WO2007004294A1 - Level converter circuit, control method thereof, and electronic circuit - Google Patents

Level converter circuit, control method thereof, and electronic circuit Download PDF

Info

Publication number
WO2007004294A1
WO2007004294A1 PCT/JP2005/012398 JP2005012398W WO2007004294A1 WO 2007004294 A1 WO2007004294 A1 WO 2007004294A1 JP 2005012398 W JP2005012398 W JP 2005012398W WO 2007004294 A1 WO2007004294 A1 WO 2007004294A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
level converter
voltage
level
Prior art date
Application number
PCT/JP2005/012398
Other languages
French (fr)
Japanese (ja)
Inventor
Sota Sakabayashi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/012398 priority Critical patent/WO2007004294A1/en
Publication of WO2007004294A1 publication Critical patent/WO2007004294A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01721Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by means of a pull-up or down element

Definitions

  • the present invention relates to a level converter circuit that performs level conversion of a signal according to power supplies of different voltages, for example, level conversion of a signal on a low voltage power supply side to a signal on a high voltage power supply side.
  • the present invention relates to a level converter circuit that suppresses the occurrence of indefinite output, a control method thereof, and an electronic circuit.
  • LSI Large Scale Integration
  • a voltage difference is generated between the power supply voltage on the LSI side and the power supply voltage on the external circuit side. If there is, the level must be converted to a signal corresponding to the voltage of the external circuit power supply. Therefore, a level converter circuit for converting to a level corresponding to a voltage is used for an input / output (IZO) circuit used for signal input / output.
  • IZO input / output
  • LSI internal circuit multiple power supplies are used to reduce power consumption. For example, a lower voltage internal power supply for an internal circuit is generated with respect to an external power supply supplied from the outside. By supplying this internal power supply to the internal circuit, the power consumption of the internal circuit can be reduced. However, when a low-voltage power-side signal is transmitted to a high-voltage power-side circuit, it is necessary to perform level conversion to a high-voltage power-side signal.
  • a level converter circuit used for such level conversion is provided with a forced pull-up circuit for forcibly pulling up a signal transmission node at a positive high potential, and a one-shot pulse synchronized with an edge at the time of transition of an input signal
  • the signal transmission node is forcibly pulled up by a signal (for example, Patent Document 1), and includes an initialization circuit that conducts when the power is turned on and does not rise on the low-voltage power supply side.
  • a node at a low level is lowered to the ground potential by the initialization circuit or raised to the potential on the high voltage power source side (for example, Patent Document 2).
  • Patent Document 1 JP 2000-269804 A Patent Document 2: Japanese Patent Laid-Open No. 2003-163590
  • the conventional power supply sequence of the level converter circuit (different power supply sequence), for example, the high voltage power supply side voltage (the output side voltage of the level converter circuit) rises quickly. If the rise of the voltage (voltage on the input side of the level converter circuit) is slow, the level converter output may become unstable, and the output side circuit that receives the output and the output side circuit, for example, C MOS There is a risk of overcurrent due to through current in the circuit.
  • the level converting unit 4 includes a first transistor Trl, a second transistor Tr2, a third transistor Tr3, and a fourth transistor Tr4.
  • the transistors Trl and Tr2 are P-channel transistors, and the transistors Tr3 and Tr4 are N It is composed of channel transistors.
  • a voltage Vd2 is commonly applied to the sources of the transistors Trl and Tr2, the gate of the transistor Trl is connected to the drains of the transistors Tr2 and Tr4, and the gate of the transistor Tr2 is connected to the drains of the transistors Trl and Tr3.
  • the sources of the transistors Tr3 and Tr4 are grounded and maintained at the ground (Gnd) potential.
  • An inverter unit 6 is installed on the gate side of the transistor Tr3, and a signal B (inverted signal ZA) obtained by inverting the signal A received at the input terminal 8 is applied.
  • the inverter unit 6 that generates the inverted signal B includes a fifth transistor Tr5 and a sixth transistor Tr6.
  • Transistor Tr 5 is a P-channel transistor
  • transistor Tr 6 is an N-channel transistor.
  • Each gate is shared and a common input terminal 8 is provided.
  • the voltage Vdl is applied to the source of the transistor Tr5, and the source of the transistor Tr6 is grounded and maintained at the Gnd potential.
  • the output of the inverter section 6 is also taken out of the common drain force of the transistors Tr5 and Tr6 and is stored in the gate of the transistor Tr3.
  • the inverter unit 10 includes a seventh transistor Tr7 and an eighth transistor Tr8.
  • Transistor Tr7 is a P-channel transistor
  • transistor Tr8 is an N-channel transistor.
  • the output of inverter 6 is applied to the common gate.
  • the voltage Vdl is applied to the source of the transistor Tr7, and the source of the transistor Tr8 is grounded and maintained at the Gnd potential.
  • the output of the inverter unit 10 is taken out from the common drain of the transistors Tr7 and Tr8 and added to the gate of the transistor Tr4.
  • the signal D extracted from the level converting unit 4 is inverted by the inverter unit 12 and extracted from the output terminal 14 as the signal E.
  • the inverter unit 12 includes a ninth transistor Tr9 and a tenth transistor TrlO.
  • the transistor Tr9 is a P-channel transistor, and the transistor TrlO is an N-channel transistor.
  • the output of the level conversion unit 4 is applied to the common gate.
  • a voltage Vd2 is applied to the source of the transistor Tr9, and the source of the transistor TrlO is grounded and maintained at the Gnd potential.
  • the signal force inverted by the inverter 12 is taken out from the output terminal 14 provided at the drains of the transistors Tr9 and TrlO.
  • This level converter circuit 2 is used when level-converting a signal on the power supply side of the voltage Vdl to a signal on the power supply side of the voltage Vd2.
  • Vdl l. V
  • Vd2 l. 8 [V].
  • the gate voltages of transistors Tr3 and Tr4 are 0 [V], and both transistors Tr3 and Tr4 are turned off simultaneously. If such a condition occurs, the output extraction unit 16 (point D) of the level conversion unit 4 may become indeterminate, that is, may have an intermediate potential Vn.
  • This intermediate potential Vn is an output state of an indeterminate level between the two different from the output H or output L of normal system operation.
  • FIG. Fig. 2 is a diagram showing an operation simulation of the level converter circuit when the power is turned on, and shows the transition of the voltages Vdl and Vd2 and the potential change of the output extraction section 16 (point D).
  • the intermediate potential Vn is exhibited in the period from the time t2 to the time tx (intermediate potential period Tn).
  • This intermediate potential Vn is an indefinite voltage value between the potential 0 [V] and the voltage Vd2 as described above. That is, the output extraction unit 16 is in an indeterminate output state.
  • the transistors Tr9 and TrlO of the inverter unit 12 are simultaneously As a result, the through current flows through the transistors Tr9 and TrlO.
  • an intermediate potential Vn when such an intermediate potential Vn is transmitted to the subsequent circuit, it may cause an unexpected operation state (malfunction). Therefore, in order to prevent an excessive through current and malfunction caused by the power-on sequence, it is necessary to avoid output indefiniteness that occurs in the output extraction section 16.
  • Patent Documents 1 and 2 do not disclose or suggest any means for solving the problem.
  • an object of the present invention relates to a level converter circuit that converts a level of a signal in accordance with a voltage of a power supply, and to prevent an indefinite output due to a power-on sequence.
  • the potential of the output extraction unit is controlled in response to power-on to avoid the occurrence of indefinite output.
  • a first power supply side signal is level-converted to a second power supply side signal having a voltage different from that of the first power supply.
  • a pull-up circuit is provided in the output extraction portion of the signal whose level has been converted, and the output extraction portion is pulled up to a high potential in synchronization with power-on by the pull-up circuit.
  • the pull-up circuit raises the potential of the output extraction portion to a high potential in synchronization with the rise of the second power supply, and in response to the rise of the first power supply.
  • the potential of the output extraction unit may be configured to depend on the level of the signal on the first power supply side. With such a configuration, the second power Instable output can be avoided because the potential of the output extraction section is raised to a high potential in synchronization with the rise of the output.
  • the potential of the output extraction section depends on the signal level of the first power supply due to the rise of the first power supply, it is possible to take out the level comparison output related to the pull-up when the power is turned on.
  • the output extraction section is made conductive to the second power supply through the pull-up circuit in synchronization with the rise of the second power supply, thereby raising the voltage of the second power supply. It is good also as a structure. With such a configuration, the potential of the output extraction section can be raised to the voltage of the second power supply in synchronization with the rise of the second power supply.
  • the pull-up circuit includes a transistor inserted between the output extraction section and the second power source, and the transistor is turned on when the second power source is turned on. It is good also as a structure made to conduct to. With such a configuration, the voltage of the second power supply can be applied to the output extraction section in synchronization with the rise of the second power supply, and the potential can be raised to the voltage of the second power supply.
  • the pull-up circuit includes a transistor inserted between the output extraction unit and the second power supply, and the first power supply is connected to the gate of the transistor. It is good also as the structure which carried out. With such a configuration, the voltage of the second power supply can be stored in the output extraction section in synchronization with the rise of the second power supply, and the potential can be raised to the voltage of the second power supply. The current flowing in the transistor can be suppressed in response to the rise of the power supply.
  • the pull-up circuit includes a series circuit of a transistor and a resistor between the output extraction unit and the second power supply, and the first gate is connected to the first gate of the transistor.
  • the power supply voltage may be applied.
  • the pull-up circuit includes a series circuit of a plurality of transistors between the output extraction unit and the second power source, and the gate of each transistor of the series circuit The first power supply voltage may be applied.
  • the first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit, and the second power source is the semiconductor device. It may consist of an external power supply for the body integrated circuit!
  • a signal on the first power supply side is level-converted to a signal on the second power supply side having a voltage different from that of the first power supply.
  • the output of the signal output extraction unit may become indefinite.
  • the potential of the output extraction section is raised to a high potential in synchronization with the power-on.
  • Such processing can avoid indefinite output.
  • the intermediate potential output can be suppressed, and excessive current flow and malfunction can be prevented in the circuit at the rear stage of the output portion of the level conversion output.
  • the potential of the output extraction section is raised to a high potential in synchronization with the rise of the second power supply, and the output extraction section according to the rise of the first power supply.
