JP2007001876A - Method for producing (meth)acrylate - Google Patents

Method for producing (meth)acrylate Download PDF

Info

Publication number
JP2007001876A
JP2007001876A JP2005180325A JP2005180325A JP2007001876A JP 2007001876 A JP2007001876 A JP 2007001876A JP 2005180325 A JP2005180325 A JP 2005180325A JP 2005180325 A JP2005180325 A JP 2005180325A JP 2007001876 A JP2007001876 A JP 2007001876A
Authority
JP
Japan
Prior art keywords
meth
acrylate
reaction
producing
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180325A
Other languages
Japanese (ja)
Other versions
JP4650116B2 (en
Inventor
Naoki Hashimoto
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2005180325A priority Critical patent/JP4650116B2/en
Publication of JP2007001876A publication Critical patent/JP2007001876A/en
Application granted granted Critical
Publication of JP4650116B2 publication Critical patent/JP4650116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a (meth)acrylate from an alkylene oxide adduct of a glycerol-based compound, reducing the production of a polymer as a by-product in a dehydrating esterification process as less as possible, enabling a safe operation improved with its productivity and maintaining a good color tone of the obtained (meth)acrylate so as to be able not to damage the added value as a merchandize. <P>SOLUTION: This method for producing the (meth)acrylate is provided by performing the dehydrating esterification of the alkylene oxide adduct of glycerol or diglycerol with a (meth)acrylic acid in the presence of an acid catalyst and a polymerization inhibitor consisting of a copper compound and a phenol-based compound. As the copper compound, a cuprous halide is preferable, and as the phenol-based compound, hydroquinone or hydroquinone monomethyl ether is preferable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、グリセリン系化合物のアルキレンオキサイド付加物から得られる(メタ)アクリレートの製造方法に関し、(メタ)アクリレート製造分野に属する。   The present invention relates to a method for producing a (meth) acrylate obtained from an alkylene oxide adduct of a glycerin compound, and belongs to the (meth) acrylate production field.

(メタ)アクリレートは、工業的には、(メタ)アクリル酸とアルコールを酸触媒の存在下に脱水エステル化反応して製造されている。この場合、(メタ)アクリレート中の(メタ)アクリロイル基は重合し易い官能基であるため、製造工程で重合反応を併発することがある。   (Meth) acrylate is industrially produced by dehydrating esterification reaction of (meth) acrylic acid and alcohol in the presence of an acid catalyst. In this case, since the (meth) acryloyl group in the (meth) acrylate is a functional group that is easily polymerized, a polymerization reaction may occur simultaneously in the production process.

工業的規模での製造において、重合反応の併発はたとえ少量であっても重大な問題である。
即ち、重合反応で生じる高分子量成分は、概して高粘調なゲル状物質であり、一バッチごとに実施される定常的な洗浄では除去し難いことが多い。よって、たとえ一バッチ当りの副生量が僅かであったとしても、バッチを重ねるごとに堆積していき、ついには反応装置の閉塞等を引き起こす。そのため、操業を停止して反応装置の解体等を行い、閉塞した重合物の除去及び装置各部位の徹底洗浄を強いられるため、生産性が著しく低下する。
In industrial scale production, the co-occurrence of polymerization reactions is a serious problem even in small quantities.
That is, the high molecular weight component generated by the polymerization reaction is generally a highly viscous gel-like substance, and is often difficult to remove by regular washing performed every batch. Therefore, even if the amount of by-product per batch is small, it accumulates every time the batch is overlapped, and finally the reactor is blocked. For this reason, the operation is stopped, the reactor is disassembled, etc., the obstructed polymer is removed, and the parts of the apparatus are thoroughly washed, so that the productivity is remarkably lowered.

又、(メタ)アクリロイル基の重合反応は発熱反応であるため、製造工程で反応物及び生成物のラジカル重合が連続的に進行して暴走状態となった場合、膨大な発熱量を短時間で放出するという、安全上憂慮すべき事態に陥る。   In addition, since the polymerization reaction of the (meth) acryloyl group is an exothermic reaction, if radical polymerization of the reactants and products proceeds continuously in the manufacturing process and a runaway state occurs, a huge amount of heat can be generated in a short time. It will fall into an alarming situation of safety.

よって、(メタ)アクリレートの工業的製造において(メタ)アクリロイル基の重合を抑止するための方法が古くから提案されている。
具体的には、含酸素雰囲気下でエステル化反応を行う方法、及び反応液中に重合禁止剤を添加してエステル化反応を行う方法等がある(特許文献1〜同2)。
これらの方法により、(メタ)アクリレートの多くは、当該重合抑止法が有効であり、重合物の閉塞により操業を停止しなければならない頻度は減少するし、暴走反応に陥るリスクも、極少まで回避することができる。
Therefore, a method for inhibiting the polymerization of (meth) acryloyl groups has been proposed for a long time in the industrial production of (meth) acrylates.
Specifically, there are a method for performing an esterification reaction in an oxygen-containing atmosphere, a method for performing an esterification reaction by adding a polymerization inhibitor into the reaction solution, and the like (Patent Documents 1 and 2).
By these methods, most of the (meth) acrylates are effective in the polymerization inhibition method, and the frequency that the operation must be stopped due to blockage of the polymer is reduced, and the risk of runaway reaction is avoided to a minimum. can do.

特開2003−226671号公報(特許請求の範囲)JP 2003-226671 A (Claims) 特開2003−226672号公報(特許請求の範囲)JP 2003-226672 A (Claims)

しかしながら、(メタ)アクリレートが、グリセリン系化合物のアルキレンオキサイド付加物から製造される(メタ)アクリレートである場合は状況が異なる。
そもそも、エーテル結合の炭素−水素結合は、酸素と反応して過酸化物構造を生じ易く、これが解裂する際にラジカルを生じ、(メタ)アクリロイル基のラジカル重合を引き起こすことがあり、同一分子内にエーテル結合と(メタ)アクリロイル基がある場合は、両者が近接しているため、なおさら重合が生じ易い。グリセリン系化合物のアルキレンオキサイド付加物から製造される(メタ)アクリレートは、特にこの傾向が顕著である。
However, the situation is different when the (meth) acrylate is a (meth) acrylate produced from an alkylene oxide adduct of a glycerin compound.
In the first place, the carbon-hydrogen bond of the ether bond is likely to react with oxygen to form a peroxide structure, and when this is cleaved, a radical is generated, which may cause radical polymerization of the (meth) acryloyl group. In the case where an ether bond and a (meth) acryloyl group are present, polymerization is more likely to occur because both are close to each other. This tendency is particularly remarkable in (meth) acrylates produced from alkylene oxide adducts of glycerin compounds.

このような安定性に問題のある(メタ)アクリレートを製造する場合、より重合防止効果の高いフェノチアジン等の含窒素化合物を重合禁止剤として添加する方法が知られている(特許文献3)。
しかしながら、生成物の(メタ)アクリレートが着色してしまい、透明性が要求される用途での商品価値を失うことになる。さらには、化学増幅型レジスト樹脂等の用途で使用する場合、含窒素化合物の存在は光酸発生剤の最適添加量に影響するため、製造ロット毎の僅かな窒素含量の差異が、一定の工程で樹脂製造ができないという、致命的な欠陥をもたらす。
When producing such (meth) acrylate having a problem in stability, a method of adding a nitrogen-containing compound such as phenothiazine having a higher polymerization preventing effect as a polymerization inhibitor is known (Patent Document 3).
However, the product (meth) acrylate is colored and loses commercial value in applications where transparency is required. Furthermore, when used in applications such as chemically amplified resist resins, the presence of nitrogen-containing compounds affects the optimal amount of photoacid generator added, so there is a slight difference in nitrogen content between production lots. This causes a fatal defect that the resin cannot be manufactured.

本発明者は、グリセリン系化合物のアルキレンオキサイド付加物から製造される(メタ)アクリレートを製造するに際し、脱水エステル化工程での重合物の副生を極力低減し、生産性が向上した安全な操業を可能とし、得られる(メタ)アクリレートが良好な色調を維持し、商品としての付加価値を損なわないことを可能にする(メタ)アクリレートの製造方法を見出すため鋭意検討を行ったのである。   The present inventor, when producing a (meth) acrylate produced from an alkylene oxide adduct of a glycerin compound, reduced the by-product of the polymer in the dehydration esterification step as much as possible, and a safe operation with improved productivity. In order to find a method for producing (meth) acrylates, the obtained (meth) acrylate can maintain a good color tone and can maintain the added value as a product.

特開2000−072718号公報(特許請求の範囲)JP 2000-072718 (Claims)

本発明者は、種々の検討の結果、重合禁止剤として特定2種の化合物を併用し、その存在下でグリセリン系化合物のアルキレンオキサイド付加物と(メタ)アクリル酸のエステル化反応を行うことが有効であることを見出し、本発明を完成した。
以下、本発明を詳細に説明する。
尚、本明細書においては、アクリル酸又はメタクリル酸を(メタ)アクリル酸と表し、アクリレート又はメタクリレートを(メタ)アクリレートと表す。
As a result of various studies, the present inventor may use two specific compounds in combination as a polymerization inhibitor and perform an esterification reaction of an alkylene oxide adduct of a glycerin compound and (meth) acrylic acid in the presence thereof. The present invention has been found by finding it effective.
Hereinafter, the present invention will be described in detail.
In the present specification, acrylic acid or methacrylic acid is represented as (meth) acrylic acid, and acrylate or methacrylate is represented as (meth) acrylate.

本発明は、グリセリン又はジグリセリンのアルキレンオキサイド付加物(以下RO付加物という)と(メタ)アクリル酸を、酸触媒並びに銅化合物とフェノール系化合物からなる重合禁止剤の存在下に脱水エステル化を行う(メタ)アクリレートの製造方法である。   In the present invention, alkylene oxide adduct of glycerin or diglycerin (hereinafter referred to as RO adduct) and (meth) acrylic acid are dehydrated and esterified in the presence of an acid catalyst and a polymerization inhibitor comprising a copper compound and a phenolic compound. This is a method for producing (meth) acrylate.

RO付加物におけるアルキレンオキサイド単位としては、エチレンオキサイド及びプロピレンオキサイド等が挙げられる。
RO付加物におけるアルキレンオキサイド単位の付加数としては、1〜30が好ましく、より好ましくは1〜10である。
Examples of the alkylene oxide unit in the RO adduct include ethylene oxide and propylene oxide.
As addition number of the alkylene oxide unit in RO adduct, 1-30 are preferable, More preferably, it is 1-10.

酸触媒としては、(メタ)アクリレートの製造で通常使用されているもので良く、硫酸、塩酸、リン酸、フッ化ホウ酸、ベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸及びカチオン交換性樹脂等が挙げられる。これらの中でも入手容易で、安価で、反応性に優れる点から、硫酸及びp−トルエンスルホン酸が好ましい。
酸性触媒の割合としては、仕込み(メタ)アクリル酸に対して0.01〜10モル%が好ましい。
As the acid catalyst, those usually used in the production of (meth) acrylates may be used, and sulfuric acid, hydrochloric acid, phosphoric acid, fluoboric acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, and cation exchangeability may be used. Examples thereof include resins. Among these, sulfuric acid and p-toluenesulfonic acid are preferable because they are easily available, inexpensive, and excellent in reactivity.
As a ratio of an acidic catalyst, 0.01-10 mol% is preferable with respect to preparation (meth) acrylic acid.

本発明で使用する重合禁止剤は、銅化合物とフェノール系化合物からなるものである。
銅化合物としては無水物であっても水和物であってもよく、塩化第二銅及び臭化第二銅等のハロゲン化第二銅;塩化第一銅及び臭化第一銅等のハロゲン化第一銅;硫酸銅;並びにジメチルジチオカルバミン酸銅及びジブチルジチオカルバミン酸銅等のジアルキルジチオカルバミン酸銅等が挙げられる。これらの中でも、塩化第二銅及び硫酸銅が、重合禁止作用が強く、かつ安価であることからが好ましい。
フェノール系化合物としては、ハイドロキノン、ハイドロキノンモノメチルエ−テル、tert−ブチルカテコール、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチル−フェノール、2,4,6−トリ−tert−ブチルフェノール等が挙げられる。これらの中でも、ハイドロキノン及びハイドロキノンモノメチルエーテルが、安価であり、かつ脱水エステル化後の中和洗浄により容易に除去可能であることから好ましい。
重合禁止剤の添加割合は、銅化合物とフェノール系化合物いずれも、反応液に対して5〜20000wtppmが好ましく、より好ましくは25〜3000wtppmである。添加割合が5wtppm未満の場合は、重合禁止効果が不十分となることがあり、一方20000wtppmを超えると、これ以上添加しても効果が向上しないため不経済となったり、得られる(メタ)アクリレートに着色を生じることがある。
銅化合物とフェノール系化合物の併用割合としては、銅化合物とフェノール系化合物の合計量を基準として、銅化合物10〜90質量%、フェノール系化合物10〜90質量%であることが好ましい。
The polymerization inhibitor used in the present invention is composed of a copper compound and a phenol compound.
Copper compounds may be anhydrous or hydrated, cupric halides such as cupric chloride and cupric bromide; halogens such as cuprous chloride and cuprous bromide And cuprous sulfate; copper sulfate; and copper dialkyldithiocarbamates such as copper dimethyldithiocarbamate and copper dibutyldithiocarbamate. Among these, cupric chloride and copper sulfate are preferable because they have a strong polymerization inhibiting action and are inexpensive.
Examples of phenolic compounds include hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethyl. Examples include phenol, 2,6-di-tert-butyl-4-methyl-phenol, 2,4,6-tri-tert-butylphenol and the like. Among these, hydroquinone and hydroquinone monomethyl ether are preferable because they are inexpensive and can be easily removed by neutralization washing after dehydration esterification.
The addition ratio of the polymerization inhibitor is preferably 5 to 20000 wtppm, more preferably 25 to 3000 wtppm, with respect to the reaction solution for both the copper compound and the phenolic compound. When the addition ratio is less than 5 wtppm, the polymerization inhibition effect may be insufficient. On the other hand, when it exceeds 20000 wtppm, the effect is not improved even if added more than this, and the resulting (meth) acrylate is obtained. May cause coloring.
The combined ratio of the copper compound and the phenolic compound is preferably 10 to 90% by mass of the copper compound and 10 to 90% by mass of the phenolic compound based on the total amount of the copper compound and the phenolic compound.

RO付加物と(メタ)アクリル酸のエステル化反応は常法に従えば良い。
(メタ)アクリル酸とRO付加物を、酸性触媒及び重合禁止剤の存在下に、加熱・攪拌してエステル化する方法等が挙げられる。
RO付加物と(メタ)アクリル酸の反応割合は、目的とする(メタ)アクリレートに応じて、RO付加物中の全水酸基1モルに対して(メタ)アクリル酸の割合を調整する。
エステル化反応の終点は、副生する水の量等によって決定すれば良い。
The esterification reaction of the RO adduct and (meth) acrylic acid may be performed according to a conventional method.
Examples thereof include a method in which (meth) acrylic acid and an RO adduct are esterified by heating and stirring in the presence of an acidic catalyst and a polymerization inhibitor.
The reaction ratio of the RO adduct and (meth) acrylic acid adjusts the ratio of (meth) acrylic acid with respect to 1 mol of all hydroxyl groups in the RO adduct, according to the target (meth) acrylate.
The end point of the esterification reaction may be determined by the amount of by-produced water or the like.

エステル化反応は、無溶剤でも溶媒を用いても行うことができるが、エステル化反応は、反応の進行と共に水が生成するので、水を共沸除去できる溶媒を用いることが反応速度を高める点で好ましい。
当該溶媒としては、例えばトルエン、ベンゼン及びキシレン等の芳香族炭化水素;n−ヘキサン及び、シクロヘキサン及びn−ヘプタン等の脂肪族炭化水素;トリクロロエタン、テトラクロルエチレン及びメチルクロロホルム等の有機塩素化合物;並びにメチルイソブチルケトン等のケトン等が挙げられる。
これらの溶媒の使用量は反応原料に対して重量比で0.1〜10倍が好ましく、より好ましくは2〜5倍である。
The esterification reaction can be carried out without a solvent or using a solvent. However, since the esterification reaction generates water as the reaction proceeds, the use of a solvent capable of removing water azeotropically increases the reaction rate. Is preferable.
Examples of the solvent include aromatic hydrocarbons such as toluene, benzene and xylene; aliphatic hydrocarbons such as n-hexane and cyclohexane and n-heptane; organochlorine compounds such as trichloroethane, tetrachloroethylene and methylchloroform; And ketones such as methyl isobutyl ketone.
The amount of these solvents used is preferably 0.1 to 10 times, more preferably 2 to 5 times, by weight with respect to the reaction raw material.

反応温度は、反応時間の短縮と重合防止の点から65〜140℃が好ましく、より好ましくは75〜120℃である。65℃未満であると反応速度が遅すぎたり、収率が低下することがあり、140℃を超えると(メタ)アクリル酸又は得られた(メタ)アクリレートの熱重合が起こることがある。   The reaction temperature is preferably 65 to 140 ° C., more preferably 75 to 120 ° C. from the viewpoint of shortening the reaction time and preventing polymerization. When the temperature is lower than 65 ° C, the reaction rate may be too slow or the yield may be lowered. When the temperature exceeds 140 ° C, thermal polymerization of (meth) acrylic acid or the obtained (meth) acrylate may occur.

反応は、常圧か又は若干減圧した状態で行うのが好しい。
原料(メタ)アクリル酸又は得られる(メタ)アクリレートの熱重合を防止する目的で、エステル化反応中は、酸素の存在下で反応させることが好ましい。具体的には、反応液中に、酸素を含む不活性ガスを吹き込みながらエステル化反応を行う方法等が挙げられる。不活性ガスとしては、窒素及びヘリウム等が挙げられ、安価な点で窒素が好ましい。
又、反応には、必須成分の重合禁止剤の他、必要に応じて他の重合禁止剤を併用しても良い。具体的には、例えば、p−ベンゾキノン及びナフトキノン等のキノン系重合禁止剤、3−ヒドロキシチオフェノール等のチオフェノール系重合禁止剤、α−ニトロソ−β−ナフトール等のナフトール系重合禁止剤、アルキル化ジフェニルアミン、N,N’−ジフェニル−p−フェニエンアミン及びフェノチアヂン等のアミン系重合禁止剤等が挙げられる。
The reaction is preferably carried out at normal pressure or slightly reduced pressure.
In order to prevent thermal polymerization of the raw material (meth) acrylic acid or the resulting (meth) acrylate, the reaction is preferably performed in the presence of oxygen during the esterification reaction. Specific examples include a method of performing an esterification reaction while blowing an inert gas containing oxygen into the reaction solution. Examples of the inert gas include nitrogen and helium, and nitrogen is preferable from the viewpoint of inexpensiveness.
In addition to the polymerization inhibitor as an essential component, other polymerization inhibitors may be used in the reaction as required. Specifically, for example, quinone polymerization inhibitors such as p-benzoquinone and naphthoquinone, thiophenol polymerization inhibitors such as 3-hydroxythiophenol, naphthol polymerization inhibitors such as α-nitroso-β-naphthol, alkyls And amine polymerization inhibitors such as diphenylamine, N, N′-diphenyl-p-phenienamine, and phenothiazine.

上記反応で使用される反応装置としては、通常使用されるものを使用でき、例えば、攪拌機、温度計、空気吹込管及び水分離機を備えた反応器等が挙げられる。   As the reaction apparatus used in the above reaction, those usually used can be used, and examples thereof include a reactor equipped with a stirrer, a thermometer, an air blowing tube and a water separator.

エステル化反応により得られた反応生成物は、常法に従い精製すれば良い。
具体的には、反応液を中和・水洗し、水層を分離後減圧下で反応溶媒を留去し、必要に応じてろ過する方法等が挙げられる。
中和工程は、反応液中の未反応の(メタ)アクリル酸及び酸触媒を除去することを目的として行われるものである。中和工程には、反応液に、アルカリ水溶液を添加して、攪拌する方法等が挙げられる。
The reaction product obtained by the esterification reaction may be purified according to a conventional method.
Specific examples include a method of neutralizing and washing the reaction solution, separating the aqueous layer, distilling off the reaction solvent under reduced pressure, and filtering as necessary.
The neutralization step is performed for the purpose of removing unreacted (meth) acrylic acid and acid catalyst in the reaction solution. Examples of the neutralization step include a method in which an aqueous alkali solution is added to the reaction solution and stirred.

本発明により得られる(メタ)アクリレートは、種々の用途に使用でき、例えば、塗料等のコーティング剤、インキ、レジスト及び重合原料等が挙げられる。   The (meth) acrylate obtained by this invention can be used for various uses, for example, coating agents, such as a coating material, ink, a resist, a polymerization raw material, etc. are mentioned.

本発明によれば、RO付加物と(メタ)アクリル酸から(メタ)アクリレートを製造する場合において、重合物の副生を極力低減することができ、その工業的規模での製造において生産性が向上した安全な操業を可能にする。さらには、得られる(メタ)アクリレートは、色調にも優れたものとなる。   According to the present invention, in the case of producing (meth) acrylate from RO adduct and (meth) acrylic acid, the by-product of the polymer can be reduced as much as possible, and the productivity in the production on an industrial scale can be reduced. Enable improved and safe operation. Furthermore, the (meth) acrylate obtained is excellent in color tone.

本発明は、RO付加物と(メタ)アクリル酸を、酸触媒並びに銅化合物とフェノール系化合物からなる重合禁止剤の存在下に脱水エステル化を行う(メタ)アクリレートの製造方法に関する。
前記銅化合物としては、ハロゲン化第二銅が好ましく、フェノール系化合物としては、ハイドロキノン又はハイドロキノンモノメチルエーテルが好ましい。
The present invention relates to a method for producing (meth) acrylate, in which RO adduct and (meth) acrylic acid are subjected to dehydration esterification in the presence of an acid catalyst and a polymerization inhibitor composed of a copper compound and a phenol compound.
The copper compound is preferably cupric halide, and the phenolic compound is preferably hydroquinone or hydroquinone monomethyl ether.

以下、実施例及び比較例を挙げ、本発明をより具体的に説明する。
尚、以下において「%」とは質量%を意味する。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In the following, “%” means mass%.

[実施例1]
還流管を設置した2Lの側管付き4口フラスコに、ジグリセリンのエチレンオキサイド8モル付加物500g、アクリル酸306g、トルエン550g、パラトルエンスルホン酸一水和物25.7g、重合禁止剤として塩化第二銅1.57g〔反応液総量に対して1000wtppm(以下単にppmと記載する)〕及びハイドロキノンモノメチルエ−テル(以下MQという)1.57g(反応液総量に対して1000ppm)を投入し、酸素を含む窒素ガスを吹き込みながら反応液温度80〜100℃、反応系圧力400〜760mmHGに調整した。生成する水をディーンスターク管にて系外に除去しながら7時間の脱水エステル化反応を行った。
脱水エステル化に使用した反応装置及び得られた反応液を目視にて観察したが、重合物の生成は見られなかった。又、反応液のゲルパーミエーションクロマトグラフィー(装置:東ソー(株)製、商品名;HLC−8120GPC、カラム:TSKgel GMHXL−L、溶離液:THF、検出器:RI、以下GPCという)を測定し、下式に従い計算した結果、高分子量成分の含有量は0.2%であった。
[Example 1]
Into a 2 L side necked 4-neck flask equipped with a reflux tube, 500 g of diglycerin ethylene oxide 8 mol adduct, 306 g of acrylic acid, 550 g of toluene, 25.7 g of paratoluenesulfonic acid monohydrate, and chlorinated as a polymerization inhibitor Cup of 1.57 g of cupric (1000 wtppm (hereinafter simply referred to as ppm)) and hydroquinone monomethyl ether (hereinafter referred to as MQ) 1.57 g (1000 ppm with respect to the total amount of the reaction solution), While blowing nitrogen gas containing oxygen, the reaction solution temperature was adjusted to 80 to 100 ° C., and the reaction system pressure was adjusted to 400 to 760 mmHG. A dehydration esterification reaction was carried out for 7 hours while removing generated water out of the system with a Dean-Stark tube.
Although the reaction apparatus used for dehydration esterification and the obtained reaction liquid were observed visually, the production | generation of the polymer was not seen. Further, gel permeation chromatography (device: manufactured by Tosoh Corporation, trade name: HLC-8120GPC, column: TSKgel GMH XL- L, eluent: THF, detector: RI, hereinafter referred to as GPC) is measured. As a result of calculation according to the following formula, the content of the high molecular weight component was 0.2%.

GPCにおける高分子量成分含有量(%) =
(ポリスチレン換算で分子量30,000以上のピーク面積の和)/(全てのピーク面積の総和)×100
High molecular weight component content in GPC (%) =
(Sum of peak areas with molecular weight of 30,000 or more in terms of polystyrene) / (sum of all peak areas) × 100

得られた反応液を、分液ロートに添加して、純水で洗浄・分液した後、有機層をさらに水酸化ナトリウム水溶液で洗浄・分液し、有機層をさらに純水で洗浄・分液した。
その後、得られた有機層にMQを0.4g添加し、酸素を含む窒素ガスを吹き込みながら80℃減圧下にてトルエンを除去することで目的物であるジグリセリンエチレンオキサオド付加物テトラアクリレートを得た。生成物のAPHAは、100であった。又、生成物中のCu含有量を、ICP−MS(装置:アジレント・テクノロジーズ社製、アジレント7500cs型)にて測定した結果0.03wtppmであった。
The obtained reaction solution is added to a separatory funnel, washed and separated with pure water, the organic layer is further washed and separated with an aqueous sodium hydroxide solution, and the organic layer is further washed and separated with pure water. Liquid.
Thereafter, 0.4 g of MQ was added to the obtained organic layer, and toluene was removed under reduced pressure at 80 ° C. while blowing nitrogen gas containing oxygen, so that the target diglycerin ethylene oxide adduct tetraacrylate was removed. Obtained. The APHA of the product was 100. The Cu content in the product was 0.03 wtppm as a result of measurement by ICP-MS (apparatus: Agilent Technologies, Inc., Agilent 7500cs type).

○実施例2、比較例1〜同5
実施例1において、重合禁止剤の種類及び割合を表1に変更する以外は、実施例1と同様の方法でエステル化反応を行った。尚、表1において、HQとは、ハイドロキノンを意味する。
反応装置及び得られた反応液を目視にて観察した結果を、表1に示す。又、反応液のGPCを実施例1と同様の方法で測定した。その結果を表1に示す。
得られた反応液を、実施例と同様に処理して、ジグリセリンエチレンオキサオド変性物テトラアクリレートを得た。
生成物のAPHA及びCu含有量を、実施例1と同様の方法で測定した。それらの結果を表1に示す。
○ Example 2 and Comparative Examples 1 to 5
In Example 1, the esterification reaction was performed in the same manner as in Example 1 except that the type and ratio of the polymerization inhibitor were changed to Table 1. In Table 1, HQ means hydroquinone.
Table 1 shows the results of visual observation of the reaction apparatus and the obtained reaction solution. Further, GPC of the reaction solution was measured in the same manner as in Example 1. The results are shown in Table 1.
The obtained reaction solution was treated in the same manner as in Example to obtain diglycerin ethylene oxide-modified tetraacrylate.
The APHA and Cu contents of the product were measured in the same manner as in Example 1. The results are shown in Table 1.

Figure 2007001876
Figure 2007001876

本発明は、(メタ)アクリレートの製造に使用することができる。
The present invention can be used for the production of (meth) acrylates.

Claims (3)

グリセリン又はジグリセリンのアルキレンキサイド付加物と(メタ)アクリル酸を、酸触媒並びに銅化合物とフェノール系化合物からなる重合禁止剤の存在下に脱水エステル化を行うことを特徴とする(メタ)アクリレートの製造方法。 (Meth) acrylate characterized by dehydrating esterification of glycerin or diglycerin alkylene oxide adduct and (meth) acrylic acid in the presence of an acid catalyst and a polymerization inhibitor comprising a copper compound and a phenolic compound. Manufacturing method. 銅化合物がハロゲン化第二銅である請求項1記載の(メタ)アクリレートの製造方法。 The method for producing a (meth) acrylate according to claim 1, wherein the copper compound is cupric halide. フェノール系化合物がハイドロキノン又はハイドロキノンモノメチルエーテルである請求項1又は請求項2記載の(メタ)アクリレートの製造方法。


The method for producing a (meth) acrylate according to claim 1 or 2, wherein the phenol compound is hydroquinone or hydroquinone monomethyl ether.


JP2005180325A 2005-06-21 2005-06-21 Method for producing (meth) acrylate Active JP4650116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180325A JP4650116B2 (en) 2005-06-21 2005-06-21 Method for producing (meth) acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180325A JP4650116B2 (en) 2005-06-21 2005-06-21 Method for producing (meth) acrylate

Publications (2)

Publication Number Publication Date
JP2007001876A true JP2007001876A (en) 2007-01-11
JP4650116B2 JP4650116B2 (en) 2011-03-16

Family

ID=37687803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180325A Active JP4650116B2 (en) 2005-06-21 2005-06-21 Method for producing (meth) acrylate

Country Status (1)

Country Link
JP (1) JP4650116B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045104A (en) * 2006-07-17 2008-02-28 Sakamoto Yakuhin Kogyo Co Ltd Active energy ray-curable coating resin composition
JP2008045103A (en) * 2006-07-17 2008-02-28 Sakamoto Yakuhin Kogyo Co Ltd Resin composition for active energy ray-curable ink

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811084B1 (en) * 1970-07-21 1973-04-10
JPS58174346A (en) * 1982-04-08 1983-10-13 Yotsukaichi Gosei Kk Preparation of acrylic or methacrylic acid ester
JPH10321040A (en) * 1997-05-23 1998-12-04 Dai Ichi Kogyo Seiyaku Co Ltd Solid electrolyte
JP2001213844A (en) * 2000-02-02 2001-08-07 Toagosei Co Ltd Apparatus and method for producing acrylic acid ester or methacrylic acid ester
JP2001310918A (en) * 2000-04-26 2001-11-06 Mitsubishi Rayon Co Ltd Curing composition for photoforming and product
JP2003089707A (en) * 2001-09-18 2003-03-28 Toagosei Co Ltd New di(meth)acrylate and curable composition containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811084B1 (en) * 1970-07-21 1973-04-10
JPS58174346A (en) * 1982-04-08 1983-10-13 Yotsukaichi Gosei Kk Preparation of acrylic or methacrylic acid ester
JPH10321040A (en) * 1997-05-23 1998-12-04 Dai Ichi Kogyo Seiyaku Co Ltd Solid electrolyte
JP2001213844A (en) * 2000-02-02 2001-08-07 Toagosei Co Ltd Apparatus and method for producing acrylic acid ester or methacrylic acid ester
JP2001310918A (en) * 2000-04-26 2001-11-06 Mitsubishi Rayon Co Ltd Curing composition for photoforming and product
JP2003089707A (en) * 2001-09-18 2003-03-28 Toagosei Co Ltd New di(meth)acrylate and curable composition containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045104A (en) * 2006-07-17 2008-02-28 Sakamoto Yakuhin Kogyo Co Ltd Active energy ray-curable coating resin composition
JP2008045103A (en) * 2006-07-17 2008-02-28 Sakamoto Yakuhin Kogyo Co Ltd Resin composition for active energy ray-curable ink

Also Published As

Publication number Publication date
JP4650116B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
KR101369040B1 (en) Cyclic(meth)acrylates and process for preparation thereof
JP4650116B2 (en) Method for producing (meth) acrylate
EP0108624B1 (en) Process for the production of p-vinyl phenol polymer
JPH06219991A (en) Production of polyfunctional @(3754/24)meth)acrylate
JP2004059435A (en) Method for producing dioxolane compound
JP2914075B2 (en) Method for producing (meth) acrylic acid ester
JP7355733B2 (en) Composition containing isobornyl (meth)acrylate and method for producing the same
JP5119926B2 (en) Method for producing (meth) acrylic acid ester
CN108164477B (en) Process for preparing mono-or polyfunctional acrylamide compounds
JPH06234700A (en) Production of @(3754/24)meth)acrylic acid esters
JP2010126502A (en) Method for producing (meth)acrylic naphthyl ester
KR20150060665A (en) Hydroxyalkyl acrylate and method for producing same
JPH08310995A (en) Production of ester of (meth)acrylic acid and t-alcohol
JP4951966B2 (en) Production method of polyfunctional (meth) acrylate
JPH06234699A (en) Production of @(3754/24)meth)acrylic acid esters
KR20150023229A (en) Hydroxyalkyl (meth)acrylate and method for producing same
JP2007291041A (en) Method for producing adamantyl (meth)acrylate compound
KR101362883B1 (en) A method for preparing (meth)acrylic acid phenyl ester
JPH0840980A (en) Production of (meth)acrylic esters
JPH069496A (en) Production of @(3754/24)meth)acrylic acid esters
WO2006126479A1 (en) Method for producing acrylic ester
JP2019214545A (en) Manufacturing method of terephthalic acid bis(2-hydroxyethyl)
JP2014162763A (en) Method for producing (meth)acrylic acid ester
JP2686824B2 (en) Process for producing dipentaerythritol hexaester compound
JPH07224004A (en) Production of phenoxypolyalkylene glycol acrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4650116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250