WO2007004503A1 - モータ一体型内接歯車式ポンプ及び電子機器 - Google Patents
モータ一体型内接歯車式ポンプ及び電子機器 Download PDFInfo
- Publication number
- WO2007004503A1 WO2007004503A1 PCT/JP2006/312975 JP2006312975W WO2007004503A1 WO 2007004503 A1 WO2007004503 A1 WO 2007004503A1 JP 2006312975 W JP2006312975 W JP 2006312975W WO 2007004503 A1 WO2007004503 A1 WO 2007004503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- internal gear
- motor
- casing
- pump
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/082—Details specially related to intermeshing engagement type machines or pumps
- F04C2/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C13/00—Adaptations of machines or pumps for special use, e.g. for extremely high pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0057—Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
- F04C15/008—Prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/52—Bearings for assemblies with supports on both sides
Definitions
- the present invention relates to a motor body type internal gear pump and an electronic device.
- Internal gear pumps have long been known as pumps that pump out sucked liquid against pressure, and are particularly popular as hydraulic source pumps and oil supply pumps.
- An internal gear pump has two main parts: a spur gear-shaped inner rotor with teeth formed on the outer periphery and an annular outer rotor with teeth formed on the inner periphery and having the same width as the inner rotor. It is configured as an active component.
- a pump casing having a flat inner surface facing the both side surfaces of the rotors through a slight gap is provided so as to accommodate both rotors.
- the number of teeth of the inner rotor is usually one less than the number of teeth of the outer rotor, and rotates in the same manner as the power transmission gear in a state where they are held together. The change in the tooth gap area associated with this rotation causes the pump to function by sucking and discharging the liquid confined in the tooth gap.
- the pump casing is provided with an opening to a flow path communicating with the outside called a suction port and a discharge port.
- the suction port is provided so as to communicate with a tooth gap having an increased volume
- the discharge port is provided so as to communicate with a tooth gap having a reduced volume.
- the inner rotor and the outer rotor rotate together, so that if one rotor is driven to rotate, the other rotor also rotates.
- the motor unit is integrated with the outer periphery of the pump unit, the rotor of the motor unit is integrated with the outer rotor, and the outer rotor is driven by the motor unit, rather than the structure in which the pump unit and motor unit are connected in the axial direction. Since it can be shortened, it can be said to be suitable for downsizing.
- Patent Document 1 Japanese Patent Laid-Open No. 2-2777983
- the motor casing inside An outer gear (outer rotor) with a rotor (rotor) attached to the outer periphery of the stator (stator) mounted on the outer periphery of the stator (stator) with a predetermined spacing in the radial direction on the inner side and the outer gear.
- An internal gear which is combined with an inner gear (corresponding to the internal rotor) which is combined inside is arranged, and both end surfaces of this internal gear are liquid-tightly closed with a closing plate.
- the closing plate includes a front casing (front casing) and a casing (rear casing).
- Disc-shaped thrust bearings are disposed between both casings and both sides of the internal gear pump, Both ends of the outer gear are supported by this thrust bearing, and both ends of the support shaft are fixed to both casings, and the inner gear is rotatably supported by this support shaft via a radial bearing, and the pressure-side discharge side is fixed.
- a liquid supply passage is provided to allow a part of the liquid to flow between the rotor and the stator and to lubricate each bearing and return to the suction side.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2-2777983
- the internal gear pump of Patent Document 1 has a problem in that the outer gear and the rotor are formed of different members, resulting in an increase in size and cost.
- Patent Document 1 does not disclose the materials of the rotor, outer gear, inner gear, and closing plate constituting the inscribed gear pump, nor does it disclose use in electronic equipment. If this inscribed gear pump is used in electronic devices such as personal computers and servers, it is suitable for mass production, long life, high accuracy, low sliding friction, low cost, and light weight. It is required to be. Also, as the working fluid that flows in the pump when used in electronic equipment, an antifreeze such as ethylene glycol is used in consideration of the storage temperature of the electronic equipment, so the compatibility between the internal gear pump and the antifreeze is also taken into account. There was a need for it.
- An object of the present invention is to obtain a motor-type internal gear pump and an electronic apparatus that are small, inexpensive, and highly reliable while utilizing the function of an internal gear type that is suitable for a high head.
- Means for solving the problem [0010]
- a first aspect of the present invention for achieving the above-described object includes a pump unit that sucks and discharges hydraulic fluid, and a motor unit that drives the pump unit, and the pump unit is disposed on an outer periphery.
- An inner rotor formed with teeth, an outer rotor formed with teeth that mesh with the teeth of the inner rotor, and a pump casing that houses the inner rotor and the outer rotor.
- the rotor and the permanent magnet member are made of permanent magnet members containing magnet powder in a resin. This is because the outer rotor is shared.
- a more preferable specific configuration example in the first aspect of the present invention is as follows.
- the shared member of the rotor and the outer rotor is formed of a member having a strong magnetic force on the outer peripheral side and a weak magnetic force on the inner peripheral side, and the stator is disposed on the outer periphery of the shared member. What you did.
- the common member is formed of a PPSZ ferrite bond magnet containing a ferrite magnet powder in a PPS resin.
- the pump casing is formed by joining two casings that also serve as a first casing and a second casing, and faces the first casing and the second casing. Shoulder portions projecting inwardly are formed, annular projecting portions projecting in the axial direction from the inner peripheral tooth portions are formed on both sides of the outer peripheral portion of the common member, and the annular projecting portions are The stator is installed outside the outer periphery of the common member by fitting to the outer peripheral surfaces of the shoulders of the first casing and the second casing.
- the pump casing is formed with PPS carbon fiber resin containing carbon fiber in PPS resin or PPS glass fiber resin containing glass fiber in PPS resin.
- the first casing and the second casing are formed of PPS carbon fiber resin containing carbon fiber in PPS resin.
- a second aspect of the present invention includes a pump unit that sucks and discharges hydraulic fluid and a motor unit that drives the pump unit, and the pump unit has an inner rotor with teeth formed on the outer periphery. And an outer rotor in which teeth that mesh with teeth of the inner rotor are formed on the inner periphery, and a pump casing that houses the inner rotor and the outer rotor.
- the motor unit includes a rotor, the rotation In the motor body type internal gear pump configured to include a stator that rotates the rotor, the rotor is formed of PPS resin / ferrite bonded magnet containing ferrite magnet powder in PPS resin. is there.
- a more preferable specific configuration example in the second aspect of the present invention is as follows.
- the pump casing is formed of PPS carbon fiber resin containing carbon fiber in PPS resin
- the inner rotor is formed of PPS carbon fiber resin containing carbon fiber in PPS resin.
- an electronic apparatus using the motor-type internal gear pump according to any one of the above-mentioned as a liquid circulation source and using water and an antifreeze liquid having organic power as a working liquid is.
- FIG. 1 is a longitudinal sectional view of a motor-type internal gear pump 80 according to an embodiment of the present invention
- FIG. 2 is a front view showing the left half of the pump 80 of FIG. 1 in section
- FIG. 3 is the pump 80 of FIG. 4 is an exploded perspective view of the pump portion in FIG. 4
- FIG. 4 is a cross-sectional view showing a method of joining the casing of the pump 80 in FIG.
- the pump 80 includes a pump unit 81 that sucks and discharges hydraulic fluid, a motor unit 82 that drives the pump unit 81, and a control unit 83 that controls the motor unit 82.
- This is an integral internal gear pump.
- the pump 81 includes a resin inner rotor 1, a resin outer rotor 2, a resin front casing (first casing) 3, a resin rear casing (second casing). 4) It is configured with a metal inner shaft 5.
- the front casing 3 and the rear casing 4 are members that form a pump casing. In other words, the pump casing member is composed of two separate pump casing members.
- the back casing 4 includes a sealing portion 6, a flange portion 18 and a cover 13.
- the inner shaft 5 constitutes an inner rotor support shaft, and in the present embodiment, the inner shaft 5 is composed of a separate member from the front casing 3 or the rear casing 4.
- the motor unit 82 includes a rotor 11, a stator 12, and a sealing unit 6 made of permanent magnets.
- the sealing part 6 is shared by the pump part 81 and the motor part 82.
- the inner rotor 1 of the pump unit 81 has a shape similar to a spur gear, and a tooth la having a trochoidal curve as an outline is formed on the outer periphery. Strictly speaking, this tooth surface has a slight gradient in the axial direction, and has a so-called “draft gradient” that assists the blanking during injection molding. Further, the inner rotor 1 has a shaft hole lb with a smooth inner surface penetrating in the axial direction at the center. Both end faces lc of the inner rotor 1 are finished flat and smooth, and slide between the flat inner faces 25 and 26 which are the end faces of the shoulder 22 projecting inward from the front casing 3 and the rear casing 4. A surface is formed.
- the inner rotor 1 is made of a synthetic resin having a self-lubricating property and a property that allows swelling deformation and corrosion by water or a solution containing water to be negligible. Specifically, it is formed of PPS carbon fiber resin containing carbon fiber in PPS (polyphenylene sulfide) resin. As a result, sufficient strength and resistance to the inner rotor 1 can be obtained.
- the inner rotor 1 is wearable and inexpensive.
- POM (polyacetal) resin may be used instead of PPS carbon fiber resin. POM has low frictional resistance and low sliding resistance, so it can improve pump efficiency. Also, since it is soft as a material, the impact load can be reduced, and vibration noise due to the movement of the rotor is suppressed.
- the outer rotor 2 has a ring-shaped internal gear shape having substantially the same tooth width as that of the inner rotor 1.
- the outer rotor 2 is formed with one tooth having a tooth shape formed by an arc or the like more than the inner rotor 1. Yes.
- the teeth 2a of the outer rotor 2 have almost the same cross-sectional shape in the axial direction as a spur gear, but have a slight gradient in the axial direction, which is a so-called “draft gradient” that helps with punching during injection molding. You may have.
- the outer rotor 2 has substantially the same width as the inner rotor 1 except for the outer peripheral portion, and the outer rotor 2 is arranged outside the inner rotor 1 so that both end faces of the inner rotor 1 and the outer rotor 2 are substantially coincident with each other. It is arranged.
- An annular projecting portion 21 projecting in the axial direction is formed on the outer peripheral portion of the outer rotor 2 more than the tooth portion (a portion having the same tooth width as the inner rotor 1 located on the inner side).
- the inner periphery of the overhanging portion 21 is formed as a smooth surface, and constitutes a surface that slides between the outer peripheral surfaces 27 and 28 of the shoulder portion 22.
- the outer rotor 2 and the inner rotor 1 are configured to rotate while being sandwiched between the front casing 3 and the rear casing 4 in a state of being held together.
- the center shaft hole of the inner rotor 1 has a smooth outer periphery.
- the bearing portion of the inner shaft 5 is fitted with a slight gap, whereby the inner rotor 1 is rotatably supported on the inner shaft 5.
- the inner shaft 5 does not rotate because it is closely fitted to the front casing 3 and the rear casing 4.
- a permanent magnet is integrated as a rotor 11 of the motor unit 82 on the outside of the outer rotor 2.
- the outer rotor 2 and the rotor 11 are formed as an integral member by a resin mixed with magnet powder.
- the rotor 11 of the motor unit 82 and the outer port 2 of the pump unit 81 are configured by the common member 112 which is one member made of a permanent magnet member containing magnet powder.
- the rotor 11 and the outer rotor 2 can be made small and inexpensive.
- the rotor 11 is configured such that NS poles are alternately arranged along the circumference when alternating polarities are given in the radial direction and the outer side force is also seen.
