WO2007000077A1 - A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice - Google Patents

A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice Download PDF

Info

Publication number
WO2007000077A1
WO2007000077A1 PCT/CN2005/000936 CN2005000936W WO2007000077A1 WO 2007000077 A1 WO2007000077 A1 WO 2007000077A1 CN 2005000936 W CN2005000936 W CN 2005000936W WO 2007000077 A1 WO2007000077 A1 WO 2007000077A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
gene
seq
sequence
rice
Prior art date
Application number
PCT/CN2005/000936
Other languages
English (en)
French (fr)
Inventor
Jumin Tu
Jiwen Zhang
Gang Pan
Xiangyin Zhang
Xiaozhi Wu
Original Assignee
Zhejiang University
Wuhan Fortune Science And Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University, Wuhan Fortune Science And Technology Co., Ltd. filed Critical Zhejiang University
Priority to PCT/CN2005/000936 priority Critical patent/WO2007000077A1/zh
Priority to JP2008518589A priority patent/JP5085539B2/ja
Priority to EP05757223A priority patent/EP1900817B1/en
Priority to US11/993,990 priority patent/US8049063B2/en
Publication of WO2007000077A1 publication Critical patent/WO2007000077A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8278Sulfonylurea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)

Definitions

  • the invention relates to the field of genetic engineering technology. Specifically, it relates to the precise localization, isolation and cloning of an anti-Bendazon and sulfonylurea herbicide gene in rice. In addition, the present invention relates to the use of the herbicide resistance gene to directional mutation of other important agronomic trait genes to improve important agronomic traits of rice and other crops, self-crossing during hybrid seed production, and genetically oriented genetic manipulation. application.
  • a benzothiadiazole herbicide such as bentazon
  • bentazon whose active ingredients can be used as The root and leaf of the object are absorbed. It has a killing effect on most dicotyledonous plants and sedge weeds other than Leguminosae, and is harmless to gramineous plants.
  • the herbicidal mechanism of bentazon is to inhibit the Hill reaction in plant photosynthesis. To date, no endogenous genes have been cloned from plants for anti-benzone and sulfonylurea herbicides.
  • sulfonylurea herbicides which are a new class of ultra-efficient, high-efficiency, broad-spectrum, low-toxic, and systemic herbicides developed by DuPont, including bensulfuron-methyl developed by DuPont.
  • Benzsulfuron-methyl and its compounding dosage forms are the most widely used herbicides in rice field weeding in China.
  • the most important feature of sulfonylurea herbicides is their high activity, usually at a dose of 5-100 g / ha.
  • Sulfonylurea herbicide is a lactate synthase (ALS) inhibitor. It has special effects on many annual or perennial weeds, especially broadleaf weeds.
  • ALS lactate synthase
  • DuPont has developed multiple anti-sulfonylurea genes, one is the anti-sulfonylurea SURB-Hra gene cloned from tobacco resistance mutants, which is a resistance based on mutations in the tobacco ALS gene. It is used in various crops such as cotton and soybean (US5013659, US5084086, US5141870, US5378824, US5605011); another anti-sulfonylurea gene is a P450 sul gene derived from soil bacteria, which is made by accelerating the metabolism of sulfonylurea.
  • ALS acetolactate synthase
  • Wild type rice is naturally resistant to bentazon and sulfonylurea herbicides.
  • Using ⁇ -ray radiation technology Japanese scholar Mori and Hubei Provincial Academy of Agricultural Sciences Zhang Jiwen and others successively obtained the rice bentazon sensitive lethal mutant Nonglin No. 8 M (Mori, 1984) and 8077S (Zhang Jiwen and Wu Xiaozhi, 1999).
  • Zhang Jiwen et al. further developed the use of terpene A herbicide-sensitive recessive locus marker is used to remove the heterozygous pure technical system of the female sterile line (Zhang Jiwen et al., 2001).
  • An object of the present invention is to provide an isolated rice endogenous anti-bensamone and sulfonylurea herbicide gene (hereinafter referred to as CYP81A6 gene), and functionally conserved variants thereof, functionally equivalent biologically active subfragments Or a derivative.
  • CYP81A6 gene an isolated rice endogenous anti-bensamone and sulfonylurea herbicide gene
  • Another object of the present invention is to provide a cDNA sequence of the above-mentioned isolated rice endogenous anti-Bendazon and sulfonylurea herbicide gene, and a functionally conservative variant thereof, a functionally equivalent biologically active subfragment or derivative.
  • Another object of the present invention is to provide a bentonone and sulfonylurea herbicide sensitive gene.
  • Another object of the present invention is to provide a recombinant vector comprising the CYP81A6 gene, a bentazon and a sulfonylurea herbicide sensitive gene or both functional equivalents.
  • Another object of the present invention is to provide a polypeptide encoded by a CYP81A6 gene, a bentazon and a sulfonylurea herbicide-sensitive gene or a functional equivalent of both.
  • Another object of the present invention is to provide a functional equivalent comprising a CYP81A6 gene, a bentazon and a sulfonylurea herbicide-sensitive gene, or both, or a gene comprising a polypeptide encoded by a functional equivalent of the CYP81A6 gene or both Engineered cells.
  • Another object of the present invention is to provide a method for preventing self-mixing when hybrid rice is hybridized.
  • the present inventors finely mapped the sensitive genes of bentazone and sulfonylurea herbicides in mutants 8077S and Nonglin No.8, and isolated an anti-bendazone and sulfonylurea from wild-type cultivated rice.
  • the CYP81A6 gene of the herbicide and the DNA fragment of the promoter that regulates the gene which can be used to improve most of the dicotyledonous plants other than soybeans and the anti-bendazone and sulfonylurea herbicides of the sedge weed plants. Characteristics.
  • bentazon and sulfonylurea herbicide resistance genes comprise a nucleotide sequence selected from the group consisting of:
  • the isolated rice endogenous anti-bensamone and sulfonylurea herbicide genes have the nucleotide sequence set forth in SEQ ID NO: 1; the isolated rice endogenous anti-benzone and sulfonate
  • the cDNA of the ureide herbicide gene has a nucleotide sequence as shown in SEQ ID NO 2.
  • the polypeptide encoded by the bentazon and sulfonylurea herbicide resistance genes provided by the present invention comprises a polypeptide selected from the amino acid sequence encoded by a nucleotide sequence of the following group:
  • nucleotide sequence function 421 6 equivalent subfragment or derivative thereof (2) shown in SEQ ID NO.l 1 to 9 nucleotide sequence function 421 6 equivalent subfragment or derivative thereof; (3) a nucleotide sequence having the nucleotide sequence shown as SEQ ID NO. 2;
  • amino acid sequence as shown in SEQ ID NO. 3 is particularly preferred.
  • the present invention also provides a genetic manipulation method for simultaneously co-modifying a target sequence in two or more sites of a genome in a living cell, wherein the method is a nucleoside which can be used as a screening marker.
  • the acid sequence is the first modified target
  • the key base pair of the target endogenous gene in the living cell is an additional modified target
  • the co-introduction technique is used to introduce the double or multiple R designed for the different modified target sequence to the target recipient cell.
  • A'DNA chimeric oligonucleotide molecules (RCOs) which simultaneously perform targeted repair or mutation on the above target sites, and then further utilize the modified phenotype of the nucleotide sequence as a screening marker for the target endogenous source Genetic modification or mutational genotypes are selected.
  • nucleotide sequences which can be used as screening markers include, but are not limited to, mutant or unmutated anti-infective herbicide genes, anti-antibiotic genes, biological or chemiluminescent genes, enzyme genes, etc.
  • the person can be freely selected according to conventional knowledge, wherein a herbicide resistance/sensitive gene is preferred, and a nucleotide sequence having SEQ ID NO. 1 or SEQ ID NO. 2 or a functionally equivalent subfragment or derivative thereof is particularly preferred; a nucleotide sequence obtained after the 2455th base C or the 4006th base G in the nucleotide sequence shown by SEQ ID NO. 1; the 560th in the nucleotide sequence shown by SEQ ID NO. The nucleotide sequence obtained after the base (: or the 1385th base G).
  • cytochrome P450 protein which was officially named CYP81A6 in the international standard classification and naming system ( http:// drnelson. utmen.edu/cytochromep450 Html), a conserved domain containing a general P450 protein, the amino acid sequence of which is shown in SEQ ID NO.
  • herbicide-resistant P4 5 0 genes have been cloned from plants, such as tobacco CYP71A11 and CYP81B2 (Yamada et al., 2000), soybean CYP71A10 (Siminszk et al., 1999), sorghum CYP73Al (Pierrel et al., 1994). And CYP76B1 (Didierjean et al., 2002), and CYP71B1 of hlaspi arvensae (Lamb et al., 1998).
  • these P450 genes have less than 40% homology with the CYP81A6 gene and cannot degrade the bentazon and sulfonylurea herbicides.
  • the present invention relates to the use of the gene to connect with the gene self-promoter or other constitutive or specific promoters, and introduces into most broad-leaved plants or sedge weeds other than legumes to create new resistance to weeding. Dosage system.
  • the expression of the DNA fragment of the present invention is constitutively expressed. Therefore, the antisense RJVA or RNAi of the gene can be ligated to an anther tissue-specific expression specific promoter such as Osg6B and RA39, and then introduced into a rice thermo-sensitive male sterile line.
  • the gene can not be expressed in its anther, so that the sulfonylurea herbicide can be used to kill the pollen, creating a new chemical supplement to kill the male-type thermo-sensitive male sterile line.
  • the two CYP81A6 single base deletion mutations sensitive to the benzathine and sulfonylurea herbicides identified by the present invention provide useful modification targets for gene directed mutagenesis. Therefore, the RCOs molecule can be used to repair the cyp81A6 gene in the mutant, thereby conferring resistance to the bentonate and sulfonylurea herbicides, and achieving the screening objective.
  • mutants of the target gene can also be correlated by a selectively modified phenotype of other gene loci or by co-introduction of an exogenous selectable gene.
  • this technology or other DNA homologous recombination technology or physical and chemical mutagenesis technology can be used to directly or randomly mutate the CYP81A6 gene, thereby changing the function of the gene and creating a new benzathon that can be used for miscellaneous purity.
  • sulfonylurea herbicide sensitive mutants can be used.
  • the cloned wild-type alleles can be genetically transformed to confer herbicide-resistant resistance to both broad-leaved or sedge weeds.
  • the CYP81A6 coding sequence is widely conserved in plants of different species, so the primers and probes of about 8 or more nucleotides of the CYP81A6 gene of rice and its derived sequences are used to prepare other genus of the genus Gramineae. Isolation and cloning of the source gene. Using the above method, a gene highly homologous to rice CYP81A6 can be cloned, and this sequence is ligated to a suitable vector to introduce plant cells sensitive to benzalkonium and sulfonylurea herbicides to create anti-benzone and sulfonate. A transgenic plant of a ureide herbicide.
  • the meanings of the following terms used in the specification and claims are well known and commonly employed by those skilled in the art, and some of the terms are briefly described below.
  • Nucleotide sequence refers to oligonucleotides, nucleotides and polynucleotides and fragments or portions thereof, and may also refer to genomic or synthetic DNA or RNA, which may be single-stranded or double-stranded, representing meaning Chain or antisense strand.
  • “Functionally equivalent subfragments” and “functionally equivalent bioactive subfragments” refer to a portion or subsequence of an isolated DNA fragment, whether or not these fragments or subsequences encode an active protein, retaining altered gene expression or producing a certain resistance The ability of herbicides. Such fragments can be used for the design of chimeric genes or antisense inhibition and the like.
  • “Functionally equivalent derivatives” and “functionally conserved variants” refer to all, or more, or a portion of sequences of isolated DNA fragments, whether or not these fragments encode an active protein, retaining altered gene expression or producing a certain resistance. The ability of herbicides, and can be used for chimeric gene design or antisense inhibition.
  • Variant refers to an amino acid sequence or polynucleotide sequence having one or several amino acid or nucleotide changes. Such alterations include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence, and the like.