  • This is a configuration in which the potential of the power source depends on the level of the signal on the first power supply side.
  • a signal on the first power supply side is level-converted to a signal on the second power supply side having a voltage different from that of the first power supply.
  • An electronic circuit comprising a level converter circuit, wherein a pull-up circuit is provided in the output extraction section for the level-converted signal, and the output extraction section is pulled up to a high potential in synchronization with power-on by the pull-up circuit. It is.
  • the pull-up circuit raises the potential of the output extraction unit to a high potential in synchronization with the rise of the second power supply, and outputs the output according to the rise of the first power supply.
  • the output extraction section is made conductive to the second power supply through the pull-up circuit in synchronization with the rise of the second power supply, thereby raising the voltage of the second power supply. It is good also as a structure.
  • the pull-up circuit includes the output extraction unit and the second power supply.
  • a transistor may be provided between the power source and the transistor, and the transistor may be turned on when the second power source is turned on.
  • the pull-up circuit includes a transistor inserted between the output extraction unit and the second power source, and the first power source is connected to a gate of the transistor.
  • the first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit
  • the second power source is constituted by an external power source of the semiconductor integrated circuit. May be.
  • FIG. 1 is a circuit diagram showing a level converter circuit related to the present invention.
  • FIG. 2 is a diagram showing an output waveform of a level converter circuit when power is turned on.
  • FIG. 3 is a circuit diagram showing a level converter circuit according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing an operation sequence as an example of a control method of the level converter circuit.
  • FIG. 5 is a diagram showing an output waveform of the level converter circuit when power is turned on.
  • FIG. 6 is a diagram showing an output waveform of the level converter circuit when power is turned on.
  • FIG. 7 is a diagram showing a current flowing through a pull-up circuit.
  • FIG. 8 is a diagram showing a level converter output.
  • FIG. 9 is a circuit diagram showing a level converter circuit according to a second embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a level converter circuit according to a third embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a level converter circuit according to a fifth embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a level converter circuit according to another embodiment of the present invention. Explanation of symbols
  • Vd2 voltage (second power supply)
  • FIG. 3 is a circuit diagram showing the level converter circuit according to the first embodiment.
  • the same parts as those of the level converter circuit shown in FIG. This level comparator circuit is configured using the level converter circuit shown in FIG. 1. This is an example, and the protection scope of the present invention is limited to the level converter circuit of this embodiment. is not.
  • the level converter circuit 2 voltage examples of the first and second power supplies as different power supplies
  • the level of the signal on the voltage Vdl (first power supply) side is converted to the signal on the voltage Vd2 (second power supply) side. Therefore, the level converter circuit 2 is provided with a level converting unit 4, and the output extracting unit 16 has a pull-up (PuU) that raises the potential of the output extracting unit 16 to a high potential in synchronization with power-on. -up) Circuit 18 is provided.
  • the pull-up circuit 18 is configured to forcibly raise the potential of the output extraction unit 16 that extracts the level-converted output to the voltage Vd2 of the second power supply in synchronization with power-on.
  • the pull-up circuit 18 is provided with a P-channel transistor Trl 1 as a pull-up transistor!
  • a voltage Vd2 is applied to the source of the transistor Trl 1 from the same power source as the level converting unit 4, and a voltage Vdl is applied to the gate of the transistor Trl 1 from the same power source as the inverter units 6 and 10. It has been added.
  • the source and gate of the transistor Trl are governed by different power supply voltages.
  • Vd2 (External voltage) [V]
  • the gate-source voltage Vgs of the transistor Trl l of the pull-up circuit 18 is
  • Vgs Vdl-Vd2>-Vd2 '' (2)
  • the system including the level converter circuit 2 is an electronic circuit such as a semiconductor integrated circuit incorporating the level converter circuit 2 or an electronic device including the electronic circuit.
  • the potential of the output extraction unit 16 depends on the output level of the level conversion unit 4. That is, Vd2 [V] is output when a high (H) level output is generated from the output extraction unit 16, and 0 [V] when a low (L) level output is generated from the output extraction unit 16. ] Is output.
  • FIG. 4 is a flowchart showing potential control of the output extraction unit corresponding to the power-on sequence.
  • This flowchart is an example of a control method for the level converter circuit 2.
  • step S5 When the voltage Vdl rises (Vdl> 0), the process proceeds from step S1 to step S4, and the above-described equation (2) is established.
  • the output of the level converting unit 4 that does not depend on the power-on sequence is set to a constant level, for example, the voltage Second, when the gate of the transistor Trl l is connected to another power supply, for example, the power supply on the voltage Vdl side, the voltage Vdl rises and shifts to normal operation. Can reduce the steady-state current flowing through the transistor Trl. That is, the amount of steady current can be greatly reduced compared to the current value when the gate of the transistor Trl is fixed to 0 [V].
  • FIG. Figure 5 shows the rise of the power supply voltage and the potential change at the output extraction section (in the case of H output) .
  • Figure 6 shows the rise of the power supply voltage and the potential change at the output extraction section (in the case of L output).
  • Fig. 7 is a diagram showing changes in the current flowing through the transistor Trl l of the pull-up circuit, and
  • Fig. 8 is a diagram showing the level converter output.
  • the transistor Tr 11 becomes conductive, and the potential VD of the output extraction unit 16 (point D) follows the voltage Vd 2 and becomes the same level.
  • the transistor Tr11 becomes conductive, and the potential VD of the output extraction section 16 (point D) follows the voltage Vd2 and becomes the same level.
  • VD 0 [V] is transferred between time t3 and time t4, and the L output of the level conversion unit 4 is taken out.
  • the gate of the transistor Trl l can be grounded to the Gnd potential. However, the gate is maintained and fixed at such a potential. If this is done, the steady-state current value will increase as shown in Fig. 7b, and power consumption cannot be reduced.
  • FIG. 9 is a circuit diagram showing a level converter circuit according to the second embodiment.
  • the same parts as those of the level converter circuit 2 shown in FIG. 9 are identical parts as those of the level converter circuit 2 shown in FIG.
  • the pull-up circuit 18 is configured by a series circuit of P-channel transistors Trl 1 and Trl 2 as a plurality of pull-up transistors. A common voltage Vdl is supplied to the gates of these transistors Trl 1 and Trl 2.
  • the potential of the output extraction unit 16 is raised to the voltage Vd2 and maintained at that potential. Therefore, the occurrence of the intermediate potential Vn is avoided.
  • Such a configuration also provides the same function as the level converter circuit 2 shown in FIG.
  • FIG. 10 is a circuit diagram showing a level converter circuit according to the third embodiment.
  • the same parts as those of the level converter circuit 2 shown in FIG. 3 or FIG. 9 are denoted by the same reference numerals.
  • the pull-up circuit 18 is configured by a parallel circuit of transistors Trl 1 and Trl 2 as a plurality of pull-up transistors. A common voltage Vdl is fed to the gates of these transistors Trl 1 and Trl2.
  • FIG. 11 is a circuit diagram showing a level converter circuit according to the fourth embodiment.
  • the same parts as those of the level converter circuit 2 shown in FIG. 11 are identical to the level converter circuit 2 shown in FIG.
  • the pull-up circuit 18 is configured as a series circuit including a transistor Trl 1 and a resistor 20 as a pull-up transistor.
  • the voltage Vdl is supplied to the gate of the transistor Trl l.
  • the potential of the extraction unit 16 is raised to a voltage close to the voltage Vd2 and maintained at that potential. Therefore, also in this case, occurrence of the intermediate potential Vn is avoided. Even with such a configuration, a function similar to that of the level converter circuit 2 shown in FIG. 3 can be obtained.
  • FIG. 12 is a circuit diagram showing a semiconductor integrated circuit according to the fifth embodiment.
  • the same parts as those of the level converter circuit 2 shown in FIG. 12 are identical parts as those of the level converter circuit 2 shown in FIG.
  • the semiconductor integrated circuit 22 is an example of an electronic circuit, and is configured by installing a number of circuits and elements such as the internal power supply circuit 24 as a first power supply together with the level converter circuit 2 described above. Yes.
  • the internal power supply circuit 24 is supplied with the voltage Vd2 from the external power supply circuit 26 installed outside the semiconductor integrated circuit 22 in order to reduce the power consumption inside the semiconductor integrated circuit 22, and the voltage Vdl lower than the voltage Vd2 And supplying this voltage Vdl to the internal circuit of the semiconductor integrated circuit 22 reduces the power consumption of the internal circuit.
  • the voltage of the transistor Trl l of the level conversion unit 4, the inverter unit 12, and the pull-up circuit 18 is supplied from the external power supply circuit 26.
  • 6, 10 and the gate of transistor Trl l are internal Power circuit 24 power Voltage Vdl is applied.
  • the function as described above can be obtained, and the potential of the output extraction unit 16 of the level conversion unit 4 is synchronized with the power-on sequence.
  • Bow I is raised to voltage Vd2 and maintained. Since this potential is applied to the inverter section 12, no through current flows.
  • the potential of the output extraction unit 16 changes according to the level conversion output potential, and the level conversion output is applied to the inverter unit 12 during system operation.
  • Other functions are as described above.
  • Vd2> Vdl has been described for the voltages Vdl and Vd2.
  • the pull-up circuit 18 according to the present invention can also be used when Vdl> Vd2.
  • a voltage converter 28 added with a broken line may be installed in the semiconductor integrated circuit 22 shown in FIG. 12, and the voltage VdO may be set to be lower than Vd2 and applied to the gate of the transistor Trl1.
  • the present invention relates to the output extraction unit 16 of the level conversion unit 4 of the level converter circuit 2.
  • One characteristic is that the potential of the level converter 4 is raised to the voltage of the second power source when the power is turned on. Therefore, the level converting unit 4 is limited to the configurations shown in FIGS. 3, 9, 10, and 11. is not.
  • the level converter circuit, the control method thereof, or the electronic circuit according to the present invention is The output can be arbitrarily fixed (specified: HZL), and has the following technical advantages.
  • the level converter circuit 2 (Fig. 3, 9, 10, or 11) is provided, and the inverter T28 is also equipped with transistors Trl3 and Trl4 in the previous stage, and the transistors Trl5 and Trl6 in the subsequent stage.
  • the present invention relates to a level converter circuit that converts a level of a first power supply side signal into a second power supply side signal having a voltage different from that of the first power supply, and relates to a voltage rise in a power-on sequence. This is useful because it can avoid indefinite output due to irregularities and can prevent through currents and malfunctions that occur on the output side.