- the common member 112 is formed of a ferrite bonded magnet containing ferrite magnet powder. As a result, even if water or a liquid containing water as a component is used as the working fluid, the magnet can be produced without being corroded or rusted and at a low cost.
- the common member 112 is formed of a PPSZ ferrite bond magnet containing ferrite magnet powder in PPS resin. As a result, the magnetic characteristics of the motor part 82 as the rotor 11 are improved, a highly accurate tooth profile as the pump part 81 can be formed, and at the same time, the low friction and low wear friction in the part functioning as the bearing part. It is possible to obtain dynamic characteristics, good moldability, and good anti-corrosion stability in water.
- the common member 112 is formed in a cylindrical shape so that the magnetic force on the outer peripheral side is strong and the magnetic force on the inner peripheral side is weak, and the stator 12 is disposed on the outer periphery of the common member 112. Because it is installed, it can be easily magnetized from the outer periphery, and it can function as a rotor 11 even if a ferrite bond magnet, which is generally cheaper and has a lower magnetic force than a neodymium magnet, is used. It can be demonstrated.
- shoulder portions 22 projecting inward so as to face each other are formed on the front casing 3 and the rear casing 4, and the inner peripheral teeth are formed on both sides of the outer peripheral portion of the common member 112.
- An annular projecting portion 21 projecting in the axial direction from the portion is formed, and the annular projecting portion 21 is formed so as to be fitted to the outer peripheral surfaces 27 and 28 of the respective shoulder portions 22 of the front casing 3 and the rear casing 4. Therefore, the part that functions as the rotor 11 is increased in the axial direction. From this point, it is helpful to use a low-cost, low-magnetization ferrite-bonded magnet.
- the outer peripheral portion including the overhanging portion of the outer rotor 2 is a PPSZ ferrite bonded magnet, and the outer rotor 2 and the rotor 11 are shared as a composite structure of tooth portion force SPPS carbon fiber.
- the hard PPSZ ferrite bonded magnet which is difficult to form, is made into a simple cylindrical shape, and the teeth that require high precision are made of PPS grease.
- the tooth profile is low loss and low wear.
- the inner shaft 5 includes a cylindrical bearing portion 51 having an outer diameter slightly smaller than the inner diameter lb of the inner rotor 1 and slightly longer in the axial direction than the tooth width of the inner rotor 1, and a bearing portion 51 And a fitting portion 53 that extends from both end surfaces to both sides in the axial direction and has an outer diameter smaller than the outer diameter of the bearing portion 51.
- the axial length of the bearing portion 51 located at the center of the inner shaft 5 is slightly longer (for example, 0.05 to 0.1 mm) than the tooth width of both rotors.
- bearing portion 51 and the fitting portion 53 are names of the portions of the inner shaft 5 that are manufactured with the same metal material force, and are integrated. Since the inner shaft 5 is made of a metal material, it is superior in terms of strength and dimensional accuracy compared to the inner rotor 1, outer rotor 2, front casing 3, and rear casing 4 made of synthetic resin. ing.
- the inner shaft 5 also has a function as a structural material that connects the front casing 3 and the rear casing 4.
- the fitting portion 53 is inserted and fixed in fitting holes 27a and 28a formed in the flat inner surfaces 25 and 26 of both casings 3 and 4.
- stepped surfaces (both end surfaces of the bearing portion 51) 51a that serve as a boundary between the bearing portion 51 and the fitting portion 53 are adhered to the flat inner surfaces 25 and 26 of the casing. Therefore, the length of the bearing portion 51 matches the distance (interval) between the flat inner surfaces 25 and 26 of both sides, and both rotors 1 and 2 are flat inner surfaces 25 and 25 which are axial end surfaces of the front casing 3 and the rear casing 4. It will be built in 26 with a slight gap.
- the fitting holes of the front casing 3 and the rear casing 4 are eccentric with respect to the outer peripheral surfaces 27 and 28 of the shoulder 22 in accordance with the balance between the rotors 1 and 2.
- the shoulder portions 22 of the front casing 3 and the back casing 4 are formed to project inward so as to face each other.
- the outer peripheral surfaces 27 and 28 of the shoulder 22 are the overhanging portions 2 of the outer rotor 2. It is fitted to the inner peripheral surface of 1 with a slight gap, and both sides of the outer rotor 2 are rotatably supported by the shoulders 22 of the front casing 3 and the rear casing 4 to function as radial bearings.
- the shoulder portions 22 of the front casing 3 and the rear casing 4 are in a positional relationship as if they were cut out from a part of the same cylinder.
- the front casing 3 constituting one of the two pump casing members has openings called suction ports 8 and discharge ports 10 formed on the flat inner surface 25 thereof.
- the suction port 8 and the discharge port 10 are inside the root circle of the inner rotor 1 and the bottom circle of the outer rotor 2 (the outer rotor 2 is an internal gear, so the root circle diameter is larger than the tip circle diameter) It is formed with an opening having a contour on the outside.
- the suction port 8 faces the working chamber 23 whose volume increases, and the discharge port 10 faces the working chamber 23 whose volume decreases.
- the working chamber 23 at the moment when the maximum volume is reached is configured so that neither of the ports 8 and 9 faces, or is kept in communication with a slight cross-sectional area.
- the suction port 8 and the discharge port 10 are opened to the outside through the L-shaped flow path, and communicate with the suction port 7 and the discharge port 9, respectively.
- a communication path 9a that branches and communicates with the internal space 24 that faces the outer periphery of the outer rotor 2.
- This internal space 24 is a space surrounded by the front casing 3 and the back casing including the sealing portion 6.
- the thin cylindrical sealing portion 6 is provided between the outer periphery of the rotor 11 via a minute gap (for example, a gap of 1 mm or less), and the rotor 11 can rotate together with the outer rotor 2. ing.
- a minute gap for example, a gap of 1 mm or less
- the rear casing 4 constituting one of the two casing members has a cylindrical sealing portion that extends in the axial direction so as to cover the outer side of the outer rotor 2 with a partial force on the outer periphery from the portion constituting the flat inner surface 26 thereof.
- 6 is formed so that the axial rigidity of the sealing portion 6 side is more flexible than the flat inner surface 26 side, and is joined to the front casing 3 constituting one of the two casing members at the distal end side of the sealing portion 6.
- the sealing portion 6 is a part of the rear casing 4 and refers to a thin plate portion extending in the front direction from the portion where the flat inner surface and the shoulder portion are formed to the outer peripheral force cylinder shape.
- the front casing 3 and the rear casing 4 are in contact with a cylindrical surface called a fitting surface 16, and are fitted with a degree of freedom to move in the axial direction while restricting the radial direction.
- Mating surface 16 is sealed It is composed of a fitting surface between the inner periphery of the front end portion of the stop portion 6 and the outer periphery of the outer annular portion 29 formed on the inner surface side of the front casing 3.
- a concave portion is provided in the inner periphery of the tip portion of the sealing portion 6 adjacent to the fitting surface 16, and the confidentiality between the front casing 3 and the rear casing 4 is ensured by inserting the O-ring 14 in the concave portion. Kept. With such a configuration, the front casing 3 and the rear casing 4 can be combined to maintain the confidentiality while maintaining the degree of freedom in the axial direction.
- the front casing 3 and the back casing 4 are formed of PPS carbon fiber resin containing carbon fiber in PPS resin.
- the front casing 3 and rear casing 4 using PPS carbon fiber resin have low water absorption and small deformation due to water absorption, and are also resistant to antifreeze with little thermal deformation and heat resistance. .
- PPS carbon fiber resin is an insulating material, it is effective in preventing electric leakage, and also has good sliding performance at the bearing part with less water permeation, resulting in long life and high reliability with less wear. It can be expected and can be molded with high precision.
- a plurality of welding protrusions 41 are provided in an annular shape toward the back surface, and a welding groove 42 into which the welding protrusion 41 is inserted is formed in the flange portion 18 of the rear casing 4 opposite to the annular protrusion. It is formed in an annular shape.
- the tip of the welding projection 41 is formed on an inclined surface, and the bottom of the welding groove 42 has an inclined surface that matches the inclined surface, so that the welding tools 43, 44 Is pressed against the flange 18 of the front casing 3 and the outer casing 4 of the back casing 4 from both sides, giving a slight vibration to the welding tools 43 and 44 while applying force.
- welding tools 43 and 44 are attached to an ultrasonic welder to apply ultrasonic vibration.
- the contact surfaces of the casings 3 and 4 generate heat due to micro vibration friction, melt and melt together, and when the temperature drops after vibration stops, they resolidify and become one. Therefore, the surface on the back side of the welding projection 41 of the front casing 3 and the surface on the back side of the welding groove 42 of the back casing 4 are flat and open so that the welding tools 43 and 44 are in close contact with each other. .
- the groove into which the welding tool 44 on the side of the back casing 4 is inserted is an annular groove for inserting the stator 12 after welding, as compared to the case where a structure such as a groove only for welding is provided. Can be made small and simple.
- the sealing portion 6 is thin and flexible, including the structure in the vicinity thereof, compared to the flat inner surface, the shoulder portion, and the vicinity of the welded portion.
- the fitting portion 53 of the inner shaft 5 is inserted into the rear casing 4, the inner rotor 1 and the outer rotor 2 are fitted to the inner shaft 5, and the front casing 3 fitted with the O-ring 14 is used as the rear casing.
- welding jigs 43 and 44 are applied from both sides of both casings 4 and 5, and ultrasonic vibration is applied while pressing them with a predetermined force.
- the contact portion between the welding protrusion 41 and the welding groove 42 is melted, and the front casing 3 and the rear casing 4 are displaced toward each other.
- the stepped surface 51a of the inner shaft 5 is in close contact with the flat inner surfaces 25, 26.
- the sealing portion 6 of the back casing 4 and the periphery thereof are elastically deformed and the welding proceeds deeply.
- the vibration is stopped while the force is applied to the welding jigs 43 and 44, the melted welded portion is cooled and solidified, and the shape is determined in that state.
- the stepped surface 51a of the inner shaft 5 remains in intimate contact with the flat inner surfaces 25, 26, and the force to adhere is recognized as the reaction force of elastic deformation around the sealing portion 6. Will remain.
- the inner shaft 5 is made of metal, and the axial dimensional accuracy is easier to obtain than the casing members 3 and 4 made of resin.
- the dimension in the tooth width direction can be secured at the central part closest to the tooth parts of the rotors 1 and 2.
- the welding protrusion 41 is formed in an annular shape, the welding protrusion 41 is not provided continuously around the circumference as shown in FIG. The reason for this is to limit the area more than one round to concentrate and increase the pressing force during welding to ensure welding, and to arrange the suction and discharge channels in the missing part. This is to avoid interference between the welding tool 43 and these flow paths.
- the fitting surface 16 By the action of the fitting surface 16, the radial positioning accuracy of the two casings can be well coupled, and the axial position can be maintained by the close contact between the inner shaft 5 and the flat inner surfaces 25, 26.
- the internal space 24 is sealed by the O-ring 14, and except for the suction port 8 and the discharge port 10, it has a simple structure with no other holes or mating surfaces communicating with the outside world. Therefore, leakage of liquid can be reliably prevented.
- the outer peripheral force of the front side flange 18 of the sealing portion 6 where the rear casing 4 force continues, and the cover 13 is formed by body molding.
- the cover 13 covers the outer periphery of the stator 12 of the motor part 82 and serves to prevent electric shock, maintain aesthetics, and prevent noise.
- a stator 12 that is wound on a comb-like iron core is press-fitted into the outer periphery of the sealing portion 6.
- the stator 12 is fitted into an annular groove formed between the sealing portion 6 and the cover 13.
