WO2007000920A1 - Polyfunctional (meth)acrylic ester composition and process for producing the same - Google Patents

Polyfunctional (meth)acrylic ester composition and process for producing the same Download PDF

Info

Publication number
WO2007000920A1
WO2007000920A1 PCT/JP2006/312377 JP2006312377W WO2007000920A1 WO 2007000920 A1 WO2007000920 A1 WO 2007000920A1 JP 2006312377 W JP2006312377 W JP 2006312377W WO 2007000920 A1 WO2007000920 A1 WO 2007000920A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polyfunctional
acrylic acid
acid ester
ester composition
Prior art date
Application number
PCT/JP2006/312377
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Wakayama
Shinji Kojima
Masayoshi Yoshikawa
Kouji Kimura
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2007523405A priority Critical patent/JP4998263B2/en
Publication of WO2007000920A1 publication Critical patent/WO2007000920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/60Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification

Definitions

  • Multifunctional (meth) acrylic acid ester composition and method for producing the same
  • the present invention relates to a (meth) acrylic acid ester composition having two or more (meth) acryloyl groups, for example, used in the field of paints, adhesives, and printing inks, and a method for producing the same.
  • an acrylic acid ester or a methacrylic acid ester is referred to as a (meth) acrylic acid ester
  • an allyloyloxy group or a methacryloyloxy group is referred to as a (meth) atarylloyoxy group.
  • a (meth) acrylic acid ester having two or more (meth) atalyloyl groups is a reactive diluent for ultraviolet curable resin or electron beam curable resin. Widely used.
  • the polyfunctional (meth) acrylic acid ester obtained by (meth) atarily brewing trimethylolpropane, pentaerythritol, dipentaerythritol and their derivatives has features such as fast curability and high hardness. And its usage is increasing.
  • polyfunctional (meth) acrylic acid esters are produced by an esterification reaction of polyhydric alcohol and (meth) acrylic acid in the presence of an acid catalyst such as sulfuric acid, methanesulfonic acid, para-toluenesulfonic acid and the like. Is done.
  • an acid catalyst such as sulfuric acid, methanesulfonic acid, para-toluenesulfonic acid and the like.
  • catalyst, unreacted substances, and side reactants remain, so that purification is performed by subjecting the reaction solution to various post-treatments.
  • neutralization treatment is performed for the purpose of removing unreacted (meth) acrylic acid and acid catalyst in the reaction solution.
  • 1 to 25% concentration of sodium hydroxide (caustic soda) is used.
  • Aqueous solutions and aqueous sodium carbonate (sodium carbonate) solutions are used. Further, the reaction solution is purified using water.
  • a hydroxyl group-containing (meth) acrylate ligomer is produced by addition polymerization of a hydroxyl group-containing (meth) acrylate in the presence of a catalyst.
  • a method is disclosed in which the reaction solution is brought into contact with an adsorbent such as magnesium silicate, or the reaction solution is purified using an alkaline aqueous solution (see, for example, Patent Document 1).
  • a method for producing a polyfunctional (meth) acrylic acid ester as described below is disclosed (for example, see Patent Document 2). That is, in the presence of an acid catalyst, a polyhydric alcohol and (meth) acrylic acid undergo an esterification reaction in an organic solvent to obtain a reaction product. Next, the reaction product is subjected to a neutralization treatment and further subjected to a purification treatment using amines.
  • the esterification reaction is usually performed with monofunctional (meth) acrylic acid esters. It takes longer time than production or at higher reaction temperature. When the esterification reaction is carried out under such conditions, a side reaction peculiar to (meth) acrylic acid ester occurs and a side reaction product is generated.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-134350
  • Patent Document 2 JP-A-6-219991
  • the present invention has been made in view of the above-described problems, and is a polyfunctional (meth) attalic acid capable of suppressing the adverse effects caused by emulsification that cause insufficient separation of the organic layer and the aqueous layer in the post-treatment step. It aims at providing an ester composition and its manufacturing method.
  • a polyfunctional (meth) acrylic acid ester composition is provided.
  • the polyfunctional (meth) acrylic acid ester composition is composed of a compound having two or more (meth) ataryloxy groups as the main component (A), and the above component (B) as a subcomponent.
  • the compound (A) may contain a compound in which one shift force of the (meth) ataryloxy group in the component is substituted with a group represented by the following chemical formula (1).
  • the content of component (B) in the polyfunctional (meth) acrylic ester composition is lOOOppm or less.
  • R 1 represents a hydrogen atom or a methyl group.
  • any one of the (meth) ataryloxy groups in component (A) is substituted with the group represented by chemical formula (1), and component (B) corresponds to a compound exhibiting emulsifying properties.
  • component (B) since its content is lOOOppm or less, it reduces emulsifying compounds and suppresses adverse effects caused by emulsification that causes insufficient separation of the organic layer and aqueous layer in the post-treatment process. It can be done.
  • the component (A) is preferably a compound having three or more (meth) ataryloxy groups. Furthermore, the component (A) is more preferably dipentaerythritol penta (meth) acrylic acid ester or dipentaerythritol hexa (meth) acrylic acid ester, and the component (B) is preferably represented by the following chemical formula (2). It is a compound represented. According to this configuration, dipenta The above-mentioned effects can be exerted on polyfunctional (meth) acrylates of erythritol penta (meth) acrylate or dipentaerythritol hexa (meth) acrylate.
  • R 1 represents a hydrogen atom or a methyl group
  • a to A 5 represent a (meth) atalyloyl group or a hydrogen atom.
  • a method for producing the above-described polyfunctional (meth) acrylate composition comprises a step of producing a polyfunctional (meth) acrylate composition by reacting a polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst.
  • a polyfunctional (meth) acrylic acid ester composition In the polyfunctional (meth) acrylic acid ester composition (
  • the multifunctional (meth) acrylate composition having the above-described effects can be easily obtained by purifying the polyfunctional (meth) acrylate composition using the component (B) as an index. Can be manufactured.
  • the step of purifying the polyfunctional (meth) acrylic acid ester composition preferably includes a step of neutralizing the reaction solution after the esterification reaction and a step of saponifying the treatment solution after the neutralization treatment.
  • the step of purifying the polyfunctional (meth) acrylic acid ester composition is preferably a step of washing the reaction solution after the esterification reaction, a step of neutralizing the treatment solution after the washing treatment, and a neutralization step. Including a step of saponifying the treated liquid after the treatment. According to these structures, the polyfunctional (meth) acrylic acid ester composition having it can be more easily produced.
  • the step of purifying the polyfunctional (meth) acrylic acid ester composition an alkaline aqueous solution is used.
  • the polyfunctional (meth) acrylic acid ester composition is saponified. According to this configuration, the polyfunctional (meth) acrylic acid ester composition can be purified efficiently.
  • FIG. 1 is a chart showing an NMR spectrum of the residue of Synthesis Example 1.
  • FIG. 2 is a chart showing an IR spectrum for the residue of Synthesis Example 1.
  • FIG. 3 is a chart showing a MALDI-TOFMS spectrum of the residue of Synthesis Example 1.
  • FIG. 4 is a chart showing a MALDI-TOFMS spectrum for the residue (methyl esterified) in Synthesis Example 1.
  • the polyfunctional (meth) acrylic acid ester composition of the present embodiment is composed of a compound having two or more (meth) ataryloxy groups as the main component (A), and a subcomponent.
  • a certain (B) component at least one of the (meth) ataryloxy groups in the component (A) contains a compound substituted with a group represented by the following chemical formula (1).
  • the content of component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOOppm or less.
  • the content of component (B) is measured by high performance liquid chromatography (hereinafter referred to as HPLC). Specifically, the content of component (B) is measured under the following conditions.
  • acidic aqueous solution Z methanol system pH of acidic aqueous solution is preferably 2 to 3.
  • acidic aqueous solution aqueous phosphoric acid solution is preferred.
  • R 1 represents a hydrogen atom or a methyl group.
  • the (A) component A is preferably a compound having 3 or more (meth) ataryloxy groups
  • component (A) and OI include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) ) Acrylic acid ester, dipentaerythritol penta (meth) acrylic acid ester, and dipentaerythritol hexa (meth) acrylic acid ester.
  • the component (A) is trimethylolpropane tri (me o C cl
  • the compound represented by the following chemical formula (3) can be used as the component (B).
  • component (A) is ditrimethylolpropane tri or tetra (meth) acrylic acid ester
  • component (B) examples include compounds represented by the following chemical formula (4).
  • the component (B) includes a compound represented by the following chemical formula (5).
  • examples of the component (B) include compounds represented by the following chemical formula (2).
  • R 1 represents a hydrogen atom or a methyl group
  • Ai to A 5 each represents a (meth) ataryloyl group or a hydrogen atom.
  • the (meth) acrylic acid ester composition is produced through an esterification reaction step and a subsequent purification step.
  • a polyfunctional (meth) acrylic acid ester composition is produced by an esterification reaction between polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst.
  • the in the purification step the polyfunctional (meth) acrylic acid ester composition is purified so that the proportion of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less.
  • the esterification reaction in this esterification reaction step is carried out according to a conventional method for producing a polyfunctional (meth) acrylic acid ester. That is, the esterification reaction is performed by dehydration condensation of a polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst.
  • Examples of the polyhydric alcohol include dihydric alcohols, branched or linear long-chain alkyl diols, polyalkylene glycols, bisphenols, and bisphenol-containing alkylene oxides, polyols, and polyols. Carotenes with alkylene oxide and tris-2-hydroxyethylisocyanurate are mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and neopentyl glycol.
  • Examples of the branched or linear long-chain alkyl diol include hydrogenated polybutadiene diol.
  • polyalkylene glycol examples include diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, and polypropylene glycol.
  • bisphenol examples include bisphenol A and bisphenol F.
  • polyol examples include glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol.
  • alkylene oxide include ethylene oxide and propylene oxide.
  • the (meth) atallyloyl group has a high density and a polyfunctional (meth) acrylic acid ester is obtained, the alcohol having 3 to 6 hydroxyl groups or an alkylene oxide thereof is attached. Addenda are preferred.
  • the (meth) acrylic acid is acrylic acid or methacrylic acid, and these are selected depending on whether the target ester is a polyfunctional acrylic ester or a polyfunctional methacrylate.
  • the amount of (meth) acrylic acid used is adjusted with respect to 1 mol of all hydroxyl groups of the polyhydric alcohol so that the resulting polyfunctional (meth) acrylic acid ester has the desired hydroxyl value.
  • Examples of the acidic catalyst include sulfuric acid, p-toluenesulfonic acid, and methanesulfonic acid. Can be mentioned.
  • the reaction temperature can be appropriately set according to the raw materials used and the purpose, but the viewpoint and power for shortening the reaction time and preventing polymerization are preferably 65 to 140 ° C, more preferably 75 to 120 ° C. If the reaction temperature is less than 65 ° C, the esterich reaction may be slowed or the yield may be lowered. If the reaction temperature exceeds 140 ° C, thermal polymerization of (meth) attalic acid or the resulting polyfunctional (meth) acrylate may occur.
  • organic solvent that forms an azeotrope with water produced by this reaction is used, and an organic solvent that promotes dehydration by azeotropically distilling water is preferably used.
  • Preferred organic solvents include, for example, aromatic hydrocarbons, aliphatic hydrocarbons, and ketones.
  • aromatic hydrocarbons include toluene, benzene, and xylene.
  • aliphatic hydrocarbon include hexane and heptane.
  • ketone include methyl ethyl ketone and cyclohexanone.
  • the amount of the organic solvent used is preferably 0.1 to 10 times (mass ratio), more preferably 2 to 5 times the total amount of the polyhydric alcohol and (meth) acrylic acid.
  • This organic solvent may be distilled off by a decompression operation after the reaction or after the post-treatment, but when an organic solvent that does not have a problem of odor is used, it is necessary to adjust the viscosity of the composition. It may remain in the composition without being distilled off.
  • the esterification reaction is preferably carried out under normal pressure (0. IMPa) or reduced pressure. Further, for the purpose of preventing thermal polymerization of (meth) acrylic acid or the produced polyfunctional (meth) acrylic ester, it is preferable that the esterification reaction is carried out in the presence of oxygen.
  • a polymerization inhibitor is preferably added to the reaction solution.
  • Such polymerization inhibitors include, for example, hydroquinone, hydroquinone monomethyl ether, 2,4 dimethyl 6-t-butylphenol, 3-hydroxythiophenol, ex-troso / 3 naphthol, p-benzozoquinone, and copper salts. It is done.
  • the addition amount of the polymerization inhibitor is preferably 0.001 to 5.0% by mass with respect to the raw material (meth) acrylic acid, and more preferably 0.01 to L 0% by mass.
  • the addition amount of the polymerization inhibitor is less than 0.001% by mass, the polymerization inhibition effect tends to be insufficient. Even if the addition amount of the polymerization inhibitor exceeds 5.0% by mass, the polymerization inhibition effect does not improve any more, so excessive polymerization inhibitor tends to be wasted.
  • As a method for confirming the degree of progress of the esterification reaction for example, there is a method of monitoring the remaining amount of (meth) acrylic acid and polyhydric alcohol. The amount of water produced by the esterification reaction, that is, the amount of dehydration is monitored. The method is preferred.
  • This purification process includes a neutralization treatment process, a saponification treatment process, a water washing treatment process, and a solvent removal treatment process.
  • the neutralization treatment step is performed for the purpose of removing, for example, unreacted (meth) acrylic acid and the acid content of the acid catalyst in the reaction solution after the esterification reaction in the esterification reaction step.
  • the neutralization treatment step is performed according to a conventional method.
  • the conventional method include a method in which an alkaline aqueous solution as an alkali component is added to the reaction solution and then stirred and mixed.
  • the alkaline aqueous solution include a sodium hydroxide aqueous solution.
  • the amount of the alkali component is usually 1 or more times in molar ratio with respect to the acid content of the reaction solution, and preferably 1.1 to 1.6 times. If this added amount is less than 1 time in molar ratio to the acid content of the reaction solution, neutralization of the acid content may be insufficient.
  • the concentration of the aqueous alkaline solution is preferably 1 to 25% by mass, more preferably 10 to 25% by mass.
  • the concentration of the alkaline aqueous solution is less than 1% by mass, the amount of wastewater after neutralization may increase.
  • the concentration of the alkaline aqueous solution exceeds 25% by mass, the polyfunctional (meth) acrylic acid ester may be polymerized.
  • the stirring and mixing time is preferably 5 to 60 minutes.
  • the acid catalyst and unreacted (meth) acrylic acid are removed, but the emulsifying compound such as component (B) is not sufficiently removed.
  • Examples of the method for removing the emulsifying dig compound such as the component (B) include a method using an adsorbent such as calcium ichthy and an ion exchange resin such as a styrene-dibutylbenzene copolymer. .
  • the treatment solution is further stirred by adding an aqueous alkaline solution to the treatment solution after the neutralization treatment. A method of saponifying the liquid is preferred.
  • the neutralization treatment step and the saponification treatment step may be performed together! Or may be performed separately.
  • the alkali component is added to the reaction product in excess of the amount necessary for neutralization. Specifically, it is preferable to use an alkali component at least 1.4 times the amount necessary for neutralization.
  • the treatment time is preferably 10 minutes or more including the charging time.
  • the treatment temperature is preferably 20 to 70 ° C. in consideration of heat of neutralization.
  • the saponification treatment in the saponification treatment step emulsification of the component (B) and the like by treatment with an alkali as an organic layer strength saponification treatment agent obtained after the neutralization treatment step or after the water washing treatment step described later.
  • the saponification reaction between the chemical compound and the alkali is carried out, and the emulsifying compound such as component (B) is decomposed.
  • This saponification treatment step is performed separately from the neutralization treatment step, so that the saponification reaction can be effectively performed.
  • Examples of the saponification treatment method include a method in which a saponification agent is added to the organic layer obtained after the neutralization treatment or after the water washing treatment described later and stirred and mixed.
  • the concentration, amount, stirring time, and treatment temperature of the alkaline aqueous solution as the saponification treatment agent to be charged can be selected widely.
  • the saponification treatment is carried out by converting the ester bond of the ester having a carboxyl group (B) with the corresponding (meth) acrylic acid (substantially (meth) acrylic alkali metal salt) and polyhydric alcohol. Hydrolyzes to The decomposition products are removed by dissolving in water.
  • an aqueous alkali solution is preferred.
  • the alkali component in the aqueous alkali solution include alkali metal salts and alkaline earth metal salts, and examples thereof include alkali metal hydroxides, alkali metal carbonates, and alkaline earth metal hydroxides.
  • the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • the alkali metal carbonate include sodium carbonate.
  • Examples of the alkaline earth metal hydroxide include hydroxide calcium. Among these, alkali metal hydroxides are preferable because the effect of the saponification treatment is high.
  • the concentration of the alkaline aqueous solution is preferably 1 to 25% by mass, more preferably 10 to 25% by mass.
  • the amount of alkali used is more preferably 0.5 to 2 times in consideration of the size of the treatment tank and the amount of drainage, which is preferably 0.2 to 4 times the amount of alkali used during the neutralization treatment.
  • the saponification treatment is preferably performed under stirring, and the stirring time is preferably 10 minutes to 3 hours. In this case, both treatments can be performed efficiently by using the same treatment agent as the neutralization treatment agent as the saponification treatment agent.
  • the treatment temperature of the saponification treatment is preferably 20 to 70 ° C. because the saponification treatment of the emulsifiable compound can be easily performed at room temperature (20 ° C.) or with a little heating.
  • the saponification step can be completed by the treatment within the above-mentioned preferable conditions.
  • the progress of the saponification step can be managed as required.
  • Methods for controlling the degree of progress of the saponification treatment include a method of measuring the alkali number of the aqueous layer, the conductivity (electrical conductivity) of the organic layer, and the interfacial tension. Since the alkali number of the aqueous layer varies depending on, for example, the type of ester, the increase or decrease in side reactions, and the concentration of the aqueous alkali solution used, it is necessary to examine the transition of the alkali number for each production brand and formulation. In general, in the management method based on the alkali number, the point at which the variation of the alkali number during the saponification process becomes small can be used as a measure of the end of the saponification process.
  • the conductivity of the organic layer increases when the ionic component contained in the organic layer is large.
  • the emulsifiable compound is mainly present as an alkali metal salt.
  • the ionic components are decomposed and transferred from the organic layer to the alkaline aqueous solution layer. Therefore, as with the alkali number of the aqueous layer, the conductivity of the organic layer varies depending on the brand and formulation, but the point at which the variation in conductivity becomes small can be used as a guideline for the end of the saponification process.
  • the interfacial tension of the organic layer can also be considered in the same manner as the above-described alkali number and conductivity.
  • the interfacial tension becomes small, but the interfacial tension increases as the emulsifying compound is decomposed and removed. For this reason, the fluctuation force of the interfacial tension and the time point when it has become short can be used as a guideline for the end of the saponification process. (Washing process)
  • the reaction solution or the treatment solution is preferably subjected to a water washing treatment.
  • the water washing treatment can be performed on the reaction solution obtained by the esterification reaction, the neutralized organic layer, and the saponification organic layer.
  • the point at which the water washing treatment is performed is appropriately selected according to the components used and the purpose.
  • the water washing treatment is performed according to a conventional method.
  • the conventional method include a method in which water is added to the reaction solution obtained by the esterification reaction, the neutralized organic layer, and the saponified organic layer and stirred and mixed.
  • an organic layer (upper layer) containing the produced polyfunctional (meth) acrylic acid esters is obtained, and then the organic solvent is removed from this organic layer by a known method. As a result, a polyfunctional (meth) acrylic acid ester can be obtained.
  • this solvent removal treatment step oxygen is supplied to the organic layer or a polymerization inhibitor is added to the organic layer in order to suppress thermal polymerization of the polyfunctional (meth) acrylic acid ester. C or lower, and further processing is performed under reduced pressure.
  • the polyfunctional (meth) acrylic acid ester can be purified by rectification as necessary.
  • the polyfunctional (meth) acrylic acid ester of the present embodiment is particularly suitably used as a printing ink, but in order to obtain a polyfunctional (meth) acrylic acid ester having excellent ink properties, a saponification treatment is performed. It is preferable that the process and the subsequent processing are performed as follows! /. That is, in the saponification treatment step, in order to promote the saponification reaction, saponification is performed under the conditions of a treatment temperature of 30 to 60 ° C. and a concentration of an alkaline aqueous solution of preferably 1 to 25% by mass, more preferably 10 to 25% by mass. Processing is performed.
  • the organic layer after the saponification treatment is preferably washed with acidic water.
  • the acidic water include an ammonium sulfate aqueous solution, a salt ammonium aqueous solution, and a hydrochloric acid aqueous solution.
  • sodium is also eliminated from compound forces containing sodium carboxylate (one COONa) produced by side reactions and neutralization. It is.
  • the emulsifying compound having the form of an alkali metal salt becomes a compound having an acid structure, and then removed by a solvent removal treatment. By performing such treatment, an ink having excellent dispersibility of the ink pigment can be obtained.
  • the reaction product produced by the esterification reaction in the esterification reaction step is neutralized.
  • saponification is performed in the saponification process in the purification process.
  • the ester bond of the ester compound having a carboxyl group as the component (B) is hydrolyzed by alkali.
  • the component (B) is decomposed into water-soluble compounds such as (meth) acrylic acid and polyhydric alcohol.
  • these decomposition products are dissolved in water and removed by washing with water.
  • the content of component (B) in the (meth) acrylic acid ester composition can be suppressed to lOOOppm or less.
  • This embodiment has the following advantages.
  • the polyfunctional (meth) acrylic acid ester composition of the present embodiment includes a compound having two or more (meth) attayloxy groups as the main component (A) and a subcomponent.
  • the compound contains a compound in which at least one of the (meth) ataryloxy groups in the component (A) is substituted with the group represented by the chemical formula (1)! /
  • the content of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less. For this reason, it is possible to reduce the emulsifying compound and suppress the adverse effect of the emulsifying compound on the polyfunctional (meth) acrylic acid ester composition.
  • a polyfunctional (meth) acrylate is used in an ink, for example, it is possible to suppress ink bleeding and contamination of manufacturing equipment.
  • the component (A) is preferably a compound having three or more (meth) ataryloxy groups. Further, (A) component is dipentaerythritol penta (meth) acrylic acid ester or dipentaerythritol hex (meth) acrylic acid ester, and (B) component is a compound represented by the chemical formula (2). Therefore, the above-described effects can be sufficiently exerted with respect to those polyfunctional (meth) acrylic acid esters.
  • a polyfunctional alcohol and (meth) acrylic acid react with each other in an organic solvent in the presence of an acid catalyst.
  • a (meth) acrylic ester composition is produced.
  • the polyfunctional (meth) acrylic acid ester composition is purified so that the proportion of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less.
  • the polyfunctional (meth) acrylic acid ester composition having the above-described effects is easily produced by purifying the polyfunctional (meth) acrylic acid ester composition using the component (B) as an index. be able to.
  • the polyfunctional (meth) acrylic acid ester composition obtained as described above should be suitably used in fields such as paints and adhesives that require emulsification resistance in addition to printing inks. Can do.
  • reaction solution was cooled, and diluted by adding 740 g of toluene.
  • the diluted reaction solution was transferred to a neutralization tank, 350 g of pure water was added and stirred for 5 minutes, and then allowed to stand for 30 minutes to separate the upper and lower layers.
  • this solution The weight of the separated upper layer was 650 g.
  • this solution the component (B) was isolated and analyzed.
  • the liquid obtained in Synthesis Example 1 was reduced in pressure and concentrated to obtain a residue. 2.5 g of this residue After dissolving in 15 ml of chill, it was extracted twice with 10 ml of 0.5% aqueous sodium carbonate solution. After the lower layers obtained by these extractions were combined, 1M hydrochloric acid was added to obtain an acidic aqueous solution with a pH of 1.5. The aqueous solution was extracted with 15 ml of ethyl acetate, and the upper layer obtained by this extraction was washed with 5 ml of distilled water, and dehydrated by adding anhydrous sodium sulfate lg. The ethyl acetate solution obtained after filtration was immersed in a hot water bath and concentrated to obtain 15 mg of residue.
  • oc proton NMR (nuclear magnetic resonance spectrum) analysis method, IR (infrared absorption spectrum) analysis method and MALDI-TOFMS (matrix-assisted laser desorption ionization mass spectrum)
  • the analysis was performed by the analytical method.
  • the obtained spectra are shown in Figs.
  • the residue was treated with DMF (dimethylformamide) dimethyl acetal and methyl esterified to analyze the sample by MALDI-TOFMS.
  • the obtained spectrum is shown in FIG.
  • CH 2 CH -C-0-H 2 CC-CH 2 -o-CH 2 -C-CH 2 -0-CH 2 ⁇ CH 2 COOH
  • R 1 represents a hydrogen atom
  • a to A 5 Four compounds represent an allyloyl group and the remaining one represents a hydrogen atom.
  • the compound represented by the chemical formula (8) is a compound in which, in the chemical formula (2), R 1 represents a hydrogen atom and ⁇ to A 5 represent an allyloyl group.
  • mZz564 is represented by the compound represented by the chemical formula (6) and the chemical formula (7). In which sodium derived from an ionization aid is added.
  • mZz586 represents a compound represented by the chemical formula (6) and a sodium salt of the compound represented by the chemical formula (7) added with sodium derived from an ionic assistant.
  • mZz618 represents a compound obtained by adding sodium derived from an ionization aid to the compound represented by the chemical formula (8).
  • mZz640 represents a compound obtained by adding sodium derived from an ionization aid to the sodium salt of the compound represented by the chemical formula (8).
  • Ionic aid 5 mg of sodium iodide is dissolved in 1 ml of acetone.
  • mZz578 is a compound obtained by adding sodium derived from an ionic assistant to the carboxylated methylesterified compounds of the chemical formulas (6) and (7).
  • mZz632 represents a compound obtained by adding sodium derived from a ionic assistant to the carboxyl group-methylated compound of formula (8).
  • the oil bath temperature was set to 80 ° C. so that the liquid temperature did not exceed the temperature. Also, oxygen-containing nitrogen gas was blown as necessary to prevent polymerization.
  • the component (B) in the obtained polyfunctional acrylic ester composition was lOOppm or less.
  • the polyfunctional acrylic ester composition was subjected to an emulsification resistance test according to the following method. . The results are shown in Table 1.
  • The upper layer and the lower layer are separated within 10 minutes, and the transparency of both layers is slightly lower than that of “ ⁇ ”, but it is good.
  • X The upper layer and the lower layer are not separated, or an intermediate layer is generated between the upper layer and the lower layer.
  • Example 1 except that 115 g of a 20% sodium hydroxide aqueous solution (the same amount as 20% sodium hydroxide used in the neutralization treatment) was used for the main solution obtained in Synthesis Example 1.
  • a saponification treatment was carried out in the same manner as above to obtain a polyfunctional acrylic ester composition.
  • the obtained polyfunctional acrylic ester composition was evaluated in the same manner as in Example 1. The results are shown in Table 1. (Example 3)
  • Example 2 a polyfunctional acrylate composition was obtained in the same manner as in Example 2, except that the stirring time was 3 hours.
  • the obtained polyfunctional acrylic ester composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 13 As shown in Table 1, in Example 13 the content of component (B) in the polyfunctional acrylate composition is all lOOppm or less, so the results of the emulsification resistance test was also good. On the other hand, in Comparative Example 1, since the content of the component (B) in the polyfunctional acrylic ester composition was 8000 ppm, the result of the emulsification resistance test was poor.
  • the saponification treatment may be performed a plurality of times. In that case, it is preferable that the concentration of the alkaline aqueous solution used as the saponification agent is changed or the treatment temperature is changed.
  • an aqueous solution of an alkali metal salt such as sodium carbonate and an alkaline earth metal such as calcium hydroxide may be used.
  • the saponification treatment may be performed at a treatment temperature of less than 20 ° C, and the treatment time of the saponification treatment may be long.