Abstract

A level converter circuit (2) level-converts a signal used in a circuit of a first power supply (internal power supply circuit (24) generating a voltage Vd1) to a signal used in a circuit of a second power supply generating a different voltage from the first power supply (external power supply circuit (26) generating a voltage Vd2), and outputs the converted signal. A pull-up circuit (18) is provided at an output terminal (16) for the level-converted signal, and pulls up the output terminal (16) to a high voltage (for example, the voltage Vd2) in synchronization with the power-on transient, thereby preventing the occurrence of an unstable output during the power-on period.

Description

明 細 書  Specification
レベルコンバータ回路、その制御方法及び電子回路  Level converter circuit, control method thereof, and electronic circuit
技術分野  Technical field
[0001] 本発明は、異なる電圧の電源に応じて信号のレベル変換、例えば、低電圧電源側 の信号を高電圧電源側の信号にレベル変換するレベルコンバータ回路に関し、特に 、電源投入シーケンスに起因する不定出力の発生を抑止したレベルコンバータ回路 、その制御方法及び電子回路に関する。  TECHNICAL FIELD [0001] The present invention relates to a level converter circuit that performs level conversion of a signal according to power supplies of different voltages, for example, level conversion of a signal on a low voltage power supply side to a signal on a high voltage power supply side. The present invention relates to a level converter circuit that suppresses the occurrence of indefinite output, a control method thereof, and an electronic circuit.
背景技術  Background art
[0002] 一般に、電子回路として例えば、 LSI (Large Scale Integration )から取り出された信 号が外部回路に伝送される場合に、 LSI側の電源電圧と外部回路側の電源電圧と の間に電圧差があると、外部回路の電源の電圧に対応する信号にレベル変換する 必要がある。そこで、信号の入出力に用いられる入出力(IZO)回路には、電圧に対 応するレベルに変換するためのレベルコンバータ回路が用いられる。  In general, for example, when a signal taken out from an LSI (Large Scale Integration) is transmitted to an external circuit as an electronic circuit, a voltage difference is generated between the power supply voltage on the LSI side and the power supply voltage on the external circuit side. If there is, the level must be converted to a signal corresponding to the voltage of the external circuit power supply. Therefore, a level converter circuit for converting to a level corresponding to a voltage is used for an input / output (IZO) circuit used for signal input / output.
[0003] ところで、 LSIの内部回路では、消費電力を低減するために、多電源が使用され、 例えば、外部から供給される外部電源に対して、内部回路用のより低い電圧の内部 電源を生成させ、この内部電源を内部回路に供給することにより、内部回路の消費 電力を低減させることができる。しかし、低い電圧の電源側の信号を高い電圧の電源 側の回路に伝送する場合には、高 、電圧の電源側の信号にレベル変換する必要が ある。  [0003] By the way, in an LSI internal circuit, multiple power supplies are used to reduce power consumption. For example, a lower voltage internal power supply for an internal circuit is generated with respect to an external power supply supplied from the outside. By supplying this internal power supply to the internal circuit, the power consumption of the internal circuit can be reduced. However, when a low-voltage power-side signal is transmitted to a high-voltage power-side circuit, it is necessary to perform level conversion to a high-voltage power-side signal.
[0004] このようなレベル変換に用いるレベルコンバータ回路に関し、正の高電位における 信号伝達ノードを強制プルアップするための強制プルアップ回路が備えられ、入力 信号変遷時のエッジに同期したワンショットパルス信号により、前記信号伝達ノードを 強制プルアップするもの(例えば、特許文献 1)、電源投入時であって、低電圧電源 側の立ち上がらない期間に導通する初期化回路を備え、電源投入時に中間的なレ ベルになるノードを前記初期化回路により、グランド電位に引き下げ、又は高電圧電 源側の電位に引き上げるもの(例えば、特許文献 2)等がある。  [0004] A level converter circuit used for such level conversion is provided with a forced pull-up circuit for forcibly pulling up a signal transmission node at a positive high potential, and a one-shot pulse synchronized with an edge at the time of transition of an input signal The signal transmission node is forcibly pulled up by a signal (for example, Patent Document 1), and includes an initialization circuit that conducts when the power is turned on and does not rise on the low-voltage power supply side. There is a type in which a node at a low level is lowered to the ground potential by the initialization circuit or raised to the potential on the high voltage power source side (for example, Patent Document 2).
特許文献 1:特開 2000— 269804号公報 特許文献 2 :特開 2003— 163590号公報 Patent Document 1: JP 2000-269804 A Patent Document 2: Japanese Patent Laid-Open No. 2003-163590
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、従来のレベルコンバータ回路の電源投入シーケンス(異なる電源の投入 順位)、例えば、高電圧電源側電圧 (レベルコンバータ回路の出力側の電圧)の立上 りが早ぐ低電圧電源側電圧 (レベルコンバータ回路の入力側の電圧)の立上りが遅 い場合には、レベルコンバータ出力が不定になることがあり、その出力を受ける出力 側回路、その出力側回路を構成する例えば、 C MOS回路では貫通電流による過 電流が流れるおそれがある。  [0005] By the way, the conventional power supply sequence of the level converter circuit (different power supply sequence), for example, the high voltage power supply side voltage (the output side voltage of the level converter circuit) rises quickly. If the rise of the voltage (voltage on the input side of the level converter circuit) is slow, the level converter output may become unstable, and the output side circuit that receives the output and the output side circuit, for example, C MOS There is a risk of overcurrent due to through current in the circuit.
[0006] このレベルコンバータ回路に生ずる出力の不定状態について、図 1に示すレベルコ ンバータ回路を参照して説明する。  [0006] The output indefinite state generated in the level converter circuit will be described with reference to the level converter circuit shown in FIG.
[0007] このレベルコンバータ回路 2では、電圧 Vdlの第 1の電源側の信号が電圧 Vd2 (こ の場合、 Vd2> Vdl)の第 2の電源側の信号にレベル変換される。レベルコンバート 部 4には、第 1のトランジスタ Trl、第 2のトランジスタ Tr2、第 3のトランジスタ Tr3、第 4 のトランジスタ Tr4が備えられ、トランジスタ Trl、Tr2は Pチャネルトランジスタ、トラン ジスタ Tr3、 Tr4は Nチャネルトランジスタで構成されている。トランジスタ Trl、 Tr2の ソースには共通に電圧 Vd2が加えられ、トランジスタ Trlのゲートはトランジスタ Tr2、 Tr4のドレインに接続され、トランジスタ Tr2のゲートはトランジスタ Trl、 Tr3のドレイ ンに接続されている。各トランジスタ Tr3、 Tr4のソースは接地されて接地(Gnd)電位 に維持されている。  [0007] In the level converter circuit 2, the level of the signal on the first power supply side with the voltage Vdl is converted into the signal on the second power supply side with the voltage Vd2 (in this case, Vd2> Vdl). The level converting unit 4 includes a first transistor Trl, a second transistor Tr2, a third transistor Tr3, and a fourth transistor Tr4. The transistors Trl and Tr2 are P-channel transistors, and the transistors Tr3 and Tr4 are N It is composed of channel transistors. A voltage Vd2 is commonly applied to the sources of the transistors Trl and Tr2, the gate of the transistor Trl is connected to the drains of the transistors Tr2 and Tr4, and the gate of the transistor Tr2 is connected to the drains of the transistors Trl and Tr3. The sources of the transistors Tr3 and Tr4 are grounded and maintained at the ground (Gnd) potential.
[0008] トランジスタ Tr3のゲート側にはインバータ部 6が設置され、入力端子 8にカ卩えられ た信号 Aを反転させた信号 B (反転信号 ZA)が加えられる。その反転信号 Bを生成 するインバータ部 6は、第 5のトランジスタ Tr5及び第 6のトランジスタ Tr6で構成され ている。トランジスタ Tr 5は Pチャネルトランジスタ、トランジスタ Tr6は Nチャネルトラン ジスタで構成され、各ゲートを共通化し、共通の入力端子 8を備えている。トランジス タ Tr5のソースには電圧 Vdlが加えられ、トランジスタ Tr6のソースは接地されて Gnd 電位に維持されている。このインバータ部 6の出力は、トランジスタ Tr5、 Tr6の共通 化されたドレイン力も取り出され、トランジスタ Tr3のゲートにカ卩えられている。 [0009] また、トランジスタ Tr4のゲート側にはインバータ部 10が設置され、インバータ部 6の 出力、即ち、信号 Bを反転した信号 C{ (反転信号 ZA)の反転信号 = A}が加えられ る。インバータ部 10は第 7のトランジスタ Tr 7及び第 8のトランジスタ Tr8で構成されて いる。トランジスタ Tr7は Pチャネルトランジスタ、トランジスタ Tr8は Nチャネルトランジ スタで構成され、共通化されたゲートにインバータ部 6の出力が加えられている。トラ ンジスタ Tr7のソースには電圧 Vdlが加えられ、トランジスタ Tr8のソースは接地され て Gnd電位に維持されている。このインバータ部 10の出力は、トランジスタ Tr7、 Tr8 の共通化されたドレインから取り出され、トランジスタ Tr4のゲートに加えられている。 [0008] An inverter unit 6 is installed on the gate side of the transistor Tr3, and a signal B (inverted signal ZA) obtained by inverting the signal A received at the input terminal 8 is applied. The inverter unit 6 that generates the inverted signal B includes a fifth transistor Tr5 and a sixth transistor Tr6. Transistor Tr 5 is a P-channel transistor, and transistor Tr 6 is an N-channel transistor. Each gate is shared and a common input terminal 8 is provided. The voltage Vdl is applied to the source of the transistor Tr5, and the source of the transistor Tr6 is grounded and maintained at the Gnd potential. The output of the inverter section 6 is also taken out of the common drain force of the transistors Tr5 and Tr6 and is stored in the gate of the transistor Tr3. [0009] In addition, an inverter unit 10 is installed on the gate side of the transistor Tr4, and an output of the inverter unit 6, that is, an inverted signal = A} of the signal C {(inverted signal ZA) obtained by inverting the signal B is added. . The inverter unit 10 includes a seventh transistor Tr7 and an eighth transistor Tr8. Transistor Tr7 is a P-channel transistor, and transistor Tr8 is an N-channel transistor. The output of inverter 6 is applied to the common gate. The voltage Vdl is applied to the source of the transistor Tr7, and the source of the transistor Tr8 is grounded and maintained at the Gnd potential. The output of the inverter unit 10 is taken out from the common drain of the transistors Tr7 and Tr8 and added to the gate of the transistor Tr4.
[0010] そして、レベルコンバート部 4から取り出された信号 Dは、インバータ部 12で反転さ れ、出力端子 14から信号 Eとして取り出される。この場合、インバータ部 12は、第 9の トランジスタ Tr9及び第 10のトランジスタ TrlOで構成されて!、る。トランジスタ Tr9は P チャネルトランジスタ、トランジスタ TrlOは Nチャネルトランジスタで構成され、共通化 されたゲートにはレベルコンバート部 4の出力が加えられている。トランジスタ Tr9のソ 一スには電圧 Vd2が加えられ、トランジスタ TrlOのソースは接地されて Gnd電位に 維持されている。このインバータ部 12で反転させた信号力 トランジスタ Tr9、 TrlO のドレインに設けられた出力端子 14から取り出される。  Then, the signal D extracted from the level converting unit 4 is inverted by the inverter unit 12 and extracted from the output terminal 14 as the signal E. In this case, the inverter unit 12 includes a ninth transistor Tr9 and a tenth transistor TrlO. The transistor Tr9 is a P-channel transistor, and the transistor TrlO is an N-channel transistor. The output of the level conversion unit 4 is applied to the common gate. A voltage Vd2 is applied to the source of the transistor Tr9, and the source of the transistor TrlO is grounded and maintained at the Gnd potential. The signal force inverted by the inverter 12 is taken out from the output terminal 14 provided at the drains of the transistors Tr9 and TrlO.
[0011] このレベルコンバータ回路 2は、電圧 Vdlの電源側の信号を電圧 Vd2の電源側の 信号にレベル変換する場合に用いられており、各電圧 Vdl、 Vd2について例えば、 Vdl = l. 2〔V〕、 Vd2= l. 8〔V〕である。  [0011] This level converter circuit 2 is used when level-converting a signal on the power supply side of the voltage Vdl to a signal on the power supply side of the voltage Vd2. For example, Vdl = l. V], Vd2 = l. 8 [V].
[0012] そこで、通常動作では、電圧 Vdlのレベルの信号 Aが入力端子 8にカ卩えられると、 インバータ部 6を介してトランジスタ Tr3のゲートに加えられ、インバータ部 6、 10を介 してトランジスタ Tr4のゲートに加えられる。この結果、レベルコンバート部 4の出力点 Dには、電圧 Vd2に対応するレベルシフトされた信号が得られ、この信号がインバー タ部 12で反転され、出力端子 14から出力信号 Eとして取り出される。トランジスタ Tr9 、 10が同時に導通しなければ、各トランジスタ Tr9、 TrlOに貫通電流が流れることは ない。  [0012] Therefore, in normal operation, when the signal A at the level of the voltage Vdl is supplied to the input terminal 8, it is added to the gate of the transistor Tr3 via the inverter 6 and via the inverters 6 and 10. Added to the gate of transistor Tr4. As a result, a level-shifted signal corresponding to the voltage Vd2 is obtained at the output point D of the level converting unit 4, and this signal is inverted by the inverter unit 12 and taken out from the output terminal 14 as the output signal E. If the transistors Tr9 and Tr10 do not conduct at the same time, no through current flows through the transistors Tr9 and TrlO.
[0013] しカゝしながら、電源投入時には、電源投入シーケンスにより、第 2の電源側の電圧 V d2が第 1の電源側の電圧 Vdlの電源より先に立ち上がると、電圧 Vdl、 Vd2には、 Vd2= (外部電圧)〔V〕 [0013] However, when the power is turned on, if the voltage V d2 on the second power supply side rises before the power of the voltage Vdl on the first power supply side by the power-on sequence, the voltages Vdl and Vd2 , Vd2 = (External voltage) [V]
Vdl = 0 [V]  Vdl = 0 [V]