- the motor part 82 composed of the rotor 11 and the stator 12 is arranged on the outer peripheral side of the pump part 81 composed of the inner rotor 1 and the outer rotor 2 and is not arranged in the axial direction, so that the pump 80 can be made thinner and smaller. Illustrated.
- the control unit 83 is for controlling the motor unit 82 and includes a DC brushless motor driving inverter electronic circuit.
- the control part 83 can be installed on the back side of the pump part 81 where the suction port 7 and the discharge port 9 are not provided.
- the circuit board 31 includes a power element 32, which is a main electronic component, to constitute a DC brushless motor drive inverter circuit.
- the circuit board 31 is fixed to the back casing 4 by applying force through a protrusion 45 provided on the back side of the back casing 3 in a hole provided in the center thereof.
- the power element 32 is in contact with the rear casing 4 through the circuit board 31. Thereby, the heat generated in the inverter circuit can be radiated to the working fluid in the pump unit 81 through the rear casing 4.
- the circuit board 31 is connected to one end of a stator wire of the stator 12, and is connected to a power line 33 for supplying power from an external force, a rotation output line 34 for transmitting information on the rotation speed by pulses, and a common ground line thereof. Is done.
- a DC brushless motor is constituted by a motor unit 82 having a rotor 11 and a stator 12 made of permanent magnets, and a control unit 83 having an inverter electronic circuit.
- the structure in which the rotor 11 is inside the thin sealing portion 6 and the stator 12 is outside the sealing portion 6 is a canned motor. be called.
- the canned motor uses magnetic force to transmit the rotational power to the inside of the sealing part 6 called can, without the need for a shaft seal, etc., so that the hydraulic fluid is sent out by changing the volume of the working chamber 23 while isolating the hydraulic fluid from the outside Suitable for the structure of positive displacement pumps! / Speak.
- the object of the present invention can be more achieved.
- the width of the inner rotor 1 and the tooth width of the outer rotor 2 are 1, the outer diameter of the inner rotor is 1.7 to 3.4, the inner diameter of the outer rotor is 2.5 to 5, and the outer rotor is The axial length of the part shall be 0.4 to 0.8.
- the inner diameter of the overhanging portion 21 of the outer rotor 2 needs to be geometrically larger than the outer diameter of the inner rotor 1. At the same time, if it is larger than this range, the frictional force increases the internal leakage from the bearing surface and the pump performance decreases.
- the axial length of the outer rotor overhanging portion 21 is smaller than this range, the bearing surface pressure increases, and frictional wear may increase, which may reduce the pump life and reliability. is there. In addition, if it is larger than this range, it will be easy to cause contact due to errors such as cylindricity or concentricity of the bearing surface.
- the rotation speed of the inner rotor is preferably in the range of 2500 rotations per minute to 5000 rotations. If the rotational speed is slower than this range, the ratio of the internal leakage to the transport flow rate will increase and the pump efficiency will decrease. If it is faster than this range, the vibration noise generated by the pump will increase.
- the working fluid is sucked from the suction port 7 through the suction port 8 into the working chamber 23 whose volume is expanding.
- the working chamber 23 having the largest volume is inhaled by the rotation of the rotor and the contour force of the suction port 8 is shifted, and then communicated with the discharge port 10.
- the volume of the working chamber 23 is reduced, and the working fluid in the working chamber 23 is sent out from the discharge port 10.
- the discharged hydraulic fluid is sent out from the discharge port 9 to the outside. Since there is a communicating passage 9a branched in the middle of the discharge flow path, the internal pressure of the internal space 24 is maintained at the discharge pressure.
- the suction flow path is short, the suction negative pressure is small and the occurrence of cavitation can be prevented. Also, since a relatively high discharge pressure acts on the inner surface of the sealing portion 6 and pushes it outward, the thin sealing portion 6 is deformed inward and contacts the rotor 11. Can be avoided. At the same time, it is possible to reduce leakage from a gap as a radial bearing formed on the overhanging portion 21 of the outer rotor 2. The reason for this is that the leakage force from the gap enhances the outward force due to the centrifugal force, but if the internal pressure in the inner space 24, which is the outer periphery, is high, it acts to push it back.
- the heat of the power element 32 which needs to be cooled due to heat generated by the operation, contacts the circuit board 31 and passes through the wall surface of the rear casing 4 and is transferred to the working fluid flowing in the internal space 24. , Released to the outside. Since the hydraulic fluid in the internal space 24 is constantly stirred and sequentially replaced by minute leakage from the radial bearing surface, heat can be efficiently removed. In this way, since the inside of the pump 80 is efficiently cooled, a heat sink or a cooling fan for cooling the power element 32 is not required. In addition, the motor generated in the rotor 11 and stator 12 Similarly, heat generated due to data loss can be efficiently removed to prevent abnormal temperature rise.
- Fig. 6 is a perspective view showing the overall configuration of the personal computer with the personal computer body placed vertically, and the electronic device shown in Fig. 4 is an example of a desktop personal computer.
- the personal computer 60 includes a personal computer main body 61A, a display device 61B, and a keyboard 61C.
- the liquid cooling system 69 is built in the personal computer main body 61 A together with the CPU (central processing unit) 62, and the liquid pool 63, pump 80, heat exchanger 65, heat sink ⁇ 66, and heat sink ⁇ 67 are connected in this order by pipes. It consists of a closed loop system.
- the purpose of installing this liquid cooling system 69 is mainly to carry the heat generated by the CPU 62 built in the personal computer main body 61A to the outside and maintain the temperature rise of the CPU 62 below a specified value.
- the liquid cooling system 69 which uses water or a liquid mainly composed of water as the heat medium, for example, antifreeze consisting of water and organic matter (ethylene glycol, etc.), has a noise that has higher heat carrying capacity than the air cooling method. Since it is small, it is suitable for cooling the CPU 62 that generates a large amount of heat.
- the liquid reservoir 63 is filled with a liquid to be fed (working fluid) and air.
- the reservoir 63 and the pump 80 are juxtaposed, and the outlet of the reservoir 63 and the suction port of the pump 80 are connected by a pipe line.
- a heat exchanger 65 is installed in close contact with the heat radiating surface of the CPU 62 via heat conductive grease.
- the discharge port of pump 80 and the inlet of heat exchanger ⁇ 65 are connected by a pipe line.
- the heat exchanger 65 communicates with the heat sink ⁇ 66 through a conduit, the heat sink ⁇ 66 communicates with the heat radiator ⁇ 67 via a conduit, and the heat sink ⁇ 67 communicates with the liquid reservoir 63 via a conduit.
- the heat sink ⁇ 66 and the heat sink ⁇ 67 can also dissipate the different surface forces of the PC 61A to the outside.
- the power line 33 is drawn from the DC 12V power supply normally provided in the personal computer 60 to the pump 80, and the rotation output line 34 is connected to the electronic circuit of the personal computer 60 which is the host control device.
- the pump 80 is an internal gear type, which is a type of positive displacement pump, it has the ability to make the suction port have a negative pressure even when it is activated in a dry state (no liquid condition). Therefore, it has a self-priming ability to suck in liquid without priming even if it passes through a pipe line higher than the liquid level inside the liquid pool 63 or even if the pump 80 is positioned higher than the liquid level.
- the internal gear pump 80 since the internal gear pump 80 has a higher pressurization capacity than a centrifugal pump or the like, it can also be applied to conditions in which the pressure loss passing through the heat exchanger 65 and the heat sinks 66 and 67 increases.
- the heat exchange in which the liquid to be delivered becomes the highest temperature.
- the temperature of the liquid reservoir 63 and the pump 80 is kept relatively low. Therefore, the internal parts of the pump 80 are easier to ensure reliability than the high-temperature environment.
- the force that determines the temperature of each part through which the liquid circulates as a result of the operation of the liquid cooling system 69 is monitored by a temperature sensor (not shown). If insufficient cooling capacity is confirmed due to a temperature rise above the specified level, an increase in the rotational speed of the pump 80 is commanded to prevent excessive temperatures in advance. Conversely, when the cooling is excessive, the rotational speed is suppressed.
- the rotation output transmitted by the pump 80 is constantly monitored. If the rotation output is interrupted and the change in liquid temperature is abnormal, it is determined that the pump 80 is faulty, and the personal computer 60 shifts to emergency operation. In the emergency operation, the CPU speed is reduced and the program during operation is saved to prevent damage to the nodeware with minimal operation.
- FIG. 1 is a longitudinal sectional view of a motor body type internal gear pump according to an embodiment of the present invention.
- FIG. 2 is a front view showing a cross section of the left half of the pump of FIG.
- FIG. 3 is an exploded perspective view of a pump portion of the pump of FIG.
- FIG. 4 is a cross-sectional view showing a method for joining casings of the pump of FIG.
- FIG. 5 is a dimensional diagram of an inner rotor and an outer rotor of the pump of FIG.
