of Poly (3-hexylthiophene) Doped with the Endohedral Metallofullerene Dy@ C82: Preparation, Characterization, and Application in Photoelectrochemical Cells
Sfez et al. Polyaniline monolayer self-assembled on hydroxyl-terminated surfaces
Reddy et al. Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells
Kus et al. Synthesis of nanoparticles
Zhang et al. Water-stable and photoelectrochemically active CsPbBr3/polyaniline composite by a photocatalytic polymerization process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524651

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780952

Country of ref document: EP

Kind code of ref document: A1