WO2007004528A1 - Method for designing structure of silicon carbide electrostatic induction transistor - Google Patents

Method for designing structure of silicon carbide electrostatic induction transistor Download PDF

Info

Publication number
WO2007004528A1
WO2007004528A1 PCT/JP2006/313046 JP2006313046W WO2007004528A1 WO 2007004528 A1 WO2007004528 A1 WO 2007004528A1 JP 2006313046 W JP2006313046 W JP 2006313046W WO 2007004528 A1 WO2007004528 A1 WO 2007004528A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
channel
sit
sic
gate
Prior art date
Application number
PCT/JP2006/313046
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Yano
Masanobu Kasuga
Tsutomu Yatsuo
Yasunori Tanaka
Mitsuo Okamoto
Original Assignee
Yamanashi University
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi University, National Institute Of Advanced Industrial Science And Technology filed Critical Yamanashi University
Priority to JP2007524006A priority Critical patent/JP5076146B2/en
Publication of WO2007004528A1 publication Critical patent/WO2007004528A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a design method for a normally-on type epitaxial channel buried gate silicon carbide electrostatic induction transistor structure, and more particularly to a design method for a channel structure that ensures conduction and current interruption operation of an element.
  • SiC Silicon carbide
  • SIT electrostatic induction transistor
  • SiC-SIT silicon carbide static induction transistor
  • the basic operation of SIT is to efficiently control the potential barrier formed in the channel region with the drain voltage and the gate voltage.
  • the design of the channel structure is important to obtain the above SIT performance.
  • the full depletion approximation means that the concentration of electrons and holes in the depletion layer is zero when the electric field potential distribution inside the depletion layer formed at the junction such as a pn junction is derived. This means that the calculation proceeds with the assumption of a fully depleted situation.
  • FIG. 1 shows a conventional design method for channel impurity concentration N and half channel width a.
  • is the relative permittivity of the semiconductor
  • is the permittivity of the vacuum
  • V is the diffusion of the ⁇ junction.
  • Design region 1 in Fig. 1 is the range of N and a pairs that satisfy the condition of equation (1) when the material is assumed to be SiC.
  • the straight line 1 satisfies the value power 3 ⁇ 4 on the left side of the equation (1), and is one design limit relating to the characteristic on-resistance.
  • line 2 satisfies the value power 3 ⁇ 4 on the right-hand side of equation (1) and gives a design limit for the breakdown voltage.
  • Equation (2) The range that satisfies Equation (2) when the material is assumed to be SiC is design region 2 in FIG.
  • line 3 satisfies the value power 3 ⁇ 4 on the left side of equation (2), and is one design limit for characteristic on-resistance.
  • line 4 satisfies the value power on the right side of Eq. (2) and gives a design limit for the breakdown voltage.
  • a high-concentration P region (hereinafter referred to as a P + region) with an acceptor concentration of 10 18 cm- 3 or more on the source side.
  • a P + region a high-concentration P region with an acceptor concentration of 10 18 cm- 3 or more on the source side.
  • Non-Patent Document 1 IEEE Trans. Electron Devices, ED_24, No.8 pp.1061-1069, 1977.
  • Patent Document 1 JP-A-8-316492
  • the first problem of the conventional design method is that the electrostatic barrier effect from the drain electrode and the gate electrode, which are important in the operation of the SIT, is affected by the potential barrier in the channel region. It is not built in consideration of interaction.
  • the operation principle of the SIT will be described using the vertical buried gate structure SIT shown in FIG.
  • the operation principle of SIT is that the height of the potential barrier formed in the channel region by the depletion layer extending from the gate P + region 4 to the channel region 3 is determined by both the electrostatic induction effect due to the gate voltage and the electrostatic induction effect due to the drain voltage. Basically, the current flowing between the drain region 1 and the high concentration source region 6 is controlled.
  • the channel from the high-concentration source region 6 that is a high-concentration region (hereinafter referred to as N + region) with donor concentration force Sl0 18 cm- 3 or higher By injecting electrons into the drift region 2 through the potential barrier in the region 3, an unsaturated current-voltage characteristic in which the drain current is not saturated due to an increase in the drain voltage is realized.
  • the channel length Xj is reduced to reduce the parasitic resistance in the channel region, thereby increasing the electrostatic induction effect of the drain voltage and increasing the efficiency by the drain voltage. A design that often lowers the potential barrier in the channel region is necessary.
  • the electrostatic induction effect due to the drain voltage has the effect of lowering the potential barrier as described above, and may reduce the breakdown voltage.
  • the design upper limit of half channel width a independent of N is
  • the second issue of the conventional design method is the design method determined by the simulation and the support of the experimental facts, with the conventional design method using silicon (hereinafter referred to as Si) as the semiconductor material for SIT. There is a problem that it has not been demonstrated whether the design method can be applied to the device.
  • SiC and Si differ in material physical parameters such as carrier mobility, band gap, and ionization coefficient. If these physical property parameters are different, the effect of the electrostatic induction effect on the potential barrier is also different, and as a result, the design method may need to be modified.
  • the conventional design method is derived based on the complete depletion approximation that no carrier exists in the depletion layer.
  • the carrier flows in from the neutral region in contact with the depletion layer at the end in the actual depletion layer, and this approximation does not hold.
  • the potential barrier in the channel region of the SIT is formed by overlapping electric fields in the depletion layer extending from the P + gate regions 4 on both sides of the channel region 3 at the center of the channel. That is, the electric field distribution at the end of the depletion layer is greatly related to the height of the potential barrier. Therefore, the design method based on the conventional formula (1) and formula (2) based on the perfect depletion approximation lacks accuracy.
  • the third problem of the conventional design method is that the conventional design method assumes that the shape of the p + gate region is cylindrical. This is a design method in the case where it is determined. On the other hand, in the epitaxial channel buried gate structure, the cross-sectional shape of the p + gate structure is square. Therefore, the conventional design method cannot be applied as it is to an epitaxial channel loading gate structure.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a channel structure design method for ensuring both the conduction operation and the current interruption operation of SiC_SIT.
  • the present invention provides a normally-on type epitaxial channel loading gate silicon carbide electrostatic induction transistor (normally on • EC 'SiC-SIT) having a breakdown voltage of 800 to 1200V.
  • EC 'SiC-SIT normally-on type epitaxial channel loading gate silicon carbide electrostatic induction transistor
  • N is the channel region 3 (see Fig. 5) j ch
  • the donor impurity concentration, a is the half channel width value, and X is the channel length.
  • N is cm— 3 , ao j ch
  • Equation (3) corresponds to the lower limit value of a in Equations (1) and (2), which are conventional design methods, and is derived by strict semiconductor device simulation described later. Therefore, equation (3) can provide a more accurate design area for characteristic on-resistance than the conventional design method.
  • equation (4) according to the present invention is a force corresponding to the upper limit value of a in equations (1) and (2), which are conventional design methods.
  • the design area for the breakdown voltage can be provided by Equation (4), which is more accurate than the conventional design method.
  • the expression (5) according to the present invention is a conditional expression concerning a new limit which is not shown in the conventional design method. This is a result of accurate simulation of the interaction of the electrostatic induction effect from both the drain electrode and the gate electrode to the potential barrier in the channel region by strict semiconductor device simulation described later.
  • Equation (5) means that the upper limit value of a regarding the breakdown voltage does not depend on N because the electrostatic induction effect due to the drain voltage is sufficiently larger than the electrostatic induction effect due to the gate voltage.
  • this can provide an accurate upper limit value of a that can reliably turn off SiC-SIT.
  • SiC-SIT that can cut off current can be fabricated.
  • the present invention relates to the design technique of the channel structure according to claim 1 in SiC-SIT normally. It is characterized by applying to one-on-EC-SiC-SIT structure.
  • the normally-on ⁇ EC ⁇ SiC-SIT structure, P + gate region 4 as shown in FIG. 5 is written Tanme below the source low concentration region 5, the source electrode 8 is disposed on the surface of the device,
  • the gate electrode 9 is a structure that is installed around the source electrode 8.
  • a trench reaching the buried P + gate region 4 is formed in a part around the source electrode, and the gate electrode 9 is provided at the bottom of the trench.
  • the channel region 3 is disposed so as to be surrounded by the P + gate region 4 and is not connected to the gate electrode 9.
  • the channel region 3 is formed by embedding a trench portion by anisotropic trench etching technology and epitaxial growth, and the cross-sectional shape of the p + gate region is basically square.
  • the present invention takes into account variations in the half-channel width a and the impurity concentration N in the channel region that occur during the production of normally-on 'EC' SiC-SIT.
  • the half channel width a and the channel region impurity concentration N should be determined to satisfy
  • the present invention is created by the channel structure design method according to claims 1 to 4.
  • Normally-ON EC ⁇ SiC-SIT is characterized in that an N-type region with a concentration lower than the impurity concentration of the N-type channel region is provided on the source region side in contact with the gate p + region. .
  • the width of the depletion layer extending from the gate p + region 4 to the source region 6 side in FIG. 9 is increased, and the negative voltage applied to the gate electrode 9 is increased with respect to the source electrode 8 when the element is shut off. As it comes, switching time can be shortened.