- FIG. 6 is an explanatory diagram of an electronic device including a cooling system having the pump of FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
モータ一体型内接歯車式ポンプ80は、作動液を吸込んで吐出するポンプ部81と、ポンプ部81を駆動するモータ部82とを備える。ポンプ部81は、外周に歯を形成した内ロータ1と、内ロータ1の歯と噛み合う歯を内周に形成した外ロータ2と、内ロータ1及び外ロータ2を収納するポンプケーシング3,4とを備える。モータ部82は、回転子11と、回転子11を回転させる固定子12とを備える。回転子11と外ロータ2とは、樹脂に磁石粉末を含有した永久磁石部材112を共用して形成されている。係る構成によって、小型、安価な機能を維持しつつ、さらに安価で信頼性の高いものとすることができる。
Description
モーター体型内接歯車式ポンプ及び電子機器
技術分野
[0001] 本発明は、モーター体型内接歯車式ポンプ及び電子機器に関する。
背景技術
[0002] 内接歯車式ポンプは、吸 、込んだ液体を圧力に抗して送り出すポンプとして古くか ら知られており、特に油圧源ポンプや給油用ポンプとして普及している。
[0003] 内接歯車式ポンプは、外周に歯を形成した平歯車形状の内ロータと、内周に歯を 形成して幅を内ロータとほぼ同じとした環状の外ロータと、を主要な能動部品として構 成されている。それらロータの両側面に対してわずかな隙間を介して面する平坦な内 面を有するポンプケーシングが両ロータを収納するように設けられて 、る。内ロータの 歯数は、外ロータの歯数よりも通常 1枚だけ少なぐそれらを互いに嚙み合わせた状 態で動力伝達用歯車と同様に回転する。この回転に伴う歯溝面積の変化で、歯溝に 閉じ込めた液体を吸入し、吐出することにより、ポンプとして機能する。内外いずれか 一方のロータを駆動すれば、嚙み合いにより他方も回転する。両ロータの回転中心 はずれており、ロータ毎に回転自在に軸支する必要がある。ポンプケーシングには、 吸入ポートならびに吐出ポートと呼ぶ外部に連通する流路への開口部が設けられて いる。吸入ポートは容積が拡大する歯溝に連通するように設けられ、吐出ポートは容 積が縮小する歯溝に連通するように設けられる。ロータの歯形として、外ロータ歯形 の一部に円弧を、内ロータの歯形にトロコイド曲線を適用したものが一般的である。
[0004] 内接歯車式ポンプは内ロータと外ロータとが嚙み合って回転するので、一方のロー タを回転駆動すれば他方のロータも回転する。ポンプ部の外周側にモータ部を一体 化し、外ロータにモータ部の回転子を一体ィ匕し、モータ部で外ロータを駆動する方式 は軸方向にポンプ部とモータ部を連ねた構造よりも短くできるので小型化に適した形 態といえる。
[0005] そのような構造の内接歯車式ポンプとしては、特開平 2— 277983号公報 (特許文 献 1)に示された内接ギヤポンプがある。この特許文献 1では、モータケ一シング内部
に装着されたステータ(固定子)に対し、その内側に半径方向に所定の間隔をもって これと対接すべく外周にロータ(回転子)を装着したアウターギヤ (外ロータ)とこのァ ウタ一ギヤ内で嚙み合わせするインナーギヤ(内ロータに相当)とを組み合わせてな る内接ギヤを配設し、さらにこの内接ギヤの両端面を閉塞板で液密に閉塞し、この閉 塞板の何れか一方に内接ギヤと連通する吸入ポート、吐出ポートを設けた内接ギヤ ポンプからなっている。そして、閉塞板(ポンプケーシング)はフロントケーシング(正 面ケーシング)とリャケ一シング (背面ケーシング)とを備え、両ケーシングと内接ギヤ ポンプの両側面間に円盤状のスラスト軸受を配設し、アウターギヤの両側をこのスラ スト軸受で支承し、さらに両ケーシングに支持軸の両端を固定すると共にこの支持軸 にラジアル軸受を介してインナーギヤを回転可能に支承し、昇圧された吐出側の取 扱液の一部をロータ、ステータ間を流過すると共に各軸受部を潤滑して吸入側に戻 す給液路を設けるよう構成されて 、る。
[0006] 特許文献 1 :特開平 2— 277983号公報
発明の開示
発明が解決しょうとする課題
[0007] しかし、特許文献 1の内接ギヤポンプでは、アウターギヤと回転子とを別の部材で 形成しているため、大型化を招くと共にコスト高になってしまうという問題があった。
[0008] また、特許文献 1には、内接ギヤポンプを構成するロータ、アウターギヤ、インナー ギヤ及び閉塞板の材料については開示されておらず、電子機器に用いることも開示 されていない。仮に、この内接ギヤポンプを電子機器、例えばパソコンやサーバなど に用いる場合には、量産性に向くこと、長寿命、高精度維持、摺動部摩擦が小さいこ と、コストが安いこと、軽量であることが要求される。また、電子機器に用いる場合のポ ンプ部内を流動する作動液としては、電子機器の保管温度を考慮して、エチレンダリ コール等の不凍液が用いられるため、内接ギヤポンプと不凍液との相性も考慮する 必要があることが分力つた。
[0009] 本発明の目的は、高揚程に向く内接歯車式の機能を利用しつつ、小型、安価でし 力も信頼性の高いモーター体型内接歯車式ポンプ及び電子機器を得ることにある。 課題を解決するための手段
[0010] 前述の目的を達成するための本発明の第 1の態様は、作動液を吸込んで吐出する ポンプ部と、前記ポンプ部を駆動するモータ部とを備え、前記ポンプ部は、外周に歯 を形成した内ロータと、前記内ロータの歯と嚙み合う歯を内周に形成した外ロータと、 前記内ロータ及び前記外ロータを収納するポンプケーシングとを備え、前記モータ部 は、回転子と、前記回転子を回転させる固定子とを備えて構成されているモーター体 型内接歯車式ポンプにお ヽて、榭脂に磁石粉末を含有した永久磁石部材で前記回 転子と前記外ロータとを共用して形成したことにある。
[0011] 係る本発明の第 1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記ポンプ部に吸込んで吐出する作動液として水または水を成分として含む液 体を用いると共に、フェライト磁石粉末を含有したフェライトボンド磁石で前記回転子 と前記外ロータとの共用部材を形成したこと。
(2)前記回転子と前記外ロータとの共用部材をその外周側の磁力が強くその内周側 の磁力が弱い部材で形成すると共に、前記共用部材の外周外方に前記固定子を設 置したこと。
(3)前記(1)において、前記作動液として水及び有機物を含む不凍液を用いたこと。
(4)前記(1)において、 PPS榭脂にフェライト磁石粉末を含有した PPSZフェライトボ ンド磁石で前記共用部材を形成したこと。
(5)前記(1)において、前記ポンプケーシングを第 1のケーシング及び第 2のケーシ ングカもなる 2つのケーシングを接合して構成し、前記第 1のケーシング及び前記第 2 のケーシングに互いに対向するように内向きに突起した肩部をそれぞれ形成し、前 記共用部材の外周部の両側に内周の歯部よりも軸方向に張り出した環状張り出し部 を形成し、前記環状張り出し部を前記第 1のケーシング及び前記第 2のケーシングの それぞれの肩部の外周面に嵌合し、前記共用部材の外周外方に前記固定子を設置 したこと。
(6)前記(1)において、 PPS榭脂にカーボンファイバを含有した PPSカーボンフアイ バ榭脂または PPS榭脂にグラスファイバを含有した PPSグラスファイバ榭脂で前記ポ ンプケ一シングを形成したこと。
(7)前記(1)において、 PPS榭脂にカーボンファイバを含有した PPSカーボンフアイ
バ榭脂または POM榭脂で前記内ロータを形成したこと。
(8)前記(5)において、 PPS榭脂にカーボンファイバを含有した PPSカーボンフアイ バ榭脂で前記第 1のケーシング及び前記第 2のケーシングを形成したこと。
(9)前記(8)において、前記第 1のケーシング及び前記第 2のケーシングの何れかの 外周部を軸方向に延ばして前記回転子と前記固定子との間を封止する封止部を形 成し、前記封止部の外側に前記固定子を装着したこと。
[0012] また、本発明の第 2の態様は、作動液を吸込んで吐出するポンプ部と、前記ポンプ 部を駆動するモータ部とを備え、前記ポンプ部は、外周に歯を形成した内ロータと、 前記内ロータの歯と嚙み合う歯を内周に形成した外ロータと、前記内ロータ及び前記 外ロータを収納するポンプケーシングとを備え、前記モータ部は、回転子と、前記回 転子を回転させる固定子とを備えて構成されているモーター体型内接歯車式ポンプ において、 PPS榭脂にフェライト磁石粉末を含有した PPS榭脂/フエライトボンド磁 石で前記回転子を形成したことにある。
[0013] 係る本発明の第 2の態様におけるより好ましい具体的構成例は次の通りである。
(l) PPS榭脂にカーボンファイバを含有した PPSカーボンファイバ榭脂で前記ポンプ ケーシングを形成し、 PPS榭脂にカーボンファイバを含有した PPSカーボンファイバ 榭脂で前記内ロータを形成したこと。
[0014] また、本発明の第 3の態様は、上述した何れかに記載のモーター体型内接歯車ポ ンプを液循環源として搭載すると共に作動液として水及び有機物力 なる不凍液を 用いた電子機器である。
発明の効果
[0015] 本発明によれば、高揚程に向く内接歯車式の機能を利用しつつ、小型、安価でし 力も信頼性の高いモーター体型内接歯車式ポンプ及び電子機器を得ることができる 発明を実施するための最良の形態
[0016] 以下、本発明の一実施形態のモーター体型内接歯車式ポンプ及びその製造方法 並びに電子機器について図 1から図 6を用いて説明する。
[0017] まず、本実施形態のモーター体型内接歯車式ポンプの全体に関して図 1から図 4を
用いて説明する。図 1は本発明の一実施形態のモーター体型内接歯車式ポンプ 80 の縦断面図、図 2は図 1のポンプ 80の左半面を断面して示す正面図、図 3は図 1の ポンプ 80におけるポンプ部の分解斜視図、図 4は図 1のポンプ 80のケーシングの接 合方法を示す断面図である。
[0018] ポンプ 80は、作動液を吸込んで吐出するポンプ部 81と、このポンプ部 81を駆動す るモータ部 82と、このモータ部 82を制御する制御部 83とを備えて構成されたモータ 一体型内接歯車式ポンプである。
[0019] ポンプ部 81は、榭脂製の内ロータ 1、榭脂製の外ロータ 2、榭脂製の正面ケーシン グ (第 1のケーシング) 3、榭脂製の背面ケーシング (第 2のケーシング) 4、金属製の 内軸 5を備えて構成されて 、る。正面ケーシング 3及び背面ケーシング 4はポンプケ 一シングを形成する部材であり、換言すれば、ポンプケーシング部材は 2つの別部材 のポンプケーシング部材で構成されている。なお、背面ケーシング 4には封止部 6、フ ランジ部 18及びカバー 13が含まれる。内軸 5は、内ロータ支持軸を構成するもので あり、本実施形態では正面ケーシング 3または背面ケーシング 4と別部材で構成され ている。
[0020] モータ部 82は、永久磁石よりなる回転子 11、固定子 12、及び封止部 6を備えて構 成されている。封止部 6はポンプ部 81とモータ部 82とに共用される。
[0021] ポンプ部 81の内ロータ 1は、平歯車と類似した形状をしており、外周にトロコイド曲 線を輪郭とする歯 laを形成している。この歯面は、厳密には軸方向に若干の勾配を 有し、射出成形時の抜きを助ける、いわゆる「抜き勾配」と呼ばれる勾配を成している 。また、内ロータ 1は中心に軸方向に貫通した内面が滑らかな軸穴 lbを有している。 内ロータ 1の両端面 lcは、平坦かつ滑らかに仕上げられ、正面ケーシング 3及び背 面ケーシング 4から内向きに突起した肩部 22の端面である平坦内面 25, 26との間で 、摺動する面を形成している。
[0022] この内ロータ 1は、自己潤滑性を有し、水あるいは水を成分とする溶液による膨潤変 形や腐食が無視できるレベルである性質の合成樹脂で形成されて 、る。具体的には 、 PPS (ポリフエ-レンサルファイド)榭脂にカーボンファイバを含有する PPSカーボン ファイバ榭脂で形成されている。これによつて、内ロータ 1としての十分な強度及び耐
摩耗性を有すると共に、安価な内ロータ 1とすることができる。 PPSカーボンファイバ 榭脂の代わりに POM (ポリアセタール)榭脂を用いてもよい。 POMは、摩擦抵抗が 小さぐ摺動抵抗が小さいので、ポンプ効率を向上することができる。また、材料とし て柔らかいので、衝撃荷重を緩和することができ、ロータの動きによる振動騒音が抑 制される。なお、これらの材料は、吸水性や水分透過はあるものの、内ロータ 1として 使用するので、問題はない。また、高温吸水による変形を生ずるが、その分を補償し た歯形としておけば変形を吸収することができる。低温時には両ロータ 1, 2間の隙間 が拡大してしまうが、作動液として水及び有機物力 なる不凍液を用いる場合には、 その不凍液の粘度も上昇するため、ポンプ効率が向上し、性能低下を防止すことが できる。