となる期間が生起することになる。通常のシステム動作では、トランジスタ Tr3、 Tr4は 同時にオン又はオフになることはないが、この期間では、電圧 Vdl = 0〔V〕により、ィ ンバータ部 6、 10の動作が停止状態であるから、トランジスタ Tr3、 Tr4のゲート電圧 は 0〔V〕となり、両トランジスタ Tr3、 Tr4は同時にオフとなる。このような状態が生起す ると、レベルコンバート部 4の出力取出部 16 (D点)は出力不定となり、即ち、中間電 位 Vnになる可能性がある。この中間電位 Vnは、通常のシステム動作の出力 H又は 出力 Lとは異なる両者の中間的な不確定なレベルの出力状態である。  Will occur. In normal system operation, the transistors Tr3 and Tr4 are not turned on or off at the same time, but during this period, the operation of the inverter units 6 and 10 is stopped due to the voltage Vdl = 0 [V]. The gate voltages of transistors Tr3 and Tr4 are 0 [V], and both transistors Tr3 and Tr4 are turned off simultaneously. If such a condition occurs, the output extraction unit 16 (point D) of the level conversion unit 4 may become indeterminate, that is, may have an intermediate potential Vn. This intermediate potential Vn is an output state of an indeterminate level between the two different from the output H or output L of normal system operation.
[0014] このような中間電位 Vnが後段側のインバータ部 12のトランジスタ Tr9、 TrlOのゲー トに加わると、各トランジスタ Tr9、 TrlOが同時に導通することになる。トランジスタ Tr 9、 TrlOが導通すると、トランジスタ Tr9、 TrlOには電源側力も接地側に過大な貫通 電流が流れる。多数のレベルコンバート部 4やインバータ部 12を備える LSIでは、電 源投入時に過大電流が流れることになり、不都合である。  [0014] When such an intermediate potential Vn is applied to the gates of the transistors Tr9 and TrlO of the inverter 12 on the rear stage side, the transistors Tr9 and TrlO are simultaneously turned on. When the transistors Tr9 and TrlO are turned on, an excessive through current flows through the transistors Tr9 and TrlO to the ground side. An LSI with a large number of level conversion units 4 and inverter units 12 is inconvenient because an excessive current flows when the power is turned on.
[0015] このレベルコンバータ回路 2の電源投入時の出力波形について、図 2を参照して説 明する。図 2は、電源投入時のレベルコンバータ回路の動作シミュレーションを示す 図であり、電圧 Vdl、 Vd2の推移、出力取出部 16 (D点)の電位変化を示している。  [0015] The output waveform of the level converter circuit 2 when the power is turned on will be described with reference to FIG. Fig. 2 is a diagram showing an operation simulation of the level converter circuit when the power is turned on, and shows the transition of the voltages Vdl and Vd2 and the potential change of the output extraction section 16 (point D).
[0016] 時点 tl ( = 0. E + 00〔s〕)で電源が投入され、電圧 Vd2は、所定の時間の経過を 経て、時点 t2 ( = l. E— 05〔s〕)で Vd2= l. 8〔V〕に到達する。その後、時点 t3 ( = 3. E— 05〔s〕)で電圧 Vdlが立上りを開始し、時点 t4 (=4. E— 05〔s〕)で Vdl = l. 2 [V]に到達する。時点 tl〜t3の期間では、 Vdl = 0〔V〕である力 D点の電位 VD は、電圧 Vd2に追従して上昇し、時点 t2で一定電圧 (Vn^O. 42〔V〕)に推移した後 、時点 txで電圧 Vdlに一致し、時点 txから時点 tyのわずかの期間で電圧 Vdlと一 致して上昇した後、時点 tyで Vd2 ( = 1. 8〔V〕)に上昇して 、る。  [0016] The power is turned on at time tl (= 0. E + 00 [s]), and the voltage Vd2 passes Vd2 = at time t2 (= l. E-05 [s]) after a lapse of a predetermined time. l. Reach 8 [V]. After that, the voltage Vdl starts to rise at time t3 (= 3. E—05 [s]), and reaches Vdl = l. 2 [V] at time t4 (= 4. E—05 [s]). During the period from time tl to t3, the potential VD at force D where Vdl = 0 [V] rises following the voltage Vd2 and changes to a constant voltage (Vn ^ O. 42 [V]) at time t2. After that, it coincides with the voltage Vdl at time tx, rises to coincide with the voltage Vdl for a short period from time tx to time ty, and then rises to Vd2 (= 1.8 [V]) at time ty. The
[0017] このような電位 VDの変化について、時点 t2から時点 txに至る期間(中間電位期間 Tn)では、中間電位 Vnを呈する。この中間電位 Vnは、既述した通り、電位 0〔V〕と電 圧 Vd2との間の不確定な電圧値である。即ち、出力取出部 16は出力不定の状態と なる。この中間電位期間 Tnでは、インバータ部 12のトランジスタ Tr9、 TrlOを同時に 導通させることになり、トランジスタ Tr9、 TrlOには多大な貫通電流が流れる。また、 このような中間電位 Vnが後段回路に伝送された場合、予想できない動作状態 (誤動 作)を惹起させる原因になる。そこで、電源投入シーケンスに起因する過大な貫通電 流や誤動作の防止には、出力取出部 16に生起する出力不定を回避することが必要 である。 [0017] With regard to such a change in the potential VD, the intermediate potential Vn is exhibited in the period from the time t2 to the time tx (intermediate potential period Tn). This intermediate potential Vn is an indefinite voltage value between the potential 0 [V] and the voltage Vd2 as described above. That is, the output extraction unit 16 is in an indeterminate output state. In this intermediate potential period Tn, the transistors Tr9 and TrlO of the inverter unit 12 are simultaneously As a result, the through current flows through the transistors Tr9 and TrlO. In addition, when such an intermediate potential Vn is transmitted to the subsequent circuit, it may cause an unexpected operation state (malfunction). Therefore, in order to prevent an excessive through current and malfunction caused by the power-on sequence, it is necessary to avoid output indefiniteness that occurs in the output extraction section 16.
[0018] 斯カる課題について、特許文献 1、 2にはその開示はなぐその解決手段について の開示や示唆もない。  [0018] With respect to such a problem, Patent Documents 1 and 2 do not disclose or suggest any means for solving the problem.
[0019] そこで、本発明の目的は、電源の電圧に対応して信号をレベル変換するレベルコ ンバータ回路に関し、電源投入シーケンスによる不定出力が生じるのを防止すること にある。  Accordingly, an object of the present invention relates to a level converter circuit that converts a level of a signal in accordance with a voltage of a power supply, and to prevent an indefinite output due to a power-on sequence.
[0020] 斯かる目的を詳細に述べれば、電源投入に対応して出力取出部の電位を制御し、 不定出力の発生を回避することにある。  [0020] To describe in detail such an object, the potential of the output extraction unit is controlled in response to power-on to avoid the occurrence of indefinite output.
課題を解決するための手段  Means for solving the problem
[0021] 上記目的を達成するため、本発明の第 1の側面は、第 1の電源側の信号を、前記 第 1の電源と異なる電圧の第 2の電源側の信号にレベル変換して取り出すレベルコ ンバータ回路であって、レベル変換された前記信号の出力取出部にプルアップ回路 を備え、該プルアップ回路により、電源投入に同期して前記出力取出部を高電位に 引き上げる構成である。 [0021] To achieve the above object, according to a first aspect of the present invention, a first power supply side signal is level-converted to a second power supply side signal having a voltage different from that of the first power supply. In the level converter circuit, a pull-up circuit is provided in the output extraction portion of the signal whose level has been converted, and the output extraction portion is pulled up to a high potential in synchronization with power-on by the pull-up circuit.
[0022] 斯カる構成において、第 2の電源が第 1の電源より先に立ち上がる場合に、前記信 号の出力取出部の出力が不定状態になるおそれがあるが、プルアップ回路の設置 により、電源投入に同期し、出力取出部の電位が高電位に引き上げられ、出力不定 を回避することができる。斯カる構成によれば、中間電位出力を抑制することができる 。この結果、レベルコンバート出力の取出部の後段側回路に過大電流の通流や誤動 作の発生が防止される。  [0022] In such a configuration, when the second power supply rises before the first power supply, the output of the output extraction unit of the signal may become indefinite. In synchronism with power-on, the potential of the output extraction section is raised to a high potential, and output indefiniteness can be avoided. According to such a configuration, it is possible to suppress intermediate potential output. As a result, excessive current flow and malfunction can be prevented in the circuit on the subsequent stage of the level conversion output extraction section.
[0023] このレベルコンバータ回路において、前記プルアップ回路は、前記第 2の電源の立 上りに同期して前記出力取出部の電位を高電位に引き上げ、前記第 1の電源の立 上りに応じて前記出力取出部の電位を、前記第 1の電源側の信号のレベルに依存さ せる構成としてもよい。斯かる構成とすれば、電源投入シーケンスにより、第 2の電源 の立上りに同期して出力取出部の電位が高電位に引き上げられるので、出力不定を 回避できる。また、第 1の電源の立上りにより、出力取出部の電位が第 1の電源側の 信号のレベルに依存するので、電源投入時のプルアップに関係なぐレベルコンパ ート出力を取り出すことができる。 In this level converter circuit, the pull-up circuit raises the potential of the output extraction portion to a high potential in synchronization with the rise of the second power supply, and in response to the rise of the first power supply. The potential of the output extraction unit may be configured to depend on the level of the signal on the first power supply side. With such a configuration, the second power Instable output can be avoided because the potential of the output extraction section is raised to a high potential in synchronization with the rise of the output. In addition, since the potential of the output extraction section depends on the signal level of the first power supply due to the rise of the first power supply, it is possible to take out the level comparison output related to the pull-up when the power is turned on.
[0024] このレベルコンバータ回路において、前記第 2の電源の立上りに同期して前記出力 取出部を前記プルアップ回路を通して前記第 2の電源に導通させることにより、前記 第 2の電源の電圧に引き上げる構成としてもよい。斯かる構成とすれば、第 2の電源 の立上りに同期して出力取出部の電位を第 2の電源の電圧に引き上げることができ る。  In this level converter circuit, the output extraction section is made conductive to the second power supply through the pull-up circuit in synchronization with the rise of the second power supply, thereby raising the voltage of the second power supply. It is good also as a structure. With such a configuration, the potential of the output extraction section can be raised to the voltage of the second power supply in synchronization with the rise of the second power supply.
[0025] このレベルコンバータ回路において、前記プルアップ回路は、前記出力取出部と前 記第 2の電源との間に挿入されたトランジスタを備え、該トランジスタを前記第 2の電 源の投入の際に導通させる構成としてもよい。斯かる構成とすれば、第 2の電源の立 上りに同期して出力取出部に第 2の電源の電圧を加え、その電位を第 2の電源の電 圧に引き上げることができる。  [0025] In this level converter circuit, the pull-up circuit includes a transistor inserted between the output extraction section and the second power source, and the transistor is turned on when the second power source is turned on. It is good also as a structure made to conduct to. With such a configuration, the voltage of the second power supply can be applied to the output extraction section in synchronization with the rise of the second power supply, and the potential can be raised to the voltage of the second power supply.
[0026] このレベルコンバータ回路において、前記プルアップ回路は、前記出力取出部と前 記第 2の電源との間に挿入されたトランジスタを備え、前記トランジスタのゲートに前 記第 1の電源を接続した構成としてもよい。斯かる構成とすれば、第 2の電源の立上り に同期して出力取出部に第 2の電源の電圧をカ卩え、その電位を第 2の電源の電圧に 引き上げることができるとともに、第 1の電源の立上りに応じてトランジスタに流れる電 流を抑制することができる。  In this level converter circuit, the pull-up circuit includes a transistor inserted between the output extraction unit and the second power supply, and the first power supply is connected to the gate of the transistor. It is good also as the structure which carried out. With such a configuration, the voltage of the second power supply can be stored in the output extraction section in synchronization with the rise of the second power supply, and the potential can be raised to the voltage of the second power supply. The current flowing in the transistor can be suppressed in response to the rise of the power supply.
[0027] このレベルコンバータ回路において、前記プルアップ回路は、前記出力取出部と前 記第 2の電源との間にトランジスタと抵抗との直列回路を備え、前記トランジスタのゲ ートに前記第 1の電源の電圧を加える構成としてもよい。  In this level converter circuit, the pull-up circuit includes a series circuit of a transistor and a resistor between the output extraction unit and the second power supply, and the first gate is connected to the first gate of the transistor. The power supply voltage may be applied.
[0028] このレベルコンバータ回路において、前記プルアップ回路は、前記出力取出部と前 記第 2の電源との間に複数のトランジスタの直列回路を備え、この直列回路の前記各 トランジスタのゲートに前記第 1の電源の電圧を加える構成としてもよい。  [0028] In this level converter circuit, the pull-up circuit includes a series circuit of a plurality of transistors between the output extraction unit and the second power source, and the gate of each transistor of the series circuit The first power supply voltage may be applied.
[0029] このレベルコンバータ回路において、前記第 1の電源は、前記レベルコンバータ回 路と共通の半導体集積回路の内部電源で構成され、前記第 2の電源は、前記半導 体集積回路の外部電源で構成されてもよ!、。 [0029] In this level converter circuit, the first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit, and the second power source is the semiconductor device. It may consist of an external power supply for the body integrated circuit!
[0030] 上記目的を達成するため、本発明の第 2の側面は、第 1の電源側の信号を、前記 第 1の電源と異なる電圧の第 2の電源側の信号にレベル変換して取り出すレベルコ ンバータ回路の制御方法であって、レベル変換された前記信号を取り出すための出 力取出部の電位を、電源投入に同期して高電位に引き上げる構成である。  In order to achieve the above object, according to a second aspect of the present invention, a signal on the first power supply side is level-converted to a signal on the second power supply side having a voltage different from that of the first power supply. A method for controlling a level converter circuit, wherein the potential of an output extraction unit for extracting the level-converted signal is raised to a high potential in synchronization with power-on.
[0031] 斯カる構成において、第 2の電源が第 1の電源より先に立ち上がる場合に、前記信 号の出力取出部の出力が不定状態になるおそれがある。既述の構成によれば、電 源投入に同期し、出力取出部の電位を高電位に引き上げる。このような処理により、 出力不定を回避することができる。即ち、中間電位出力を抑制することができ、レべ ルコンバート出力の取出部の後段側回路に過大電流の通流や誤動作の発生が防止 される。  [0031] In such a configuration, when the second power supply rises before the first power supply, the output of the signal output extraction unit may become indefinite. According to the configuration described above, the potential of the output extraction section is raised to a high potential in synchronization with the power-on. Such processing can avoid indefinite output. In other words, the intermediate potential output can be suppressed, and excessive current flow and malfunction can be prevented in the circuit at the rear stage of the output portion of the level conversion output.