  • the present invention provides a normally-on-EC-SiC-SIT produced by the channel structure design method according to claims 1 to 4, and on the drain region side in contact with the gate p + region.
  • An N ⁇ type region having a lower concentration than the impurity concentration of the N type channel region is provided. With this structure, the breakdown voltage between the drain 'source and drain' gate can be increased.
  • the present invention provides a normally-on-EC-SiC-SIT produced by the channel structure design method according to claims 1 to 4, and the source region side in contact with the gate p + region and A feature is that an N-type region having a lower concentration than the impurity concentration of the N-type channel region is provided on the drain region side.
  • the negative voltage applied to the gate electrode 9 can be increased with respect to the source electrode 8 when the element is shut off in FIG. 11, and at the same time, the switching time can be shortened. The voltage can be increased.
  • the channel region width is set to a distance from the gate electrode in a normally-on EC ⁇ SiC-SIT produced by the channel structure design method according to claims 1 to 4. It is characterized by a linear function decrease.
  • a conventional buried gate SIT structure when data N'ofu p + voltage drop or immediately it occurs in the gate region Yotsute spreads the depletion layer portion of the channel region from about p + gate region away gate electrode force It becomes difficult. Therefore, if a structure in which the channel region width 2a decreases linearly according to the distance from the gate electrode 9 as shown in FIG. 12, the portion of the channel region 3 away from the gate electrode 9 at the time of turn-off of the element is used. Since the current can be sufficiently cut off and the uniform turn-off operation can be realized in the entire channel region 3, the turn-off time can be shortened and the safe operation region of the turn-off operation and the load short-circuit operation can be increased.
  • the channel is more accurate than the conventional design considering the electrostatic induction effect from both the gate electrode and the drain electrode, which is the basic operation of SIT. Can be designed.
  • the semiconductor device simulation used in deriving the design method of the normally-on 'EC' SiC-SIT channel structure in the present invention strictly solves the basic equations of the semiconductor, and It contains accurate model equations for the physical properties of SiC materials such as SiC carrier mobility, forbidden bandwidth, and ionization coefficient, and has been shown to be in good agreement with experimental results. 'It is possible to provide an accurate channel structure design method to ensure both SiC-SIT conduction and current cut-off operations.
  • the input / output breakdown voltage and the switching time can be improved while maintaining the above effects.
  • FIG. 1 is a diagram showing a design range of N and a of SiC-SIT in the prior art.
  • FIG. 2 A diagram showing the range of (a) the combination of a and N and (b) the design range of the set of a and x in the present invention.
  • FIG. 3 (a) Relationship between characteristic on-resistance and N, and (b) Relationship between breakdown voltage and N in the present invention.
  • FIG. 5 is a cross-sectional view of normally-on “EC” SiC-SIT according to an example of the present invention.
  • the set of N and a is determined while suppressing variations in resistance and breakdown voltage.
  • FIG. 9 is a cross-sectional view of a normal EC ⁇ SiC-SIT that further improves the input capacitance and the input withstand voltage according to an embodiment of the present invention.
  • 10] A sectional view of normally-on 'EC' SiC-SIT that further improves the output withstand voltage according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of normally-on “EC” SiC-SIT that further improves input capacitance, input withstand voltage, and output withstand voltage according to an embodiment of the present invention.
  • a straight line 5 that coincides with the condition that the right side of equation (3) indicating the limit on the characteristic on-resistance is equal to a, the limit on the breakdown voltage is shown. If the right side of equation (4) is equal to a, straight line 6 that matches the conditions, right of equation (5) indicating the upper limit of a with respect to breakdown voltage Curve 1 that matches the condition of equal side force 3 ⁇ 4 is shown.
  • Each limit line shown in Fig. 2 (a) and (b) was obtained by analyzing the conduction and breakdown characteristics of normally-on 'EC' SiC-SIT by semiconductor device simulation.
  • semiconductor device simulation the basic equations of semiconductors, the Poisson equation, the electron continuity equation, and the hole continuity equation, are discretized using the finite difference method and solved using the Newton method.
  • the mesh interval is set finely and devised so that the electrostatic induction effect can be simulated accurately if avalanche breakdown occurs.
  • the semiconductor material is assumed to have a crystalline structural force of periodic hexagonal SiC (4H-SiC), and in order to obtain accurate simulation results, the physical properties of the material such as carrier mobility, forbidden band width, and ionization coefficient are 4H_SiC experimental data. A fitted model equation is used.
  • the gate-source voltage VGS is set to 2.5V, which is the input signal for turning on the device, and the drain current density is 200A m 2.
  • RonS is calculated from the source-to-source voltage V DS.
  • VGS is set to 2.5V.
  • the width of the depletion layer extending in the channel region 3 shown in Fig. 5 is reduced to reduce RonS as much as possible.
  • VGS 3.0 V or more, holes are injected from the P + gate region 4 into the channel region 3 and the drift region 2, which may significantly increase the turn-off time. Therefore, VGS is set to 2.5V, which is the upper limit where holes are not injected from the P + gate region.
  • V GS _15V is set to turn off the element. This VGS value is the standard off-voltage of the power device.
  • 1 ⁇ ⁇ .
  • ch Can be plotted on the log-log plane (hereinafter referred to as a-N log-log plane).
  • the rate of increase slows down. This power is one of the features of SSIT operation.
  • a relatively small value of less than .65 ⁇ m results in a straight line with a negative slope, and when a exceeds 0.65 ⁇ m, the curve tends to fall gradually, and finally the value of a depends on N. Disappear. in front
  • Equation (3) expresses the person's straight line area.
  • a relatively small value of less than .65 ⁇ m results in a straight line with a negative slope, and when a exceeds 0.65 ⁇ m, the curve tends to fall gradually, and finally the value of a depends on N. Disappear. in front
  • Equation (4) expresses the person's straight line area.
  • Equation (5) expresses this under the condition of X force / im or less.
  • the design method for the channel structure is the range enclosed by lines 5 and 6 in Fig. 2 (a) (however, The point of is not included, and) decides the pair of N and a, and at the same time decides X for the area below curve 1 for this a ch j
  • Design region 3 in Fig. 4 is a normally-on 'EC' SiC- with a breakdown voltage of 800 to 1200V and capable of conducting and interrupting current when the channel region length X is 1 ⁇ m.
  • Design region 4 in FIG. 6 has a breakdown voltage of 800 to 1200 V when the length x of the channel region is 1 ⁇ m, and can conduct and cut off current. N
  • Equation (6) which corresponds to the straight line 8 in FIG.
  • the region set by this equation and equations (4) and (5) is the design region 4 in FIG. In other words, if a and N are determined in the design area 4 and the device is designed, even if variations in a and N that may occur during manufacturing occur, ch
  • Design region 5 in FIG. 7 has a breakdown voltage of 800 to 1200 V when the length X of the channel region is 1 ⁇ m, and can conduct and cut off current. N
  • I a line showing the design limits of a and N for the breakdown voltage corresponding to
  • Equation (7) the design condition in which this variation does not affect the breakdown voltage is Equation (7), which corresponds to line 9.
  • the region set by this equation and equations (3) and (5) is the design region 5 in Fig. 7.
  • element design can be performed by determining a and N in design area 5.
  • Design region 6 in FIG. 8 has a breakdown voltage of 800 to 1200 V when the length x of the channel region is 1 ⁇ m, and can conduct and cut off current. Shows the range of a and N pairs for fabricating normally-on 'EC' SiC-SIT to avoid increased on-resistance and lower breakdown voltage caused by N ch variation
  • FIGS. 9 to 12 are structural diagrams according to the embodiments of the present invention, and the channel structure design method of the present invention can be applied to these structures.
  • FIG. 5 shows a normally-on 'EC' SiC-SIT, in which the P + gate region 4 is buried under the source low-concentration region 5, the source electrode 8 is placed on the surface of the device, and the gate electrode 9 Is a structure installed around the source electrode 8.
  • the gate electrode 9 is formed, a groove reaching the buried P + gate region 4 is formed in a part around the source electrode, and the gate electrode 9 is provided at the bottom of the groove.
  • the channel region 3 is disposed so as to be surrounded by the P + gate region 4 and is not connected to the gate electrode 9.
  • the channel region 3 is formed by anisotropic trench etching technology and embedding the trench portion by epitaxial growth, and the cross-sectional shape of the p + gate region is basically a square.
  • FIG. 9 shows the N-type impurity concentration lower than the impurity concentration of the N-type channel region 3 on the source region 6 side in contact with the gate p + region 4 in the normally-on “EC” SiC-SIT shown in FIG.
  • the mold area 11 is provided.
  • FIG. 10 shows a lower concentration than the impurity concentration of the N-type channel region 3 on the drain region 1 side in contact with the gate p + region 4 in the normally-on “EC” SiC-SIT shown in FIG.
  • an N-type region 12 is provided.
  • FIG. 11 shows the impurity concentration of the N-type channel region 3 on the source region 6 side and the drain region 1 side in contact with the gate p + region 4 in the normally-on 'EC' SiC-SIT shown in FIG.
  • N-type regions 11 and 12 having a lower concentration are provided.
  • FIG. 12 shows a linear function of the vertical channel vertical buried gate structure SiC-SIT shown in FIGS. 5, 9, 10, and 11 with the channel region width 2a depending on the distance from the gate electrode 9. It is a structure that has been reduced.
  • the channel structure design method of the present invention described above may be applied to the design of the channel width 2a in these structures.
  • This book is based on Japanese Patent Application 2005- 191763 filed on June 30, 2005. All this content is included here.
  • the present invention may be used in a design technique for reducing the loss of a high-power transistor using silicon carbide.