[0023] 外ロータ 2は、内ロータ 1とほぼ同じ歯幅の環形状の内歯車形状をしており、円弧等 で形成した歯形を持つ歯を内ロータ 1よりも 1枚だけ多く形成している。外ロータ 2の 歯 2aは、平歯車として軸方向にほぼ同一断面形状となっているが、軸方向に僅かの 勾配を有し、射出成形時の抜きを助ける、いわゆる「抜き勾配」と呼ばれる勾配を有し てもよい。この場合は内ロータ 1にも同様の抜き勾配を与え、内ロータ 1と外ロータ 2と の勾配の方向は逆向きとし、内ロータ 1の外歯の径が大きくなる方向で、外ロータ 2の 内歯の径も大きくなるように両者 1、 2は嚙み合わせる。これにより、両者 1、 2の嚙み 合い面は軸方向の位置による片当たりを防止することができる。外ロータ 2の歯部の 両端面 2bは、平坦かつ滑らかに仕上げられ、正面ケーシング 3及び背面ケーシング 4の平坦内面 25, 26との間で摺動する面を形成し、スラスト軸受として作用する。
[0024] 外ロータ 2は外周部を除いて内ロータ 1とほぼ同じ幅を有し、内ロータ 1及び外ロー タ 2の両側端面がほぼ一致するように内ロータ 1の外側に外ロータ 2が配置されてい る。この外ロータ 2の外周部には、歯部 (内側に位置する内ロータ 1とほぼ同じ歯幅の 部分)よりも軸方向に張り出した環状の張り出し部 21が形成されて 、る。張り出し部 2 1の内周は、滑らかな面に形成され、肩部 22の外周面 27、 28との間で摺動する面を 構成する。
[0025] 外ロータ 2と内ロータ 1は、嚙み合った状態で、正面ケーシング 3と背面ケーシング 4 に挟まれて回転するよう構成する。内ロータ 1の中心軸穴には、滑らかな外周を有す
る内軸 5の軸受部がわずかな隙間を持って嵌合され、これによつて内ロータ 1は内軸 5に回転自在で軸支されている。なお、内軸 5は正面ケーシング 3及び背面ケーシン グ 4に密着嵌合するため回転しない。
[0026] 外ロータ 2の外側にはモータ部 82の回転子 11として永久磁石が一体ィ匕されている 。本実施形態では、磁石粉を混入した榭脂により外ロータ 2と回転子 11を一体の部 材として成形されている。換言すれば、モータ部 82の回転子 11とポンプ部 81の外口 ータ 2とは磁石粉末を含有する永久磁石部材で製作された 1つの部材である共用部 材 112で構成されている。これによつて、回転子 11と外ロータ 2とを小型で安価に製 作することができる。回転子 11は、半径方向に交互の極性を与え、外周側力も見ると 周に沿って NS極が交互に並ぶように構成されて 、る。
[0027] 本実施形態では、共用部材 112はフェライト磁石粉末を含有するフェライトボンド磁 石で形成されている。これによつて、作動液として水または水を成分として含む液体 を用いても、磁石が腐食したり鲭びたりすることがなぐしかも安価に製作することがで きる。また、この共用部材 112は PPS榭脂にフェライト磁石粉末を含有する PPSZフ エライトボンド磁石で形成されている。これによつて、モータ部 82の回転子 11としての 磁気特性が向上し、ポンプ部 81としての高精度な歯形が成形可能となると共に、軸 受部として機能する部分における低摩擦、低摩耗摺動特性が得られ、しかも成形性 が良好で、水中での耐腐食安定性も良好なものとすることができる。
[0028] そして、本実施形態では、共用部材 112の外周側の磁力が強くその内周側の磁力 が弱くなるように円筒状に形成すると共に、共用部材 112の外周外方に固定子 12を 設置しているので、外周から容易に磁ィ匕することができると共に、ネオジ磁石などと比 ベて一般的に安価で磁力の弱いフェライトボンド磁石を用いても回転子 11としての 機能を十分に発揮することができる。
[0029] さらに、本実施形態では、正面ケーシング 3及び背面ケーシング 4に互いに対向す るように内向きに突起した肩部 22をそれぞれ形成し、共用部材 112の外周部の両側 に内周の歯部よりも軸方向に張り出した環状張り出し部 21を形成し、環状張り出し部 21を正面ケーシング 3及び背面ケーシング 4のそれぞれの肩部 22の外周面 27、 28 に嵌合するように形成して 、るので、回転子 11として機能する部分を軸方向に増大
することができ、この点からも安価で磁力の弱いフェライトボンド磁石を用いることを助 けている。
[0030] なお、外ロータ 2の張り出し部を含む外周部が PPSZフェライトボンド磁石で、歯部 力 SPPSカーボンファイバの複合構造として外ロータ 2と回転子 11とを共用することも 考えられる。その場合には、複雑な成形が難しい PPSZフェライトボンド磁石を単純 な円筒形とし、精度が必要な歯部を PPS榭脂とすることにより、内ロータ 1との嚙み合 わせ面に硬いフェライト粒が無ぐ低損失かつ低摩耗な歯形となる。
[0031] 内軸 5は、内ロータ 1の軸穴 lb内径よりも僅かに外径が小さく且つ内ロータ 1の歯幅 よりも軸方向に僅かに長い円柱形状の軸受部 51と、軸受部 51の両端面から軸方向 両側に延び且つ軸受部 51の外径よりも小さい外径を有する嵌合部 53とを備えてい る。具体的には、内軸 5の中央に位置する軸受部 51の軸方向長さは、両ロータの歯 幅よりも僅かに(例えば 0.05〜0.1mm)長い。その軸受部 51の両側には円柱形状の 嵌合部 53があり軸受部 51と同心を成す。なお、軸受部 51と嵌合部 53は全て同一の 金属素材力 製作された内軸 5の部分の名称であり、一体のものである。内軸 5は、 金属素材で製作されているので、合成樹脂で製作されている内ロータ 1、外ロータ 2、 正面ケーシング 3及び背面ケーシング 4と比較して、強度及び寸法精度などの面で 優れている。
[0032] 内軸 5は、正面ケーシング 3と背面ケーシング 4とを連結する構造材としての機能も 有している。その嵌合部 53は、両ケーシング 3, 4の平坦内面 25, 26に形成した嵌 合穴 27a、 28aに挿入されて固定されている。この状態で、軸受部 51と嵌合部 53と の境界となる段差面 (軸受部 51の両端面) 51aがケーシングの平坦内面 25, 26に密 着している。したがって、軸受部 51の長さが双方の平坦内面 25, 26間の距離(間隔 )に一致し、両ロータ 1, 2は正面ケーシング 3と背面ケーシング 4の軸方向の端面で ある平坦内面 25, 26に僅かな隙間をもって内蔵されることとなる。正面ケーシング 3と 背面ケーシング 4の嵌合穴は、両ロータ 1, 2の嚙合いに則して、肩部 22の外周面 27 、 28に対して偏心させてある。
[0033] 正面ケーシング 3及び背面ケーシング 4の肩部 22は、互いに対向するように内向き に突起して形成されている。この肩部 22の外周面 27、 28が外ロータ 2の張り出し部 2
1の内周面にわずかな隙間を持って嵌合され、正面ケーシング 3及び背面ケーシン グ 4の肩部 22によって外ロータ 2の両側が回転自在に軸支されラジアル軸受として作 用する。正面ケーシング 3及び背面ケーシング 4の肩部 22は、同一の円柱の一部か ら切り出したような位置関係にある。
[0034] 2つのポンプケーシング部材の 1つを構成する正面ケーシング 3は、その平坦内面 25に吸入ポート 8及び吐出ポート 10と呼ぶ開口部を形成している。吸入ポート 8と吐 出ポート 10は、内ロータ 1の歯底円よりも内側と外ロータ 2の歯底円(外ロータ 2は内 歯車なので、歯先円径よりも歯底円径が大きい)よりも外側に輪郭を持つ開口部で形 成されている。吸入ポート 8は容積が拡大する作動室 23に面し、吐出ポート 10は容 積が縮小する作動室 23に面するように設けられている。また、最大容積となる瞬間の 作動室 23には、どちらのポート 8, 9も面しないか、あるいは、わずかな断面積による 連通に留めるように構成されて 、る。
[0035] 吸入ポート 8ならびに吐出ポート 10は、ポート溝の奥力も L形流路を介して外部に 開 、た吸入口 7と吐出口 9にそれぞれ連通されて 、る。吐出ポート 10から吐出口 9に 至る流路の途中には分岐して外ロータ 2の外周が面する内部空間 24と連通する連通 路 9aが設けられている。この内部空間 24は、正面ケーシング 3と、封止部 6を含む背 面ケーシングとで囲まれた空間である。
[0036] 薄肉筒状の封止部 6は回転子 11の外周との間に微小な隙間(例えば、 1mm以下 の隙間)を介して設けられ、回転子 11は外ロータ 2と共に回転可能となっている。
[0037] 前記 2つのケーシング部材の 1つを構成する背面ケーシング 4は、その平坦内面 26 を構成する部分より外周の部分力 外ロータ 2の外側を覆って軸方向に延びる筒状 の封止部 6を形成して前記平坦内面 26側よりも封止部 6側の軸方向剛性を柔軟とし 、封止部 6の先端側で前記 2つのケーシング部材の一方を構成する正面ケーシング 3と接合されている。すなわち、封止部 6は、背面ケーシング 4の一部であり、平坦内 面や肩部を形成した部分より外周の部分力 筒形状に正面方向に延長した薄板部 分を指す。
[0038] 正面ケーシング 3と背面ケーシング 4は嵌合面 16と呼ぶ円筒面で接し、互いに径方 向を拘束しながら軸方向に動ける自由度を持って嵌合されている。嵌合面 16は、封
止部 6の先端部分の内周と、正面ケーシング 3の内面側に形成された外側環状部 29 の外周との嵌合面で構成されて!、る。嵌合面 16に隣接した封止部 6の先端部分の 内周には凹部が設けられ、この凹部内 Oリング 14が挿入されることにより、正面ケー シング 3と背面ケーシング 4との機密性が保たれる。係る構成によって、正面ケーシン グ 3と背面ケーシング 4とが軸方向の自由度が保たれつつ、機密性が保持された組 み合せ構造とすることができる。
[0039] 正面ケーシング 3及び背面ケーシング 4は、 PPS榭脂にカーボンファイバを含有す る PPSカーボンファイバ榭脂で形成されている。 PPSカーボンファイバ榭脂を用いた 正面ケーシング 3及び背面ケーシング 4は、吸水性が小さぐ吸水による変形も小さい と共に、熱変形も小さぐ不凍液に対して耐腐食性があり、さらには耐熱性がある。 P PSカーボンファイバ榭脂は、絶縁材であるので、漏電防止に効果があると共に、水 分透過が少なぐ軸受部での摺動性も良いので、摩耗は少なぐ長寿命、高信頼性 が期待でき、しかも高精度で成形ができる。
[0040] 正面ケーシング 3の外周近くには背面側に向けて溶着突起 41が環状に複数設けら れ、それと相対する背面ケーシング 4のフランジ部 18には溶着突起 41を挿入する溶 着溝 42が環状に形成されている。本実施形態では、図 4に示すように、溶着突起 41 の先端部を傾斜面に形成するとともに、溶着溝 42の底部を前記傾斜面に合致する 傾斜面を有する構成とし、溶着工具 43、 44を正面ケーシング 3の外周部及び背面ケ 一シング 4のフランジ部 18に両側カゝら押し付け、溶着工具 43、 44に力をカロえながら 微小振動を与える。具体的には、溶着工具 43、 44を超音波溶接機に取付けて超音 波振動を与える。これにより、両ケーシング 3, 4の接触面が微小振動摩擦で発熱し 溶解して互いに溶け合い、振動停止後に温度低下すると再固化して一体となる。し たがって、正面ケーシング 3の溶着突起 41の裏側となる面と背面ケーシング 4の溶着 溝 42の裏側になる面とは平坦かつ開放した状態として、溶着工具 43ならびに 44を 密着できる形状にしておく。
[0041] 背面ケーシング 4側の溶着工具 44を挿入する溝は、溶着後に固定子 12を挿入す るための円環状溝であり、溶着のためだけの溝等の構造を設けた場合に比較して小 形で単純な形状にすることができる。
[0042] 溶着完了までに、溶着突起 41と溶着溝 42の接触ならびに内軸 5の段差と平坦内 面 25, 26の接触の 2箇所の接触以外で軸方向移動を拘束する接触を無くしておく。 また、封止部 6は薄肉でありその近傍の構造を含めて、平坦内面や肩部や溶着部近 傍に比較して柔軟である。そうすることにより、溶着時には、次のような順序で各部材 の位置関係が確定する。
[0043] まず、背面ケーシング 4に内軸 5の嵌合部 53を挿入し、内ロータ 1と外ロータ 2とを 内軸 5に嵌合し、 Oリング 14を嵌めた正面ケーシング 3を背面ケーシング 4に嵌合す る。この状態で、溶着治具 43、 44を両ケーシング 4, 5の両側から当て、所定の力で 押し付けながら超音波振動を与える。これによつて、溶着突起 41と溶着溝 42との接 触部が溶解して、正面ケーシング 3と背面ケーシング 4とは互いに近づく方向に変位 する。この過程で内軸 5の段差面 51aは平坦内面 25、 26に密着する。更に溶着を進 めると、背面ケーシング 4の封止部 6ならびにその周辺が弾性変形し溶着は深くまで 進行する。溶着治具 43, 44に力を作用させたままで、加振を停止すると溶解してい た溶着部は温度低下して固化し、その状態で形が定まる。その後に溶着治具を外し ても、内軸 5の段差面 51aは平坦内面 25, 26に密着したままで、その密着させる力 が封止部 6周辺の弾性変形の反力としてカ卩えられたままとなる。