[0032] このレベルコンバータ回路の制御方法において、前記第 2の電源の立上りに同期し て前記出力取出部の電位を高電位に引き上げ、前記第 1の電源の立上りに応じて前 記出力取出部の電位を、前記第 1の電源側の信号のレベルに依存させる構成として ちょい。  [0032] In this level converter circuit control method, the potential of the output extraction section is raised to a high potential in synchronization with the rise of the second power supply, and the output extraction section according to the rise of the first power supply. This is a configuration in which the potential of the power source depends on the level of the signal on the first power supply side.
[0033] 上記目的を達成するため、本発明の第 3の側面は、第 1の電源側の信号を、前記 第 1の電源と異なる電圧の第 2の電源側の信号にレベル変換して取り出すレベルコ ンバータ回路を備える電子回路であって、レベル変換された前記信号の出力取出部 にプルアップ回路を備え、該プルアップ回路により、電源投入に同期して前記出力 取出部を高電位に引き上げる構成である。  In order to achieve the above object, according to a third aspect of the present invention, a signal on the first power supply side is level-converted to a signal on the second power supply side having a voltage different from that of the first power supply. An electronic circuit comprising a level converter circuit, wherein a pull-up circuit is provided in the output extraction section for the level-converted signal, and the output extraction section is pulled up to a high potential in synchronization with power-on by the pull-up circuit. It is.
[0034] この電子回路において、前記プルアップ回路は、前記第 2の電源の立上りに同期し て前記出力取出部の電位を高電位に引き上げ、前記第 1の電源の立上りに応じて前 記出力取出部の電位を、前記第 1の電源側の信号のレベルに依存させる構成として ちょい。  [0034] In this electronic circuit, the pull-up circuit raises the potential of the output extraction unit to a high potential in synchronization with the rise of the second power supply, and outputs the output according to the rise of the first power supply. Choose a configuration in which the potential of the extraction part depends on the level of the signal on the first power supply side.
[0035] この電子回路において、前記第 2の電源の立上りに同期して前記出力取出部を前 記プルアップ回路を通して前記第 2の電源に導通させることにより、前記第 2の電源 の電圧に引き上げる構成としてもよい。  [0035] In this electronic circuit, the output extraction section is made conductive to the second power supply through the pull-up circuit in synchronization with the rise of the second power supply, thereby raising the voltage of the second power supply. It is good also as a structure.
[0036] この電子回路において、前記プルアップ回路は、前記出力取出部と前記第 2の電 源との間に挿入されたトランジスタを備え、該トランジスタを前記第 2の電源の投入の 際に導通させる構成としてもよい。 [0036] In this electronic circuit, the pull-up circuit includes the output extraction unit and the second power supply. A transistor may be provided between the power source and the transistor, and the transistor may be turned on when the second power source is turned on.
[0037] この電子回路において、前記プルアップ回路は、前記出力取出部と前記第 2の電 源との間に挿入されたトランジスタを備え、前記トランジスタのゲートに前記第 1の電 源を接続した構成としてもょ ヽ。 [0037] In this electronic circuit, the pull-up circuit includes a transistor inserted between the output extraction unit and the second power source, and the first power source is connected to a gate of the transistor. As a configuration.
[0038] この電子回路において、前記第 1の電源は、前記レベルコンバータ回路と共通の半 導体集積回路の内部電源で構成され、前記第 2の電源は、前記半導体集積回路の 外部電源で構成してもよい。 [0038] In this electronic circuit, the first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit, and the second power source is constituted by an external power source of the semiconductor integrated circuit. May be.
発明の効果  The invention's effect
[0039] 本発明によれば、次の効果が得られる。 [0039] According to the present invention, the following effects can be obtained.
[0040] (1)電源投入シーケンスに起因して生起する出力の不定を回避することができる。  [0040] (1) It is possible to avoid indefinite output caused by the power-on sequence.
[0041] (2)電源投入シーケンスに起因して生起する出力不定を回避できるので、後段側の 回路での過電流の通流等の誤動作を防止できる。 [0041] (2) Since output instability caused by the power-on sequence can be avoided, it is possible to prevent malfunction such as overcurrent flow in the circuit on the rear stage side.
[0042] そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照 することにより、一層明確になるであろう。 [0042] Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]本発明に関連するレベルコンバータ回路を示す回路図である。 FIG. 1 is a circuit diagram showing a level converter circuit related to the present invention.
[図 2]電源投入時のレベルコンバータ回路の出力波形を示す図である。  FIG. 2 is a diagram showing an output waveform of a level converter circuit when power is turned on.
[図 3]本発明の第 1の実施の形態に係るレベルコンバータ回路を示す回路図である。  FIG. 3 is a circuit diagram showing a level converter circuit according to the first embodiment of the present invention.
[図 4]レベルコンバータ回路の制御方法の一例である動作シーケンスを示すフローチ ヤートである。  FIG. 4 is a flow chart showing an operation sequence as an example of a control method of the level converter circuit.
[図 5]電源投入時のレベルコンバータ回路の出力波形を示す図である。  FIG. 5 is a diagram showing an output waveform of the level converter circuit when power is turned on.
[図 6]電源投入時のレベルコンバータ回路の出力波形を示す図である。  FIG. 6 is a diagram showing an output waveform of the level converter circuit when power is turned on.
[図 7]プルアップ回路に流れる電流を示す図である。  FIG. 7 is a diagram showing a current flowing through a pull-up circuit.
[図 8]レベルコンバータ出力を示す図である。  FIG. 8 is a diagram showing a level converter output.
[図 9]本発明の第 2の実施の形態に係るレベルコンバータ回路を示す回路図である。  FIG. 9 is a circuit diagram showing a level converter circuit according to a second embodiment of the present invention.
[図 10]本発明の第 3の実施の形態に係るレベルコンバータ回路を示す回路図である 圆 11]本発明の第 4の実施の形態に係るレベルコンバータ回路を示す回路図である FIG. 10 is a circuit diagram showing a level converter circuit according to a third embodiment of the present invention. [11] A circuit diagram showing a level converter circuit according to a fourth embodiment of the present invention.
[図 12]本発明の第 5の実施の形態に係るレベルコンバータ回路を示す回路図である FIG. 12 is a circuit diagram showing a level converter circuit according to a fifth embodiment of the present invention.
[図 13]本発明の他の実施の形態に係るレベルコンバータ回路を示す回路図である。 符号の説明 FIG. 13 is a circuit diagram showing a level converter circuit according to another embodiment of the present invention. Explanation of symbols
[0044] 2 レベルコンバータ回路 [0044] Two-level converter circuit
4 レベルコンバート部  4 Level conversion section
12 インバータ部  12 Inverter section
16 出力取出部  16 Output extraction part
18 プルアップ回路  18 Pull-up circuit
Vdl 電圧(第 1の電源)  Vdl voltage (first power supply)
Vd2 電圧(第 2の電源)  Vd2 voltage (second power supply)
Trl l プルアップトランジスタ  Trl l Pull-up transistor
Trl2 プルアップトランジスタ  Trl2 pull-up transistor
20 プルアップ抵抗  20 Pull-up resistor
22 半導体集積回路 (電子回路)  22 Semiconductor integrated circuit (electronic circuit)
24 内部電源回路 (第 1の電源)  24 Internal power supply circuit (first power supply)
26 外部電源回路 (第 2の電源)  26 External power supply circuit (second power supply)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 〔第 1の実施の形態〕 [First Embodiment]
[0046] 本発明の第 1の実施の形態について、図 3を参照して説明する。図 3は、第 1の実 施の形態に係るレベルコンバータ回路を示す回路図である。図 3において、図 1に示 すレベルコンバータ回路と同一部分には同一符号を付してある。このレベルコンパ一 タ回路は、図 1に示すレベルコンバータ回路を用いて構成している力 これは一例で あって、本発明の保護範囲は、この実施の形態のレベルコンバータ回路に限定され るものではない。  A first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a circuit diagram showing the level converter circuit according to the first embodiment. In FIG. 3, the same parts as those of the level converter circuit shown in FIG. This level comparator circuit is configured using the level converter circuit shown in FIG. 1. This is an example, and the protection scope of the present invention is limited to the level converter circuit of this embodiment. is not.
[0047] このレベルコンバータ回路 2では、異なる電源として第 1及び第 2の電源の電圧例え ば、電圧 Vdl (第 1の電源)側の信号を、電圧 Vd2 (第 2の電源)側の信号にレベル変 換している。そこで、このレベルコンバータ回路 2にはレベルコンバート部 4が設置さ れており、その出力取出部 16には、電源投入に同期してその出力取出部 16の電位 を高電位に引き上げるプルアップ (PuU-up )回路 18が備えられている。 In this level converter circuit 2, voltage examples of the first and second power supplies as different power supplies For example, the level of the signal on the voltage Vdl (first power supply) side is converted to the signal on the voltage Vd2 (second power supply) side. Therefore, the level converter circuit 2 is provided with a level converting unit 4, and the output extracting unit 16 has a pull-up (PuU) that raises the potential of the output extracting unit 16 to a high potential in synchronization with power-on. -up) Circuit 18 is provided.
[0048] この場合、プルアップ回路 18は、レベルコンバート出力を取り出す出力取出部 16 の電位を、電源投入に同期して強制的に第 2の電源の電圧 Vd2に引き上げる構成 である。この実施の形態では、このプルアップ回路 18には、プルアップトランジスタと して Pチャネルトランジスタ Trl 1が設置されて!、る。このトランジスタ Trl 1のソースに は、レベルコンバート部 4と同一の電源から電圧 Vd2が加えられ、また、このトランジス タ Trl lのゲートには、インバータ部 6、 10と同一の電源からで電圧 Vdlが加えられて いる。換言すれば、トランジスタ Trl lのソースとゲートが異なる電源の電圧で支配さ れる。 [0048] In this case, the pull-up circuit 18 is configured to forcibly raise the potential of the output extraction unit 16 that extracts the level-converted output to the voltage Vd2 of the second power supply in synchronization with power-on. In this embodiment, the pull-up circuit 18 is provided with a P-channel transistor Trl 1 as a pull-up transistor! A voltage Vd2 is applied to the source of the transistor Trl 1 from the same power source as the level converting unit 4, and a voltage Vdl is applied to the gate of the transistor Trl 1 from the same power source as the inverter units 6 and 10. It has been added. In other words, the source and gate of the transistor Trl are governed by different power supply voltages.
[0049] 斯カる構成によれば、トランジスタ Trl lのゲートに加えられる電圧 Vdlが Vdl =0 の場合には、トランジスタ Trl lは導通(ON)する。この導通時、トランジスタ Trl lのド レイン側の電位は、ソース側の電圧 Vd2と同電位に引き上げられる。この結果、トラン ジスタ Tr2、Tr4のドレイン側の出力取出部 16の電位が電圧 Vd2に引き上げられる。  According to such a configuration, when the voltage Vdl applied to the gate of the transistor Trl l is Vdl = 0, the transistor Trl l is turned on (ON). During this conduction, the drain side potential of the transistor Trl is raised to the same potential as the source side voltage Vd2. As a result, the potential of the output extraction portion 16 on the drain side of the transistors Tr2 and Tr4 is raised to the voltage Vd2.
[0050] また、トランジスタ Trl lのゲートに加えられる電圧 Vdlが Vdl >0の場合には、トラ ンジスタ Trl lに流れる電流は電圧 Vdlのレベルに応じて減少し、出力取出部 16の 電位はレベルコンバート部 4の出力レベルに依存することになる。  [0050] When the voltage Vdl applied to the gate of the transistor Trl l is Vdl> 0, the current flowing in the transistor Trl l decreases according to the level of the voltage Vdl, and the potential of the output extraction unit 16 is level. It depends on the output level of the conversion unit 4.
[0051] そこで、電圧投入シーケンスにより、電圧 Vd2側の電源が電圧 Vdl側の電源より早 く立ち上がる場合には、  [0051] Therefore, when the power supply on the voltage Vd2 side rises earlier than the power supply on the voltage Vdl side by the voltage input sequence,
Vd2= (外部電圧)〔V〕  Vd2 = (External voltage) [V]
Vdl = 0 [V]  Vdl = 0 [V]
となる。この場合、プルアップ回路 18のトランジスタ Trl lのゲート'ソース間電圧 Vgs は、  It becomes. In this case, the gate-source voltage Vgs of the transistor Trl l of the pull-up circuit 18 is
Vgs=Vdl -Vd2= -Vd2 · ' ·(1)  Vgs = Vdl -Vd2 = -Vd2
となる。例えば、 Vdl = 0〔V〕、 Vd2= l. 8〔 〕とすれば、¥85=—¥(12=—1. 8 [V 〕となり、トランジスタ Trl lのゲートが最も開いた状態となる。従って、出力取出部 16 ( D点)の電位 VDは、 VD=Vd2となる。即ち、電圧 Vdlが立ち上がる前 (Vdl = 0)の 期間において、出力取出部 16 (D点)の電位は、レベルコンバート部 4を支配する電 源の電圧 Vd2に引き上げられ、固定される。 It becomes. For example, if Vdl = 0 [V] and Vd2 = l. 8 [], it becomes ¥ 8 5 = — ¥ (12 = —1.8 [V], and the gate of the transistor Trl l is in the most open state. Therefore, the output extraction part 16 ( The potential VD at point D) is VD = Vd2. That is, during the period before the voltage Vdl rises (Vdl = 0), the potential of the output extraction unit 16 (point D) is raised to the voltage Vd2 of the power source that controls the level conversion unit 4 and fixed.
[0052] この場合、出力取出部 16の電位が電圧 Vd2に引き上げられると、出力回路を構成 しているインバータ部 12のトランジスタ Tr9は遮断 (OFF)、トランジスタ TrlOが導通( ON)となり、出力端子 14に得られる信号 Eは、 L (低)出力となる。即ち、トランジスタ T r9、 10の同時導通が回避され、貫通電流の通流が阻止される。  [0052] In this case, when the potential of the output extraction unit 16 is raised to the voltage Vd2, the transistor Tr9 of the inverter unit 12 constituting the output circuit is cut off (OFF), the transistor TrlO is turned on (ON), and the output terminal The signal E obtained at 14 is L (low) output. That is, the simultaneous conduction of the transistors Tr9, 10 is avoided, and the flow of the through current is prevented.