Abstract

A polyfunctional (meth)acrylic ester composition which comprises: an ingredient (A), as the main component, which is a compound having two or more (meth)acryloyloxy groups; and an ingredient (B), as a secondary component, which is a compound having a structure formed from the ingredient (A) by replacing any one of the (meth)acryloyloxy groups with a group represented by the following chemical formula (1). The content of the ingredient (B) in the polyfunctional (meth)acrylic ester composition is 1,000 ppm or lower. [In the chemical formula (1), R1 represents hydrogen or methyl.]

Description

明 細 書  Specification
多官能 (メタ)アクリル酸エステル組成物及びその製造方法  Multifunctional (meth) acrylic acid ester composition and method for producing the same
技術分野  Technical field
[0001] 本発明は、例えば塗料、接着剤、及び印刷インクの分野において用いられ、 2個以 上の (メタ)アタリロイル基を有する (メタ)アクリル酸エステル組成物、及びその製造方 法に関する。本願では、アクリル酸エステル又はメタクリル酸エステルを (メタ)アクリル 酸エステルと 、、アタリロイルォキシ基又はメタクリロイルォキシ基を (メタ)アタリロイ ルォキシ基という。  The present invention relates to a (meth) acrylic acid ester composition having two or more (meth) acryloyl groups, for example, used in the field of paints, adhesives, and printing inks, and a method for producing the same. In the present application, an acrylic acid ester or a methacrylic acid ester is referred to as a (meth) acrylic acid ester, and an allyloyloxy group or a methacryloyloxy group is referred to as a (meth) atarylloyoxy group.
背景技術  Background art
[0002] 近年、例えば塗料、接着剤、及び印刷インクの分野にぉ 、ては、環境保全、省資 源、省エネルギー等の観点から、紫外線硬化型又は電子線硬化型の剤の使用が増 カロしつつある。例えば (メタ)アタリロイル基を 2個以上有する (メタ)アクリル酸エステル (本願では多官能 (メタ)アクリル酸エステルという)は、紫外線硬化型榭脂又は電子 線硬化型榭脂の反応性希釈剤として広く使用されている。特に、トリメチロールプロパ ン、ペンタエリスリトール、ジペンタエリスリトール及びこれらの誘導体を (メタ)アタリ口 ィルイ匕して得られる多官能性 (メタ)アクリル酸エステルは、速い硬化性、高い硬度等 の特徴を有しており、その使用量は増大しつつある。  [0002] In recent years, for example, in the fields of paints, adhesives, and printing inks, the use of UV curable or electron beam curable agents has increased from the viewpoints of environmental protection, resource saving, energy saving, and the like. I am doing. For example, a (meth) acrylic acid ester having two or more (meth) atalyloyl groups (referred to as polyfunctional (meth) acrylic acid ester in the present application) is a reactive diluent for ultraviolet curable resin or electron beam curable resin. Widely used. In particular, the polyfunctional (meth) acrylic acid ester obtained by (meth) atarily brewing trimethylolpropane, pentaerythritol, dipentaerythritol and their derivatives has features such as fast curability and high hardness. And its usage is increasing.
[0003] 従来、多官能 (メタ)アクリル酸エステルは、硫酸、メタンスルホン酸、パラトルエンス ルホン酸等の酸触媒の存在下における、多価アルコールと (メタ)アクリル酸とのエス テル化反応により製造される。こうして得られる反応生成物中には、触媒、未反応物、 さらには副反応物が残存することから、反応液に各種の後処理が施されることにより 精製が行われている。例えば、反応液中の未反応 (メタ)アクリル酸及び酸触媒を除 去する目的で中和処理が行われ、この中和処理では、 1〜25%濃度の水酸ィ匕ナトリ ゥム(苛性ソーダ)水溶液及び炭酸ナトリウム (炭酸ソーダ)水溶液が使用されて 、る。 更に、水を用いて反応液を精製することも行われる。  [0003] Conventionally, polyfunctional (meth) acrylic acid esters are produced by an esterification reaction of polyhydric alcohol and (meth) acrylic acid in the presence of an acid catalyst such as sulfuric acid, methanesulfonic acid, para-toluenesulfonic acid and the like. Is done. In the reaction product thus obtained, catalyst, unreacted substances, and side reactants remain, so that purification is performed by subjecting the reaction solution to various post-treatments. For example, neutralization treatment is performed for the purpose of removing unreacted (meth) acrylic acid and acid catalyst in the reaction solution. In this neutralization treatment, 1 to 25% concentration of sodium hydroxide (caustic soda) is used. ) Aqueous solutions and aqueous sodium carbonate (sodium carbonate) solutions are used. Further, the reaction solution is purified using water.
[0004] 具体的には、触媒の存在下におけるヒドロキシル基含有 (メタ)アクリル酸エステル の付加重合によりヒドロキシル基含有 (メタ)アクリル酸エステルリゴマーが製造される 際に、反応液をケィ酸マグネシウム等の吸着剤と接触させたり、アルカリ水溶液を用 いて反応液を精製したりする方法が開示されている (例えば、特許文献 1を参照)。ま た、以下のような多官能性 (メタ)アクリル酸エステルの製造方法が開示されて 、る(例 えば、特許文献 2を参照)。すなわち、酸触媒の存在下において、多価アルコールと( メタ)アクリル酸とが有機溶媒中でエステルイ匕反応することにより、反応生成物が得ら れる。次いで、この反応生成物に中和処理が施された後、さらにアミン類を用いた精 製処理が施される。 [0004] Specifically, a hydroxyl group-containing (meth) acrylate ligomer is produced by addition polymerization of a hydroxyl group-containing (meth) acrylate in the presence of a catalyst. In this case, a method is disclosed in which the reaction solution is brought into contact with an adsorbent such as magnesium silicate, or the reaction solution is purified using an alkaline aqueous solution (see, for example, Patent Document 1). In addition, a method for producing a polyfunctional (meth) acrylic acid ester as described below is disclosed (for example, see Patent Document 2). That is, in the presence of an acid catalyst, a polyhydric alcohol and (meth) acrylic acid undergo an esterification reaction in an organic solvent to obtain a reaction product. Next, the reaction product is subjected to a neutralization treatment and further subjected to a purification treatment using amines.
[0005] ところで、多官能 (メタ)アクリル酸エステルの製造にぉ 、ては、(メタ)アタリロイル基 の密度をより高めるために、エステルイ匕反応は通常、単官能 (メタ)アクリル酸エステ ルの製造に比べて長時間で行われ、或いはより高い反応温度で行われる。そのよう な条件下でエステルイ匕反応が行われると、(メタ)アクリル酸エステル特有の副反応が 生じて副反応物が生成される。  [0005] By the way, in the production of polyfunctional (meth) acrylic acid esters, in order to further increase the density of (meth) atallyloyl groups, the esterification reaction is usually performed with monofunctional (meth) acrylic acid esters. It takes longer time than production or at higher reaction temperature. When the esterification reaction is carried out under such conditions, a side reaction peculiar to (meth) acrylic acid ester occurs and a side reaction product is generated.
[0006] 一方、エステルイ匕反応後の後処理においては、反応液の中和工程及び水を用い た洗浄工程において、有機層と水層との分離が不十分となる乳化現象が発生するこ とがある。このような乳化現象が生じた場合、有機層と水層との分離に長時間を要す ることから生産性が低下したり、さらに有機層と水層との分離が不十分な状態でそれ らが分離される場合には、最終製品に不純分が混入して純度が低下したりするという 問題が生じていた。このような乳化の原因は、前記副反応物によるものではないかと 疑われていた。そのような副反応物(以下、乳化性ィ匕合物という)を除去するために、 特許文献 1に記載の吸着剤を用いた方法では物理的な吸着が行われて 、る。しかし ながら、この方法では、反応生成物から乳化性ィ匕合物を十分に除去することができな かった。  [0006] On the other hand, in the post-treatment after the esterification reaction, an emulsification phenomenon occurs in which the separation between the organic layer and the aqueous layer is insufficient in the neutralization step of the reaction solution and the washing step using water. There is. When such an emulsification phenomenon occurs, it takes a long time to separate the organic layer from the aqueous layer, resulting in a decrease in productivity, and further in a state where the separation between the organic layer and the aqueous layer is insufficient. When they are separated, there has been a problem that the purity is lowered due to impurities in the final product. The cause of such emulsification was suspected to be due to the side reaction product. In order to remove such side reaction products (hereinafter referred to as emulsifying compounds), physical adsorption is performed in the method using the adsorbent described in Patent Document 1. However, this method could not sufficiently remove the emulsifiable complex from the reaction product.
[0007] また、特許文献 2に記載の方法にぉ ヽては、アミン類を用いた処理工程で酸触媒 の誘導体、例えばスルホン酸エステルが分解される(特許文献 2を参照)。従って、こ の方法は、乳化の原因となる乳化性ィ匕合物の分解に着目しておらず、乳化性化合物 を十分に分解して除去することができな力つた。そのため、乳化性ィ匕合物が除去され て!、な 、多官能 (メタ)アクリル酸エステル力 例えばインク等の耐乳化性を要する用 途に供される場合には、インクのにじみ、製造設備の汚染等の様々な弊害が生じると いう問題があった。 [0007] In addition, according to the method described in Patent Document 2, an acid catalyst derivative such as a sulfonic acid ester is decomposed in a treatment step using amines (see Patent Document 2). Therefore, this method does not pay attention to the decomposition of the emulsifying compound that causes emulsification, and has been unable to sufficiently decompose and remove the emulsifying compound. Therefore, the emulsifying compound is removed! In addition, when it is used in applications that require emulsification resistance such as ink, such as polyfunctional (meth) acrylic ester, When various harmful effects such as pollution There was a problem.
特許文献 1:特開昭 61— 134350号公報  Patent Document 1: Japanese Patent Laid-Open No. 61-134350
特許文献 2:特開平 6 - 219991号公報  Patent Document 2: JP-A-6-219991
発明の開示  Disclosure of the invention
[0008] 本発明は上述の課題に鑑みてなされ、後処理工程において発生する有機層と水 層との分離が不十分となる乳化による弊害を抑制することができる多官能 (メタ)アタリ ル酸エステル組成物及びその製造方法を提供することを目的とする。  [0008] The present invention has been made in view of the above-described problems, and is a polyfunctional (meth) attalic acid capable of suppressing the adverse effects caused by emulsification that cause insufficient separation of the organic layer and the aqueous layer in the post-treatment step. It aims at providing an ester composition and its manufacturing method.
[0009] 本発明の一態様では、多官能 (メタ)アクリル酸エステル組成物が提供される。その 多官能 (メタ)アクリル酸エステル組成物は、主成分である (A)成分として 2個以上の( メタ)アタリロイルォキシ基を有する化合物、及び副成分である(B)成分として前記 (A )成分における (メタ)アタリロイルォキシ基の 、ずれ力 1個が下記化学式(1)で表され る基で置換された化合物を含有して ヽる。多官能 (メタ)アクリル酸エステル組成物中 の(B)成分の含有量は lOOOppm以下である。  [0009] In one embodiment of the present invention, a polyfunctional (meth) acrylic acid ester composition is provided. The polyfunctional (meth) acrylic acid ester composition is composed of a compound having two or more (meth) ataryloxy groups as the main component (A), and the above component (B) as a subcomponent. The compound (A) may contain a compound in which one shift force of the (meth) ataryloxy group in the component is substituted with a group represented by the following chemical formula (1). The content of component (B) in the polyfunctional (meth) acrylic ester composition is lOOOppm or less.
[0010] [化 1]  [0010] [Chemical 1]
R1 R 1
I  I
― 0— CH2CH - COOH ■ ■ ■ ( 1 ) ― 0— CH 2 CH-COOH ■ ■ ■ (1)
[0011] 〔化学式(1)において、 R1は水素原子又はメチル基を表す。〕 [In the chemical formula (1), R 1 represents a hydrogen atom or a methyl group. ]
この構成によれば、(A)成分における (メタ)アタリロイルォキシ基のいずれか 1個が 化学式(1)で表される基で置換された (B)成分は乳化性を示す化合物に該当し、そ の含有量が lOOOppm以下であることから、乳化性ィ匕合物を減少させて、後処理工 程において発生する有機層と水層との分離が不十分となる乳化による弊害を抑制す ることがでさる。  According to this configuration, any one of the (meth) ataryloxy groups in component (A) is substituted with the group represented by chemical formula (1), and component (B) corresponds to a compound exhibiting emulsifying properties. In addition, since its content is lOOOppm or less, it reduces emulsifying compounds and suppresses adverse effects caused by emulsification that causes insufficient separation of the organic layer and aqueous layer in the post-treatment process. It can be done.
[0012] (A)成分は、好ましくは 3個以上の (メタ)アタリロイルォキシ基を有する化合物であ る。さらに、(A)成分は、より好ましくはジペンタエリスリトールペンタ (メタ)アクリル酸 エステル又はジペンタエリスリトールへキサ (メタ)アクリル酸エステルであり、 (B)成分 は、好ましくは下記化学式(2)で表される化合物である。この構成によれば、ジペンタ エリスリトールペンタ(メタ)アクリル酸エステル又はジペンタエリスリトールへキサ(メタ) アクリル酸エステルの多官能 (メタ)アクリル酸エステルにつ 、て、上述の効果を発揮 することができる。 [0012] The component (A) is preferably a compound having three or more (meth) ataryloxy groups. Furthermore, the component (A) is more preferably dipentaerythritol penta (meth) acrylic acid ester or dipentaerythritol hexa (meth) acrylic acid ester, and the component (B) is preferably represented by the following chemical formula (2). It is a compound represented. According to this configuration, dipenta The above-mentioned effects can be exerted on polyfunctional (meth) acrylates of erythritol penta (meth) acrylate or dipentaerythritol hexa (meth) acrylate.
[0013] [化 2]  [0013] [Chemical 2]
- COOH ■ ■ . ( 2 )
Figure imgf000006_0001
-COOH ■ ■. (2)
Figure imgf000006_0001
[0014] 〔化学式(2)において、 R1は水素原子又はメチル基を表し、 A〜A5は (メタ)アタリ ロイル基又は水素原子を表す。〕 [In the chemical formula (2), R 1 represents a hydrogen atom or a methyl group, and A to A 5 represent a (meth) atalyloyl group or a hydrogen atom. ]
本発明の別の態様では、上述の多官能 (メタ)アクリル酸エステル組成物の製造方 法が提供される。この製造方法は、酸触媒の存在下において、多価アルコールと (メ タ)アクリル酸とが有機溶媒中でエステルイ匕反応することにより、多官能 (メタ)アクリル 酸エステル組成物を製造する工程と、多官能 (メタ)アクリル酸エステル組成物中の( In another aspect of the present invention, a method for producing the above-described polyfunctional (meth) acrylate composition is provided. This production method comprises a step of producing a polyfunctional (meth) acrylate composition by reacting a polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst. In the polyfunctional (meth) acrylic acid ester composition (
B)成分の含有量が lOOOppm以下となるように多官能 (メタ)アクリル酸エステル組成 物を精製する工程とを含む。この構成によれば、前記 (B)成分を指標として多官能( メタ)アクリル酸エステル組成物の精製を行うことによって、上述の効果を有する多官 能 (メタ)アクリル酸エステル組成物を容易に製造することができる。 And B) purifying the polyfunctional (meth) acrylic acid ester composition so that the content of the component is 1OOOppm or less. According to this configuration, the multifunctional (meth) acrylate composition having the above-described effects can be easily obtained by purifying the polyfunctional (meth) acrylate composition using the component (B) as an index. Can be manufactured.
[0015] 多官能 (メタ)アクリル酸エステル組成物を精製する工程は、好ましくはエステルイ匕 反応後の反応液を中和処理する工程、及び中和処理後の処理液をけん化処理する 工程を含む。また、多官能 (メタ)アクリル酸エステル組成物を精製する工程は、好ま しくはエステル化反応後の反応液を水洗処理する工程、水洗処理後の処理液を中 和処理する工程、及び中和処理後の処理液をけん化処理する工程を含む。これらの 構成によれば、有する多官能 (メタ)アクリル酸エステル組成物をより容易に製造する ことができる。 [0015] The step of purifying the polyfunctional (meth) acrylic acid ester composition preferably includes a step of neutralizing the reaction solution after the esterification reaction and a step of saponifying the treatment solution after the neutralization treatment. . The step of purifying the polyfunctional (meth) acrylic acid ester composition is preferably a step of washing the reaction solution after the esterification reaction, a step of neutralizing the treatment solution after the washing treatment, and a neutralization step. Including a step of saponifying the treated liquid after the treatment. According to these structures, the polyfunctional (meth) acrylic acid ester composition having it can be more easily produced.
[0016] 多官能 (メタ)アクリル酸エステル組成物を精製する工程では、アルカリ水溶液を用 いて、多官能 (メタ)アクリル酸エステル組成物がけん化処理される。この構成によれ ば、多官能 (メタ)アクリル酸エステル組成物の精製を効率よく行うことができる。 図面の簡単な説明 [0016] In the step of purifying the polyfunctional (meth) acrylic acid ester composition, an alkaline aqueous solution is used. The polyfunctional (meth) acrylic acid ester composition is saponified. According to this configuration, the polyfunctional (meth) acrylic acid ester composition can be purified efficiently. Brief Description of Drawings
[0017] [図 1]合成例 1の残渣についての NMRスペクトルを示すチャート。 FIG. 1 is a chart showing an NMR spectrum of the residue of Synthesis Example 1.
[図 2]合成例 1の残渣についての IRスペクトルを示すチャート。  FIG. 2 is a chart showing an IR spectrum for the residue of Synthesis Example 1.
[図 3]合成例 1の残渣についての MALDI— TOFMSスペクトルを示すチャート。  FIG. 3 is a chart showing a MALDI-TOFMS spectrum of the residue of Synthesis Example 1.
[図 4]合成例 1の残渣(メチルエステル化したもの)についての MALDI— TOFMSス ぺクトノレを示すチャート。  FIG. 4 is a chart showing a MALDI-TOFMS spectrum for the residue (methyl esterified) in Synthesis Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施形態について詳細に説明する。 [0018] Hereinafter, embodiments of the present invention will be described in detail.
[0019] 本実施形態の多官能 (メタ)アクリル酸エステル組成物は、主成分である (A)成分と して 2個以上の (メタ)アタリロイルォキシ基を有する化合物、及び副成分である(B)成 分として前記 (A)成分における (メタ)アタリロイルォキシ基の 、ずれか 1個が下記化 学式( 1)で表される基で置換された化合物を含有する。多官能 (メタ)アクリル酸エス テル組成物における(B)成分の含有量は lOOOppm以下である。(B)成分の含有量 は、高速液体クロマトグラフィ(以下、 HPLCという)により測定される。具体的には、 ( B)成分の含有量は以下の条件で測定される。  [0019] The polyfunctional (meth) acrylic acid ester composition of the present embodiment is composed of a compound having two or more (meth) ataryloxy groups as the main component (A), and a subcomponent. As a certain (B) component, at least one of the (meth) ataryloxy groups in the component (A) contains a compound substituted with a group represented by the following chemical formula (1). The content of component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOOppm or less. The content of component (B) is measured by high performance liquid chromatography (hereinafter referred to as HPLC). Specifically, the content of component (B) is measured under the following conditions.
[0020] 検出器:紫外線検出器  [0020] Detector: UV detector
カラムの種類: ODSカラム  Column type: ODS column
カラムの温度: 40°C  Column temperature: 40 ° C
溶離液:酸性水溶液 Zメタノール系(酸性水溶液の pHは 2〜3が好ましい。酸性水 溶液としては、リン酸水溶液が好ましい。 )  Eluent: acidic aqueous solution Z methanol system (pH of acidic aqueous solution is preferably 2 to 3. As acidic aqueous solution, aqueous phosphoric acid solution is preferred.)
[0021] [化 3] [0021] [Chemical 3]
R1 R 1
I  I
— 0— CH„CH - COOH ■ ■ ■ ( 1 )  — 0— CH „CH-COOH ■ ■ ■ (1)
[0022] 〔化学式(1)において、 R1は水素原子又はメチル基を表す。〕 多官能 (メタ)アクリル酸エステルの製造時には、高温及び長時間のエステルイ匕反 応により特有の副反応が起きて種々の乳化性ィ匕合物が生成されるが、(B)成分もそ のような乳化性ィ匕合物の 1つであり、乳化の原因となる化合物である。 [In the chemical formula (1), R 1 represents a hydrogen atom or a methyl group. ] During the production of polyfunctional (meth) acrylic acid esters, various side-reactions occur due to high-temperature and long-time esterification reactions, and various emulsifiable compounds are produced. It is one of the emulsifying compounds and a compound that causes emulsification.
A A  A A
[0023] 前記 (A)成 A分は、好ましくは 3個以上の (メタ)アタリロイルォキシ基を有する化合物  [0023] The (A) component A is preferably a compound having 3 or more (meth) ataryloxy groups
2一  2
である。 (A)成分とO Iしては、例えばトリメチロールプロパントリ (メタ)アクリル酸エステル 、ジトリメチロールプロパントリ(メタ)アクリル酸エステル、ジトリメチロールプロパンテト ラ (メタ)アクリル酸エステル、ペンタエリスリトールテトラ (メタ)アクリル酸エステル、ジ ペンタエリスリトールペンタ(メタ)アクリル酸エステル、及びジペンタエリスリトールへキ サ (メタ)アクリル酸エステルが挙げられる。  It is. Examples of component (A) and OI include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) ) Acrylic acid ester, dipentaerythritol penta (meth) acrylic acid ester, and dipentaerythritol hexa (meth) acrylic acid ester.
[0024] (A)成分がトリメチロールプロパントリ (メ c o C cl  [0024] The component (A) is trimethylolpropane tri (me o C cl
一アクリル酸エステルの場合、前記 (B)成 分としては下記化学式 (3)で表される化合物が A c  In the case of a single acrylate ester, the compound represented by the following chemical formula (3) can be used as the component (B).
H挙げられる。  H.
[0025] [化 4]
Figure imgf000008_0001
[0025] [Chemical 4]
Figure imgf000008_0001
CH3— H C— C—CH- -0-CH2 -CH - COOH ( 3 ) CH 3 — HC— C—CH- -0-CH 2 -CH-COOH (3)
[0026] (A)成分がジトリメチロールプロパントリ又はテトラ (メタ)アクリル酸エステルの場合、 前記 (B)成分としては下記化学式 (4)で表される化合物が挙げられる。 [0026] When component (A) is ditrimethylolpropane tri or tetra (meth) acrylic acid ester, examples of component (B) include compounds represented by the following chemical formula (4).
[0027] [化 5] [0027] [Chemical 5]
C H3 _ 2C C -CH O CH CH ( 4 ) CH 3 _ 2 C C -CH O CH CH (4)
CH R  CH R
A— o O - CH2 - CH - COOH [0028] (A)成分がペンタエリスリトールトリ又はテトラ (メタ)アクリル酸エステルの場合、前 記 (B)成分としては下記化学式(5)で表される化合物が挙げられる。 A— o O-CH 2 -CH-COOH [0028] When the component (A) is pentaerythritol tri or tetra (meth) acrylic acid ester, the component (B) includes a compound represented by the following chemical formula (5).
[0029] [化 6] [0029] [Chemical 6]
A2-0 A 2 -0
1 I I 1 I I
A ~0~H2C-C-CH2-o-CH2-CH~COOH ■ ■ ■ (5) A ~ 0 ~ H 2 CC-CH 2 -o-CH 2 -CH ~ COOH ■ ■ ■ (5)
CH2 CH 2
A3-0 A 3 -0
[0030] (A)成分がジペンタエリスリトールペンタ又はへキサ (メタ)アクリル酸エステルの場 合、前記 (B)成分としては下記化学式(2)で表される化合物が挙げられる。 [0030] When the component (A) is dipentaerythritol penta or hexa (meth) acrylic acid ester, examples of the component (B) include compounds represented by the following chemical formula (2).
[0031] [化 7] [0031] [Chemical 7]
A2—◦ 0-A4 A 2 —◦ 0-A 4
I I  I I
^H2 CH2 R 1 ^ H 2 CH 2 R 1
1 i I I  1 i I I
A -0-H2C-C-CH2-0-CH2-C-CH2-0-CH2- CH-COOH ■ . ■ (2) A -0-H 2 CC-CH 2 -0-CH 2 -C-CH 2 -0-CH 2 -CH-COOH ■. ■ (2)
CH2 CH, CH 2 CH,
Λ3 I I , Λ3 II,
A3-0 O-A5 A 3 -0 OA 5
[0032] 化学式(2)〜(5)において、 R1は水素原子又はメチル基を表し、 Ai〜A5は (メタ) アタリロイル基又は水素原子を表す。 In chemical formulas (2) to (5), R 1 represents a hydrogen atom or a methyl group, and Ai to A 5 each represents a (meth) ataryloyl group or a hydrogen atom.
[0033] 次に、多官能 (メタ)アクリル酸エステル組成物の製造方法にっ 、て説明する。  [0033] Next, a method for producing a polyfunctional (meth) acrylic acid ester composition will be described.
[0034] (メタ)アクリル酸エステル組成物は、エステルイ匕反応工程と、その後の精製工程と を経て製造される。エステル化反応工程では、酸触媒の存在下において、多価アル コールと (メタ)アクリル酸とが有機溶媒中でエステルイ匕反応することにより、多官能 (メ タ)アクリル酸エステル組成物が製造される。精製工程では、多官能 (メタ)アクリル酸 エステル組成物中の(B)成分の割合が lOOOppm以下となるように、多官能 (メタ)ァ クリル酸エステル組成物が精製される。以下、両工程について順に説明する。 〔エステルイ匕反応工程〕 [0034] The (meth) acrylic acid ester composition is produced through an esterification reaction step and a subsequent purification step. In the esterification reaction step, a polyfunctional (meth) acrylic acid ester composition is produced by an esterification reaction between polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst. The In the purification step, the polyfunctional (meth) acrylic acid ester composition is purified so that the proportion of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less. Hereinafter, both steps will be described in order. [Estery soot reaction process]
本エステル化反応工程におけるエステル化反応は、多官能 (メタ)アクリル酸エステ ルの製造における常法に従って行われる。すなわち、エステルイ匕反応は、酸触媒の 存在下において、多価アルコールと (メタ)アクリル酸とが有機溶媒中で脱水縮合する ことにより行われる。  The esterification reaction in this esterification reaction step is carried out according to a conventional method for producing a polyfunctional (meth) acrylic acid ester. That is, the esterification reaction is performed by dehydration condensation of a polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst.
[0035] 前記多価アルコールとしては、例えば二価アルコール、分岐状又は直鎖状長鎖ァ ルキルジオール、ポリアルキレングリコール、ビスフエノール及び該ビスフエノールの アルキレンォキシド付カ卩物、ポリオール及び該ポリオールのアルキレンォキシド付カロ 物、並びにトリス— 2—ヒドロキシェチルイソシァヌレートが挙げられる。二価アルコー ルとしては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ペン タンジオール、へキサンジオール、及びネオペンチルグリコールが挙げられる。分岐 状又は直鎖状長鎖アルキルジオールとしては、例えば水添ポリブタジエンのジォー ルが挙げられる。ポリアルキレングリコールとしては、例えばジエチレングリコール、トリ エチレングリコーノレ、ポリエチレングリコール、ジプロピレングリコール、トリプロピレン グリコール、及びポリプロピレングリコールが挙げられる。ビスフエノールとしては、例 えばビスフエノール A及びビスフエノール Fが挙げられる。ポリオールとしては、例えば グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、 及びジペンタエリスリトールが挙げられる。前記アルキレンォキシドとしては、例えば エチレンォキシド及びプロピレンォキシドが挙げられる。上述の多価アルコールの具 体例の中でも、(メタ)アタリロイル基の密度が高 、多官能 (メタ)アクリル酸エステルが 得られることから、水酸基数が 3〜6であるアルコール又はそのアルキレンォキシド付 加物が好ましい。  [0035] Examples of the polyhydric alcohol include dihydric alcohols, branched or linear long-chain alkyl diols, polyalkylene glycols, bisphenols, and bisphenol-containing alkylene oxides, polyols, and polyols. Carotenes with alkylene oxide and tris-2-hydroxyethylisocyanurate are mentioned. Examples of the divalent alcohol include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and neopentyl glycol. Examples of the branched or linear long-chain alkyl diol include hydrogenated polybutadiene diol. Examples of the polyalkylene glycol include diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, and polypropylene glycol. Examples of bisphenol include bisphenol A and bisphenol F. Examples of the polyol include glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol. Examples of the alkylene oxide include ethylene oxide and propylene oxide. Among the specific examples of the polyhydric alcohols described above, since the (meth) atallyloyl group has a high density and a polyfunctional (meth) acrylic acid ester is obtained, the alcohol having 3 to 6 hydroxyl groups or an alkylene oxide thereof is attached. Addenda are preferred.
[0036] (メタ)アクリル酸はアクリル酸又はメタクリル酸であり、これらは、 目的とするエステル が多官能アクリル酸エステルである力 又は多官能メタクリル酸エステルであるかによ つて選択される。(メタ)アクリル酸の使用量は、得られる多官能 (メタ)アクリル酸エス テルが目的とする水酸基価を有するように、多価アルコールの全水酸基 1モルに対し て調整される。  [0036] The (meth) acrylic acid is acrylic acid or methacrylic acid, and these are selected depending on whether the target ester is a polyfunctional acrylic ester or a polyfunctional methacrylate. The amount of (meth) acrylic acid used is adjusted with respect to 1 mol of all hydroxyl groups of the polyhydric alcohol so that the resulting polyfunctional (meth) acrylic acid ester has the desired hydroxyl value.
[0037] 酸性触媒としては、例えば硫酸、パラトルエンスルホン酸、及びメタンスルホン酸が 挙げられる。反応温度は、使用される原料及び目的に応じて適宜設定され得るが、 反応時間の短縮と重合防止の観点と力も 65〜140°Cが好ましぐ 75〜120°Cがより 好ましい。この反応温度が 65°C未満の場合には、エステルィヒ反応が遅くなつたり、収 率が低下したりするおそれがある。反応温度が 140°Cを越える場合には、(メタ)アタリ ル酸又は生成された多官能 (メタ)アクリル酸エステルの熱重合が起きるおそれがある [0037] Examples of the acidic catalyst include sulfuric acid, p-toluenesulfonic acid, and methanesulfonic acid. Can be mentioned. The reaction temperature can be appropriately set according to the raw materials used and the purpose, but the viewpoint and power for shortening the reaction time and preventing polymerization are preferably 65 to 140 ° C, more preferably 75 to 120 ° C. If the reaction temperature is less than 65 ° C, the esterich reaction may be slowed or the yield may be lowered. If the reaction temperature exceeds 140 ° C, thermal polymerization of (meth) attalic acid or the resulting polyfunctional (meth) acrylate may occur.
[0038] エステル化反応では、この反応で生成される水と共沸混合物を形成する有機溶媒 が使用され、水を共沸させて脱水を促進する有機溶媒が使用されることが好ましい。 好ましい有機溶媒としては、例えば芳香族炭化水素、脂肪族炭化水素、及びケトン が挙げられる。芳香族炭化水素としては、例えばトルエン、ベンゼン、及びキシレンが 挙げられる。脂肪族炭化水素としては、例えばへキサン及びヘプタンが挙げられる。 ケトンとしては、例えばメチルェチルケトン及びシクロへキサノンが挙げられる。有機 溶媒の使用量は、前記多価アルコールと (メタ)アクリル酸との合計量に対して 0. 1〜 10倍量 (質量比)が好ましぐ 2〜5倍量がより好ましい。この有機溶媒は、反応後又 は後処理後の減圧操作により留去されてもよいが、臭気の問題を有してない有機溶 媒が使用される場合には、組成物の粘度調整のために留去されることなく組成物中 に残存してもよい。 [0038] In the esterification reaction, an organic solvent that forms an azeotrope with water produced by this reaction is used, and an organic solvent that promotes dehydration by azeotropically distilling water is preferably used. Preferred organic solvents include, for example, aromatic hydrocarbons, aliphatic hydrocarbons, and ketones. Examples of aromatic hydrocarbons include toluene, benzene, and xylene. Examples of the aliphatic hydrocarbon include hexane and heptane. Examples of the ketone include methyl ethyl ketone and cyclohexanone. The amount of the organic solvent used is preferably 0.1 to 10 times (mass ratio), more preferably 2 to 5 times the total amount of the polyhydric alcohol and (meth) acrylic acid. This organic solvent may be distilled off by a decompression operation after the reaction or after the post-treatment, but when an organic solvent that does not have a problem of odor is used, it is necessary to adjust the viscosity of the composition. It may remain in the composition without being distilled off.
[0039] エステルイ匕反応は、常圧 (0. IMPa)又は減圧された状態で行われることが好まし い。また、(メタ)アクリル酸又は生成された多官能 (メタ)アクリル酸エステルの熱重合 を防止する目的で、エステルイ匕反応が酸素の存在下で行われることが好ましい。同 様の目的で、反応液に重合禁止剤が添加されることが好ましい。そのような重合禁止 剤としては、例えばハイドロキノン、ハイドロキノンモノメチルエーテル、 2, 4 ジメチ ルー 6— t—ブチルフエノール、 3—ヒドロキシルチオフエノール、 ex -トロソー /3 ナフトール、 p べンゾキノン、及び銅塩が挙げられる。重合禁止剤の添加量は、原 料の(メタ)アクリル酸に対して 0. 001〜5. 0質量%が好ましぐ 0. 01〜: L 0質量% 力 り好ましい。重合禁止剤の添加量が 0. 001質量%未満の場合には、重合禁止 効果が不十分となる傾向がある。重合禁止剤の添加量が 5. 0質量%を越えても、重 合禁止効果はそれ以上向上しないことから、過剰な重合禁止剤が無駄になりやすい 。エステルイ匕反応の進行度を確認する方法としては、例えば (メタ)アクリル酸及び多 価アルコールの残量をモニターする方法があり、エステルイ匕反応により生成される水 の量、すなわち脱水量をモニターする方法が好ましい。 [0039] The esterification reaction is preferably carried out under normal pressure (0. IMPa) or reduced pressure. Further, for the purpose of preventing thermal polymerization of (meth) acrylic acid or the produced polyfunctional (meth) acrylic ester, it is preferable that the esterification reaction is carried out in the presence of oxygen. For the same purpose, a polymerization inhibitor is preferably added to the reaction solution. Such polymerization inhibitors include, for example, hydroquinone, hydroquinone monomethyl ether, 2,4 dimethyl 6-t-butylphenol, 3-hydroxythiophenol, ex-troso / 3 naphthol, p-benzozoquinone, and copper salts. It is done. The addition amount of the polymerization inhibitor is preferably 0.001 to 5.0% by mass with respect to the raw material (meth) acrylic acid, and more preferably 0.01 to L 0% by mass. When the addition amount of the polymerization inhibitor is less than 0.001% by mass, the polymerization inhibition effect tends to be insufficient. Even if the addition amount of the polymerization inhibitor exceeds 5.0% by mass, the polymerization inhibition effect does not improve any more, so excessive polymerization inhibitor tends to be wasted. . As a method for confirming the degree of progress of the esterification reaction, for example, there is a method of monitoring the remaining amount of (meth) acrylic acid and polyhydric alcohol. The amount of water produced by the esterification reaction, that is, the amount of dehydration is monitored. The method is preferred.
t精製工程〕  t Purification step)
次に、エステル化反応工程で得られる反応生成物から (B)成分を除去する精製ェ 程について説明する。この精製工程は、中和処理工程、けん化処理工程、水洗処理 工程、及び脱溶剤処理工程を含む。  Next, a purification process for removing the component (B) from the reaction product obtained in the esterification reaction step will be described. This purification process includes a neutralization treatment process, a saponification treatment process, a water washing treatment process, and a solvent removal treatment process.
(中和処理工程)  (Neutralization process)
中和処理工程は、前記エステル化反応工程でのエステル化反応後における反応 液中の例えば未反応 (メタ)アクリル酸及び酸触媒の酸分を除去する目的で行われる  The neutralization treatment step is performed for the purpose of removing, for example, unreacted (meth) acrylic acid and the acid content of the acid catalyst in the reaction solution after the esterification reaction in the esterification reaction step.
[0040] 中和処理工程は常法に従って行われる。この常法としては、例えば反応液にアル カリ成分としてのアルカリ水溶液が添加された後に攪拌及び混合される方法が挙げら れる。アルカリ水溶液としては、例えば水酸ィ匕ナトリウム水溶液が挙げられる。この場 合、アルカリ成分の量は通常、反応液の酸分に対してモル比で 1倍以上であり、好ま しくは 1. 1〜1. 6倍である。この添加量が反応液の酸分に対してモル比で 1倍未満 の場合には、酸分の中和が不十分となる場合がある。アルカリ水溶液の濃度は、 1〜 25質量%が好ましぐ 10〜25質量%がより好ましい。アルカリ水溶液の濃度が 1質 量%未満の場合には、中和処理後の排水量が増大するおそれがある。アルカリ水溶 液の濃度が 25質量%を越える場合には、多官能 (メタ)アクリル酸エステルが重合す るおそれがある。撹拌及び混合の時間は、 5分から 60分が好ましい。 [0040] The neutralization treatment step is performed according to a conventional method. Examples of the conventional method include a method in which an alkaline aqueous solution as an alkali component is added to the reaction solution and then stirred and mixed. Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution. In this case, the amount of the alkali component is usually 1 or more times in molar ratio with respect to the acid content of the reaction solution, and preferably 1.1 to 1.6 times. If this added amount is less than 1 time in molar ratio to the acid content of the reaction solution, neutralization of the acid content may be insufficient. The concentration of the aqueous alkaline solution is preferably 1 to 25% by mass, more preferably 10 to 25% by mass. If the concentration of the alkaline aqueous solution is less than 1% by mass, the amount of wastewater after neutralization may increase. When the concentration of the alkaline aqueous solution exceeds 25% by mass, the polyfunctional (meth) acrylic acid ester may be polymerized. The stirring and mixing time is preferably 5 to 60 minutes.
(けん化処理工程)  (Saponification process)
前記中和処理工程では、酸触媒及び未反応の (メタ)アクリル酸が除去されるもの の、(B)成分等の乳化性ィヒ合物は十分に除去されない。  In the neutralization treatment step, the acid catalyst and unreacted (meth) acrylic acid are removed, but the emulsifying compound such as component (B) is not sufficiently removed.
[0041] (B)成分等の乳化性ィヒ合物の除去方法としては、例えば酸ィヒカルシウム等の吸着 剤、及びスチレンージビュルベンゼン共重合体等のイオン交換榭脂による除去方法 が挙げられる。し力しながら、除去効率が高くて工業的に有利であることから、中和処 理後の処理液にさらにアルカリ水溶液を添加して処理液を攪拌することにより、該処 理液にけん化処理を施す方法が好ま ヽ。 [0041] Examples of the method for removing the emulsifying dig compound such as the component (B) include a method using an adsorbent such as calcium ichthy and an ion exchange resin such as a styrene-dibutylbenzene copolymer. . However, since the removal efficiency is high and industrially advantageous, the treatment solution is further stirred by adding an aqueous alkaline solution to the treatment solution after the neutralization treatment. A method of saponifying the liquid is preferred.
[0042] 中和処理工程とけん化処理工程とは、まとめて実施されてもよ!、し、別々に実施さ れてもよい。中和処理工程とけん化処理工程とがまとめて実施される場合には、反応 生成物に対して、アルカリ成分が中和に必要な量より過剰に加えられる。具体的には 、アルカリ成分を中和に必要な量に対して 1. 4倍以上使用することが好ましい。処理 時間は、投入時間を含めて 10分以上が好ましい。処理温度は、中和熱を加味して 2 0〜70°Cが好ましい。高濃度のアルカリ水溶液が使用される場合には、処理工程中 に (メタ)アクリル酸ナトリウムの濃度が高くなることから、重合及び塩析に注意する必 要がある。 [0042] The neutralization treatment step and the saponification treatment step may be performed together! Or may be performed separately. When the neutralization treatment step and the saponification treatment step are performed together, the alkali component is added to the reaction product in excess of the amount necessary for neutralization. Specifically, it is preferable to use an alkali component at least 1.4 times the amount necessary for neutralization. The treatment time is preferably 10 minutes or more including the charging time. The treatment temperature is preferably 20 to 70 ° C. in consideration of heat of neutralization. When a high concentration alkaline aqueous solution is used, it is necessary to pay attention to polymerization and salting out because the concentration of sodium (meth) acrylate increases during the treatment process.
[0043] 次に、中和処理工程とけん化処理工程とが別々に実施される場合について説明す る。  [0043] Next, the case where the neutralization treatment step and the saponification treatment step are performed separately will be described.
[0044] けん化処理工程におけるけん化処理では、前記中和処理工程後又は後記水洗処 理工程後で得られる有機層力 けん化処理剤としてのアルカリで処理されることにより 、(B)成分等の乳化性ィ匕合物とアルカリとのけん化反応が行われて (B)成分等の乳 化性ィ匕合物が分解される。このけん化処理工程は、前記中和処理工程と別個に行わ れることにより、けん化反応を効果的に行うことができる。  [0044] In the saponification treatment in the saponification treatment step, emulsification of the component (B) and the like by treatment with an alkali as an organic layer strength saponification treatment agent obtained after the neutralization treatment step or after the water washing treatment step described later. The saponification reaction between the chemical compound and the alkali is carried out, and the emulsifying compound such as component (B) is decomposed. This saponification treatment step is performed separately from the neutralization treatment step, so that the saponification reaction can be effectively performed.
[0045] けん化処理の方法としては、例えば前記中和処理後又は後記水洗処理後に得ら れる有機層にけん化処理剤が添加されて攪拌及び混合される方法が挙げられる。  [0045] Examples of the saponification treatment method include a method in which a saponification agent is added to the organic layer obtained after the neutralization treatment or after the water washing treatment described later and stirred and mixed.
[0046] このけん化処理工程では、投入されるけん化処理剤としてのアルカリ水溶液の濃度 、量、攪拌時間、及び処理温度が幅広く選択され得る。このため、けん化処理は、ァ ルカリによって、(B)成分であるカルボキシル基を有するエステルのエステル結合を、 対応する (メタ)アクリル酸〔実質上 (メタ)アクリルアルカリ金属塩〕と多価アルコールと に加水分解する。分解生成物は、水に溶解して除去される。  In this saponification treatment step, the concentration, amount, stirring time, and treatment temperature of the alkaline aqueous solution as the saponification treatment agent to be charged can be selected widely. For this reason, the saponification treatment is carried out by converting the ester bond of the ester having a carboxyl group (B) with the corresponding (meth) acrylic acid (substantially (meth) acrylic alkali metal salt) and polyhydric alcohol. Hydrolyzes to The decomposition products are removed by dissolving in water.
[0047] けん化処理剤として用いられるアルカリとしては、アルカリ水溶液が好まし 、。アル カリ水溶液におけるアルカリ成分としてはアルカリ金属塩及びアルカリ土類金属塩が 挙げられ、例えばアルカリ金属水酸化物、アルカリ金属炭酸塩、及びアルカリ土類金 属水酸ィ匕物が挙げられる。アルカリ金属水酸ィ匕物としては、例えば水酸ィ匕ナトリウム 及び水酸化カリウムが挙げられる。アルカリ金属炭酸塩としては、例えば炭酸ナトリウ ムが挙げられる。アルカリ土類金属水酸ィ匕物としては、例えば水酸ィ匕カルシウムが挙 げられる。これらの中でも、けん化処理の効果が高いことから、アルカリ金属水酸化物 が好ましい。アルカリ水溶液の濃度は、 1〜25質量%が好ましぐ 10〜25質量%が より好ましい。アルカリの使用量は、中和処理時のアルカリの使用量に対して 0. 2〜 4倍が好ましぐ処理槽の大きさ及び排水量を考慮して 0. 5〜2倍がより好ましい。け ん化処理は撹拌下で行われることが好ましぐその際の撹拌時間は 10分から 3時間 が好ましい。この場合、けん化処理剤として中和処理剤と同じ処理剤が使用されるこ とにより、両処理を効率よく行うことができる。けん化処理の処理温度は、乳化性ィ匕合 物のけん化処理を常温(20°C)又は少しの加熱で容易に行うことができることから、 2 0〜70°Cが好ましい。 [0047] As the alkali used as the saponification agent, an aqueous alkali solution is preferred. Examples of the alkali component in the aqueous alkali solution include alkali metal salts and alkaline earth metal salts, and examples thereof include alkali metal hydroxides, alkali metal carbonates, and alkaline earth metal hydroxides. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Examples of the alkali metal carbonate include sodium carbonate. Can be mentioned. Examples of the alkaline earth metal hydroxide include hydroxide calcium. Among these, alkali metal hydroxides are preferable because the effect of the saponification treatment is high. The concentration of the alkaline aqueous solution is preferably 1 to 25% by mass, more preferably 10 to 25% by mass. The amount of alkali used is more preferably 0.5 to 2 times in consideration of the size of the treatment tank and the amount of drainage, which is preferably 0.2 to 4 times the amount of alkali used during the neutralization treatment. The saponification treatment is preferably performed under stirring, and the stirring time is preferably 10 minutes to 3 hours. In this case, both treatments can be performed efficiently by using the same treatment agent as the neutralization treatment agent as the saponification treatment agent. The treatment temperature of the saponification treatment is preferably 20 to 70 ° C. because the saponification treatment of the emulsifiable compound can be easily performed at room temperature (20 ° C.) or with a little heating.
[0048] けん化工程は、上述した好ましい条件の範囲内における処理により完了する力 必 要に応じて、けん化工程の進行度は管理可能である。けん化処理の進行度を管理 する方法として、水層のアルカリ価、有機層の伝導率 (電気伝導率)、及び界面張力 を測定する方法が挙げられる。水層のアルカリ価は、例えばエステルの種類、副反応 の増減、及び用いられるアルカリ水溶液の濃度によって異なることから、製造銘柄及 び処方ごとにアルカリ価の推移を調べる必要がある。一般に、アルカリ価による管理 方法では、けん化処理中のアルカリ価の変動が小さくなつた時点をけん化処理工程 の終了の目安にすることができる。  [0048] The saponification step can be completed by the treatment within the above-mentioned preferable conditions. The progress of the saponification step can be managed as required. Methods for controlling the degree of progress of the saponification treatment include a method of measuring the alkali number of the aqueous layer, the conductivity (electrical conductivity) of the organic layer, and the interfacial tension. Since the alkali number of the aqueous layer varies depending on, for example, the type of ester, the increase or decrease in side reactions, and the concentration of the aqueous alkali solution used, it is necessary to examine the transition of the alkali number for each production brand and formulation. In general, in the management method based on the alkali number, the point at which the variation of the alkali number during the saponification process becomes small can be used as a measure of the end of the saponification process.
[0049] 有機層の伝導率は、有機層中に含まれるイオン成分が多いときに高くなり、このよう な状態では、主に乳化性ィ匕合物がアルカリ金属塩として存在している。けん化反応 の進行に伴 ヽ、イオン成分は分解されて有機層からアルカリ水溶液層に移行して ヽ く。このため、水層のアルカリ価と同様に、有機層の伝導率は銘柄及び処方によって 異なるものの、伝導率の変動が小さくなつた時点をけん化処理工程の終了の目安と することができる。  [0049] The conductivity of the organic layer increases when the ionic component contained in the organic layer is large. In such a state, the emulsifiable compound is mainly present as an alkali metal salt. As the saponification reaction proceeds, the ionic components are decomposed and transferred from the organic layer to the alkaline aqueous solution layer. Therefore, as with the alkali number of the aqueous layer, the conductivity of the organic layer varies depending on the brand and formulation, but the point at which the variation in conductivity becomes small can be used as a guideline for the end of the saponification process.
[0050] 有機層の界面張力も、上述のアルカリ価及び伝導率と同様に考えられることができ る。乳化性ィ匕合物が有機層に存在すると界面張力は小さい値となるが、乳化性ィ匕合 物が分解及び除去されるに伴って界面張力は上昇する。このため、界面張力の変動 力 、さくなつた時点をけん化処理工程の終了の目安とすることができる。 (水洗処理工程) [0050] The interfacial tension of the organic layer can also be considered in the same manner as the above-described alkali number and conductivity. When the emulsifying compound is present in the organic layer, the interfacial tension becomes small, but the interfacial tension increases as the emulsifying compound is decomposed and removed. For this reason, the fluctuation force of the interfacial tension and the time point when it has become short can be used as a guideline for the end of the saponification process. (Washing process)
本発明では、前記反応液又は処理液に水洗処理が施されることが好ましい。水洗 処理は、前記エステル化反応で得られた反応液、前記中和後の有機層及び前記け ん化処理後の有機層に対して行われることができる。どの時点で水洗処理が行われ るかは、使用される成分及び目的に応じて適宜選択される。  In the present invention, the reaction solution or the treatment solution is preferably subjected to a water washing treatment. The water washing treatment can be performed on the reaction solution obtained by the esterification reaction, the neutralized organic layer, and the saponification organic layer. The point at which the water washing treatment is performed is appropriately selected according to the components used and the purpose.
[0051] 水洗処理は常法に従って行われる。常法としては、例えば前記エステルイ匕反応で 得られた反応液、前記中和後の有機層及び前記けん化処理後の有機層に水が添 加されて攪拌及び混合される方法が挙げられる。  [0051] The water washing treatment is performed according to a conventional method. Examples of the conventional method include a method in which water is added to the reaction solution obtained by the esterification reaction, the neutralized organic layer, and the saponified organic layer and stirred and mixed.
(脱溶剤処理工程)  (Solvent removal process)
前記中和処理、けん化処理又は水洗処理後、生成された多官能 (メタ)アクリル酸 エステル類を含有する有機層(上層)が得られ、次いでこの有機層から有機溶媒が公 知の方法で除去されることにより、多官能 (メタ)アクリル酸エステルを得ることができる  After the neutralization treatment, saponification treatment or water washing treatment, an organic layer (upper layer) containing the produced polyfunctional (meth) acrylic acid esters is obtained, and then the organic solvent is removed from this organic layer by a known method. As a result, a polyfunctional (meth) acrylic acid ester can be obtained.
[0052] この脱溶剤処理工程では、多官能 (メタ)アクリル酸エステルの熱重合を抑えるため に、有機層に酸素が供給されたり重合禁止剤が添加されたりするとともに、温度が例 えば 80°C以下に維持され、更に処理が減圧下で行われる。多官能 (メタ)アクリル酸 エステルは、必要に応じて精留により精製され得る。 [0052] In this solvent removal treatment step, oxygen is supplied to the organic layer or a polymerization inhibitor is added to the organic layer in order to suppress thermal polymerization of the polyfunctional (meth) acrylic acid ester. C or lower, and further processing is performed under reduced pressure. The polyfunctional (meth) acrylic acid ester can be purified by rectification as necessary.
(印刷インク用途への応用例)  (Application example for printing ink)
次に、本実施形態の多官能 (メタ)アクリル酸エステルは、特に印刷インクとして好適 に用いられるが、優れたインク特性を有する多官能 (メタ)アクリル酸エステルを得るた めには、けん化処理工程及びその後の処理が以下のように行われることが好まし!/、。 すなわち、けん化処理工程では、けん化反応を促進するために、 30〜60°Cの処理 温度、及び好ましくは 1〜25質量%、より好ましくは 10〜25質量%のアルカリ水溶液 の濃度の条件でけん化処理が行われる。  Next, the polyfunctional (meth) acrylic acid ester of the present embodiment is particularly suitably used as a printing ink, but in order to obtain a polyfunctional (meth) acrylic acid ester having excellent ink properties, a saponification treatment is performed. It is preferable that the process and the subsequent processing are performed as follows! /. That is, in the saponification treatment step, in order to promote the saponification reaction, saponification is performed under the conditions of a treatment temperature of 30 to 60 ° C. and a concentration of an alkaline aqueous solution of preferably 1 to 25% by mass, more preferably 10 to 25% by mass. Processing is performed.
[0053] より優れた分散性を有する製品を得るために、けん化処理後の有機層が酸性水で 洗浄されることが好ましい。酸性水としては、例えば硫酸アンモニゥム水溶液、塩ィ匕ァ ンモニゥム水溶液、及び塩酸水溶液が挙げられる。これにより、副反応及び中和処理 で生成されたカルボン酸ナトリウム(一 COONa)を含む化合物力もナトリウムが脱離さ れる。この処理により、アルカリ金属塩の形態を有する乳化性化合物が酸構造を有す る化合物となった後、脱溶剤処理により除去される。このような処理が行われることに より、インク顔料の優れた分散性を有するインクを得ることができる。 [0053] In order to obtain a product having better dispersibility, the organic layer after the saponification treatment is preferably washed with acidic water. Examples of the acidic water include an ammonium sulfate aqueous solution, a salt ammonium aqueous solution, and a hydrochloric acid aqueous solution. As a result, sodium is also eliminated from compound forces containing sodium carboxylate (one COONa) produced by side reactions and neutralization. It is. By this treatment, the emulsifying compound having the form of an alkali metal salt becomes a compound having an acid structure, and then removed by a solvent removal treatment. By performing such treatment, an ink having excellent dispersibility of the ink pigment can be obtained.
[0054] さて、本実施形態の作用につ 、て説明すると、多官能 (メタ)アクリル酸エステルの 製造の際に、エステル化反応工程におけるエステル化反応で生成される反応生成 物に中和処理が施され、さらに精製工程におけるけん化処理工程でけん化処理が 施される。このけん化処理では、(B)成分であるカルボキシル基を有するエステル化 合物のエステル結合がアルカリによって加水分解される。それにより、(B)成分が (メ タ)アクリル酸、多価アルコール等の水溶性ィ匕合物に分解される。その後、水洗処理 によりそれらの分解生成物が水に溶解して除去される。その結果、(メタ)アクリル酸ェ ステル組成物中の(B)成分の含有量が lOOOppm以下に抑えられる。  [0054] Now, the operation of the present embodiment will be described. When the polyfunctional (meth) acrylic acid ester is produced, the reaction product produced by the esterification reaction in the esterification reaction step is neutralized. In addition, saponification is performed in the saponification process in the purification process. In this saponification treatment, the ester bond of the ester compound having a carboxyl group as the component (B) is hydrolyzed by alkali. Thereby, the component (B) is decomposed into water-soluble compounds such as (meth) acrylic acid and polyhydric alcohol. Thereafter, these decomposition products are dissolved in water and removed by washing with water. As a result, the content of component (B) in the (meth) acrylic acid ester composition can be suppressed to lOOOppm or less.
[0055] 本実施形態は以下の利点を有する。 This embodiment has the following advantages.
[0056] 本実施形態の多官能 (メタ)アクリル酸エステル組成物は、主成分である (A)成分と して 2個以上の (メタ)アタリロイルォキシ基を有する化合物、及び副成分である(B)成 分として前記 (A)成分における (メタ)アタリロイルォキシ基の 、ずれか 1個が前記化 学式( 1)で表される基で置換された化合物を含有して!/、る。多官能 (メタ)アクリル酸 エステル組成物における(B)成分の含有量は lOOOppm以下である。このため、乳化 性化合物を減少させて、該乳化性化合物によって多官能 (メタ)アクリル酸エステル 組成物が乳化性を示す弊害を抑制することができる。その結果、多官能 (メタ)アタリ ル酸エステルが例えばインクに用いられる場合、インクのにじみ及び製造設備の汚 染を抑制することができる。  [0056] The polyfunctional (meth) acrylic acid ester composition of the present embodiment includes a compound having two or more (meth) attayloxy groups as the main component (A) and a subcomponent. As a certain component (B), the compound contains a compound in which at least one of the (meth) ataryloxy groups in the component (A) is substituted with the group represented by the chemical formula (1)! / The content of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less. For this reason, it is possible to reduce the emulsifying compound and suppress the adverse effect of the emulsifying compound on the polyfunctional (meth) acrylic acid ester composition. As a result, when a polyfunctional (meth) acrylate is used in an ink, for example, it is possible to suppress ink bleeding and contamination of manufacturing equipment.
[0057] 前記 (A)成分は、好ましくは 3個以上の (メタ)アタリロイルォキシ基を有する化合物 である。さらに、(A)成分がジペンタエリスリトールペンタ (メタ)アクリル酸エステル又 はジペンタエリスリトールへキサ (メタ)アクリル酸エステルであり、(B)成分が前記化 学式(2)で表される化合物であることにより、それらの多官能 (メタ)アクリル酸エステ ルにつ 、て上述の効果を十分に発揮することができる。  [0057] The component (A) is preferably a compound having three or more (meth) ataryloxy groups. Further, (A) component is dipentaerythritol penta (meth) acrylic acid ester or dipentaerythritol hex (meth) acrylic acid ester, and (B) component is a compound represented by the chemical formula (2). Therefore, the above-described effects can be sufficiently exerted with respect to those polyfunctional (meth) acrylic acid esters.
[0058] 多官能 (メタ)アクリル酸エステル組成物の製造方法では、酸触媒の存在下にお ヽ て、多価アルコールと (メタ)アクリル酸とが有機溶媒中でエステルイ匕反応して多官能 (メタ)アクリル酸エステル組成物が製造される。次いで、多官能 (メタ)アクリル酸エス テル組成物中の(B)成分の割合が lOOOppm以下となるように多官能 (メタ)アクリル 酸エステル組成物が精製される。この製造方法では、前記 (B)成分を指標として多 官能 (メタ)アクリル酸エステル組成物の精製を行うことによって、上述の効果を有する 多官能 (メタ)アクリル酸エステル組成物を容易に製造することができる。 [0058] In the method for producing a polyfunctional (meth) acrylic acid ester composition, a polyfunctional alcohol and (meth) acrylic acid react with each other in an organic solvent in the presence of an acid catalyst. A (meth) acrylic ester composition is produced. Next, the polyfunctional (meth) acrylic acid ester composition is purified so that the proportion of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOppm or less. In this production method, the polyfunctional (meth) acrylic acid ester composition having the above-described effects is easily produced by purifying the polyfunctional (meth) acrylic acid ester composition using the component (B) as an index. be able to.
[0059] 従って、上述のようにして得られる多官能 (メタ)アクリル酸エステル組成物は、印刷 インクのほか、耐乳化性が必要とされる塗料、接着剤等の分野に好適に用いられこと ができる。 [0059] Therefore, the polyfunctional (meth) acrylic acid ester composition obtained as described above should be suitably used in fields such as paints and adhesives that require emulsification resistance in addition to printing inks. Can do.
実施例  Example
[0060] 以下に、合成例、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明 するが、本発明はそれらの実施例に限定されるものではない。  [0060] The embodiment will be described more specifically with reference to synthesis examples, examples and comparative examples, but the present invention is not limited to these examples.
(合成例 1)  (Synthesis Example 1)
攪拌機及び温度計を備えた 2L反応器に、ジペンタエリスルトール 315g (l. 24モ ノレ)、 クジノレ酸 643g (8. 9モノレ)、 卜ノレェン 526g、塩ィ匕第二銅 1. 5g、 78%硫酸 15g を仕込み、 53kPaの圧力下、 100°Cに設定されたオイルバスで反応器を加熱してェ ステルイ匕反応を開始した。トルエンとともに共沸する縮合水をディーンスターク装置に て除去してエステルイ匕反応を進め、 8時間後に反応を停止した。このときの反応液重 量は 1380gであり、その酸価は 1. 75meq/gであった。  In a 2L reactor equipped with a stirrer and a thermometer, dipentaerythritol 315g (l. 24 monole), kuzinoleic acid 643g (8.9 monole), 卜 noren 526g, salt 匕 cupric 1.5g, Esterui reaction was started by charging 15 g of 78% sulfuric acid and heating the reactor in an oil bath set at 100 ° C under a pressure of 53 kPa. Condensed water azeotroped with toluene was removed using a Dean-Stark apparatus and the esterification reaction proceeded, and the reaction was stopped after 8 hours. The weight of the reaction solution at this time was 1380 g, and the acid value was 1.75 meq / g.
[0061] 得られた反応液を冷却した後、トルエン 740gを加えて希釈した。希釈された反応液 を中和処理用の槽に移し、純水 350gをカ卩えて 5分間攪拌した後、 30分静置して上 層と下層とを分離した。 [0061] The obtained reaction solution was cooled, and diluted by adding 740 g of toluene. The diluted reaction solution was transferred to a neutralization tank, 350 g of pure water was added and stirred for 5 minutes, and then allowed to stand for 30 minutes to separate the upper and lower layers.
[0062] 上層 700gに、 20%水酸ィ匕ナトリウム水溶液 115g (上層中の酸分に対して等モル 量)を加え、 5分間攪拌した後 30分間静置し、上層と下層とを分離した。上層の酸価 を測定したところ、酸価は 0. 82meq/gであった。  [0062] To 700 g of the upper layer, 115 g of a 20% sodium hydroxide aqueous solution (equal molar amount with respect to the acid content in the upper layer) was added, stirred for 5 minutes, and allowed to stand for 30 minutes to separate the upper layer from the lower layer. . When the acid value of the upper layer was measured, the acid value was 0.82 meq / g.
[0063] 分離された上層の重量は 650gであった。この液 (以下、本液という)を用い、(B)成 分の単離及び分析を行った。  [0063] The weight of the separated upper layer was 650 g. Using this solution (hereinafter referred to as “this solution”), the component (B) was isolated and analyzed.
[0064] (B)成分の単離及び分析  [0064] Isolation and analysis of component (B)
合成例 1で得られた本液を減圧及び濃縮して残渣を得た。この残渣 2. 5gを酢酸ェ チル 15mlに溶解した後、 0.5%炭酸ナトリウム水溶液 10mlで 2回抽出した。これら の抽出により得られる下層を合わせた後、 1M塩酸をカ卩えて pHl.5の酸性水溶液を 得た。該水溶液を酢酸ェチル 15mlで抽出し、この抽出により得られる上層を蒸留水 5mlで洗浄した後、無水硫酸ナトリウム lgを加えて脱水した。濾過後に得られた酢酸 ェチル溶液を湯浴に浸して濃縮し、残渣 15mgを得た。 The liquid obtained in Synthesis Example 1 was reduced in pressure and concentrated to obtain a residue. 2.5 g of this residue After dissolving in 15 ml of chill, it was extracted twice with 10 ml of 0.5% aqueous sodium carbonate solution. After the lower layers obtained by these extractions were combined, 1M hydrochloric acid was added to obtain an acidic aqueous solution with a pH of 1.5. The aqueous solution was extracted with 15 ml of ethyl acetate, and the upper layer obtained by this extraction was washed with 5 ml of distilled water, and dehydrated by adding anhydrous sodium sulfate lg. The ethyl acetate solution obtained after filtration was immersed in a hot water bath and concentrated to obtain 15 mg of residue.
[0065] 得られた残渣につい ocて=、プロトン NMR (核磁気共鳴スペクトル)分析法、 IR (赤外 線吸収スペクトル)分析法及び MALDI— TOFMS (マトリックス支援レーザ脱離ィォ ン化質量スペクトル)分析法により分析を行った。得られたスペクトルをそれぞれ図 1 〜3に示す。さらに、残渣を DMF (ジメチルホルムアミド) ジメチルァセタールにより 処理して、メチルエステル化して得られた試料について、 MALDI—TOFMSにより 分析を行った。得られたスペクトルを図 4に示す。  [0065] For the obtained residue, oc =, proton NMR (nuclear magnetic resonance spectrum) analysis method, IR (infrared absorption spectrum) analysis method and MALDI-TOFMS (matrix-assisted laser desorption ionization mass spectrum) The analysis was performed by the analytical method. The obtained spectra are shown in Figs. Further, the residue was treated with DMF (dimethylformamide) dimethyl acetal and methyl esterified to analyze the sample by MALDI-TOFMS. The obtained spectrum is shown in FIG.
[0066] 以上の分析結果より、下記の化学式 (6)で表される化合物、化学式(7)で表される 化合物、及び化学式 (8)で表される化合物をそれぞれ確認することができた。  From the above analysis results, it was possible to confirm the compound represented by the following chemical formula (6), the compound represented by the chemical formula (7), and the compound represented by the chemical formula (8).
[0067] [化 8]  [0067] [Chemical 8]
CH. CH
Figure imgf000018_0001
CH. CH
Figure imgf000018_0001
[0068] [化 9] [0068] [Chemical 9]
=CH = CH
CH2=CH -C-0-H2C-C-CH2-o-CH2-C-CH2-0-CH2~CH2 COOHCH 2 = CH -C-0-H 2 CC-CH 2 -o-CH 2 -C-CH 2 -0-CH 2 ~ CH 2 COOH
CH, CH,
I ' (7) I '(7)
=CH -C-O O-C-CH : CHつ = CH -C-O O-C-CH: CH
II  II
o O [0069] [化 10] o O [0069] [Chemical 10]
Figure imgf000019_0001
Figure imgf000019_0001
[0070] 前記化学式 (6)で表される化合物、及び化学式(7)で表される化合物は、前記化 学式(2)において、 R1が水素原子を表し、 A〜A5の内の 4個がアタリロイル基を表す とともに残り 1個が水素原子を表すィ匕合物である。前記化学式 (8)で表される化合物 は、前記化学式(2)において、 R1が水素原子を表し、 ^〜A5がアタリロイル基を表 すィ匕合物である。 [0070] In the compound represented by the chemical formula (6) and the compound represented by the chemical formula (7), in the chemical formula (2), R 1 represents a hydrogen atom, and A to A 5 Four compounds represent an allyloyl group and the remaining one represents a hydrogen atom. The compound represented by the chemical formula (8) is a compound in which, in the chemical formula (2), R 1 represents a hydrogen atom and ^ to A 5 represent an allyloyl group.
[0071] 1)図 1 (プロトン NMR ^ベクトル)  [0071] 1) Figure 1 (Proton NMR ^ vector)
図 1において、 2. 5〜2. 6ppmのシグナノレは、 O— CH—CH—COOH (力ノレ  In Fig. 1, 2.5 to 2.6 ppm of signole is O-CH-CH-COOH (force nore
2 2  twenty two
ボン酸)の OC—メチレンに由来するものである。  Boric acid) derived from OC-methylene.
[0072] 〔測定機器と条件〕  [Measurement equipment and conditions]
270MHz,日本電子製、 JNM— EX270型  270MHz, JEOL JNM—EX270 type
測定条件: 重クロ口ホルム溶液、積算回数 32回、常温  Measuring conditions: Heavy black mouth form solution, 32 times of integration, normal temperature
2)図 2 (IR ^ベクトル)  2) Figure 2 (IR ^ vector)
図 2において、 1721. 7cm_1は、エステル結合の吸収を示す。 In FIG. 2, 1721.7 cm _1 indicates absorption of an ester bond.
[0073] 〔測定機器と条件〕 [0073] [Measurement equipment and conditions]
ニコレ一社製、 Impact -400D  Made by Nicole, Impact -400D
アクセサリー: μ -ATR (SensIRテクノロジー製)、ダイヤモンドクリスタル 1回反 射型  Accessories: μ-ATR (SensIR Technology), diamond crystal once-reflection type
測定条件: 分解能 4cm_ 1、積算回数 32回 Measurement conditions: Resolution 4cm _ 1 , Accumulation count 32 times
3)図 3 (MALDI—TOFMSスペクトル)  3) Figure 3 (MALDI-TOFMS spectrum)
図 3において、 mZz564は、化学式 (6)で表される化合物及び化学式(7)で表さ れる化合物に、イオン化助剤に由来するナトリウムが付加したものを示す。 In FIG. 3, mZz564 is represented by the compound represented by the chemical formula (6) and the chemical formula (7). In which sodium derived from an ionization aid is added.
[0074] mZz586は、化学式 (6)で表される化合物及び化学式(7)で表される化合物のナ トリウム塩に、イオンィ匕助剤に由来するナトリウムが付加したものを示す。  [0074] mZz586 represents a compound represented by the chemical formula (6) and a sodium salt of the compound represented by the chemical formula (7) added with sodium derived from an ionic assistant.
[0075] mZz618は、化学式 (8)で表される化合物に、イオン化助剤に由来するナトリウム が付加したものを示す。  [0075] mZz618 represents a compound obtained by adding sodium derived from an ionization aid to the compound represented by the chemical formula (8).
[0076] mZz640は、化学式 (8)で表される化合物のナトリウム塩に、イオン化助剤に由来 するナトリウムが付加したものを示す。  [0076] mZz640 represents a compound obtained by adding sodium derived from an ionization aid to the sodium salt of the compound represented by the chemical formula (8).
[0077] 〔測定機器と条件〕 [0077] [Measurement equipment and conditions]
装置: PE biosystems社製、 Voyager— DE RP型  Equipment: PE biosystems, Voyager—DE RP type
レーザ: Nレーザ(λ = 337nm)  Laser: N laser (λ = 337nm)
2  2
加速電圧: 20kV  Accelerating voltage: 20kV
測定モード: リニア一モード  Measurement mode: Linear one mode
測定対象イオン: ポジティブイオン  Ion to be measured: Positive ion
試料調製方法  Sample preparation method
a)各試料 10mgをアセトン lmlに溶解させる。  a) Dissolve 10 mg of each sample in 1 ml of acetone.
b)マトリックス: 2, 5—ジヒドロキシ安息香酸(DHB) 10mgをアセトン lmlに溶解させ る。  b) Matrix: Dissolve 10 mg of 2,5-dihydroxybenzoic acid (DHB) in 1 ml of acetone.
c)イオンィ匕助剤:ヨウ化ナトリウム 5mgをアセトン lmlに溶解させる。  c) Ionic aid: 5 mg of sodium iodide is dissolved in 1 ml of acetone.
d)前記 a)〜c)の各溶液を 2 μ 1ずつ採取して混合し、 1 μ 1の混合液を MALDI—TO FMS用試料プレート上に滴下して結晶を生成させる。  d) Collect 2 μ 1 of each of the solutions a) to c) and mix them, and drop 1 μ 1 of the mixture onto the sample plate for MALDI-TO FMS to form crystals.
[0078] 4)図 4 (メチルエステル誘導化後の MALDI— TOFMSスペクトル)  [0078] 4) Figure 4 (MALDI-TOFMS spectrum after methyl ester derivatization)
図 4において、 mZz578は、化学式(6)及び(7)のカルボキシル基力メチルエステ ル化された化合物に、イオンィ匕助剤に由来するナトリウムが付加したものを示す。  In FIG. 4, mZz578 is a compound obtained by adding sodium derived from an ionic assistant to the carboxylated methylesterified compounds of the chemical formulas (6) and (7).
[0079] mZz632は、化学式(8)のカルボキシル基力メチルエステル化された化合物に、ィ オンィ匕助剤に由来するナトリウムが付加したものを示す。 [0079] mZz632 represents a compound obtained by adding sodium derived from a ionic assistant to the carboxyl group-methylated compound of formula (8).
[0080] (B)成分の定量 [0080] Quantification of component (B)
合成例 1で得られた本液を HPLC (高速液体クロマトグラフ)分析したところ、 (B)成 分〔化学式(6)、 (7)及び(8)の化合物〕が 8000ppm含まれて!/、た。 HPLCの条件を 以下に示す。 When this liquid obtained in Synthesis Example 1 was analyzed by HPLC (high performance liquid chromatography), it contained 8000 ppm of (B) component [compounds of chemical formulas (6), (7) and (8)]! /, It was. HPLC conditions It is shown below.
(HPLC分析方法と条件)  (HPLC analysis method and conditions)
装置:(株)島津製作所製 LC - 20AD型  Equipment: LC-20AD made by Shimadzu Corporation
カラム:ジーエルサイエンス(株)製 Inertsil ODS— 2 (4. 6mml. D. X 150mm) 溶離液:流速 1. Oml/min  Column: Inertsil ODS-2 (4.6 mml. D. X 150 mm) manufactured by GL Sciences Inc. Eluent: Flow rate 1. Oml / min
0. 015%リン酸水 Zメタノール(質量比) =55Z45 (Initial)  0. 015% phosphoric acid water Z methanol (mass ratio) = 55Z45 (Initial)
= 50/50 (lOmin)  = 50/50 (lOmin)
= 30/70 (40min)  = 30/70 (40min)
= 20/80 (45min)  = 20/80 (45min)
= 0/100 (55min)  = 0/100 (55min)
カラム温度: 40°C  Column temperature: 40 ° C
検出波長: 210nm  Detection wavelength: 210nm
試料: lOOmgZlOml (ァセトニトリル)、注入量 5 μ 1  Sample: lOOmgZlOml (acetonitrile), injection volume 5 μ 1
(Β)成分濃度計算法: (Β)成分の濃度は以下の式により計算された。  (Ii) Component concentration calculation method: The concentration of (iv) component was calculated by the following formula.
[0081] 濃度 (ppm) = (ィヒ合物の検出ピーク面積) Z (0〜55分までの検出ピークの全面積 ) X 106 [0081] Concentration (ppm) = (Detection peak area of dig compound) Z (Total area of detection peak from 0 to 55 minutes) X 10 6
次に、前記本液を用いて、以下の実施例 1〜3及び比較例 1を実施した。 (実施例 1)  Next, the following Examples 1 to 3 and Comparative Example 1 were carried out using the liquid. (Example 1)
合成例 1で得られた本液に、 20%水酸ィ匕ナトリウム水溶液を中和処理時の添加量 の 2倍量(230g)添加し、液温を 30°Cに維持しながら 1時間攪拌してけん化処理を行 つた。そして、 30分間静置した後に下層を除去した。上層を HPLC分析したところ、 ( B)成分が lOOppm以下であった。上層に純水 70gをカ卩えて 5分間攪拌し、 1時間静 置した後に上層を分離した。上層にハイドロキノンモノメチルエーテルを固形分に対 して 400ppm添カ卩し、減圧下で脱溶剤処理を行った。  To this liquid obtained in Synthesis Example 1, 20% aqueous solution of sodium hydroxide and sodium hydroxide was added (230g) twice the amount added during neutralization, and stirred for 1 hour while maintaining the liquid temperature at 30 ° C. Then, saponification was performed. And after leaving still for 30 minutes, the lower layer was removed. As a result of HPLC analysis of the upper layer, the component (B) was 10 ppm or less. 70 g of pure water was added to the upper layer, stirred for 5 minutes, allowed to stand for 1 hour, and then the upper layer was separated. Hydroquinone monomethyl ether was added to the upper layer at 400 ppm based on the solid content, and the solvent was removed under reduced pressure.
[0082] この際、オイルバス温度を 80°Cに設定し、液温が該温度を越えな 、ようにした。ま た、酸素含有窒素ガスを必要に応じて吹き込んで重合防止措置をとつた。得られた 多官能アクリル酸エステル組成物中の(B)成分は、 lOOppm以下であった。その多 官能アクリル酸エステル組成物にっ ヽて、以下の方法に従 ヽ耐乳化性試験を行った 。その結果を表 1に示す。 At this time, the oil bath temperature was set to 80 ° C. so that the liquid temperature did not exceed the temperature. Also, oxygen-containing nitrogen gas was blown as necessary to prevent polymerization. The component (B) in the obtained polyfunctional acrylic ester composition was lOOppm or less. The polyfunctional acrylic ester composition was subjected to an emulsification resistance test according to the following method. . The results are shown in Table 1.
(耐乳化性試験方法)  (Emulsification resistance test method)
試験管にキシレン 6. 6gを入れ、更に得られた多官能アクリル酸エステル組成物 3. 3gを添加して溶解させ、この溶液に水 9. 9gを加えた。そして、試験管を 30秒間に 1 0往復する速度で攪拌した後に静置して試験管内を目視で観察し、以下の基準で判 し 7こ。  6.6 g of xylene was placed in a test tube, and 3.3 g of the resulting polyfunctional acrylate composition was added and dissolved, and 9.9 g of water was added to this solution. Then, after stirring the test tube at a speed of 10 reciprocations in 30 seconds, the test tube was allowed to stand and visually observed inside the test tube.
[0083] ◎:上層及び下層が 5分以内に分離し、両層の透明性が高い。  [0083] A: The upper layer and the lower layer are separated within 5 minutes, and the transparency of both layers is high.
[0084] 〇:上層及び下層が 10分以内に分離し、前記 "◎"に比べて両層の透明性が若干 低下するが良好である。  [0084] ○: The upper layer and the lower layer are separated within 10 minutes, and the transparency of both layers is slightly lower than that of “◎”, but it is good.
[0085] △:上層及び下層が分離はするものの、両層の透明性が良くない。 Δ: Although the upper layer and the lower layer are separated, the transparency of both layers is not good.
[0086] X:上層及び下層が分離しないか、又は上層と下層との間に中間層が発生する。 [0086] X: The upper layer and the lower layer are not separated, or an intermediate layer is generated between the upper layer and the lower layer.
(実施例 2)  (Example 2)
合成例 1で得られた本液に、 20%水酸ィ匕ナトリウム水溶液 115g (中和処理にて使 用された 20%水酸ィ匕ナトリウムと同量)を使用した以外は、実施例 1と同様にしてけん 化処理を行い、多官能アクリル酸エステル組成物を得た。得られた多官能アクリル酸 エステル組成物について、実施例 1と同様にして評価した。その結果を表 1に示す。 (実施例 3)  Example 1 except that 115 g of a 20% sodium hydroxide aqueous solution (the same amount as 20% sodium hydroxide used in the neutralization treatment) was used for the main solution obtained in Synthesis Example 1. A saponification treatment was carried out in the same manner as above to obtain a polyfunctional acrylic ester composition. The obtained polyfunctional acrylic ester composition was evaluated in the same manner as in Example 1. The results are shown in Table 1. (Example 3)
実施例 2において、攪拌時間を 3時間にする以外は、実施例 2と同様の方法により 多官能アクリル酸エステル組成物を得た。得られた多官能アクリル酸エステル組成物 について、実施例 1と同様に評価した。その結果を表 1に示す。  In Example 2, a polyfunctional acrylate composition was obtained in the same manner as in Example 2, except that the stirring time was 3 hours. The obtained polyfunctional acrylic ester composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
(比較例 1)  (Comparative Example 1)
合成例 1で得られた本液に、純水 70gを加えて 5分間撹拌し、 5時間静置した後に 下層を除去した。すなわち、けん化処理を行わな力 た。そして、上層を実施例 1と 同様にして減圧下で脱溶剤処理し、多官能アクリル酸エステル組成物を得た。得ら れた多官能アクリル酸エステル組成物について、実施例 1と同様に評価した。その結 果を表 1に示す。  To this liquid obtained in Synthesis Example 1, 70 g of pure water was added, stirred for 5 minutes, allowed to stand for 5 hours, and then the lower layer was removed. In other words, the power to perform saponification was not enough. Then, the upper layer was subjected to a solvent removal treatment under reduced pressure in the same manner as in Example 1 to obtain a polyfunctional acrylic ester composition. The obtained polyfunctional acrylate composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0087] [表 1] 実施例 1 実施例 2 実施例 3 比較例 1 けん化処理における中和処理時の投入量 [0087] [Table 1] Example 1 Example 2 Example 3 Comparative Example 1 Input amount during neutralization in saponification
2倍量  Double amount
に対する水酸化ナトリウム水溶液の量 1倍量 1倍 ― 撹拌時間 1時間 1時間 1時間 ― 多官能 (メタ)アクリル酸エステル  Amount of aqueous sodium hydroxide solution to 1 time 1 time-Stirring time 1 hour 1 hour 1 hour-Multifunctional (meth) acrylic acid ester
1 00以下 1 00以下 1 00以下 8000 組成物中の(B)成分の濃度(ppm) 耐乳化性試験 ◎ 〇 ◎ X  1 00 or less 1 00 or less 1 00 or less 8000 Concentration of component (B) in composition (ppm) Emulsification resistance test ◎ ○ ◎ X
[0088] 表 1に示したように、実施例 1 3においては、多官能アクリル酸エステル組成物中 の(B)成分の含有量がいずれも lOOppm以下であることから、耐乳化性試験の結果 も良好であった。一方、比較例 1では、多官能アクリル酸エステル組成物中の(B)成 分の含有量が 8000ppmであることから、耐乳化性試験の結果が不良であった。 [0088] As shown in Table 1, in Example 13 the content of component (B) in the polyfunctional acrylate composition is all lOOppm or less, so the results of the emulsification resistance test Was also good. On the other hand, in Comparative Example 1, since the content of the component (B) in the polyfunctional acrylic ester composition was 8000 ppm, the result of the emulsification resistance test was poor.
[0089] 前記実施形態は、次のように変更して具体化され得る。  [0089] The embodiment may be embodied with the following modifications.
[0090] 乳化性化合物として、前記 (B)成分とそれ以外の化合物とを指標として多官能 (メタ [0090] As the emulsifiable compound, the polyfunctional (meta)
)アクリル酸エステル組成物の精製が行われてもよ 、。 ) Purification of the acrylic ester composition may be performed.
[0091] 多官能 (メタ)アクリル酸エステル組成物中の乳化性ィ匕合物の含有量をより低下させ るために、前記けん化処理が複数回行われてもよい。その場合、けん化処理剤として 用いられるアルカリ水溶液の濃度が変更されたり、処理温度が変更されたりすること が好ましい。 [0091] In order to further reduce the content of the emulsifying compound in the polyfunctional (meth) acrylic acid ester composition, the saponification treatment may be performed a plurality of times. In that case, it is preferable that the concentration of the alkaline aqueous solution used as the saponification agent is changed or the treatment temperature is changed.
[0092] けん化処理剤として、炭酸ナトリウム等のアルカリ金属塩及び水酸化カルシウム等 のアルカリ土類金属の水溶液が用いられてもよい。  [0092] As the saponification agent, an aqueous solution of an alkali metal salt such as sodium carbonate and an alkaline earth metal such as calcium hydroxide may be used.
[0093] けん化処理が 20°C未満の処理温度で行われ、けん化処理の処理時間が長くなつ てもよい。 [0093] The saponification treatment may be performed at a treatment temperature of less than 20 ° C, and the treatment time of the saponification treatment may be long.

Claims

請求の範囲 [1] 主成分である (A)成分として 2個以上の (メタ)アタリロイルォキシ基を有する化合物 、及び副成分である(B)成分として前記 (A)成分における (メタ)アタリロイルォキシ基 のいずれか 1個が下記化学式(1)で表される基で置換された化合物を含有する多官 能 (メタ)アクリル酸c occollll Hエ H一ステル組成物であって、 多官能 (メタ)アクリル酸エステル組成物中の(B)成分の含有量が lOOOppm以下 であることを特徴とする多官能 (メタ)アクリル酸エステル組成物。 Claims [1] A compound having two or more (meth) attayloxy groups as the main component (A), and (meth) in the component (A) as a subcomponent (B) A multi-functional (meth) acrylic acid occollll H et H one-ster composition containing a compound in which any one of the allyloyloxy groups is substituted with a group represented by the following chemical formula (1): A polyfunctional (meth) acrylic acid ester composition, wherein the content of the component (B) in the polyfunctional (meth) acrylic acid ester composition is lOOOOppm or less.
[化 1]  [Chemical 1]
2 2
R1 R 1
I  I
― 0— CH2CH - COOH ■ ■ ■ ( 1 ) ― 0— CH 2 CH-COOH ■ ■ ■ (1)
〔化学式(1)において、 R1は水素原子又はメチル基を表す。〕 [In the chemical formula (1), R 1 represents a hydrogen atom or a methyl group. ]
[2] 前記 (A)成分が、 3個以上の (メタ)アタリロイルォキシ基を有する化合物である請求 項 1に記載の多官能 (メタ)アクリル酸エステル組成物。 [2] The polyfunctional (meth) acrylic acid ester composition according to claim 1, wherein the component (A) is a compound having three or more (meth) ataryloxy groups.
[3] 前記 (A)成分がジペンタエリスリトールペンタ (メタ)アクリル酸エステル又はジペン タエリスリトールへキサ (メタ)アクリル酸エステルであり、 (B)成分が下記化学式(2)で 表される化合物であることを特徴とする請求項 2に記載の多官能 (メタ)アクリル酸エス テル組成物。 [3] The component (A) is dipentaerythritol penta (meth) acrylic acid ester or dipentaerythritol hexa (meth) acrylic acid ester, and the component (B) is a compound represented by the following chemical formula (2). The polyfunctional (meth) acrylic acid ester composition according to claim 2, wherein
[化 2]  [Chemical 2]
A O -A4 AO -A 4
0n2 R 1 0n 2 R 1
A -O H2C CH2 -0-CH2 - C - CH -0-CH,- CH - COOH ( 2 A -OH 2 C CH 2 -0-CH 2 -C-CH -0-CH,-CH-COOH (2
A A
〔化学式(2)において、 R1は水素原子又はメチル基を表し、 ^〜A5は (メタ)アタリ ロイル基又は水素原子を表す。〕 [In the chemical formula (2), R 1 represents a hydrogen atom or a methyl group, and ^ to A 5 represent a (meth) atalyloyl group or a hydrogen atom. ]
[4] 請求項 1に記載の多官能 (メタ)アクリル酸エステル組成物の製造方法であって、 酸触媒の存在下において、多価アルコールと (メタ)アクリル酸とが有機溶媒中でェ ステルイ匕反応することにより、多官能 (メタ)アクリル酸エステル組成物を製造するェ 程と、 [4] A method for producing a polyfunctional (meth) acrylic acid ester composition according to claim 1, A step of producing a polyfunctional (meth) acrylic acid ester composition by esterification reaction of polyhydric alcohol and (meth) acrylic acid in an organic solvent in the presence of an acid catalyst;
多官能 (メタ)アクリル酸エステル組成物中の(B)成分の含有量が lOOOppm以下と なるように多官能 (メタ)アクリル酸エステル組成物を精製する工程とを含むことを特徴 とする多官能 (メタ)アクリル酸エステル組成物の製造方法。  And a step of purifying the polyfunctional (meth) acrylate composition so that the content of the component (B) in the polyfunctional (meth) acrylate composition is lOOOppm or less. A method for producing a (meth) acrylic ester composition.
[5] 前記多官能 (メタ)アクリル酸エステル組成物を精製する工程は、エステル化反応後 の反応液を中和処理する工程、及び中和処理後の処理液をけん化処理する工程を 含む請求項 4に記載の多官能 (メタ)アクリル酸エステル組成物の製造方法。  [5] The step of purifying the polyfunctional (meth) acrylic acid ester composition includes a step of neutralizing the reaction solution after the esterification reaction, and a step of saponifying the treatment solution after the neutralization treatment. Item 5. A method for producing a polyfunctional (meth) acrylic acid ester composition according to Item 4.
[6] 前記多官能 (メタ)アクリル酸エステル組成物を精製する工程は、エステル化反応後 の反応液を水洗処理する工程、水洗処理後の処理液を中和処理する工程、及び中 和処理後の処理液をけん化処理する工程を含む請求項 4に記載の多官能 (メタ)ァク リル酸エステル組成物の製造方法。  [6] The step of purifying the polyfunctional (meth) acrylic acid ester composition includes a step of washing the reaction solution after the esterification reaction, a step of neutralizing the treatment solution after the washing treatment, and a neutralization treatment. 5. The method for producing a polyfunctional (meth) acrylic acid ester composition according to claim 4, comprising a step of saponifying the subsequent treatment liquid.
[7] 前記多官能 (メタ)アクリル酸エステル組成物を精製する工程では、アルカリ水溶液 を用いて、多官能 (メタ)アクリル酸エステル組成物がけん化処理される請求項 4から 請求項 6の 、ずれか一項に記載の多官能 (メタ)アクリル酸エステル組成物の製造方 法。  [7] In the step of purifying the polyfunctional (meth) acrylic acid ester composition, the polyfunctional (meth) acrylic acid ester composition is saponified using an alkaline aqueous solution. A method for producing a polyfunctional (meth) acrylic acid ester composition according to any one of the preceding items.
PCT/JP2006/312377 2005-06-27 2006-06-21 Polyfunctional (meth)acrylic ester composition and process for producing the same WO2007000920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523405A JP4998263B2 (en) 2005-06-27 2006-06-21 Method for producing polyfunctional (meth) acrylic acid ester composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-187351 2005-06-27
JP2005187351 2005-06-27

Publications (1)

Publication Number Publication Date
WO2007000920A1 true WO2007000920A1 (en) 2007-01-04

Family

ID=37595174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312377 WO2007000920A1 (en) 2005-06-27 2006-06-21 Polyfunctional (meth)acrylic ester composition and process for producing the same

Country Status (3)

Country Link
JP (1) JP4998263B2 (en)
TW (1) TW200700380A (en)
WO (1) WO2007000920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491912A (en) * 2018-11-27 2020-08-04 株式会社Lg化学 Method for producing acrylate compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113916A (en) * 1976-03-19 1977-09-24 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of multifunctional acrylates
JPH02306938A (en) * 1989-04-19 1990-12-20 Arakawa Chem Ind Co Ltd Production of dipentaerythritol polyacrylate resistant to emulsification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629237B2 (en) * 1988-02-04 1997-07-09 日本油脂株式会社 Method for producing pentaerythritol partial ester
JPH0764791B2 (en) * 1989-06-30 1995-07-12 出光石油化学株式会社 Method for producing acrylic acid ester or methacrylic acid ester
JP2546124B2 (en) * 1993-01-25 1996-10-23 荒川化学工業株式会社 Method for producing polyfunctional (meth) acrylate
JPH0840980A (en) * 1994-07-28 1996-02-13 Dainippon Ink & Chem Inc Production of (meth)acrylic esters
JPH08217726A (en) * 1995-02-15 1996-08-27 Dainippon Ink & Chem Inc Production of pentaerythritol (meth)acrylic ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113916A (en) * 1976-03-19 1977-09-24 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of multifunctional acrylates
JPH02306938A (en) * 1989-04-19 1990-12-20 Arakawa Chem Ind Co Ltd Production of dipentaerythritol polyacrylate resistant to emulsification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491912A (en) * 2018-11-27 2020-08-04 株式会社Lg化学 Method for producing acrylate compound
CN111491912B (en) * 2018-11-27 2023-02-10 株式会社Lg化学 Method for producing acrylate compound

Also Published As

Publication number Publication date
JPWO2007000920A1 (en) 2009-01-22
JP4998263B2 (en) 2012-08-15
TW200700380A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
EP1308434B1 (en) (Meth)acryloyl group-containing compound and method for producing the same
JP2010138094A (en) METHOD FOR PRODUCING beta-ALKOXYPROPIONAMIDE
JP2010095467A (en) Method for continuously producing (meth)acrylate
JP2006315960A (en) Tricyclodecanediol di(meth)acrylate and method for producing the same
JP2546124B2 (en) Method for producing polyfunctional (meth) acrylate
WO2007000920A1 (en) Polyfunctional (meth)acrylic ester composition and process for producing the same
JP2004059435A (en) Method for producing dioxolane compound
JP5119926B2 (en) Method for producing (meth) acrylic acid ester
JP2006213647A (en) Method for recovering unreacted acrylic acid
CN111902388B (en) Isobornyl (meth) acrylate-containing composition and method for producing same
JP2007302595A (en) Method for producing (meth)acrylic ester
JP4401050B2 (en) Process for producing 1,3,5-adamantanetriol mono (meth) acrylate
JP2008162946A (en) Method for producing (meth)acrylate
WO2001030739A1 (en) Process for the production of adamantyl (meth)acrylates
JP2007291041A (en) Method for producing adamantyl (meth)acrylate compound
TWI582070B (en) Production method of polyfunctional (meth) acrylate
JPH069496A (en) Production of @(3754/24)meth)acrylic acid esters
JP2007001958A (en) Method for producing polyfunctional (meth)acrylate
JP2004210745A (en) Method for producing (meth)acrylic ester
JP4226394B2 (en) Di (meth) acrylate mixture
JP5583378B2 (en) Method for producing α- (alkoxyalkyl) acrylate
WO2006126479A1 (en) Method for producing acrylic ester
JP2005263757A (en) Method for producing (meth)acrylic ester
JP2007001876A (en) Method for producing (meth)acrylate
JP2022007362A (en) Method for producing (meth)acrylic acid ester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523405

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767036

Country of ref document: EP

Kind code of ref document: A1