[0044] 内軸 5は金属製であり、榭脂製のケーシング部材 3, 4よりも軸方向寸法精度が出し やすい。また、ロータ 1, 2の歯部に対して直近の中央部で歯幅方向の寸法を確保で きる利点がある。内軸 5の精度に頼らずに、封止部 6等の外周を経由してケーシング 3, 4の寸法精度だけで両平坦内面 25, 26相互間の距離の精度を出す方法に比較 して、格段に精度維持が容易である。したがって、本実施形態の構成によれば、ボン プ性能や信頼性に大きな影響を持つ歯部端面の隙間を適正に維持する効果が高い
[0045] 溶着突起 41は環状に形成するが、一周して連続して設けるのではなぐ図 2に示す ように円周から一部を欠いた形状とする。その理由は、一周よりも面積を限定して溶 着時の押圧力を集中して高め、溶着を確実にするためであり、また、欠いた部分に吸 入流路と吐出流路を配置することにより、溶着工具 43とこれらの流路との干渉を避け るためである。
[0046] 嵌合面 16の作用で、 2つのケーシングの径方向の位置決め精度を良く結合でき、 軸方向位置は内軸 5と平坦内面 25, 26との密着で精度を維持できる。また、内部空 間 24の密閉性は Oリング 14によってなされ、吸入口 8と吐出口 10を除けば、他に外 界と連通する穴や合わせ面が無い単純な構造なので密閉性も良い。したがって液漏 れも確実に防止できる。
[0047] 背面ケーシング 4力も連なる封止部 6の正面側フランジ 18の更に外周力 背面側に 折り返す形状で、カバー 13がー体成型で形成されている。カバー 13はモータ部 82 の固定子 12の外周を覆い、感電防止や美観の維持、騒音防止に役立てている。
[0048] 封止部 6の外側で且つ回転子 11と面する位置には、櫛歯状の鉄心に卷線した固 定子 12が封止部 6の外周に圧入して設置されている。固定子 12は、封止部 6とカバ 一 13との間に形成された円環状溝に嵌合される。回転子 11及び固定子 12からなる モータ部 82は、内ロータ 1及び外ロータ 2からなるポンプ部 81の外周側に配置され、 軸方向に並ばな 、ため、ポンプ 80の薄型化及び小型化が図られて 、る。
[0049] 制御部 83は、モータ部 82を制御するためのものであり、直流ブラシレスモータ駆動 用インバータ電子回路を備えている。上述したようにモータ部 82をポンプ部 81の外 周側に設けることにより、ポンプ部 81の吸入口 7や吐出口 9が設けない背面側に制 御部 83を設置することが可能となる。
[0050] 回路基板 31には、主たる電子部品であるパワー素子 32を搭載して直流ブラシレス モータ駆動用インバータ回路を構成している。回路基板 31は、その中央に設けた穴 に背面ケーシング 3の背面側に設けた突起 45を通して力しめることにより、背面ケー シング 4に固定される。パワー素子 32は回路基板 31を介して背面ケーシング 4に接 触している。これにより、インバータ回路で発生する熱を背面ケーシング 4を通してポ ンプ部 81内の作動液に放熱することができる。回路基板 31には、固定子 12の卷線 の一端が接続されるとともに、外部力も電力を供給する電力線 33と回転速度をパル スで情報発信する回転出力線 34ならびにそれらの共通グランド線が接続される。
[0051] 永久磁石よりなる回転子 11及び固定子 12を有するモータ部 82と、インバータ電子 回路を有する制御部 83とから直流ブラシレスモータが構成される。回転子 11が薄肉 の封止部 6の内側にあり、固定子 12が封止部 6の外側にある構造はキャンドモータと
呼ばれる。キャンドモータは、軸シール等を必要とせずに磁力を利用して回転動力を キャンと呼ばれる封止部 6内部に伝えられるので、作動液を外部から隔離しながら作 動室 23の容積変化で送り出す容積形ポンプの構造に適して!/ヽる。
[0052] ポンプ 80の形状について、図 5に示す寸法関係にすることにより、本発明の目的を よりょく達成できる。内ロータ 1の幅と外ロータ 2の歯幅を 1としたときに、内ロータの外 径を 1. 7〜3. 4、外ロータの張り出し部内径を 2. 5〜5、外ロータの張り出し部の軸 方向長さを 0. 4〜0. 8の寸法とする。
[0053] 内ロータ 1の外径は、この範囲よりも大きいと端面隙間での内部漏洩 (圧力の高い 吐出ポートに連通する側から吸入ポートに連通する側に逆流で、ポンプ性能を低下 させる)の比率が増加しポンプ性能を低下させる。また、この範囲よりも小さいと、作動 室と吸入あるいは吐出ポートと連通する開口部面積での流速が増して圧損を増加さ せ、やはりポンプ性能を低下させる。
[0054] 外ロータ 2の張り出し部 21の内径は、幾何的に内ロータ 1の外径よりも大きい必要 がある。同時にこの範囲よりも大きいと摩擦力ゃ軸受面からの内部漏洩を増すためポ ンプ性能が低下する。
[0055] 外ロータ張り出し部 21の軸方向長さは、この範囲よりも小さ 、と軸受面圧が増加し、 摩擦摩耗が増加する可能性があり、ポンプの寿命や信頼性が低下する懸念がある。 また、この範囲よりも大きい場合には、軸受面の円筒度や同心度などの誤差から片当 たりを生じやすくなり得策ではな!/、。
[0056] 内ロータの回転速度は、毎分 2500力ら 5000回転の範囲内とするとよい。この範囲 よりも回転速度が遅いと、運搬流量に対する内部漏洩量の比率が増してポンプ効率 が低下してしまう。また、この範囲よりも速いとポンプの発する振動騒音が増加してし まつ。
[0057] 次に、力かるポンプ 80の動作を図 1から図 5を参照しながら説明する。
[0058] 電力線 33に直流 12Vを与えることで制御部 83のモータ駆動回路に電流を供給す ることにより、パワー素子 32を通して固定子 12の卷線に電流が送られる。これにより、 モータ部 82が起動され、設定された回転速度でモータ部 82を回転するように制御す る。パワー素子 32は回転子 11の回転情報をパルスとして回転出力線 34より出力す
るので、その信号を受け取る上位の制御機器はポンプ 80の動作状態を確認できる。
[0059] モータ部 82の回転子 11が回転すると、これに一体化した外ロータ 2が回転し、それ と嚙み合った内ロータ 1も一般の内接歯車と同様に回転伝達され一緒に回転する。 2 つのロータ 1、 2の歯溝に形成された作動室 23は、両ロータ 1、 2の回転により容積を 拡大、縮小する。内ロータ 1と外ロータ 2との歯が一番深くまで嚙み合う図 2中の下端 で、作動室 23の容積が最小となり、上端で最大となる。したがって、図 2中で反時計 回りにロータが回転すると、右半分の作動室は上方に移動しながら容積を拡大し、左 半分の作動室は下方に移動しながら容積を縮小する。両方のロータ 1、 2を軸支する 摺動部はすべて作動液に浸力つているため、摩擦が小さく異常摩耗も防止できる。
[0060] 作動液は、吸入口 7から吸入ポート 8を経て、容積拡大中の作動室 23に吸い込ま れる。容積が最大となる作動室 23は、ロータの回転により吸入ポート 8の輪郭力もず れて吸入を完了し、次いで吐出ポート 10に連通される。そこ力も作動室 23の容積は 縮小に転じ、作動室 23内にある作動液は吐出ポート 10から送り出される。送り出され た作動液は吐出口 9から外部に送り出される。吐出流路の途中に分岐した連通路 9a があるため、内部空間 24の内圧は吐出圧に保たれる。
[0061] 本実施形態においては、吸入流路が短いので、吸入負圧が小さくキヤビテーシヨン 発生が防止できる。また、比較的高い吐出圧力が封止部 6内面に作用し、外側に押 し広げる方向に作用するので、薄肉の封止部 6であっても、内側に変形して回転子 1 1と接触することが回避できる。同時に外ロータ 2の張り出し部 21に形成したラジアル 軸受としての隙間からの漏洩を低減できる。その理由は、この隙間からの漏洩は遠心 力の作用で外に向力う力が増強されるが、外周である内部空間 24の内圧が高いと、 それを押し戻す作用が働くからである。
[0062] 運転による発熱のため冷却が必要となるパワー素子 32の熱は、回路基板 31と経由 して接触して 、る背面ケーシング 4の壁面を通過し、内部空間 24を流れる作動液に 移り、外部に放出される。内部空間 24の作動液は常に攪拌され、ラジアル軸受面か らの微小な漏洩により順次入れ替わるため、効率的に熱を持ち去ることができる。こ のように効率的にポンプ 80内部を冷却するため、パワー素子 32を冷却するためのヒ ートシンクや冷却ファンを必要としない。また、回転子 11や固定子 12に発生するモ
ータ損失での発熱も同様に効率的に持ち去り、異常な温度上昇を防止できる。
[0063] 次に、上述したポンプ 80を有する電子機器について図 6を参照しながら説明する。
図 6はパソコン本体を縦に置いた状態のパソコン全体構成を示す斜視図であり、図 4 に示す電子機器はデスクトップ型パソコンの例である。
[0064] パソコン 60は、パソコン本体 61A、ディスプレイ装置 61B、及びキーボード 61Cを 備えて構成されている。液冷システム 69は、パソコン本体 61 Aに CPU (中央演算装 置) 62とともに内蔵され、液溜まり 63、ポンプ 80、熱交 65、放熱板 Α66、放熱板 Β67の各要素をこの順に管路でつな 、だ閉ループのシステムで構成されて 、る。こ の液冷システム 69の設置目的は、主として、パソコン本体 61Aに内蔵する CPU62で 発する熱を外部に運搬し、 CPU62の温度上昇を規定値以下に維持することである。 熱媒体として水あるいは水を主体とする液体、例えば水及び有機物(エチレングリコ ール等)からなる不凍液を使う液冷システム 69は、空冷方式に比較して、熱運搬能 力が高ぐ騒音が小さいため、発熱量の多い CPU62の冷却に好適である。
[0065] 液溜まり 63内部には被送液 (作動液)と空気が封入されている。液溜まり 63とボン プ 80とは並置されており、液溜まり 63の出口とポンプ 80の吸入口とが管路により連 通されて!/、る。 CPU62の放熱面には熱伝導性グリースを介して熱交換器 65が密着 されて設置されて 、る。ポンプ 80の吐出口と熱交^^ 65の入口とが管路により連通 されている。熱交 65は放熱板 Α66に管路により連通され、放熱板 Α66は放熱 板 Β67に管路を介して連通され、放熱板 Β67は液溜まり 63に管路を介して連通され ている。放熱板 Α66と放熱板 Β67はパソコン本体 61Aの異なる面力も外部に放熱さ れるよ
うに設置されている。
[0066] ポンプ 80にはパソコン 60内部に通常備えている直流 12V電源から電力線 33が引 かれ、回転出力線 34が上位制御機器であるパソコン 60の電子回路に接続されて ヽ る。
[0067] この液冷システム 69の動作を説明する。パソコン 60の起動に伴って電力が送られ ることにより、ポンプ 80が起動し、被送液が循環を始める。被送液は、液溜まり 63から ポンプ 80に吸い込まれ、ポンプ 80で加圧されて熱交^^ 65に送り出される。ポンプ
80から熱交^^ 65に送られた被送液は、 CPU62で発する熱を吸収し液温が上昇 する。さらに、その被送液は次の放熱板 A66と放熱板 B67で外気と熱交換し (外気に 放熱し)、液温が下げられて力も液溜まり 63に戻る。以下、これを繰返して CPU62の 冷却が継続して行なわれる。
[0068] ポンプ 80は容積形ポンプの一種である内接歯車式であるため、乾燥状態 (液無し 条件)で起動しても吸入口を負圧にする能力がある。そのため、液溜まり 63内部の液 面より高い管路を経ても、あるいは、ポンプ 80が液面より高い位置にあっても呼び水 無しに液を吸い込む自吸能力がある。また、遠心式ポンプ等に比較して内接歯車式 ポンプ 80は加圧能力が高いので、熱交換器 65や放熱板 66、 67を通過する圧損が 増える条件にも適用可能である。特に CPU62の発熱密度が高い場合には、熱交換 面積を拡大するために熱交 内部の流路を折り曲げて細く長くすることが必要 となり、遠心式ポンプ等を用いた液冷システムでは通過圧損が増えて適用が難しくな る力 本実施形態の液冷システム 69ではこれに対応可能である。
[0069] 本実施形態の液冷システム 69においては、被送液が最も高温となる熱交
の出口の直後で放熱板 66、 67を経由して液温が下げられるので、液溜り 63ゃポン プ 80の温度は比較的低く保たれる。そのため、ポンプ 80の内部部品などは、高温環 境よりも信頼性を確保しやす ヽ。
[0070] 液冷システム 69の動作の結果として液が循環する各部の温度が決まる力 それら は温度センサ (図示せず)によって監視される。規定以上の温度上昇により冷却能力 の不足が確認された場合には、ポンプ 80の回転速度上昇が指令され、過剰な温度 を事前に防止する。また、逆に冷却が過剰な場合には回転速度を抑制する。ポンプ 80の発信する回転出力は常に監視され、回転出力が途切れて、なおかつ液温変化 が異常な場合には、ポンプ 80が故障であると判断なされ、パソコン 60は緊急動作に 移行する。緊急動作では CPU速度の低下や動作中プログラムの保存など、最小限 の動作をした上でノヽードウエアの致命的損傷を防止する。
図面の簡単な説明
