WO2007006121A1 - Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride - Google Patents

Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride Download PDF

Info

Publication number
WO2007006121A1
WO2007006121A1 PCT/CA2006/000610 CA2006000610W WO2007006121A1 WO 2007006121 A1 WO2007006121 A1 WO 2007006121A1 CA 2006000610 W CA2006000610 W CA 2006000610W WO 2007006121 A1 WO2007006121 A1 WO 2007006121A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
charge
voltage
real
Prior art date
Application number
PCT/CA2006/000610
Other languages
English (en)
Inventor
Stewart Neil Simmonds
Brian Potter Fraser
David Forbes Miller
Original Assignee
Mountain Power Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mountain Power Inc. filed Critical Mountain Power Inc.
Publication of WO2007006121A1 publication Critical patent/WO2007006121A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to detection of the state-of-charge of a lithium ion battery of the type used in a hybrid electric vehicle.
  • Hybrid electric vehicles combine a small internal combustion engine with an electric motor and battery to reduce fuel consumption and tailpipe emissions.
  • the battery assists the internal combustion engine during initial start-off and acceleration of the vehicle by providing power to the motor.
  • the electric motor is used as a generator to produce energy which is stored in the battery.
  • the state-of-charge of a battery is the amount of electrical charge remaining in the battery, expressed as a percentage of the difference between the battery's fully-charged and fully-discharged states. To be capable of providing power during acceleration and to be capable accepting power during braking, the battery's state-of-charge must be maintained between the battery's fully charged and fully discharged states.
  • HEVs typically use lead acid, nickel cadmium or nickel metal hydride batteries.
  • Various prior art techniques have been developed to determine the state-of-charge of such batteries. However, these techniques are typically accurate only at very low current levels, and require frequent calibration. This is a significant disadvantage because HEVs draw large amounts of current during acceleration and generate very large amounts of current during braking.
  • Rechargeable lithium ion batteries are unique in that the terminal voltage of a rechargeable lithium ion battery is relatively linear throughout charging or discharging of the battery.
  • Such linearity can be used to accurately determine the state-of-charge of a rechargeable lithium ion battery.
  • the magnitude of a rechargeable lithium ion battery's terminal voltage depends on the temperature of the battery and on the current drawn through the battery. More particularly, the state-of-charge of a rechargeable lithium ion battery is directly dependent on the battery's terminal voltage, provided the battery's temperature does not change and further provided the current drawn through the battery does not change. However, a change in a rechargeable lithium ion battery's temperature or a change in the current drawn through the battery will change the battery's terminal voltage without necessarily changing the battery's state-of-charge.
  • This invention addresses the foregoing factors to facilitate accurate determination of the state-of- charge of a rechargeable lithium ion battery at different battery temperatures and at different currents.
  • Figure 1 graphically depicts the voltage (in volts) of a rechargeable lithium ion battery as a function of battery capacity (in amp-hours) for different battery temperatures.
  • Figure 2 graphically depicts the voltage (in volts) of a rechargeable lithium ion battery as a function of battery capacity (in amp-hours) for different battery impedances.
  • Lower battery operating temperatures suppress the battery's terminal voltage, thereby altering the battery's voltage-to-capacity characteristic.
  • the voltage suppression due to low operating temperatures is substantially linear. That is, as can be seen in Figure 1, each discharge curve is substantially linear between the battery's fully charged and fully discharged states, but the magnitude of the voltage differs for each temperature.
  • the temperature of the battery is determined (e.g. by a temperature sensor thermally coupled to the battery) and the corresponding voltage (as per Figure 1) is used to determine the battery's state-of-charge.
  • each discharge curve is substantially linear between the battery's fully charged and fully discharged states, but the magnitude of the voltage differs for each current parameter plotted.
  • a 60% state-of-charge ( «2Ah) at 1.65 amperes corresponds to a battery terminal voltage of 3.8 volts
  • a 60% state-of-charge at 5.0 amperes corresponds to a battery terminal voltage of 3.5 volts.
  • the state-of-charge of a lithium ion battery is directly proportional to the open circuit voltage of the battery during charging or discharging.
  • the open circuit voltage reflects the battery's state of charge without potential interference due to current flowing through the impedance of the battery and its connections. Such current produces an offset in the voltage appearing at the battery's terminals.
  • To determine the state-of-charge of a battery while current is flowing through the battery one must initially determine the impedance of the battery. This impedance remains relatively constant throughout the life of the battery. Real-time voltage and real-time current are then measured (during both charging and discharging). The current is then multiplied by the predetermined impedance to determine the voltage drop. This calculated voltage is then added to the measured voltage.
  • This new voltage represents the open circuit voltage of the battery and can be used to determine an accurate state-of-charge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Ce procédé vise à déterminer l'état de charge d'une batterie rechargeable au lithium-ion. Selon un aspect, la tension de décharge de la batterie est fonction de la capacité pour chaque température de batterie prédéterminée parmi un certain nombre de températures. La tension terminale de la batterie et la température en temps réel sont mesurées. La température de batterie prédéterminée la plus proche de la température en temps réel de la batterie est sélectionnée. L'état de charge correspondant à la tension terminale de la batterie pour la température de batterie prédéterminée la plus proche de la température en temps réel est ensuite sélectionnée. Selon un autre aspect, l'impédance de la batterie, la tension terminale en temps réel et le courant en temps réel sont mesurés. Les mesures d'impédance et de courant en temps réel sont multipliées pour obtenir une chute de tension, qui est ajoutée à la tension terminale en temps réel pour déduire la tension de circuit ouvert de la batterie. L'état de charge correspondant à la tension de circuit ouvert est ensuite calculée.
PCT/CA2006/000610 2005-04-20 2006-04-20 Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride WO2007006121A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67284805P 2005-04-20 2005-04-20
US60/672,848 2005-04-20

Publications (1)

Publication Number Publication Date
WO2007006121A1 true WO2007006121A1 (fr) 2007-01-18

Family

ID=37636687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2006/000610 WO2007006121A1 (fr) 2005-04-20 2006-04-20 Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride

Country Status (1)

Country Link
WO (1) WO2007006121A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065691A2 (fr) * 2007-11-20 2009-05-28 Zf Friedrichshafen Ag Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement
US7675261B2 (en) 2003-08-11 2010-03-09 Reserve Power Cell, Llc Auxiliary battery attachment apparatus for use in a multiple battery system that reliably supplies electrical energy to an electrical system
US7726975B2 (en) * 2006-06-28 2010-06-01 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
US7846571B2 (en) * 2006-06-28 2010-12-07 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
CN102066964A (zh) * 2009-07-23 2011-05-18 德克萨斯仪器股份有限公司 用于确定蓄电池充电状态的系统和方法
CN103344922A (zh) * 2013-07-12 2013-10-09 清华大学 混合电动车电池单体荷电状态差异检测方法
EP2428388A4 (fr) * 2009-05-08 2014-07-16 Toyota Motor Co Ltd Système d'alimentation en énergie et véhicule équipé d'un système d'alimentation en énergie
KR20160036818A (ko) * 2014-09-26 2016-04-05 현대자동차주식회사 하이브리드 차량의 배터리 충전 장치 및 그 방법
US20170250450A1 (en) * 2016-02-29 2017-08-31 Dongguan Nvt Technology Co., Ltd. Method and system for dynamically adjusting battery undervoltage protection
WO2017222728A1 (fr) * 2016-06-23 2017-12-28 Intel Corporation Systèmes, procédés et dispositifs de détection d'état de charge de batterie
US10712396B2 (en) 2018-05-29 2020-07-14 NDSL, Inc. Methods, systems, and devices for monitoring state-of-health of a battery system operating over an extended temperature range
US20230305064A1 (en) * 2022-03-28 2023-09-28 Ratnesh Kumar Sharma Systems and methods for managing diverse batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042786A2 (fr) * 2000-11-22 2002-05-30 Honeywell International Inc. P.O. Box 2245 Procede et dispositif permettant de determiner l'etat de charge d'une batterie au ion-lithium
US6515453B2 (en) * 2000-11-30 2003-02-04 Koninklijke Philips Electronics Method of predicting the state of charge as well as the use time left of a rechargeable battery
US6832171B2 (en) * 2002-12-29 2004-12-14 Texas Instruments Incorporated Circuit and method for determining battery impedance increase with aging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042786A2 (fr) * 2000-11-22 2002-05-30 Honeywell International Inc. P.O. Box 2245 Procede et dispositif permettant de determiner l'etat de charge d'une batterie au ion-lithium
US6515453B2 (en) * 2000-11-30 2003-02-04 Koninklijke Philips Electronics Method of predicting the state of charge as well as the use time left of a rechargeable battery
US6832171B2 (en) * 2002-12-29 2004-12-14 Texas Instruments Incorporated Circuit and method for determining battery impedance increase with aging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RONG P. ET AL.: "An Analytical Model for Predicting the Remaining Battery Capacity of Lithium Ion Batteries", PROCEEDINGS OF THE DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2003, pages 1148 - 1149, XP010634438 *
SCHMIDT ET AL.: "Complex Impedance Studies of Lithium Iodine Batteries", AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, IEEE, vol. 5, no. 8, August 1990 (1990-08-01), pages 7 - 12, XP008075805 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839117B2 (en) 2003-08-11 2010-11-23 Reserve Power Cell, Llc System and method of detecting a battery fault
US7834583B2 (en) 2003-08-11 2010-11-16 Reserve Power Cell, Llc Remotely controlled multiple battery system
US7675261B2 (en) 2003-08-11 2010-03-09 Reserve Power Cell, Llc Auxiliary battery attachment apparatus for use in a multiple battery system that reliably supplies electrical energy to an electrical system
US7679314B2 (en) 2003-08-11 2010-03-16 Reserve Power Cell, Llc Multiple battery system for reliably supplying electrical energy to an electrical system
US9774059B2 (en) 2006-06-28 2017-09-26 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
US7726975B2 (en) * 2006-06-28 2010-06-01 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
US7846571B2 (en) * 2006-06-28 2010-12-07 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
US8859120B2 (en) 2006-06-28 2014-10-14 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
WO2009065691A3 (fr) * 2007-11-20 2009-08-13 Zahnradfabrik Friedrichshafen Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement
WO2009065691A2 (fr) * 2007-11-20 2009-05-28 Zf Friedrichshafen Ag Procédé de calcul du rendement d'un accumulateur d'énergie et utilisation dudit rendement
EP2428388A4 (fr) * 2009-05-08 2014-07-16 Toyota Motor Co Ltd Système d'alimentation en énergie et véhicule équipé d'un système d'alimentation en énergie
EP2457107A1 (fr) * 2009-07-23 2012-05-30 Texas Instruments Incorporated Systèmes et procédés de détermination d état de charge d'une batterie
CN102066964A (zh) * 2009-07-23 2011-05-18 德克萨斯仪器股份有限公司 用于确定蓄电池充电状态的系统和方法
EP2457107A4 (fr) * 2009-07-23 2014-07-02 Texas Instruments Inc Systèmes et procédés de détermination d état de charge d'une batterie
CN103344922A (zh) * 2013-07-12 2013-10-09 清华大学 混合电动车电池单体荷电状态差异检测方法
KR20160036818A (ko) * 2014-09-26 2016-04-05 현대자동차주식회사 하이브리드 차량의 배터리 충전 장치 및 그 방법
KR102042124B1 (ko) 2014-09-26 2019-11-08 현대자동차주식회사 하이브리드 차량의 배터리 충전 장치 및 그 방법
US20170250450A1 (en) * 2016-02-29 2017-08-31 Dongguan Nvt Technology Co., Ltd. Method and system for dynamically adjusting battery undervoltage protection
US10135098B2 (en) * 2016-02-29 2018-11-20 Dongguan Nvt Technology Co., Ltd. Method and system for dynamically adjusting battery undervoltage protection
WO2017222728A1 (fr) * 2016-06-23 2017-12-28 Intel Corporation Systèmes, procédés et dispositifs de détection d'état de charge de batterie
US11131716B2 (en) 2016-06-23 2021-09-28 Intel Corporation Systems, methods and devices for battery charge state detection
US10712396B2 (en) 2018-05-29 2020-07-14 NDSL, Inc. Methods, systems, and devices for monitoring state-of-health of a battery system operating over an extended temperature range
US20230305064A1 (en) * 2022-03-28 2023-09-28 Ratnesh Kumar Sharma Systems and methods for managing diverse batteries

Similar Documents

Publication Publication Date Title
WO2007006121A1 (fr) Detection de l'etat de charge d'une batterie lithium-ion dans un vehicule electrique hybride
CN108663620B (zh) 一种动力电池组荷电状态估算方法及系统
KR101238478B1 (ko) 배터리 잔존 용량 측정 방법
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
JP5447658B2 (ja) 二次電池の劣化判定装置および劣化判定方法
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
US9766298B2 (en) Method for estimating state of health of a battery in a hybrid vehicle
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP5179047B2 (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
CN104813534B (zh) 蓄电元件的性能降低探测装置、性能降低探测方法及蓄电系统
JP5397679B2 (ja) 二次電池の劣化診断方法、及び二次電池の劣化診断装置
JP5515524B2 (ja) 二次電池の劣化状態判別システム、および二次電池の劣化状態判別方法
EP1158306A2 (fr) Pocédé de détection pour détecter l'état interne d'une batterie rechargeable, appareil de détection pour une telle procédé, et instrument avec un tel appareil
US20100017155A1 (en) Battery management system
JP2006112786A (ja) 電池の残容量検出方法及び電源装置
JPWO2014167602A1 (ja) 電池システム
CN108459272A (zh) 状态估计装置及方法、电池组、车辆、蓄电系统、存储器
US9688159B2 (en) Methods, apparatus, and systems for preventing over-temperature battery operation
CN104977537A (zh) 电池soc的确定方法及使用该方法的电池管理系统
US20200041574A1 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP2013214371A (ja) 電池システムおよび推定方法
JP2003257501A (ja) 二次電池の残存容量計
CN111537901B (zh) 一种电池电量状态测算方法、电池组以及交通工具
JP2003243042A (ja) 組電池を構成するリチウム電池の劣化度検知装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06804611

Country of ref document: EP

Kind code of ref document: A1