Abstract

When the parameters of the channel structure of a normally-on silicon carbide electrostatic induction transistor, i.e. channel length xj, half channel width a, and channel donor impurity concentration Nch, are determined, a combination of a and Nch satisfying an expression 2.1×107/√Nch<a<1.72×108/√Nch concerning the limits of characteristic on resistance and breakdown voltage is determined, and xj of 4 μm or less satisfying an expression a<-0.1+0.9 xj-0.1 xj2 is also determined (a and xj have a unit of μm, Nch has a unit of cm-3).

Description

明 細 書  Specification
炭化珪素静電誘導トランジスタ構造の設計方法  Method for designing silicon carbide static induction transistor structure
技術分野  Technical field
[0001] 本発明は、ノーマリーオン型ェピタキシャルチャネル埋込ゲート炭化珪素静電誘導 トランジスタ構造の設計方法に関し、特に素子の導通と電流遮断動作を確実にする チャネル構造の設計方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a design method for a normally-on type epitaxial channel buried gate silicon carbide electrostatic induction transistor structure, and more particularly to a design method for a channel structure that ensures conduction and current interruption operation of an element.
背景技術  Background art
[0002] 炭化珪素(以下、 SiC)は、高破壊電界強度、高移動度、高熱伝導率、ワイドバンド ギャップであるため、パワートランジスタの材料として有望である。一方静電誘導トラン ジスタ(以下、 SIT)は、不飽和型電流電圧特性を示し、低損失、高速スイッチング性 能を有するトランジスタである。  [0002] Silicon carbide (hereinafter, SiC) is promising as a material for power transistors because of its high breakdown electric field strength, high mobility, high thermal conductivity, and wide band gap. On the other hand, an electrostatic induction transistor (SIT) is a transistor that exhibits unsaturated current-voltage characteristics and has low loss and high-speed switching performance.
[0003] 炭化珪素静電誘導トランジスタ(以下、 SiC-SIT)は上記 SiCの利点と SITの高性能さ の両者を備えた素子であり、シリコンパワートランジスタの約 1/100の導通損失を実現 することが理論上可能であり、低損失のパワートランジスタとして有望である。  [0003] A silicon carbide static induction transistor (hereinafter referred to as SiC-SIT) is an element that has both the advantages of SiC and the high performance of SIT, and achieves about 1/100 of the conduction loss of a silicon power transistor. This is theoretically possible and is promising as a low-loss power transistor.
[0004] SITは、チャネル領域に形成された電位障壁をドレイン電圧及びゲート電圧で効率 よく制御することをその基本動作とし、特にチャネル領域の寄生抵抗を低減した結果 として不飽和型電流電圧特性や低オン抵抗を実現する。従ってチャネル構造の設計 は上記 SITの性能を得るために重要となる。  [0004] The basic operation of SIT is to efficiently control the potential barrier formed in the channel region with the drain voltage and the gate voltage. In particular, as a result of reducing the parasitic resistance of the channel region, Achieves low on-resistance. Therefore, the design of the channel structure is important to obtain the above SIT performance.
[0005] これまで、明確な SITのチャネル構造の設計技術は確立されていないが、半導体 pn 接合の完全空乏近似に基づいた空乏層の幅を目安にしてチャネル構造が決定され ることがしばしばある(非特許文献 l,Fig.13, 14, 15及び式 14)。 [0005] Until now, a clear SIT channel structure design technique has not been established, but the channel structure is often determined based on the width of the depletion layer based on the full depletion approximation of the semiconductor pn junction. (Non-Patent Document l, Fig. 13, 14, 15 and Equation 14).
[0006] 完全空乏近似とは、 pn接合などの接合部に形成される空乏層の内部の電界ゃ電 位の分布を導出する際に、空乏層中では電子及び正孔の濃度はゼロであるという完 全空乏化の状況を仮定して計算を進めることを指す。 [0006] The full depletion approximation means that the concentration of electrons and holes in the depletion layer is zero when the electric field potential distribution inside the depletion layer formed at the junction such as a pn junction is derived. This means that the calculation proceeds with the assumption of a fully depleted situation.
[0007] 図 1に従来のチャネル不純物濃度 N と半チャネル幅 aの設計方法を示す。非特許 FIG. 1 shows a conventional design method for channel impurity concentration N and half channel width a. Non-patent
ch  ch
文献 1では、同文献中の式 14を満たすように N 及び aの組でチャネルを設計すれば、  In Document 1, if the channel is designed with a set of N and a to satisfy Equation 14 in the same document,
ch  ch
降伏電圧とオン抵抗の両者の性能を考慮した性能指数が最も良くなるとしている。こ The figure of merit considering the performance of both breakdown voltage and on-resistance is said to be the best. This
Figure imgf000004_0001
式(1)において、 ε は半導体の比誘電率、 ε は真空の誘電率、 Vは ρη接合の拡散
Figure imgf000004_0001
In equation (1), ε is the relative permittivity of the semiconductor, ε is the permittivity of the vacuum, and V is the diffusion of the ρη junction.
s 0 bi  s 0 bi
電位、 qは単位電荷である。本式の意味は、 aの値が完全空乏近似に従うゼロ電圧で の空乏層幅と Vの逆バイアス印加での空乏層幅の間になるように aと N の組を設定  Potential, q is unit charge. The meaning of this formula is to set the pair of a and N so that the value of a is between the depletion layer width at zero voltage and the depletion layer width when V reverse bias is applied according to the full depletion approximation.
bi ch  bi ch
することを意味する。図 1の設計領域 1が、材料を SiCと仮定した時の式(1)の条件を 満たす N と aの組の範囲である。  It means to do. Design region 1 in Fig. 1 is the range of N and a pairs that satisfy the condition of equation (1) when the material is assumed to be SiC.
ch  ch
[0008] ここで直線 1は式(1)の左辺の値力 ¾に等しいことを満足し、特性オン抵抗に関する 一つの設計限界である。一方、直線 2は式(1)の右辺の値力 ¾に等しいことを満足し、 降伏電圧に関する一つの設計限界を与える。図 1中に記述されている a=wd印 (0V),a= wd印 (2.5V),a=wdep(-Vbi),a=wdep(-15V)とは、それぞれ !1接合に0[¥],2.5^],- ¾- 15[V]の電圧を印加したときの空乏層幅 wd印が aに等しいことを意味する。  [0008] Here, the straight line 1 satisfies the value power ¾ on the left side of the equation (1), and is one design limit relating to the characteristic on-resistance. On the other hand, line 2 satisfies the value power ¾ on the right-hand side of equation (1) and gives a design limit for the breakdown voltage. The a = wd mark (0V), a = wd mark (2.5V), a = wdep (-Vbi), and a = wdep (-15V) described in Fig. 1 are 0 [ ¥], 2.5 ^],-¾- Depletion layer width when a voltage of 15 [V] is applied. This means that the wd mark is equal to a.
[0009] また、上記の従来設計法を応用すれば、ゲート'ソース間電圧 VGSが 2.5V及び- 15 Vの場合の完全空乏近似によって得られた空乏層幅の間に aの値を取るように、 N と  [0009] If the above conventional design method is applied, the value of a is assumed to be between the depletion layer widths obtained by the full depletion approximation when the gate-source voltage VGS is 2.5 V and -15 V. N and
ch aの組を設定してやれば、オン信号 VGS=2.5Vを印加した際に必ず非空乏領域がチヤ ネル領域に残るため素子を導通させることができ、同時にオフ信号 VGS=_15Vを印加 した場合には、必ずチャネル中央で隣り合うゲート領域からの空乏層が接し、電位障 壁が形成されるので、電流遮断を行うことが可能となる。即ち、式 (2)  If a set of ch a is set, the non-depletion region always remains in the channel region when the on signal VGS = 2.5V is applied, so that the element can be made conductive, and at the same time when the off signal VGS = _15V is applied. Since the depletion layer from the adjacent gate region is always in contact with the center of the channel and a potential barrier is formed, the current can be interrupted. That is, formula (2)
[数 2]  [Equation 2]
Figure imgf000004_0002
を満足するように aおよび N の組を決定すれば、 2.5Vと- 15Vを VGSとして印カロするこ とで、導通および電流遮断が可能な素子を設計することが理論上可能となる。
Figure imgf000004_0002
If the combination of a and N is determined so as to satisfy the requirements, 2.5V and -15V can be marked as VGS. Thus, it is theoretically possible to design an element capable of conduction and current interruption.
[0010] 材料を SiCと仮定した時の式 (2)を満たす範囲が図 1中の設計領域 2である。式(1) の場合と同様に、直線 3は式 (2)の左辺の値力 ¾に等しいことを満足し、特性オン抵抗 に関する一つの設計限界である。一方、直線 4は式 (2)の右辺の値力 に等しいことを 満足し、降伏電圧に関する一つの設計限界を与える。  [0010] The range that satisfies Equation (2) when the material is assumed to be SiC is design region 2 in FIG. As in the case of equation (1), line 3 satisfies the value power ¾ on the left side of equation (2), and is one design limit for characteristic on-resistance. On the other hand, line 4 satisfies the value power on the right side of Eq. (2) and gives a design limit for the breakdown voltage.
[0011] また、そのほかのチャネル領域の設計としては、特許文献 1の図 1にみられるようにソ ース側でァクセプタ濃度が 1018cm— 3以上の高濃度 P領域 (以下 P+領域)に挟まれたチ ャネル領域の不純物濃度をドレイン側のチャネル領域より高く設定して、ソース側の チャネル領域の空乏層幅を調整し、ドレイン-ソース間の導通時の電圧降下を減らす 工夫がある。 [0011] As another channel region design, as shown in Fig. 1 of Patent Document 1, a high-concentration P region (hereinafter referred to as a P + region) with an acceptor concentration of 10 18 cm- 3 or more on the source side. There is a contrivance to reduce the voltage drop during drain-source conduction by adjusting the impurity concentration of the channel region sandwiched between the drain side channel region and adjusting the depletion layer width of the source side channel region. .
[0012] 非特許文献 1 : IEEE Trans. Electron Devices, ED_24,No.8 pp.1061-1069, 1977.  [0012] Non-Patent Document 1: IEEE Trans. Electron Devices, ED_24, No.8 pp.1061-1069, 1977.
Fig.13, 14,15  Fig.13, 14,15
特許文献 1 :特開平 8-316492  Patent Document 1: JP-A-8-316492
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] し力、しながら、上記従来設計手法の第 1の課題は、 SITの動作において重要となるド レイン電極とゲート電極の両電極からの静電誘導効果のチャネル領域の電位障壁へ の相互作用を考慮して構築されていないことである。  [0013] However, the first problem of the conventional design method is that the electrostatic barrier effect from the drain electrode and the gate electrode, which are important in the operation of the SIT, is affected by the potential barrier in the channel region. It is not built in consideration of interaction.
[0014] SITの動作原理を図 5に示す縦型埋め込みゲート構造 SITを用いて説明する。 SITの 動作原理はゲート P+領域 4からチャネル領域 3に広がる空乏層によってチャネル領域 に形成される電位障壁の高さを、ゲート電圧による静電誘導効果およびドレイン電圧 による静電誘導効果の両方によって変化させ、ドレイン領域 1と高濃度ソース領域 6の 間に流れる電流を制御することを基本としている。 [0014] The operation principle of the SIT will be described using the vertical buried gate structure SIT shown in FIG. The operation principle of SIT is that the height of the potential barrier formed in the channel region by the depletion layer extending from the gate P + region 4 to the channel region 3 is determined by both the electrostatic induction effect due to the gate voltage and the electrostatic induction effect due to the drain voltage. Basically, the current flowing between the drain region 1 and the high concentration source region 6 is controlled.
[0015] 特にドレイン電圧による静電誘導効果によって電位障壁高を低下させることにより、 ドナー濃度力 Sl018cm— 3以上の高濃度領域 (以下 N+領域)である高濃度ソース領域 6か らチャネル領域 3中の電位障壁を介して、ドリフト領域 2へ電子注入を起こすことにより 、ドレイン電圧の増加によりドレイン電流が飽和しない不飽和型電流電圧特性を実現 する。 [0016] 不飽和型電流電圧特性を実現するためには、チャネル長 Xjを減少させチャネル領 域に寄生する抵抗を低減させることにより、ドレイン電圧の静電誘導効果を増大させ 、ドレイン電圧によって効率よくチャネル領域の電位障壁を低下させるような設計が 必要である。 [0015] In particular, by reducing the potential barrier height by the electrostatic induction effect due to the drain voltage, the channel from the high-concentration source region 6 that is a high-concentration region (hereinafter referred to as N + region) with donor concentration force Sl0 18 cm- 3 or higher By injecting electrons into the drift region 2 through the potential barrier in the region 3, an unsaturated current-voltage characteristic in which the drain current is not saturated due to an increase in the drain voltage is realized. [0016] In order to realize the unsaturated current-voltage characteristics, the channel length Xj is reduced to reduce the parasitic resistance in the channel region, thereby increasing the electrostatic induction effect of the drain voltage and increasing the efficiency by the drain voltage. A design that often lowers the potential barrier in the channel region is necessary.
[0017] 即ち SITのチャネル構造の設計においては、ドレイン電極とゲート電極の両電極か らの静電誘導効果のチャネル領域の電位障壁への相互作用を反映する必要がある  That is, in the design of the SIT channel structure, it is necessary to reflect the interaction of the electrostatic induction effect from the drain electrode and the gate electrode to the potential barrier of the channel region.
[0018] 特にドレイン電圧による静電誘導効果は、上述したように電位障壁を低下させる作 用をもっており、降伏電圧を減少させる可能性があることから、これによつて降伏電圧 に関する設計限界を考えた場合に、 N に依存しない半チャネル幅 aの設計上限値が [0018] In particular, the electrostatic induction effect due to the drain voltage has the effect of lowering the potential barrier as described above, and may reduce the breakdown voltage. The design upper limit of half channel width a independent of N is
ch  ch
存在するはずであるが、従来設計手法にはその上限値に関する設計方針はないと レ、う問題がある。  Although it should exist, there is a problem with the conventional design method that there is no design policy regarding the upper limit.
[0019] 従来設計方法の第 2の課題は、従来設計手法は SITを作製する半導体材料をシリコ ン (以下、 Si)としてシミュレーションおよび実験事実との裏付けによって決められた設 計手法であり、 SiC素子にその設計手法を適用できるかが実証されていないという問 題がある。  [0019] The second issue of the conventional design method is the design method determined by the simulation and the support of the experimental facts, with the conventional design method using silicon (hereinafter referred to as Si) as the semiconductor material for SIT. There is a problem that it has not been demonstrated whether the design method can be applied to the device.
[0020] SiCと Siとはキャリアの移動度、禁制帯幅、イオン化係数などの材料の物性パラメ一 タが異なる。このような物性パラメータが異なれば、上記の静電誘導効果の電位障壁 に対する作用も異なり、結果として設計手法を修正する必要性が出てくる可能性があ る。  [0020] SiC and Si differ in material physical parameters such as carrier mobility, band gap, and ionization coefficient. If these physical property parameters are different, the effect of the electrostatic induction effect on the potential barrier is also different, and as a result, the design method may need to be modified.
[0021] また、上述したように従来設計方法は空乏層中にキャリアが存在しないという完全 空乏近似に基づいて導出されている。しかし実際の空乏層中の端部は空乏層と接す る中性領域からキャリアが流入しており、この近似が成り立っていない。  [0021] Further, as described above, the conventional design method is derived based on the complete depletion approximation that no carrier exists in the depletion layer. However, the carrier flows in from the neutral region in contact with the depletion layer at the end in the actual depletion layer, and this approximation does not hold.
[0022] SITのチャネル領域の電位障壁は、チャネル領域 3の両側の P+ゲート領域 4から広が る空乏層中の電界がチャネル中央部で重なり合うことで形成される。即ち、空乏層の 端部の電界分布が、電位障壁の高さに大きく関わる。従って、完全空乏近似に基づ レ、た従来の式(1)および式 (2)に基づく設計手法は精度に欠ける。 [0022] The potential barrier in the channel region of the SIT is formed by overlapping electric fields in the depletion layer extending from the P + gate regions 4 on both sides of the channel region 3 at the center of the channel. That is, the electric field distribution at the end of the depletion layer is greatly related to the height of the potential barrier. Therefore, the design method based on the conventional formula (1) and formula (2) based on the perfect depletion approximation lacks accuracy.
[0023] 従来設計方法の第 3の課題は、従来設計方法は p+ゲート領域の形状を円筒形と仮 定した場合の設計方法である。一方ェピタキシャルチャネル埋め込みゲート構造は、 p+ゲート構造の断面形状が方形である。従って、従来設計方法をそのままェピタキシ ャルチャネル坦め込みゲート構造に適用することはできない。 [0023] The third problem of the conventional design method is that the conventional design method assumes that the shape of the p + gate region is cylindrical. This is a design method in the case where it is determined. On the other hand, in the epitaxial channel buried gate structure, the cross-sectional shape of the p + gate structure is square. Therefore, the conventional design method cannot be applied as it is to an epitaxial channel loading gate structure.
[0024] 本発明は、上記事情を鑑みてなされたものであり、 SiC_SITの導通動作と電流遮断 動作の両方を確実にするためのチャネル構造の設計手法を提供することを課題とす る。  [0024] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a channel structure design method for ensuring both the conduction operation and the current interruption operation of SiC_SIT.
課題を解決するための手段  Means for solving the problem
[0025] 本発明は、上記問題を解決するために、 800〜1200Vの降伏電圧のノーマリーオン 型ェピタキシャルチャネル坦込ゲート炭化珪素静電誘導トランジスタ(ノーマリーオン •EC ' SiC-SIT)のチャネル構造のパラメータであるチャネル長 x、半チャネル幅 a、チ ャネルドナー不純物濃度 N の決定において、特性オン抵抗に関する以下の式 (3) ch [0025] In order to solve the above problem, the present invention provides a normally-on type epitaxial channel loading gate silicon carbide electrostatic induction transistor (normally on • EC 'SiC-SIT) having a breakdown voltage of 800 to 1200V. In determining the channel length x, half channel width a, and channel donor impurity concentration N, which are parameters of the channel structure, the following equation (3) ch regarding the characteristic on-resistance
[数 3]  [Equation 3]
Figure imgf000007_0001
Figure imgf000007_0001
および、降伏電圧に関する以下の式 (4)  And the following equation for the breakdown voltage (4)
[数 4]  [Equation 4]
Figure imgf000007_0002
の 2つの式の条件を満たす a、 N の組合せを決定するとともに、 Xが 4 m以下でかつ
Figure imgf000007_0002
Determines the combination of a and N that satisfies the conditions of the two equations, and X is 4 m or less and
ch j  ch j
以下の式(5)  The following formula (5)
[数 5]  [Equation 5]
« < -£).1+ 0, 广 O.lxJ ' * ' * * 53 の条件を満たす xを決定することを特徴とする。ここで N はチャネル領域 3 (図 5参照) j ch «<-£) .1+ 0, 广 O.lxJ '*' * * 53 It is characterized in that x satisfying the condition of is determined. Where N is the channel region 3 (see Fig. 5) j ch
のドナー不純物濃度、 aは半チャネル幅の値、 Xはチャネル長である。 N は cm— 3、 aお j ch The donor impurity concentration, a is the half channel width value, and X is the channel length. N is cm— 3 , ao j ch
よび xは z mの単位を持つ。ここで言うチャネル領域とは幅力 ¾a、長さ力 であり奥行 きが 2aおよび Xと比較して十分大きレ、ドナー不純物濃度が N である直方体であること j ch が好ましい。式 (3)は VGS=2.5Vの条件の下で適用するのが好ましぐ式 (4)および (5) は VGS=-15Vの条件の下で適用するのが好ましい。  And x have units of z m. The channel region mentioned here is preferably a rectangular parallelepiped having a width force ¾a, a length force, a depth sufficiently large compared to 2a and X, and a donor impurity concentration N. Equations (3) are preferably applied under the condition of VGS = 2.5V. Equations (4) and (5) are preferably applied under the condition of VGS = -15V.
[0026] 本発明による式 (3)は、従来設計法である式(1)および式 (2)における aの下限値に 対応するものであるが、後述する厳密な半導体デバイスシミュレーションによって導 出しているため、式 (3)によって従来設計法よりも正確な特性オン抵抗に関する設計 領域を提供できる。 Equation (3) according to the present invention corresponds to the lower limit value of a in Equations (1) and (2), which are conventional design methods, and is derived by strict semiconductor device simulation described later. Therefore, equation (3) can provide a more accurate design area for characteristic on-resistance than the conventional design method.
[0027] 同様に、本発明による式 (4)は、従来設計法である式(1)および式 (2)における aの 上限値に対応するものである力 後述する厳密な半導体デバイスシミュレーションに よって導出しているため、式 (4)によって従来設計法よりも正確な降伏電圧に関する設 計領域を提供できる。  Similarly, equation (4) according to the present invention is a force corresponding to the upper limit value of a in equations (1) and (2), which are conventional design methods. As a result, the design area for the breakdown voltage can be provided by Equation (4), which is more accurate than the conventional design method.
[0028] 更に本発明による式 (5)は、従来設計法では示されていない新たな限界に関する 条件式である。これは後述する厳密な半導体デバイスシミュレーションにより、ドレイ ン電極とゲート電極の両電極からの静電誘導効果のチャネル領域の電位障壁への 相互作用を正確にシミュレーションした結果得られたものである。  Furthermore, the expression (5) according to the present invention is a conditional expression concerning a new limit which is not shown in the conventional design method. This is a result of accurate simulation of the interaction of the electrostatic induction effect from both the drain electrode and the gate electrode to the potential barrier in the channel region by strict semiconductor device simulation described later.
[0029] 式 (5)は、特にドレイン電圧による静電誘導効果がゲート電圧による静電誘導効果よ りも十分大きいために降伏電圧に関する aの上限値が N に依存しなくなることを意味 ch  [0029] Equation (5) means that the upper limit value of a regarding the breakdown voltage does not depend on N because the electrostatic induction effect due to the drain voltage is sufficiently larger than the electrostatic induction effect due to the gate voltage.
している。即ちこれによつて、 SiC-SITを確実にオフできる正確な aの上限値を提供で きる。  is doing. In other words, this can provide an accurate upper limit value of a that can reliably turn off SiC-SIT.
[0030] 従って本発明による式(3)および式(4)の 2つに式を満たす aと N の組み合わせを ch  [0030] Therefore, a combination of a and N satisfying the two expressions (3) and (4) according to the present invention is represented by ch.
決定するとともに、 X力 S4 z m以下で式(5)の条件を満足する Xを決定し、これら a、 N 、  And determine X that satisfies the condition of equation (5) below X force S4 z m, and these a, N,
J J ch χを用いてチャネル領域を設計すれば、確実に 800〜1200Vの降伏電圧を持ち導通 If you design the channel region using J J ch χ, you will surely have a breakdown voltage of 800-1200V and conduct
J J
および電流遮断が可能な SiC-SITが作製できる。  And SiC-SIT that can cut off current can be fabricated.
[0031] 本発明は、 SiC-SITにおいて請求項 1に記載のチャネル構造の設計技術をノーマリ 一オン · EC · SiC-SIT構造に適用することを特徴とする。ノーマリーオン · EC · SiC-SIT 構造とは、図 5に示されるように P+ゲート領域 4がソース低濃度領域 5の下に坦め込ま れ、ソース電極 8は素子の表面に設置され、ゲート電極 9はソース電極 8の周辺に設置 されてレ、る構造のことである。ここでゲート電極形成に際しては、埋め込まれた P+グー ト領域 4に達するような溝をソース電極周辺の一部に形成して、溝の底部にゲート電 極 9を設置する。またチャネル領域 3は P+ゲート領域 4に囲まれるように設置されており 、ゲート電極 9には接続されていない。チャネル領域 3は、異方性トレンチエッチング 技術およびェピタキシャル成長によるトレンチ部の埋め込みによって形成されており 、 p+ゲート領域の断面形状は基本的に方形である。 [0031] The present invention relates to the design technique of the channel structure according to claim 1 in SiC-SIT normally. It is characterized by applying to one-on-EC-SiC-SIT structure. The normally-on · EC · SiC-SIT structure, P + gate region 4 as shown in FIG. 5 is written Tanme below the source low concentration region 5, the source electrode 8 is disposed on the surface of the device, The gate electrode 9 is a structure that is installed around the source electrode 8. Here, when forming the gate electrode, a trench reaching the buried P + gate region 4 is formed in a part around the source electrode, and the gate electrode 9 is provided at the bottom of the trench. The channel region 3 is disposed so as to be surrounded by the P + gate region 4 and is not connected to the gate electrode 9. The channel region 3 is formed by embedding a trench portion by anisotropic trench etching technology and epitaxial growth, and the cross-sectional shape of the p + gate region is basically square.
また本発明は、ノーマリーオン ' EC ' SiC-SITの製造時に発生する半チャネル幅 aお よびチャネル領域の不純物濃度 N のバラツキを考慮し、これらバラツキに関わらず、  In addition, the present invention takes into account variations in the half-channel width a and the impurity concentration N in the channel region that occur during the production of normally-on 'EC' SiC-SIT.
ch  ch
特性オン抵抗のバラツキが発生しない為に以下の式 Since there is no variation in characteristic on-resistance,
Figure imgf000009_0001
Figure imgf000009_0001
•••(6)  ••• (6)
を満たすように半チャネル幅 aおよびチャネル領域の不純物濃度 Ν を決定することを To determine the half-channel width a and the impurity concentration Ν of the channel region to satisfy
ch  ch
特徴とし、同様に降伏電圧のバラツキが発生しない為に以下の式 Similarly, since the breakdown voltage does not vary, the following formula
[数 7] [Equation 7]
Figure imgf000009_0002
Figure imgf000009_0002
•••(7)  ••• (7)
を満たすように半チャネル幅 aおよびチャネル領域の不純物濃度 N を決定することを The half channel width a and the channel region impurity concentration N should be determined to satisfy
ch  ch
特徴とする。 Features.
また本発明は、請求項 1から 4に記載のチャネル構造の設計方法により作成される ノーマリーオン · EC · SiC-SITにおレ、て、ゲート p+領域に接するソース領域側に N型チ ャネル領域の不純物濃度よりも低濃度の N-型領域を設けたことを特徴とする。本構 造により、図 9においてゲート p+領域 4からソース領域 6側に拡がる空乏層幅が増加し 、素子を遮断する際にソース電極 8に対してゲート電極 9に印加する負電圧を増加出 来るとともに、スイッチング時間を短縮できる。 Further, the present invention is created by the channel structure design method according to claims 1 to 4. Normally-ON EC · SiC-SIT is characterized in that an N-type region with a concentration lower than the impurity concentration of the N-type channel region is provided on the source region side in contact with the gate p + region. . With this structure, the width of the depletion layer extending from the gate p + region 4 to the source region 6 side in FIG. 9 is increased, and the negative voltage applied to the gate electrode 9 is increased with respect to the source electrode 8 when the element is shut off. As it comes, switching time can be shortened.
[0034] また本発明は、請求項 1から 4に記載のチャネル構造の設計方法により作成される ノーマリーオン · EC · SiC-SITにおレ、て、ゲート p+領域に接するドレイン領域側に N型 チャネル領域の不純物濃度よりも低濃度の N -型領域を設けたことを特徴とする。本 構造により、ドレイン 'ソース間およびドレイン 'ゲート間の降伏電圧を増加出来る。 [0034] Further, the present invention provides a normally-on-EC-SiC-SIT produced by the channel structure design method according to claims 1 to 4, and on the drain region side in contact with the gate p + region. An N − type region having a lower concentration than the impurity concentration of the N type channel region is provided. With this structure, the breakdown voltage between the drain 'source and drain' gate can be increased.
[0035] また本発明は、請求項 1から 4に記載のチャネル構造の設計方法により作成される ノーマリーオン · EC · SiC-SITにおレ、て、ゲート p+領域に接するソース領域側及びドレ イン領域側に N型チャネル領域の不純物濃度よりも低濃度の N-型領域を設けたこと を特徴とする。本構造により、図 11において素子を遮断する際にソース電極 8に対し てゲート電極 9に印加する負電圧を増加でき、同時にスイッチング時間を短縮でき、 更にドレイン ·ソース間およびドレイン'ゲート間の降伏電圧を増加出来る。 [0035] Further, the present invention provides a normally-on-EC-SiC-SIT produced by the channel structure design method according to claims 1 to 4, and the source region side in contact with the gate p + region and A feature is that an N-type region having a lower concentration than the impurity concentration of the N-type channel region is provided on the drain region side. With this structure, the negative voltage applied to the gate electrode 9 can be increased with respect to the source electrode 8 when the element is shut off in FIG. 11, and at the same time, the switching time can be shortened. The voltage can be increased.
[0036] また本発明は、請求項 1から 4に記載のチャネル構造の設計方法により作成される ノーマリーオン · EC · SiC-SITにおレ、て、チャネル領域幅がゲート電極からの距離に応 じて一次関数的に減少していることを特徴とする。従来の埋込ゲート SIT構造では、タ ーンオフ時に p+ゲート領域中に電圧降下が発生しやすぐそれによつて、ゲート電極 力 離れるほど p+ゲート領域からのチャネル領域への部分の空乏層が拡がり難くなる 。従って図 12のようにチャネル領域幅 2aがゲート電極 9からの距離に応じて一次関数 的に減少している構造を用いれば、素子のターンオフ時にチャネル領域 3中のゲート 電極 9から離れた部分の電流を十分に遮断でき、チャネル領域 3全体で均一なター ンオフ動作を実現できるため、ターンオフ時間の短縮および、ターンオフ動作および 負荷短絡動作の安全動作領域を増加できる。 [0036] Further, according to the present invention, the channel region width is set to a distance from the gate electrode in a normally-on EC · SiC-SIT produced by the channel structure design method according to claims 1 to 4. It is characterized by a linear function decrease. In a conventional buried gate SIT structure, when data N'ofu p + voltage drop or immediately it occurs in the gate region Yotsute spreads the depletion layer portion of the channel region from about p + gate region away gate electrode force It becomes difficult. Therefore, if a structure in which the channel region width 2a decreases linearly according to the distance from the gate electrode 9 as shown in FIG. 12, the portion of the channel region 3 away from the gate electrode 9 at the time of turn-off of the element is used. Since the current can be sufficiently cut off and the uniform turn-off operation can be realized in the entire channel region 3, the turn-off time can be shortened and the safe operation region of the turn-off operation and the load short-circuit operation can be increased.
発明の効果  The invention's effect
[0037] 本発明の設計手法を SiC-SITに適用すれば、 SITの基本動作であるゲート電極及び ドレイン電極の両方からの静電誘導効果を考慮した、従来の設計よりも正確なチヤネ ル構造の設計を実施することが出来る。 [0037] If the design method of the present invention is applied to SiC-SIT, the channel is more accurate than the conventional design considering the electrostatic induction effect from both the gate electrode and the drain electrode, which is the basic operation of SIT. Can be designed.
[0038] また後述するように、本発明におけるノーマリーオン 'EC ' SiC-SITのチャネル構造 の設計方法を導出するにあたり用いた半導体デバイスシミュレーションは、半導体の 基本方程式を厳密に解いており、また SiCのキャリア移動度、禁制帯幅、イオン化係 数といった SiCの材料の物性の正確なモデル式を含んでおり、実験結果とも良く一致 していることが実証されているため、ノーマリーオン 'EC ' SiC-SITの導通動作と電流 遮断動作の両方を確実にするための精度の高いチャネル構造の設計手法を提供す ること力 Sできる。  [0038] As will be described later, the semiconductor device simulation used in deriving the design method of the normally-on 'EC' SiC-SIT channel structure in the present invention strictly solves the basic equations of the semiconductor, and It contains accurate model equations for the physical properties of SiC materials such as SiC carrier mobility, forbidden bandwidth, and ionization coefficient, and has been shown to be in good agreement with experimental results. 'It is possible to provide an accurate channel structure design method to ensure both SiC-SIT conduction and current cut-off operations.
[0039] 更に上記の効果を維持しながら入出力の降伏電圧およびスイッチング時間を改善 できる。  Furthermore, the input / output breakdown voltage and the switching time can be improved while maintaining the above effects.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]従来技術における SiC-SITの N 及び aの設計範囲を示す図である。 [0040] FIG. 1 is a diagram showing a design range of N and a of SiC-SIT in the prior art.
ch  ch
[図 2]本発明における(a)aと N の組の範囲、及び (b)aと xの組の設計範囲を示す図で  [Fig. 2] A diagram showing the range of (a) the combination of a and N and (b) the design range of the set of a and x in the present invention.
ch j  ch j
ある。  is there.
[図 3]本発明における (a)特性オン抵抗対 N の関係、及び (b)降伏電圧対 N の関係  [Fig. 3] (a) Relationship between characteristic on-resistance and N, and (b) Relationship between breakdown voltage and N in the present invention.
ch ch のグラフ(χ=1 μ mの場合)である。  ch ch graph (when χ = 1 μm).
[図 4]本発明における x=l x mの場合での、ノーマリーオン 'EC ' SiC-SITの N と aの組  [Fig.4] Normally-on 'EC' SiC-SIT N and a set for x = l x m in the present invention
j ch を決定する実施例の図である。  It is a figure of the Example which determines jch.
[図 5]本発明の実施例に係るノーマリーオン 'EC ' SiC-SITの断面図である。  FIG. 5 is a cross-sectional view of normally-on “EC” SiC-SIT according to an example of the present invention.
[図 6]本発明における x=l x mの場合での、ノーマリーオン 'EC ' SiC-SITにおいてオン  [Fig. 6] Normally on 'EC' SiC-SIT in the case of x = l x m in the present invention.
j  j
抵抗のバラツキを抑制しながら N と aの組を決定する実施例の図である。  It is a figure of the Example which determines the set of N and a, suppressing the variation in resistance.
ch  ch
[図 7]本発明における χ=1 μ τηの場合での、ノーマリーオン 'EO SiC - SITにおいて降  [Fig. 7] In the case of χ = 1 μ τη according to the present invention, the normally-on 'EO SiC-SIT
j  j
伏電圧のバラツキを抑制しながら N と aの組を決定する実施例の図である。  It is a figure of the Example which determines the group of N and a, suppressing the variation of a breakdown voltage.
ch  ch
[図 8]本発明における χ=1 μ τηの場合での、ノーマリーオン 'EO SiC - SITにおいてオン  [Fig. 8] ON in normally-on 'EO SiC-SIT in the case of χ = 1 μ τη in the present invention.
j  j
抵抗および降伏電圧のバラツキを抑制しながら N と aの組を決定する実施例の図で  In the diagram of the embodiment, the set of N and a is determined while suppressing variations in resistance and breakdown voltage.
ch  ch
ある。  is there.
[図 9]本発明の実施例に係る入力容量および入力耐圧を更に改善するノーマリーォ ン · EC · SiC-SITの断面図である。 園 10]本発明の実施例に係る出力耐圧を更に改善するノーマリーオン ' EC ' SiC-SIT の断面図である。 FIG. 9 is a cross-sectional view of a normal EC · SiC-SIT that further improves the input capacitance and the input withstand voltage according to an embodiment of the present invention. 10] A sectional view of normally-on 'EC' SiC-SIT that further improves the output withstand voltage according to an embodiment of the present invention.
[図 11]本発明の実施例に係る入力容量、入力耐圧、出力耐圧を更に改善するノーマ リーオン ' EC ' SiC-SITの断面図である。  FIG. 11 is a cross-sectional view of normally-on “EC” SiC-SIT that further improves input capacitance, input withstand voltage, and output withstand voltage according to an embodiment of the present invention.
園 12]本発明の実施例に係るターンオフ時間の短縮および、ターンオフ動作および 負荷短絡動作の安全動作領域を増加させる構造である。  12] This is a structure that shortens the turn-off time and increases the safe operation region of the turn-off operation and the load short-circuit operation according to the embodiment of the present invention.
符号の説明  Explanation of symbols
1 ドレイン領域  1 Drain region
2 ドリフト領域  2 Drift region
3 チャネル領域  3 channel region
4 ゲート領域  4 Gate area
5 低濃度ソース領域  5 Low concentration source region
6 高濃度ソース領域  6 High concentration source region
7 ドレイン電極  7 Drain electrode
8 ソース電極  8 Source electrode
9 ゲート電極  9 Gate electrode
10 絶縁領域  10 Insulation area
11 ソース側の低濃度 N-型領域  11 Low concentration N-type region on the source side
12 ドレイン側の低濃度 N-型領域  12 Low concentration N-type region on the drain side
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] 以下に、本発明の実施の形態について添付図面を参照しながら説明する。降伏電 圧が 800〜1200Vであり、かつオン機能を確実に持ったノーマリーオン ' EC ' SiC-SIT を実現するのに必要なチャネル領域の半幅 a、長さ x、ドナー不純物濃度 N を決定す  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Determine the half width a, length x, and donor impurity concentration N of the channel region necessary to realize normally-on 'EC' SiC-SIT with a breakdown voltage of 800-1200V and reliable on-function. You
j ch る。このためには、式(3)及び式(4)の 2つの式を満たす aと N の組合せを決定すると  j ch. For this purpose, if a combination of a and N satisfying the two equations (3) and (4) is determined,
ch  ch
ともに、 Xが 4 μ πι以下で式 (5)を満たす Xを決定することが必要である。  In both cases, it is necessary to determine X that satisfies Eq. (5) when X is less than 4 μπι.
[0043] ここで、図 2 (a) , (b)には、特性オン抵抗に関する限界を示す式 (3)の右辺が aに等 しいという条件に一致する直線 5、降伏電圧に関する限界を示す式 (4)の右辺が aに 等しいとレ、う条件に一致する直線 6、降伏電圧に関する aの上限値を示す式 (5)の右 辺力 ¾に等しいという条件に一致する曲線 1を示した。 [0043] Here, in Figs. 2 (a) and (b), a straight line 5 that coincides with the condition that the right side of equation (3) indicating the limit on the characteristic on-resistance is equal to a, the limit on the breakdown voltage is shown. If the right side of equation (4) is equal to a, straight line 6 that matches the conditions, right of equation (5) indicating the upper limit of a with respect to breakdown voltage Curve 1 that matches the condition of equal side force ¾ is shown.
[0044] 図 2 (a) , (b)に示される各々の限界線は、半導体デバイスシミュレーションによるノー マリーオン ' EC ' SiC-SITの導通特性および降伏特性を解析することによって得られ た。半導体デバイスシミュレーションでは半導体の基本方程式である Poisson式、電子 の連続方程式、正孔の連続方程式を有限差分法を用いて離散化し、ニュートン法を 用いて解いている。 [0044] Each limit line shown in Fig. 2 (a) and (b) was obtained by analyzing the conduction and breakdown characteristics of normally-on 'EC' SiC-SIT by semiconductor device simulation. In semiconductor device simulation, the basic equations of semiconductors, the Poisson equation, the electron continuity equation, and the hole continuity equation, are discretized using the finite difference method and solved using the Newton method.
[0045] 電界集中が発生する箇所や SITの動作で重要となるチャネル領域では特にメッシュ 間隔を細力べ設定し、精度良くアバランシェ降伏ゃ静電誘導効果をシミュレートできる ように工夫してレ、る。半導体材料は結晶構造力 周期六方晶 SiC (4H-SiC)を仮定し、 精度良いシミュレーション結果を得るためにキャリア移動度、禁制帯幅、イオン化係 数等の材料の物性パラメータは 4H_SiCの実験データとフィッティングしたモデル式を 用いている。  [0045] Especially in the area where electric field concentration occurs and in the channel region that is important for SIT operation, the mesh interval is set finely and devised so that the electrostatic induction effect can be simulated accurately if avalanche breakdown occurs. The The semiconductor material is assumed to have a crystalline structural force of periodic hexagonal SiC (4H-SiC), and in order to obtain accurate simulation results, the physical properties of the material such as carrier mobility, forbidden band width, and ionization coefficient are 4H_SiC experimental data. A fitted model equation is used.
[0046] 図 2 (a) , (b)に示された各限界線を求めるためには、まず図 3 (a)及び同図(b)に示 されるように、チャネルドナー不純物濃度 N に対する特性オン抵抗および降伏電圧  [0046] In order to obtain the limit lines shown in Figs. 2 (a) and (b), first, as shown in Figs. 3 (a) and (b), the channel donor impurity concentration N Characteristic on-resistance and breakdown voltage
ch  ch
を、様々な半チャネル幅 aおよびチャネル長 Xの条件に対してシミュレーションにより 導出する。  Is derived by simulation for various half-channel width a and channel length X conditions.
[0047] 図 3 (a)の計算ではゲート-ソース間電圧 VGSは、素子をオンする為の入力信号であ る 2.5Vを設定しており、ドレイン電流密度が 200Aん m2の時のドレイン-ソース間電圧 V DSによって特性オン抵抗 RonSを計算している。本発明はノーマリーオン型動作に関 するものであり、 VGS=0Vで素子は導通することを想定している力 ここで VGSを 2.5V に設定しているのは、 VGSを十分大きくし、図 5に示すチャネル領域 3に広がる空乏層 の幅を小さくし、可能な限り RonSの低減を意図している。また VGSを 3.0V以上とすると P+ゲート領域 4からホールがチャネル領域 3およびドリフト領域 2に注入されるため、タ ーンオフ時間が著しく増加する恐れがある。よって VGSを、 P+ゲート領域からホールが 注入されない上限である 2.5Vに設定している。同図(b)では素子をオフするための V GS=_15Vを設定してレ、る。この VGSの値はパワーデバイスの標準的なオフ電圧である 。ここで χ =1 μ πιとしてレヽる。 [0047] In the calculation of Fig. 3 (a), the gate-source voltage VGS is set to 2.5V, which is the input signal for turning on the device, and the drain current density is 200A m 2. -The characteristic on-resistance RonS is calculated from the source-to-source voltage V DS. The present invention relates to normally-on operation, and is a force that assumes that the element conducts when VGS = 0V. Here, VGS is set to 2.5V. The width of the depletion layer extending in the channel region 3 shown in Fig. 5 is reduced to reduce RonS as much as possible. If VGS is set to 3.0 V or more, holes are injected from the P + gate region 4 into the channel region 3 and the drift region 2, which may significantly increase the turn-off time. Therefore, VGS is set to 2.5V, which is the upper limit where holes are not injected from the P + gate region. In the figure (b), V GS = _15V is set to turn off the element. This VGS value is the standard off-voltage of the power device. Here, let χ = 1 μ πι.
[0048] 図 3 (a)の特性オン抵抗対 N の関係図では N の減少と共に初めは徐々に特性オン 抵抗が増加することがわかる。この理由は、 N の減少と共に、 P+ゲート領域からチヤ [0048] In the relationship diagram of characteristic on-resistance vs. N in Fig. 3 (a), the characteristic is gradually turned on at the beginning as N decreases. It can be seen that the resistance increases. The reason for this is that as N decreases, the P + gate region
ch  ch
ネルに広がる空乏層の幅が増加するため、チャネル中の非空乏化領域である伝導 チャネルの実効幅が徐々に減少するためである。  This is because the effective width of the conduction channel, which is a non-depleted region in the channel, gradually decreases because the width of the depletion layer extending to the channel increases.
[0049] そして、ある N では特性オン抵抗が急激に増加していることが図 3 (a)から確認でき [0049] Then, it can be confirmed from Fig. 3 (a) that the characteristic on-resistance increases sharply for a certain N.
ch  ch
る。これはチャネルの両側の P+ゲート領域 4からの空乏層がチャネル領域 3の中央部 で接して、そこに電位障壁が形成されるため、電流が著しく減少するためである。そし て図 3 (a)から、特に a=0.65 x m未満の曲線では、ある N で特性オン抵抗が急激に増 The This is because the depletion layer from the P + gate region 4 on both sides of the channel is in contact with the center of the channel region 3 and a potential barrier is formed there, so that the current is significantly reduced. From Fig. 3 (a), the characteristic on-resistance increases sharply at a certain N, especially in the case of a curve below a = 0.65 xm.
ch  ch
加しているのがわかる。  You can see that
[0050] このように特性オン抵抗が急激に増加する N 力 S、ノーマリーオン ' EC ' SiC-SITを導  [0050] In this way, N-force S with a sudden increase in characteristic on-resistance and normally-on 'EC' SiC-SIT are introduced.
ch  ch
通させるための下限値であり、この素子に導通機能を持たせるためには、この下限値 より大きい値で N を設計することが必要となる。また下限値は aに依存していることが  It is a lower limit value for passing the element, and it is necessary to design N with a value larger than this lower limit value in order for this element to have a conduction function. The lower limit value depends on a
ch  ch
図 3 (a)でわかる。よって a対 N 下限値の関係カ^つの曲線として、 aを縦軸、 N を横軸  This can be seen in Fig. 3 (a). Therefore, as a curve of a vs. N lower limit value, a is the vertical axis and N is the horizontal axis.
ch ch とした両対数平面(以下 a対 N 両対数平面)にプロットできる。  ch Can be plotted on the log-log plane (hereinafter referred to as a-N log-log plane).
ch  ch
[0051] 図 3 (a)において、 aが 0.65 μ πι以上の場合には他の曲線と比較して N の減少に対  [0051] In Fig. 3 (a), when a is 0.65 μ πι or more, N decreases compared to other curves.
ch  ch
する特性オン抵抗の増加の仕方が鈍いことがわかる。この理由は、 aが 0.65 μ πι以上 の条件では、チャネル幅が比較的大きぐゲート P+領域からの静電誘導効果が、ドレ イン領域からの静電誘導効果と比較して小さいため、 N を十分小さくして空乏層幅を It can be seen that the characteristic on-resistance increases slowly. For this reason, in a is 0.65 μ πι above conditions, the static induction effect from the channel width is relatively large instrument gate P + region is small compared to the static induction effect from the drain region, N To make the depletion layer width small enough
ch  ch
増加させても、チャネル領域中の電位障壁が十分高くならないためである。  This is because even when the potential is increased, the potential barrier in the channel region does not become sufficiently high.
[0052] このため、チャネル電流はあまり低下せず、結果として N に対する特性オン抵抗の [0052] For this reason, the channel current does not decrease so much, and as a result, the characteristic on-resistance with respect to N
ch  ch
増加率は鈍くなる。これ力 SSITの動作の一つの特徴である。  The rate of increase slows down. This power is one of the features of SSIT operation.
[0053] 結果として、上述した a対 N 下限値の曲線を a対 N 両対数平面にプロットすると、 a ch ch [0053] As a result, when the above a vs. N lower limit curve is plotted on the a vs. N logarithmic plane, a ch ch
力 .65 μ m未満の比較的小さい値では負の傾きを持った直線となり、 aが 0.65 μ m以 上になると徐々に曲線が寝る傾向を帯び、最終的に aの値は N に依存しなくなる。前  A relatively small value of less than .65 μm results in a straight line with a negative slope, and when a exceeds 0.65 μm, the curve tends to fall gradually, and finally the value of a depends on N. Disappear. in front
ch  ch
者の直線域を式で表したものが式 (3)である。  Equation (3) expresses the person's straight line area.
[0054] 図 3 (b)の降伏電圧対 N の関係図では、 0.65 μ m以下の aの場合の降伏電圧は、 N ch c を増加させると、ある N で急激に降伏電圧が低下していることがわかる。これは、 N h ch ch の増加により、 P+ゲート領域 4からチャネル領域 3に広がる空乏層の幅が減少し、電流 を遮断するための電位障壁が低下するためである。 [0055] この降伏電圧が急激に低下するときのチャネル不純物濃度が、素子が確実にオフ 機能を持っためのチャネル不純物濃度の上限値である。この上限値の値は aが増加 するに従い減少していくことが図 3 (b)より分かる。よって a対 N 上限値の関係が 1つの [0054] In the relationship diagram of breakdown voltage vs. N in Fig. 3 (b), the breakdown voltage in the case of a of 0.65 μm or less increases rapidly when N ch c is increased. I understand that. This is because the width of the depletion layer extending from the P + gate region 4 to the channel region 3 decreases due to the increase in N h ch ch, and the potential barrier for blocking current decreases. [0055] The channel impurity concentration when the breakdown voltage rapidly decreases is the upper limit value of the channel impurity concentration for ensuring that the device has an off function. It can be seen from Fig. 3 (b) that the upper limit value decreases as a increases. Therefore, there is one relationship between a and N upper limit values.
ch  ch
曲線として、 a対 N 両対数平面にプロットできる。  It can be plotted as a curve in the logarithmic plane a vs. N.
ch  ch
[0056] 図 3 (b)において a=0.7 z mの場合には、 N を減少させても、耐圧の増加が十分見  [0056] In Fig. 3 (b), when a = 0.7 z m, the increase in breakdown voltage is sufficiently observed even if N is decreased.
ch  ch
込めていないことが分かる。これは、 a=0.7 x mの場合は、チャネル幅が比較的大きい ので P+ゲート領域からの静電誘導効果がドレイン電極からのそれよりも弱ぐ N を十 You can see that it ’s not. This is because, when a = 0.7 xm, the channel width is relatively large, so that the electrostatic induction effect from the P + gate region is less than that from the drain electrode.
ch 分に下げたとしても電流遮断を確実に行うための電位障壁をチャネル領域に形成で きないためである。  This is because a potential barrier for reliably blocking the current cannot be formed in the channel region even if it is lowered to ch.
[0057] 結果として、上述した a対 N 上限値の曲線を a対 N 両対数平面にプロットすると、 a ch cn  [0057] As a result, when the above a vs. N upper limit curve is plotted on the a vs. N logarithmic plane, a ch cn
力 .65 μ m未満の比較的小さい値では負の傾きを持った直線となり、 aが 0.65 μ m以 上になると徐々に曲線が寝る傾向を帯び、最終的に aの値は N に依存しなくなる。前  A relatively small value of less than .65 μm results in a straight line with a negative slope, and when a exceeds 0.65 μm, the curve tends to fall gradually, and finally the value of a depends on N. Disappear. in front
ch  ch
者の直線域を式で表したものが式 (4)である。  Equation (4) expresses the person's straight line area.
[0058] 更に、上述したように、図 3(a)から求めた a対 N 下限値の曲線および同図 (b)から求 [0058] Furthermore, as described above, the curve of a vs. N lower limit obtained from Fig. 3 (a) and the curve obtained from Fig. 3 (b).
ch  ch
めた a対 N の上限値の曲線には、ドレイン電圧による静電誘導効果が強く作用するこ  The electrostatic induction effect due to the drain voltage strongly acts on the curve of the upper limit of a vs. N.
ch  ch
とによって決まる、 N に依存しない aの上限値 0.7 /i mという限界も存在するため、この  Since there is a limit of 0.7 / i m that does not depend on N
ch  ch
上限値をチャネル構造の設計に加える必要がある。図 3(a)及び (b)と同様の特性を、 X =1 μ m以外の値に関してシミュレーションしたところ、この aの上限値は Xに依存するこ とが分かった。それを X力 /i m以下の条件のもとで式に表したものが式 (5)である。  It is necessary to add an upper limit to the design of the channel structure. When the same characteristics as in Fig. 3 (a) and (b) were simulated for values other than X = 1 μm, it was found that the upper limit of this a depends on X. Equation (5) expresses this under the condition of X force / im or less.
[0059] 図 3 (a) , (b)で得られた結果として、図 2 (a) , (b)に示す直線 5、直線 6、曲線 1が得ら れる。従って本発明である式 (3)及び (4)の条件を満たす a、 N の組合せを決定する [0059] As a result obtained in Figs. 3 (a) and (b), the straight line 5, the straight line 6 and the curved line 1 shown in Figs. 2 (a) and (b) are obtained. Therefore, the combination of a and N that satisfies the conditions of the expressions (3) and (4) of the present invention is determined.
ch  ch
とともに、 X力 μ m以下でかつ式(5)を満たす条件で Xを決めるとレ、うチャネル構造の 設計方法は、図 2 (a)の直線 5と直線 6で囲まれる範囲(ただし直線上の点は含まなレ、 )でN と aの組を決め、同時にこの aに対して曲線 1より下の領域で Xを決めることと同 ch j  In addition, if X is determined under the condition that the X force is less than μm and satisfies Equation (5), the design method for the channel structure is the range enclosed by lines 5 and 6 in Fig. 2 (a) (however, The point of is not included, and) decides the pair of N and a, and at the same time decides X for the area below curve 1 for this a ch j
等である。  Etc.
実施例  Example
[0060] 図 4の設計領域 3はチャネル領域の長さ Xを 1 μ mとしたときの、 800〜1200Vの降伏 電圧を持ち、導通および電流遮断動作が可能なノーマリーオン ' EC ' SiC-SITを作製 するための、 aおよび N の組の範囲を示している。この条件を満たす数値は、例えば [0060] Design region 3 in Fig. 4 is a normally-on 'EC' SiC- with a breakdown voltage of 800 to 1200V and capable of conducting and interrupting current when the channel region length X is 1 μm. Create SIT To show the range of a and N pairs. The numerical value that satisfies this condition is, for example,
ch  ch
、 χ=1 μ m、 a=0.5 μ m、 N =10 cm あ ·ο。  , Χ = 1 μm, a = 0.5 μm, N = 10 cm.
j ch  j ch
[0061] 図 6の設計領域 4はチャネル領域の長さ xを 1 μ mとしたときの、 800〜1200Vの降伏 電圧を持ち、導通および電流遮断動作が可能で、特に製造時に発生する aおよび N  [0061] Design region 4 in FIG. 6 has a breakdown voltage of 800 to 1200 V when the length x of the channel region is 1 μm, and can conduct and cut off current. N
ch のバラツキによって生ずるオン抵抗の増加を回避するためのノーマリーオン 'EO SiC -SITを作製するための、 aおよび N の組の範囲を示している。図 6の直線 5は、式(3) ch  The range of a and N pairs for producing normally-on 'EO SiC -SIT to avoid the increase in on-resistance caused by ch variation is shown. The straight line 5 in Fig. 6 represents the equation (3) ch
に対応する特性オン抵抗に関する aおよび N の設計限界を示す線であるが、実際の ch  Is a line showing the design limits of a and N with respect to the characteristic on-resistance corresponding to
製造において発生する可能性のある aおよび N のバラツキが原因で式(3)の条件を  Due to variations in a and N that may occur in manufacturing,
ch  ch
満たさなくなると、図 4における設計領域 3の範囲外となり特性オン抵抗は急激に増 カロしてしまうことが図 3(a)から分かる。よってこれを避けるために製造中に起こりうる aお よび N のバラツキの範囲を考慮し、このバラツキが特性オン抵抗に影響を及ぼさな ch  It can be seen from Fig. 3 (a) that if it is not satisfied, the characteristic on-resistance will increase suddenly outside the range of design region 3 in Fig. 4. Therefore, in order to avoid this, the range of a and N variations that can occur during manufacturing is considered, and this variation does not affect the characteristic on-resistance.
い設計条件が式(6)であり、これが図 6の直線 8に対応する。本式と式 (4)および式( 5)で設定される領域が図 6の設計領域 4である。即ち設計領域 4で aおよび N を決定 ch して素子設計を行えば、製造中に起こりうる aおよび N のバラツキが発生したとしても ch  The new design condition is Equation (6), which corresponds to the straight line 8 in FIG. The region set by this equation and equations (4) and (5) is the design region 4 in FIG. In other words, if a and N are determined in the design area 4 and the device is designed, even if variations in a and N that may occur during manufacturing occur, ch
、依然として低いオン抵抗が保証される。  Still, low on-resistance is guaranteed.
[0062] 図 7の設計領域 5はチャネル領域の長さ Xを 1 μ mとしたときの、 800〜1200Vの降伏 電圧を持ち、導通および電流遮断動作が可能で、特に製造時に発生する aおよび N [0062] Design region 5 in FIG. 7 has a breakdown voltage of 800 to 1200 V when the length X of the channel region is 1 μm, and can conduct and cut off current. N
ch のバラツキによって生ずる降伏電圧の低下を回避するためのノーマリーオン 'EC ' SiC -SITを作製するための、 aおよび N の組の範囲を示している。図 7の直線 6は、式(4) ch  The range of a and N pairs to produce normally-on 'EC' SiC-SIT to avoid the breakdown voltage drop caused by ch variation is shown. The straight line 6 in Fig. 7 is the equation (4) ch
に対応する降伏電圧に関する aおよび N の設計限界を示す線であるが、実際の製造  Is a line showing the design limits of a and N for the breakdown voltage corresponding to
ch  ch
において発生する可能性のある aおよび N のバラツキが原因で式 (4)の条件を満た  The condition of Eq. (4) is satisfied due to variations in a and N that may occur in
ch  ch
さなくなると、図 4における設計領域 3の範囲外となり降伏電圧は急激に低下してしま うことが図 3(b)から分かる。よってこれを避けるために製造中に起こりうる aおよび N の  It can be seen from Fig. 3 (b) that if this is not the case, it will be outside the range of design region 3 in Fig. 4 and the breakdown voltage will drop rapidly. So to avoid this a and N
ch バラツキの範囲を考慮し、このバラツキが降伏電圧に影響を及ぼさない設計条件が 式(7)であり、これが直線 9に対応する。本式と式(3)および式(5)で設定される領域 が図 7の設計領域 5である。即ち設計領域 5で aおよび N を決定して素子設計を行え  ch Considering the range of variation, the design condition in which this variation does not affect the breakdown voltage is Equation (7), which corresponds to line 9. The region set by this equation and equations (3) and (5) is the design region 5 in Fig. 7. In other words, element design can be performed by determining a and N in design area 5.
ch  ch
ば、製造中に起こりうる aおよび N のバラツキが発生したとしても、依然として高い降 ch  Even if the a and N variations that may occur during production occur,
伏電圧が保証される。 [0063] 図 8の設計領域 6はチャネル領域の長さ xを 1 μ mとしたときの、 800〜1200Vの降伏 電圧を持ち、導通および電流遮断動作が可能で、特に製造時に発生する aおよび N ch のバラツキによって生ずるオン抵抗の増加および降伏電圧の低下を回避するための ノーマリーオン ' EC ' SiC-SITを作製するための、 aおよび N の組の範囲を示している The breakdown voltage is guaranteed. [0063] Design region 6 in FIG. 8 has a breakdown voltage of 800 to 1200 V when the length x of the channel region is 1 μm, and can conduct and cut off current. Shows the range of a and N pairs for fabricating normally-on 'EC' SiC-SIT to avoid increased on-resistance and lower breakdown voltage caused by N ch variation
ch  ch
[0064] 図 9から 12は、本発明の実施に係る構造図であり、これらの構造に本発明のチヤネ ル構造の設計方法を適用できる。 FIGS. 9 to 12 are structural diagrams according to the embodiments of the present invention, and the channel structure design method of the present invention can be applied to these structures.
[0065] 図 5は、ノーマリーオン 'EC ' SiC-SITであり、 P+ゲート領域 4がソース低濃度領域 5の 下に埋め込まれ、ソース電極 8は素子の表面に設置され、ゲート電極 9はソース電極 8 の周辺に設置されている構造である。ここでゲート電極 9形成に際しては、埋め込ま れた P+ゲート領域 4に達するような溝をソース電極周辺の一部に形成して、溝の底部 にゲート電極 9を設置する。またチャネル領域 3は P+ゲート領域 4に囲まれるように設置 されており、ゲート電極 9には接続されていない。チャネル領域 3は異方性トレンチェ ツチング技術およびェピタキシャル成長によるトレンチ部の埋め込みによって形成さ れており、 p+ゲート領域の断面形状は基本的に方形である。 [0065] FIG. 5 shows a normally-on 'EC' SiC-SIT, in which the P + gate region 4 is buried under the source low-concentration region 5, the source electrode 8 is placed on the surface of the device, and the gate electrode 9 Is a structure installed around the source electrode 8. Here, when the gate electrode 9 is formed, a groove reaching the buried P + gate region 4 is formed in a part around the source electrode, and the gate electrode 9 is provided at the bottom of the groove. The channel region 3 is disposed so as to be surrounded by the P + gate region 4 and is not connected to the gate electrode 9. The channel region 3 is formed by anisotropic trench etching technology and embedding the trench portion by epitaxial growth, and the cross-sectional shape of the p + gate region is basically a square.
[0066] 図 9は、図 5に示されたノーマリーオン 'EC ' SiC-SITにおいてゲート p+領域 4に接する ソース領域 6側に N型チャネル領域 3の不純物濃度よりも低濃度の N-型領域 11を設 けた構造である。 [0066] FIG. 9 shows the N-type impurity concentration lower than the impurity concentration of the N-type channel region 3 on the source region 6 side in contact with the gate p + region 4 in the normally-on “EC” SiC-SIT shown in FIG. The mold area 11 is provided.
[0067] 図 10は、図 5に示されたノーマリーオン 'EC ' SiC-SITにおいてゲート p+領域 4に接す るドレイン領域 1側に N型チャネル領域 3の不純物濃度よりも低濃度の N-型領域 12 を設けた構造である。 [0067] FIG. 10 shows a lower concentration than the impurity concentration of the N-type channel region 3 on the drain region 1 side in contact with the gate p + region 4 in the normally-on “EC” SiC-SIT shown in FIG. In this structure, an N-type region 12 is provided.
[0068] 図 11は、図 5に示されたノーマリーオン 'EC ' SiC-SITにおいてゲート p+領域 4に接す るソース領域 6側およびドレイン領域 1側に N型チャネル領域 3の不純物濃度よりも低 濃度の N -型領域 11および 12を設けた構造である。 [0068] FIG. 11 shows the impurity concentration of the N-type channel region 3 on the source region 6 side and the drain region 1 side in contact with the gate p + region 4 in the normally-on 'EC' SiC-SIT shown in FIG. In this structure, N-type regions 11 and 12 having a lower concentration are provided.
[0069] 図 12は、図 5、 9、 10、 11に示すェピタキシャルチャネル縦型坦め込みゲート構造 S iC-SITにおいて、チャネル領域幅 2aがゲート電極 9からの距離に応じて一次関数的 に減少している構造である。これらの構造中のチャネル幅 2aの設計には上述した本 発明のチャネル構造の設計方法を適用すればよい。 [0070] 本明糸田書は、 2005年 6月 30曰出願の特願 2005— 191763に基づく。この内容は すべてここに含めておく。 [0069] FIG. 12 shows a linear function of the vertical channel vertical buried gate structure SiC-SIT shown in FIGS. 5, 9, 10, and 11 with the channel region width 2a depending on the distance from the gate electrode 9. It is a structure that has been reduced. The channel structure design method of the present invention described above may be applied to the design of the channel width 2a in these structures. [0070] This book is based on Japanese Patent Application 2005- 191763 filed on June 30, 2005. All this content is included here.
産業上の利用可能性  Industrial applicability
[0071] 本発明は、炭化珪素を用いた高電力用トランジスタの低損失化の設計技術に利用 される可能性がある。 [0071] The present invention may be used in a design technique for reducing the loss of a high-power transistor using silicon carbide.

Claims

請求の範囲 The scope of the claims
[1] ノ リーオン型ェピタキシャルチャネル坦込ゲート炭化珪素静電誘導トランジスタ  [1] NORLY-ON EPITAXIAL CHANNEL GATE GATE SILICON CARBIDE STATIC INDUCTION TRANSISTOR
(以下、ノ リーオン ' EC ' SiC-SIT)のチャネル構造の設計方法において、半チヤ ネル幅 a、チャネルドナー不純物濃度 N を、式(1)及び式(2)の条件を満たす a N  (Hereinafter, in the design method of the channel structure of NORION “EC” SiC-SIT), the half channel width a and the channel donor impurity concentration N are set to a N satisfying the conditions of Equation (1) and Equation (2).
ch ch の組合せとするとともに、チャネル長 xj力 μ m以下でかつ式(3)の条件を満たす xjを 決定することを特徴とするチャネル構造の設計方法。  ch A channel structure design method characterized by determining a combination of ch and a channel length xj force μm or less and satisfying the condition of Equation (3).
a>2.10 X 107/^N (1) a> 2.10 X 10 7 / ^ N (1)
ch  ch
N は cm— 3 aは μ πιの単位を持つ。 N is cm— 3 a has units of μ πι.
ch  ch
a<1.72 X 108/^N (2) a <1.72 X 10 8 / ^ N (2)
ch  ch
N は cm— 3 aは μ πιの単位を持つ。 N is cm— 3 a has units of μ πι.
ch  ch
a<-0.1+0.9x-0.1x2 (3) a <-0.1 + 0.9x-0.1x 2 (3)
aおよび xjは μ mの単位を持つ。  a and xj have units of μm.
[2] 前記式 (1)が a>3.3 X 107/ N であることを特徴とする請求項 1に記載のチャネル [2] The channel according to claim 1, wherein the equation (1) satisfies a> 3.3 × 10 7 / N.
ch  ch
構造の設計方法。  How to design the structure.
[3] 前記式 (2)が aく 9 X 107/ N であることを特徴とする請求項 1に記載のチャネル構 [3] The channel structure according to claim 1, wherein the equation (2) is a 9 × 10 7 / N.
ch  ch
造の設計方法。  Building design method.
[4] 前記式 (1)が a>3.3 X 107Z^TN であり、前記式 (2)が aく 9 X 107/ N あることを特徴 [4] The above formula (1) is a> 3.3 X 10 7 Z ^ TN, and the above formula (2) is a 9 × 10 7 / N.
ch ch  ch ch
とする請求項 1に記載のチャネル構造の設計方法。  The method for designing a channel structure according to claim 1.
[5] 請求項 1から 4のいずれかに記載のチャネル構造の設計方法により作成されるノ リーオン 'EC ' SiC-SITにおいて、ゲート p+領域に接するソース領域側に N型チャネル 領域の不純物濃度よりも低濃度の N-型領域を設けたことを特徴とする SiC_SIT [5] In the non-on 'EC' SiC-SIT created by the channel structure design method according to any one of claims 1 to 4, the impurity concentration of the N-type channel region on the source region side in contact with the gate p + region SiC_SIT characterized by having a lower concentration N-type region
[6] 請求項 1から 4のいずれかに記載のチャネル構造の設計方法により作成されるノ リーオン 'EC ' SiC-SITにおいて、ゲート p+領域に接するドレイン領域側に N型チヤネ 領域の不純物濃度よりも低濃度の N-型領域を設けたことを特徴とする SiC_SIT[6] In the non-on 'EC' SiC-SIT created by the channel structure design method according to any one of claims 1 to 4, the impurity concentration of the N-type channel region on the drain region side in contact with the gate p + region SiC_SIT characterized by having a lower concentration N-type region
[7] 請求項 1から 4のいずれかに記載のチャネル構造の設計方法により作成されるノ リーオン 'EC ' SiC-SITにおいて、ゲート p+領域に接するソース領域側及びドレイン領 域側に N型チャネル領域の不純物濃度よりも低濃度の N-型領域を設けたことを特徴 とする SiC-SIT 請求項 1から 4のいずれかにに記載のチャネル構造の設計方法により作成されるノー マリーオン ' EC ' SiC-SITにおいて、チャネル領域幅がゲート電極からの距離に応じて 一次関数的に減少していることを特徴とする SiC-SIT。 [7] In the non-on 'EC' SiC-SIT created by the channel structure design method according to any one of claims 1 to 4, N-type is formed on the source region side and the drain region side in contact with the gate p + region. SiC-SIT characterized by providing an N-type region with a lower concentration than the impurity concentration of the channel region In normally-on 'EC' SiC-SIT created by the channel structure design method according to any one of claims 1 to 4, the channel region width decreases linearly according to the distance from the gate electrode. SiC-SIT characterized by
請求項 5から 8のレ、ずれかに記載のノーマリーオン · EC · SiC-SITを含む電力変換装 置。 A power conversion device including a normally-on · EC · SiC-SIT according to any one of claims 5 to 8.
PCT/JP2006/313046 2005-06-30 2006-06-30 Method for designing structure of silicon carbide electrostatic induction transistor WO2007004528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524006A JP5076146B2 (en) 2005-06-30 2006-06-30 Method for designing silicon carbide static induction transistor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005191763 2005-06-30
JP2005-191763 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004528A1 true WO2007004528A1 (en) 2007-01-11

Family

ID=37604393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313046 WO2007004528A1 (en) 2005-06-30 2006-06-30 Method for designing structure of silicon carbide electrostatic induction transistor

Country Status (2)

Country Link
JP (1) JP5076146B2 (en)
WO (1) WO2007004528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108768A1 (en) * 2010-03-04 2011-09-09 独立行政法人産業技術総合研究所 Embedded gate type silicon carbide static induction transistor and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172283A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Electrostatic induction semiconductor device
JPH08316492A (en) * 1995-05-22 1996-11-29 Semiconductor Res Found Static induction transistor and manufacture thereof
JPH09172187A (en) * 1995-12-19 1997-06-30 Hitachi Ltd Junction type field-effect semiconductor device and its manufacture
JPH1051010A (en) * 1996-07-29 1998-02-20 Tokin Corp Manufacture of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765268B2 (en) * 2001-12-21 2006-04-12 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP5196513B2 (en) * 2005-03-09 2013-05-15 独立行政法人産業技術総合研究所 Silicon carbide transistor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172283A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Electrostatic induction semiconductor device
JPH08316492A (en) * 1995-05-22 1996-11-29 Semiconductor Res Found Static induction transistor and manufacture thereof
JPH09172187A (en) * 1995-12-19 1997-06-30 Hitachi Ltd Junction type field-effect semiconductor device and its manufacture
JPH1051010A (en) * 1996-07-29 1998-02-20 Tokin Corp Manufacture of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kakushu Inverter Yoto no Tankakeiso Power Transistor de Sekai Saiko Seino", SANGYO GIJUTSU SOGO KENKYUSHO PRESS RELEASE, 28 March 2005 (2005-03-28), XP003005965, Retrieved from the Internet <URL:http://www.aist.go.jp/aist_j/press_release/pr2005/pr20050328/pr20050328.html> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108768A1 (en) * 2010-03-04 2011-09-09 独立行政法人産業技術総合研究所 Embedded gate type silicon carbide static induction transistor and method for manufacturing same
JP5585646B2 (en) * 2010-03-04 2014-09-10 独立行政法人産業技術総合研究所 Method of designing normally-off type buried gate type silicon carbide static induction transistor, normally-off type buried gate type silicon carbide static induction transistor, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2007004528A1 (en) 2009-01-29
JP5076146B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4066946B2 (en) Semiconductor device
JP4393144B2 (en) Power semiconductor device
KR101157684B1 (en) Junction semiconductor device and method for manufacturing the same
KR102174546B1 (en) Semiconductor devices and methods of designing semiconductor devices
US11682722B2 (en) Vertical transistor structure with buried channel and resurf regions and method of manufacturing the same
JPWO2003028110A1 (en) Semiconductor device
TW200952175A (en) Semiconductor devices with non-punch-through semiconductor channels having enhanced conduction and methods of making
CN107836035A (en) Nitride semiconductor device
CN102751330B (en) Lateral high-voltage device and manufacturing method thereof
CN107994071A (en) A kind of hetero-junctions channel insulation grid-type field-effect tube
JP2012069797A (en) Insulated gate transistor
CN110828571A (en) Semiconductor device and method for manufacturing the same
JP2018133528A (en) Switching element and manufacturing method thereof
CN109216432A (en) Slot type power device and preparation method thereof
KR102106187B1 (en) Insulated gate field-effect transistor device and method of making the same
KR20120066150A (en) Tunneling field effect transistor with asymmetrical active region
Saxena et al. Dual-material-gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs
JP5585646B2 (en) Method of designing normally-off type buried gate type silicon carbide static induction transistor, normally-off type buried gate type silicon carbide static induction transistor, and method for manufacturing the same
TW441111B (en) Lateral thin-film silicon-on-insulator (SOI) device having multiple doping profile slopes in the drift region
WO2007004528A1 (en) Method for designing structure of silicon carbide electrostatic induction transistor
US8704296B2 (en) Trench junction field-effect transistor
CN107452806B (en) Longitudinal double-diffusion metal oxide semiconductor field effect transistor with composite dielectric layer and manufacturing method thereof
CN107046062B (en) Longitudinal double-diffusion metal oxide semiconductor field effect transistor with semi-insulating polycrystalline silicon layer
KR101709541B1 (en) Tunnel field-effect transistor with raised drain region
KR102094769B1 (en) Power Semiconductor with P Shield Structure Implemented by Multiple Epi-Growth Method and Fabrication Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007524006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767654

Country of ref document: EP

Kind code of ref document: A1