[0071] [図 1]本発明の一実施形態のモーター体型内接歯車式ポンプの縦断面図である。
[図 2]図 1のポンプの左半面を断面して示す正面図である。
[図 3]図 1のポンプのポンプ部の分解斜視図である。
[図 4]図 1のポンプのケーシングの接合方法を示す断面図である。
[図 5]図 1のポンプの内ロータと外ロータの寸法図である。
[図 6]図 1のポンプを有する冷却システムを備えた電子機器の説明図である。
符号の説明
1···内ロータ、 la…歯、 lb…軸穴、 lc…端面、 2···外ロータ、 2a…歯、 2b…端面、 3···正面ケーシング、 4…背面ケーシング、 5···内軸、 6…封止部、 7···吸入口、 8〜 吸入ポート、 9···吐出口、 9a…連通路、 10···吐出ポート、 11···回転子、 12···固定子 、 13···カノ一、 14···0リング、 16···嵌合面、 18···フランジ部、 21···張り出し部、 22 …肩部、 23···作動室、 24···内部空間、 25···正面ケーシングの平坦内面、 26···背 面ケーシングの平坦内面、 27, 28…肩部の外周面、 27a'28a…嵌合穴、 29···外側 環状部、 31···回路基板、 32···パワー素子、 33···電力線、 34…回転出力線、 41··· 溶着突起、 42···溶着溝、 43···溶着工具、 44···溶着工具、 51···軸受部、 51a…段 差面、 53···嵌合部、 60···ノ ソコン、 61A…パソコン本体、 61B…ディスプレイ装置、 61C…キーボード、 62---CPU, 63···液溜まり、 65···熱交^^、 66···放熱板 A、 67 …放熱板 B、 69···液冷システム (冷却システム)、 80…モーター体型内接歯車式ポ ンプ、 81···ポンプ部、 82···モータ部、 83…制御部、 112…共用部材。
Claims
[1] 作動液を吸込んで吐出するポンプ部と、前記ポンプ部を駆動するモータ部とを備え 前記ポンプ部は、外周に歯を形成した内ロータと、前記内ロータの歯と嚙み合う歯 を内周に形成した外ロータと、前記内ロータ及び前記外ロータを収納するポンプケー シングとを備え、
前記モータ部は、回転子と、前記回転子を回転させる固定子とを備えて構成されて いるモーター体型内接歯車式ポンプにおいて、
榭脂に磁石粉末を含有した永久磁石部材で前記回転子と前記外ロータとを共用し て形成したことを特徴とするモーター体型内接歯車式ポンプ。
[2] 請求項 1記載のモーター体型内接歯車式ポンプにおいて、前記ポンプ部に吸込ん で吐出する作動液として水または水を成分として含む液体を用いると共に、フェライト 磁石粉末を含有したフェライトボンド磁石で前記回転子と前記外ロータとの共用部材 を形成したことを特徴とするモーター体型内接歯車式ポンプ。
[3] 請求項 1記載のモーター体型内接歯車式ポンプにおいて、前記回転子と前記外口 ータとの共用部材をその外周側の磁力が強くその内周側の磁力が弱い部材で形成 すると共に、前記共用部材の外周外方に前記固定子を設置したことを特徴とするモ 一ター体型内接歯車式ポンプ。
[4] 請求項 2記載のモーター体型内接歯車式ポンプにおいて、前記作動液として水及 び有機物を含む不凍液を用いたことを特徴とするモーター体型内接歯車式ポンプ。
[5] 請求項 2記載のモーター体型内接歯車式ポンプにおいて、 PPS榭脂にフェライト磁 石粉末を含有した PPSZフェライトボンド磁石で前記共用部材を形成したことを特徴 とするモーター体型内接歯車式ポンプ。
[6] 請求項 2記載のモーター体型内接歯車式ポンプにおいて、前記ポンプケーシング を第 1のケーシング及び第 2のケーシンダカ なる 2つのケーシングを接合して構成し 、前記第 1のケーシング及び前記第 2のケーシングに互いに対向するように内向きに 突起した肩部をそれぞれ形成し、前記共用部材の外周部の両側に内周の歯部よりも 軸方向に張り出した環状張り出し部を形成し、前記環状張り出し部を前記第 1のケー
シング及び前記第 2のケーシングのそれぞれの肩部の外周面に嵌合し、前記共用部 材の外周外方に前記固定子を設置したことを特徴とするモーター体型内接歯車式ポ ンプ。
[7] 請求項 2記載のモーター体型内接歯車式ポンプにおいて、 PPS榭脂にカーボンフ アイバを含有した PPSカーボンファイバ榭脂または PPS榭脂にグラスファイバを含有 した PPSグラスファイバ榭脂で前記ポンプケーシングを形成したことを特徴とするモ 一ター体型内接歯車式ポンプ。
[8] 請求項 2記載のモーター体型内接歯車式ポンプにおいて、 PPS榭脂にカーボンフ アイバを含有した PPSカーボンファイバ榭脂または POM榭脂で前記内ロータを形成 したことを特徴とするモーター体型内接歯車式ポンプ。
[9] 請求項 6記載のモーター体型内接歯車式ポンプにおいて、 PPS榭脂にカーボンフ アイバを含有した PPSカーボンファイバ榭脂で前記第 1のケーシング及び前記第 2の ケーシングを形成したことを特徴とするモーター体型内接歯車式ポンプ。
[10] 請求項 9記載のモーター体型内接歯車式ポンプにおいて、前記第 1のケーシング 及び前記第 2のケーシングの何れかの外周部を軸方向に延ばして前記回転子と前 記固定子との間を封止する封止部を形成し、前記封止部の外側に前記固定子を装 着したことを特徴とするモーター体型内接歯車式ポンプ。
[11] 作動液を吸込んで吐出するポンプ部と、前記ポンプ部を駆動するモータ部とを備え 前記ポンプ部は、外周に歯を形成した内ロータと、前記内ロータの歯と嚙み合う歯 を内周に形成した外ロータと、前記内ロータ及び前記外ロータを収納するポンプケー シングとを備え、
前記モータ部は、回転子と、前記回転子を回転させる固定子とを備えて構成されて いるモーター体型内接歯車式ポンプにおいて、
PPS榭脂にフェライト磁石粉末を含有した PPS榭脂/フェライトボンド磁石で前記 回転子を形成したことを特徴とするモーター体型内接歯車式ポンプ。
[12] 請求項 11記載のモーター体型内接歯車式ポンプにおいて、 PPS榭脂にカーボン ファイバを含有した PPSカーボンファイバ榭脂で前記ポンプケーシングを形成し、 PP
S榭脂にカーボンファイバを含有した PPSカーボンファイバ榭脂で前記内ロータを形 成したことを特徴とするモーター体型内接歯車式ポンプ。
請求項 1〜12の何れか〖こ記載のモーター体型内接歯車ポンプを液循環源として 搭載すると共に前記作動液として水及び有機物力 なる不凍液を用いたことを特徴と する電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06767592A EP1933033A1 (en) | 2005-06-30 | 2006-06-29 | Internal gear type pump with built-in motor and electronic device |
US11/883,573 US20080159884A1 (en) | 2005-06-30 | 2006-06-29 | Motor-Mounted Internal Gear Pump and Electronic Equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005190933A JP2007009787A (ja) | 2005-06-30 | 2005-06-30 | モータ一体型内接歯車式ポンプ及び電子機器 |
JP2005-190933 | 2005-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007004503A1 true WO2007004503A1 (ja) | 2007-01-11 |
Family
ID=37604371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312975 WO2007004503A1 (ja) | 2005-06-30 | 2006-06-29 | モータ一体型内接歯車式ポンプ及び電子機器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080159884A1 (ja) |
EP (1) | EP1933033A1 (ja) |
JP (1) | JP2007009787A (ja) |
KR (1) | KR100865196B1 (ja) |
CN (1) | CN101137845A (ja) |
TW (1) | TW200714804A (ja) |
WO (1) | WO2007004503A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012159167A (ja) * | 2011-02-02 | 2012-08-23 | Toyo Advanced Technologies Co Ltd | オイルポンプの駆動制御装置 |
CN104153999A (zh) * | 2014-07-29 | 2014-11-19 | 江苏大学 | 一种机泵一体式微型高速磁力泵 |
CN114761688A (zh) * | 2019-11-21 | 2022-07-15 | Lg伊诺特有限公司 | 泵 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5281963B2 (ja) * | 2009-06-22 | 2013-09-04 | 株式会社オーディオテクニカ | スピーカ |
DE102009028098A1 (de) | 2009-07-29 | 2011-02-03 | Robert Bosch Gmbh | Innenzahnradpumpe |
DE102009028095A1 (de) | 2009-07-29 | 2011-02-10 | Robert Bosch Gmbh | Pumpe mit integriertem Elektromotor |
DE102009028148A1 (de) * | 2009-07-31 | 2011-02-03 | Robert Bosch Gmbh | Zahnradpumpe |
WO2011022557A2 (en) | 2009-08-19 | 2011-02-24 | Aspen Motion Technologies, Inc. D/B/A | Magnetic drive pump assembly with integrated motor |
DE102009045030A1 (de) | 2009-09-25 | 2011-03-31 | Robert Bosch Gmbh | Zahnradpumpe mit Elektromotor |
DE102010002585A1 (de) | 2010-03-04 | 2011-09-08 | Robert Bosch Gmbh | Innenzahnradpumpe |
DE102010002566A1 (de) | 2010-03-04 | 2011-09-08 | Robert Bosch Gmbh | Innenzahnradpumpe |
DE102010027838A1 (de) | 2010-04-16 | 2011-10-20 | Robert Bosch Gmbh | Elektrische Förderpumpe und Verfahren zum Antreiben einer elektrischen Förderpumpe |
DE102010029338A1 (de) | 2010-05-27 | 2011-12-01 | Robert Bosch Gmbh | Innenzahnradpumpe |
JP5052658B2 (ja) * | 2010-09-22 | 2012-10-17 | 三菱電機株式会社 | エンジン |
DE102010041244A1 (de) * | 2010-09-23 | 2012-03-29 | Robert Bosch Gmbh | Pumpe mit Elektromotor |
DE102010041995A1 (de) | 2010-10-05 | 2012-04-05 | Robert Bosch Gmbh | Innenzahnradpumpe |
US8840385B2 (en) | 2011-03-03 | 2014-09-23 | Ti Group Automotive Systems, L.L.C. | Positive displacement fluid pump |
CN102808765B (zh) | 2011-06-01 | 2017-04-05 | 德昌电机(深圳)有限公司 | 流体泵送装置 |
DE102011051486B4 (de) * | 2011-06-30 | 2023-06-01 | Hnp Mikrosysteme Gmbh | Pumpenanordnung mit Mikropumpe und Lagerelement |
DE102011082587A1 (de) * | 2011-09-13 | 2013-03-14 | Robert Bosch Gmbh | Pumpe mit Elektromotor |
US9624929B2 (en) * | 2012-12-21 | 2017-04-18 | Lg Innotek Co., Ltd. | Electric pump |
JP6081824B2 (ja) * | 2013-03-06 | 2017-02-15 | アスモ株式会社 | 電動ポンプ |
JP2014173443A (ja) * | 2013-03-06 | 2014-09-22 | Asmo Co Ltd | 電動ポンプ |
JP2014206072A (ja) * | 2013-04-11 | 2014-10-30 | アスモ株式会社 | ギヤポンプ及び電動ポンプ |
WO2015011740A1 (ja) * | 2013-07-23 | 2015-01-29 | 株式会社Tbk | 電動ポンプ |
JP6313605B2 (ja) * | 2014-02-06 | 2018-04-18 | Ntn株式会社 | 横型内接歯車ポンプ |
JP6406872B2 (ja) * | 2014-05-08 | 2018-10-17 | 兵神装備株式会社 | 汲出装置 |
DE102014226002B4 (de) | 2014-12-16 | 2024-03-14 | Robert Bosch Gmbh | Innenzahnradpumpe |
JP6474271B2 (ja) * | 2015-02-12 | 2019-02-27 | 株式会社ミツバ | アクチュエータ |
JP6732007B2 (ja) * | 2015-04-01 | 2020-07-29 | セッティマ メカニカ エス.アール.エル. | ギヤ式容積形機械 |
JP6597091B2 (ja) * | 2015-09-11 | 2019-10-30 | アイシン精機株式会社 | 電動ポンプとその製造方法 |
JP6507998B2 (ja) * | 2015-11-03 | 2019-05-08 | 株式会社デンソー | 燃料ポンプ |
DE102016200013B4 (de) * | 2016-01-04 | 2022-11-03 | Röchling Automotive SE & Co. KG | Pumpe |
IT201600129613A1 (it) * | 2016-12-21 | 2018-06-21 | Bosch Gmbh Robert | Pompa elettrica a ingranaggi |
DE102017200708A1 (de) | 2017-01-18 | 2018-07-19 | Robert Bosch Gmbh | Motor-Pumpen-Einheit für ein Abwärmerückgewinnungssystem |
TWI728768B (zh) * | 2020-03-31 | 2021-05-21 | 建準電機工業股份有限公司 | 薄型泵浦 |
KR20240018986A (ko) * | 2022-08-03 | 2024-02-14 | 엘지이노텍 주식회사 | 모터 및 이를 포함하는 펌프 |
DE102022208139A1 (de) | 2022-08-04 | 2024-02-15 | Vitesco Technologies GmbH | Pumpe, insbesondere Getriebeölpumpe |
WO2024205694A1 (en) * | 2023-03-30 | 2024-10-03 | Parker-Hannifin Corporation | Assemblies for an internal gear pump with hydrostatic support features |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147177A (ja) * | 1987-12-03 | 1989-06-08 | Sumitomo Electric Ind Ltd | ポンプ又はモータ用内接歯車ロータ |
JPH0323679U (ja) * | 1989-07-20 | 1991-03-12 | ||
JP2001142573A (ja) * | 1999-11-11 | 2001-05-25 | Hitachi Ltd | 電子装置 |
JP2001165061A (ja) * | 1999-12-06 | 2001-06-19 | Matsushita Electric Ind Co Ltd | 歯車ポンプ及びその製造装置、製造方法 |
JP2002159165A (ja) * | 2000-11-20 | 2002-05-31 | Canon Inc | モータ |
JP2004011514A (ja) * | 2002-06-06 | 2004-01-15 | Sumitomo Electric Ind Ltd | マイクロポンプ、その製造方法および使用方法 |
JP2004047843A (ja) * | 2002-07-15 | 2004-02-12 | Hitachi Ltd | 電子装置 |
JP2004336831A (ja) * | 2003-04-30 | 2004-11-25 | Daikin Ind Ltd | 永久磁石電動機および密閉型圧縮機 |
JP2005098268A (ja) * | 2003-09-26 | 2005-04-14 | Koyo Seiko Co Ltd | 電動内接ギアポンプ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3060550B2 (ja) * | 1990-02-16 | 2000-07-10 | 株式会社デンソー | 車両用燃料ポンプ |
DE4106060C2 (de) * | 1991-02-27 | 1995-11-30 | Fresenius Ag | Pumpe, insbesondere gekapselte medizinische Pumpe |
US6798093B2 (en) * | 2000-07-28 | 2004-09-28 | Canon Kabushiki Kaisha | Dual coil permanent magnet motor having inner annular member |
JP2005273648A (ja) * | 2004-02-23 | 2005-10-06 | Aisin Seiki Co Ltd | 電動ポンプ |
-
2005
- 2005-06-30 JP JP2005190933A patent/JP2007009787A/ja active Pending
-
2006
- 2006-06-19 TW TW095121906A patent/TW200714804A/zh unknown
- 2006-06-29 KR KR1020077018288A patent/KR100865196B1/ko not_active IP Right Cessation
- 2006-06-29 US US11/883,573 patent/US20080159884A1/en not_active Abandoned
- 2006-06-29 WO PCT/JP2006/312975 patent/WO2007004503A1/ja active Application Filing
- 2006-06-29 CN CNA2006800041645A patent/CN101137845A/zh active Pending
- 2006-06-29 EP EP06767592A patent/EP1933033A1/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147177A (ja) * | 1987-12-03 | 1989-06-08 | Sumitomo Electric Ind Ltd | ポンプ又はモータ用内接歯車ロータ |
JPH0323679U (ja) * | 1989-07-20 | 1991-03-12 | ||
JP2001142573A (ja) * | 1999-11-11 | 2001-05-25 | Hitachi Ltd | 電子装置 |
JP2001165061A (ja) * | 1999-12-06 | 2001-06-19 | Matsushita Electric Ind Co Ltd | 歯車ポンプ及びその製造装置、製造方法 |
JP2002159165A (ja) * | 2000-11-20 | 2002-05-31 | Canon Inc | モータ |
JP2004011514A (ja) * | 2002-06-06 | 2004-01-15 | Sumitomo Electric Ind Ltd | マイクロポンプ、その製造方法および使用方法 |
JP2004047843A (ja) * | 2002-07-15 | 2004-02-12 | Hitachi Ltd | 電子装置 |
JP2004336831A (ja) * | 2003-04-30 | 2004-11-25 | Daikin Ind Ltd | 永久磁石電動機および密閉型圧縮機 |
JP2005098268A (ja) * | 2003-09-26 | 2005-04-14 | Koyo Seiko Co Ltd | 電動内接ギアポンプ |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012159167A (ja) * | 2011-02-02 | 2012-08-23 | Toyo Advanced Technologies Co Ltd | オイルポンプの駆動制御装置 |
CN104153999A (zh) * | 2014-07-29 | 2014-11-19 | 江苏大学 | 一种机泵一体式微型高速磁力泵 |
CN114761688A (zh) * | 2019-11-21 | 2022-07-15 | Lg伊诺特有限公司 | 泵 |
CN114761688B (zh) * | 2019-11-21 | 2023-12-05 | Lg伊诺特有限公司 | 泵 |
Also Published As
Publication number | Publication date |
---|---|
CN101137845A (zh) | 2008-03-05 |
EP1933033A1 (en) | 2008-06-18 |
JP2007009787A (ja) | 2007-01-18 |
KR100865196B1 (ko) | 2008-10-23 |
US20080159884A1 (en) | 2008-07-03 |
KR20070100791A (ko) | 2007-10-11 |
TW200714804A (en) | 2007-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007004503A1 (ja) | モータ一体型内接歯車式ポンプ及び電子機器 | |
JP4237731B2 (ja) | モータ一体型内接歯車式ポンプ及びその製造方法並びに電子機器 | |
JP4272112B2 (ja) | モータ一体型内接歯車式ポンプ及び電子機器 | |
JP4084351B2 (ja) | モータ一体型内接歯車式ポンプ及び電子機器 | |
US20110033320A1 (en) | Pump rotor for a canned motor pump | |
JP4293217B2 (ja) | ポンプおよび流体供給装置 | |
CN109356856B (zh) | 一种超薄离心式微型泵 | |
US20160281712A1 (en) | Tandem electric pump | |
US7131825B2 (en) | Spindle-motor driven pump system | |
CN113227580A (zh) | 电动螺杆冷却剂泵 | |
JP6135225B2 (ja) | ポンプ | |
JP4205475B2 (ja) | タービン型燃料ポンプ | |
JP2007278229A (ja) | 電動ポンプ | |
JP2000274386A (ja) | 外部駆動形ラインポンプ | |
JP2006037828A (ja) | ギヤポンプ | |
CN118208440A (zh) | 流体控制组件 | |
JP2018189017A (ja) | 外接ギヤポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680004164.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11883573 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006767592 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077018288 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |