WO2007000936A1 - 液状硬化性組成物、硬化膜及び帯電防止用積層体 - Google Patents

液状硬化性組成物、硬化膜及び帯電防止用積層体 Download PDF

Info

Publication number
WO2007000936A1
WO2007000936A1 PCT/JP2006/312540 JP2006312540W WO2007000936A1 WO 2007000936 A1 WO2007000936 A1 WO 2007000936A1 JP 2006312540 W JP2006312540 W JP 2006312540W WO 2007000936 A1 WO2007000936 A1 WO 2007000936A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
meth
particles
compound represented
Prior art date
Application number
PCT/JP2006/312540
Other languages
English (en)
French (fr)
Inventor
Shingo Itai
Shin Hatori
Noriyasu Shinohara
Takayoshi Tanabe
Takaro Yashiro
Tetsuya Yamamura
Hiroomi Shimomura
Ryoji Tatara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005190710A external-priority patent/JP4618018B2/ja
Priority claimed from JP2005190709A external-priority patent/JP4961687B2/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2007000936A1 publication Critical patent/WO2007000936A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines

Definitions

  • the present invention relates to a liquid curable composition containing aluminum-containing zinc oxide particles, a cured product thereof, and an antistatic laminate. More specifically, it has excellent curability and various substrates such as plastic (polycarbonate, polymethylmetatalylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cell mouthwater resin, ABS resin, etc. Oil, AS resin, norbornene-based resin), metal, wood, paper, glass, ceramics, slate, etc. on the surface with excellent antistatic properties, hardness, scratch resistance and transparency
  • the present invention relates to a liquid curable composition capable of forming a curable composition, a cured film layer obtained by curing the composition, and an antistatic laminate including the cured film layer.
  • a radiation-curable composition has been used on the surface of the equipment to provide a scratch-resistant and adhesive coating (hard coat) and an antistatic function.
  • a coating film antistatic film
  • a multilayer structure (antireflection film) of a low refractive index layer and a high refractive index layer is formed on the surface of the optical article.
  • optical articles such as plastic lenses are required to prevent dust from being attached due to static electricity, and to improve the reduction in transmittance due to reflection. Therefore, prevention of dust adhesion due to static electricity and prevention of reflection on the screen has been demanded.
  • composition containing monomer (Patent Document 1), composition containing chained metal powder (Patent Document 2), tin oxide particles, polyfunctional acrylate, and copolymer of methylmetatalate and polyether phthalate (Patent Document 3), a conductive coating composition containing a pigment coated with a conductive polymer (Patent Document 4), a trifunctional acrylic ester, a monofunctional ethylenically unsaturated group-containing compound , A photopolymerization initiator, and an optical disk material containing conductive powder (Patent Document 5), a hydrolyzate of antimony-doped tin oxide particles and tetraalkoxysilane dispersed with a silane coupler, a photosensitizer, And conductive paint containing organic solvent (Patent Document 6), reaction product of alkoxysilane containing a polymerizable unsaturated
  • These display panels are required to have scratch resistance that is often wiped with gauze impregnated with ethanol or the like in order to remove attached fingerprints, dust, and the like. There is also a demand for contamination resistance that can easily wipe off attached fingerprints and dust.
  • the antireflection film is provided on the liquid crystal unit in a state of being bonded to a polarizing plate.
  • the base material for example, triacetyl cellulose is used, but in the antireflection film using such a base material, in order to increase the adhesion when bonded to the polarizing plate, In general, it is necessary to carry out the quenching with an aqueous alkaline solution. Therefore, in applications of liquid crystal display panels, there is a demand for an antireflection film excellent in alkali resistance, particularly in durability.
  • a fluorine-based resin coating containing a hydroxyl group-containing fluoropolymer for example, Patent Documents 9 to 11.
  • a curing agent such as melamine resin under an acid catalyst
  • the curing time becomes excessively long and the types of base materials that can be used are limited.
  • the obtained coating film had excellent weather resistance, but was poor in scratch resistance and durability!
  • an isocyanate group-containing unsaturated compound having at least one isocyanate group and at least one addition-polymerizable unsaturated group, and a hydroxyl group-containing fluorine-containing weight There has been proposed a coating composition containing an unsaturated group-containing fluorinated vinyl polymer obtained by reacting a polymer with an isocyanate group at a ratio of the number of isocyanate groups to the number of Z hydroxyl groups of 0.01 to 1.0. (For example, Patent Document 12).
  • a coating composition containing such a polymer can be cured at a low temperature in a short time, but a curing agent such as melamine resin is further used to react the remaining hydroxyl groups. Needed to be cured. Furthermore, the coating film obtained in the above publication has a problem that it is sufficient in terms of coatability and scratch resistance.
  • curable compositions capable of forming a cured film having a high refractive index are required in addition to the above-described requirements for the use of antireflection films such as film-type liquid crystal elements, touch panels, and plastic optical components.
  • Such a curable composition is imparted with a high refractive index, high hardness, electrical conductivity and scratch resistance.
  • a zinc oxide particle dispersion is used (for example, Patent Document 13).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 47-34539
  • Patent Document 2 JP-A-55-78070
  • Patent Document 3 JP-A-60-60166
  • Patent Document 4 Japanese Patent Laid-Open No. 2-194071
  • Patent Document 5 Japanese Patent Laid-Open No. 4-172634
  • Patent Document 6 JP-A-6-2644009
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2000-143924
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-131485
  • Patent Document 9 Japanese Patent Laid-Open No. 57-34107
  • Patent Document 10 Japanese Patent Application Laid-Open No. 59-189108
  • Patent Document 11 Japanese Patent Laid-Open No. 60-67518
  • Patent Document 12 JP-A 61-296073
  • Patent Document 13 Japanese Patent Laid-Open No. 2003-119207
  • Patent Document 1 uses an ion conductive material, but its performance fluctuates due to drying when the antistatic performance is not sufficient. Since the composition described in Patent Document 2 disperses a chain-like metal powder having a large particle size, transparency is lowered. Since the composition described in Patent Document 3 contains a large amount of a non-curable dispersant, the strength of the cured film decreases. Since the material described in Patent Document 5 contains high-concentration chargeable inorganic particles, transparency is lowered. The paint described in Patent Document 6 has insufficient long-term storage stability. Patent Document 7 does not disclose any method for producing a composition having antistatic performance. When a transparent conductive film is formed by applying and drying the paint described in Patent Document 8, no crosslinked structure is provided in the organic matrix that also has the compounding power of the binder Therefore, it cannot be said that the organic solvent resistance is sufficient.
  • the present invention has been made in view of the above-mentioned problems, and as an ultraviolet curable material, it is sufficient to use, as conductive particles, acid-zinc zinc particles that have been used for conventional V-curing.
  • An object of the present invention is to provide an antistatic laminate having a cured film layer obtained by curing a liquid curable composition capable of forming a coating film, particularly an antireflection film laminate having an antistatic function.
  • the zinc oxide particle dispersion described in Patent Document 13 needs to have a small dispersion particle size and excellent dispersion stability.
  • the present invention has been made in view of the above-mentioned problems, and provides a liquid curable composition and a cured film using an aluminum-containing zinc oxide particle dispersion having a small dispersed particle size and excellent dispersion stability.
  • the purpose is to do.
  • the present inventor contains aluminum-containing acid zinc oxide particles, a specific dispersant, a polyfunctional (meth) acrylate, a photopolymerization initiator, and a solvent.
  • the inventors have found that the above object can be achieved by a laminate having a cured film layer obtained by curing a liquid curable composition, and completed the present invention.
  • the anti-reflective laminate has scratch resistance and resistance.
  • the present inventors have found that the contamination property is improved and completed the present invention.
  • the present invention provides the following liquid curable composition, cured film, laminate and laminate production A method is provided.
  • R represents C H -CH 0- (CH CH O) — CH CH O—.
  • m and n are numbers selected such that the number average molecular weight in terms of polystyrene determined by gel permeation chromatography of the compound of formula (2) is 10,000 to 40,000.
  • R represents a fluorine atom, a fluoroalkyl group or a group represented by OR 1 (IT represents an alkyl group or a fluoroalkyl group)]
  • R 13 is a hydrogen atom or a methyl group
  • R 14 is an alkyl group,-(CH) —OR 15
  • R 15 represents an alkyl group or a glycidyl group, c represents a number of 0 or 1), a carboxyl group or an alkoxycarbo group] [Chemical 5]
  • R 16 represents a hydrogen atom or a methyl group
  • R 17 represents a hydrogen atom or a hydroxyalkyl group
  • V represents a number of 0 or 1
  • Porous silica particles (G1) having an average particle size of 5 to 50 nm, consisting of 33 to 1 mol% hydrolyzate and Z or hydrolyzed condensate
  • X each independently represents an alkoxy group having 1 to 4 carbon atoms, a halogeno group, an isocyanate group, an alkyloxycarbon group having 2 to 4 carbon atoms, or an alkylamino group having 1 to 4 carbon atoms.
  • R 29 Is an alkenyl group having 2 to 8 carbon atoms, an attaryloxyalkyl group having 4 to 8 carbon atoms, or a methacryloxyalkyl group having 5 to 8 carbon atoms, and j is an integer of 1 to 3.
  • Formula (22) X in formula (23) and X in formula (23) may be the same or different.
  • the formula ( 22) 60 to 98 mol% of the key compound represented by formula (23), 1 to 30 mol% of the key compound represented by formula (23), and 1 to 20 mol% of the key compound represented by formula (24).
  • Porous silica particles (G2) consisting of hydrolyzate and Z or hydrolysis condensate and having an average particle size of 5 to 50 nm
  • R 29 is A C2-C8 alkyl group, a C4-C8 talyloxyalkyl group or a C5-C8 methacryloxyalkyl group, j represents an integer of 1 to 3.
  • R 3G is a C1-C3 1 Fluorine-substituted alkyl group of 2
  • k represents an integer of 1 to 3.
  • X in formula (22), X in formula (23) and X in formula (24) may be the same or different. Good.
  • R represents C H — CH 2 O— (CH 2 CH 2 O) — CH 2 CH 2 O— p is 8 to 1 q 2q + l 2 2 2 p 2 2
  • 0 and q are 12 to 16, x is 1 to 3, and when x is 2 or more, a plurality of R 1 may be the same or different from each other. )
  • a liquid curable composition comprising:
  • the surface treatment agent is a compound having two or more polymerizable unsaturated groups, a group represented by the following formula (3), and a silane group or a group that generates a silanol group by hydrolysis.
  • X represents NH, 0 (oxygen atom) or S (ion atom), and Y represents O or S.
  • a method for producing a cured film comprising a step of irradiating the liquid curable composition according to any one of [9] to [12] above with radiation to cure the composition.
  • a liquid curable composition according to any one of the above 9 to 12 is applied onto a substrate,
  • the manufacturing method of a laminated body including the process of forming the cured film layer obtained by hardening
  • the conductivity is high and the refractive index is high.
  • a liquid curable composition that provides a cured film having high hardness, transparency, and scratch resistance can be provided.
  • the cured film of the present invention has high conductivity (antistatic performance), it can be suitably used for applications that require antistatic properties.
  • liquid curing that can form a coating film (film) having excellent curability and excellent antistatic properties, hardness, scratch resistance, and transparency on the surface of various substrates. It is possible to provide an antistatic laminate having a cured film obtained by curing an adhesive composition.
  • conductive particles such as tin-containing indium oxide (ITO) had to be blended at a high content.
  • the film thickness was about 0 .: L m.
  • zinc oxide can be used as the conductive particles to exhibit high transparency and sufficient conductivity, and a band having a cured film excellent in antistatic performance. A laminate for preventing electricity can be obtained.
  • the transparency of the cured film and a sufficient surface resistance value can both be achieved, and an optical part having an antistatic function, in particular, It is useful as an antireflection film having an antistatic function.
  • FIG. 1 is a schematic diagram showing a basic configuration of a laminate according to the present invention.
  • FIG. 2A is a schematic view showing a first form of an antireflection film with an antistatic function of the present invention.
  • FIG. 2B is a schematic diagram showing another form of the first form of the antireflection film with an antistatic function of the present invention.
  • FIG. 2C is a schematic view showing a second embodiment of the antireflection film with an antistatic function of the present invention.
  • FIG. 2D is a schematic diagram showing another form of the second form of the antireflection film with an antistatic function of the present invention.
  • FIG. 2E is a schematic view showing a third embodiment of the antireflection film with an antistatic function of the present invention.
  • FIG. 2F is a schematic view showing another form of the third form of the antireflection film with an antistatic function of the present invention.
  • the laminate of the present invention is characterized by having at least a base material and (A) a cured film layer containing aluminum-containing acid-zinc particles and (D) a specific compound.
  • the cured film layer can be formed by curing a liquid curable composition containing the following components (A) to (E).
  • the antireflection film which is a preferred embodiment of the laminate of the present invention, is such that the antistatic layer and the low refractive index layer comprising at least the cured film layer are close to the base material on the base material.
  • the side force is also an antireflection film laminated in this order, and the low refractive index layer is a cured product of a curable resin composition containing the following components (F) and (G).
  • the laminate 1 of the present invention has a base film 10 and a cured film layer 12 formed by curing the liquid curable composition.
  • the laminate of the present invention only needs to have at least the substrate 10 and the cured film layer 12. Depending on the, various layers may be provided. The layer provided according to the purpose will be described later.
  • the laminate 1 of the present invention has the cured film layer 12 having excellent scratch resistance and adhesion, it is particularly useful as a hard coat, and the laminate 1 of the present invention is reflected. When used as a prevention film, it is also useful as a high refractive index layer that exhibits high refractive index properties.
  • the laminate 1 of the present invention has an antistatic laminate by disposing a cured film layer 12 having an excellent antistatic function on a substrate of various shapes such as a film, a plate, or a lens. Useful as a body.
  • an antireflection film having an antistatic function for various display panels such as a CRT, a liquid crystal display panel, a plasma display panel, an electret luminescence display panel (hereinafter referred to as “antireflection film”)
  • an antireflection film with an antistatic function such as a plastic lens, a polarizing film, and a solar battery panel.
  • the cured film layer provided on the substrate of the laminate of the present invention comprises the following liquid curable composition (hereinafter, simply “composition” or “antistatic layer forming composition”). It is obtained by curing, and the laminate can be provided with conductivity, a function as a high refractive index film, and a function as Z or a hard coat.
  • liquid curable composition used in the present invention will be specifically described.
  • the primary particle diameter of the aluminum-containing dumbbell particles can usually be 5 nm to 100 nm.
  • the crystal structure is not particularly limited, but a monoclinic system or the like can be used.
  • the primary particle size of the aluminum-containing zinc oxide particles can be measured, for example, as the number average particle size by observation with a transmission electron microscope. If the particle is not spherical, the average of the major axis and minor axis is the particle diameter, and if the ratio of the major axis to the minor axis is 2 or more, the minor axis is the particle size.
  • the aluminum-containing zinc oxide particles have a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, or an indefinite shape, and preferably a spherical shape.
  • Examples of such commercially available aluminum-containing zinc oxide particles include KUSITECH Co., Ltd. trade names: Passet AB, Passet AK, Passet CK, and Sakai Chemical Industry Co., Ltd., trade name: SC18.
  • the aluminum-containing acid-zinc particles are preferably surface-modified as follows. By performing the surface modification, it is possible to improve the scratch resistance of a cured product obtained by curing the composition of the present invention containing the aluminum-containing zinc oxide particle dispersion.
  • the surface modification can be used by a known method (for example, see JP-A-2003-105034).
  • the aluminum-containing acid-zinc particles have, in the molecule, a polymerizable unsaturated group such as a (meth) acryloyl group or a vinyl group and the following formula (3):
  • X represents NH 0 (oxygen atom) or S (ion atom), and Y represents O or S.
  • This compound is preferably a compound having in its molecule a silanol group or a group that generates a silane group by hydrolysis.
  • These groups can be used alone or in combination of two or more.
  • the amount of component (A) added in the composition used in the present invention is in the range of 60 85 wt%, with or without surface modification, with the total solid content in the composition being 100 wt%. More preferred is 60 to 80% by weight. If the amount of component (A) added is less than 60% by weight, the cured film may have insufficient antistatic properties. The brightness may be inferior.
  • Component (B) used in the present invention is a component that imparts excellent film formability and transparency to a cured film obtained by curing the liquid curable composition to be obtained. It is a compound which has an ionic unsaturated group. By using such component (B), a cured product having excellent scratch resistance and organic solvent resistance can be obtained.
  • component (B) include, for example, polyfunctional (meth) acrylic esters preferred by (meth) acrylic esters (hereinafter referred to as “polyfunctional (meth) acrylate monomers”). It is preferable.
  • the polyfunctional (meth) acrylate monomer is a tri- or more-functional (meth) acrylate monomer having 3 or more (meth) attalyloyl groups in one molecule. Tomonomer is particularly preferred. It is also possible to use a mixture of two or more polyfunctional (meth) acrylate monomers.
  • polyfunctional (meth) acrylate monomer examples include trimethylolpropantri (meth) acrylate, ditrimethylol propane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, penta erythritol tetra ( (Meth) attalylate, dipenta erythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerol tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) ate
  • poly (meth) atalylates of ethylene oxide or propylene oxide adducts to these starting alcohols oligoesters having two or more (meth) atalyloyl groups in the molecule (meth) atalylates, oligos Ether ( Data) Atari rates include
  • Examples of commercially available polyfunctional (meth) acrylate monomers include KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and Sartoma I SR399E.
  • the amount of component (B) added in the composition used in the present invention is usually 0.5 to 35% by weight, preferably 1 to 30% by weight, with the total solid content in the composition being 100% by weight. It is. component When the added amount of (B) is less than 0.5% by weight, the scratch resistance of the cured film is lowered, and when it exceeds 35% by weight, sufficient antistatic performance cannot be obtained.
  • the photopolymerization initiator used as component (C) is not particularly limited as long as it can be decomposed by light irradiation to generate radicals to initiate polymerization.
  • acetophenone acetophenone benzil ketal, 1-hydroxycyclohexane.
  • the amount of component (C) in the composition used in the present invention is usually 0.01 to 20% by weight, preferably 0.1 to 15% by weight, with the total solid content of the composition being 100% by weight. %. If the blending amount of component (C) is less than 0.01% by weight, the hardness of the cured product may be insufficient, and if it exceeds 20% by weight, the inside may not be cured.
  • Component (D) is a compound that functions as a dispersant in the liquid curable composition.
  • Component (D) (hereinafter sometimes referred to as “dispersing agent”) uses either one of the compounds represented by the following formulas (1) and (2).
  • R represents C H —CH 2 O— (CH 2 CH 2 O) —CH 2 CH 2 O—p is 8 to 1)
  • 0 and q are 12 to 16, x is 1 to 3, and when x is 2 or more, a plurality of R 1 may be the same or different from each other. )
  • R 1 s When X is 2 or 3, two or three R 1 s may be the same or different, but are usually the same.
  • m and n are numbers selected such that the number average molecular weight in terms of polystyrene determined by gel permeation chromatography of the compound of formula (2) is 10,000 to 40,000.
  • PLAAD ED211 and the like are listed as ED151 and a commercial product of the dispersant represented by the formula (2).
  • the amount of component (D) added in the composition used in the present invention is within the range of 0.01 to 15% by weight, with the total amount of the components excluding the solvent in the composition being 100% by weight. More preferably, it is 0.05 to 10% by weight. If the additive amount of component (D) is less than 0.01% by weight, the dispersion stability of the particles may be impaired, and if it exceeds 15% by weight, sufficient antistatic properties may not be exhibited. [0044] (E) Solvent
  • Solvents are alcohols such as methanol, ethanol, isopropanol, butanol, octanol; ethyl acetate, butyl acetate, ethyl lactate, y-butyrolatatone, propylene glycolenomonomethinoatenoate acetate, propylene glycolenomonoethylenoate acetate Esters such as ethylene glycol monomethyl ether, propylene glycol monoremonomethinoreethenore, diethyleneglycololemonobutinoreethenore, etc .; dimethylformamide, N, N dimethylacetoacetamide, N-methylpyrrolidone, etc.
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone;
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene be able to.
  • acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, methanol, isopropyl alcohol, and propylene glycol monomethyl ether are preferred, and methyl ethyl ketone and propylene glycol monomethyl ether are more preferred.
  • the solvent can be used alone or in combination of two or more.
  • the amount of the solvent (E) in the composition used in the present invention is not particularly limited, but the total solid content in the composition is 100 parts by weight, and within a range of 5 to: LOO, 000 parts by weight. More preferably, it is 10 to 10,000 parts by weight.
  • composition used in the present invention can also contain a monofunctional or bifunctional ethylenically unsaturated group-containing compound as long as the properties thereof are not impaired.
  • monofunctional or bifunctional ethylenically unsaturated group-containing compound include, for example, N-butyropyrrolidone, N-bearcaprolatatam-containing ratatum-containing ratata, and isobolyl (meth) acrylate.
  • R 2 represents a hydrogen atom or a methyl group
  • R 3 represents an alkylene group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms
  • R 4 represents a hydrogen atom or 1 to 12 carbon atoms, preferably 1 to 9 represents an alkyl group
  • Ph represents a fullerene group
  • r represents a number of 0 to 12, preferably 1 to 8.
  • the non-conductive particles or the non-conductive particles and the alkoxysilane compound are reacted in an organic solvent as long as the composition does not cause problems such as separation and gelling. You can also use the resulting particles together.
  • the antistatic function that is, the surface resistance when a cured film is used, the value of 10 13 ⁇ or less is maintained. Therefore, the scratch resistance can be improved.
  • non-conductive particles are not particularly limited as long as they are particles other than (i) aluminum-containing acid-zinc particles.
  • oxide particles or metal particles other than aluminum-containing zinc oxide particles are also included.
  • oxide particles such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, etc., or group forces composed of silicon, aluminum, zirconium, titanium, and cerium are also included. 2 or more elements selected Examples thereof include acid oxide particles.
  • the primary particle diameter of the non-conductive particles is preferably 0.1 m or less, more preferably 0.001-0. As the value obtained by observing the dry powder with a transmission electron microscope. 05 ⁇ m. If it exceeds 0.1 ⁇ m, sedimentation may occur in the composition or the smoothness of the coating film may be lowered.
  • the non-conductive particles and the alkoxysilane compound may be hydrolyzed in an organic solvent and then mixed. This treatment improves the dispersion stability of the non-conductive particles.
  • the hydrolysis treatment of the non-conductive particles and the alkoxysilane compound in an organic solvent can be performed in the same manner as the treatment method for the component (A) described above.
  • non-conductive particles include, for example, acid silica particles (for example, silica particles), colloidal silica, manufactured by Nissan Chemical Industries, Ltd., trade names: methanol silica sol, IPA- ST, MEK—ST, NBA-ST, XBA—ST, DMAC—ST, ST—UP, ST—OUP ⁇ ST—20, ST—40, ST—C, ST—N, ST—0, ST—50, ST—OL can be listed.
  • powder silica is manufactured by Nippon Aerosil Co., Ltd. Product name: Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil 0X50, Asahi Glass Co., Ltd.
  • aqueous dispersion of acid aluminum (alumina) product names manufactured by Nissan Chemical Industries, Ltd .: Alumina sol 100, 1 200, 1 520; As dispersions of zirconium oxide, Sumitomo Osaka Cement Made by Co., Ltd. (Toluene, methyl ethyl ketone-dispersed zircouazole); As the cerium oxide aqueous dispersion, Taki Chemical Co., Ltd., trade name: Nidral; Alumina, acid dimethyl alcohol, acid Examples of powders and solvent dispersions such as ⁇ titanium include trade names: Nanotec manufactured by CIA Kasei Co., Ltd.
  • the amount of GO non-conductive particles in the composition used in the present invention is 0.1 to 35% by weight, preferably 1 to 30% by weight, with the total solid content in the composition being 100% by weight. is there.
  • antioxidants antioxidants, ultraviolet absorbers, light stabilizers, thermal polymerization inhibitors, leveling agents, surfactants, lubricants, coupling agents, etc. It can be blended as needed.
  • Antioxidant agents are manufactured by Ciba Specialty Chemicals Co., Ltd. Trade name: Irganox 1010, 1035, 1076, 1222, etc.
  • Ultraviolet absorbers are manufactured by Ciba Specialty Chemicals Co., Ltd.
  • the viscosity of the composition used in the present invention thus obtained is usually 1 to 20, OOOmPa's at 25 ° C, preferably 1 to 1, OOOmPa's.
  • composition used in the present invention was prepared by dispersing (A) aluminum-containing zinc oxide particles, (D) a dispersant, and (E) a solvent containing aluminum-containing zinc oxide particles in a container shielded from ultraviolet rays. ) Polymerizable unsaturated group-containing compound, (C) photopolymerization initiator, and, if necessary,
  • It can be produced by mixing and stirring (0 monofunctional or bifunctional (meth) attale toy compound, GO non-conductive particles, Gii) additive, additional (E) solvent, and the like.
  • the aluminum-containing zinc oxide particle dispersion is produced by dispersing aluminum-containing zinc oxide particles together with a dispersant in a solvent.
  • the blending amount of each of the above components in the aluminum-containing zinc oxide particle dispersion can be appropriately set according to the application, but is usually (A) 8-50% by weight of aluminum-containing zinc oxide particles,
  • E) is a solvent 53.85 to 84 wt 0/0.
  • the solid content concentration in the aluminum-containing acid / zinc / zinc particle dispersion is usually 8.6 to 62.5% by weight, preferably 10 to 50% by weight.
  • Dispersion is normally continued at a peripheral speed of 5 to 15 mZs using a paint shear force, SC mill, airer type mill, pin type mill or the like until no decrease in particle size is observed. Usually a few hours The In the dispersion, it is preferable to use dispersed beads such as glass beads.
  • the bead diameter is not particularly limited, but is usually about 0.05 to lmm. The bead diameter is preferably 0.05-
  • 0.5 mm more preferably ⁇ to 0.08 to 0.5 mm, and particularly preferably ⁇ to 0.08 to 0.2 mm.
  • the thus obtained aluminum-containing acid-zinc zinc particle dispersion is subjected to secondary aggregation before dispersion, and the aluminum-containing acid-zinc zinc particles are dispersed to a smaller particle size.
  • the median diameter of the aluminum-containing zinc oxide particles is preferably 150 nm or less, more preferably lOOnm or less.
  • a film obtained by curing the resin composition of the present invention which is prepared by including an aluminum-containing zinc oxide particle dispersion that is uniformly dispersed and has high dispersion stability, has high transparency.
  • the cured film layer of the laminate of the present invention can be obtained by coating the antistatic layer-forming composition described above on the substrate, drying it, and then irradiating it with radiation to cure the composition. .
  • the surface resistance of the obtained cured film layer is 1 X 10 13 ⁇ or lower, preferably 1 X 10 12 ⁇ or lower, more preferably ⁇ ⁇ ⁇ ⁇ or lower, and more preferably IX 10 8 ⁇ or lower. is there. If the surface resistance exceeds 1 X 10 13 ⁇ , the antistatic performance may be insufficient and the dust may not be easily removed.
  • the application method of the composition for forming an antistatic layer is not particularly limited! /, But known methods such as, for example, roll coating, spray coating, flow coating, date coating, screen printing I ink jet printing, etc. Can be applied.
  • the radiation source used for curing the composition for forming an antistatic layer is not particularly limited as long as it can be cured in a short time after the composition is applied.
  • Examples of the visible ray source include direct sunlight, lamps, fluorescent lamps, and lasers.
  • Examples of the ultraviolet ray source include mercury lamps, halide lamps, and lasers, and electron beam source.
  • a method using a thermoelectron generated from a commercially available tungsten filament a cold cathode method in which a metal is generated through a high voltage pulse, and a collision between an ionized gaseous molecule and a metal electrode 2
  • Examples include secondary electron systems that use secondary electrons.
  • Examples of the source of ⁇ rays, j8 rays, and ⁇ rays include fission materials such as 6 ° Co.
  • vacuum tubes that collide accelerated electrons with the anode can be used. .
  • These radiations may be irradiated alone or in combination of two or more kinds. Alternatively, one or more kinds of radiation may be irradiated for a certain period.
  • the thickness of the cured film layer is preferably 0.05-30 ⁇ m! /.
  • the thickness is relatively thick, preferably 2 to 15 m.
  • 0.05 to L0 m is preferable.
  • the total light transmittance is preferably 85% or more.
  • the substrate used in the laminate of the present invention may be appropriately selected according to the intended use without any particular limitation, such as metal, ceramics, glass, plastic, wood, slate, etc., but has high productivity of radiation curability, As a material that can exhibit industrial utility, it is preferably applied to, for example, a film or a fiber-like substrate. Particularly preferred materials are plastic film and plastic plate.
  • plastics include polycarbonate, polymethyl methacrylate, polystyrene Z polymethyl methacrylate copolymer, polystyrene, polyester, polyolefin, triacetyl cellulose resin, and diethylene glycol diaryl.
  • Examples include carbonate (CR-39), ABS resin, AS resin, polyamide, epoxy resin, melamine resin, cyclized polyolefin resin (for example, norbornene-based resin).
  • the thickness of the substrate should be appropriately set according to the purpose and is not particularly limited.
  • the cured film of the present invention has excellent scratch resistance and adhesion, it is useful as a hard coat. Further, since it has an excellent antistatic function, it is useful as an antistatic film by being disposed on a substrate of various shapes such as a film, a plate, or a lens.
  • cured film of the present invention include, for example, touch panel protective films, transfer foils, optical disk hard coats, automotive window films, antistatic protective films for lenses, cosmetics, and the like.
  • Used as a hard coat mainly for the purpose of preventing product surface scratches and dust adhesion due to static electricity, etc., as well as CRT, liquid crystal display panel, plasma display, etc.
  • Use as anti-reflection coatings for antistatics for various display panels such as panels and electrification luminescence display panels, and use as anti-reflection coatings for anti-statics such as plastic lenses, polarizing films, solar battery panels, etc. it can.
  • the cured film of the present invention is an antistatic laminate that imparts an antireflection function to an optical article by forming the cured film on a substrate. It is also useful to use it as a single layer structure. That is, by using the cured film of the present invention in combination with a film having a lower refractive index, an antistatic laminate having antireflection performance can be formed.
  • a method of forming a low refractive index layer or a multilayer structure of a low refractive index layer and a high refractive index layer is formed on a base material or a hard-coated base material. It is known that the method to do is effective.
  • FIG. 2A shows a first embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
  • an antistatic layer 12 which is a cured film layer formed by curing the liquid curable composition, is formed on a substrate 10, and a low refractive index layer 18 is further formed thereon.
  • the antistatic layer 12 has an antistatic function, a function as a hard coat layer, and a function as a high refractive index layer.
  • the refractive index of the antistatic layer 12 needs to be higher than the refractive index of the low refractive index layer 18.
  • the antistatic layer 12 of the antireflection film 2 of the present invention can also function as a hard coat layer, but a hard coat layer can also be provided separately.
  • the hard coat layer is provided between the base material 10 and the antistatic layer 12 or between the antistatic layer 12 and the low refractive index layer 18.
  • the refractive index of the hard coat layer 11 must be higher than the refractive index of the low refractive index layer 18.
  • Fig. 2C shows a second embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
  • the antireflection film 2 with an antistatic function is obtained by forming an antistatic layer 12 which is a cured film layer obtained by curing the liquid curable composition on a base material 10, and further thereon.
  • the high refractive index layer 16 and the low refractive index layer 18 are formed in this order.
  • the antistatic layer 12 may have both an antistatic function, a function as a coating, and a function as a medium refractive index layer.
  • the refractive index of the antistatic layer 12 is lower than the refractive index of the high refractive index layer 16. It must be higher than the refractive index.
  • the second mode a mode in which a hard coat layer is separately provided is also possible, as in the first mode.
  • the hard coat layer 11 can be provided either between the base material 10 and the antistatic layer 12 or between the antistatic layer 12 and the high refractive index layer 16. These forms are shown in Figure 2D.
  • FIG. 2E shows a third embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
  • the antireflection film 2 with an antistatic function is obtained by forming an antistatic layer 12 which is a cured film layer obtained by curing the liquid curable composition on a base material 10, and further thereon.
  • the middle refractive index layer 14, the high refractive index layer 16, and the low refractive index layer 18 are formed in this order.
  • the antistatic layer 12 has both an antistatic function and a function as a hard coat.
  • a hard coat layer can be separately provided as in the first embodiment.
  • the hard coat layer 11 can be provided either between the base material 10 and the antistatic layer 12 or between the antistatic layer 12 and the medium refractive index layer 14. These configurations are shown in Figure 2F.
  • the low refractive index layer is a layer having a thickness of 0.05 to 0.20 m and a refractive index of 1.30 to L45.
  • the material used for the low refractive index layer is not particularly limited as long as the desired properties are obtained.
  • a curable composition containing an fluorinated polymer, an acrylic monomer, and a fluorinated acrylic monomer. And cured products such as epoxy group-containing compounds and fluorine-containing epoxy group-containing compounds.
  • silica fine particles and the like can be blended.
  • a low refractive index layer is formed using a curable resin composition containing components (F) and (G) described later.
  • the high refractive index layer has a thickness in the range of 0.05 to 0.20 m and a refractive index in the range of 1.55 to 2.20.
  • high refractive index inorganic particles such as metal oxide particles can be mixed.
  • metal oxide particles include antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, acid-zinc zinc (ZnO) particles, antimony-containing ZnO, and A1-containing Z ⁇ . Particles ZrO particles, TiO particles, silica-coated TiO particles, Al 2 O 3 / ZrO-coated TiO particles,
  • Examples include CeO particles.
  • antimony-containing tin oxide (ATO) particles are preferred.
  • ITO indium oxide
  • PTO phosphorus-containing tin oxide
  • A1-containing ZnO particles Al 2 O 3 / ZrO-coated TiO particles.
  • metal oxide particles are one kind alone or
  • the high refractive index layer can have a function of a hard coat layer.
  • a layer having a refractive index of 1.50 to: L 90 and having a refractive index higher than that of the low refractive index layer and lower than that of the high refractive index layer is set to the medium refractive index.
  • the refractive index of the middle refractive index layer is preferably 1.50 to L80, more preferably 1.50 to L75.
  • the thickness of the medium refractive index layer is in the range of 0.05 to 0.20 / z m.
  • high refractive index inorganic particles such as metal oxide particles are used. You can join yourself.
  • metal oxide particles include antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, ZnO particles, antimony-containing ZnO, A1-containing ZnO particles, ZrO particles, TiO Particles, silica-coated TiO particles, Al 2 O 3 / ZrO-coated TiO particles, CeO particles
  • antimony-containing tin oxide (ATO) particles tin-containing indium oxide (ITO) particles, phosphorus-containing tin oxide (PTO) particles, A1-containing ZnO particles, ZrO particles
  • metal oxide particles can be used singly or in combination of two or more.
  • the reflectance can be lowered by combining the low refractive index layer and the high refractive index layer, and the reflectance can be reduced by combining the low refractive index layer, the high refractive index layer, and the medium refractive index layer. Can be reduced and the glare can be reduced.
  • hard coat layer examples include SiO, epoxy resin, acrylic resin, melamine
  • silica particles may be blended with these rosins.
  • the hard coat layer has the effect of increasing the mechanical strength of the laminate.
  • the thickness of the hard coat layer is
  • the refractive index of the hard coat layer is usually in the range of 1.45 to 1.70, preferably 1.45 to 1.60.
  • the material of the substrate when the laminate of the present invention is used as an antireflection film must be transparent.
  • the thickness of the substrate is not particularly limited, but is usually in the range of 30 to 300 ⁇ m, preferably 50 to 200 ⁇ m. [0088] (7) Other layers
  • the laminate of the present invention has scratches on, for example, plastic optical parts, touch panels, film-type liquid crystal elements, plastic casings, plastic containers, flooring materials as building interior materials, wall materials, artificial stones, etc. It can be suitably used as a hard coating material for preventing (scratching) and preventing contamination; an adhesive for various base materials; a sealing material;
  • the film thickness of the low, medium and high refractive index layers is usually 60 to 150 nm
  • the film thickness of the hard coat layer is usually 1 to 20 111
  • the film thickness of the antistatic layer is usually 0.05 to 30 / ⁇ ⁇ . It is.
  • the layer can be produced by a known method such as coating and curing, vapor deposition, or sputtering.
  • the low refractive index layer in the present invention means a layer having a refractive index at 550 nm of 1.45 or less.
  • the low refractive index layer formed in the laminate of the present invention comprises (F) a curable resin composition containing (E) an ethylenically unsaturated group-containing fluoropolymer and (G) silica particles (hereinafter referred to as “low refractive index”).
  • the cured product is preferably composed of a composition for forming a rate layer “t”.
  • the fluorine-containing polymer (F) containing an ethylenically unsaturated group used for the composition for forming a low refractive index layer is a compound containing one isocyanate group and at least one ethylenically unsaturated group. It can be obtained by reacting a product with a hydroxyl group-containing fluoropolymer.
  • the compound containing one isocyanate group and at least one ethylenically unsaturated group contains one isocyanate group and at least one ethylenically unsaturated group in the molecule. If it is a compound, it is not particularly limited.
  • gelling may occur when reacting with a hydroxyl group-containing fluoropolymer.
  • a curable rosin composition to be described later can be hardened more easily, and therefore a compound having a (meth) atallyloyl group is more preferable.
  • examples of such a compound include 2- (meth) atalylooxychetyl isocyanate and 2- (meth) atalylooxypropylisocyanate alone or in combination of two or more.
  • Such a compound can be synthesized by reacting diisocyanate and a hydroxyl group-containing (meth) acrylate.
  • diisocyanates examples include 2,4-tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, methylene bis (4-cyclohexylenoisocyanate).
  • Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate.
  • Pentaerythritol tri (meth) acrylate is preferred.
  • hydroxyl group-containing polyfunctional (meth) atalylate examples include, for example, Osaka Organic Chemical Co., Ltd., trade name HEA, Nippon Kayaku Co., Ltd., trade name KAYARAD DPHA, PET-30, Toagosei ( Product name Alonics M-215, M-233, M-305, M-400, etc. can be obtained.
  • the hydroxyl group-containing fluoropolymer preferably comprises the following structural units (a), (b) and (c).
  • R 11 represents a fluorine atom, a fluoroalkyl group or a group represented by —OR 12 (R 12 represents an alkyl group or a fluoroalkyl group)]
  • R represents a hydrogen atom or a methyl group
  • R 14 represents an alkyl group,-(CH) —OR 15
  • R 15 represents an alkyl group or a glycidyl group, c represents a number of 0 or 1), a carboxyl group or an alkoxycarbo group
  • R 16 represents a hydrogen atom or a methyl group
  • R 17 represents a hydrogen atom or a hydroxyalkyl group
  • V represents a number of 0 or 1
  • the fluoroalkyl group of R 11 and R 12 includes a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a norofluoro group, Examples thereof include a fluoroalkyl group having 1 to 6 carbon atoms such as a monofluorohexyl group and a perfluorocyclohexyl group.
  • alkyl group for R 12 examples include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a cyclohexyl group.
  • the structural unit (a) can be introduced by using a fluorine-containing vinyl monomer as a polymerization component.
  • a fluorine-containing butyl monomer is not particularly limited as long as it is a compound having at least one polymerizable unsaturated double bond and at least one fluorine atom. Examples of this include fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, 3, 3, 3-trifluoropropylene; alkyl perfluoro oral ether or alkoxyalkyl perfluorobule.
  • Perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), perfluoro (isobutyl vinyl ether), etc .
  • Perfluoro (alkoxyalkyl butyl ether) s such as propoxypropyl butyl ether may be used singly or in combination of two or more.
  • hexafluoropropylene and perfluoro (alkyl butyl ether) or perfluoro (alkoxy alkyl butyl ether) are more preferred and used in combination!
  • the content of the structural unit (a), the sum of the structural units (a) ⁇ (c) is 100 mol%, 20 to 70 mole 0/0. This is because if the content is less than 20 mole 0/0, which is characteristic of the optically fluorine-containing material where the application is intended, it may be a case where the expression of the low refractive index becomes difficult, whereas This is because if the content exceeds 70 mol%, the solubility of the hydroxyl group-containing fluorine-containing polymer in an organic solvent, transparency, or adhesion to a substrate may be lowered.
  • examples of the alkyl group represented by R ′′ or R 14 include alkyl groups having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, and a lauryl group.
  • alkoxycarbonyl group represented by R 15 include a methoxycarbonyl group and an ethoxycarbonyl group.
  • the structural unit (b) can be introduced by using the above-mentioned butyl monomer having a substituent as a polymerization component.
  • bur monomers include methyl vinyl ethere, ethino levinino le ethere, n- propino levinino ethere, isopropino levinino ether, n-butyl vinyl ether, isobutyl vinyl ether, tert -Butyl vinyl etherenole, n-pentinolevinoreethenole, n-hexenolevinoreethenore, n-year-old cubinorebi-noreethenore, n-dodecinolevinorethenore, 2-ethinorehexinolevinoreteol, cyclohexyl vinyl ether Alkyl butyl ethers or cycloalkyl alkyl ethers such as: ethyl
  • the content of the structural unit (b) is 10 to 70 mol% when the total of the structural units (a) to (c) is 100 mol%.
  • the reason for this is that when the content is less than 10 mol%, the solubility of the hydroxyl group-containing fluoropolymer in the organic solvent may be reduced. On the other hand, the content exceeds 70 mol%. This is because the optical properties such as transparency and low reflectivity of the hydroxyl group-containing fluoropolymer may be deteriorated.
  • the structural unit (c) can be introduced by using a hydroxyl group-containing vinyl monomer as a polymerization component.
  • hydroxyl-containing butyl monomers include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 5-hydroxypentyl.
  • Hydroxyl-containing butyl ethers such as vinyl ether, 6-hydroxyhexyl vinyl ether, hydroxyl-containing butyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxy butyl allyl ether, glycerol monoallyl ether, allyl alcohol, etc. Can be mentioned.
  • hydroxyl group-containing vinyl monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and force prolatatone ( (Meth) acrylate, polypropylene glycol (meth) atrelate, etc. can be used.
  • the content of the structural unit (c) is preferably 5 to 70 mol% when the total of the structural units (a) to (c) is 100 mol%.
  • the reason for this is that when the content is less than 5 mol%, the solubility of the hydroxyl group-containing fluoropolymer in the organic solvent may decrease, whereas when the content exceeds 70 mol%. This is because optical properties such as transparency and low reflectivity of the hydroxyl group-containing fluoropolymer may be deteriorated.
  • the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (d).
  • R 18 and R 19 may be the same or different and each represents a hydrogen atom, an alkyl group, a halogenialkyl group or an aryl group]
  • the alkyl group of R 18 or R 19 is an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • the halogenoalkyl group is a trifluoromethyl group, C1-C4 fluoroalkyl group, such as perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, etc.
  • aryl groups include a phenyl group, a benzyl group, and a naphthyl group. It is done.
  • the structural unit (d) can be introduced by using an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (14).
  • an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (14) examples include compounds represented by the following formula (15).
  • R 2 to R 23 represent a hydrogen atom, an alkyl group or a cyan group which may be the same or different
  • R 24 to R 27 represent a hydrogen atom or an alkyl group which may be the same or different.
  • D and e are numbers from 1 to 6
  • s and t are numbers from 0 to 6
  • y is a number from 1 to 200
  • z is a number from 1 to 20.
  • the structural unit (d) is included in the hydroxyl group-containing fluoropolymer as a part of the structural unit (e).
  • R 2 to R 23 , R 24 to R 27 , d, e, s, t, and y are the same as those in the above formula (15).
  • the alkyl group represented by R 2G to R 23 may be a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, or the like having 1 to 12 alkyl groups, and R 24 to R 27 alkyl groups include methyl groups, ethyl groups, propyl groups, etc.
  • a compound represented by the following formula (17) is particularly preferable.
  • the content of the structural units (d), the sum of the structural units (a) ⁇ (c) is 100 mol%, is preferably a 0.1 to 10 mole 0/0 . This is because if the content is 1 mol 0/0 less than 0.5, the surface slipperiness of the coating film after curing is reduced is because the scratch resistance of the coating film may be deteriorated, whereas, If the content exceeds 10 mol%, the hydroxyl group-containing fluoropolymer is inferior in transparency, and when used as a coating material, repelling or the like may easily occur during coating.
  • the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (f).
  • the group having an emulsifying action of R 28 has both a hydrophobic group and a hydrophilic group, and the hydrophilic group has a polyether structure such as polyethylene oxide and polypropylene oxide. Some groups are preferred.
  • Examples of such an emulsifying group include a group represented by the following formula (19).
  • the structural unit (f) can be introduced by using a reactive emulsifier as a polymerization component.
  • a reactive emulsifier examples include compounds represented by the following formula (20).
  • the content of the structural unit (f) is preferably 0.1 to 5 mol%.
  • the solubility of the hydroxyl group-containing fluoropolymer in the solvent is improved.
  • the content is within 5 mol%, the curable resin composition This is because the stickiness of objects does not increase excessively, handling becomes easy, and moisture resistance does not decrease even when used as a coating material.
  • the content of the structural unit (f), with respect to 100 mole 0/0 of the structural units (a) ⁇ (c), and 0.1 to 3 mole 0/0 is even more preferable to be more preferred instrument from 0.2 to 3 mol 0/0.
  • the hydroxyl group-containing fluoropolymer preferably has a polystyrene equivalent number average molecular weight of 5,000 to 500,000 as measured by gel permeation chromatography using tetrahydrofuran as a solvent.
  • the reason for this is that when the number average molecular weight is less than 5,000, the mechanical strength of the hydroxyl group-containing fluoropolymer may be reduced.
  • the number average molecular weight exceeds 500,000, it will be described later. This is because the viscosity of the curable resin composition becomes high and thin film coating may be difficult.
  • the hydroxyl group-containing fluoropolymer has a polystyrene-reduced number average molecular weight of preferably 10,000 to 300,000, more preferably 10,000 to 100,000.
  • the ethylenically unsaturated group-containing fluorine-containing polymer is obtained by reacting the above-described compound containing one isocyanate group and at least one ethylenically unsaturated group with a hydroxyl group-containing fluorine-containing polymer. Obtained.
  • a compound containing one isocyanate group and at least one ethylenically unsaturated group, and a hydroxyl group-containing fluoropolymer are an isocyanate group Z It is preferable to carry out the reaction at a hydroxyl group molar ratio of 1.1 to 1.9. The reason for this is that if the molar ratio is less than 1.1, the scratch resistance and durability may be reduced. On the other hand, if the molar ratio exceeds 1.9, the coating film of the curable resin composition may be used. This is because the scratch resistance after immersion in an aqueous alkali solution may be reduced.
  • the molar ratio of the isocyanate group Z hydroxyl group is preferably 1.1 to 1.5, more preferably 1.2 to 1.5.
  • the addition amount of the component (F) in the curable resin composition is not particularly limited, but is usually 1 to 95% by mass with respect to the total amount of the composition other than the organic solvent. The reason for this is that when the addition amount is less than 1% by mass, the refractive index of the cured coating film of the curable resin composition increases, and a sufficient antireflection effect may not be obtained. If the added amount exceeds 95% by mass, the scratch resistance of the cured coating film of the curable resin composition cannot be obtained! This is because there are cases.
  • the addition amount of the component (F) is more preferably 2 to 90% by mass, and even more preferably 3 to 85% by mass.
  • particles containing silica as a main component can be blended, and the scratch resistance of the cured product of the composition for forming a low refractive index layer, particularly steel wool resistance. Can be improved.
  • particles having silica as a main component particles having silica having a number average particle diameter of 1 to lOOnm as a main component are preferable.
  • the particle size is measured with a transmission electron microscope.
  • the particle size of the component (G) is preferably 5 to 80 nm, more preferably 10 to 60 nm.
  • known particles can be used, and the shape is not particularly limited.
  • colloidal silica As long as it is spherical, it is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core-shell type particles, or the like. Further, it is not limited to a spherical shape, and may be an amorphous particle. Colloidal silica having a solid content of 10 to 40% by weight is preferred.
  • the dispersion medium is water! / Is preferably an organic solvent.
  • the organic solvent include alcohols such as methanol, isopropyl alcohol, ethylene glycolate, butanol, ethylene glycol monopolypropyl ether; methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones; Aromatic hydrocarbons such as toluene and xylene; Amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate, and ⁇ -butalate Rataton; Tetrahydrofuran, 1,4 dioxane, etc. In particular, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
  • Examples of commercially available particles mainly composed of silica include colloidal silica, manufactured by Nissan Chemical Industries, Ltd., trade names: methanol silica sol, IPA-ST, MEK-ST, MEK-S T-S, ⁇ — ST— L, IPA— ZL, NBA— ST, XBA— ST, DMAC— ST, ST— UP ⁇ ST— OUP ⁇ ST— 20, ST— 40, ST— C, ST— N, ST— 0, ST-50, ST-OL, etc. can be mentioned.
  • the surface of the colloidal silica that has been subjected to a surface treatment such as chemical modification can be used.
  • it contains a hydrolyzable key compound having one or more alkyl groups in the molecule or a hydrolyzate thereof.
  • hydrolyzable silicon compounds include trimethylmethoxysilane, tryptylmethoxysilane, dimethyldimethoxysilane, dibutinoresimethoxysilane, methyltrimethoxysilane, butinoretrimethoxysilane, octyltrimethoxysilane, dodecyltrimethoxy.
  • it has one or more reactive groups in the molecule.
  • Use hydrolyzable key compounds Also.
  • Molecular hydrolyzable Kei-containing compound having one or more reactive groups in the as having ⁇ group as the reactive group In example embodiment, urea propyltrimethoxysilane, Nyu-
  • a preferred compound is 3-mercaptopropyltrimethoxysilane.
  • the silica particles used in the present invention preferably have an ethylenically unsaturated group (hereinafter referred to as “reactive silica particles”).
  • the method for producing reactive silica particles is not particularly limited.
  • the reactive silica particles can be obtained by reacting the silica particles having a number average particle size of 10 to LOONm and a reactive surface treatment agent. .
  • examples of the surface treating agent include alkoxysilane compounds, tetrabutoxysilane, tetrabutoxyzirconium, tetraisopropoxyaluminum, and the like. These can be used alone or in combination of two or more.
  • Specific examples of the surface treatment agent include compounds having an unsaturated double bond in the molecule such as y-methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, and vinyltrimethoxysilane. Examples include compounds represented by the following general formula (21).
  • R dl is a methyl group, is an alkyl group having 1 to 6 carbon atoms, is a hydrogen atom or a methyl group, a is 1 or 2, b is an integer of 1 to 5, and A is 2 of 1 to 6 carbon atoms Valent alkylene group, B is a chain, cyclic or branched divalent hydrocarbon group having 3 to 14 carbon atoms, Z is a (b + 1) valent chain, cyclic or branched carbon It is a divalent hydrocarbon group of 2 to 14. Z may contain an ether bond.
  • porous silica particles As silica particles used in the composition for forming a low refractive index layer, porous silica particles are preferred.
  • the first porous silica particles (G1) or the second porous silica particles (G2) are used as the porous silica particles.
  • the first porous silica particles (G1) are obtained by hydrolysis and Z or hydrolysis condensation of a key compound represented by the following formula (22) and a key compound represented by the following formula (23). . That is, it is obtained by hydrolyzing and Z or hydrolytically condensing the silicon compound represented by the formula (22), and subjecting the keen compound represented by the formula (23) to hydrohydrolysis and Z or hydrolytic condensation. It is done.
  • the key compound represented by the formula (22) and the key compound represented by the formula (23) may be mixed and subjected to hydrolysis and Z or hydrolytic condensation at the same time.
  • the second porous silica particles (G2) are a key compound represented by the following formula (22), a key compound represented by the following formula (23), and a key compound represented by the following formula (24). Obtained by hydrolysis of Z and Z or hydrolytic condensation. That is, hydrolysis and Z or hydrolysis condensation of the key compound represented by the formula (22), and hydrolysis and Z or hydrolysis condensation of the key compound represented by the formula (23), and It is obtained by hydrolyzing and Z or hydrolytically condensing the silicon compound represented by the formula (24).
  • the key compound represented by the formula (22), the key compound represented by the formula (23), and the key compound represented by the formula (24) are mixed and simultaneously hydrolyzed and Z or hydrolyzed.
  • the key compound represented by formula (22) is hydrolyzed and Z or hydrolyzed, and then the key compound represented by formula (23) and formula (24) are used.
  • hydrolysis and Z or hydrolysis condensation may be carried out by adding the above-mentioned key compound.
  • X is each independently an alkoxy group having 1 to 4 carbon atoms, a no, a logeno group, an isocyanate group, a carboxyl group, or an alkyloxycarbo having 2 to 4 carbon atoms- Or an alkylamino group having 1 to 4 carbon atoms, preferably an alkoxy group or a halogeno group. Group, more preferably an alkoxy group.
  • Xs may be the same or different.
  • Examples of the compound represented by the formula (22) include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and tetrachlorosilane.
  • R 29 is an alkyl group having 2 to 8 carbon atoms, an allyloxyalkyl group having 4 to 8 carbon atoms or a methacryloxyalkyl group having 5 to 8 carbon atoms, preferably These are a bur group, an aryl group, an attaryloxychetyl group, an attaryloxypropyl group, an attaryloxybutyl group, a methacryloxycetyl group, a methacryloxypropyl group, and a methacryloxybutyl group.
  • j is an integer of 1-3, Preferably it is 1-2.
  • Examples of the compound represented by the formula (23) include vinyltrimethoxysilane, butyltrioxysilane, vinyltrichlorosilane, talyloxypropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, and the like.
  • the porous silica particles can contain an ethylenically unsaturated group.
  • the scratch resistance of the antireflection film of the present invention having a cured film obtained by curing the curable composition is improved.
  • R 3 is a fluorine-substituted alkyl group having 1 to 12 carbon atoms, preferably a fluorine-substituted alkyl group of 3-12 carbon atoms, more preferably fluorine 3-10 carbon atoms Substituted alkyl group.
  • k is an integer of 1 to 3, preferably 1 to 2.
  • Examples of the compound represented by the formula (24) include 3, 3, 3-trifluoropropyltrimethoxysilane, 2-perfluorohexylmethyltrimethoxysilane, and 2-perfluorohexylsilyltrimethoxy.
  • the porous silica particles can contain a fluorine-containing alkyl group.
  • the stain resistance of the cured film obtained by curing the curable composition can be improved.
  • the key compound represented by the formula (22), the key compound represented by the formula (23) and the formula (24 Two or more of the key compounds represented by) may be used.
  • the total of the key compound represented by the formula (22), the key compound represented by the formula (23) and the key compound represented by (24) is 100.
  • the key compound represented by the formula (22), the key compound represented by the formula Z (23), and the key compound represented by the formula Z (2 4) are preferably 60 to 9871. It is hydrolyzed and / or hydrolyzed and condensed at a ratio of ⁇ 301 to 20 (mol%), preferably 65 to 962 to 202 to 15 (mol%).
  • the first and second porous silica particles (Gl) and (G2) used in the present invention have an average particle size force of ⁇ 50 nm, preferably 5 to 45 nm, more preferably 5 to 40 nm.
  • the average particle diameter is a number average particle diameter, and is measured with a transmission electron microscope image.
  • the term “porous” means that the specific surface area is 50 to: L000m 2 Zg, preferably 50 to 800 m 2 Zg, and more preferably 100 to 800 m 2 / g. The specific surface area is measured by the BET method.
  • the average particle size is within the above range, scattering of the obtained coating film in the visible light region can be suppressed. Moreover, due to being porous, the density is lowered and the refractive index of the film containing such porous silica particles is lowered.
  • porous silica particles (G) are obtained by the production method described below.
  • the first or second porous silica particles (Gl) and (G2) are at least one selected from water, alcohols having 1 to 3 carbon atoms, basic compounds, and acid amides, diols, and semi-ether cards of diols.
  • the key compound represented by the above formula (22) and the key compound represented by the formula (23), or the key compound represented by the above formula (22), the formula (23 ) And the compound represented by the formula (24) can be produced by hydrolysis and Z or hydrolysis condensation.
  • the basic compound for example, an amine compound is used.
  • pyridine pyrrole, piperazine, pyrrolidine, piperidine, picoline, monoethanolamine, diethylanolamine, dimethylmonoethanol.
  • the acid amide, diol or diol half ether is preferably compatible with water and alcohol.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc. are used, preferably N, N-dimethylformamide, N, N-dimethylacetamide is used.
  • the diol for example, ethylene glycol, propylene glycol, 1,2-butanediol and the like are used, and preferably ethylene glycol and propylene glycol are used.
  • ethylene glycol monomethyl ether or propylene glycol monomethyl ether is used as the half ether of the diol.
  • porous silica particles used in the present invention can be made porous by the coexistence of acid amide, diol or diol half ether during synthesis.
  • the total concentration of the key compound of formula (22) and the key compound of formula (23) or the key compound of formulas (22) to (24) in the reaction solution is usually 0 in terms of complete hydrolysis condensate. 5 to 10% by mass, preferably 1 to 8% by mass.
  • “in terms of complete hydrolyzed condensate” is a theoretical value calculated on the assumption that the key compound has been completely hydrolyzed and condensed, and the key compound of formula (22) and X of the compound of (23) or the compounds of formulas (22) to (24) is represented by 1Z of X It corresponds to the mass when substituted with 2 mol of oxygen atoms.
  • the compound of formula (22) and the compound of formula (23), or the compound of formula (22), the compound of formula (23) and the compound of formula (24) are mixed simultaneously.
  • Hydrolysis and Z or hydrolytic condensation may also be used. Water, alcohols having 1 to 3 carbon atoms, basic compounds, and acid amides, diols and diols and diol semi-ether forces are present.
  • the key compound represented by the formula (22) is hydrolyzed and subjected to Z or hydrolytic condensation, and then the key compound represented by the formula (23) or the formula (23), respectively.
  • hydrolysis and Z or hydrolysis condensation may be carried out by adding a key compound and a key compound represented by the formula (24).
  • the reaction temperature of hydrolysis and Z or hydrolysis condensation can be arbitrarily determined in consideration of the boiling point and reaction time of the alcohol and acidamide to be used.
  • the reaction time is the type of the key compound represented by formula (22), the key compound represented by formula (23) and the key compound represented by formula (24), the reaction rate, the type and amount of base, etc.
  • the optimum value varies depending on the value, and is not limited.
  • the porous silica particles become organic.
  • a dispersion liquid dispersed in a solvent can be obtained.
  • the dispersion medium is water! /
  • an organic solvent is preferred.
  • organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycolol, butanol, ethylene glycol monopolypropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic carbonization such as toluene and xylene.
  • the compounding amount of the porous silica particles (G) in the resin composition is usually 5 to 99% by mass, preferably 10 to 98% by mass, based on the total amount of the composition other than the organic solvent. More preferred is -97 mass%.
  • the amount of particles means a solid content, and when the particles are used in the form of a solvent dispersion, the amount of particles does not include the amount of solvent.
  • the following components can be added to the composition for a low refractive index layer used in the present invention, if necessary.
  • the polyfunctional (meth) attareito toy compound containing at least two or more (meth) attaroyl groups and Z or at least one or more (meth) alkyls It is also possible to add a fluorine-containing (meth) attareito toy compound containing a acryloyl group.
  • the compound is not particularly limited as long as it is a compound containing at least two (meth) atallyloyl groups in the molecule.
  • examples include neopentyl glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol ethane tri (meth) acrylate, penta erythritol tetra (Meth) acrylate, dipentaerythritol tetra (meth) acrylate, alkyl-modified dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, alkyl-modified dipenta erythritol penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, force prolatatatone modified dipentaery
  • neopentyl glycol di (meth) acrylate dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and force prolatatatone.
  • Modified dipentaerythritol hexa (meth) acrylate is particularly preferred.
  • the compound is not particularly limited as long as it is a fluorine-containing (meth) ataretoy compound containing at least one or more (meth) atalyloyl groups.
  • fluorine-containing (meth) ataretoy compound containing at least one or more (meth) atalyloyl groups.
  • examples thereof include perfluorooctyl cetyl (meth) acrylate, octafluoropentyl (meth) acrylate, trifluoroethyl (meth) acrylate, and the like. These can be used alone or in combination of two or more.
  • the amount of component (H) to be added is not particularly limited, but is usually 0 to 90% by mass with respect to the total amount of the composition other than the organic solvent. The reason for this is that when the addition amount exceeds 90% by mass, the refractive index of the cured coating film of the curable resin composition becomes high and sufficient antireflection effect may not be obtained.
  • the addition amount of the component (H) it is more preferable to set the addition amount of the component (H) to 80% by mass or less, and more preferable to add 60% by mass or less.
  • a compound that generates active species by irradiation of active energy rays or heat can also be added.
  • a compound that generates active species upon irradiation with active energy rays or heat is used to cure the curable resin composition.
  • photopolymerization initiators examples include photoradical generators that generate radicals as active species.
  • the active energy ray is defined as an energy ray capable of decomposing a compound that generates active species to generate active species.
  • active energy rays include optical energy rays such as visible light, ultraviolet rays, infrared rays, X rays, ⁇ rays, j8 rays, and ⁇ rays. .
  • ultraviolet rays it is preferable to use ultraviolet rays from the viewpoint of having a certain energy level, a high curing speed, and a relatively inexpensive irradiation apparatus, and a small size.
  • photo radical generators include, for example, acetophenone, acetophenone benzil ketal, anthraquinone, 1- (4-isopropylphenol) 2 hydroxy-1-methylpropanone 1-on, carbazole, xanthone, 4-clobenbenzophenone.
  • the addition amount of the photopolymerization initiator is not particularly limited, but is preferably 0.01 to 20% by mass with respect to the total amount of the composition other than the organic solvent. This is because when the amount added is less than 0.01% by mass, the curing reaction becomes insufficient, and the scratch resistance and the scratch resistance after immersion in an alkaline aqueous solution may decrease. On the other hand, if the addition amount of the photopolymerization initiator exceeds 20% by mass, the refractive index of the cured film may increase and the antireflection effect may decrease.
  • the photopolymerization initiator it is more preferable to add the photopolymerization initiator to 0.05 to 15% by mass with respect to the total amount of the composition other than the organic solvent. It is more preferable to do this.
  • thermal polymerization initiator examples include a thermal radical generator that generates a radical as the active species.
  • thermal radical generators examples include benzoyl peroxide, tert-butyloxybenzoate, azobisisobutyoxy-tolyl, acetylyl peroxide, lauryl peroxide, tert-butyl peracetate, tamil peroxide, tert-butyl peroxide, tert-butyl hydride Oral peroxide, 2,2, -azobis (2,4-dimethylvale-tolyl), 2,2, -azobis (4-methoxy-2,4-dimethylvale-tolyl), etc., alone or in combination of two or more Can be mentioned.
  • the addition amount of the thermal polymerization initiator is not particularly limited, but is preferably 0.01 to 20% by mass with respect to the total amount of the composition other than the organic solvent. The reason for this is that when the amount of added calories is less than 0.01% by mass, the curing reaction becomes insufficient, and the scratch resistance and the scratch resistance after immersion in an alkaline aqueous solution may decrease. On the other hand, if the amount of addition of the photopolymerization initiator exceeds S20 mass%, the refractive index of the cured film increases and the antireflection effect may decrease.
  • the thermal polymerization initiator is used for the total amount of the composition other than the organic solvent.
  • the addition amount is more preferably 0.05 to 15% by mass, and even more preferably a value within the range of 0.1 to 15% by mass.
  • an organic solvent it is preferable to add an organic solvent to the curable resin composition.
  • an organic solvent an alcohol solvent having 1 to 8 carbon atoms, a ketone system having 3 to 10 carbon atoms, and an ester solvent having 3 to carbon atoms: LO is preferable.
  • Ethyl ketone, methyl amyl ketone, methanol, ethanol, tert-butanol, isopropanol, propylene glycolanol monomethylol ether, propylene glycol norethyl ether, propylene glycol monopropyl ether, etc. are particularly preferred and can be mentioned as examples. .
  • These organic solvents can be used alone or in combination of two or more.
  • the addition amount of the organic solvent is not particularly limited, but is preferably 100 to 100,000 parts by mass with respect to 100 parts by mass of the composition other than the organic solvent. This is because when the addition amount is less than 100 parts by mass, it may be difficult to adjust the viscosity of the curable resin composition. On the other hand, when the addition amount exceeds 100,000 parts by mass, the curable resin composition is hardened. This is because the storage stability of the composition may be decreased, or the viscosity may be excessively decreased to make handling difficult.
  • a photosensitizer In the curable resin composition, a photosensitizer, a polymerization inhibitor, a polymerization initiation assistant, a leveling agent, a wettability improver, a surfactant, an acceptable agent are used as long as the objects and effects of the present invention are not impaired.
  • Additives such as plasticizers, ultraviolet absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers other than the component (G), pigments, dyes and the like can also be contained.
  • the curable resin composition used in the present invention comprises the above (F) ethylenically unsaturated group-containing fluorine-containing polymer and the above (G) component, or, if necessary, the above (H) component, (I ) Component, ⁇ organic solvent, and additives, respectively, and mixing at room temperature or under heating conditions.
  • it can be prepared using a mixer such as a mixer, a kneader, a ball mill, or a three roll.
  • a mixer such as a mixer, a kneader, a ball mill, or a three roll.
  • the exposure dose is within the range of 0.01 to 10 j / cm 2 .
  • the value is preferred.
  • the exposure amount it is more preferable to set the exposure amount to a value in the range of 0.1 to 5 jZcm 2 , and it is more preferable to set the exposure value to a value in the range of 0.3 to 3 jZcm 2 .
  • composition for forming a low refractive index layer is cured by heating, it is preferably heated at a temperature in the range of 30 to 200 ° C for 0.5 to 180 minutes. By heating in this way, an antireflection film having excellent scratch resistance can be obtained more efficiently without damaging the substrate and the like.
  • Production Example 1 Preparation of aluminum-containing zinc oxide particles (A-1) dispersion
  • Aluminum-containing acid-zinc particles (A—1) (manufactured by Hakutech Co., Ltd., passette CK (trade name), primary particle size 20-40 nm), dispersant (manufactured by Enomoto Ichinari Co., Ltd., PLAAD ED211 (product Name):
  • methyl ethyl ketone are 27.6 / 4. 8/67. 6 (weight ratio) was mixed. 2 g of this dispersion was weighed on an aluminum dish, dried on a hot plate at 175 ° C.
  • the median diameter of the aluminum-containing acid-zinc particles (A-1) was measured under the following conditions. It was confirmed that after 5 hours and 8 hours of dispersion, the median diameter was as small as 150 ⁇ m, and it was stable over time.
  • Dispersed particles Aluminum-containing zinc oxide particles Refractive index 1. 95
  • this yarn composition contains a total of 773 parts of the compounds represented by the following formula (25) and the following formula (26), and 220 parts of pentaerythritol tetraatalylate which has not participated in the reaction. Are mixed.
  • this composition contains 75 parts of the compound (B-1) represented by the following formula (27) and 37 parts of pentaerythritol tetraatalylate which is not involved in the reaction.
  • A-1 aluminum-containing zinc oxide particles (including 80 parts of aluminum-containing zinc oxide and 6.96 parts of dispersant), dipentaerythritol hexaatari Rate (product name: KAYARAD DPHA, manufactured by Nippon Gaiyaku Co., Ltd.) 9. 04 parts, 2.5 parts of 1-hydroxycyclohexyl phenol ketone, 2 parts of 2-methyl 1- (4- (methylthio) phenol) -2
  • a liquid curable composition of a uniform solution was obtained by stirring 1.5 parts of morpholinopropane 1-on and 30.43 parts of propylene glycol monomethyl ether at 50 ° C. for 2 hours.
  • a liquid curable composition was obtained in the same manner as in Example 1 except that the components shown in Table 1 below were used in the amounts shown in Table 1.
  • a liquid curable composition was obtained in the same manner as in Example 5 except that the components shown in Table 2 below were used in the amounts shown in Table 2.
  • polyester film A4 300 made by Toyobo Co., Ltd., film thickness 188 m
  • the coating film was cured with UV light under a light irradiation condition of lj / cm 2 using a metal halide lamp in the atmosphere to form a cured film having a thickness of 3 ⁇ m.
  • the total cured light transmittance, haze, and surface resistance of the obtained cured film were evaluated according to the following criteria. (1) Total light transmittance and haze
  • the total light transmittance and haze of the cured film were measured according to JIS K7105 using a color haze meter (manufactured by Suga Test Instruments Co., Ltd.). The results obtained are shown in Tables 1 and 2.
  • the surface resistance ( ⁇ Z port) of the cured film is measured using a high resistance meter (Agilent Technology Co., Ltd. Agilent 4339B) and a resiliency cell 16008B (Agilent Techno). The measurement was performed under the condition of an applied voltage of 100V. The results obtained are shown in Table 1 and
  • Disperbyk 2001 Dispersant manufactured by BYK Chemie (modified acrylic block copolymer)
  • Irgacure 184 1 Hydroxycyclohexyl phenyl ketone
  • Aluminium-containing zinc oxide particle dispersion prepared in Production Example 1 (zinc oxide concentration 27.6%) 289.86 parts, composition containing an organic compound (Aa) containing a polymerizable unsaturated group produced in Production Example 2 2.
  • An organic compound (Aa) containing a polymerizable unsaturated group produced in Production Example 2 2.
  • Production Example 5 Production of reactive silica particle sol bonded with an organic compound having a polymerizable unsaturated group
  • Silica particle sol (Methyl ethyl ketone silica sol, MEK-ST — L, Nissan Chemical Industries, Ltd., number average particle size 0.05 ⁇ m, silica concentration 30%) 143g (43g as silica particles), Production Example 2 2.8 g of the solution containing the specific organic compound (Aa) produced in 1), 0 lg of distilled water and 0. Olg of p-hydroquinone monomethyl ether were mixed, and the mixture was heated and stirred at 65 ° C. Four hours later, 1.0 g of orthoformate methyl ester was added and the mixture was further heated for 1 hour to obtain a reactive silica particle sol having a solid content of 31%.
  • Hexafluoropropylene 86. Og was then added and heating was started.
  • the pressure when the temperature in the autoclave reached 60 ° C was 2.9 X 10 5 Pa.
  • the reaction was continued with stirring at 70 ° C. for 20 hours.
  • the pressure dropped to 2.
  • OX 10 5 Pa the autoclave was cooled with water to stop the reaction. After reaching room temperature, the unreacted monomer was released and the autoclave was released to obtain a polymer solution having a solid content concentration of 30.0%.
  • the obtained polymer solution was poured into methanol to precipitate a polymer, which was then washed with methanol and vacuum dried at 50 ° C. to obtain 220 g of a hydroxyl group-containing fluoropolymer.
  • Production Example 7 Production of ethylenically unsaturated group-containing fluoropolymer
  • porous silica particle 1 powder sample 10 g was placed in an aluminum dish and dried on a hot plate at 150 ° C. for 1 hour to obtain a porous silica particle 1 powder sample.
  • the BET specific surface area of the obtained porous silica particle powder was measured using AUTOSORB-1 manufactured by Quantachrome Instruments, the specific surface area was 200 m 2 Zg.
  • Example 8 56 g of MIBK solution of the ethylenically unsaturated group-containing fluoropolymer obtained in Production Example 7 (8.5 g as an ethylenically unsaturated group-containing fluoropolymer) and the porous silica obtained in Production Example 9 1750 g of the particle dispersion (87.5 g as porous silica particles), 2-methyl-1 [4 (methylthio) phenol] 2 morpholinopropane 1-on 4 g, MIBK 700 g as a photopolymerization initiator were attached with a stirrer. The mixture was placed in a glass separable flask and stirred at 23 ° C. for 1 hour to obtain a composition 2 for forming a low refractive index layer. The solid content was determined in the same manner as in Production Example 1 and found to be 4% by weight. [0199] Example 8
  • Example 1 The liquid curable composition obtained in Example 1 was applied to a polyester film A4300 (made by Toyobo Co., Ltd., film thickness 188 ⁇ m) subjected to surface easy adhesion treatment using a wire bar coater # 20. And dried in an oven at 80 ° C for 3 minutes. Subsequently, the coating film was UV-cured under a light irradiation condition of UZcm 2 using a methanolide lamp in the atmosphere to produce a film having an antistatic hard coat layer. When the film thickness of the antistatic hard coat layer was measured with a stylus type surface shape measuring instrument, it was 3 m.
  • the composition 1 for forming a low refractive index layer obtained in Production Example 8 was applied using a wire bar coater # 3, and in an oven at 80 ° C for 1 minute. And dried. Next, using a metal nitride lamp under a nitrogen atmosphere, the coating film was UV-cured under the light irradiation conditions of UZcm 2 to form a low refractive index layer, thereby producing an antireflection laminate 1. Reflectance power of the obtained antireflection laminate 1 The film thickness of the low refractive index layer was calculated.
  • An antireflection laminate 2 was prepared in the same manner as in Example 8, except that the low refractive index layer forming composition 2 obtained in Production Example 10 was used instead of the low refractive index layer forming composition 1. .
  • the film thickness of the low refractive index layer was calculated in the same manner as in Example 8, it was 0 .: Lm.
  • An antireflection laminate 3 was produced in the same manner as in Example 8, except that the liquid curable composition obtained in Example 7 was used instead of the liquid curable composition obtained in Example 1.
  • the film thickness of the low refractive index layer was calculated in the same manner as in Example 8, it was 0 .: Lm.
  • An antireflection laminate 4 was produced in the same manner as in Example 10 except that the low refractive index layer forming composition 2 obtained in Production Example 10 was used instead of the low refractive index layer forming composition 1. [0203] Comparative Example 4
  • An antireflective laminate 5 was produced in the same manner as in Example 8, except that the liquid curable composition obtained in Comparative Example 3 was used instead of the liquid resin composition obtained in Example 1.
  • the film thickness of the low refractive index layer was calculated in the same manner as in Example 8, it was 0 .: Lm.
  • An antireflection laminate 6 was prepared in the same manner as in Comparative Example 4 except that the low refractive index layer forming composition 2 obtained in Production Example 10 was used instead of the low refractive index layer forming composition 1. .
  • the film thickness of the low refractive index layer was calculated in the same manner as in Example 8, it was 0 .: Lm.
  • the total light transmittance (%) and haze (%) of the cured film were measured according to JIS K7105 using a color haze meter (manufactured by Suga Test Instruments Co., Ltd.). Table 3 shows the results obtained.
  • the reflectance of the obtained antireflection laminate was measured with a spectral reflectance measuring device (automatic spectrophotometer U—3410 incorporating Hitachi Sample Chamber Integrating Sphere 150-09090, manufactured by Hitachi, Ltd.). The reflectance was measured and evaluated in the range of ⁇ 700 nm. Specifically, the reflectance of the antireflection laminate (antireflection film) at each wavelength was measured using the reflectance of the aluminum deposited film as a reference (100%). Table 3 shows the reflectance at a wavelength of 550 nm. [0209] (e) Scratch resistance test 1 (steel wool resistance)
  • the steel wool resistance test of the antireflection laminate was performed by the following method.
  • steel wool (Bonster No. 0000, manufactured by Nippon Steel Wool Co., Ltd.) was attached to a Gakushin friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.), and the surface of the cured film was loaded with a load of 500 g.
  • Gakushin friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.
  • the cloth rubbing resistance test of the antireflection laminate was carried out by the following method. That is, a non-woven fabric (B EMCOT S-2, manufactured by Asahi Kasei Kogyo Co., Ltd.) is attached to a Gakushin type friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.), and the surface of the cured film is subjected to a load lOOOg. By rubbing repeatedly 20 times, the presence or absence of scratches on the surface of the cured film was visually confirmed according to the following criteria. The results obtained are shown in Table 3.
  • the ethanol resistance test of the cured film was performed by the following method. That is, a non-woven fabric soaked with ethanol (BEMCOT S-2, manufactured by Asahi Kasei Kogyo Co., Ltd.) is attached to a Gakushin type friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.), and the surface of the cured film was repeatedly rubbed 20 times under the condition of a load of 500 g, and the presence or absence of scratches on the surface of the cured film was visually confirmed according to the following criteria. The results obtained are shown in Table 3.
  • Almost no peeling or scratching of the cured film is observed.
  • The cured film is thin and scratches are observed.
  • the liquid curable composition of the present invention has scratches (scratches) on, for example, plastic optical parts, touch panels, film-type liquid crystal elements, plastic containers, flooring materials for building interior materials, wall materials, artificial marble, etc.
  • an antistatic laminate having an excellent curability and a cured film having excellent antistatic properties, hardness, scratch resistance, and transparency on the surface of various substrates. can do.
  • the laminate of the present invention mainly includes, for example, a protective film for touch panels, a transfer foil, a hard coat for optical disks, a window film for automobiles, an antistatic protective film for lenses, and a surface protective film for high-design containers such as cosmetic containers.
  • Anti-static function for various display panels such as CRT, liquid crystal display panel, plasma display panel, electo-luminescence display panel, etc. as a hard coat for the purpose of preventing product surface scratches and electrostatic dust.
  • As an attached antireflection film it can be used as an antireflection film with an antistatic function for plastic lenses, polarizing films, solar battery panels and the like.
  • the laminate of the present invention can prevent scratches (scratches) on, for example, plastic optical parts, touch panels, film-type liquid crystal elements, plastic housings, plastic containers, flooring materials as building interior materials, wall materials, artificial stones, etc. It can be suitably used as a hard coating material for preventing contamination, an adhesive for various substrates, a sealing material, a binder material for printing ink, and the like.

Abstract

基材と、下記成分(A)及び(D)を含有する層と、を有する積層体。 (A)アルミニウム含有酸化亜鉛粒子 (D)下記式(1)又は(2)で表される化合物 (式中、R1は、CqH2q+1-CH2O-(CH2CH2O)p-CH2CH2O-を示す。pは8~10、qは12~16、xは1~3であり、xが2以上の場合、複数存在するR1は互いに同一でも異なっていてもよい。) (式中、mとnは、式(2)の化合物のゲルパーミエーションクロマトグラフィーにより求めたポリスチレン換算数平均分子量が10,000~40,000となるように選択される数である。)

Description

明 細 書
液状硬化性組成物、硬化膜及び帯電防止用積層体
技術分野
[0001] 本発明は、アルミニウム含有酸化亜鉛粒子を含有する液状硬化性組成物、その硬 化物及び帯電防止用積層体に関する。さらに詳しくは、硬化性に優れ、かつ、各種 基材、例えば、プラスチック(ポリカーボネート、ポリメチルメタタリレート、ポリスチレン、 ポリエステル、ポリオレフイン、エポキシ榭脂、メラミン榭脂、トリァセチルセル口—ス榭 脂、 ABS榭脂、 AS榭脂、ノルボルネン系榭脂等)、金属、木材、紙、ガラス、セラミツ タス、スレート等の表面に、帯電防止性、硬度、耐擦傷性及び透明性に優れた塗膜( 被膜)を形成し得る液状硬化性組成物、それを硬化させてなる硬化膜層及びそれを 含む帯電防止用積層体に関する。
背景技術
[0002] 従来、情報通信機器の性能確保と安全対策の面から、機器の表面に、放射線硬化 性組成物を用いて、耐擦傷性、密着性を有する塗膜 (ハードコート)や帯電防止機能 を有する塗膜 (帯電防止膜)を形成することが行われて!/ヽる。
また、光学物品に反射防止機能を付与するために、光学物品の表面に、低屈折率 層と高屈折率層との多層構造 (反射防止膜)を形成することが行われている。
近年、情報通信機器の発達と汎用化は目覚しいものがあり、ハードコート、帯電防 止膜、反射防止膜等のさらなる性能向上及び生産性の向上が要請されるに至ってい る。
[0003] 特に、光学物品、例えば、プラスチックレンズにぉ 、ては、静電気による塵埃の付 着の防止と、反射による透過率の低下の改善が要求されており、また、表示パネルに おいても、静電気による塵埃の付着の防止と、画面での映り込みの防止が要求され るようになってきている。
これらの要求に対して、生産性が高ぐ常温で硬化できることに注目し、放射線硬 化性の材料が種々提案されて!ヽる。
[0004] このような技術としては、例えば、イオン伝導性の成分として、スルホン酸及びリン酸 モノマーを含有する組成物 (特許文献 1)、連鎖状の金属粉を含有する組成物 (特許 文献 2)、酸化錫粒子、多官能アタリレート、及びメチルメタタリレートとポリエーテルァ タリレートとの共重合物を主成分とする組成物(特許文献 3)、導電性ポリマーで被覆 した顔料を含有する導電塗料組成物(特許文献 4)、 3官能アクリル酸エステル、単官 能性エチレン性不飽和基含有化合物、光重合開始剤、及び導電性粉末を含有する 光ディスク用材料 (特許文献 5)、シランカップラーで分散させたアンチモンドープされ た酸化錫粒子とテトラアルコキシシランとの加水分解物、光増感剤、及び有機溶媒を 含有する導電性塗料 (特許文献 6)、分子中に重合性不飽和基を含有するアルコキ シシランと金属酸化物粒子との反応生成物、 3官能性アクリル化合物、及び放射線 重合開始剤を含有する液状硬化性榭脂組成物 (特許文献 7)、一次粒子径が ΙΟΟη m以下の導電性酸化物微粉末、該導電性酸化物微粉末の易分散性低沸点溶剤、 該導電性酸化物微粉末の難分散性低沸点溶剤、及びバインダー榭脂を含有する透 明導電性膜形成用塗料 (特許文献 8)等を挙げることができる。
[0005] さらに、液晶表示パネル、冷陰極線管パネル、プラズマディスプレー等の各種表示 パネルにおいて、外光の映りを防止し、画質を向上させるために、低屈折率性、耐擦 傷性、塗工性及び耐汚染性に優れた硬化物からなる低屈折率層を含む反射防止膜 が求められている。
これら表示パネルにおいては、付着した指紋、埃等を除去するため表面をエタノー ル等を含侵したガーゼで拭くことが多ぐ耐擦傷性が求められている。また、付着した 指紋、埃等が容易に拭き取れる耐汚染性も求められて ヽる。
特に、液晶表示パネルにおいては、反射防止膜は、偏光板と貼り合わせた状態で 液晶ユニット上に設けられている。また、基材としては、例えば、トリァセチルセルロー ス等が用いられているが、このような基材を用いた反射防止膜では、偏光板と貼り合 わせる際の密着性を増すために、通常、アルカリ水溶液でケンィ匕を行う必要がある。 従って、液晶表示パネルの用途においては、耐久性において、特に、耐アルカリ性 に優れた反射防止膜が求められている。
[0006] 反射防止膜の低屈折率層用材料として、例えば、水酸基含有含フッ素重合体を含 むフッ素榭脂系塗料が知られている(例えば、特許文献 9〜11)。 しかし、このようなフッ素榭脂系塗料では、塗膜を硬化させるために、水酸基含有含 フッ素重合体と、メラミン榭脂等の硬化剤とを、酸触媒下、加熱して架橋させる必要が あり、加熱条件によっては、硬化時間が過度に長くなり、使用できる基材の種類が限 定されてしまうという問題があった。
また、得られた塗膜についても、耐候性には優れているものの、耐擦傷性や耐久性 に乏し!/、と!/、う問題があった。
[0007] そこで、上記の問題点を解決するため、少なくとも 1個のイソシァネート基と少なくと も 1個の付加重合性不飽和基とを有するイソシァネート基含有不飽和化合物と水酸 基含有含フッ素重合体とを、イソシァネート基の数 Z水酸基の数の比が 0. 01〜1. 0 の割合で反応させて得られる不飽和基含有含フッ素ビニル重合体を含む塗料用組 成物が提案されている (例えば、特許文献 12)。
[0008] しかし、上記公報では、不飽和基含有含フッ素ビュル重合体を調製する際に、水 酸基含有含フッ素重合体の全ての水酸基を反応させるのに十分な量のイソシァネー ト基含有不飽和化合物を用いず、積極的に当該重合体中に未反応の水酸基を残存 させるものであった。
このため、このような重合体を含む塗料用組成物は、低温、短時間での硬化を可能 とするものの、残存した水酸基を反応させるために、メラミン榭脂等の硬化剤をさら〖こ 用いて硬化させる必要があった。さらに、上記公報で得られた塗膜は、塗工性、耐擦 傷性にっ ヽても十分とは 、えな ヽと 、う課題があった。
[0009] 近年、各種基材表面の傷付き (擦傷)防止や汚染防止のための保護コーティング材 ;各種基材の接着剤、シーリング材;印刷インクのバインダー材として、優れた塗工性 を有し、かつ各種基材の表面に、硬度、耐擦傷性、耐摩耗性、低カール性、密着性 、透明性、耐薬品性及び塗膜面の外観のいずれにも優れた硬化膜を形成し得る硬 化性組成物が要請されて ヽる。
また、フィルム型液晶素子、タツチパネル、プラスチック光学部品等の反射防止膜 の用途においては、上記要請に加えて、高屈折率の硬化膜を形成し得る硬化性組 成物が要請されている。
このような硬化性組成物に、高屈折率、高硬度、導電性及び耐擦傷性を付与する ために、酸ィ匕亜鉛粒子分散液が使用されている(例えば、特許文献 13)。
[0010] 特許文献 1 :特開昭 47— 34539号公報
特許文献 2:特開昭 55 - 78070号公報
特許文献 3 :特開昭 60— 60166号公報
特許文献 4:特開平 2— 194071号公報
特許文献 5 :特開平 4— 172634号公報
特許文献 6:特開平 6 - 264009号公報
特許文献 7:特開 2000— 143924号公報
特許文献 8 :特開 2001— 131485号公報
特許文献 9:特開昭 57— 34107号公報
特許文献 10 :特開昭 59— 189108号公報
特許文献 11:特開昭 60— 67518号公報
特許文献 12:特開昭 61 - 296073号公報
特許文献 13:特開 2003 - 119207号公報
[0011] しカゝしながら、このような従来の技術は、それぞれ一定の効果を発揮するものの、近 年における、ハードコート、帯電防止膜、反射防止膜としての全ての機能を十全に具 備することが要請される硬化膜としては、必ずしも十分に満足し得るものではなかつ た。
[0012] 例えば、上述の先行技術文献にあるような従来の技術には、下記のような問題があ つた。特許文献 1に記載された組成物は、イオン伝導性物質を用いているが帯電防 止性能が十分ではなぐ乾燥により性能が変動する。特許文献 2に記載された組成 物は、粒径の大きい連鎖状の金属粉体を分散させるため透明性が低下する。特許文 献 3に記載された組成物は、非硬化性の分散剤を多量に含むため、硬化膜の強度 が低下する。特許文献 5に記載された材料は、高濃度の帯電性無機粒子を配合する ため、透明性が低下する。特許文献 6に記載された塗料は、長期保存安定性が十分 ではない。特許文献 7には、帯電防止性能を有する組成物の製造方法について何ら の開示がない。特許文献 8に記載された塗料を塗布、乾燥して透明導電性膜を形成 した場合、バインダーの配合物力もなる有機マトリックスに架橋構造を設けていない ため、有機溶剤耐性が十分とは言えない。
[0013] 帯電防止性能を高めるために導電性粒子の配合量を多くすることは容易に想到し 得るが、その場合、硬化膜による可視光吸収の増加により透明性が低下するとともに 、紫外線透過性の低下により硬化性が低下したり、基材との密着性、塗布液のレペリ ング性が損なわれるという問題を避けることができな力つた。一方、導電性粒子の配 合量を少なくすると、充分な帯電防止性能が発現しな 、。
発明の開示
[0014] 本発明は、上述の問題に鑑みなされたもので、紫外線硬化性材料としては従来用 Vヽられたことがなカゝつた酸ィ匕亜鉛粒子を導電性粒子として用いて、充分な帯電防止 性能を発現することができ、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、 硬度、及び耐擦傷性に優れ、透明性と表面抵抗値を両立させた塗膜 (被膜)を形成 し得る液状硬化性組成物を硬化させてなる硬化膜層を有する帯電防止用積層体、 特に帯電防止機能を有する反射防止膜積層体を提供することを目的とする。
本発明は、さらに、耐擦傷性及び耐汚染性に優れた反射防止積層体を提供するこ とを目的とする。
[0015] 上記特許文献 13記載の酸化亜鉛粒子分散液は、分散粒径が小さく分散安定性に 優れている必要がある。
本発明は、上述の課題に鑑みてなされたものであり、分散粒径が小さく分散安定性 に優れるアルミニウム含有酸化亜鉛粒子分散液を用 V、た液状硬化性組成物及びそ の硬化膜を提供することを目的とする。
[0016] 本発明者は、上述の課題を解決するべく鋭意研究した結果、アルミニウム含有酸ィ匕 亜鉛粒子、特定の分散剤、多官能 (メタ)アタリレート、光重合開始剤及び溶剤を含有 する液状硬化性組成物を硬化させてなる硬化膜層を有する積層体により、上記目的 を達成することができることを見出し、本発明を完成させた。
さらに、特定のエチレン性不飽和基含有含フッ素重合体とシリカ粒子を含む硬化性 榭脂組成物を硬化させて得られる低屈折率膜を組み合わせることにより、反射防止 積層体の耐擦傷性及び耐汚染性が改善されることを見出し、本発明を完成させた。
[0017] 即ち、本発明は、以下の液状硬化性組成物、硬化膜、積層体及び積層体の製造 方法を提供するものである。
[1OP O]HI基材と、
下記成 3 分 (A)及び (D)を含有する層と、
を有する積層体。
(A)アルミニウム含有酸化亜鉛粒子、
(D)下記式(1)又は(2)で表される化合物
[化 1]
R1
(式中、 Rは、 C H -CH 0- (CH CH O) — CH CH O—を示す。 pは 8
q 2q+l 2 2 2 p 2 2
0 qは 12 16 xは 1 3であり、 xが 2以上の場合、複数存在する R1は互いに同- でも異なっていてもよい。 )
[化 2]
Figure imgf000008_0001
(式中、 mと nは、式(2)の化合物のゲルパーミエーシヨンクロマトグラフィーにより求め たポリスチレン換算数平均分子量が 10, 000-40, 000となるように選択される数で ある。)
[2]前記層が、(A)アルミニウム含有酸ィ匕亜鉛粒子を 60 85重量%含有する上記 [ 1]に記載の積層体。
[3]さらに、基材上に、下記成分 (F)及び (G):
(F) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化 合物と、
水酸基含有含フッ素重合体と、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体、
(G)シリカを主成分とする粒子、
を含む硬化性榭脂組成物の硬化物力 なり、波長 589nmにおける屈折率が 1. 30 〜1. 45の層(以下、低屈折率層と称す場合がある)を有する上記 [1]又は [2]に記 載の積層体。
[4]前記水酸基含有含フッ素重合体が、下記構造単位 (a)〜 (c)の合計を 100モル %としたとき、 (&) 20〜70モル%、 (1)) 10〜70モル%及び(。)5〜70モル%を含む 上記 [3]に記載の積層体。
(a)下記式(11)で表される構造単位
(b)下記式( 12)で表される構造単位
(c)下記式(13)で表される構造単位
[化 3]
Figure imgf000009_0001
[式中、 R はフッ素原子、フルォロアルキル基又は— OR1で表される基 (ITはァ ルキル基又はフルォロアルキル基を示す)を示す]
[化 4]
H R13
C- -C— (12)
H R14
[式中、 R13は水素原子又はメチル基を、 R14はアルキル基、 -(CH )—OR15若しく
2 c
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す] [化 5]
H R16
C—— C (13)
H (CH2)vOR17
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
[5]前記成分 (G)が、
下記式(22)で表されるケィ素化合物及び下記式(23)で表されるケィ素化合物の 合計を 100モル%としたとき、式(22)で表されるケィ素化合物 67〜99モル%及び式 (23)で表されるケィ素化合物 33〜1モル%の加水分解物及び Z又は加水分解縮 合物からなり、平均粒径が 5〜50nmである多孔質シリカ粒子(G1)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。尚、式(22)の X及 び式(23)の Xは、同一であっても異なっていてもよい。 )
である上記 [3]又は [4]に記載の積層体。
[6]前記成分 (G)が、
下記式(22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び 下記式(24)で表されるケィ素化合物の合計を 100モル%としたとき、式(22)で表さ れるケィ素化合物 60〜98モル%、式(23)で表されるケィ素化合物 1〜30モル%、 及び式(24)で表されるケィ素化合物 1〜20モル%の加水分解物及び Z又は加水 分解縮合物からなり、平均粒径が 5〜50nmである多孔質シリカ粒子 (G2)
SiX · · · (22)
4
R29 SiX · · · (23) R SiX · · · (24)
k 4-k
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。 R3Gは炭素数 1〜1 2のフッ素置換アルキル基、 kは 1〜3の整数を示す。尚、式(22)の X、式(23)の X 及び式(24)の Xは、同一であっても異なっていてもよい。 )
である上記 [3]又は [4]に記載の積層体。
[7]さらに、基材上に、ハードコート層が形成されている上記 [1]〜[6]のいずれかに 記載の積層体。
[8]表面抵抗値が 1 X 1013 Ω Z口以下である上記 [ 1]〜 [7]の 、ずれかに記載の積 層体。
[9] (A)アルミニウム含有酸ィ匕亜鉛粒子、
(B)分子内に 3以上の重合性不飽和基を有する化合物、
(C)光重合開始剤、
(D)下記式(1)又は(2)
[化 6]
Figure imgf000011_0001
(式中、 Rは、 C H — CH O- (CH CH O) — CH CH O—を示す。 pは 8〜1 q 2q+l 2 2 2 p 2 2
0、 qは 12〜16、 xは 1〜3であり、 xが 2以上の場合、複数存在する R1は互いに同一 でも異なっていてもよい。 )
[化 7]
Figure imgf000012_0001
( 2 )
(式中、 mと nは、式(2)の化合物のゲルパーミエーシヨンクロマトグラフィーにより求め たポリスチレン換算数平均分子量が 10, 000-40, 000となるように選択される数で ある。)で表される化合物、及び
(E)溶剤
を含有することを特徴とする液状硬化性組成物。
[10]前記 (A)アルミニウム含有酸ィ匕亜鉛粒子を 60〜85%含有することを特徴とす る上記 [9]に記載の液状硬化性組成物。
[11]前記 (A)アルミニウム含有酸ィ匕亜鉛粒子が、表面処理剤により表面処理されて いることを特徴とする上記 [9]又は [ 10]に記載の液状硬化性組成物。
[12]前記表面処理剤が、 2以上の重合性不飽和基、下記式 (3)に示す基、及びシ ラノール基又は加水分解によってシラノール基を生成する基を有する化合物であるこ とを特徴とする上記 [11]に記載の液状硬化性組成物。
X— C (=Y)— NH— (3)
[式中、 Xは、 NH、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示す。 ]
[13]上記 [9]〜 [12]の ヽずれかに記載の液状硬化性組成物を硬化してなることを 特徴とする硬化膜。
[14]表面抵抗値が 1 X 1013 Ω Z口以下であることを特徴とする上記 [13]に記載の 硬化膜。
[ 15]上記 [9]〜 [ 12]の ヽずれかに記載の液状硬化性組成物に放射線を照射して 、該組成物を硬化せしめる工程を有することを特徴とする硬化膜の製造方法。
[16]基材上に、上記 9〜 12のいずれ力 1項に記載の液状硬化性組成物を塗布し、 放射線を照射することによって、該組成物を硬化して得られる硬化膜層を形成する 工程を含む積層体の製造方法。
[0018] 本発明によれば、分散粒径が小さく分散安定性に優れるアルミニウム含有酸化亜 鉛粒子分散液を用いることにより、屈折率が高ぐ導電性 (帯電防止性能)が高いと同 時に、高硬度で、透明性、耐擦傷性に優れる硬化膜を与える液状硬化性組成物が 提供できる。
本発明の硬化膜は、導電性 (帯電防止性能)が高いので、帯電防止性を要求され る用途に好適に用いることができる。
[0019] 本発明によれば、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、 耐擦傷性、及び透明性に優れた塗膜 (被膜)を形成し得る液状硬化性組成物を硬化 させてなる硬化膜を有する帯電防止用積層体を提供することができる。
従来、十分な導電性を得るには錫含有酸化インジウム (ITO)等の導電性粒子を高 含有量で配合する必要があつたが、透明性に劣るため 0.: L m程度の膜厚でし力使 用できなかったが、本発明によれば、酸化亜鉛を導電性粒子として用い、高透明か つ充分な導電性を発現させることができ、帯電防止性能に優れた硬化膜を有する帯 電防止用積層体を得ることができる。
また、本発明によれば、アルミニウム含有酸化亜鉛粒子の含有量が多くても、硬化 膜の透明性と充分な表面抵抗値を両立させることができ、帯電防止機能を有する光 学用部品、特に帯電防止機能を有する反射防止膜として有用である。
さらに、特定の構成を有する低屈折率層を形成することにより、耐擦傷性及び耐汚 染性に優れた反射防止積層体を得ることができる。
図面の簡単な説明
[0020] [図 1]本発明の積層体の基本的構成を示す模式図である。
[図 2A]本発明の帯電防止機能付き反射防止膜の第一の形態を示す模式図である。
[図 2B]本発明の帯電防止機能付き反射防止膜の第一の形態の別の形態を示す模 式図である。
[図 2C]本発明の帯電防止機能付き反射防止膜の第二の形態を示す模式図である。
[図 2D]本発明の帯電防止機能付き反射防止膜の第二の形態の別の形態を示す模 式図である。
[図 2E]本発明の帯電防止機能付き反射防止膜の第三の形態を示す模式図である。
[図 2F]本発明の帯電防止機能付き反射防止膜の第三の形態の別の形態を示す模 式図である。
発明を実施するための最良の形態
[0021] 以下、本発明の実施の形態を具体的に説明する。
本発明の積層体は、少なくとも、基材と、(A)アルミニウム含有酸ィ匕亜鉛粒子及び( D)特定の化合物を含有する硬化膜層と、を有することを特徴とする。
上記硬化膜層は、下記成分 (A)〜 (E)を含有する液状硬化性組成物を硬化させる こと〖こよって形成することができる。
[液状硬化性組成物]
(A)アルミニウム含有酸化亜鉛粒子
(B)分子内に 3以上の重合性不飽和基を有する化合物
(C)光重合開始剤
(D)特定の化合物
(E)溶剤
[0022] また、本発明の積層体の好ましい態様'用途である反射防止膜は、基材上に、少な くとも上記硬化膜層からなる帯電防止層及び低屈折率層が、基材に近い側力もこの 順に積層されている反射防止膜であり、前記低屈折率層が、下記成分 (F)及び (G) を含む硬化性榭脂組成物の硬化物であることを特徴とする。
(F) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有するィ匕 合物と、水酸基含有含フッ素重合体と、をイソシァネート基 Z水酸基のモル比が 1. 1 〜 1. 9の割合で反応させて得られるエチレン性不飽和基含有含フッ素重合体
(G)シリカ粒子
[0023] I.積層体
本発明の積層体の最も基本的な構成を図 1に示す。本発明の積層体 1は、基材 10 及び前記液状硬化性組成物を硬化させてなる硬化膜層 12を有する。
本発明の積層体は、少なくとも基材 10及び硬化膜層 12を有していればよぐ目的 に応じて種々の層を設けてもよい。目的に応じて設けられる層については、後述する
[0024] 本発明の積層体 1は、優れた耐擦傷性、密着性を有する硬化膜層 12を有している ため、特にハードコートとして有用であり、また、本発明の積層体 1を反射防止膜とし て用いる場合には、高屈折率性を発現する高屈折率層としても有用である。
また、本発明の積層体 1は、フィルム状、板状、又はレンズ等の各種形状の基材上 に優れた帯電防止機能を有する硬化膜層 12が配設されていることにより帯電防止用 積層体として有用である。
[0025] 本発明の積層体の適用例としては、例えば、 CRT,液晶表示パネル、プラズマ表 示パネル、エレクト口ルミネッセンス表示パネル等の各種表示パネル用の帯電防止機 能を有する反射防止膜 (以下、「帯電防止機能付き反射防止膜」ともいう)としての利 用、プラスチックレンズ、偏光フィルム、太陽電池パネル等の帯電防止機能付き反射 防止膜としての利用等を挙げることができる。
[0026] (1)硬化膜層
本発明の積層体の基材上に設けられる硬化膜層は、下記液状硬化性組成物(以 下、単に「組成物」又は「帯電防止層形成用組成物」 t ヽぅことがある)を硬化させて得 られ、積層体に導電性、高屈折率膜としての機能及び Z又はハードコートとしての機 能を付与することができる。
[0027] 1.以下、本発明で用いる液状硬化性組成物(帯電防止層形成用組成物)について 具体的に説明する。
(A)アルミニウム含有酸化亜鉛粒子
アルミニウム含有酸化亜鈴粒子の一次粒径は、通常、 5nm〜100nmのものを使用 できる。また、結晶構造も特に限定されないが、単斜晶系等を使用できる。アルミニゥ ム含有酸ィ匕亜鉛粒子の一次粒径は、例えば、透過型電子顕微鏡観察による数平均 粒径として測定することができる。粒子が球形でない場合は、長軸と短軸の平均を粒 径とし、長軸 Z短軸の比が 2以上の場合は短軸を粒径とする。
[0028] アルミニウム含有酸化亜鉛粒子の形状は球状、中空状、多孔質状、棒状、板状、繊 維状、又は不定形状であり、好ましくは、球状である。 このようなアルミニウム含有酸ィ匕亜鉛粒子の市販品としては、 クスィテック (株)製 商品名:パゼット AB、パゼット AK、パゼット CK、堺化学工業 (株)製 商品名: SC 18等が挙げられる。
[0029] アルミニウム含有酸ィ匕亜鉛粒子は、以下のように表面変性されていることが好まし い。表面変性を行うことにより、アルミニウム含有酸化亜鉛粒子分散液を含有する本 発明の組成物を硬化させて得られる硬化物の耐擦傷性を改善することができる。
[0030] 表面変性は、公知の方法で用いることができる(例えば、特開 2003— 105034号 公報参照)。具体的には、アルミニウム含有酸ィ匕亜鉛粒子を、分子内に、(メタ)アタリ ロイル基ゃビニル基等の重合性不飽和基及び下記式(3)
X— C (=Y) NH— (3)
(式(3)中、 Xは、 NH 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示 す。)
に示す基を有する化合物(以下、「特定有機化合物」という。)と反応させることにより 行うことができる。尚、この化合物は、分子内にシラノ一ル基又は加水分解によってシ ラノール基を生成する基を有する化合物であることが好ましい。
[0031] 前記式(3)に示す基は、具体的には、 [ O C ( = 0)— NH O C ( = S
NH S— C ( = 0)— NH NH— C ( = 0)— NH NH— C ( = S)— NH ]、及び [― S— C ( = S)—NH ]の 6種である。これらの基は、 1種単 独で又は 2種以上を組み合わせて用いることができる。中でも、熱安定性の観点から [― O C ( = 0)— NH ]基を必須とし、 [― O C ( = S)— NH ]基及び [― S— C ( = O) NH ]基の 、ずれか一方を併用することが好ま 、。前記式(3)に示す 基 [—X— C (=Y)—NH ]は、分子間において水素結合による適度の凝集力を発 生させ、硬化物にした場合、優れた機械的強度、基材との密着性及び耐熱性等の特 性を付与せしめるものと考えられる。
[0032] 本発明で用いる組成物中における成分 (A)の添加量は、表面変性の有無を問わ ず、組成物中の固形分全量を 100重量%として、 60 85重量%の範囲内であること が好ましぐより好ましくは 60 80重量%である。成分 (A)の添加量が 60重量%未 満であると、硬化膜の帯電防止性が不十分となる場合があり、 85重量%を超えると透 明性が劣る場合がある。
[0033] (B)分子内に 3以上の重合性不飽和基を有する化合物
本発明に用いられる成分 (B)は、得られる液状硬化性組成物を硬化させて得られ る硬化被膜に優れた成膜性、透明性を付与する成分であり、分子内に 3以上の重合 性不飽和基を有する化合物である。このような成分 (B)を用いることにより、優れた耐 擦傷性、有機溶剤耐性を有する硬化物が得られる。
成分 (B)の具体例としては、例えば、(メタ)アクリルエステル類が好ましぐ多官能( メタ)アクリルエステル類 (以下、「多官能 (メタ)アタリレートモノマー」と 、うことがある) 力 り好ましい。
[0034] 多官能 (メタ)アタリレートモノマーは、 1分子中に 3個以上の (メタ)アタリロイル基を 有する 3官能以上の (メタ)アタリレートモノマーを 、 、、 5官能以上の (メタ)アタリレー トモノマーが特に好ましい。また、 2種以上の多官能 (メタ)アタリレートモノマーの混合 物を用いることちできる。
[0035] 多官能 (メタ)アタリレートモノマーの好ましい具体例としては、トリメチロールプロパ ントリ(メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、ペンタエリ スリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタ エリスリトールペンタ(メタ)アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレー ト、グリセリントリ(メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メ タ)アタリレート、及びこれらの出発アルコール類へのエチレンォキシド又はプロピレン ォキシド付加物のポリ (メタ)アタリレート類、分子内に 2以上の (メタ)アタリロイル基を 有するオリゴエステル (メタ)アタリレート類、オリゴエーテル (メタ)アタリレート類、オリ ゴウレタン (メタ)アタリレート類、及びオリゴエポキシ (メタ)アタリレート類等を挙げるこ とができる。この中では、ジペンタエリスリトールへキサアタリレート、ジペンタエリスリト 一ルペンタアタリレートが好まし 、。
多官能(メタ)アタリレートモノマーの市販品としては、 KAYARAD DPHA (日本 化薬 (株)製)、サートマ一 SR399E等を挙げることができる。
[0036] 本発明で用いる組成物中における成分 (B)の添加量は、組成物中の固形分全量 を 100重量%として、通常、 0. 5〜35重量%、好ましくは 1〜30重量%である。成分 (B)の添加量が 0. 5重量%未満であると、硬化膜の耐擦傷性が低下し、 35重量%を 超えると十分な帯電防止性能が得られな 、。
[0037] (C)光重合開始剤
成分 (C)として用いる光重合開始剤としては、光照射により分解してラジカルを発 生して重合を開始せしめるものであれば特に制限はなぐ例えば、ァセトフェノン、ァ セトフエノンべンジルケタール、 1ーヒドロキシシクロへキシルフェニルケトン、 2, 2—ジ メトキシ一 1, 2 ジフエニルェタン一 1—オン、 3—メチルァセトフエノン、 4 クロ口べ ンゾフエノン、 4, 4'—ジメトキシベンゾフエノン、ベンジルジメチルケタール、 1— (4— イソプロピルフエニル) 2—ヒドロキシ一 2—メチルプロパン一 1—オン、 2—ヒドロキ シ— 2 メチル 1 フエ-ルプロパン— 1 オン、 2 -メチル 1— [4 (メチルチ ォ)フエ-ル ]ー2 モルホリノ一プロパンー1 オン、 2, 4, 6 トリメチルベンゾィル ジフエ-ルフォスフィンオキサイド、ビス一(2, 6 ジメトキシベンゾィル) 2, 4, 4— トリメチルペンチルフォスフィンォキシド、オリゴ(2 ヒドロキシ一 2—メチルー 1一(4 - (1—メチルビ-ル)フエ-ル)プロパノン)等を挙げることができる。
[0038] 放射線 (光)重合開始剤の市販品としては、例えば、チバ'スペシャルティ'ケミカル ズ (株)製 商品名:ィルガキュア 184, 369, 651, 500、 819, 907, 784, 2959, CGI1700, CGI1750, CGI1850, CG24— 61、ダロキュア 1116、 1173、 BAS F社製 商品名:ルシリン TPO、UCB社製 商品名:ュべクリル P36、フラテツリ' ランべルティ社製 商品名:ェザキュア一 KIP150、KIP65LT、KIP100F、KT37 、 KT55、 ΚΤ046、 ΚΙΡ75ΖΒ等を挙げることができる。
[0039] 本発明で用いる組成物中における成分 (C)の配合量は、組成物の固形分全量を 1 00重量%として、通常 0. 01〜20重量%、好ましくは 0. 1〜15重量%である。成分( C)の配合量が 0. 01重量%未満では、硬化物としたときの硬度が不十分となることが あり、 20重量%を超えると、内部まで硬化しないことがある。
[0040] (D)特定の化合物
成分 (D)は液状硬化性組成物において、分散剤として機能する化合物である。成 分 (D) (以下、「分散剤」と称することもある。)は、下記式 (1)及び (2)で表される化合 物のうちの 、ずれか一方を用いる。
Figure imgf000019_0001
(式中、 Rは、 C H — CH O- (CH CH O) — CH CH O—を示す。 pは 8〜1
q 2q+l 2 2 2 p 2 2
0、 qは 12〜16、 xは 1〜3であり、 xが 2以上の場合、複数存在する R1は互いに同一 でも異なっていてもよい。 )
Xが 2又は 3の場合、 2つ又は 3つ存在する R1は、同一でも異なってもよいが、通常 は同一である。
[0041] [化 9]
Figure imgf000019_0002
(式中、 mと nは、式(2)の化合物のゲルパーミエーシヨンクロマトグラフィーにより求め たポリスチレン換算数平均分子量が 10, 000-40, 000となるように選択される数で ある。)
[0042] 式(1)で表される分散剤の市販品としては、楠本化成 (株)製 商品名: PLAAD
ED151、式(2)で表される分散剤の巿販品としては、 PLAAD ED211等が挙げら れる。
[0043] 本発明で用いる組成物中における成分 (D)の添加量は、組成物中の溶剤を除く成 分全量を 100重量%として、 0. 01〜15重量%の範囲内であることが好ましぐより好 ましくは 0. 05〜10重量%である。成分(D)の添カ卩量が 0. 01重量%未満であると、 粒子の分散安定性が損なわれる場合があり、 15重量%を超えると十分な帯電防止 性が発現しない場合がある。 [0044] (E)溶剤
溶剤は、メタノール、エタノール、イソプロパノール、ブタノール、ォクタノール等のァ ルコール類;酢酸ェチル、酢酸ブチル、乳酸ェチル、 y ブチロラタトン、プロピレン グリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテノレ アセテート等のエステル類;エチレングリコールモノメチルエーテル、プロピレングリコ 一ノレモノメチノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ等のエーテノレ類 ;ジメチルホルムアミド、 N, N ジメチルァセトァセトアミド、 N—メチルピロリドン等の アミド類;アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等 のケトン類;ベンゼン、トルエン、キシレン、ェチルベンゼン等の芳香族炭化水素類を 用いることができる。中でも、アセトン、メチルェチルケトン、メチルイソブチルケトン、 ベンゼン、トルエン、キシレン、メタノール、イソプロピルアルコール、プロピレングリコ ールモノメチルエーテルが好ましぐメチルェチルケトン、プロピレングリコールモノメ チルエーテルがより好ましい。溶剤は一種又は二種以上を混合して用いることができ る。
[0045] 本発明で用いる組成物中における溶剤 (E)の配合量は、特に制限されないが、組 成物中の固形分全量を 100重量部として、 5〜: LOO, 000重量部の範囲内であること が好ましぐより好ましくは 10〜10, 000重量部である。
[0046] (0単官能又は 2官能のエチレン性不飽和基含有化合物
本発明で用いる組成物は、上記の成分の他に、その特性を損なわない範囲におい て、単官能又は 2官能のエチレン性不飽和基含有化合物を含むこともできる。
[0047] 単官能又は 2官能のエチレン性不飽和基含有ィ匕合物の具体例としては、例えば、 N ビュルピロリドン、 N ビ-ルカプロラタタム等のビュル基含有ラタタム、イソボル -ル (メタ)アタリレート、ボル-ル (メタ)アタリレート、トリシクロデ力-ル (メタ)アタリレ ート、ジシクロペンタ-ル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、シ クロへキシル (メタ)アタリレート等の脂環式構造含有 (メタ)アタリレート、ベンジル (メタ )アタリレート、 4—ブチルシクロへキシル (メタ)アタリレート、アタリロイルモルホリン、ビ 二ルイミダゾール、ビュルピリジン、 2—ヒドロキシェチル(メタ)アタリレート、 2—ヒドロ キシプロピル (メタ)アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、メチル (メタ) アタリレート、ェチル (メタ)アタリレート、プロピル (メタ)アタリレート、イソプロピル (メタ) アタリレート、ブチル (メタ)アタリレート、ァミル (メタ)アタリレート、イソブチル (メタ)ァク リレート、 t ブチル (メタ)アタリレート、ペンチル (メタ)アタリレート、イソアミル (メタ)ァ タリレート、へキシル (メタ)アタリレート、ヘプチル (メタ)アタリレート、ォクチル (メタ)ァ タリレート、イソオタチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ノ -ル (メタ)アタリレート、デシル (メタ)アタリレート、イソデシル (メタ)アタリレート、ゥン デシル (メタ)アタリレート、ドデシル (メタ)アタリレート、ラウリル (メタ)アタリレート、ステ ァリル (メタ)アタリレート、イソステアリル (メタ)アタリレート、テトラヒドロフルフリル (メタ) アタリレート、ブトキシェチル (メタ)アタリレート、エトキシジエチレングリコール (メタ)ァ タリレート、ベンジル (メタ)アタリレート、フエノキシェチル (メタ)アタリレート、ポリェチ レングリコールモノ(メタ)アタリレート、ポリプロピレングリコールモノ(メタ)アタリレート、 メトキシエチレングリコール (メタ)アタリレート、エトキシェチル (メタ)アタリレート、メトキ シポリエチレングリコール (メタ)アタリレート、メトキシポリプロピレングリコール (メタ)ァ タリレート、ジアセトン (メタ)アクリルアミド、イソブトキシメチル (メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 tーォクチル (メタ)アクリルアミド、ジメチルアミノエ チル (メタ)アタリレート、ジェチルアミノエチル (メタ)アタリレート、 7—ァミノ— 3, 7- ジメチルォクチル (メタ)アタリレート、 N, N ジェチル (メタ)アクリルアミド、 N, N ジ メチルァミノプロピル (メタ)アクリルアミド、エチレンダルコールジ (メタ)アタリレート、 1 , 3 ブタンジオールジ (メタ)アタリレート、 1, 4 ブタンジオールジ (メタ)アタリレート 、 1, 6 へキサンジオールジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)ァク リレート、ジエチレンダルコールジ(メタ)アタリレート、トリエチレンダルコールジ(メタ) アタリレート、ジプロピレンダルコールジ(メタ)アタリレート、ビス(2—ヒドロキシェチル) イソシァヌレートジ (メタ)アタリレート、及びこれらの出発アルコール類へのエチレンォ キシド又はプロピレンォキシド付加物のポリ (メタ)アタリレート類、分子内に 2以上の( メタ)アタリロイル基を有するオリゴエステル (メタ)アタリレート類、オリゴエーテル (メタ) アタリレート類、オリゴウレタン (メタ)アタリレート類、及びオリゴエポキシ (メタ)アタリレ ート類、ヒドロキシブチルビニルエーテル、ラウリルビニルエーテル、セチルビニルェ 一テル、 2 ェチルへキシルビ-ルエーテル、下記式(4)で表される化合物等が挙 げられる。
CH = C (R2) COO (R30) -Ph-R4 式 (4)
2 r
(式中、 R2は水素原子又はメチル基を示し、 R3は炭素数 2〜6、好ましくは 2〜4のァ ルキレン基を示し、 R4は水素原子又は炭素数 1〜12、好ましくは 1〜9のアルキル基 を示し、 Phはフヱ-レン基を示し、 rは 0〜12、好ましくは 1〜8の数を示す。 )
[0048] 単官能エチレン性不飽和基含有ィ匕合物の市販品としては、ァロニックス M—101 、 M— 102、 M— 111、 M— 113、 M— 114、 M— 117、 M— 120、 M— 150 (以上、 東亜合成(株)製);ビスコート LA、 STA、 IBXA、 HEA、 HPA、 4— HBA、 2— M TA、 # 192、 # 193 (大阪有機化学(株)製);?¾: エステル AMP— 10G、AMP 20G、 AMP— 60G、 AM— 30G、 AM— 90G (以上、新中村化学工業 (株)製); ライトアタリレート L—A、 S—A、 IB—XAゝ PO—A、 PO— 200A、 NP—4EA、 NP — 8EA、エポキシエステル M— 600A (以上、共栄社化学 (株)製); FA— 511、 FA — 512A、 FA— 513A (以上、 日立化成工業 (株)製)等が挙げられる。
[0049] 本発明で用いる組成物中における (0単官能又は 2官能のエチレン性不飽和基含 有ィ匕合物の配合量は、組成物中の固形分全量を 100重量%として、 0. 1〜35重量 %、好ましくは 1〜30重量%である。
[0050] (ii)非導電性粒子
本発明で用いる組成物には、組成物が分離、ゲルィ匕等の不具合を起こさない範囲 で、非導電性粒子、又は非導電性粒子とアルコキシシランィ匕合物とを有機溶媒中で 反応させて得られる粒子を併用してもょ 、。
[0051] 非導電性粒子を (A)アルミニウム含有酸化亜鉛粒子と併用することにより、帯電防 止機能、即ち、硬化膜としたときの表面抵抗として 1013ΩΖ口以下の値を維持しなが ら、耐擦傷性を向上させることができる。
[0052] このような非導電性粒子としては、(Α)アルミニウム含有酸ィ匕亜鉛粒子以外の粒子 であれば特に制限されない。好ましくは、アルミニウム含有酸化亜鉛粒子以外の酸化 物粒子又は金属粒子である。具体的には、酸化ケィ素、酸ィ匕アルミニウム、酸化ジル コ-ゥム、酸ィ匕チタニウム、酸化セリウム等の酸化物粒子、又はケィ素、アルミニウム、 ジルコニウム、チタニウム、及びセリウムよりなる群力も選ばれる 2種類以上の元素を 含む酸ィ匕物粒子を挙げることができる。
[0053] 非導電性粒子の 1次粒子径は、乾燥粉末を透過型電子顕微鏡による観察によって 求めた値として、好ましくは、 0. 1 m以下であり、さらに好ましくは、 0. 001-0. 05 μ mである。 0. 1 μ mを超えると、組成物中で沈降が発生したり、塗膜の平滑性が低 下することがある。
[0054] 非導電性粒子を本発明で用いる組成物に配合する場合、非導電性粒子とアルコキ シシランィ匕合物とを有機溶媒中で加水分解した後混合してもよい。この処理により、 非導電性粒子の分散安定性が良好になる。非導電性粒子とアルコキシシランィ匕合物 との有機溶媒中での加水分解処理は、前述の成分 (A)の処理方法と同様にすること ができる。
[0055] 非導電性粒子の市販品として、例えば、酸ィ匕ケィ素粒子 (例えば、シリカ粒子)とし ては、コロイダルシリカとして、 日産化学工業 (株)製 商品名:メタノールシリカゾル、 I PA— ST、 MEK— ST、 NBA -ST, XBA— ST、 DMAC— ST、 ST— UP、 ST— OUPゝ ST— 20、 ST— 40、 ST— C、 ST— N、 ST— 0、 ST— 50、 ST— OL等を挙 げることができる。また粉体シリカとしては、 日本ァエロジル (株)製 商品名:ァエロジ ル 130、ァエロジル 300、ァエロジル 380、ァエロジル TT600、ァエロジル 0X50、 旭硝子(株)製
Figure imgf000023_0001
H32, H51, H52, H121, H122, 日 本シリカ工業 (株)製 商品名: E220A、 E220、富士シリシァ (株)製 商品名: SYL YSIA470, 日本板硝子 (株)製 商品名: SGフレ—ク等を挙げることができる。
[0056] また、酸ィ匕アルミニウム (アルミナ)の水分散品としては、 日産化学工業 (株)製 商 品名:アルミナゾル 100、 一 200、 一 520 ;酸化ジルコニウムの分散品としては、住 友大阪セメント (株)製(トルエン、メチルェチルケトン分散のジルコユアゾル);酸化セ リウム水分散液としては、多木化学 (株)製 商品名:ニードラール;アルミナ、酸ィ匕ジ ルコ-ゥム、酸ィ匕チタニウム、等の粉末及び溶剤分散品としては、シーアィ化成 (株) 製 商品名:ナノテック等を挙げることができる。
[0057] 本発明で用いる組成物中における GO非導電性粒子の配合量は、組成物中の固形 分全量を 100重量%として、 0. 1〜35重量%、好ましくは 1〜30重量%である。
[0058] (m)添加剤 本発明で用いる組成物には、この他の添加剤として、酸化防止剤、紫外線吸収剤、 光安定剤、熱重合禁止剤、レべリング剤、界面活性剤、滑材、カップリング剤等を必 要に応じて配合することができる。酸ィ匕防止剤としては、チバスペシャルティケミカル ズ (株)製 商品名:ィルガノックス 1010、 1035、 1076、 1222等、紫外線吸収剤とし ては、チバスペシャルティケミカルズ (株)製 商品名:チヌビン P234、 320、 326、 327、 328、 213、 329、シプロイ匕成(株)製 商品名:シーソーブ 102、 103、 501、 2 02、 712等、光安定剤としては、チバスペシャルティケミカルズ (株)製 商品名:チヌ ビン 292、 144、 622LD,三共 (株)製 商品名:サノ—ル LS770、 LS440、住友ィ匕 学工業 (株)製 商品名:スミソープ TM— 061等を挙げることができる。
[0059] このようにして得られた本発明で用いる組成物の粘度は、通常 25°Cにおいて、 1〜 20, OOOmPa' sであり、好ましくは 1〜1, OOOmPa' sである。
[0060] 2.液状硬化性組成物の製造方法
本発明で用いる組成物は、紫外線を遮蔽した容器中において、(A)アルミニウム含 有酸化亜鉛粒子、(D)分散剤、(E)溶剤からなるアルミニウム含有酸化亜鉛粒子分 散液に、(B)重合性不飽和基含有化合物、(C)光重合開始剤、及び必要に応じて、
(0単官能又は 2官能 (メタ)アタリレートイ匕合物、 GO非導電性粒子、 Gii)添加剤、追加の (E)溶剤等を混合、撹拌することにより製造できる。
[0061] 上記アルミニウム含有酸化亜鉛粒子分散液は、溶剤に、分散剤と共に、アルミ-ゥ ム含有酸化亜鉛粒子を分散させて製造する。
アルミニウム含有酸化亜鉛粒子分散液における上記各成分の配合量は、用途に応 じて適宜設定できるが、通常、(A)アルミニウム含有酸ィ匕亜鉛粒子 8〜50重量%、 (
D)分散剤 0. 1〜12. 5重量%、(E)溶剤 37. 5〜90重量%であり、好ましくは、(A) アルミニウム含有酸ィ匕亜鉛粒子 15〜40重量0 /0、(D)分散剤 1. 0〜6. 15重量%、 (
E)溶剤 53. 85〜84重量0 /0である。
また、アルミニウム含有酸ィ匕亜鉛粒子分散液中の固形分濃度は、通常 8. 6〜62. 5重量%、好ましくは 10〜50重量%である。
[0062] 分散は、ペイントシエ一力、 SCミル、ァ-ユラ一型ミル、ピン型ミル等を用いて通常 周速 5〜15mZsで、粒径の低下が観察されなくなるまで継続する。通常数時間であ る。分散の際に、ガラスビーズ等の分散ビーズを用いることが好ましい。ビーズ径は特 に限定されないが、通常 0. 05〜lmm程度である。ビーズ径は、好ましくは 0. 05〜
0. 5mm、より好ましく ίま 0. 08〜0. 5mm、特に好ましく ίま 0. 08〜0. 2mmである。
[0063] このようにして得られるアルミニウム含有酸ィヒ亜鉛粒子分散液は、分散前には二次 凝集をして 、たアルミニウム含有酸ィ匕亜鉛粒子がより小さな粒径に分散して 、る。好 ましくはアルミニウム含有酸ィ匕亜鉛粒子のメジアン径が 150nm以下、さらに好ましく は lOOnm以下である。
また、均一に分散し分散安定性が高いアルミニウム含有酸ィ匕亜鉛粒子分散液を含 んで調製した本発明の榭脂組成物を硬化した膜は、透明性が高!、。
[0064] 3.硬化膜層の形成方法
本発明の積層体の硬化膜層は、上述の帯電防止層形成用組成物を上記基材に塗 布、乾燥した後に、放射線を照射して、組成物を硬化させることにより得ることができ る。
得られた硬化膜層の表面抵抗は、 1 X 1013ΩΖ口以下、好ましくは 1 X 1012ΩΖ口 以下、より好ましくは Ι Χ ΙΟ^ΩΖ口以下、さらに好ましくは I X 108ΩΖ口以下であ る。表面抵抗が 1 X 1013ΩΖ口を超えると、帯電防止性能が十分でなぐ埃が付着し 易くなつたり、付着した埃を容易に除去できない場合がある。
[0065] 帯電防止層形成用組成物の塗布方法としては特に制限はな!/、が、例えば、ロール コート、スプレーコート、フローコート、デイツビング、スクリーン印居 I インクジェット印 刷等の公知の方法を適用することができる。
[0066] 帯電防止層形成用組成物の硬化に用いる放射線の線源としては、組成物を塗布 後、短時間で硬化させ得るものである限り特に制限はない。
可視光線の線源としては、例えば、直射日光、ランプ、蛍光灯、レーザー等を、また 、紫外線の線源としては、例えば、水銀ランプ、ハライドランプ、レーザー等を、また、 電子線の線源としては、例えば、市販されているタングステンフィラメントから発生する 熱電子を利用する方式、金属に高電圧パルスを通じて発生させる冷陰極方式及びィ オン化したガス状分子と金属電極との衝突により発生する 2次電子を利用する 2次電 子方式等を挙げることができる。 α線、 j8線及び γ線の線源としては、例えば、 6°Co等の核分裂物質を挙げることが でき、 γ線については、加速電子を陽極へ衝突させる真空管等を利用することがで きる。これら放射線は、 1種単独で、又は 2種以上を同時に照射してもよぐまた、 1種 以上の放射線を、一定期間をおいて照射してもよい。
[0067] 硬化膜層の膜厚は、 0. 05-30 μ mであることが好まし!/、。タツチパネル、 CRT等 の最表面での耐擦傷性を重視する用途では比較的厚ぐ好ましくは 2〜 15 mであ る。一方、光学フィルムの帯電防止膜として用いる場合、好ましくは 0. 05〜: L0 m である。
また、光学フィルムへ用いる場合、透明性が必要であり、全光線透過率が 85%以 上であることが好ましい。
[0068] (2)基材
本発明の積層体に用いられる基材は、金属、セラミックス、ガラス、プラスチック、木 材、スレート等特に制限はなぐ使用目的に応じて適宜選択すればよいが、放射線 硬化性という生産性の高い、工業的有用性を発揮できる材料として、例えば、フィル ム、ファイバー状の基材に好ましく適用される。特に好ましい材料は、プラスチックフィ ルム、プラスチック板である。そのようなプラスチックとしては、例えば、ポリカーボネー ト、ポリメチルメタタリレート、ポリスチレン Zポリメチルメタタリレート共重合体、ポリスチ レン、ポリエステル、ポリオレフイン、トリァセチルセルロース榭脂、ジエチレングリコー ルのジァリルカーボネート(CR— 39)、 ABS榭脂、 AS榭脂、ポリアミド、エポキシ榭 脂、メラミン榭脂、環化ポリオレフイン榭脂 (例えば、ノルボルネン系榭脂)等を挙げる ことができる。
[0069] 基材の厚さは、目的に応じて適宜設定すべきであり特に限定されないが、通常 30
〜5000 μ m、好ましくは 50〜200 μ mの範囲である。
[0070] 本発明の硬化膜は、優れた耐擦傷性、密着性を有するため、ハードコートとして有 用である。また、優れた帯電防止機能を有するため、フィルム状、板状、又はレンズ 等の各種形状の基材に配設されることにより帯電防止膜として有用である。
[0071] 本発明の硬化膜の適用例としては、例えば、タツチパネル用保護膜、転写箔、光デ イスク用ハードコート、自動車用ウィンドフィルム、レンズ用の帯電防止保護膜、化粧 品容器等の高意匠性の容器の表面保護膜等主として製品表面傷防止や静電気に よる塵埃の付着を防止する目的でなされるハードコートとしての利用、また、 CRT,液 晶表示パネル、プラズマ表示パネル、エレクト口ルミネッセンス表示パネル等の各種 表示パネル用の帯電防止用反射防止膜としての利用、プラスチックレンズ、偏光フィ ルム、太陽電池パネル等の帯電防止用反射防止膜としての利用等を挙げることがで きる。
[0072] 光学物品に反射防止機能を付与する場合、基材、又はハードコート処理された基 材等に、低屈折率層を形成する方法、又は低屈折率層と高屈折率層との多層構造 を形成する方法が有効であることが知られているが、本発明の硬化膜は、これを基材 上に形成することにより、光学物品に反射防止機能を付与する帯電防止用積層体の 一つの層構造として用いることも有用である。即ち、本発明の硬化膜をこれよりも低屈 折率の膜と併用することで、反射防止性能を有する帯電防止積層体を形成すること ができる。
[0073] II.帯電防止機能付き反射防止膜
次に、本発明の積層体を、帯電防止機能を有する反射防止膜として用いる場合の 各層の構成を、図 2A〜図 2Fを参照しながら説明する。
光学物品に反射防止機能を付与する場合、基材、又はハードコート処理された基 材等に、低屈折率層を形成する方法、又は低屈折率層と高屈折率層との多層構造 を形成する方法が有効であることが知られて ヽる。
本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第一の形態 を図 2Aに示す。帯電防止機能付き反射防止膜 2は、基材 10の上に、前記液状硬化 性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成し、さらにその上に 低屈折率層 18を形成してなる。第一の形態では、帯電防止層 12は、帯電防止機能 、ハードコート層としての機能、さらには高屈折率層としての機能をも併せ持つている 。第一の形態では、帯電防止層 12の屈折率が、低屈折率層 18の屈折率より高いこ とが必要である。
[0074] 別の形態として、本発明の反射防止膜 2の帯電防止層 12は、ハードコート層として の機能も果たすことができるが、別途、ハードコート層を設けることもできる。この場合 、ハードコート層ェェは、基材 10と帯電防止層 12との間、又は帯電防止層 12と低屈 折率層 18との間の 、ずれかに設けられる。ハードコート層 11が帯電防止層 12と低 屈折率層 18との間に設けられる場合、ハードコート層 11の屈折率は、低屈折率層 1 8の屈折率より高くなければならない。これらの態様を図 2Bに示す。
[0075] 本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第二の形態 を図 2Cに示す。第二の形態では、帯電防止機能付き反射防止膜 2は、基材 10の上 に、前記液状硬化性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成 し、さらにその上に高屈折率層 16及び低屈折率層 18をこの順に形成してなる。第二 の形態では、帯電防止層 12は、帯電防止機能及びノ、ードコートとしての機能、さらに は中屈折率層としての機能を併せ持つこともある。第二の形態において、帯電防止 層 12が中屈折率層としての機能を有するためには、帯電防止層 12の屈折率が、高 屈折率層 16の屈折率より低ぐ低屈折率層 18の屈折率よりも高いことが必要である。
[0076] 第二の形態でも、第一の形態と同様に、別途、ハードコート層を設ける形態も可能 である。ハードコート層 11は、基材 10と帯電防止層 12との間、又は帯電防止層 12と 高屈折率層 16との間のいずれかに設けることができる。これらの形態を図 2Dに示す
[0077] 本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第三の形態 を図 2Eに示す。第三の形態では、帯電防止機能付き反射防止膜 2は、基材 10の上 に、前記液状硬化性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成 し、さらにその上に中屈折率層 14、高屈折率層 16及び低屈折率層 18をこの順に形 成してなる。第三の形態では、帯電防止層 12は、帯電防止機能及びハードコートと しての機能を併せ持って 、る。
[0078] 第三の形態でも、第一の形態と同様に、別途、ハードコート層を設けることも可能で ある。ハードコート層 11は、基材 10と帯電防止層 12との間、又は帯電防止層 12と中 屈折率層 14との間のいずれかに設けることができる。これらの形態を図 2Fに示す。
[0079] 上記帯電防止機能付き反射防止膜の第一から第三の形態において設けられる、 帯電防止層以外の層及び基材について説明する。
(2)低屈折率層 低屈折率層は、その厚さが 0. 05〜0. 20 mの範囲内で、屈折率が 1. 30〜: L 4 5の層である。