[0053] また、電圧 Vdlが立ち上がり、レベルコンバータ回路 2を備えたシステムの通常の 動作では、 Vd2= (外部電圧)〔V〕、 Vdl = (内部電圧)〔V〕の場合に、トランジスタ T rl 1のゲート ·ソース間電圧 Vgsは、  [0053] Further, in the normal operation of the system including the level converter circuit 2 when the voltage Vdl rises, when Vd2 = (external voltage) [V] and Vdl = (internal voltage) [V], the transistor T rl 1 Gate-source voltage Vgs
Vgs = Vdl - Vd2 > - Vd2 · ' ·(2)  Vgs = Vdl-Vd2>-Vd2 '' (2)
となる。ここで、レベルコンバータ回路 2を備えたシステムとは、レベルコンバータ回路 2を内蔵する半導体集積回路等の電子回路又はこの電子回路を備える電子機器で ある。この場合、 Vd2= l. 8〔V〕、Vdl = l. 2〔V〕とすれば、 Vgs =—0. 6〔V〕となり 、トランジスタ Trl lのゲートに加わる電圧の絶対値が電源投入時の Vdl = 0〔V〕のと きに比較して、小さくなるので、トランジスタ Tr 11に流れる電流は減少することになる 。出力取出部 16の電位は、レベルコンバート部 4の出力レベルに依存することになる 。即ち、出力取出部 16から高 (H)レベルの出力が発生する場合には Vd2〔V〕が出 力され、出力取出部 16から低 (L)レベルの出力が発生する場合には 0〔V〕が出力さ れる。  It becomes. Here, the system including the level converter circuit 2 is an electronic circuit such as a semiconductor integrated circuit incorporating the level converter circuit 2 or an electronic device including the electronic circuit. In this case, if Vd2 = l. 8 [V] and Vdl = l. 2 [V], then Vgs = -0.6 [V], and the absolute value of the voltage applied to the gate of the transistor Trl l is Compared with Vdl = 0 [V], the current flowing through the transistor Tr11 is reduced. The potential of the output extraction unit 16 depends on the output level of the level conversion unit 4. That is, Vd2 [V] is output when a high (H) level output is generated from the output extraction unit 16, and 0 [V] when a low (L) level output is generated from the output extraction unit 16. ] Is output.
[0054] このような電圧 Vd2の立上りに遅れて電圧 Vdlが立ち上がる電源投入シーケンス により、 Vdl =0〔V〕の期間 (Td:図 5)においても、出力取出部 16 (D点)の電位は中 間電位 Vn (図 2)になることはなく、電圧 Vd2と同電位又は同等の電位になるので、ト ランジスタ Tr9、 TrlOのゲート電圧もこの電圧 Vd2に固定されることになる。従って、 電源投入時に電源側カゝら Gnd側への貫通電流の通流が回避される。  [0054] Due to such a power-on sequence in which the voltage Vdl rises after the rise of the voltage Vd2, the potential of the output extraction part 16 (point D) is also maintained during the period of Vdl = 0 [V] (Td: Fig. 5). The intermediate potential Vn (Fig. 2) does not become the same or the same potential as the voltage Vd2, so the gate voltages of the transistors Tr9 and TrlO are also fixed to this voltage Vd2. Therefore, through current flow from the power supply side to the Gnd side when the power is turned on is avoided.
[0055] このレベルコンバータ回路 2の制御方法について、図 4を参照して説明する。図 4は 、電源投入シーケンスに対応する出力取出部の電位制御を示すフローチャートであ る。このフローチャートは、レベルコンバータ回路 2の制御方法の一例である。 [0056] 電源が投入されて、電圧 Vd2が立ち上がり、電圧 Vdlの立上りが遅延している場合 には、既述した通り、 Vdl = 0、 Vgs=— Vd2の期間が成立する(ステップ Sl)。この 期間では、トランジスタ Tr 11が導通し (ステップ S2)、出力取出部 16の電位 VDは、 V D=Vd2 [V]となる。このような処理は、電圧 Vdlが立ち上がるまで継続して実行さ れる。即ち、ステップ S1〜S3の動作が繰り返される。この結果、出力取出部 16の電 位 VDは、レベルコンバート部 4を支配する電圧 Vd2に引き上げられた状態が維持さ れ、既述の中間電位 Vn (図 2)は生じない。 A method for controlling the level converter circuit 2 will be described with reference to FIG. FIG. 4 is a flowchart showing potential control of the output extraction unit corresponding to the power-on sequence. This flowchart is an example of a control method for the level converter circuit 2. When the power is turned on and the voltage Vd2 rises and the rise of the voltage Vdl is delayed, the period of Vdl = 0 and Vgs = —Vd2 is established as described above (step Sl). During this period, the transistor Tr11 conducts (step S2), and the potential VD of the output extraction section 16 becomes VD = Vd2 [V]. Such processing is continuously executed until the voltage Vdl rises. That is, the operations in steps S1 to S3 are repeated. As a result, the potential VD of the output extraction unit 16 is maintained at the voltage Vd2 that controls the level conversion unit 4, and the above-described intermediate potential Vn (FIG. 2) does not occur.
[0057] そして、電圧 Vdlが立ち上がると (Vdl >0)、ステップ S1からステップ S4に移行し、 既述の式(2)が成立することになる。この場合、レベルコンバート部 4の出力レベル( L又は H)に依存し (ステップ S5)、通常の動作となる。即ち、レベルコンバート部 4の 出力レベルが Hの場合には、 VD=Vd2 [V]となり(ステップ S6)、 Lの場合には VD = 0〔V〕となり(ステップ S7)、ステップ S1に戻る。即ち、電圧 Vdlが立ち上がった後 は、ステップ Sl、 S4〜S6、 S7の動作が繰り返されることになる。  [0057] When the voltage Vdl rises (Vdl> 0), the process proceeds from step S1 to step S4, and the above-described equation (2) is established. In this case, depending on the output level (L or H) of the level converting unit 4 (step S5), normal operation is performed. That is, when the output level of the level converting unit 4 is H, VD = Vd2 [V] (step S6), and when L, VD = 0 [V] (step S7), and the process returns to step S1. That is, after the voltage Vdl rises, the operations of steps Sl, S4 to S6, and S7 are repeated.
[0058] 斯カるプルアップ回路 18を備えたレベルコンバータ回路 2では、第 1に、電源投入 時、電源投入シーケンスに依存することなぐレベルコンバート部 4の出力を一定レべ ルとして例えば、電圧 Vd2に固定することができ、第 2に、トランジスタ Trl lのゲート を他の電源例えば、電圧 Vdl側の電源に接続しているので、電圧 Vdlが立ち上がつ て通常動作に移行した場合には、トランジスタ Trl lに流れる定常電流量を削減する ことができる。即ち、トランジスタ Trl lのゲートを 0〔V〕に固定にした場合の電流値に 比較し、定常電流量を大幅に削減することができる。  In the level converter circuit 2 having such a pull-up circuit 18, first, when the power is turned on, the output of the level converting unit 4 that does not depend on the power-on sequence is set to a constant level, for example, the voltage Second, when the gate of the transistor Trl l is connected to another power supply, for example, the power supply on the voltage Vdl side, the voltage Vdl rises and shifts to normal operation. Can reduce the steady-state current flowing through the transistor Trl. That is, the amount of steady current can be greatly reduced compared to the current value when the gate of the transistor Trl is fixed to 0 [V].
[0059] このレベルコンバータ回路 2の動作波形や動作電流のシミュレーション結果につい て、図 5、図 6、図 7及び図 8を参照して説明する。図 5は、電源電圧の立上り及び出 力取出部の電位変化 (H出力の場合)を示す図、図 6は、電源電圧の立上り及び出 力取出部の電位変化 (L出力の場合)を示す図、図 7は、プルアップ回路のトランジス タ Trl lに流れる電流変化を示す図、図 8は、レベルコンバータ出力を表す図である  The simulation results of the operation waveform and operation current of the level converter circuit 2 will be described with reference to FIGS. 5, 6, 7, and 8. FIG. Figure 5 shows the rise of the power supply voltage and the potential change at the output extraction section (in the case of H output) .Figure 6 shows the rise of the power supply voltage and the potential change at the output extraction section (in the case of L output). Fig. 7 is a diagram showing changes in the current flowing through the transistor Trl l of the pull-up circuit, and Fig. 8 is a diagram showing the level converter output.
[0060] 図 5に示すように、電源投入シーケンスにより、電圧 Vd2が時点 tlで立上りを開始し 、時点 t2で所定電圧 Vd2= l. 8〔V〕に到達した後、電圧 Vdlが時点 tlから時間 Td だけ遅延した時点 t3から立上りを開始し、時点 t4で所定電圧 Vdl = 1. 2〔V〕に到達 している。即ち、時間 Tdの期間では、 Vdl = 0〔V〕である。 [0060] As shown in FIG. 5, after the power-on sequence, the voltage Vd2 starts to rise at the time point tl, and after reaching the predetermined voltage Vd2 = l.8 [V] at the time point t2, the voltage Vdl is changed from the time point tl. Time Td Rise starts at time t3 delayed by a certain amount, and reaches the predetermined voltage Vdl = 1.2 [V] at time t4. That is, Vdl = 0 [V] in the period of time Td.
[0061] 既述した通り、この時間 Tdでは、トランジスタ Tr 11が導通し、出力取出部 16 (D点) の電位 VDは、電圧 Vd2に追随し、同一レベルとなる。図 5に示す例では、レベルコ ンバート部 4は H出力を発生しているので、出力取出部 16 (D点)の電位 VDは電圧 Vdlが立ち上がった時点 t4の後も、 VD=Vd2となっている。  As described above, at this time Td, the transistor Tr 11 becomes conductive, and the potential VD of the output extraction unit 16 (point D) follows the voltage Vd 2 and becomes the same level. In the example shown in Fig. 5, the level conversion unit 4 generates H output, so the potential VD of the output extraction unit 16 (point D) remains VD = Vd2 even after the time t4 when the voltage Vdl rises. Yes.
[0062] また、図 6に示すように、電源投入シーケンスにより、電圧 Vd2が時点 tlで立上りを 開始し、時点 t2で所定電圧 Vd2= l. 8〔V〕に到達した後、電圧 Vdlが時点 tlから 時間 Tdだけ遅延した時点 t3から立上りを開始し、時点 t4で所定電圧 Vdl = 1. 2 [V 〕に到達している。即ち、時間 Tdの期間では、 Vdl = 0〔V〕である。そして、時間 Td では、トランジスタ Tr 11が導通し、出力取出部 16 (D点)の電位 VDは、電圧 Vd2〖こ 追随し、同一レベルとなる。これらは図 5と同一である。  [0062] Further, as shown in FIG. 6, the voltage Vd2 starts rising at time tl and reaches the predetermined voltage Vd2 = l.8 [V] at time t2 by the power-on sequence. Rise starts at time t3 delayed by time Td from tl, and reaches a predetermined voltage Vdl = 1.2 [V] at time t4. That is, Vdl = 0 [V] in the period of time Td. At time Td, the transistor Tr11 becomes conductive, and the potential VD of the output extraction section 16 (point D) follows the voltage Vd2 and becomes the same level. These are the same as in FIG.
[0063] し力しながら、図 6に示す動作では、レベルコンバート部 4が L出力を発生している ので、出力取出部 16 (D点)の電位 VDは、電圧 Vdlが立ち上がってくると、既述した 通り、レベルコンバート部 4の出力に依存するので、時点 t3から時点 t4の間で、 VD = 0〔V〕に移行することになり、レベルコンバート部 4の L出力が取り出される。  However, in the operation shown in FIG. 6, since the level converting unit 4 generates the L output, the potential VD of the output extraction unit 16 (D point) is increased when the voltage Vdl rises. As described above, since it depends on the output of the level conversion unit 4, VD = 0 [V] is transferred between time t3 and time t4, and the L output of the level conversion unit 4 is taken out.
[0064] そして、図 7の aに示すように、システム動作時のトランジスタ Trl lに流れる電流 Ipu  [0064] As shown in a of FIG. 7, the current Ipu flowing through the transistor Trl l during system operation
[A]は、ゲートに加えられた電圧 Vdlによって定常電流値が抑制され、消費電力の 低減が図られる。  In [A], the steady-state current value is suppressed by the voltage Vdl applied to the gate, and the power consumption is reduced.
[0065] ところで、電源投入時に中間電位 Vnの生起を回避するには、トランジスタ Trl lの ゲートを接地することにより、 Gnd電位に引き下げておけば良いが、このような電位に ゲートを維持、固定させた場合には、図 7の bに示すように、定常電流値を増大させる ことになり、消費電力の低減が図れない。  [0065] By the way, to avoid the occurrence of the intermediate potential Vn when the power is turned on, the gate of the transistor Trl l can be grounded to the Gnd potential. However, the gate is maintained and fixed at such a potential. If this is done, the steady-state current value will increase as shown in Fig. 7b, and power consumption cannot be reduced.
[0066] また、トランジスタ Trl lのゲートに電圧 Vdlをカ卩えた場合には、出力取出部 16 (D 点)の電位は、図 8の a〖こ示すよう〖こ、トランジスタ Tr3のゲート(B点)の電位に一致し た電位変化となる。これに対し、トランジスタ Trl lのゲートを接地して Gnd電位に引き 下げた場合には、出力取出部 16の電位は、図 8の bに示すように、トランジスタ Tr3の ゲート電位に対応して変化するものの、トランジスタ Tr3のゲート電位が 0レベルの場 合であっても、わずかな電圧 Vrだけ出力電圧シフトが生じている。従って、トランジス タ Trl 1のゲートに電圧 Vdlを印加した場合には、出力取出部 16 (D点)の電圧が低 (Low)レベルの場合に発生する直流(DC)パス =電圧 Vd2 -トランジスタ Trl 1—ト ランジスタ Tr4— Gndの経路による出力電圧シフト量が削減される。この結果、ノイズ に対する耐性の向上が図られることが判る。 [0066] When the voltage Vdl is stored at the gate of the transistor Trl l, the potential of the output extraction section 16 (point D) is as shown in FIG. 8 a and the gate of the transistor Tr3 (B The potential changes in line with the potential at point). On the other hand, when the gate of the transistor Trl is grounded and pulled down to the Gnd potential, the potential of the output extraction portion 16 changes corresponding to the gate potential of the transistor Tr3 as shown in FIG. However, when the gate potential of transistor Tr3 is 0 level Even if the output voltage shifts, the output voltage shifts by a small voltage Vr. Therefore, when voltage Vdl is applied to the gate of transistor Trl 1, the direct current (DC) path generated when the voltage at output extraction section 16 (point D) is low (Low) = voltage Vd2-transistor Trl 1—Transistor Tr4—The output voltage shift through the Gnd path is reduced. As a result, it can be seen that resistance to noise can be improved.
[0067] 〔第 2の実施の形態〕 [Second Embodiment]
[0068] 次に、本発明の第 2の実施の形態について、図 9を参照して説明する。図 9は、第 2 の実施の形態に係るレベルコンバータ回路を示す回路図である。図 9において、図 3 に示すレベルコンバータ回路 2と同一部分には同一符号を付してある。  Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 9 is a circuit diagram showing a level converter circuit according to the second embodiment. In FIG. 9, the same parts as those of the level converter circuit 2 shown in FIG.
[0069] この実施の形態のレベルコンバータ回路 2では、プルアップ回路 18が複数のプル アップトランジスタとして Pチャネルトランジスタ Trl 1、 Trl2の直列回路で構成されて いる。これらトランジスタ Trl 1、 Trl 2のゲートには共通の電圧 Vdlが給電されている  In the level converter circuit 2 of this embodiment, the pull-up circuit 18 is configured by a series circuit of P-channel transistors Trl 1 and Trl 2 as a plurality of pull-up transistors. A common voltage Vdl is supplied to the gates of these transistors Trl 1 and Trl 2.
[0070] 斯カる構成によれば、電源投入シーケンスにより、電圧 Vd2が電圧 Vdlより先に立 ち上り、 Vdl = 0の時間 Td (図 5)の期間では、トランジスタ Trl l、 Trl2が共に導通 し、出力取出部 16の電位は、電圧 Vd2に引き上げられ、その電位に維持される。従 つて、中間電位 Vnの生起が回避される。斯カる構成によっても、図 3に示したレベル コンバータ回路 2と同様の機能が得られる。 [0070] According to such a configuration, the voltage Vd2 rises before the voltage Vdl by the power-on sequence, and the transistors Trl1 and Trl2 are both turned on during the time Td (Fig. 5) when Vdl = 0. The potential of the output extraction unit 16 is raised to the voltage Vd2 and maintained at that potential. Therefore, the occurrence of the intermediate potential Vn is avoided. Such a configuration also provides the same function as the level converter circuit 2 shown in FIG.
[0071] 〔第 3の実施の形態〕  [Third Embodiment]
[0072] 次に、本発明の第 3の実施の形態について、図 10を参照して説明する。図 10は、 第 3の実施の形態に係るレベルコンバータ回路を示す回路図である。図 10において 、図 3又は図 9に示すレベルコンバータ回路 2と同一部分には同一符号を付してある  Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a circuit diagram showing a level converter circuit according to the third embodiment. In FIG. 10, the same parts as those of the level converter circuit 2 shown in FIG. 3 or FIG. 9 are denoted by the same reference numerals.
[0073] この実施の形態のレベルコンバータ回路 2は、プルアップ回路 18が複数のプルアツ プトランジスタとしてトランジスタ Trl 1、 Trl2の並列回路で構成されている。これらト ランジスタ Trl l、Trl2のゲートには共通の電圧 Vdlが給電されている。 In the level converter circuit 2 of this embodiment, the pull-up circuit 18 is configured by a parallel circuit of transistors Trl 1 and Trl 2 as a plurality of pull-up transistors. A common voltage Vdl is fed to the gates of these transistors Trl 1 and Trl2.
[0074] 斯カる構成によっても、電源投入シーケンスにより、電圧 Vd2が電圧 Vdlより先に 立ち上り、 Vdl = 0の時間 Td (図 5)の期間では、トランジスタ Trl l、 Trl2が共に導 通し、出力取出部 16の電位は、電圧 Vd2に引き上げられ、その電位に維持される。 従って、中間電位 Vnの生起が回避される。斯カる構成によっても、図 3に示したレべ ルコンバータ回路 2と同様の機能が得られる。 [0074] Even with such a configuration, the voltage Vd2 rises before the voltage Vdl by the power-on sequence, and the transistors Trl1 and Trl2 are both guided during the time Td (Fig. 5) when Vdl = 0. Then, the potential of the output extraction unit 16 is raised to the voltage Vd2 and maintained at that potential. Therefore, the occurrence of the intermediate potential Vn is avoided. Even with such a configuration, the same function as the level converter circuit 2 shown in FIG. 3 can be obtained.
[0075] 〔第 4の実施の形態〕 [Fourth Embodiment]
[0076] 次に、本発明の第 4の実施の形態について、図 11を参照して説明する。図 11は、 第 4の実施の形態に係るレベルコンバータ回路を示す回路図である。図 11にお 、て 、図 3に示すレベルコンバータ回路 2と同一部分には同一符号を付してある。  Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a circuit diagram showing a level converter circuit according to the fourth embodiment. In FIG. 11, the same parts as those of the level converter circuit 2 shown in FIG.
[0077] この実施の形態のレベルコンバータ回路 2では、プルアップ回路 18がプルアップト ランジスタとしてトランジスタ Trl 1及び抵抗 20からなる直列回路で構成されて ヽる。ト ランジスタ Trl lのゲートには電圧 Vdlが給電されている。  In the level converter circuit 2 of this embodiment, the pull-up circuit 18 is configured as a series circuit including a transistor Trl 1 and a resistor 20 as a pull-up transistor. The voltage Vdl is supplied to the gate of the transistor Trl l.
[0078] 斯カる構成によれば、電源投入シーケンスにより、電圧 Vd2が電圧 Vdlより先に立 ち上り、 Vdl = 0の時間 Td (図 5)の期間では、トランジスタ Trl lが導通し、出力取出 部 16の電位は、電圧 Vd2に近い電圧に引き上げられ、その電位に維持される。従つ て、この場合も中間電位 Vnの生起が回避される。斯カゝる構成によっても、図 3に示し たレベルコンバータ回路 2と同様の機能が得られる。  [0078] According to such a configuration, the voltage Vd2 rises before the voltage Vdl by the power-on sequence, and the transistor Trl l becomes conductive during the period of time Td (Fig. 5) when Vdl = 0. The potential of the extraction unit 16 is raised to a voltage close to the voltage Vd2 and maintained at that potential. Therefore, also in this case, occurrence of the intermediate potential Vn is avoided. Even with such a configuration, a function similar to that of the level converter circuit 2 shown in FIG. 3 can be obtained.
[0079] 〔第 5の実施の形態〕  [Fifth embodiment]
[0080] 次に、本発明の第 5の実施の形態について、図 12を参照して説明する。図 12は、 第 5の実施の形態に係る半導体集積回路を示す回路図である。図 12において、図 3 に示すレベルコンバータ回路 2と同一部分には同一符号を付してある。  Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a circuit diagram showing a semiconductor integrated circuit according to the fifth embodiment. In FIG. 12, the same parts as those of the level converter circuit 2 shown in FIG.
[0081] 半導体集積回路 22は、電子回路の一例であって、既述のレベルコンバータ回路 2 とともに、第 1の電源として内部電源回路 24等の多数の回路や素子が設置されて構 成されている。内部電源回路 24は、半導体集積回路 22の内部の消費電力を低減す るために、半導体集積回路 22の外部に設置された外部電源回路 26から電圧 Vd2の 供給を受け、電圧 Vd2より低い電圧 Vdlを生成させ、この電圧 Vdlを半導体集積回 路 22の内部回路に供給することにより、内部回路の消費電力を低減させる。  [0081] The semiconductor integrated circuit 22 is an example of an electronic circuit, and is configured by installing a number of circuits and elements such as the internal power supply circuit 24 as a first power supply together with the level converter circuit 2 described above. Yes. The internal power supply circuit 24 is supplied with the voltage Vd2 from the external power supply circuit 26 installed outside the semiconductor integrated circuit 22 in order to reduce the power consumption inside the semiconductor integrated circuit 22, and the voltage Vdl lower than the voltage Vd2 And supplying this voltage Vdl to the internal circuit of the semiconductor integrated circuit 22 reduces the power consumption of the internal circuit.
[0082] そして、レベルコンバータ回路 2について、レベルコンバート部 4、インバータ部 12 及びプルアップ回路 18のトランジスタ Trl lのソースには、外部電源回路 26から電圧 (12カ 口えられ、また、インバータ部 6、 10及びトランジスタ Trl lのゲートには、内部 電源回路 24力 電圧 Vdlが加えられている。 In the level converter circuit 2, the voltage of the transistor Trl l of the level conversion unit 4, the inverter unit 12, and the pull-up circuit 18 is supplied from the external power supply circuit 26. 6, 10 and the gate of transistor Trl l are internal Power circuit 24 power Voltage Vdl is applied.
[0083] このような半導体集積回路 22によれば、既述した通りの機能が得られ、電源投入シ 一ケンスに同期し、レベルコンバート部 4の出力取出部 16の電位は外部電源回路 26 の電圧 Vd2に弓 Iき上げられて維持される。この電位がインバータ部 12に加えられる ため、貫通電流が流れることはない。 According to such a semiconductor integrated circuit 22, the function as described above can be obtained, and the potential of the output extraction unit 16 of the level conversion unit 4 is synchronized with the power-on sequence. Bow I is raised to voltage Vd2 and maintained. Since this potential is applied to the inverter section 12, no through current flows.
[0084] そして、電圧 Vdlの立上りにより、出力取出部 16の電位はレベルコンバート出力電 位に応じて変化し、システム動作時にはレベルコンバート出力がインバータ部 12に 加えられる。その他の機能は、既述した通りである。 Then, as the voltage Vdl rises, the potential of the output extraction unit 16 changes according to the level conversion output potential, and the level conversion output is applied to the inverter unit 12 during system operation. Other functions are as described above.
[0085] 〔他の実施の形態等〕 [Other embodiments, etc.]
[0086] (1)上記実施の形態では、電圧 Vdl、 Vd2について、 Vd2>Vdlの場合について 説明したが、本発明に係るプルアップ回路 18は、 Vdl >Vd2の場合にも用いること ができる。その場合、図 12に示す半導体集積回路 22に破線で付加した電圧変換部 28を設置し、トランジスタ Trl 1のゲートに Vd2より低!、電圧 VdOが加わるように設定 すればよい。  (1) In the above embodiment, the case of Vd2> Vdl has been described for the voltages Vdl and Vd2. However, the pull-up circuit 18 according to the present invention can also be used when Vdl> Vd2. In that case, a voltage converter 28 added with a broken line may be installed in the semiconductor integrated circuit 22 shown in FIG. 12, and the voltage VdO may be set to be lower than Vd2 and applied to the gate of the transistor Trl1.
[0087] (2)上記の実施の形態では、図 1に示したレベルコンバータ回路 2の構成を前提に して説明した力 本発明は、レベルコンバータ回路 2のレベルコンバート部 4の出力 取出部 16の電位を、電源投入時に第 2の電源の電圧に引き上げることが一つの特 徴であるから、レベルコンバート部 4は、図 3、図 9、図 10、図 11に示す構成に限定さ れるものではない。  (2) In the above embodiment, the force described on the assumption that the configuration of the level converter circuit 2 shown in FIG. 1 is used. The present invention relates to the output extraction unit 16 of the level conversion unit 4 of the level converter circuit 2. One characteristic is that the potential of the level converter 4 is raised to the voltage of the second power source when the power is turned on. Therefore, the level converting unit 4 is limited to the configurations shown in FIGS. 3, 9, 10, and 11. is not.
[0088] (3)上記の実施の形態では、出力不定の回避により、貫通電流を阻止することにつ いて記載しているが、本発明に係るレベルコンバータ回路、その制御方法又は電子 回路は、出力を任意に固定 (指定: HZL)することができ、次のような技術的利点を 有する。図 13に示すように、レベルコンバータ回路 2 (図 3、図 9、図 10又は図 11)を 備え、その前段にトランジスタ Trl3、 Trl4力もなるインバータ 28、また、その後段に トランジスタ Trl5、 Trl6からなるインバータ 30が設置された回路 32では、レベルコ ンバータ回路 2が Vdl =0、 Vd2= lのとき、出力 E= 'L'となる場合に、インバータ 2 8の入出力関係を A'、 A、インバータ 30の入出力関係を E、 E'とすれば、インバータ 30の出力は E, = 'H,となるので、レベルコンバータ回路 2の入力端子 8の入力 Aと 出力端子 14の出力 Eの論理と、入力端子 34の入力 A'と出力端子 36の出力 E'の論 理は同一にすることができ、出力 E、 E'は任意に固定 (HZL)される。そこで、例えば 、レベルコンバータ回路 2の出力が最終的に LSIの外部出力ピンに接続される場合、 その外部出力ピンが別の LSIの外部入力ピンに接続されていることを想定し、受け側 LSIの外部入力ピンに対して接地(GND)側への DCパスが存在する場合には、 Vd 1 =0で、送り側 LSIに出力 Hが生じると、 DC電流が流れる。即ち、送り側 Vd2—ボー ド配線一受け側 GNDのルートで DC電流が流れる。これは、出力 Lとすることで回避 できる。そこで、本発明に係るレベルコンバータ回路 2では、出力を固定することがで きるので、これにより、斯カる DC電流を回避できる。 [0088] (3) In the above embodiment, it is described that the through current is prevented by avoiding output indefiniteness. However, the level converter circuit, the control method thereof, or the electronic circuit according to the present invention is The output can be arbitrarily fixed (specified: HZL), and has the following technical advantages. As shown in Fig. 13, the level converter circuit 2 (Fig. 3, 9, 10, or 11) is provided, and the inverter T28 is also equipped with transistors Trl3 and Trl4 in the previous stage, and the transistors Trl5 and Trl6 in the subsequent stage. In the circuit 32 where the inverter 30 is installed, when the level converter circuit 2 is Vdl = 0 and Vd2 = l, and the output E = 'L', the input / output relationship of the inverter 28 is A ', A, and the inverter If the input / output relationship of 30 is E, E ', the output of inverter 30 is E, =' H ', so input A of input terminal 8 of level converter circuit 2 The logic of output E of output terminal 14 and the logic of input A 'of input terminal 34 and output E' of output terminal 36 can be the same, and outputs E and E 'are arbitrarily fixed (HZL). . Therefore, for example, when the output of the level converter circuit 2 is finally connected to the external output pin of the LSI, it is assumed that the external output pin is connected to the external input pin of another LSI, and the receiving LSI When there is a DC path to the ground (GND) side with respect to the external input pin, when Vd 1 = 0 and output H occurs in the sending LSI, a DC current flows. In other words, DC current flows through the route of the sending side Vd2—board wiring receiving side GND. This can be avoided by setting the output to L. Therefore, in the level converter circuit 2 according to the present invention, since the output can be fixed, this DC current can be avoided.
[0089] 以上述べたように、本発明の最も好ましい実施の形態等について説明したが、本発 明は、上記記載に限定されるものではなぐ請求の範囲に記載され、又は明細書に 開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である ことは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもな い。 [0089] As described above, the most preferred embodiment of the present invention has been described. However, the present invention is not limited to the above description but is described in the claims or disclosed in the specification. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist of the present invention, and such modifications and changes are included in the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0090] 本発明は、第 1の電源側の信号を、前記第 1の電源と異なる電圧の第 2の電源側の 信号にレベル変換して取り出すレベルコンバータ回路に関し、電源投入シーケンス の電圧立上りの不揃!ヽによる出力不定を回避でき、出力側に生起する貫通電流や 誤動作を防止することができ、有用である。 The present invention relates to a level converter circuit that converts a level of a first power supply side signal into a second power supply side signal having a voltage different from that of the first power supply, and relates to a voltage rise in a power-on sequence. This is useful because it can avoid indefinite output due to irregularities and can prevent through currents and malfunctions that occur on the output side.

Claims

請求の範囲 The scope of the claims
[1] 第 1の電源側の信号を、前記第 1の電源と異なる電圧の第 2の電源側の信号にレべ ル変換して取り出すレベルコンバータ回路であって、  [1] A level converter circuit for level-converting a signal on the first power supply side into a signal on the second power supply side having a voltage different from that of the first power supply,
レベル変換された前記信号の出力取出部にプルアップ回路を備え、該プルアップ 回路により、電源投入に同期して前記出力取出部を高電位に引き上げる構成とした ことを特徴とするレベルコンバータ回路。  A level converter circuit comprising: a pull-up circuit in an output extraction unit for the level-converted signal, and the pull-up circuit pulling up the output extraction unit to a high potential in synchronization with power-on.
[2] 請求の範囲 1記載のレベルコンバータ回路において、 [2] In the level converter circuit according to claim 1,
前記プルアップ回路は、前記第 2の電源の立上りに同期して前記出力取出部の電 位を高電位に引き上げ、前記第 1の電源の立上りに応じて前記出力取出部の電位を 前記第 1の電源側の信号のレベルに依存させる構成としたことを特徴とするレベルコ ンバータ回路。  The pull-up circuit raises the potential of the output extraction section to a high potential in synchronization with the rise of the second power supply, and raises the potential of the output extraction section in response to the rise of the first power supply. A level converter circuit characterized in that it is configured to depend on the signal level of the power supply side.
[3] 請求の範囲 1記載のレベルコンバータ回路において、  [3] In the level converter circuit according to claim 1,
前記第 2の電源の立上りに同期して前記出力取出部を前記プルアップ回路を通し て前記第 2の電源に導通させることにより、前記第 2の電源の電圧に引き上げる構成 としたことを特徴とするレベルコンバータ回路。  Synchronously with the rise of the second power supply, the output extraction section is connected to the second power supply through the pull-up circuit to raise the voltage of the second power supply. Level converter circuit.
[4] 請求の範囲 1記載のレベルコンバータ回路において、 [4] In the level converter circuit according to claim 1,
前記プルアップ回路は、前記出力取出部と前記第 2の電源との間に挿入されたトラ ンジスタを備え、該トランジスタを前記第 2の電源の投入の際に導通させる構成とした ことを特徴とするレベルコンバータ回路。  The pull-up circuit includes a transistor inserted between the output extraction unit and the second power supply, and is configured to make the transistor conductive when the second power supply is turned on. Level converter circuit.
[5] 請求の範囲 1記載のレベルコンバータ回路において、 [5] In the level converter circuit according to claim 1,
前記プルアップ回路は、前記出力取出部と前記第 2の電源との間に挿入されたトラ ンジスタを備え、前記トランジスタのゲートに前記第 1の電源を接続したことを特徴と するレベルコンバータ回路。  The level converter circuit, wherein the pull-up circuit includes a transistor inserted between the output extraction unit and the second power source, and the first power source is connected to a gate of the transistor.
[6] 請求の範囲 1記載のレベルコンバータ回路において、 [6] In the level converter circuit according to claim 1,
前記プルアップ回路は、前記出力取出部と前記第 2の電源との間にトランジスタと 抵抗との直列回路を備え、前記トランジスタのゲートに前記第 1の電源の電圧を加え る構成としたことを特徴とするレベルコンバータ回路。  The pull-up circuit includes a series circuit of a transistor and a resistor between the output extraction unit and the second power supply, and is configured to apply the voltage of the first power supply to the gate of the transistor. A characteristic level converter circuit.
[7] 請求の範囲 1記載のレベルコンバータ回路において、 前記プルアップ回路は、前記出力取出部と前記第 2の電源との間に複数のトランジ スタの直列回路を備え、この直列回路の前記各トランジスタのゲートに前記第 1の電 源の電圧をカ卩える構成としたことを特徴とするレベルコンバータ回路。 [7] In the level converter circuit according to claim 1, The pull-up circuit includes a series circuit of a plurality of transistors between the output extraction unit and the second power source, and the voltage of the first power source is applied to the gate of each transistor of the series circuit. A level converter circuit characterized by having a structure that can be ordered.
[8] 請求の範囲 1記載のレベルコンバータ回路において、 [8] In the level converter circuit according to claim 1,
前記第 1の電源は、前記レベルコンバータ回路と共通の半導体集積回路の内部電 源で構成され、前記第 2の電源は、前記半導体集積回路の外部電源で構成されたこ とを特徴とするレベルコンバータ回路。  The level converter is characterized in that the first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit, and the second power source is constituted by an external power source of the semiconductor integrated circuit. circuit.
[9] 第 1の電源側の信号を、前記第 1の電源と異なる電圧の第 2の電源側の信号にレべ ル変換して取り出すレベルコンバータ回路の制御方法であって、 [9] A level converter circuit control method for level-converting a signal on the first power supply side to a signal on the second power supply side having a voltage different from that of the first power supply,
レベル変換された前記信号を取り出すための出力取出部の電位を、電源投入に同 期して高電位に引き上げることを特徴とするレベルコンバータ回路の制御方法。  A method for controlling a level converter circuit, wherein the potential of an output extraction unit for extracting the level-converted signal is raised to a high potential in synchronization with power-on.
[10] 請求の範囲 9記載のレベルコンバータ回路の制御方法において、 [10] In the method for controlling a level converter circuit according to claim 9,
前記第 2の電源の立上りに同期して前記出力取出部の電位を高電位に引き上げ、 前記第 1の電源の立上りに応じて前記出力取出部の電位を、前記第 1の電源側の信 号のレベルに依存させることを特徴とするレベルコンバータ回路の制御方法。  The potential of the output extraction unit is raised to a high potential in synchronization with the rise of the second power supply, and the potential of the output extraction unit is set to a signal on the first power supply side in response to the rise of the first power supply. A method for controlling a level converter circuit, characterized in that the level converter circuit depends on the level of
[11] 第 1の電源側の信号を、前記第 1の電源と異なる電圧の第 2の電源側の信号にレべ ル変換して取り出すレベルコンバータ回路を備える電子回路であって、 [11] An electronic circuit comprising a level converter circuit for level-converting a signal on the first power supply side into a signal on the second power supply side having a voltage different from that of the first power supply,
レベル変換された前記信号の出力取出部にプルアップ回路を備え、該プルアップ 回路により、電源投入に同期して前記出力取出部を高電位に引き上げる構成とした ことを特徴とする電子回路。  An electronic circuit comprising a pull-up circuit in an output extraction unit for the signal whose level has been converted, and the pull-up circuit pulls up the output extraction unit to a high potential in synchronization with power-on.
[12] 請求の範囲 11記載の電子回路において、 [12] In the electronic circuit according to claim 11,
前記プルアップ回路は、前記第 2の電源の立上りに同期して前記出力取出部の電 位を高電位に引き上げ、前記第 1の電源の立上りに応じて前記出力取出部の電位を 、前記第 1の電源側の信号のレベルに依存させる構成としたことを特徴とする電子回 路。  The pull-up circuit raises the potential of the output extraction unit to a high potential in synchronization with the rise of the second power supply, and increases the potential of the output extraction unit in response to the rise of the first power supply. An electronic circuit characterized in that it is configured to depend on the level of the signal on the power supply side.
[13] 請求の範囲 11記載の電子回路において、  [13] In the electronic circuit according to claim 11,
前記第 2の電源の立上りに同期して前記出力取出部を前記プルアップ回路を通し て前記第 2の電源に導通させることにより、前記第 2の電源の電圧に引き上げる構成 としたことを特徴とする電子回路。 A configuration in which the output extraction section is made to conduct to the second power supply through the pull-up circuit in synchronization with the rise of the second power supply, thereby raising the voltage of the second power supply. An electronic circuit characterized by that.
[14] 請求の範囲 11記載の電子回路において、  [14] In the electronic circuit according to claim 11,
前記プルアップ回路は、前記出力取出部と前記第 2の電源との間に挿入されたトラ ンジスタを備え、該トランジスタを前記第 2の電源の投入の際に導通させる構成とした ことを特徴とする電子回路。  The pull-up circuit includes a transistor inserted between the output extraction unit and the second power supply, and is configured to make the transistor conductive when the second power supply is turned on. Electronic circuit to do.
[15] 請求の範囲 11記載の電子回路において、 [15] In the electronic circuit according to claim 11,
前記プルアップ回路は、前記出力取出部と前記第 2の電源との間に挿入されたトラ ンジスタを備え、前記トランジスタのゲートに前記第 1の電源を接続したことを特徴と する電子回路。  The electronic circuit according to claim 1, wherein the pull-up circuit includes a transistor inserted between the output extraction unit and the second power supply, and the first power supply is connected to a gate of the transistor.
[16] 請求の範囲 11記載の電子回路において、 [16] In the electronic circuit according to claim 11,
前記第 1の電源は、前記レベルコンバータ回路と共通の半導体集積回路の内部電 源で構成され、前記第 2の電源は、前記半導体集積回路の外部電源で構成されたこ とを特徴とする電子回路。  The first power source is constituted by an internal power source of a semiconductor integrated circuit common to the level converter circuit, and the second power source is constituted by an external power source of the semiconductor integrated circuit. .
PCT/JP2005/012398 2005-07-05 2005-07-05 Level converter circuit, control method thereof, and electronic circuit WO2007004294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012398 WO2007004294A1 (en) 2005-07-05 2005-07-05 Level converter circuit, control method thereof, and electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012398 WO2007004294A1 (en) 2005-07-05 2005-07-05 Level converter circuit, control method thereof, and electronic circuit

Publications (1)

Publication Number Publication Date
WO2007004294A1 true WO2007004294A1 (en) 2007-01-11

Family

ID=37604174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012398 WO2007004294A1 (en) 2005-07-05 2005-07-05 Level converter circuit, control method thereof, and electronic circuit

Country Status (1)

Country Link
WO (1) WO2007004294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169810A (en) * 2011-02-14 2012-09-06 Renesas Electronics Corp Level shift circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336007A (en) * 1997-05-29 1998-12-18 Fujitsu Ltd Level converter, output circuit, and input-output circuit
JP2003168969A (en) * 2001-09-18 2003-06-13 Nec Microsystems Ltd Level shift circuit
JP2003273724A (en) * 2002-03-18 2003-09-26 Mitsubishi Electric Corp Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336007A (en) * 1997-05-29 1998-12-18 Fujitsu Ltd Level converter, output circuit, and input-output circuit
JP2003168969A (en) * 2001-09-18 2003-06-13 Nec Microsystems Ltd Level shift circuit
JP2003273724A (en) * 2002-03-18 2003-09-26 Mitsubishi Electric Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169810A (en) * 2011-02-14 2012-09-06 Renesas Electronics Corp Level shift circuit

Similar Documents

Publication Publication Date Title
US7034573B1 (en) Level shifter without DC current flow
US6064227A (en) Output buffer circuit having low breakdown voltage
US10833672B2 (en) Driving circuit for high-side transistor, switching circuit, and controller for DC/DC converter
US8575987B2 (en) Level shift circuit
CN105680675B (en) The circuit and method of voltage are provided for Multi- Switch circuit
KR20010049227A (en) Level adjustment circuit and data output circuit thereof
US9379699B2 (en) Switch driver with a low-cost cross-conduction-preventing circuit
JP4763924B2 (en) Level shift circuit
US6753707B2 (en) Delay circuit and semiconductor device using the same
WO2007004294A1 (en) Level converter circuit, control method thereof, and electronic circuit
US10498315B2 (en) Level shifter circuit
US6882205B2 (en) Low power overdriven pass gate latch
US9705490B2 (en) Driver circuit for single wire protocol slave unit
JP5762358B2 (en) DC power supply
JP2003258621A (en) Interface buffer
US7463064B2 (en) Level shifter having extended input level
JP2009141396A (en) Hazard countermeasure circuit, output circuit and semiconductor device
JP6510920B2 (en) Driver circuit and digital amplifier provided with the same
JP2007228095A (en) Power-on reset circuit
JP2005086546A (en) Level shifter circuit
JP3711075B2 (en) Output buffer circuit and input / output buffer circuit
JP4631524B2 (en) Drive circuit
KR100870159B1 (en) Reference voltage generator, integrated circuit having the same, and method of generating a reference voltage
JP5067463B2 (en) Drive circuit
JP2002246893A (en) Level down converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05757821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP