WO2007000118A1 - Fragments polypeptidiques d'exendine 4 et utilisation correspondante - Google Patents

Fragments polypeptidiques d'exendine 4 et utilisation correspondante Download PDF

Info

Publication number
WO2007000118A1
WO2007000118A1 PCT/CN2006/001495 CN2006001495W WO2007000118A1 WO 2007000118 A1 WO2007000118 A1 WO 2007000118A1 CN 2006001495 W CN2006001495 W CN 2006001495W WO 2007000118 A1 WO2007000118 A1 WO 2007000118A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
exendin
polypeptide
polypeptide fragment
indicates
Prior art date
Application number
PCT/CN2006/001495
Other languages
English (en)
French (fr)
Inventor
Xiaopeng Ma
Bing Wang
Shaoqi Xi
Original Assignee
Changzhou Pharmaceutical Factory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Pharmaceutical Factory Co., Ltd. filed Critical Changzhou Pharmaceutical Factory Co., Ltd.
Priority to AU2006264162A priority Critical patent/AU2006264162A1/en
Priority to BRPI0613849-7A priority patent/BRPI0613849A2/pt
Priority to EP06753060A priority patent/EP1908778A4/en
Priority to JP2008518600A priority patent/JP2008546816A/ja
Priority to CA002613903A priority patent/CA2613903A1/en
Publication of WO2007000118A1 publication Critical patent/WO2007000118A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57563Vasoactive intestinal peptide [VIP]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to Exendin 4 truncated polypeptide fragments which have a blood glucose lowering effect and are useful for the treatment of type 2 diabetes. Background technique
  • Type II diabetes insulin-dependent diabetes mellitus
  • type 2 diabetes non-insulin-dependent diabetes mellitus
  • type II diabetes accounts for more than 90% of diabetic patients.
  • Type II diabetes patients exhibit many characteristics, such as insufficient insulin secretion after meals, lagging insulin secretion time, and high blood sugar.
  • peripheral insulin receptor sensitivity is reduced, resulting in high blood sugar and high levels of insulin in the blood.
  • Glycated hemoglobin HbAlc is above 8% (4-6% for healthy people).
  • complications of diabetes such as heart disease and kidney failure. Lowering blood sugar levels is the key to effective treatment of type 2 diabetes.
  • insulinotropic secretions sulfonylureas and melitioneds
  • non-insulin-secreting drugs insulin, alpha-glucosidase inhibitors, biguanides and Thioagolinediones.
  • insulinotropic secretions sulfonylureas and melitioneds
  • non-insulin-secreting drugs insulin, alpha-glucosidase inhibitors, biguanides and Thioagolinediones.
  • the above six drugs are incapable of treating patients with type 2 diabetes, unable to curb the progressive deterioration of pancreatic beta cells and not reducing HbAlc levels. It can't stop the complications of diabetes such as heart disease and kidney failure. Therefore, it is necessary to study new treatment drugs for type II diabetes.
  • U.S. Patent No. 5,424,286 discloses an Exendin 4 polypeptide isolated from the saliva of a Gila monster (Helode Suspectum).
  • the peptide consists of 39 amino acid residues and has a 40% homology to the gut glucagon-like peptide-1 (GLP-1) in the amino acid sequence.
  • Exendin 4 acts as an analog of GLP-1 and binds to the receptor of GLP-1.
  • Exendin 4 promotes the synthesis of proinsulin, promotes insulin secretion, lowers blood sugar, and does not continue to function when blood sugar is normal, so it does not produce hypoglycemia, coma, shock, and is safe and effective. It can reduce HbAlc, increase the amount of beta cells, increase insulin receptor sensitivity in type II diabetes, and inhibit glucagon secretion.
  • the Exe n din 4 under the trade name Byetta was approved by the US FDA.
  • CN1227567A discloses a truncated Exendin4 peptide consisting of 30 amino acid residues with a C-terminus of Arg or Tyr.
  • Eli Lilly and Company has studied a series of GLP-1 analogues that are safe for long-term use in the treatment of diabetes (see WO02047716A). Moreover, these results were all obtained in vitro, and were evaluated by the size of GLP-1 receptor binding ability, the amount of insulin secreted by insulinoma cells, and the amount of cAMP formed (see L Biol. Chem (1997). 272 21201-21206; Regulatory Peptides (2003) 114 153-158; Trend in Pharmacological Sci. (2003) 24 377-383; WO 03011892A;).
  • the inventors have worked hard to obtain a new C-terminally truncated Exend polypeptide fragment having a C-terminus.
  • the polypeptide with this structure not only shortens the peptide chain length of about 1/4 of the Exendin 4 peptide, but also greatly facilitates the production practice, provides a new choice for the treatment of diabetes, and the peptide can be effectively It is resistant to the action of carboxypeptidase and maintains blood glucose lowering activity for a long time.
  • Exendi polypeptide fragment having the structure of formula (I), and a pharmaceutically acceptable salt or ester thereof:
  • Xi means Phe or Tyr
  • X 2 means Met:, lie or Leu
  • X 3 represents Lys
  • X 4 means Gly or missing
  • X 5 represents Arg or a deletion.
  • the amino acid residue (X,) at position 6 of the Exendin4 polypeptide fragment of the formula (I) is preferably Tyr.
  • replacing one Phe in the molecule with Tyr facilitates the labeling of 125 iodine.
  • the amino acid residue (X 2 ) at position 14 of the Exendin 4 polypeptide fragment of formula (I) may be Met,
  • the amino acid residue (X 4 ) at position 30 of the Exendin 4 polypeptide fragment of formula (I) is preferably deleted. More preferred polypeptide fragments are: 1> 1 :, 2] ⁇ 1, 3 1 ⁇ 8, X 4 deletions, X 5 represents
  • Exendi polypeptide fragment of the present invention refers to a truncated Exendin4 polypeptide of the present invention having a structure represented by the formula (I).
  • a polypeptide may be simply referred to as “E4 (f)", “polypeptide fragment” or “polypeptide of the present invention”.
  • the N-terminal amino group and the C-terminal carboxyl group and the amino acid side chain group of the polypeptide of the formula (I) may be modified without modification, such as to form "pharmaceutically acceptable” Accepted ester".
  • Modifications to amino acid side chain groups include, but are not limited to, acylation of lysine ⁇ -amino groups, deacylation of arginine, histidine or lysine decane.
  • Modifications of the terminal amino group of the oxime include, but are not limited to, de-amino, guanidine-lower alkyl, fluorene-dilow sulfhydryl, and oxime-acyl modifications.
  • Modifications of the C-terminal carboxyl group include, but are not limited to, amide, lower mercapto amide, dinonyl amide, and lower alkyl ester modifications.
  • the terminal group is protected with a protecting group known to those skilled in the art of protein chemistry, such as acetyl, trifluoroacetyl, Fmoc (9-fluorenyl-methoxycarbonyl), Boc (tert-butoxycarbonyl), Alloc (allyloxycarbonyl), C 1-6 fluorenyl, C 2-8 alkenyl, C 7-9 aralkyl, and the like.
  • a protecting group known to those skilled in the art of protein chemistry such as acetyl, trifluoroacetyl, Fmoc (9-fluorenyl-methoxycarbonyl), Boc (tert-butoxycarbonyl), Alloc (allyloxycarbonyl), C 1-6 fluorenyl, C 2-8 alkenyl, C 7-9 aralkyl, and the like.
  • the N-terminal amino group and the C-terminal carboxyl group and the amino acid side chain group of the polypeptide of the formula (I) are not modified, that is, the N-terminal chemical group is still the ⁇ -amino group on the first amino acid (His) (- ⁇ 2), the chemical group at the C-terminus is the carboxyl group (-COOH) of the C-terminal Pro.
  • the present invention also preferably acylates the carboxyl group of the C-terminal Pro, that is, -CO ⁇ 2.
  • amino acids can be referred to in Table 1.
  • an amino acid generally refers to an L-form amino acid.
  • “Pharmaceutically acceptable salt” refers to a salt of some small molecule acidic or basic compounds with a polypeptide which generally increases the solubility of the polypeptide and which does not substantially alter the activity of the polypeptide.
  • an acid which normally forms a salt with the polypeptide of the present invention is hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, succinic acid, maleic acid, citric acid, etc.
  • a base capable of forming a salt with the polypeptide of the present invention is an alkali metal or alkaline earth metal hydroxide. Matter, ammonium, carbonate, etc.
  • hypoglycemic effect of the polypeptides of the invention can be verified by routine experimental methods in the art, such as cytology experiments, animal experiments, and the like.
  • an animal model of diabetes For example, db/db ll type diabetic mice, Goto Kokizaki type II diabetic rats, KK diabetic mice, alloxan artificially induced diabetic model mice. Through these animal experiments, it was found that the present invention is involved And the formula (I) Exendi polypeptide fragments have sustained hypoglycemic effects in vivo and can be used for the treatment of diabetes.
  • another aspect of the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the above-described E X endin 4 polypeptide fragment having the structure of formula (I), which can be used for the treatment of diabetes, particularly for the treatment of type 2 diabetes.
  • the composition may contain one or more of the Exendin 4 polypeptide fragments of the invention, preferably containing only one Exendin 4 polypeptide fragment.
  • the composition may contain one or more pharmaceutically acceptable diluents, excipients or carriers, preferably in unit dosage form such as tablets, films, pills, capsules (including sustained release or delayed release) Release forms), powders, granules, elixirs, syrups and lotions, sterile injectable solutions or suspensions, aerosol or liquid sprays, drops, injections, automatic injection devices or suppositories.
  • diluents preferably in unit dosage form such as tablets, films, pills, capsules (including sustained release or delayed release) Release forms)
  • powders granules, elixirs, syrups and lotions
  • sterile injectable solutions or suspensions sterile injectable solutions or suspensions
  • aerosol or liquid sprays drops
  • injections automatic injection devices or suppositories.
  • an oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water or a combination thereof.
  • WO2004035754A and WO2004036186A respectively disclose a sustained release dosage form which can be used for the inclusion of the Exendin4 polypeptide, and the active polypeptide of the formula (I) of the present invention is preferably used in such a dosage form (WO2004035754A and WO2004036186A are hereby incorporated by reference in entirety).
  • the present invention also provides the use of the above compound or pharmaceutical composition for the preparation of a medicament for treating diabetes, preferably for the treatment of type 2 diabetes.
  • the pharmaceutical compositions of this invention may be administered by methods of administration well known to those skilled in the art, such as oral, rectal, sublingual, pulmonary, transdermal, iontophoretic, vaginal and intranasal administration.
  • the pharmaceutical compositions of the invention are preferably administered parenterally, such as subcutaneously, intramuscularly or intravenously.
  • the medicament of the present invention is capable of modulating insulin to maintain blood glucose levels for a long time.
  • the dose to be administered varies depending on the form of the preparation and the desired time of action and the condition of the subject to be treated, and the amount required for the actual treatment can be conveniently determined by the physician based on actual conditions (e.g., the patient's condition, body weight, etc.). For a typical adult, an amount of Ol-100 g is required daily, preferably in the range of 1-20 ⁇ ⁇ , more preferably 5-10 ⁇ ⁇ .
  • the dosage can also be determined by reference to the dose of the commercially available exendin-4 polypeptide drug.
  • the present invention also provides a method of chemically synthesizing the above polypeptide.
  • the synthesis of polypeptides of known structure by chemical methods will be apparent to those skilled in the art. Detailed protocols can be performed by referring to the methods described in the following literature.
  • solid phase synthesis of peptides can be found in JM Steward and JD Young, “Solid Phase Peptide Synthesis", Second Edition (Pierce Chemical Co., Rockford, Illinois (1984). )) and J. Meienhofer, Hormonal Proteins and Peptides, Vol. 2 (Academic Press, New York (1973)); for the synthesis of peptides by liquid phase, refer to E. Schroder and K.
  • the polypeptide of the invention is preferably synthesized by a solid phase method.
  • the invention provides a nucleic acid sequence of an Exendin4 polypeptide fragment, E.Coli's preferred codon. For example, if the nucleic acid encoding the polypeptide of the present invention is expressed in E. coli, the codon of the nucleic acid is preferably a preferred codon for E. coli.
  • the invention also provides a method for preparing the above polypeptide by genetic engineering.
  • the method comprises: a) fermenting a host cell capable of expressing a polypeptide of the invention; b) isolating and purifying the expression product.
  • the method can further comprise the step of cleaving the expression product.
  • genetically engineered methods produce intermediate polypeptides (20-60 amino acid residues), due to low expression levels and easy degradation after expression, the polypeptide gene is usually linked to the carrier protein and expressed as a fusion protein.
  • the fusion protein is cleaved, isolated and purified chemically or enzymatically to obtain the polypeptide of interest. This method has low yield and complicated process.
  • a plurality of expression genes are ligated in tandem according to the amino acid sequence of the polypeptide, expressed by an appropriate promoter, and then the tandem polypeptide is cleaved to prepare a polypeptide of interest.
  • This method yields high yields.
  • the present invention preferably employs the above-described gene tandem method for expressing the polypeptide of the present invention.
  • tandem polypeptide cleavage a common method in the art can be used, for example, after the Lys residue is protected with Citranic Anhydride, the peptide chain is cleaved from the Arg in the middle of the tandem polypeptide by trypsin, and then the acid is removed.
  • Citranic Anhydride a common method in the art can be used, for example, after the Lys residue is protected with Citranic Anhydride, the peptide chain is cleaved from the Arg in the middle of the tandem polypeptide by trypsin, and then the acid is removed.
  • Citracononic acid group see J. D. Baxter.
  • the method can These include: a) fermentation of bacterial cells capable of expressing the polypeptide of the invention; b) collection of bacterial cells; c) disruption of cells; d) extraction of tandem polypeptides; e) renaturation of the obtained polypeptide; 0 cleavage; The final polypeptide product is purified by chromatography.
  • the expression product is not obtained, and only one polypeptide molecule in one fusion protein molecule accounts for about one-tenth of the fusion protein molecule.
  • the yield is very low, and there are many kinds of polypeptides after such fusion protein cleavage, and it is difficult to separate and purify the polypeptide of interest.
  • a plurality of polypeptide groups are expressed in tandem, and all of the expressed fusion protein molecules are polypeptides of interest, and the type of the polypeptide after cleavage is single, the yield is more than ten times that of the former, and separation and purification are easy.
  • the X 3 of the present invention is Lyr, and the fusion protein cleaves only cleaves the Arg in the middle of the tandem molecule, thus maintaining the integrity of the E4(f) molecule.
  • E4(f)Arg is an intermediate of E4(f). In fact, E4(f)Arg is rapidly removed by carboxypeptidase B in the blood to form E4(f), both of which are applicable.
  • E4(f)Arg is rapidly removed by carboxypeptidase B in the blood to form E4(f), both of which are applicable.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 20 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID NO. 4 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 24 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 5 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • FIG. 25 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID NO. 5 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 29 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 6 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • FIG. 30 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID NO. 6 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 34 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 7 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG 39 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 8 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • FIG. 40 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID NO. 8 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 44 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 9 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 49 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 10 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • Figure 50 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID O.10 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 54 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 11 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • FIG. 59 Postprandial hypoglycemic effect of Exendin 4 polypeptide fragment of SEQ ID NO. 12 on Goto Kokizaki type II diabetic rats.
  • Curve 1 indicates a blank control group and curve 2 indicates a drug administration group.
  • Figure 60 Hypoglycemic effect of the Exendin 4 polypeptide fragment of SEQ ID NO. 12 on alloxan artificial diabetes model mice.
  • Line 1 indicates the administration group
  • line 2 indicates the blank control group
  • the amino group of the amino group is 9-fluorenylmethoxycarbonyl (FmocM is protected; and the amino acid is side-chain protected: the side chain protecting group for Asp, Glu, Ser and Thr is tert-butyl, for Asn, Gin and His Is trityl (Trt), Lys and Trp are tert-butoxycarbonyl (Boc), and Arg is 2,2,5,7,8,-5-methylchroman-6-sulfonate Acyl (Pmc:).
  • the protected amino acids are sequentially coupled and coupled for 40 minutes each time.
  • dithiol/dimethyl sulfide/anisole (1: 1: lv/v/v)
  • the peptide was reacted with trifluoroacetic acid (85%) at room temperature for 120 minutes to cut from the polymer support.
  • the protective group was removed at the same time.
  • the peptide was then precipitated with anhydrous diethyl ether, and then washed repeatedly with anhydrous diethyl ether to sufficiently remove the mercaptan.
  • SEQ ID NO. 1; SEQ ID NO. 3; SEQ ID NO. 4; SEQ ID NO. 5; SEQ ID NO. 6; SEQ ID NO. 7; SEQ were obtained by the same method as in Example 1.
  • Example 2 Genetic engineering production process of Exendin 4 variant polypeptide
  • step 2 Add the EcoRI and Sail double-cleaved DNA fragment obtained in step 2) to the above double-digested plasmid, add 10 ⁇ ligase buffer 1 ⁇ 1, ⁇ ⁇ and ⁇ 4 ligase 2 ⁇ 1, and maintain at 16 °C for 12 hours.
  • Competent cells were prepared by conventional methods using E coli JM 109, and the ligated samples were transformed, positive clones were picked, and plasmids were extracted.
  • the plasmid having the variant polypeptide gene obtained in the step 3) is double-digested with Bgl II+Sal I to extract a DNA gene fragment containing the variant polypeptide. Further, the plasmid obtained in the step 3) was digested with BamHI + Sal l and then ligated with the DNA gene fragment containing the variant polypeptide to obtain a plasmid containing the tandem gene fragment of the variant polypeptide.
  • the plasmid containing two tandem variant polypeptide gene fragments was digested with Bgl II+Sal I to obtain two gene-ligated fragments.
  • the plasmid containing two tandem genes was digested with BamHI+Sal I. Further, the fragments in series with the two genes were ligated to form a plasmid in which four genes were ligated. This continues to yield 8 tandem genes or 16 or 32 gene tandem plasmids.
  • the plasmid of the cloned variant polypeptide was mixed with the competent E coli JM 109 in an ice bath, maintained in an ice bath for 30 minutes, transferred to a 42 ° C water bath for 2 minutes, cooled in an ice bath, and coated (including 1%). Agarose, 5 () ⁇ ⁇ ampicillin / ml), overnight at 37 ° C. Colonies were picked and transferred to a LB medium shake flask (containing 50 ⁇ ⁇ ampicillin/ml) and cultured overnight at 37 ° C with shaking. Take 0.7 ml of the culture solution and add 0.3 ml of 50% glycerol (sterile), mix well, and store in a refrigerator at -85 °C for use.
  • LB culture solution peptone 10 g, yeast powder 5 g, NaCl 10 g
  • ampicillin was added (final concentration reached 100 ⁇ ⁇ / ⁇ 1), and the stored glycerin obtained in the step 5) was inoculated.
  • Tube lml shake culture at 37 ° C overnight.
  • the cells were collected by centrifugation at 5000 rpm, frozen at a low temperature of -35 ° C, and after thawing, 6 M guanidine hydrochloride was added, and the tandem polypeptide was extracted by homogenization, and the supernatant was collected by centrifugation at 18000 rpm.
  • the supernatant was dialyzed against a buffer (10 mM pH 7.2 phosphate buffer, 0.1% hydrazine ethanol).
  • the tandem polypeptide is isolated by centrifugation. Then, the cleavage is carried out according to the method of JDBaxter et al. (Nature 1980 285 456-461), that is, the tandem polypeptide is dissolved in water, Na2CO3 powder is added, the pH is maintained at 8.5, and the citric anhydride is added dropwise to completely dissolve the inclusion body to maintain pH8. .5, Stirring was continued for 2 hours at room temperature, then trypsin and carboxypeptidase B were added.
  • the polypeptide was obtained, then adjusted to pH 3 with 3N hydrochloric acid, stirred for 4 hours, and the citraconic acid protecting group was removed. The whole process was monitored by HPLC, and finally the purified serial number of the present invention was SEQ ID NO. .2 Exendin 4 polypeptide fragment.
  • SEQ ID NO. 1; SEQ ID NO. 3; SEQ ID NO. 4; SEQ ID NO. 5; SEQ ID NO. 6; SEQ ID NO. 7; SEQ were obtained by the same method as in Example 2, respectively.
  • the Exendin 4 variant polypeptide sequence number corresponds to the gene fragment sequence number as follows:
  • SEQ ID NO. 53 (2) SEQ ID NO. 54; (3) SEQ ID NO. 55; (4) SEQ ID NO. Gene fragment corresponding to the polypeptide sequence SEQ ID NO. 12:
  • Exendin4 polypeptide fragment of the invention (abbreviated as E4 ( f)) 2 ⁇ each at 0, 30, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, respectively, take 20 ⁇ 1 blood and measure with blood glucose test kit (purchased from Shanghai Institute of Biological Products) Blood sugar effect.
  • E4 ( f) Exendin 4 polypeptide fragment SEQ ID NO. K SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO.
  • Example 4 Hypoglycemic effect of Exendin 4 polypeptide fragment on db/db type II diabetic mice Take 50 g of db/db type II diabetic mice (purchased from Shanghai Animal Center of Chinese Academy of Sciences and Yangzhou University), fasting for 2 hours Exendin 4 polypeptide fragment 2 ⁇ ⁇ was injected subcutaneously, and 20 ⁇ l of blood was taken at 0, 30, 60, and 120 minutes, respectively.
  • the blood glucose measurement kit purchased from Shanghai Institute of Biological Products was used to measure the effect of continuous blood glucose lowering. The results are as follows:
  • Example 6 Hypoglycemic effect of Exendin 4 polypeptide fragment on alloxan artificial diabetes model mice
  • mice weighing 20 g were divided into five groups, and 0.1 ml of alloxan (16 mg/ml) was injected through the tail vein. After 48 hours, the Exendin 4 variant polypeptide fragment of SEQ ID NO. 2 was subcutaneously injected. ⁇ , 20 ⁇ 1 of blood was taken at 0, 30, 60, and 120 minutes, respectively. Blood glucose measurement kit (purchased from Shanghai Institute of Biological Products) was used to measure hypoglycemic effect. All five groups showed good hypoglycemic effects, and the results are as shown:
  • the results of IK SEQ ID NO. 12 are shown in Figures 11, 6, 16, 16, 21, 31, 36, 41, 46, 51, 56, and 61, respectively.
  • Example 8 prepared in the same manner as in Example 1, respectively, to obtain SEQ ID NO. 6K SEQ ID NO. 62> SEQ ID NO. 63, SEQ ID NO. 64, SEQ ID NO. 65, SEQ ID NO. 66, SEQ ID NO. 67.
  • Exendin 4 polypeptide fragment SEQ ID NO. 61, SEQ ID NO. 62, SEQ ID NO. 63 > SEQ ID NO. 64, SEQ ID NO. SEQ ID NO. 66, SEQ ID NO. 67, SEQ ID NO. 68, SEQ ID NO. 69 SEQ ID NO. 70, SEQ ID NO. 71, SEQ ID NO.
  • Exendin 4 polypeptide fragment SEQ ID NO. 61, SEQ ID NO. 62, SEQ ID NO. 63, SEQ ID NO. 64, SEQ ID NO. 65, SEQ ID NO. 66, SEQ ID NO. 67, SEQ ID NO. 68.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

Exendin4多肽片段 技术领域
本发明涉及 Exendin 4截短的多肽片段, 该多肽具有降低血糖的作用, 可用于治疗 II 型糖尿病。 背景技术
由于现代的饮食结构和生活方式, 世界各国糖尿病患者人数逐年增 多, 目前中国有 5000万患者, 印度有 6000万, 美国有 1800万, 日本有 600万。
糖尿病分为两种,胰岛素依赖型糖尿病 ( I 型糖尿病 )和非胰岛素依赖 型糖尿病 (II 型糖尿病), 其中 II型糖尿病占糖尿病患者的 90%以上。 II型 糖尿病患者表现了许多特征, 如餐后胰岛素分泌量不足、 胰岛素分泌时间 滞后、 高血糖等。 肥胖 II型糖尿病患者周边细胞胰岛素受体敏感性降低, 从而产生血糖高、 血液中胰岛素水平也高的情况, 糖化血红蛋白 HbAlc 在 8%以上 (健康人为 4-6%)。 接着就会产生糖尿病并发症, 如心脏病及肾 功能衰退等。 降低血糖水平就成为有效治疗 II型糖尿病的关键。
如今, 控制糖尿病有六大类药物, 包括促胰岛素分泌类: 磺酰脲类和 melitioneds, 非促胰岛素分泌药物: 胰岛素, α-葡萄糖苷酶抑制剂, 双胍 类及 Thioagolinediones。 然而, 根据英国 UKPDS对数千名 II型糖尿病患 者的 6年跟踪研究报告, 上述六类药物对 II型糖尿病患者皆无能为力, 不 能遏制胰脏 β细胞不断进行性的恶化,不能降低 HbAlc水平,也不能阻止 糖尿病的并发症如心脏病、肾衰竭的发生。因此需要研究新的 II 型糖尿病 治疗药物。
1995 年, 美国专利第 5424286 号公开了一种从南美产巨蜥蜴 (Gila monster, Helode Suspectum)的唾液中分离的 Exendin 4多肽。 该肽由 39个 氨基酸残基组成, 其结构与肠激素胰高血糖素样肽 -1 (GLP-1 ) 在氨基酸 序列上有 40%的同源性。
研究表明, Exendin 4作为 GLP-1的类似物能够与 GLP-1的受体相结 合。 Exendin 4能促进胰岛素原的合成, 促胰岛素分泌, 能降低血糖, 当血 糖正常之后不再持续作用, 因而不产生低血糖昏迷、 休克, 安全有效。 它 能降低 HbAlc, 增加 β细胞量, 增加 II型糖尿病患者胰岛素受体敏感性, 抑制胰高血糖素分泌等作用。 2005年 4月, 商品名Byetta的Exendin 4获 美国 FDA批准上市。 (参见 Diabetes (1997) 46 433-439; ibid (1995) 44 1249-1258; Ibid (2002) 51 2796-2803; Ibid (1994) 53 2397-2403; Diabetes Care (2002) 25 330-336; Ibid (2000) 23 64-69; ibid (2004) 2 2623-2635; JAMA(2002) 287 373-379; N . Engl . J . Med. (2002) 346 393-436; Lanced (1998) 352 837-853; Diabetes Endocrinology(2005) 146 (4) 2069-2070;J.Clin.Endocrinology Metab (2004) 89 3469-3473.)
许多研究人员积极对 Exendin 4肽进行改造, 以期望获得可供更多选 择的、更有效的、更方便生产的 Exendin 4变体。 CN1227567A公开了一种 截短的 Exendin4肽, 其由 30个氨基酸残基组成, C末端为 Arg或 Tyr。美 国礼来公司研究了一系列 GLP-1类似物,其能长期安全地用于治疗糖尿病 (参见 WO02047716A)。 而且, 这些结果都是离体实验得到的, 以 GLP-1 受体结合能力的大小、促胰岛瘤细胞分泌胰岛素的多少和 cAMP的形成量 来评价,具有局限性 (参见 L Biol. Chem (1997) 272 21201-21206; Regulatory Peptides (2003) 114 153-158; Trend in Pharmacological Sci. (2003) 24 377-383; WO 03011892A;)。
为了克服现有技术中的不足,发明人经过艰苦的努力,获得了一种新的 C端截短的并且 C末端为 Pro的 Exend 多肽片段。 令人惊讶的是, 具有 这种结构的多肽不但缩短了 Exendin 4肽约 1/4的肽链长度, 大大方便了生 产实践,为治疗糖尿病提供了一种新选择,而且这种肽能有效地抵抗羧肽酶 的作用, 持久地保持降血糖的活性。 发明内容
本发明一个方面提供了具有式 (I)结构的 Exendi 多肽片段及其药学上 可接受的盐或酯:
HGEGTXiTSDLSKQX2EEEAVX3LFIEWLKNGX4PX5 ( I ) 其中,
Xi 表示 Phe或 Tyr,
X2表示 Met:、 lie或 Leu,
X3 表示 Lys,
X4表示 Gly或缺失,
X5 表示 Arg或缺失。
式 (I) 中 Exendin4多肽片段第 6位的氨基酸残基 (X, ) 优选为 Tyr。 鉴于药代动力学研究的方便, 将分子中的一个 Phe换成 Tyr, 有利于 125碘 的标记。
式 (I) 中 Exendin4多肽片段第 14位的氨基酸残基 (X2) 可以是 Met、
He或 Leu中任意一个, 优选为 Met。
式 (I) 中 Exendin4多肽片段第 30位的氨基酸残基 (X4) 优选缺失。 更优选的多肽片段为 : 是1>1:, 2是]^1, 3是1^8, X4缺失 , X5表示
Arg或缺失。
在本文中, "本发明的 Exendi 多肽片段"指的是本发明中截断的 Exendin4多肽, 其具有式 (I) 所示的结构。 在本文中, 这种多肽可以简称 为 "E4 (f)"、 "多肽片段"或 "本发明的多肽"。 式 (I) 多肽的 N末端的氨基和 C末端的羧基以及氨基酸侧链基团可以不 进行修饰,也可以在基本上不影响本发明多肽的活性的前提下进行修饰,如 形成 "药学上可接受的酯"。 对氨基酸侧链基团的修饰包括但不限于赖氨酸 ε -氨基基团的酰化, 精氨酸、 组氨酸或赖氨酸的 Ν-烷的脱酰基作用。 Ν末 端氨基基团的修饰包括但不限于脱-氨基、 Ν-低级烷基、 Ν-二低级垸基和 Ν- 酰基修饰。 C末端羧基基团的修饰包括但不限于酰胺、低级垸基酰胺、 二垸 基酰胺和低级烷基酯修饰。优选末端基团用蛋白质化学领域的技术人员已知 的保护性基团保护起来,如乙酰基、三氟乙酰基、 Fmoc (9-芴基-甲氧羰基)、 Boc (叔丁氧羰基)、 Alloc (烯丙氧羰基)、 C 1-6 垸基、 C 2-8 烯基、 C 7-9 芳烷基等。本发明优选不对式 (I) 多肽 N末端的氨基和 C末端的羧基以及氨 基酸侧链基团进行修饰, 即 N末端的化学基团仍旧为第一个氨基酸 (His) 上的 α -氨基 (-ΝΗ2), C末端的化学基团是 C末端 Pro的羧基 (-COOH)。 本发明也优选对 C末端 Pro的羧基进行酰氨化, 即是 -CO ΝΉ2。
本文中所使用的多肽及氨基酸和化学基团的表示方法均为所属领域公 认的表示方法。其中氨基酸的缩写可参照表 1中定义。在本文中, 若不特别 指出, 氨基酸一般指 L-型的氨基酸。
表 1 氨基酸缩写表
氨基酸 三字母缩写 一字母缩写 氨基酸 三字母缩写 一字母缩写 丙氨酸 Ala A 亮氨酸 Leu L 精氨酸 Arg R 赖氨酸 Lys K 天冬酰胺 Asn N 蛋氨酸 Met M 天冬氨酸 Asp D 苯丙氨酸 Phe F 半胱氨酸 Cys C 脯氨酸 Pro P 谷氨酰胺 Gin Q 丝氨酸 Ser s 谷氨酸 Glu E 苏氨酸 Thr T 甘氨酸 Gly G 色氨酸 Trp w 组氨酸 His H 酪氨酸 Tyr Y 异亮氨酸 lie I 缬氨酸 Val V
"药学上可接受的盐"指一些小分子酸性或碱性化合物与多肽形成的 盐,一般能够增加多肽的溶解性, 所形成的盐基本上不改变多肽的活性。例 如, 通常能与本发明多肽形成盐的酸有盐酸、 磷酸、 硫酸、 乙酸、 琥珀酸、 马来酸、柠檬酸等; 能与本发明多肽形成盐的碱有碱金属或碱土金属的氢氧 化物、 铵、 碳酸盐等。
本发明多肽的降糖作用可以通过所属领域常规的实验方法来验证,如细 胞学实验、动物实验等。在本发明的具体实施方式中, 为了克服离体实验的 局限性, 优选通过糖尿病动物模型来鉴定多肽的降糖作用。 如 db/db ll型糖 尿病小鼠、 Goto Kokizaki II 型糖尿病大鼠、 KK 糖尿病小鼠、 四氧嘧啶 (alloxan)人工诱导糖尿病模型小鼠。通过这些动物试验, 发现本发明所涉 及的式 (I) Exendi 多肽片段都具有持续的体内降糖作用, 能够用于糖尿病 的治疗。 因此, 本发明的另一方面提供了含有上述具有式 (I)结构的 EXendin 4多 肽片段的药物组合物, 其可以用于治疗糖尿病, 尤其是治疗 II型糖尿病。 该组合物可以含有本发明的 Exendin 4多肽片段中的一种或多种, 优选仅含 一种 Exendin 4多肽片段。 该组合物可以含有一种或多种药学上可接受的稀 释剂、赋形剂或载体,优选该组合物为单位剂量形式,如片剂、膜剂、丸剂、 胶囊 (包括持续释放或延迟释释设形式)、 粉剂、 颗粒剂、 酊剂、 糖浆剂和乳 液剂、消毒的注射用溶液或悬浮液、气雾剂或液体喷剂、滴剂、针剂、 自动 注射装置或栓剂。例如, 以片剂或胶囊口服给药,上述活性药物组分可以与 一种口服的无毒的药物学可接受的惰性载体组合在一起,如乙醇,甘油,水 或其组合。 WO2004035754A和 WO2004036186A分别公开了一种可用于包 括 Exendin4 多肽的缓释剂型, 本发明式 (I)的活性多肽优选使用这种剂型 (WO2004035754A和 WO2004036186A的全文纳入本文参考)。 本发明还提供了上述化合物或药物组合物在制备治疗糖尿病的药物中 的用途, 优选用于治疗 II型糖尿病。 本发明的药物组合物可通过所属领域 技术人员所熟知的给药方式来进行给药, 例如口服、直肠、舌下、肺部、透 皮、离子透入、阴道及鼻内给药。本发明的的药物组合物优选胃肠道外给药, 如皮下、肌内或静脉内注射。本发明的药物能够调节胰岛素从而持久地保持 血糖水平。给药剂量根据制剂形式和期望的作用时间以及治疗对象的情况而 有所变化, 实际治疗所需的量可以由医师根据实际情况(如, 病人的病情、 体重等)而方便地确定。 对于一般的成人, 每日需要给药 O.l-lOO g的量, 优选 1-20μ§ 的范围内, 更优选 5-10μ§。 剂量也可以参考已经商品化的 exendin-4多肽药品的剂量来确定。 另外,本发明还提供了一种化学合成上述多肽的方法。通过化学方法合 成已知结构的多肽对于所属领域技术人员来说都是显而易见的。详细的方案 可参照以下文献所述的方法进行, 如用固相法合成多肽可参考 J.M. Steward 和 J.D. Young的《 Solid Phase Peptide Synthesis)),第二版 (Pierce Chemical Co., Rockford, Illinois(1984))禾口 J. Meienhofer的《 Hormonal Proteins and Peptides》, 第 2卷(Academic Press,纽约 (1973));用液相法合成多肽可参考 E. Schroder 和 K. Lubke的《 The Peptides》, 第 1卷(Academic Press, 纽约 (1965) ) (这 些文献的全文纳入本文参考)。 在本发明的一个具体实施方案中, 优选通过 固相法合成本发明的多肽。 在另一个方面, 本发明提供了 Exendin4 多肽片段的核酸序列, 采用 E.Coli的偏好密码子。例如,如果用大肠杆菌表达该编码本发明多肽的核酸, 则该核酸的密码子优选是大肠杆菌的偏好密码子。 本发明还提供了一种用基因工程方法制备上述多肽的方法。 该方法包 括: a)发酵能表达本发明多肽的宿主细胞; b)分离提纯表达产物。 该方法可 进一步包括裂解所述表达产物的步骤。 基因工程方法生产中等程度多肽 (20-60个氨基酸残基)时, 由于表达水平低, 并且表达之后容易降解, 所以, 一般是将多肽基因连结在载体蛋白上, 以融合蛋白方式进行表达,然后以化 学或酶的方法将融合蛋白裂解,分离,纯化得到目的多肽。这种方法产量低, 工艺繁杂。另一种方法是根据多肽的氨基酸序列,将表达基因多个串联起来, 用适当的启动子进行表达, 然后将串联多肽裂解, 制备目的多肽。用这种方 法已经有许多成功生产多肽的例子,如生产人胰岛素 (Proc, Natl, Acad, Sci, USA, 1984 81 4627-4631)^ 降钙素 (JP62-226998)、 GLP-1(WO95/17510)。 这 种方法产量高。本发明优选采用上述基因串联方法表达本发明的多肽。在串 联多肽裂解方面,可以使用所属领域的常用方法, 如将 Lys残基用柠康酸酐 (Citraconic Anhydride)保护后, 用胰蛋白酶从串联多肽中间的 Arg处将肽 链切断, 再经酸处理脱去柠康酸 (Citraconic acid) 基团 (参见 J . D . Baxter . 等, Nature 1980 285 456-461; JP62-226998)0 如图 1所示, 在一个优选的具 体实施方式中, 该方法可以包括: a)发酵能表达本发明多肽的细菌细胞; b) 收集菌体; c)破碎细胞; d)提取串联多肽; e)对获得的多肽进行复性; 0裂解; g)用高压液相层析提纯最终的多肽产品。
由于多肽类 (20-60个氨基酸残基) 的基因工程表达必须与载体蛋白质 连结, 否则得不到表达产物,一个融合蛋白质分子中只有一个多肽分子, 约 占融合蛋白质分子的十分之一,产量很低,这样的融合蛋白质裂解后多肽的 种类很多,目的多肽分离纯化困难。本发明将使多个多肽基串联后进行表达, 表达的融合蛋白分子中全部都是目的多肽,裂解后多肽的种类单一,产量为 前者的十倍以上, 并且分离纯化容易。 本发明的 X3为 Lyr, 融合蛋白裂解 '时只切断串联分子中间的 Arg, 这样就保持 E4(f)分子的完整。
Ε4(ζ) C-端为 Pro抵抗羧肽酶 A、 B的作用, 有利于保持分子的稳定性。 E4(f)Arg作为 E4(f)的中间体, 事实上 E4(f)Arg在血液中迅速被羧肽酶 B类水解除去形成 E4(f), 二者皆可应用。 为了便于理解, 以下将通过具体的实施例和附图对本发明进行描述。需 要特别指出的是,这些描述仅仅是示例性的描述, 并不构成对本发明范围的 限制。依据本说明书的论述,本发明的许多修改对所属领域技术人员来说都 是显而易见了。 另外, 本申请引用的所有参考文献都纳入本文参考。 附图说明
图 1.用基因工程法发酵生产 Exendin 4 多肽片段的生产工艺流程。
图 2.序列号为 SEQ ID NO.2 的 Exendin 4 多肽片段的持续降血糖作用与 Exendin 4的比较。
图 3.序列号为 SEQ ID NO.2的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 4.序列号为 SEQ ID NO.2的 Exendin 4多肽片段对 Goto Kokizaki II型糖 尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示给 药组。
图 5.序列号为 SEQ ID NO.2的 Exendin 4多肽片段对四氧嘧啶 (alloxan)人 工糖尿病模型小鼠的降血糖作用。
图 6.序列号为 SEQ ID NO.2的 Exendin 4多肽片段的促胰岛素分泌作用。线 条 1表示给药组, 线条 2表示空白对照组。
图 7.序列号为 SEQ ID NO.1 的 Exendin 4 多肽片段的持续降血糖作用与
Exendin 4的比较。
图 8.序列号为 SEQ ID NO.l的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 9.序列号为 SEQ ID NO.l的 Exendin 4多肽片段对 Goto Kokizaki II型糖 尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示给 药组。
图 10.序列号为 SEQ ID NO.l的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 11.序列号为 SEQ ID NO.l的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 12.序列号为 SEQ ID NO.3的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 13.序列号为 SEQ ID NO.3的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 14.序列号为 SEQ ID NO.3的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 15.序列号为 SEQ ID NO.3的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 16.序列号为 SEQ ID NO.3的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 17.序列号为 SEQ ID NO.4的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 18.序列号为 SEQ ID N0.4的 Exendin 4多肽片段对 db/db ll型糖尿病小鼠 的降血糖作用。
图 19.序列号为 SEQ ID NO.4的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 20.序列号为 SEQ ID NO.4的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 21.序列号为 SEQ ID NO.4的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 22.序列号为 SEQ ID NO.5的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 23.序列号为 SEQ ID NO.5的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 24.序列号为 SEQ ID NO.5的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 25.序列号为 SEQ ID NO.5的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 26.序列号为 SEQ ID NO.5的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 27.序列号为 SEQ ID NO.6的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 28.序列号为 SEQ ID NO.6的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 29.序列号为 SEQ ID NO.6的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 30.序列号为 SEQ ID NO.6的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 31.序列号为 SEQ ID NO.6的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 32.序列号为 SEQ ID NO.7的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 33.序列号为 SEQ ID NO.7的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 34.序列号为 SEQ ID NO.7的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 35.序列号为 SEQ ID NO.7的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 36.序列号为 SEQ ID NO.7的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 37.序列号为 SEQ ID N0.8的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 38.序列号为 SEQ ID NO.8的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 39.序列号为 SEQ ID NO.8的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 40.序列号为 SEQ ID NO.8的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 41.序列号为 SEQ ID NO.8的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 42.序列号为 SEQ ID NO.9的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 43.序列号为 SEQ ID NO.9的 Exendin 4多肽片段对 db/db II型糖尿病小鼠 的降血糖作用。
图 44.序列号为 SEQ ID NO.9的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 45.序列号为 SEQ ID NO.9的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 46.序列号为 SEQ ID NO.9的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 47.序列号为 SEQ ID NO.10的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 48.序列号为 SEQ ID NO.10的 Exendin 4多肽片段对 db/db II型糖尿病小 鼠的降血糖作用。
图 49.序列号为 SEQ ID NO.10的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 50.序列号为 SEQ ID O.10的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 51.序列号为 SEQ ID NO.10的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 52.序列号为 SEQ ID NO.11的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。 图 53.序列号为 SEQ ID NO.11的 Exendin 4多肽片段对 db/db II型糖尿病小 鼠的降血糖作用。
图 54.序列号为 SEQ ID NO.11的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 55.序列号为 SEQ ID NO.il的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 56.序列号为 SEQ ID NO.ll的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。
图 57.序列号为 SEQ ID NO.12的 Exendin 4多肽片段的持续降血糖作用与
Exendin 4的比较。
图 58.序列号为 SEQ ID NO.12的 Exendin 4多肽片段对 db/db II型糖尿病小 鼠的降血糖作用。
图 59.序列号为 SEQ ID NO.12的 Exendin 4多肽片段对 Goto Kokizaki II型 糖尿病大鼠的餐后降血糖作用。 曲线 1表示空白对照组, 曲线 2表示 给药组。
图 60.序列号为 SEQ ID NO.12的 Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的降血糖作用。
图 61.序列号为 SEQ ID NO.12的 Exendin 4多肽片段的促胰岛素分泌作用。
线条 1表示给药组, 线条 2表示空白对照组。 具体实施方式
实施例 1: 固相合成 Exendin 4变体多肽
在购自 MultiSyn Tech公司的多重自动肽合成仪 SyRo II上通过固相 方法合成。 氨基酸的 α氨基用 9-芴基甲氧羰基 (FmocM呆护; 并对氨基酸进 行侧链保护: 对 Asp、 Glu、 Ser及 Thr的侧链保护基为叔丁基, 对 Asn、 Gin及 His 的为三苯甲基 (Trt), 对 Lys及 Trp为叔丁氧羰基 (Boc), 对 Arg 为 2,2,5,7,8,-5-甲基苯并二氢吡喃 -6-磺酰基 (Pmc:)。 以 Ν,Ν-二异丙基碳二亚 胺 /1-羟基苯并三唑作为活化试剂,使保护的氨基酸依次偶联, 偶联每次 40 分钟。 在 15 %乙二硫醇 /二甲硫醚 /茴香醚 (1: 1: lv/v/v)存在的情况下, 肽与三氟乙酸 (85 %)在室温反应 120分钟, 从而从聚合体支持物上切割下 来, 同时脱除保护基。接着用无水乙醚沉淀肽, 然后用无水乙醚多次洗涤, 充分除去硫醇。在水 /叔丁醇 (1: 1)中沉淀, 冷冻干燥, 得到序列为 SEQ ID NO.2 "粗肽 "产物。 粗肽在 30分钟内以反向 HPLC纯化, 以 37-42%乙晴 /0.9%TFA梯度进行。 洗脱液浓缩, 冻干, 得到纯度 97%的白色固体。
采用实施例 1相同的方法分别制备获得序列号为 SEQ ID NO.l ; SEQ ID NO.3 ; SEQ ID NO.4; SEQ ID NO.5; SEQ ID NO.6; SEQ ID NO.7; SEQ ID NO.8; SEQ ID NO.9; SEQ ID NO.10; SEQ ID NO.ll; SEQ ID NO.12的固相 Exendin 4变体多肽 实施例 2: Exendin 4变体多肽的基因工程生产工艺
1 ) 化学合成以下 4个基因片段 (博彩生物公司) -
(1) SEQ ID NO.17; (2) SEQ ID NO.18; (3) SEQ ID NO.19; (4) SEQ ID NO.20。
2) 连接基因片段:
将四个合成的基因片段 (A260nm=2)(l)、 (2)、 (3)、 (4)中各加水 50μ1, 取 (1)、(4)各 2μ1 混合于一支试管中,另一支加 (2)、(3)各 2μ1混合。加 10X 多聚核苷酸激酶缓冲液 1μ1、 ATP(0.1mol L) Ιμΐ及 Τ4噬菌体多聚核苷酸激 酶 1μ1, 37°C保温 30分钟, 然后在水浴中 95 °C维持 5分钟。 降至室温, 将 二支试管的内容物混合, 加 10 X连接酶缓冲液 2μ1、 ATP(0.1 mol/L) l 及 T4连接酶 2μ1。 于 16°C保持 12小时。 然后用 DNA分离试剂盒(博彩 生物公司, promega 公司) 分离连接的片段, 然后 DNA片段用 EcoRI、 Sail双酶切, 然后进行电泳检测验证。
3 ) 克隆:
取质粒 pUC18 (博彩生物公司) l g ,加 10 X内切酶缓冲液 1μ1, 加 EcoRI、 Sail各 1μ1。 37°C维持 30分钟, 用氯仿-酚试剂处理, 离心取水层, 再用氯仿洗涤一次, 离心除去氯仿后加 60%异丙醇沉淀, 离心,干燥备用。 将步骤 2) 中获得的 EcoRI、 Sail双酶切的 DNA片段加入到上述双酶切的 质粒中, 加 10 X 连接酶缓冲液 1μ1、 ΑΤΡ ΙμΙ及 Τ4 连接酶 2μ1 , 于 16 °C维持 12小时。 将 E coli JM 109按常规方法制备感受态细胞, 将上述连 接的样品进行转化, 挑取阳性克隆, 抽提质粒。
4) 串连:
将步骤 3 ) 获得的克隆了变体多肽基因的质粒经 Bgl II+Sal I双酶解, 提取含有变体多肽的 DNA 基因片段。 另外将步骤 3 ) 获得的质粒用 BamHI+Sal l双酶解, 然后与含有变体多肽的 DNA基因片段相连接, 得含 有二个变体多肽串联基因片段的质粒。 继续将含二个串连的变体多肽基因 片段的质粒经过 Bgl II+Sal I双酶切, 得 2个基因串连的片段, 含二个串联 基因的质粒经 BamHI+Sal I双酶切后再与这 2个基因串联的片段连接形成 4个基因串连的质粒。如此继续可得 8个串联基因或 16、 32个基因串联的 质粒。
5) 转化:
将克隆变体多肽的质粒在冰浴中与感受态 E coli JM 109混合, 在冰浴 中维持 30分钟, 移至 42°C水浴中保持 2分钟, 冰浴中冷却, 涂板 (含 1% 琼脂糖, 5()μ§氨苄青霉素 /ml), 37°C过夜。 挑取菌落, 转至 LB培养液摇 瓶中 (含 50μ§氨苄青霉素 /ml), 37°C振荡培养过夜。取培养液 0.7ml加 50% 甘油 (无菌 )0.3ml, 充分混含, 保在于 -85 °C冰箱中备用。
6) 发酵生产变体多肽的工艺 发酵生产工艺如图 1所示。
首先, LB培养液 1000ml(蛋白胨 10g, 酵母粉 5g, NaCl 10g)于 120 °C灭菌 30分钟, 冷却后加入氨苄青霉素(最终浓度达到 100μ§ /ιη1), 接种 步骤 5 )获得的贮藏的甘油管 lml, 37°C振荡培养过夜。 5000rpm离心收集 菌体,低温 -35 °C冻结,融化后,加 6M盐酸胍,均浆提取串联多肽, 18000rpm 离心收集上清液。 将此上清液以缓冲液 (10mM pH 7.2 磷酸缓冲液, 0.1% 巯乙醇)透析复性。 离心分离串联多肽。 然后按 J.D.Baxter等的方法 (Nature 1980 285 456-461)进行裂解, 即将串联多肽溶于水中, 加 Na2CO3粉末, 维持 PH8.5,滴加柠康酸酐使包涵体 (Inclusion Body)完全溶解,维持 pH8.5, 室温继续搅拌 2小时, 然后, 加胰蛋白酶及羧肽酶 B。 37°C保持 2小时, 得多肽, 然后加 3N盐酸调至 pH 3, 搅拌 4小时, 脱去柠康酸保护基, 全 过程以 HPLC进行监控, 最后得纯化的本发明序列号为 SEQ ID NO.2的 Exendin 4多肽片段。
采用实施例 2相同的方法分别制备获得序列号为 SEQ ID NO.l ; SEQ ID NO.3; SEQ ID NO.4; SEQ ID NO.5; SEQ ID NO.6; SEQ ID NO.7; SEQ ID NO.8; SEQ ID NO.9; SEQ ID NO.10; SEQ ID NO.il ; SEQ ID NQ.12的 Exendin 4多肽片段。其 Exendin 4变体多肽序列号与基因片段序 列号对应如下:
多肽序列 SEQ ID NO.1对应的基因片段:
(1) SEQ ID NO.13; (2) SEQ ID NO.14; (3) SEQ ID NO.15; (4) SEQ ID NO.16。 多肽序列 SEQ ID NO.3对应的基因片段:
(l)SEQ ID NO.21; (2) SEQ ID NO.22; (3) SEQ ID NO.23; (4) SEQ ID NO.24。 多肽序列 SEQ ID NO.4对应的基因片段:
(1) SEQ ID N0.25; (2) SEQ ID NO.26; (3) SEQ ID N0.27; (4) SEQ ID NO.28。 多肽序列 SEQ ID NO.5对应的基因片段:
(1) SEQ ID NO.29; (2) SEQ ID NO.30; (3) SEQ ID NO.31 ; (4) SEQ ID NO.32。 多肽序列 SEQ ID NO.6对应的基因片段:
(1) SEQ ID NO.33; (2) SEQ ID NO.34; (3) SEQ ID NO.35; (4) SEQ ID NO.36。 多肽序列 SEQ ID NO.7对应的基因片段:
(1) SEQ ID NO.37; (2) SEQ ID NO.38; (3) SEQ ID NO.39; (4) SEQ ID NO.40。 多肽序列 SEQ ID NO.8对应的基因片段-
(1) SEQ ID NO.41; (2) SEQ ID NO.42; (3) SEQ ID NO.43; (4) SEQ ID NO.44。 多肽序列 SEQ ID NO.9对应的基因片段:
(1) SEQ ID NO.45; (2) SEQ ID NO.46; (3) SEQ ID NO.47; (4) SEQ ID NO.48。 多肽序列 SEQ ID NO.10对应的基因片段:
(1) SEQ ID NO.49; (2) SEQ ID NO.50; (3) SEQ ID NO.51 ; (4) SEQ ID NO.52。 多肽序列 SEQ ID NO.11对应的基因片段:
(1) SEQ ID NO.53; (2) SEQ ID NO.54; (3) SEQ ID NO.55; (4) SEQ ID NO.56。 多肽序列 SEQ ID NO.12对应的基因片段:
(1) SEQ ID NO.57; (2) SEQ ID NO.58; (3) SEQ ID NO.59; (4) SEQ ID NO.60。 实施例 3: Exendin 4多肽片段的持续降血糖作用
取体重 50g的 KK II型糖尿病小鼠 (中国科学院上海动物中心), 禁 食 2小时, 分成四组, 两组注射 EXendin4多肽片段, 另两组注射本发明的 Exendin4多肽片段 (简称 E4 (f))各 2μ 于 0, 30分, 1小时, 2小时, 3小时, 4小时, 5小时, 6小时分别取 20μ1血液后用血糖测定试剂盒(购 自上海生物制品研究所)测定持续降血糖作用。 Exendin 4多肽片段序列号 SEQIDNO.K SEQIDNO.2、 SEQIDNO.3、 SEQ ID NO.4、 SEQ ID NO.5、 SEQIDNO.6、 SEQ IDNO.7 SEQIDNO.8、 SEQIDNO.9、 SEQ IDNO.10、 SEQ ID NO. IK SEQIDNO.12对应的结果分别如图 7、 图 2、 图 12、图 17、图 22、图 27、图 32、图 37、 图 42、 图 47、图 52、 图 57。 实施例 4: Exendin 4多肽片段对 db/db II型糖尿病小鼠的降血糖作用 取体重 50g 的 db/db II型糖尿病小鼠 (购自中国科学院上海动物中心 和扬州大学), 禁食 2小时, 皮下注射 Exendin 4多肽片段 2μ§, 分别于 0, 30, 60, 120分钟各取血 20μ1, 以血糖测定试剂盒 (购自上海生物制品 研究所) 测定持续降血糖效果。 结果如下:
多肽片段序列号 SEQIDNO.l、 SEQ ID NO.2 SEQIDNO.3、 SEQ IDNO.4、 SEQIDNO.5、 SEQIDNO.6、 SEQIDNO.7、 SEQIDNO.8、 SEQIDNO.9、 SEQ ID NO.10 SEQ ID NO. IK SEQ ID NO.12对应的结 果分别如图 8、 图 3、 图 13、 图 18、 图 23、 图 28、 图 33、 图 38、 图 43、 图 48、 图 53、 图 58。 实施例 5: Exendin 4多肽片段对 Goto Kokizaki II型糖尿病大鼠的餐后降血 糖作用
取 5个月龄的体重 470g 的 Goto Kokizaki糖尿病大鼠(购自中国科学 院上海动物中心),禁食 2小时,腹腔注射 20%葡萄糖 1ml,皮下注射 Exendin 4多肽片段 5μ§, 对照组只注射葡萄糖。 分别于 0、 30、 60、 120分钟各取 血 20μ1, 以血糖测定试剂盒(购自上海生物制品研究所)测定其餐后耐糖。 结果注射了 Exendin 4多肽片段的给药组的血糖始终维持在较低水平上, 显著区别于没有给药的对照组。 曲线 1表示空白对照组, 曲线 2表示给药 组。
多肽片段序列号 SEQIDNO.l、 SEQ ID NO.2, SEQIDNO.3、 SEQ IDNO.4、 SEQIDNO.5, SEQIDNO.6、 SEQIDNO.7、 SEQIDNO.8、 SEQIDN0.9、 SEQ ID NO.10 SEQ ID NO.1U SEQ ID NO.12对应的结 果分别如图 9、 图 4、 图 14、 图 19、 图 24、 图 29、 图 34、 图 39、 图 44、 图 49、 图 54、 图 59。 实施例 6: Exendin 4多肽片段对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠 的降血糖作用
取 8 周龄体重 20g 的小白鼠, 分成五组, 通过尾静脉注射四氧嘧啶 (16mg/ml) 0.1ml, 48小时后, 皮下注射序号为 SEQ ID NO.2的 Exendin 4 变体多肽片段 2μ§, 分别于 0、 30、 60、 120分钟各取血 20μ1, 以血糖测定 试剂盒 (购自上海生物制品研究所) 测定降血糖作用。 五组均显示了良好 的降血糖效果, 结果如图所示:
多肽片段序列号 SEQIDNO.l、 SEQ ID NO.2, SEQIDNO.3、 SEQ IDNO.4、 SEQIDNO.5、 SEQ IDNO.6> SEQIDNO.7、 SEQIDNO.8、 SEQIDNO.9、 SEQIDNO.10、 SEQ ID NO.1 SEQ IDNO.12对应的结 果分别如图 10、 图 5、 图 15、 图 20、 图 25、 图 30、 图 35、 图 40、 图 45、 图 50、 图 55、 图 60。 实施例 7: Exendin 4多肽片段促胰岛素的分泌作用
取 6个月龄、体重 470g 的 Goto Kokizaki II 大鼠,皮下注射 Exendin 4 多肽片段 5μ§, 对照组只注射生理盐水, 于 0、 3、 5、 10、 15、 30、 45分 钟取血 20μ1, 应用 ELISA试剂盒 (Dianostic Systemlab.Imc. (U.S.A)) 测 定促胰岛素的分泌作用。 结果, 注射了序号为 SEQ ID NO.2的 Exendin 4 多肽片段的给药组恢复了第一相的胰岛素分泌作用。
多肽片段序列号 SEQIDNO.l、 SEQ ID NO.2 > SEQIDNO.3> SEQ IDNO.4、 SEQ IDNO.5 SEQIDNO.6、 SEQIDNO.7、 SEQIDNO.8, SEQIDN0.9、 SEQIDNO.10、 SEQ ID NO. IK SEQ IDNO.12对应的结 果分别如图 11、 图 6、 图 16、 图 21、 图 26、 图 31、 图 36、 图 41、 图 46、 图 51、 图 56、 图 61。 实施例 8,采用实施例 1相同的方法分别制备获得序列号为 SEQ IDNO.6K SEQ IDNO.62> SEQIDNO.63、 SEQ ID NO.64, SEQ IDNO.65, SEQ IDNO.66、 SEQ ID NO.67, SEQIDNO.68、 SEQIDNO.69、 SEQ ID NO.70、 SEQ ID NO.7K SEQ ID NO.72的固相 Exendin 4变体多肽。
采用实施例 3、 4、 5、 6、 7方法,用 Exendin 4多肽片段( SEQ ID NO.61、 SEQ ID NO.62、 SEQ ID NO.63 > SEQ ID NO.64、 SEQ ID NO.65、 SEQ ID NO.66、 SEQ ID NO.67、 SEQ ID NO.68、 SEQ ID NO.69 SEQ ID NO.70、 SEQ ID NO.71、 SEQ ID NO.72) 进行持续降血糖作用试验、 对 db/db II型糖尿病小鼠的降血糖作用试验、 对 Goto Kokizaki II型糖尿病大 鼠的餐后降血糖作用试验、 对四氧嘧啶 (alloxan) 人工糖尿病模型小鼠的 降血糖作用试验、 促胰岛素的分泌作用试验。 结果表明, 上述多肽片段均 能表现出很好的降血糖作用:
Exendin 4多肽片段 SEQ ID NO.61、 SEQ ID NO. 62、 SEQ ID NO. 63、 SEQ ID NO. 64、 SEQ ID NO. 65、 SEQ ID NO. 66、 SEQ ID NO. 67、 SEQ ID NO. 68、 SEQ ID NO. 69、 SEQ ID NO. 70、 SEQ ID NO. 71、 SEQ ID NO.72对 KK II型糖尿病小鼠在 6小时内血糖持续下降了 35〜50%; 对 db/db II型糖尿病小鼠的在 4小时内血糖持续下降了 50〜60%; 对 Goto Koldzaki II型糖尿病大鼠的餐后血糖在 2小时内持续下降了 10〜20%; 对 四氧嘧啶 (alloxan)人工糖尿病模型小鼠的血糖在 2小时内持续下降了 30〜 40%;注射了序号为 SEQ ID NO.61、 SEQ ID NO. 62、 SEQ ID NO. 63、 SEQ ID NO. 64、 SEQ ID NO. 65、 SEQ ID NO. 66、 SEQ ID NO. 67、 SEQ ID NO. 68、 SEQ ID NO. 69、 SEQ ID NO. 70、 SEQ ID NO. 71、 SEQ ID NO.72 的 Exendin 4多肽片段的给药组均恢复了胰岛素分泌作用。

Claims

权利 要 求 书
1. 具有式 (I)结构的 EXendin4 多肽片段及其药学上可接受的盐或酯: HGEGTX1TSDLSKQX2EEEAVX3LFIEWLKNGX4PX5 (I) 其中,
XI表示 Phe或 Tyr,
X2表示 Met;、 He或 Leu,
X3表示 Lys,
X4表示 Gly或缺失,
X5表示 Arg或缺失。
2. 如权利要求 1所述的多肽, 其中所述的 XI是 Tyr。
3. 如权利要求 1所述的多肽, 其中所述的 X2是 Met。
4. 如权利要求 1所述的多肽, 其中所述的 X4是缺失的。
5. 如权利要求 1所述的多肽, 其中所述的 XI是 Tyr, X2是 Met, X3是 Lys, X4缺失, X5是 Arg或缺失。
6. 一种药物组合物, 其含有如权利要求 1-5中任一项所述的多肽。
7. 如权利要求 6所述的药物组合物, 其还含有药学上可接受的稀释剂、 赋形剂或载体。
8. 如权利要求 7所述的药物组合物, 其中所述的载体是乙醇、 甘油和水 中的一种或多种。
9. 如权利要求 1-5 中任一项所述的多肽在制备治疗糖尿病的药物中的用 途。
10.如权利要求 9所述的用途, 其中糖尿病是 II-型糖尿病。
PCT/CN2006/001495 2005-06-29 2006-06-29 Fragments polypeptidiques d'exendine 4 et utilisation correspondante WO2007000118A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2006264162A AU2006264162A1 (en) 2005-06-29 2006-06-29 Exendin 4 polypeptide fragments and use thereof
BRPI0613849-7A BRPI0613849A2 (pt) 2005-06-29 2006-06-29 polipeptìdeo e sais ou ésteres farmaceuticamente aceitáveis, composição farmacêutica e uso do polipeptìdeo
EP06753060A EP1908778A4 (en) 2005-06-29 2006-06-29 EXENDIN 4 POLYPEPTIDE FRAGMENTS AND CORRESPONDING USE
JP2008518600A JP2008546816A (ja) 2005-06-29 2006-06-29 エキセンディン4ポリペプチドフラグメントおよびその使用
CA002613903A CA2613903A1 (en) 2005-06-29 2006-06-29 Exendin 4 polypeptide fragments and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2005100408238A CN100429227C (zh) 2005-06-29 2005-06-29 Exendin4多肽片段
CN200510040823.8 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007000118A1 true WO2007000118A1 (fr) 2007-01-04

Family

ID=35924206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001495 WO2007000118A1 (fr) 2005-06-29 2006-06-29 Fragments polypeptidiques d'exendine 4 et utilisation correspondante

Country Status (9)

Country Link
US (1) US7608587B2 (zh)
EP (1) EP1908778A4 (zh)
JP (1) JP2008546816A (zh)
KR (1) KR100997835B1 (zh)
CN (1) CN100429227C (zh)
AU (1) AU2006264162A1 (zh)
BR (1) BRPI0613849A2 (zh)
CA (1) CA2613903A1 (zh)
WO (1) WO2007000118A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029081B (zh) * 2007-02-05 2011-01-12 上海国佳生化工程技术研究中心有限公司 重组的降糖肽及其生产菌株的构建和培养方法
KR20100080519A (ko) * 2007-08-30 2010-07-08 큐어디엠 인코포레이티드 프로섬 펩타이드 및 이의 유사체의 조성물 및 이의 이용 방법
WO2011063549A1 (zh) * 2009-11-26 2011-06-03 Wu Xiaoyan 长效exendin4的类似物
EP2546899B1 (en) 2010-03-11 2015-06-24 Panasonic Intellectual Property Management Co., Ltd. Light emitting module, light source device, liquid crystal display device
RU2013103763A (ru) 2010-07-02 2014-08-10 Ангиохем Инк. Короткие и содержащие d-аминокислоты полипептиды для терапевтических конъюгатов и их применения
CN103193881A (zh) * 2013-04-22 2013-07-10 中国药科大学 一种可口服给药的降糖多肽衍生物及其用途
CN103613657B (zh) * 2013-11-28 2016-01-13 孙玉琨 缩短肽链的Exendin4及其基因工程应用
CN111234000B (zh) * 2018-11-28 2023-05-26 鲁南制药集团股份有限公司 艾塞纳肽类似物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226998A (ja) 1986-03-28 1987-10-05 Takara Shuzo Co Ltd ヒトカルシトニン前駆体ペプチド及びその製造方法
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
WO1995017510A1 (en) 1993-12-23 1995-06-29 Novo Nordisk A/S A method of producing glucagon-like peptide 1
WO1999025727A2 (en) * 1997-11-14 1999-05-27 Amylin Pharmaceuticals, Inc. Novel exendin agonist compounds
CN1227567A (zh) 1996-06-05 1999-09-01 曼海姆泊灵格股份公司 Exendin类似物,其制备方法及含有它们的药物制剂
WO2002047716A2 (en) 2000-12-13 2002-06-20 Eli Lilly And Company Chronic treatment regimen using glucagon-like insulinotropic peptides
WO2003011892A2 (en) 2001-07-31 2003-02-13 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Glp-1 exendin-4 peptide analogs and uses thereof
WO2004036186A2 (en) 2002-10-17 2004-04-29 Alkermes Controlled Therapeutics, Inc. Ii Microencapsulation and sustained release of biologically active polypeptides
WO2005000222A2 (en) * 2003-05-30 2005-01-06 Amylin Pharmaceuticals, Inc. Novel methods and compositions for enhanced transmucosal delivery of peptides and proteins
US6858576B1 (en) * 1996-08-08 2005-02-22 Amylin Pharmaceuticals, Inc. Methods for regulating gastrointestinal motility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162446C (zh) * 2001-05-10 2004-08-18 上海华谊生物技术有限公司 促胰岛素分泌肽衍生物
BRPI0414539B8 (pt) * 2003-09-19 2021-05-25 Novo Nordisk As composto, composição farmacêutica, e, uso de um composto
CN100535003C (zh) * 2004-09-06 2009-09-02 上海华谊生物技术有限公司 Exendin 4的类似物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226998A (ja) 1986-03-28 1987-10-05 Takara Shuzo Co Ltd ヒトカルシトニン前駆体ペプチド及びその製造方法
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
WO1995017510A1 (en) 1993-12-23 1995-06-29 Novo Nordisk A/S A method of producing glucagon-like peptide 1
CN1227567A (zh) 1996-06-05 1999-09-01 曼海姆泊灵格股份公司 Exendin类似物,其制备方法及含有它们的药物制剂
US6858576B1 (en) * 1996-08-08 2005-02-22 Amylin Pharmaceuticals, Inc. Methods for regulating gastrointestinal motility
WO1999025727A2 (en) * 1997-11-14 1999-05-27 Amylin Pharmaceuticals, Inc. Novel exendin agonist compounds
WO2002047716A2 (en) 2000-12-13 2002-06-20 Eli Lilly And Company Chronic treatment regimen using glucagon-like insulinotropic peptides
WO2003011892A2 (en) 2001-07-31 2003-02-13 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Glp-1 exendin-4 peptide analogs and uses thereof
WO2004036186A2 (en) 2002-10-17 2004-04-29 Alkermes Controlled Therapeutics, Inc. Ii Microencapsulation and sustained release of biologically active polypeptides
WO2004035754A2 (en) 2002-10-17 2004-04-29 Alkermes Controlled Therapeutics, Inc. Ii Microencapsulation and sustained release of biologically active polypeptides
WO2005000222A2 (en) * 2003-05-30 2005-01-06 Amylin Pharmaceuticals, Inc. Novel methods and compositions for enhanced transmucosal delivery of peptides and proteins

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Hormonal Proteins and Peptides", 1973, ACADEMIC PRESS
"Solid Phase Peptide Synthesis", 1984, PIERCE CHEMICAL COMPANY
"The Peptides", 1965, ACADEMIC PRESS
DIABETES CARE, vol. 25, 2002, pages 330 - 336
DIABETES ENDOCRINOLOGY, vol. 146, no. 4, 2005, pages 2069 - 2070
DIABETES, vol. 46, 1997, pages 433 - 439
IBID, vol. 2, 2004, pages 2623 - 2635
IBID, vol. 23, 2000, pages 64 - 69
IBID, vol. 44, 1995, pages 1249 - 1258
IBID, vol. 51, 2002, pages 2796 - 2803
IBID, vol. 53, 1994, pages 2397 - 2403
J. BIOL. CHEM, vol. 272, 1997, pages 21201 - 21206
J. CLIN. ENDOCRINOLOGY METAB, vol. 89, 2004, pages 3469 - 3473
J. D. BAXTER ET AL., NATURE, vol. 285, 1980, pages 456 - 461
JAMA, vol. 287, 2002, pages 373 - 379
LANCED, vol. 352, 1998, pages 837 - 853
N. ENGL. J. MED, vol. 346, 2002, pages 393 - 436
PROC, NATL. ACAD. SCI, vol. 81, 1984, pages 4627 - 4631
REGULATORY PEPTIDES, vol. 114, 2003, pages 153 - 158
TREND IN PHARMACOLOGICAL SCI, vol. 24, 2003, pages 377 - 383

Also Published As

Publication number Publication date
BRPI0613849A2 (pt) 2011-02-15
CN100429227C (zh) 2008-10-29
JP2008546816A (ja) 2008-12-25
AU2006264162A1 (en) 2007-01-04
EP1908778A1 (en) 2008-04-09
KR100997835B1 (ko) 2010-12-01
EP1908778A4 (en) 2009-08-12
KR20070001798A (ko) 2007-01-04
CN1724563A (zh) 2006-01-25
US7608587B2 (en) 2009-10-27
CA2613903A1 (en) 2007-01-04
US20070037747A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
AU2003200839B2 (en) Extended glucagon-like peptide-1 analogs
JP5695909B2 (ja) 極度に遅延した時間作用プロファイルを有する新規なインスリン誘導体
US7329646B2 (en) Derivatives of the insulinotropic peptide exendin-4 and methods of production thereof
KR100593348B1 (ko) 글루카곤-유사 펩티드-1 유사체
WO2007000118A1 (fr) Fragments polypeptidiques d'exendine 4 et utilisation correspondante
AU2009201477A1 (en) Stabilized exendin-4 compounds
WO2011020320A1 (zh) 促胰岛素分泌肽类似物同源二聚体及其制备方法与用途
BRPI0807728A2 (pt) co-agonistas de receptor glucagon/glp-1
KR20100111682A (ko) 극히 지연된 시간-작용 프로필을 갖는 신규 인슐린 유도체
WO2006077035A9 (en) Peptides with neuropeptide-2 receptor (y2r) agonist activity
JP2009542741A (ja) アミド化されたグラルギンインスリン
MX2011001028A (es) Analogos truncados de polipeptidos de insulinotropicos dependientes de glucosa.
CN116712530B (zh) 一类长效GLP-1/glucagon/GIP受体三重激动剂及其应用
KR20230008846A (ko) 이중 수용체 아고니즘 작용을 갖는 폴리펩티드 유도체 및 그 용도
US20240252592A1 (en) Glucagon-derived peptide and use thereof
WO2007056907A9 (zh) 截短胰高血糖素样肽1(sGLP-1)﹑制法及其应用
EP2948166B1 (en) N-terminal truncated insulin analogues
WO2015149627A1 (zh) 结构修饰的glp-1类似物及其制备方法
EP3888667B1 (en) Glucagon analog and methods of use thereof
CN101280009A (zh) Exendin 4多肽片段
CN116514952B (zh) 一类glp-1类似物及其应用
WO2024213022A1 (zh) 肠促胰素类似物及其制备方法和应用
WO2011063549A1 (zh) 长效exendin4的类似物
CN118684758A (zh) 肠促胰岛素类似物及其应用
CN114106194A (zh) 一种用于治疗糖尿病和/或肥胖症的融合蛋白

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008518600

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2613903

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006264162

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006753060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006264162

Country of ref document: AU

Date of ref document: 20060629

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006264162

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006753060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0613849

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071228