低屈折率層に使用される材料としては、目的とする特性が得られれば特に限定さ れるものではないが、例えば、含フッ素重合体を含有する硬化性組成物、アクリルモ ノマー、含フッ素アクリルモノマー、エポキシ基含有化合物、含フッ素エポキシ基含有 化合物等の硬化物を挙げることがでる。また、低屈折率層の強度を上げるために、シ リカ微粒子等を配合することもできる。
本発明の積層体を反射防止膜として用いる好ましい態様では、後述する成分 (F) 及び (G)を含有する硬化性榭脂組成物を用いて低屈折率層を形成する。
[0080] (3)高屈折率層
高屈折率層は、その厚さが 0. 05〜0. 20 mの範囲内で、屈折率が 1. 55〜2. 2 0の範囲内である。
高屈折率層を形成するために高屈折率の無機粒子、例えば金属酸ィ匕物粒子を配 合することができる。
[0081] 金属酸ィ匕物粒子の具体例としては、アンチモン含有酸化錫 (ATO)粒子、錫含有 酸化インジウム (ITO)粒子、酸ィ匕亜鉛 (ZnO)粒子、アンチモン含有 ZnO、 A1含有 Z ηθ粒子 ZrO粒子、 TiO粒子、シリカ被覆 TiO粒子、 Al O /ZrO被覆 TiO粒子、
2 2 2 2 3 2 2
CeO粒子等を挙げることができる。好ましくは、アンチモン含有酸化錫 (ATO)粒子
2
、錫含有酸化インジウム (ITO)粒子、リン含有酸化錫 (PTO)粒子、 A1含有 ZnO粒 子、 Al O /ZrO被覆 TiO粒子である。これらの金属酸化物粒子は、一種単独又は
2 3 2 2
二種以上の組み合わせで使用することができる。
また、高屈折率層にハードコート層の機能を持たせることもできる。
[0082] (4)中屈折率層
3種以上の屈折率を有する層を組み合わせる場合に、屈折率が 1. 50〜: L 90であ つて、低屈折率層より高ぐ高屈折率層より低い屈折率を有する層を中屈折率層と表 す。中屈折率層の屈折率は、好ましくは、 1. 50〜: L 80、より好ましくは、 1. 50〜: L 75である。中屈折率層は、その厚さが 0. 05〜0. 20 /z mの範囲内である。
中屈折率層を形成するために、高屈折率の無機粒子、例えば金属酸化物粒子を 酉己合することができる。
[0083] 金属酸ィ匕物粒子の具体例としては、アンチモン含有酸化錫 (ATO)粒子、錫含有 酸化インジウム(ITO)粒子、 ZnO粒子、アンチモン含有 ZnO、 A1含有 ZnO粒子、 Zr O粒子、 TiO粒子、シリカ被覆 TiO粒子、 Al O /ZrO被覆 TiO粒子、 CeO粒子
2 2 2 2 3 2 2 2 等を挙げることができる。好ましくは、アンチモン含有酸化錫 (ATO)粒子、錫含有酸 化インジウム(ITO)粒子、リン含有酸化錫(PTO)粒子、 A1含有 ZnO粒子、 ZrO粒
2 子である。これらの金属酸化物粒子は、一種単独又は二種以上の組み合わせで使 用することができる。
[0084] 低屈折率層と高屈折率層を組み合わせることにより反射率を低くすることができ、さ らに、低屈折率層、高屈折率層、中屈折率層を組み合わせることにより、反射率を低 くすることができるとともに色目(ギラツキ)を減らすことができる。
[0085] (5)ハードコート層
ハードコート層の具体例としては、 SiO、エポキシ系榭脂、アクリル系榭脂、メラミン
2
系榭脂等の材料力も構成するのが好ましい。また、これらの榭脂にシリカ粒子を配合 してちよい。
ハードコート層は積層体の機械的強度を高める効果がある。ハードコート層の厚さ は、
通常 0. 5〜50 μ m、好ましくは 1〜30 μ mの範囲である。また、ハードコート層の屈 折率は、通常 1. 45 〜1. 70、好ましくは 1. 45~1. 60の範囲である。
[0086] (6)基材
本発明の積層体を反射防止膜として用いる場合の基材の材料は、透明であること が必要であり、例えば、ポリカーボネート、ポリメチノレメタタリレート、ポリスチレン Zポリ メチルメタタリレート共重合体、ポリスチレン、ポリエステル、ポリオレフイン、トリァセチ ルセルロース榭脂、ジエチレングリコールのジァリルカーボネート(CR— 39)、 ABS 榭脂、 AS榭脂、ポリアミド、エポキシ榭脂、メラミン榭脂、環化ポリオレフイン榭脂 (例 えば、ノルボルネン系榭脂)等を挙げることができる。
[0087] 基材の厚さは、特に限定されないが、通常 30〜300 μ m、好ましくは 50〜200 μ mの範囲である。 [0088] (7)その他の層
本発明の積層体の製造において、他の要求、例えば、ノングレア効果、光の選択 吸収効果、耐候性、耐久性、転写性等の機能をさらに付与するために、例えば、 1 μ m以上の光散乱性の粒子を含有する層を加えること、染料を含有する層を加えること 、紫外線吸収剤を含有する層を加えること、接着層を加えること、接着層と剥離層を 加えること等が可能であり、さらに、これらの機能付与成分を本発明で用いる帯電防 止層形成用組成物及び Z又は低屈折率層形成用組成物の 1成分として加えることも 可能である。
[0089] 本発明の積層体は、例えば、プラスチック光学部品、タツチパネル、フィルム型液晶 素子、プラスチック筐体、プラスチック容器、建築内装材としての床材、壁材、人工大 理石等の傷付き (擦傷)防止や汚染防止のためのハードコーティング材;各種基材の 接着剤、シ一リング材;印刷インクのバインダー材等として好適に用いることができる。
[0090] これらの層は一層のみ形成してもよぐまた、異なる層を二層以上形成してもよい。
また、低、中、高屈折率層の膜厚は、それぞれ通常 60〜150nm、ハードコート層 の膜厚は通常1〜20 111、帯電防止層の膜厚は通常 0. 05〜30 /ζ πιである。
本発明では、層の製造方法は、公知の塗布と硬化、蒸着、スパッタリング等の方法 により製造できる。
[0091] III.低屈折率層
本発明の積層体を反射防止膜として用いるためには、少なくとも、上記硬化膜層の 上に低屈折率層を形成する必要がある。本発明における低屈折率層とは、 550nm における屈折率が 1. 45以下の層をいう。本発明の積層体に形成される低屈折率層 は、 (F)エチレン性不飽和基含有含フッ素重合体及び (G)シリカ粒子を含有する硬 化性榭脂組成物 (以下、「低屈折率層形成用組成物」 t ヽぅことがある)からなる硬化 物であることが好ましい。
以下、成分 (F)及び (G)につ 、て説明する。
[0092] 1.成分 (F)
低屈折率層形成用組成物に用いるエチレン性不飽和基含有含フッ素重合体 (F) は、 1個のイソシァネート基と少なくとも 1個のエチレン性不飽和基とを含有する化合 物と、水酸基含有含フッ素重合体とを、反応させて得られる。
[0093] (1) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合 物
1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合物 としては、分子内に、 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基 を含有して 、る化合物であれば特に制限されるものではな 、。
尚、イソシァネート基を 2個以上含有すると、水酸基含有含フッ素重合体と反応させ る際にゲルィ匕を起こす可能性がある。
また、上記エチレン性不飽和基として、後述する硬化性榭脂組成物をより容易に硬 ィ匕させることができることから、(メタ)アタリロイル基を有する化合物がより好ま 、。 このような化合物としては、 2— (メタ)アタリロイルォキシェチルイソシァネート、 2- ( メタ)アタリロイルォキシプロピルイソシァネートの一種単独又は二種以上の組み合わ せが挙げられる。
[0094] 尚、このような化合物は、ジイソシァネート及び水酸基含有 (メタ)アタリレートを反応 させて合成することちでさる。
ジイソシァネートの例としては、 2,4—トリレンジイソシァネート、イソホロンジイソシァ ネート、キシリレンジイソシァネート、メチレンビス(4ーシクロへキシノレイソシァネアート
) , 1, 3—ビス (イソシァネートメチル)シクロへキサンが好ましい。
[0095] 水酸基含有 (メタ)アタリレートの例としては、 2—ヒドロキシェチル (メタ)アタリレート
、ペンタエリスリトールトリ(メタ)アタリレートが好ましい。
尚、水酸基含有多官能 (メタ)アタリレートの市販品としては、例えば、大阪有機化 学 (株)製 商品名 HEA、 日本化薬 (株)製 商品名 KAYARAD DPHA、 PET — 30、東亞合成(株)製 商品名 ァロニックス M— 215、 M— 233、 M— 305、 M —400等を入手することができる。
[0096] (2)水酸基含有含フッ素重合体
水酸基含有含フッ素重合体は、好ましくは、下記構造単位 (a)、(b)及び (c)を含ん でなる。
(a)下記式(11)で表される構造単位。 (b)下記式( 12)で表される構造単位。
(c)下記式(13)で表される構造単位。
[0097] [化 10]
F R11 ( I:― C I (11 )
[式中、 R11はフッ素原子、フルォロアルキル基又は— OR12で表される基 (R12はァ ルキル基又はフルォロアルキル基を示す)を示す]
[0098] [化 11]
H R13 •C V,—— (12)
H I R14
[式中、 R は水素原子又はメチル基を、 R14はアルキル基、 -(CH )—OR15若しく
2 c
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[0099] [化 12]
H R16
—— < ;― C—— (13)
H (CH2)vOR17
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
[0100] (i)構造単位 (a)
上記式(11)において、 R11及び R12のフルォロアルキル基としては、トリフルォロメチ ル基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基、ノ 一フルォ口へキシル基、パーフルォロシクロへキシル基等の炭素数 1〜6のフルォロ アルキル基が挙げられる。また、 R12のアルキル基としては、メチル基、ェチル基、プ 口ピル基、ブチル基、へキシル基、シクロへキシル基等の炭素数 1〜6のアルキル基 が挙げられる。
[0101] 構造単位 (a)は、含フッ素ビニル単量体を重合成分として用いることにより導入する ことができる。このような含フッ素ビュル単量体としては、少なくとも 1個の重合性不飽 和二重結合と、少なくとも 1個のフッ素原子とを有する化合物であれば特に制限され るものではない。このような例としてはテトラフルォロエチレン、へキサフルォロプロピ レン、 3, 3, 3—トリフルォロプロピレン等のフルォロレフィン類;アルキルパーフルォ 口ビュルエーテル又はアルコキシアルキルパーフルォロビュルエーテル類;パーフル ォロ(メチルビ-ルエーテル)、パーフルォロ(ェチルビ-ルエーテル)、パーフルォロ (プロピルビニルエーテル)、パーフルォロ(ブチルビニルエーテル)、パーフルォロ( イソブチルビ-ルエーテル)等のパーフルォロ(アルキルビュルエーテル)類;パーフ ルォロ(プロポキシプロピルビュルエーテル)等のパーフルォロ(アルコキシアルキル ビュルエーテル)類の一種単独又は二種以上の組み合わせが挙げられる。
これらの中でも、へキサフルォロプロピレンとパーフルォロ(アルキルビュルエーテ ル)又はパーフルォロ(アルコキシアルキルビュルエーテル)がより好ましぐこれらを 組み合わせて用いることがさらに好まし!/、。
[0102] 尚、構造単位 (a)の含有率は、上記構造単位 (a)〜(c)の合計を 100モル%とした ときに、 20〜70モル0 /0である。この理由は、含有率が 20モル0 /0未満になると、本願 が意図するところの光学的にフッ素含有材料の特徴である、低屈折率の発現が困難 となる場合があるためであり、一方、含有率が 70モル%を超えると、水酸基含有含フ ッ素重合体の有機溶剤への溶解性、透明性、又は基材への密着性が低下する場合 があるためである。
また、このような理由により、構造単位 (a)の含有率を、上記構造単位 (a)〜(c)の 合計 100モル0 /0に対して、 25〜65モル0 /0とするのがより好ましぐ 30〜60モル0 /0と するのがさらに好ましい。
[0103] (ii)構造単位 (b) 式(12)において、 R"又は R14のアルキル基としては、メチル基、ェチル基、プロピ ル基、へキシル基、シクロへキシル基、ラウリル基等の炭素数 1〜12のアルキル基が 挙げられ、 R15のアルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシカ ルポニル基等が挙げられる。
[0104] 構造単位 (b)は、上述の置換基を有するビュル単量体を重合成分として用いること により導入することができる。このようなビュル単量体の例としては、メチルビ-ルエー テノレ、ェチノレビニノレエーテノレ、 n—プロピノレビニノレエーテノレ、イソプロピノレビニノレエ一 テル、 n—ブチルビニルエーテル、イソブチルビニルエーテル、 tert—ブチルビニル エーテノレ、 n—ペンチノレビニノレエーテノレ、 n—へキシノレビニノレエーテノレ、 n—才クチ ノレビ-ノレエーテノレ、 n—ドデシノレビ-ノレエーテノレ、 2—ェチノレへキシノレビ-ノレエーテ ル、シクロへキシルビ-ルエーテル等のアルキルビュルエーテルもしくはシクロアル キルビュルエーテル類;ェチルァリルエーテル、ブチルァリルエーテル等のァリルェ 一テル類;酢酸ビュル、プロピオン酸ビュル、酪酸ビュル、ピバリン酸ビュル、力プロ ン酸ビュル、バーサチック酸ビュル、ステアリン酸ビュル等のカルボン酸ビュルエステ ル類;メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n—ブチル (メタ)アタリレー ト、イソブチル (メタ)アタリレート、 2—メトキシェチル (メタ)アタリレート、 2—エトキシェ チル (メタ)アタリレート、 2- (n—プロボキシ)ェチル (メタ)アタリレート等の (メタ)ァク リル酸エステル類;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、ィタコン酸等 の不飽和カルボン酸類等の一種単独又は二種以上の組み合わせが挙げられる。
[0105] 尚、構造単位 (b)の含有率は、上記構造単位 (a)〜(c)の合計を 100モル%とした ときに、 10〜70モル%である。この理由は、含有率が 10モル%未満になると、水酸 基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるためであり、一 方、含有率が 70モル%を超えると、水酸基含有含フッ素重合体の透明性、及び低反 射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (b)の含有率を、上記構造単位 (a)〜(c)の 合計 100モル0 /0に対して、 20〜60モル0 /0とするのがより好ましぐ 30〜60モル0 /0と するのがさらに好ましい。
[0106] (iii)構造単位 (c) 式(13)において、 R17のヒドロキシアルキル基としては、 2—ヒドロキシェチル基、 2 ーヒドロキシプロピル基、 3—ヒドロキシプロピル基、 4ーヒドロキシブチル基、 3—ヒドロ キシブチル基、 5—ヒドロキシペンチル基、 6—ヒドロキシへキシル基等が挙げられる。
[0107] 構造単位 (c)は、水酸基含有ビニル単量体を重合成分として用いることにより導入 することができる。このような水酸基含有ビュル単量体の例としては、 2—ヒドロキシェ チルビニルエーテル、 3—ヒドロキシプロピルビニルエーテル、 2—ヒドロキシプロピル ビニルエーテル、 4ーヒドロキシブチルビニルエーテル、 3—ヒドロキシブチルビニル エーテル、 5—ヒドロキシペンチルビニルエーテル、 6—ヒドロキシへキシルビニルェ 一テル等の水酸基含有ビュルエーテル類、 2—ヒドロキシェチルァリルエーテル、 4 ーヒドロキシブチルァリルエーテル、グリセロールモノアリルエーテル等の水酸基含有 ァリルエーテル類、ァリルアルコール等が挙げられる。
また、水酸基含有ビニル単量体としては、上記以外にも、 2—ヒドロキシェチル (メタ )アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)ァ タリレート、力プロラタトン (メタ)アタリレート、ポリプロピレングリコール (メタ)アタリレー ト等を用いることができる。
[0108] 尚、構造単位 (c)の含有率を、上記構造単位 (a)〜(c)の合計を 100モル%とした ときに、 5〜70モル%とすることが好ましい。この理由は、含有率が 5モル%未満にな ると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるため であり、一方、含有率が 70モル%を超えると、水酸基含有含フッ素重合体の透明性 、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (c)の含有率を、上記構造単位 (a)〜(c)の 合計 100モル0 /0に対して、 5〜40モル0 /0とするのがより好ましぐ 5〜30モル0 /0とする のがさらに好ましい。
[0109] (iv)構造単位 (d)及び構造単位 (e)
水酸基含有含フッ素重合体は、さらに下記構造単位 (d)を含んで構成することも好 ましい。
[0110] (d)下記式(14)で表される構造単位。
[化 13] R18 Si一 O (14)
R19
[式中、 R18及び R19は、同一でも異なっていてもよぐ水素原子、アルキル基、ハロ ゲンィヒアルキル基又はァリール基を示す]
[0111] 式(14)において、 R18又は R19のアルキル基としては、メチル基、ェチル基、プロピ ル基等の炭素数 1〜3のアルキル基力 ハロゲンィ匕アルキル基としてはトリフルォロメ チル基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基等 の炭素数 1〜4のフルォロアルキル基等力 ァリール基としてはフエ-ル基、ベンジル 基、ナフチル基等がそれぞれ挙げられる。
[0112] 構造単位 (d)は、前記式(14)で表されるポリシロキサンセグメントを有するァゾ基含 有ポリシロキサン化合物を用いることにより導入することができる。このようなァゾ基含 有ポリシロキサン化合物の例としては、下記式(15)で表される化合物が挙げられる。
[0113] [化 14]
(15)
Figure imgf000037_0001
[式中、 R2 〜R23は、同一でも異なっていてもよぐ水素原子、アルキル基又はシァノ 基を示し、 R24〜R27は、同一でも異なっていてもよぐ水素原子又はアルキル基を示 し、 d、 eは 1〜6の数、 s、 tは 0〜6の数、 yは 1〜200の数、 zは 1〜20の数を示す。 ]
[0114] 式(15)で表される化合物を用いた場合には、構造単位 (d)は、構造単位 (e)の一 部として水酸基含有含フッ素重合体に含まれる。
[0115] (e)下記式(16)で表される構造単位。
[化 15]
Figure imgf000038_0001
[式中、 R2〜R23、 R24〜R27、 d、 e、 s、 t及び yは、上記式(15)と同じである。 ] [0116] 式(15)、 (16)において、 R2G〜R23のアルキル基としては、メチル基、ェチル基、プ 口ピル基、へキシル基、シクロへキシル基等の炭素数 1〜12のアルキル基が挙げら れ、 R24〜R27のアルキル基としてはメチル基、ェチル基、プロピル基等の炭素数 1〜
3のアルキル基が挙げられる。
[0117] 本発明において、上記式(15)で表されるァゾ基含有ポリシロキサンィ匕合物としては
、下記式(17)で表される化合物が特に好ましい。
[0118] [化 16]
Figure imgf000038_0002
[式中、 y及び zは、上記式(15)と同じである。 ]
[0119] 尚、構造単位 (d)の含有率を、上記構造単位 (a)〜(c)の合計を 100モル%とした ときに、 0. 1〜10モル0 /0とすることが好ましい。この理由は、含有率が 0. 1モル0 /0未 満になると、硬化後の塗膜の表面滑り性が低下し、塗膜の耐擦傷性が低下する場合 があるためであり、一方、含有率が 10モル%を超えると、水酸基含有含フッ素重合体 の透明性に劣り、コート材として使用する際に、塗布時にハジキ等が発生し易くなる 場合があるためである。
また、このような理由により、構造単位 (d)の含有率を、上記構造単位 (a)〜(c)の 合計 100モル0 /0に対して、 0. 1〜5モル0 /0とするのがより好ましぐ 0. 1〜3モル0 /0と するのがさらに好ましい。同じ理由により、構造単位 (e)の含有率は、その中に含まれ る構造単位 (d)の含有率を上記範囲にするよう決定することが望ましい。 [0120] (v)構造単位 (f)
水酸基含有含フッ素重合体は、さらに下記構造単位 (f)を含んで構成することも好 ましい。
[0121] (f)下記式(18)で表される構造単位。
[化 17]
H R28
-C—— C- (18)
H H
[式中、 は乳化作用を有する基を示す]
[0122] 式(18)において、 R28の乳化作用を有する基としては、疎水性基及び親水性基の 双方を有し、かつ、親水性基がポリエチレンオキサイド、ポリプロピレンオキサイド等の ポリエーテル構造である基が好まし 、。
[0123] このような乳化作用を有する基の例としては下記式(19)で表される基が挙げられる
[化 18]
Figure imgf000039_0001
[式中、 gは 1〜20の数、 fは 0〜4の数、 uは 3〜50の数を示す]
構造単位 (f)は、反応性乳化剤を重合成分として用いることにより導入することがで きる。このような反応性乳化剤としては、下記式(20)で表される化合物が挙げられる
[0125] [化 19] (20)
Figure imgf000040_0001
[式中、 g、 f及び uは、上記式(19)と同様である]
[0126] 尚、上記構造単位 (a)〜(c)の合計を 100モル%としたときに、構造単位 (f)の含有 率を、 0. 1〜5モル%とすることが好ましい。この理由は、含有率が 0. 1モル%以上 になると、水酸基含有含フッ素重合体の溶剤への溶解性が向上し、一方、含有率が 5モル%以内であれば、硬化性榭脂組成物の粘着性が過度に増加せず、取り扱い が容易になり、コート材等に用いても耐湿性が低下しな 、ためである。
また、このような理由により、構造単位 (f)の含有率を、上記構造単位 (a)〜(c)の 合計 100モル0 /0に対して、 0. 1〜3モル0 /0とするのがより好ましぐ 0. 2〜3モル0 /0と するのがさらに好ましい。
[0127] (vi)分子量
水酸基含有含フッ素重合体は、ゲルパーミエーシヨンクロマトグラフィーで、テトラヒ ドロフランを溶剤として測定したポリスチレン換算数平均分子量が 5, 000-500, 00 0であることが好ましい。この理由は、数平均分子量が 5, 000未満になると、水酸基 含有含フッ素重合体の機械的強度が低下する場合があるためであり、一方、数平均 分子量が 500, 000を超えると、後述する硬化性榭脂組成物の粘度が高くなり、薄膜 コーティングが困難となる場合があるためである。
また、このような理由により、水酸基含有含フッ素重合体のポリスチレン換算数平均 分子量を 10, 000〜300, 000とするの力より好ましく、 10, 000〜100, 000とする のがさらに好ましい。
[0128] (3)反応モル比
エチレン性不飽和基含有含フッ素重合体は、上述した、 1個のイソシァネート基と少 なくとも 1個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重合 体とを、反応させて得られる。 1個のイソシァネート基と少なくとも 1個のエチレン性不 飽和基とを含有する化合物と、水酸基含有含フッ素重合体とは、イソシァネート基 Z 水酸基のモル比が 1. 1〜1. 9の割合で反応させるのが好ましい。この理由は、モル 比が 1. 1未満になると耐擦傷性及び耐久性が低下する場合があるためであり、一方 、モル比が 1. 9を超えると、硬化性榭脂組成物の塗膜のアルカリ水溶液浸漬後の耐 擦傷性が低下する場合があるためである。
また、このような理由により、イソシァネート基 Z水酸基のモル比を、 1. 1〜1. 5とす るのが好ましぐ 1. 2〜1. 5とするのがより好ましい。
[0129] 硬化性榭脂組成物における、(F)成分の添加量については、特に制限されるもの ではないが、有機溶剤以外の組成物全量に対して通常 1〜95質量%である。この理 由は、添加量が 1質量%未満となると、硬化性榭脂組成物の硬化塗膜の屈折率が高 くなり、十分な反射防止効果が得られない場合があるためであり、一方、添加量が 95 質量%を超えると、硬化性榭脂組成物の硬化塗膜の耐擦傷性が得られな!/、場合が あるためである。
また、このような理由力ら、(F)成分の添加量を 2〜90質量%とするのがより好ましく 、 3〜85質量%の範囲内の値とするのがさらに好ましい。
[0130] 2.成分 (G)
(1)シリカを主成分とする粒子
本発明で用いる低屈折率層形成用組成物には、シリカを主成分とする粒子を配合 することができ、低屈折率層形成用組成物の硬化物の耐擦傷性、特にスチールウー ル耐性を改善することができる。シリカを主成分とする粒子としては、数平均粒径 1〜 lOOnmのシリカを主成分とする粒子が好ましい。粒径は、透過型電子顕微鏡により 測定する。(G)成分の粒径は、 5〜80nmが好ましぐ 10〜60nmがさらに好ましい。 これらシリカを主成分とする粒子としては、公知のものを使用することができ、また、 その形状も特に限定されない。球状であれば通常のコロイダルシリカに限らず中空粒 子、多孔質粒子、コア'シェル型粒子等であっても構わない。また、球状に限らず、不 定形の粒子であってもよい。固形分が 10〜40重量%のコロイダルシリカが好ましい。
[0131] また、分散媒は、水ある!/、は有機溶媒が好ま U、。有機溶媒としては、メタノール、 イソプロピルアルコール、エチレングリコーノレ、ブタノール、エチレングリコーノレモノプ 口ピルエーテル等のアルコール類;メチルェチルケトン、メチルイソブチルケトン等の ケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチル ァセトアミド、 N メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 γーブチ 口ラタトン等のエステル類;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等の 有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。 これら有機溶剤は、単独で、又は 2種以上混合して分散媒として使用することができ る。
[0132] シリカを主成分とする粒子の市販品としては、例えば、コロイダルシリカとして、日産 化学工業 (株)製 商品名:メタノールシリカゾル、 IPA—ST、 MEK—ST、 MEK-S T— S、 ΜΕΚ— ST— L、 IPA— ZL、 NBA— ST、 XBA— ST、 DMAC— ST、 ST— UPゝ ST— OUPゝ ST— 20、 ST— 40、 ST— C、 ST— N、 ST— 0、 ST— 50、 ST— OL等を挙げることができる。
[0133] また、コロイダルシリカ表面に化学修飾等の表面処理を行ったものを使用すること ができ、例えば分子中に 1以上のアルキル基を有する加水分解性ケィ素化合物又は その加水分解物を含有するもの等を反応させることができる。このような加水分解性 ケィ素化合物としては、トリメチルメトキシシラン、トリプチルメトキシシラン、ジメチルジ メトキシシラン、ジブチノレジメトキシシラン、メチルトリメトキシシラン、ブチノレトリメトキシ シラン、ォクチルトリメトキシシラン、ドデシルトリメトキシシラン、 1, 1, 1—トリメトキシ一 2, 2, 2 トリメチルージシラン、へキサメチルー 1, 3 ジシロキサン、 1, 1, 1ートリメ トキシー 3, 3, 3 トリメチルー 1, 3 ジシロキサン、 α—トリメチルシリル ω—ジメ チルメトキシシリル—ポリジメチルシロキサン、 (X—トリメチルシリル— ω—トリメトキシ シリルーポリジメチルシロキサンへキサメチルー 1, 3 ジシラザン等を挙げることがで きる。また、分子中に 1以上の反応性基を有する加水分解性ケィ素化合物を使用す ることもできる。分子中に 1以上の反応性基を有する加水分解性ケィ素化合物は、例 えば反応性基として ΝΗ基を有するものとして、尿素プロピルトリメトキシシラン、 Ν—
2
(2 アミノエチル) 3 ァミノプロピルトリメトキシシラン等、 ΟΗ基を有するものとして 、ビス(2 ヒドロキシェチル) 3アミノトリプロピルメトキシシラン等、イソシァネート基 を有するものとして 3—イソシァネートプロピルトリメトキシシラン等、チオシァネート基 を有するものとして 3—チオシァネートプロピルトリメトキシシラン等、エポキシ基を有 するものとして(3—グリシドキシプロピル)トリメトキシシラン、 2— (3, 4—エポキシシク 口へキシル)ェチルトリメトキシシラン等、チオール基を有するものとして、 3—メルカプ トプロピルトリメトキシシラン等を挙げることができる。好ましい化合物として、 3—メルカ プトプロピルトリメトキシシランを挙げることができる。
[0134] (2)好ま ヽ態様 (表面にエチレン性不飽和基を有するシリカ粒子)
本発明に用いられるシリカ粒子は、エチレン性不飽和基を有して 、ることが好まし い(以下、「反応性シリカ粒子」という)。反応性シリカ粒子の製造方法は、特に限定さ れるものではないが、例えば、上述の数平均粒径が 10〜: LOOnmのシリカ粒子と、反 応性表面処理剤とを反応させて得ることができる。
[0135] ここで、表面処理剤としては、例えば、アルコキシシランィ匕合物、テトラブトキシシチ タン、テトラブトキシジルコニウム、テトライソプロポキシアルミニウム等を挙げることが できる。これらは、 1種単独で、又は 2種以上を組み合わせて用いることができる。
[0136] 表面処理剤の具体例としては、 y—メタクリロキシプロピルトリメトキシシラン、 γ—ァ クリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の分子内に不飽和二 重結合を有する化合物や、下記一般式 (21)で表される化合物を挙げることができる
[化 20]
Figure imgf000043_0001
式中、 Rdlはメチル基、 は炭素数 1〜6のアルキル基、 は水素原子又はメチ ル基、 aは 1又は 2、 bは 1〜5の整数、 Aは炭素数 1〜6の 2価のアルキレン基、 Bは鎖 状、環状、分岐状いずれかの炭素数 3〜14の 2価の炭化水素基、 Zは (b + 1)価の 鎖状、環状、分岐状いずれかの炭素数 2〜 14の 2価の炭化水素基である。 Z内には 、エーテル結合を含んでもよい。
[0137] (3)好ましい態様 (多孔質シリカ粒子) 低屈折率層形成用組成物に用いるシリカ粒子としては、多孔質シリカ粒子が好まし い。
多孔質シリカ粒子として、第一の多孔質シリカ粒子 (G1)又は第二の多孔質シリカ粒 子 (G2)を使用することがより好ま 、。第一の多孔質シリカ粒子 (G1)は下記式 (22 )で表されるケィ素化合物及び下記式 (23)で表されるケィ素化合物の、加水分解及 び Z又は加水分解縮合により得られる。すなわち、式 (22)で表されるケィ素化合物 を加水分解及び Z又は加水分解縮合し、かつ式(23)で表されるケィ素化合物をカロ 水分解及び Z又は加水分解縮合することにより得られる。式 (22)で表されるケィ素 化合物及び式(23)で表されるケィ素化合物は、混合して同時に加水分解及び Z又 は加水分解縮合してもよ!ヽし、式(22)で表されるケィ素化合物を加水分解及び Z又 は加水分解縮合し、ついで、式(23)で表されるケィ素化合物を加えてさらに加水分 解及び Z又は加水分解縮合してもよい。第二の多孔質シリカ粒子 (G2)は、下記式( 22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び下記式(24 )で表されるケィ素化合物の加水分解及び Z又は加水分解縮合により得られる。す なわち、式 (22)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合し、 かつ式(23)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合し、かつ 式 (24)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合することにより 得られる。式(22)で表されるケィ素化合物、式(23)で表されるケィ素化合物及び式 (24)で表されるケィ素化合物は、混合して同時に加水分解及び Z又は加水分解縮 合してもょ ヽし、式(22)で表されるケィ素化合物を加水分解及び Z又は加水分解縮 合し、ついで、式(23)で表されるケィ素化合物及び式(24)で表されるケィ素化合物 を加えてさらに加水分解及び Z又は加水分解縮合してもよい。
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
R30 SiX · · · (24)
k 4-k
式(22)、(23)及び(24)中、 Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ノ、 ロゲノ基、イソシァネート基、カルボキシル基、炭素数 2〜4のアルキルォキシカルボ -ル基又は炭素数 1〜4のアルキルアミノ基であり、好ましくはアルコキシ基、ハロゲノ 基であり、より好ましくはアルコキシ基である。また、式(22)、(23)及び(24)の Xは、 同一でも異なってもよい。
式(22)で表される化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラ ン、テトラブトキシシラン、テトラクロロシラン等を挙げることができる。
[0139] 式(23)中、 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキ ル基又は炭素数 5〜8のメタクリロキシアルキル基であり、好ましくはビュル基、ァリル 基、アタリロキシェチル基、アタリロキシプロピル基、アタリロキシブチル基、メタクリロキ シェチル基、メタクリロキシプロピル基、メタクリロキシブチル基である。
式(23)中、 jは 1〜3の整数であり、好ましくは 1〜2である。
式(23)で表される化合物としては、例えば、ビニルトリメトキシシラン、ビュルトリエト キシシラン、ビニルトリクロロシラン、アタリロキシプロピルトリメトキシシラン、メタクリロキ シプロピルトリメトキシシラン等を挙げることができる。
式(23)で示される化合物を使用することで、多孔質シリカ粒子はエチレン性不飽 和基を含むものとすることができる。エチレン性不飽和基を含むことにより、硬化性組 成物を硬化せしめた硬化膜を有する本発明の反射防止膜の耐擦傷性が向上する。
[0140] 式(24)中、 R3は炭素数 1〜12のフッ素置換アルキル基であり、好ましくは炭素数 3〜 12のフッ素置換アルキル基であり、より好ましくは炭素数 3〜 10のフッ素置換ァ ルキル基である。
式(24)中、 kは 1〜3の整数であり、好ましくは 1〜2である。
式(24)で表される化合物としては、例えば、 3, 3, 3—トリフルォロプロピルトリメトキ シシラン、 2—パーフルォ口へキシルメチルトリメトキシシラン、 2—パーフルォ口へキ シルェチルトリメトキシシラン、 2—パーフルォロォクチルェチルトリメトキシシラン、 2— パーフルォロォクチルェチルトリエトキシシラン、 3, 3—ジ(トリフルォロメチル)—3— フルォロプロピルトリエトキシシラン等を挙げることができる。
式(24)で示される化合物を使用することで、多孔質シリカ粒子は含フッ素アルキル 基を含むものとすることができる。含フッ素アルキル基を含むことにより、硬化性組成 物を硬化せしめた硬化膜の耐汚染性を向上させることができる。
尚、式(22)で表されるケィ素化合物、式(23)で表されるケィ素化合物及び式(24 )で表されるケィ素化合物は、それぞれ、 2種以上用いてもよい。
[0141] 第一の多孔質シリカ粒子 (G1)において、式 (22)で表されるケィ素化合物及び式( 23)で表されるケィ素化合物の合計を 100モル%としたとき、式(22)で表されるケィ 素化合物 Z式(23)で表されるケィ素化合物は、好ましくは、 67〜99Zl〜33 (モル %)、より好ましくは 70〜98Z2〜30 (モル0 /0)の割合で加水分解及び Z又は加水分 解縮合される。
第二の多孔質シリカ粒子 (G2)において、式(22)で表されるケィ素化合物、式(23 )で表されるケィ素化合物及び(24)で表されるケィ素化合物の合計を 100モル%と したとき、式 (22)で表されるケィ素化合物 Z式 (23)で表されるケィ素化合物 Z式 (2 4)で表されるケィ素化合物は、好ましくは、 60〜9871〜30 1〜20 (モル%)、ょ り好ましくは65〜96 2〜20 2〜15 (モル%)の割合で加水分解及び,又は加水 分解縮合される。
[0142] 本発明で使用される第一及び第二の多孔質シリカ粒子 (Gl)、(G2)は、平均粒径 力 〜 50nmであり、好ましくは 5〜45nmであり、より好ましくは 5〜40nmである。平 均粒径は、数平均粒径であり、透過型電子顕微鏡観察像により測定する。また、「多 孔質」とは、比表面積が 50〜: L000m2Zgであること、好ましくは 50〜800m2Zgで あり、より好ましくは 100〜800m2/gであることを意味する。比表面積は、 BET法に より測定する。
平均粒径が上記範囲内であれば、得られる塗膜の可視光領域での散乱が抑制で きる。また、多孔質ィ匕であることにより、密度が低下し、このような多孔質シリカ粒子を 含む膜の屈折率が低くなる。
[0143] 多孔質シリカ粒子 (G)は、以下に説明する製造方法により得られる。
第一又は第二の多孔質シリカ粒子 (Gl)、 (G2)は、水、炭素数 1〜3のアルコール 、塩基性化合物、並びに酸アミド、ジオール及びジオールの半エーテルカゝら選ばれ る少なくとも 1種の存在下で、それぞれ、上記式 (22)で表されるケィ素化合物及び式 (23)で表されるケィ素化合物、又は上記式(22)で表されるケィ素化合物、式(23) で表されるケィ素化合物及び式 (24)で表されるケィ素化合物を、加水分解及び Z 又は加水分解縮合して製造できる。 [0144] 塩基性化合物として、例えばアミンィ匕合物が用いられ、具体例として、ピリジン、ピロ ール、ピぺラジン、ピロリジン、ピぺリジン、ピコリン、モノエタノールァミン、ジエタノー ルァミン、ジメチルモノエタノールァミン、モノメチルジェタノールァミン、トリエタノール ァミン、ジァザビシクロオクラン、ジァザビシクロノナン、ジァザビシクロウンデセン、テト ラメチルアンモ -ゥムハイド口オキサイド、テトラエチルアンモ -ゥムハイド口オキサイド 、テトラプロピルアンモ-ゥムハイド口オキサイド、テトラプチルアンモ -ゥムハイドロォ キサイド、アンモニア、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 N, N—ジメチルァミン、 N, N—ジェチルァミン、 N, N—ジプロピルァミン、 N, N—ジブ チルァミン、トリメチルァミン、トリェチルァミン、トリプロピルァミン、トリブチルァミン等 を挙げることができる。好ましくはアンモニア、エタノールァミン、水酸ィ匕テトラメチルァ ミン等が用いられる。
これらの塩基性ィ匕合物は、 1種あるいは 2種以上を同時に使用してもよ 、。
[0145] 酸アミド、ジオール又はジオールの半エーテルは、水及びアルコールと相溶性を有 することが好ましい。
酸アミドとして、例えば N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリドン等が用いられ、好ましくは N, N—ジメチルホルムアミド、 N, N— ジメチルァセトアミドが用いられる。
[0146] ジオールとして、例えばエチレングリコール、プロピレングリコール、 1, 2—ブタンジ オール等が用いられ、好ましくはエチレングリコール、プロピレングリコールが用いら れる。ジオールの半エーテルとして、例えばエチレングリコールモノメチルエーテル、 プロピレングリコールモノメチルエーテルが用いられる。
本発明で使用される多孔質シリカ粒子は、合成時に酸アミド、ジオール又はジォー ルの半エーテルを共存させることで粒子を多孔質ィ匕することができる。
[0147] 反応液中の式(22)のケィ素化合物及び(23)のケィ素化合物又は式(22)〜(24) のケィ素化合物の合計濃度は、完全加水分解縮合物換算で通常 0. 5〜10質量%、 好ましくは 1〜8質量%である。ここで、「完^ 3ロ水分解縮合物換算」とは、ケィ素化合 物が完全に加水分解縮合したと仮定して計算した理論値であり、式 (22)のケィ素化 合物及び(23)のケィ素化合物又は式(22)〜(24)のケィ素化合物の Xを、 Xの 1Z 2モルの酸素原子に置換した場合の質量に相当する。粒子合成時のケィ素化合物 の濃度を上記範囲にすることで、粒子の粗大化を防ぎ、平均粒径 5〜50nmの粒子 とでさる。
式(22)のケィ素化合物及び式(23)のケィ素化合物、又は式(22)のケィ素化合物 、式 (23)のケィ素化合物及び式 (24)のケィ素化合物は同時に混合して加水分解及 び Z又は加水分解縮合させてもよぐまた、水、炭素数 1〜3のアルコール、塩基性 化合物、並びに酸アミド、ジオール及びジオールの半エーテル力 選ばれる少なくと も 1種の存在下で、式(22)で表されるケィ素化合物を加水分解及び Z又は加水分 解縮合し、ついで、それぞれ、式(23)で表されるケィ素化合物、又は式(23)で表さ れるケィ素化合物及び式(24)で表されるケィ素化合物を加えてさらに加水分解及び Z又は加水分解縮合させてもよ ヽ。
[0148] 加水分解及び Z又は加水分解縮合の反応温度は、使用するアルコール及び酸ァ ミド類の沸点及び反応時間を考慮して任意に決めることができる。反応時間は式(22 )で表されるケィ素化合物、式 (23)で表されるケィ素化合物及び式 (24)で表される ケィ素化合物の種類、反応速度、塩基の種類と量等に依存してその最適値は変化 する性質のものであり、限定されない。
得られた加水分解及び Z又は加水分解縮合反応液に有機溶媒を加え、さらに必 要に応じて不要な成分を蒸留や液液抽出等の方法で除去することにより、多孔質シ リカ粒子が有機溶媒に分散した分散液を得ることができる。
[0149] また、分散媒は、水ある!/、は有機溶媒が好ま U、。有機溶媒としては、メタノール、 イソプロピルアルコール、エチレングリコーノレ、ブタノール、エチレングリコーノレモノプ 口ピルエーテル等のアルコール類;メチルェチルケトン、メチルイソブチルケトン等の ケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチル ァセトアミド、 N メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 γーブチ 口ラタトン等のエステル類;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等の 有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。 これら有機溶剤は、単独で、又は 2種以上混合して分散媒として使用することができ る。 [0150] 多孔質シリカ粒子 (G)の榭脂組成物中における配合量は、有機溶剤以外の組成 物全量に対して通常 5〜99質量%配合され、 10〜98質量%が好ましぐ 15〜97質 量%がさらに好ましい。 5質量%未満であると、硬化膜としたときの硬度が不十分とな ることがあり、 99質量%を超えると、十分な膜の強度が得られないことがある。尚、粒 子の量は、固形分を意味し、粒子が溶剤分散液の形態で用いられるときは、その配 合量には溶剤の量を含まない。
[0151] (4)任意添加成分
本発明で用いる低屈折率層用組成物には、必要に応じて下記成分を添加すること ができる。
[0152] (H)少なくとも 2個以上の (メタ)アタリロイル基を含有する多官能 (メタ)アタリレートイ匕 合物及び Z又は少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ素 (メタ) アタリレートイ匕合物
硬化性榭脂組成物には、必要に応じて、少なくとも 2個以上の (メタ)アタリロイル基 を含有する多官能 (メタ)アタリレートイ匕合物及び Z又は少なくとも 1個以上の (メタ)ァ クリロイル基を含有する含フッ素 (メタ)アタリレートイ匕合物を添加することもできる。
[0153] (1)少なくとも 2個以上の (メタ)アタリロイル基を含有する多官能 (メタ)アタリレートイ匕 合物
この化合物については、分子内に少なくとも 2個以上の (メタ)アタリロイル基を含有 する化合物であれば特に制限されるものではない。このような例としては、ネオペンチ ルグリコールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタ エリスリトールトリ(メタ)アタリレート、トリメチロールェタントリ(メタ)アタリレート、ペンタ エリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールテトラ (メタ)アタリレート、 アルキル変性ジペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトール ペンタ(メタ)アタリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アタリレー ト、ジペンタエリスリトールへキサ (メタ)アタリレート、力プロラタトン変性ジペンタエリス リトールへキサ (メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、 「 U- 15HAJ (商品名、新中村ィ匕学社製)等の一種単独又は二種以上の組み合わせ が挙げられる。 尚、これらのうち、ネオペンチルグリコールジ(メタ)アタリレート、ジペンタエリスリトー ルへキサ (メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリ スリトールペンタ(メタ)アタリレート及び力プロラタトン変性ジペンタエリスリトールへキ サ (メタ)アタリレートが特に好まし 、。
[0154] (2)少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ素 (メタ)アタリレートイ匕 合物
この化合物については、少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ 素 (メタ)アタリレートイ匕合物であれば特に制限されるものではない。このような例として 、パーフルォロォクチルェチル(メタ)アタリレート、ォクタフルォロペンチル(メタ)ァク リレート、トリフルォロェチル (メタ)アタリレート等が挙げられる。これらは、単独で或い は 2種以上組み合わせて使用することができる。
[0155] (H)成分の添加量については、特に制限されるものではないが、有機溶剤以外の 組成物全量に対して通常 0〜90質量%である。この理由は、添加量が 90質量%を 超えると、硬化性榭脂組成物の硬化塗膜の屈折率が高くなり、十分な反射防止効果 が得られな 、場合があるためである。
また、このような理由力 、(H)成分の添加量を 80質量%以下とするのがより好まし ぐ 60質量%以下の添加量とするのがさらに好ましい。
[0156] (I)活性エネルギー線の照射又は熱により活性種を発生する化合物
本願発明では、活性エネルギー線の照射又は熱により活性種を発生する化合物を 添加することもできる。活性エネルギー線の照射又は熱により活性種を発生する化合 物は、硬化性榭脂組成物を硬化させるために用いられる。
[0157] (1)活性エネルギー線の照射により活性種を発生する化合物
活性エネルギー線の照射により活性種を発生する化合物(以下「光重合開始剤」と いう。)としては、活性種として、ラジカルを発生する光ラジカル発生剤等が挙げられ る。
尚、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生さ せることのできるエネルギー線と定義される。このような活性エネルギー線としては、 可視光、紫外線、赤外線、 X線、 α線、 j8線、 γ線等の光エネルギー線が挙げられる 。ただし、一定のエネルギーレベルを有し、硬化速度が速ぐしかも照射装置が比較 的安価で、小型な観点から、紫外線を使用することが好ましい。
[0158] (i)種類
光ラジカル発生剤の例としては、例えばァセトフエノン、ァセトフエノンべンジルケタ ール、アントラキノン、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプ 口パン 1 オン、カルバゾール、キサントン、 4 クロ口べンゾフエノン、 4, 4'ージァ ミノべンゾフエノン、 1, 1—ジメトキシデォキシベンゾイン、 3, 3, 一ジメチル一 4—メト キシベンゾフエノン、チ才キサントン、 2, 2—ジメトキシー 2—フエ-ルァセトフエノン、 1— (4—ドデシルフエ-ル) 2—ヒドロキシ一 2—メチルプロパン一 1—オン、 2—メ チルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン、トリフ ェ-ルァミン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 1ーヒド 口キシシクロへキシルフェニルケトン、 2—ヒドロキシ 2—メチルー 1 フエニルプロ パン 1 オン、フルォレノン、フルオレン、ベンズアルデヒド、ベンゾインェチルエー テル、ベンゾインプロピルエーテル、ベンゾフエノン、ミヒラーケトン、 3—メチルァセト フエノン、 3, 3 ' , 4, 4'ーテトラ(tert ブチルパーォキシカルボ-ル)ベンゾフエノン (BTTB)、 2- (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2—フエ-ル メチル) 1ーブタノン、 4一べンゾィルー 4'ーメチルジフエ-ルサルファイド、ベンジ ル、又は BTTBとキサンテン、チォキサンテン、クマリン、ケトクマリン、その他の色素 増感剤との組み合わせ等を挙げることができる。
[0159] これらの光重合開始剤のうち、 2, 2 ジメトキシ一 2 フエ-ルァセトフエノン、 2 ヒ ドロキシ 2—メチル 1—フエニルプロパン一 1 オン、 1 ヒドロキシシクロへキシ ルフエ二ルケトン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 2 ーメチルー 1一 〔4一(メチルチオ)フエ-ル〕一 2 モルフォリノプロパン一 1一オン、 2 (ジメチルァミノ) 1一〔4 (モルフオリ-ル)フエ-ル〕 2 フエ-ルメチル) 1 —ブタノン等が好ましぐさらに好ましくは、 1—ヒドロキシシクロへキシルフェニルケト ン、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1ーォ ン、 2— (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2 フエ-ルメチル ) - 1—ブタノン等を挙げることができる。 [0160] (ii)添加量
光重合開始剤の添加量は特に制限されるものではな ヽが、有機溶剤以外の組成 物全量に対して 0. 01〜20質量%とするのが好ましい。この理由は、添加量が 0. 01 質量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸漬後の耐 擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量が 20質量 %を超えると、硬化膜の屈折率が増加し反射防止効果が低下する場合があるためで ある。
また、このような理由から、光重合開始剤の添加量を、有機溶剤以外の組成物全量 に対して 0. 05〜15質量%とすることがより好ましぐ 0. 1〜15質量%とすることがさ らに好ましい。
[0161] (2)熱により活性種を発生する化合物
熱により活性種を発生する化合物(以下「熱重合開始剤」という。)としては、活性種 として、ラジカルを発生する熱ラジカル発生剤等が挙げられる。
[0162] (i)種類
熱ラジカル発生剤の例としては、ベンゾィルパーオキサイド、 tert—ブチルーォキシ ベンゾエート、ァゾビスイソブチ口-トリル、ァセチルパーオキサイド、ラウリルパーォキ サイド、 tert—ブチルパーアセテート、タミルパーオキサイド、 tert—ブチルパーォキ サイド、 tert—ブチルハイド口パーオキサイド、 2, 2,ーァゾビス(2, 4—ジメチルバレ 口-トリル)、 2, 2,—ァゾビス(4—メトキシ— 2, 4—ジメチルバレ口-トリル)等の一種 単独又は二種以上の組み合わせを挙げることができる。
[0163] (ii)添加量
熱重合開始剤の添加量についても特に制限されるものではないが、有機溶剤以外 の組成物全量に対して 0. 01〜20質量%とするのが好ましい。この理由は、添カロ量 が 0. 01質量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸 漬後の耐擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量 力 S20質量%を超えると、硬化膜の屈折率が増加し反射防止効果が低下する場合が あるためである。
また、このような理由から、有機溶剤以外の組成物全量に対して熱重合開始剤の 添加量を 0. 05〜15質量%とするのがより好ましぐ 0. 1〜15質量%の範囲内の値 とするのがさらに好ましい。
[0164] ω有機溶媒
硬化性榭脂組成物には、さらに有機溶媒を添加することが好ましい。このように有 機溶媒を添加することにより、薄膜の反射防止膜を均一に形成することができる。こ のような有機溶媒としては、炭素数 1〜8のアルコール系、炭素数 3〜10のケトン系、 炭素数 3〜: LOのエステル系の有機溶媒が好ましく使用でき、メチルイソプチルケトン 、メチルェチルケトン、メチルアミルケトン、メタノール、エタノール、 tーブタノール、ィ ソプロパノール、プロピレングリコーノレモノメチノレエーテル、プロピレングリコーノレェチ ルエーテル、プロピレングリコールモノプロピルエーテル等が特に好まし 、例として挙 げられる。これらの有機溶媒は一種単独又は二種以上の組み合わせで使用できる。
[0165] 有機溶媒の添加量についても特に制限されるものではないが、有機溶剤以外の組 成物 100質量部に対し、 100〜100,000質量部とするのが好ましい。この理由は、 添加量が 100質量部未満となると、硬化性榭脂組成物の粘度調整が困難となる場合 があるためであり、一方、添加量が 100,000質量部を超えると、硬化性榭脂組成物 の保存安定性が低下したり、あるいは粘度が低下しすぎて取り扱いが困難となる場合 があるためである。
[0166] 添加剤
硬化性榭脂組成物には、本発明の目的や効果を損なわない範囲において、光増 感剤、重合禁止剤、重合開始助剤、レべリング剤、濡れ性改良剤、界面活性剤、可 塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、(G)成分以 外の無機充填剤若しくは顔料、染料等の添加剤をさらに含有させることもできる。
[0167] (5)低屈折率層形成用組成物の調製方法
本発明で使用される硬化性榭脂組成物は、上記 (F)エチレン性不飽和基含有含フ ッ素重合体及び上記 (G)成分、又は必要に応じて上記 (H)成分、(I)成分、 ω有機 溶剤、及び添加剤をそれぞれ添加して、室温又は加熱条件下で混合することにより 調製することができる。具体的には、ミキサ、ニーダー、ボールミル、三本ロール等の 混合機を用いて、調製することができる。ただし、加熱条件下で混合する場合には、 熱重合開始剤の分解開始温度以下で行うことが好ましい。
[0168] (6)低屈折率層形成用組成物の硬化方法
低屈折率層形成用組成物の硬化条件にっ 、ても特に制限されるものではな 、が、 例えば活性エネルギー線を用いた場合、露光量を 0. 01〜10j/cm2の範囲内の値 とするのが好ましい。
この理由は、露光量が 0. OljZcm2未満となると、硬化不良が生じる場合があるた めであり、一方、露光量が lOjZcm2を超えると、硬化時間が過度に長くなる場合が あるためである。
また、このような理由により、露光量を 0. l〜5jZcm2の範囲内の値とするのがより 好ましぐ 0. 3〜3jZcm2の範囲内の値とするのがより好ましい。
[0169] また、低屈折率層形成用組成物を、加熱して硬化させる場合には、 30〜200°Cの 範囲内の温度で、 0. 5〜180分間加熱するのが好ましい。このように加熱することに より、基材等を損傷することなぐより効率的に耐擦傷性に優れた反射防止膜を得る ことができる。
また、このような理由から、 50〜180°Cの範囲内の温度で、 1〜120分間加熱する のがより好ましぐ 80〜150°Cの範囲内の温度で、 1〜60分間加熱するのがさらに好 ましい。
[実施例]
[0170] 以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施 例によって何ら限定されるものではない。尚、以下において、部、%は、特に断らない 限り、それぞれ重量部、重量%を示す。
[0171] 製造例 1:アルミニウム含有酸化亜鉛粒子 (A— 1)分散液の調製
アルミニウム含有酸ィ匕亜鉛粒子 (A—1) (ハクスィテック (株)製、パゼット CK (商品 名)、一次粒径 20〜40nm)、分散剤 (楠本ィ匕成 (株)製、 PLAAD ED211 (商品名 ):上記式(2)において、数平均分子量 40, 000の高分子ポリカルボン酸のアミドアミ ン塩、固形分量 50%)、及びメチルェチルケトンを、 27. 6/4. 8/67. 6 (重量比) の配合量で混合した。この分散液をアルミ皿に 2g秤量後、 175°Cのホットプレート上 で 1時間乾燥、秤量して固形分含量を求めたところ、 30%であった。また、この分散 液を磁性るつぼに 2g秤量後、 80°Cのホットプレート上で 30分予備乾燥し、 750°Cの マツフル炉中で 1時間焼成した後の無機残渣より、固形分中の無機含量を求めたとこ ろ、 27. 6%であった。
[0172] ペイントシエ一力の 50mlポリ瓶に、ガラスビーズ 40g (TOSHINRIKO製、 BZ— 01 、ビーズ径 0. lmm、体積約 16ml)と上記混合液(30g)を入れて、 5時間、及び 8時 間分散し、アルミニウム含有酸化亜鉛粒子 (A— 1)分散液を得た。
得られた分散液に分散して 、るアルミニウム含有酸ィ匕亜鉛粒子 (A— 1)のメジアン 径を以下の条件で測定した。 5時間及び 8時間の分散において、メジアン径が 150η mまで微粒径ィ匕でき、経時的に安定して!/ヽることを確認した。
機器:(株)堀場製作所製 動的光散乱式粒径分布測定装置
測定条件: 温度 25°C
試料 サンプルを原液のまま測定
データ解析条件:粒子径基準 体積基準
分散粒子 アルミニウム含有酸化亜鉛粒子 屈折率 1. 95
分散媒 メチルェチルケトン 屈折率 1. 379
[0173] 製造例 2 :特定有機化合物 (Aa)の調製
乾燥空気中、メルカプトプロピルトリメトキシシラン 221部、ジブチル錫ジラウレート 1 部からなる溶液に対し、イソホロンジイソシァネート 222部を攪拌しながら 50°Cで 1時 間かけて滴下後、 70°Cで 3時間加熱攪拌した。これに新中村ィ匕学製 NKエステル A —TMM— 3LM— N (ペンタエリスリトールトリアタリレート 60重量0 /0とペンタエリスリト ールテトラアタリレート 40重量%とからなる。このうち、反応に関与するのは、水酸基 を有するペンタエリスリトールトリアタリレートのみである。 ) 549部を 30°Cで 1時間かけ て滴下後、 60°Cで 10時間加熱攪拌することで重合性不飽和基を有する有機化合物 (特定有機化合物 (Aa) )を得た。生成物中の残存イソシァネート量を FT— IRで分析 したところ 0.1%以下であり、反応がほぼ定量的に終了したことを示した。生成物の赤 外吸収スペクトルは原料中のメルカプト基に特徴的な 2550cm_ 1の吸収ピーク及び 原料イソシァネートイ匕合物に特徴的な 2260cm_1の吸収ピークが消失し、新たにウレ タン結合及び S (C = O) NH—基に特徴的な 1660cm_1のピーク及びアタリ口キシ基 に特徴的な 1720cm_ 1のピークが観察され、重合性不飽和基としてのアタリ口キシ基 と一 S (C = O) NH—、ウレタン結合を共に有するアタリ口キシ基修飾アルコキシシラ ンが生成していることを示した。以上により、この糸且成物には、下記式(25)及び下記 式(26)で示される化合物が合計で 773部含まれるほか、反応に関与しな力つたペン タエリスリトールテトラアタリレート 220部が混在している。
[0174] [化 21]
Figure imgf000056_0001
(式中、 Acrylは、アタリロイル基を示す。)
[0176] 製造例 3 :多官能アタリレート (B— 1)の調製
攪拌機付きの容器内のイソホロンジイソシァネート 18. 8部と、ジブチル錫ジラウレ ート 0. 2部とからなる溶液に対し、新中村化学製NKェステルA—TMM— 3LM— N (反応に関与するのは、水酸基を有するペンタエリスリトールトリアタリレートのみであ る。) 93部を、 10°C、 1時間の条件で滴下した後、 60°C、 6時間の条件で攪拌し、反 応液とした。
この反応液中の生成物について、製造例 2と同様にして残存イソシァネート量を FT —IRで測定したところ、 0. 1重量%以下であり、反応がほぼ定量的に行われたことを 確認した。また、分子内に、ウレタン結合、及びアタリロイル基 (重合性不飽和基)とを 含むことを確認した。 以上により、この組成物には、下記式(27)で示される化合物(B— 1) 75部が含ま れるほか、反応に関与しなかったペンタエリスリトールテトラアタリレート 37部が混在し ている。
[化 23]
Figure imgf000057_0001
(式中、 Acrylは、アタリロイル基を示す。)
[0178] 実施例 1 :液状硬化性組成物の調製
紫外線を遮蔽した容器中にぉ 、て、アルミニウム含有酸化亜鉛粒子 (A— 1)分散 液 289. 86部(アルミニウム含有酸化亜鉛 80部、分散剤 6. 96部を含む)、ジペンタ エリスリトールへキサアタリレート(日本ィ匕薬 (株)製 商品名 KAYARAD DPHA) 9. 04部、 1—ヒドロキシシクロへキシルフエ-ルケトン 2. 5部、 2—メチル 1— (4— ( メチルチオ)フエ-ル)ー2 モルフォリノプロパン 1 オン 1. 5部、及びプロピレン グリコールモノメチルエーテル 30. 43部、を 50°Cで 2時間攪拌することで均一な溶液 の液状硬化性組成物を得た。この組成物をアルミ皿に 2g秤量後、 170°Cのホットプ レート上で 1時間乾燥、秤量して固形分含量を求めたところ、 30重量%であった。ま た、この組成物を磁性るつぼに 2g秤量後、 80°Cのホットプレート上で 30分予備乾燥 し、 750°Cのマツフル炉中で 1時間焼成した後の無機残渣より、固形分中の無機含 量を求めたところ、 80重量%であった。
[0179] 実施例 2〜4及び比較例 1〜3:液状硬化性組成物の調製
下記表 1に示す成分を表 1に示す配合量で用いた以外は実施例 1と同様にして液 状硬化性組成物を得た。
[0180] 実施例 5:液状硬化性組成物の調製
紫外線を遮蔽した容器中にぉ 、て、反応性アルミニウム含有酸化亜鉛粒子 (A— 2 )分散液 253. 35部 (反応性アルミニウム含有酸化亜鉛 71. 39部、分散剤 6. 09部 を含む)、ジペンタエリスリトールへキサアタリレート(日本ィ匕薬 (株)製 商品名 KAY ARAD DPHA) 15. 04部、製造例 3の化合物(B— 1)を含む組成物 3. 15部、 1 ヒドロキシシクロへキシルフエ-ルケトン 2. 5部、 2—メチル 1— (4— (メチルチオ)フ ェニル) 2 モルフォリノプロパン一 1—オン 1. 5部、及びプロピレングリコールモノ メチルエーテル 57. 56部、を 50°Cで 2時間攪拌することで均一な溶液の液状硬化性 組成物を得た。この組成物をアルミ皿に 2g秤量後、 170°Cのホットプレート上で 1時 間乾燥、秤量して固形分含量を求めたところ、 30重量%であった。また、この組成物 を磁性るつぼに 2g秤量後、 80°Cのホットプレート上で 30分予備乾燥し、 750°Cのマ ッフル炉中で 1時間焼成した後の無機残渣より、固形分中の無機含量を求めたところ 、 80重量%であった。
[0181] 実施例 6及び 7:液状硬化性組成物の調製
下記表 2に示す成分を表 2に示す配合量で用いた以外は実施例 5と同様にして液 状硬化性組成物を得た。
[0182] 実施例 1〜7及び比較例 1〜3で得られた液状硬化性組成物を用い、下記の硬化 膜の作製方法によって得られた硬化膜の特性を下記のように評価した。
[0183] <硬化膜の作製 >
ワイヤーバーコータを用いて、表面易接着処理が施されたポリエステルフィルム A4 300 (東洋紡績 (株)製、膜厚 188 m)上に塗工し、オーブン中、 80°C、 3分間の条 件で乾燥し、塗膜を形成した。次いで、大気中、メタルノヽライドランプを用いて、 lj/c m2の光照射条件で塗膜を紫外線硬化させ、膜厚 3 μ mの硬化膜を形成した。
[0184] <硬化膜の評価 >
得られた硬化膜の全光線透過率、ヘーズ及び表面抵抗を以下の基準で評価した。 (1)全光線透過率及びヘーズ
硬化膜の全光線透過率及びヘーズを、カラーヘーズメーター (スガ試験機 (株)製) を用いて、 JIS K7105に準拠して測定した。得られた結果を表 1及び 2に示す。
[0185] (2)表面抵抗
硬化膜の表面抵抗( Ω Z口)を、ハイ'レジスタンス 'メーター(アジレント'テクノロジ 一(株)製 Agilent4339B)、及びレジステイビティ'セル 16008B (アジレント'テクノ ロジー (株)製)を用い、印加電圧 100Vの条件で測定した。得られた結果を表 1及び
2に示す。
[0186] (3)鉛筆硬度
硬化膜の鉛筆硬度を、 JIS K5600— 5— 4に従って試験を行い、 H以上を〇、そ れに満たないものを Xとした。得られた結果を表 1及び 2に示す。
[0187] [表 1]
表 1
Figure imgf000060_0001
Figure imgf000060_0002
表 2
Figure imgf000061_0001
[0189] 表 1及び表 2中の商品名、略号等は、下記のものを示す。
Disperbyk 2001 : BYK Chemie社製分散剤(変性アクリル系ブロック共重合体
)
Irgacure 184: 1 ヒドロキシシクロへキシルフェニルケトン
Irgacure907 : 2—メチル 1— (4— (メチルチオ)フエ-ル)—2 モルフォリノプロ パン 1一才ン
PGME:プロピレングリコールモノメチルエーテル
[0190] 表 1の結果から、重合性不飽和基含有化合物として、それぞれ 2個又は 1個のアタリ ロイル基を有する化合物を用いた比較例 1及び 2では、表面抵抗は低いが、全光線 透過率が低下している。
本発明の成分 (B)である式( 1)又は式 (2)で示される化合物以外の分散剤を用い た比較例 3では、表面抵抗は低いが、全光線透過率が低下し、ヘーズが高くなつて いる。
これに対し、比較例と同じ割合でアルミニウム含有酸ィ匕亜鉛粒子 (A— 1)を含有す る実施例 1、 3及び 4では、ヘーズが低ぐ全光線透過率が高ぐかつ表面抵抗も低 いことが分かる。
[0191] また、表 2の結果から、反応性アルミニウム含有酸ィ匕亜鉛粒子 (A— 2)を用いた場 合には、ヘーズがさらに低下することがわかる。
[0192] 製造例 4:反応性アルミニウム含有酸化亜鉛粒子 (A— 2)分散液の調製
製造例 1で調製したアルミニウム含有酸化亜鉛粒子分散液 (酸化亜鉛濃度 27. 6 %) 289. 86部、製造例 2で製造した重合性不飽和基を含む有機化合物 (Aa)を含 む組成物 2. 08部(特定有機化合物 (Aa)を 1. 62部含む)、イオン交換水 0. 08部、 及び P—ヒドロキシフエ-ルモノメチルエーテル 0. 01部の混合液を、 60°C、 4時間攪 拌後、オルト蟻酸メチルエステル 0. 95部を添加し、さらに 1時間同一温度で加熱攪 拌することで反応性アルミニウム含有酸ィ匕亜鉛粒子 (A— 2)分散液を得た。この分散 液をアルミ皿に 2g秤量後、 175°Cのホットプレート上で 1時間乾燥、秤量して固形分 含量を求めたところ、 30. 7%であった。また、分散液を磁性るつぼに 2g秤量後、 80 °Cのホットプレート上で 30分予備乾燥し、 750°Cのマツフル炉中で 1時間焼成した後 の無機残渣より、固形分中の無機含量を求めたところ、 90%であった。
[0193] 製造例 5:重合性不飽和基を有する有機化合物が結合した反応性シリカ粒子ゾルの 製造
シリカ粒子ゾル (メチルェチルケトンシリカゾル、 日産化学工業 (株)製 MEK— ST — L、数平均粒子径 0. 05 μ m、シリカ濃度 30%) 143g (シリカ粒子として 43g)、製 造例 2で製造した特定有機化合物 (Aa)を含む溶液 2. 8g、蒸留水 0. lg、p—ヒドロ キノンモノメチルエーテル 0. Olgを混合し、 65°Cで加熱攪拌した。 4時間後、オルト 蟻酸メチルエステル 1. 0g添加し、さらに 1時間加熱することで、固形分 31%の反応 性シリカ粒子ゾルを得た。
[0194] 製造例 6 :水酸基含有含フッ素重合体の製造
内容積 1. 5Lの電磁攪拌機付きステンレス製オートクレープを窒素ガスで十分置換 した後、酢酸ェチル 465g、パーフルォロ(プロピルビュルエーテル) 138. 5g、ェチ ルビ-ルエーテル 37. 5g、ヒドロキシェチルビ-ルエーテル 46. 0g、ノ-オン性反応 性乳化剤として「アデカリアソープ ER— 30」(旭電化工業株式会社製) 180. 0g、ァ ゾ基含有ポリジメチルシロキサンとして「VPS— 1001」(和光純薬工業株式会社製) 9 . Og及び過酸化ラウロイル 1. 5gをカ卩え、ドライアイス メタノールで 50°Cまで冷却 した後、再度窒素ガスで系内の酸素を除去した。
次いでへキサフルォロプロピレン 86. Ogを加え、昇温を開始した。オートクレーブ 内の温度が 60°Cに達した時点での圧力は 2. 9 X 105Paを示した。その後、 70°Cで 2 0時間攪拌下に反応を継続し、圧力が 2. O X 105Paに低下した時点でオートクレー ブを水冷し、反応を停止させた。室温に達した後、未反応モノマーを放出しオートク レーブを開放し、固形分濃度 30. 0%のポリマー溶液を得た。得られたポリマー溶液 をメタノールに投入しポリマーを析出させた後、メタノールにて洗浄し、 50°Cにて真空 乾燥を行!ヽ 220gの水酸基含有含フッ素重合体を得た。
[0195] 製造例 7:エチレン性不飽和基含有含フッ素重合体の製造
電磁攪拌機、ガラス製冷却管及び温度計を備えた容量 1リットルのセパラブルフラ スコに、製造例 6で得られた水酸基含有含フッ素重合体を 70. 0g、重合禁止剤とし て 2, 6 ジ— t—ブチルメチルフエノール 0. Olg及び MIBK520gを仕込み、 20°C で水酸基含有含フッ素重合体が MIBKに溶解して、溶液が透明、均一になるまで攪 拌を行った。次いで、この系に、 2—メタクリロイルォキシェチルイソシァネート 22gを 添加し、溶液が均一になるまで攪拌した後、ジブチノレチンジラウレート 0. 2gを添加し て反応を開始し、系の温度を 55〜65°Cに保持し 5時間攪拌を継続することにより、ェ チレン性不飽和基含有含フッ素重合体の MIBK溶液を得た。この溶液をアルミ皿に 2g秤量後、 150°Cのホットプレート上で 5分間乾燥、秤量して固形分含量を求めたと ころ、 15. 0%であった。
[0196] 製造例 8 :低屈折率層形成用組成物 1の調製
製造例 5で得られた反応性シリカ粒子ゾル 20g (反応性粒子として 6. 2g)、製造例 7で得られたエチレン性不飽和基含有含フッ素重合体 101. Og (エチレン性不飽和 基含有フッ素重合体として 15. 2g)、ジペンタエリスリトールペンタアタリレート 1. 7g、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン( C 2) 1. 2g、製造例 3で得られた式 (27)で示される化合物 0. 4g、有機共重合物 含有特殊シリコン (フローレン AC— 901、共栄社化学株式会社) 0. lg、メチルイソブ チルケトン 505. 6gを加え、室温にて 1時間攪拌し、低屈折率層形成用組成物 1を得 た。製造例 1と同様に固形分含量を求めたところ、 4重量%であった。
[0197] 製造例 9 :多孔質シリカ粒子の合成
石英製セパラブルフラスコ中に、テトラエトキシシラン 22. 24g、メタノール 841. 97 g、プロピレングリコール 30. OOgを加え、均一に混合した後、アンモニアの 1%水溶 液 101. OOgを添加した。その後、溶液を攪拌しながら 40°Cで 8時間反応させ、さら にビュルトリメトキシシラン 0. 92g、メタクリロキシプロピルトリメトキシシラン (東レ.ダウ コーユング.シリコーン (株)製 SZ— 6030) 1. 54gを添カ卩し 40°Cで 1時間反応させた 。次いで、 2—パーフルォ口へキシルェチルトリメトキシシラン(GE東芝シリコーン (株 )製 TSL8257) 2. 33gを添加し 40°Cで 1時間反応させた。反応液を室温まで冷却 後、メチノレイソブチノレケ卜ン 1000. 00gとシユウ酸の 0. 1%水溶液 1000. 00gとをカロ え、攪拌、静置した。 2層に分離した上層を取り分け、ロータリーエバポレーターで固 形分濃度 5%となるまで濃縮し、多孔質シリカ粒子溶液を得た。
上記で得られた多孔質シリカ粒子溶液の lgにエタノール 10gを加えて混合後、透 過型電子顕微鏡用カーボングリッド上に 1滴を滴下し、次 、で室温で 24時間乾燥し 、 日本電子社製フィールドェミッション電子顕微衝 EM— 2010Fを用いて観察を行 い、多孔質シリカ粒子の粒径を測定したところ、平均粒径 20nmであった。
多孔質シリカ粒子溶液の 10gをアルミ皿に取り、 150°Cのホットプレート上で 1時間 乾燥し、多孔質シリカ粒子 1の粉末サンプルを得た。得られた多孔質シリカ粒子粉末 の BET比表面積を Quantachrome Instruments社製 AUTOSORB— 1を用い て測定したところ、比表面積は 200m2Zgであった。
[0198] 製造例 10 :低屈折率層形成用組成物 2の調製
製造例 7で得たエチレン性不飽和基含有含フッ素重合体の MIBK溶液を 56g (ェ チレン性不飽和基含有含フッ素重合体として 8. 5g)、製造例 9で得られた多孔質シ リカ粒子分散液を 1750g (多孔質シリカ粒子として 87. 5g)、光重合開始剤として 2— メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン 4g、 MIBK700gを、攪拌機をつけたガラス製セパラブルフラスコに仕込み、 23°Cにて 1 時間攪拌し低屈折率層形成用組成物 2を得た。製造例 1と同様に固形分含量を求め たところ、 4重量%であった。 [0199] 実施例 8
反射防止積層体 1の製造
実施例 1で得られた液状硬化性組成物を、ワイヤーバーコータ # 20を用いて、表 面易接着処理が施されたポリエステルフィルム A4300 (東洋紡績 (株)製、膜厚 188 μ m)上に塗工し、オーブン中、 80°C、 3分間の条件で乾燥した。次いで、大気中、メ タルノヽライドランプを用いて、 UZcm2の光照射条件で塗膜を紫外線硬化させ、帯電 防止ハードコート層を有するフィルムを作製した。帯電防止ハードコート層の膜厚を 触針式表面形状測定器により測定したところ、 3 mであった。この帯電防止ハード コート付フィルム上に、製造例 8で得られた低屈折率層形成用組成物 1を、ワイヤー バーコータ # 3を用いて塗工し、オーブン中、 80°C、 1分間の条件で乾燥した。次い で、窒素雰囲気下で、メタルノヽライドランプを用いて、 UZcm2の光照射条件で塗膜 を紫外線硬化させ、低屈折率層を形成させて反射防止積層体 1を作製した。得られ た反射防止積層体 1の反射率力 低屈折率層の膜厚を算出したところ、 0.: mで めつに。
[0200] 実施例 9
反射防止積層体 2の製造
低屈折率層形成用組成物 1の代わりに製造例 10で得られた低屈折率層形成用組 成物 2を用いたこと以外は実施例 8と同様にして反射防止積層体 2を作製した。実施 例 8と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0201] 実施例 10
反射防止積層体 3の製造
実施例 1で得られた液状硬化性組成物の代わりに実施例 7で得られた液状硬化性 組成物を用いたこと以外は実施例 8と同様にして反射防止積層体 3を作製した。実施 例 8と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0202] 実施例 11
反射防止積層体 4の製造
低屈折率層形成用組成物 1の代わりに製造例 10で得られた低屈折率層形成用組 成物 2を用いたこと以外は実施例 10と同様にして反射防止積層体 4を作製した [0203] 比較例 4
反射防止積層体 5の製造
実施例 1で得られた液状榭脂組成物の代わりに比較例 3で得られた液状硬化性組 成物を用いたこと以外は実施例 8と同様にして反射防止積層体 5を作製した。実施例 8と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0204] 比較例 5
反射防止積層体 6の製造
低屈折率層形成用組成物 1の代わりに製造例 10で得られた低屈折率層形成用組 成物 2を用いたこと以外は比較例 4と同様にして反射防止積層体 6を作製した。実施 例 8と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0205] 評価例
実施例 8〜: L 1、比較例 4〜5で得られた反射防止積層体 1〜6について以下の特 性を評価した。
[0206] (a)全光線透過率及びヘーズ
硬化膜フィルムの全光線透過率(%)及びヘーズ(%)を、カラーヘーズメーター (ス ガ試験機 (株)製)を用いて、 JIS K7105に準拠して測定した。得られた結果を表 3 に示す。
[0207] (c)表面抵抗
硬化膜フィルムの表面抵抗( Ω /口)を、ハイ'レジスタンス 'メーター(アジレント'テ クノロジー(株)製 Agilent4339B)、及びレジステイビティ'セル 16008B (アジレン ト 'テクノロジー (株)製)を用い、印加電圧 100Vの条件で測定した。得られた結果を 表 3に示す。
[0208] (d)反射率
得られた反射防止積層体の反射率を、分光反射率測定装置 (大型試料室積分球 付属装置 150— 09090を組み込んだ自記分光光度計 U— 3410、 日立製作所 (株) 製)により、波長 340〜700nmの範囲で反射率を測定して評価した。具体的には、 アルミの蒸着膜における反射率を基準(100%)として、各波長における反射防止積 層体 (反射防止膜)の反射率を測定した。波長 550nmにおける反射率を表 3に示す [0209] (e)耐擦傷性テスト 1 (スチールウール耐性)
反射防止積層体のスチールウール耐性テストを次に示す方法で実施した。即ち、ス チールウール(ボンスター No. 0000、日本スチールウール (株)社製)を学振型摩擦 堅牢度試験機 (AB— 301、テスター産業 (株)製)に取りつけ、硬化膜の表面を荷重 500gの条件で 10回繰り返し擦過し、当該硬化膜の表面における傷の発生の有無を 目視で、以下の基準で確認した。得られた結果を表 3に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。
△:硬化膜に細 、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した。
得られた結果を表 2に示す。
[0210] (f)耐擦傷性テスト 2 (布擦り耐性)
反射防止積層体の布擦り耐性テストを次に示す方法で実施した。即ち、不織布 (B EMCOT S— 2、旭化成工業社製)を学振型摩擦堅牢度試験機 (AB— 301、テス ター産業 (株)製)に取りつけ、硬化膜の表面を荷重 lOOOgの条件で 20回繰り返し擦 過し、当該硬化膜の表面における傷の発生の有無を目視で、以下の基準で確認し た。得られた結果を表 3に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。
△:硬化膜に細 、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した。
得られた結果を表 3に示す。
[0211] (g)耐薬品性テスト (エタノール耐性テスト)
硬化膜のエタノール耐性テストを次に示す方法で実施した。即ち、エタノールを染 み込ませた不織布 (BEMCOT S— 2、旭化成工業社製)を学振型摩擦堅牢度試 験機 (AB— 301、テスター産業 (株)製)に取りつけ、硬化膜の表面を荷重 500gの条 件で 20回繰り返し擦過し、当該硬化膜の表面における傷の発生の有無を目視で、 以下の基準で確認した。得られた結果を表 3に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。 Δ:硬化膜に細!、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した
[表 3]
Figure imgf000068_0001
表 3の結果から、本発明で用いる特定の分散剤を用いて 、な 、液状硬化性組成物 を用いた比較例 4及び 5の反射防止積層体では、実用レベルの表面抵抗値を得よう とすると、全光線透過率が低ぐヘーズが高くなつてしまうのに対し、特定の分散剤を 用いた液状硬化性組成物を用いた実施例 8〜11の反射防止積層体では、全光線透 過率が高ぐヘーズが低ぐ表面抵抗も小さいことがわかる。
産業上の利用可能性
[0214] 本発明の液状硬化性組成物は、例えば、プラスチック光学部品、タツチパネル、フ イルム型液晶素子、プラスチック容器、建築内装材としての床材、壁材、人工大理石 等の傷付き (擦傷)防止や汚染防止のための保護コーティング材;フィルム型液晶素 子、タツチパネル、プラスチック光学部品等の反射防止膜;各種基材の接着剤、シー リング材;印刷インクのバインダー材等に用いられ、特に帯電防止膜を形成する硬化 性組成物として好適に用いることができる。
[0215] 本発明によれば、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、 耐擦傷性、及び透明性に優れた硬化膜を有する帯電防止用積層体を提供すること ができる。
本発明の積層体は、例えば、タツチパネル用保護膜、転写箔、光ディスク用ハード コート、自動車用ウィンドフィルム、レンズ用の帯電防止保護膜、化粧品容器等の高 意匠性の容器の表面保護膜等主として製品表面傷防止や静電気による塵埃の付着 を防止する目的でなされるハードコートとして、また、 CRT、液晶表示パネル、プラズ マ表示パネル、エレクト口ルミネッセンス表示パネル等の各種表示パネル用の帯電防 止機能付き反射防止膜として、プラスチックレンズ、偏光フィルム、太陽電池パネル 等の帯電防止機能付き反射防止膜として利用することができる。
本発明の積層体は、例えば、プラスチック光学部品、タツチパネル、フィルム型液晶 素子、プラスチック筐体、プラスチック容器、建築内装材としての床材、壁材、人工大 理石等の傷付き (擦傷)防止や汚染防止のためのハードコーティング材;各種基材の 接着剤、シ一リング材;印刷インクのバインダー材等として好適に用いることができる。

Claims

請求の範囲
基材op o=- と、
H
下記成分 (A)及び (D)を含有する層と、
を有する積層体。
(A)アルミニウム含有酸化亜鉛粒子、
(D)下記式(1)又は(2)で表される化合物
[化 24]
(式中、 Rは、 C H -CH 0- (CH CH O) — CH CH O—を示す。 pは 8〜1
q 2q+l 2 2 2 p 2 2
0、 qは 12〜16、 xは 1〜3であり、 xが 2以上の場合、複数存在する R1は互いに同一 でも異なっていてもよい。 )
[化 25]
Figure imgf000070_0001
0=CCioH2oCHC6H^3
OH ( 2 )
(式中、 mと nは、式(2)の化合物のゲルパーミエーシヨンクロマトグラフィーにより求め たポリスチレン換算数平均分子量が 10, 000-40, 000となるように選択される数で ある。)
[2] 前記層が、(A)アルミニウム含有酸化亜鉛粒子を 60〜85重量%含有する請求項 1 に記載の積層体。
[3] さらに、基材上に、下記成分 (F)及び (G):
(F) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化 合物と、
水酸基含有含フッ素重合体と、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体、
(G)シリカを主成分とする粒子、
を含む硬化性榭脂組成物の硬化物力 なり、波長 589nmにおける屈折率が 1. 30 〜1. 45の層を有する請求項 1又は 2に記載の積層体。
前記水酸基含有含フッ素重合体が、下記構造単位 (a)〜 (c)の合計を 100モル% としたとき、 (&) 20〜70モル%、 (1)) 10〜70モル%及び(。)5〜70モル%を含む請 求項 3に記載の積層体。
(a)下記式(11)で表される構造単位
(b)下記式( 12)で表される構造単位
(c)下記式(13)で表される構造単位
[化 26]
R 11
-C—— C- (11 )
[式中、 R はフッ素原子、フルォロアルキル基又は— OR1で表される基 (R1はァ ルキル基又はフルォロアルキル基を示す)を示す]
[化 27]
H R13
-C—— C- ― (12)
H R14
[式中、 R13は水素原子又はメチル基を、 R14はアルキル基、 -(CH )—OR15若しく
2 c
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[化 28] H R16
C—— C (13)
H (CH2)vOR17
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
[5] 前記成分 (G)が、
下記式(22)で表されるケィ素化合物及び下記式(23)で表されるケィ素化合物の 合計を 100モル%としたとき、式(22)で表されるケィ素化合物 67〜99モル%及び式 (23)で表されるケィ素化合物 33〜1モル%の加水分解物及び Z又は加水分解縮 合物からなり、平均粒径が 5〜50nmである多孔質シリカ粒子(G1)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。尚、式(22)の X及 び式(23)の Xは、同一であっても異なっていてもよい。 )
である請求項 3又は 4に記載の積層体。
[6] 前記成分 (G)が、
下記式(22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び 下記式(24)で表されるケィ素化合物の合計を 100モル%としたとき、式(22)で表さ れるケィ素化合物 60〜98モル%、式(23)で表されるケィ素化合物 1〜30モル%、 及び式(24)で表されるケィ素化合物 1〜20モル%の加水分解物及び Z又は加水 分解縮合物からなり、平均粒径が 5〜50nmである多孔質シリカ粒子 (G2)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
R30 SiX · · · (24)
k 4-k (Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。 R3は炭素数 1〜1 2のフッ素置換アルキル基、 kは 1〜3の整数を示す。尚、式(22)の X、式(23)の X 及び式(24)の Xは、同一であっても異なっていてもよい。 )
である請求項 3又は 4に記載の積層体。
[7] さらに、基材上に、ハードコート層が形成されている請求項 1〜6のいずれ力 1項に 記載の積層体。
[8] 表面抵抗値が 1 X 1013ΩΖ口以下である請求項 1〜7のいずれか 1項に記載の積 層体。
[9] (Α)アルミニウム含有酸化亜鉛粒子、
(Β)分子内に 3以上の重合性不飽和基を有する化合物、
(C)光重合開始剤、
(D)下記式(1)又は(2)
[化 29]
0
II .
-R1x
(OH)3-x ( i )
(式中、 R1は、 C H -CH 0- (CH CH Ο) — CH CH Ο—を示す。 ρは 8〜1
q 2q+l 2 2 2 p 2 2
0、 qは 12〜16、 xは 1〜3であり、 xが 2以上の場合、複数存在する R1は互いに同一 でも異なっていてもよい。 )
[化 30]
Figure imgf000074_0001
0=CC1(
OH ( 2 )
(式中、 mと nは、式(2)の化合物のゲルパーミエーシヨンクロマトグラフィーにより求め たポリスチレン換算数平均分子量が 10, 000-40, 000となるように選択される数で ある。)で表される化合物、及び
(E)溶剤
を含有することを特徴とする液状硬化性組成物。
[10] 前記 (A)アルミニウム含有酸ィ匕亜鉛粒子を 60〜85%含有することを特徴とする請 求項 9に記載の液状硬化性組成物。
[11] 前記 (A)アルミニウム含有酸ィ匕亜鉛粒子が、表面処理剤により表面処理されている ことを特徴とする請求項 9又は 10に記載の液状硬化性組成物。
[12] 前記表面処理剤が、 2以上の重合性不飽和基、下記式 (3)に示す基、及びシラノ ール基又は加水分解によってシラノール基を生成する基を有する化合物であること を特徴とする請求項 11に記載の液状硬化性組成物。
X— C (=Y)— NH— (3)
[式中、 Xは、 NH、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示す。
]
[13] 請求項 9〜12の ヽずれか一項に記載の液状硬化性組成物を硬化してなることを特 徴とする硬化膜。
[14] 表面抵抗値が 1 X 1013ΩΖ口以下であることを特徴とする請求項 13に記載の硬化 膜。
[15] 請求項 9〜 12の ヽずれか一項に記載の液状硬化性組成物に放射線を照射して、 該組成物を硬化せしめる工程を有することを特徴とする硬化膜の製造方法。
[16] 基材上に、請求項 9〜12 ヽずれか 1項に記載の液状硬化性組成物を塗布し、放射 線を照射することによって、該組成物を硬化して得られる硬化膜層を形成する工程を 含む積層体の製造方法。
PCT/JP2006/312540 2005-06-29 2006-06-22 液状硬化性組成物、硬化膜及び帯電防止用積層体 WO2007000936A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005190710A JP4618018B2 (ja) 2005-06-29 2005-06-29 帯電防止用積層体
JP2005190709A JP4961687B2 (ja) 2005-06-29 2005-06-29 液状硬化性組成物及びその硬化膜
JP2005-190709 2005-06-29
JP2005-190710 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007000936A1 true WO2007000936A1 (ja) 2007-01-04

Family

ID=37595189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312540 WO2007000936A1 (ja) 2005-06-29 2006-06-22 液状硬化性組成物、硬化膜及び帯電防止用積層体

Country Status (2)

Country Link
TW (1) TW200711838A (ja)
WO (1) WO2007000936A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143924A (ja) * 1998-11-06 2000-05-26 Jsr Corp 液状硬化性樹脂組成物、その硬化物および反射防止膜
JP2002036457A (ja) * 2000-05-19 2002-02-05 Toray Ind Inc 積層フィルムおよびその製造方法
JP2002283509A (ja) * 2001-03-28 2002-10-03 Toray Ind Inc 積層フィルム及びその製造方法
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
JP2005089536A (ja) * 2003-09-12 2005-04-07 Jsr Corp 硬化性樹脂組成物及び反射防止膜
JP2005314648A (ja) * 2004-03-31 2005-11-10 Jsr Corp 酸化亜鉛粒子分散液及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143924A (ja) * 1998-11-06 2000-05-26 Jsr Corp 液状硬化性樹脂組成物、その硬化物および反射防止膜
JP2002036457A (ja) * 2000-05-19 2002-02-05 Toray Ind Inc 積層フィルムおよびその製造方法
JP2002283509A (ja) * 2001-03-28 2002-10-03 Toray Ind Inc 積層フィルム及びその製造方法
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
JP2005089536A (ja) * 2003-09-12 2005-04-07 Jsr Corp 硬化性樹脂組成物及び反射防止膜
JP2005314648A (ja) * 2004-03-31 2005-11-10 Jsr Corp 酸化亜鉛粒子分散液及びその製造方法

Also Published As

Publication number Publication date
TW200711838A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP5092744B2 (ja) 反射防止積層体
KR100917528B1 (ko) 경화성 액체 조성물, 경화 필름 및 대전방지성 라미네이트
WO2006109496A1 (ja) 放射線硬化性樹脂組成物及び反射防止膜
KR101268700B1 (ko) 액상 경화성 조성물, 경화막 및 대전 방지용 적층체
WO2006112234A1 (ja) 樹脂組成物、硬化膜及び積層体
JP4742825B2 (ja) 積層体の製造方法
JP2006306008A (ja) 帯電防止用積層体
JP4899545B2 (ja) 硬化性樹脂組成物及びそれからなる硬化膜
JP4144477B2 (ja) 液状硬化性組成物、硬化膜及び帯電防止用積層体
JP4872142B2 (ja) 帯電防止用硬化性組成物、硬化膜及び帯電防止性反射防止積層体
JP4321319B2 (ja) 液状硬化性組成物、硬化膜及び帯電防止用積層体
JP2006206832A (ja) 積層体の製造方法
JP2006257379A (ja) 硬化性樹脂組成物、それからなる硬化膜及び積層体
KR101220567B1 (ko) 경화성 수지 조성물 및 이를 포함하는 경화막 및 적층체
KR101213367B1 (ko) 경화성 수지 조성물, 이를 포함하는 경화막 및 적층체
JP2007022071A (ja) 帯電防止用積層体
JP2008137190A (ja) 反射防止積層体
WO2007004447A1 (ja) 帯電防止用硬化性組成物、その硬化膜及び帯電防止用積層体
JP2006348069A (ja) 液状硬化性組成物及びその硬化膜
WO2006134834A1 (ja) 液状硬化性組成物、硬化膜及び帯電防止用積層体
JP4618018B2 (ja) 帯電防止用積層体
WO2007000936A1 (ja) 液状硬化性組成物、硬化膜及び帯電防止用積層体
JP5151113B2 (ja) 硬化性組成物、硬化膜及び帯電防止用積層体
JP2007007984A (ja) 帯電防止用積層体
JP4961687B2 (ja) 液状硬化性組成物及びその硬化膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780627

Country of ref document: EP

Kind code of ref document: A1