  • the "variant” described in the present invention has a conservative change in which the altered amino acid has structural or chemical properties similar to those of the original amino acid. Variants of this polynucleotide may be naturally occurring and non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide which may be a substitution, deletion and insertion of one or several nucleotides, but does not substantially alter the function of the polypeptide encoded thereby.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • a "polypeptide” or “protein” to which the invention relates is not limited to the complete native amino acid sequence of the polypeptide or protein molecule.
  • Homology refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. It can be used to determine homology methods such as by the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Cluster method (Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244). Homology between nucleic acid sequences can also be determined by the Cluster method and methods well known in the art, such as Jotun Hein (Hein J" (1990) Methods in emzumology 183: 625-645).
  • “Strictly tight” means (1) hybridization at lower ionic strength and higher temperature Elution, such as 0.2xSSC, 0.1% SDS, 60*C or (2) Adding a denaturing agent such as 50% (v/v) formamide, 0.1% calf serum/0.1% Ficoll, 42 ⁇ , etc. Or (3) hybridization occurs only when the identity between the two sequences is at least 95% or more, preferably 97% or more.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function as the polypeptide encoded by the nucleotide shown in SEQ ID NO.
  • Vector refers to bacterial plasmids, bacteriophages, yeast plasmids, plant cell viruses, and the like, which are well known in the art. Suitable vectors for use in the present invention include Agrobacterium vectors, E. coli plasmid vectors, viral vectors and the like. In summary, any plasmid and vector can be used in the construction of the recombinant expression vector of the present invention as long as it can replicate and stabilize in the host.
  • “Host cell” refers to a genetically engineered host cell into which a nucleotide sequence of the present invention or a recombinant vector comprising the nucleotide sequence of the present invention can be introduced. It includes cruciferous plant cells, Solanaceae plant cells, sedge plant cells, Convolvulus plant cells, Malvaceae plant cells, Flax family cells, and the like.
  • “Sulylurea herbicides” are a class of ultra-efficient, broad-spectrum, low-toxic and highly selective herbicides that are 100-1000 times more biologically active than traditional herbicides and can be absorbed by the roots, stems and leaves of plants. Acting on acetic acid lactate synthase, inhibiting the biosynthesis of proline and isoleucine, leading to inhibition of protein synthesis, thereby inhibiting the growth of sensitive plant growth sites.
  • the CYP81A6 gene of the present invention is resistant to, but not limited to, the sulfonylurea herbicides listed in Table 1.
  • nucleic acid sequence of the present invention or a recombinant vector containing the nucleic acid sequence of the present invention can be transformed into a host cell by a conventional technique well known to those skilled in the art.
  • a prokaryote such as Escherichia coli, a CaCl 2 method, an electroporation method, or the like can be applied.
  • the host is a eukaryotic cell, Agrobacterium-mediated transformation, gene gun-mediated transformation, DNA transfection, calcium phosphate coprecipitation, microinjection or lipid shield packaging can be used.
  • Table 1 Main sulfonylurea herbicides for weeding in paddy fields
  • Figure 1 Location of the sensitive strain of the benzathlon in the rice of the present invention bel and its co-isolated PCR-RFLP markers DPI and DP2 on the genetic linkage map of the third chromosome marker.
  • Figure 2 Allelicity test of the bentazon sensitive lethal site in Nonglin 8 and 8077S. a: Plants before the treatment of bentazon, left: No. 8 of the agricultural forest; right: 8077S; Picture: F1 hybrid of No. 8 m and 8077S of Nonglin. b: Plants treated with bentazon for one week. At the time of treatment, the concentration of bentazon used was 1,250 m g /l.
  • FIG. 3 PCR-RFLP analysis to verify the flow of the cyp81A6-1 single base deletion mutation site present in 8077S.
  • the mutation site, the primer sequence for PCR-specific amplification, the B g ll cleavage site containing the mutation site artificially introduced by primer design, and the difference in fragment length of the PCR amplified fragment by Bgll are detailed. Marked in the figure.
  • Figure 4 Results of PCR-RFLP labeling analysis of the mapped population.
  • M lOObp DNA Ladder ( Takara ); 1-5: F2 mapping population (recessively sensitive lethal homozygous) 5 DNA samples (46 strains/sample); 6: 93-11; 7: Pei'ai 64m.
  • FIG. 5 PCR-RFLP analysis to verify the flow diagram of the cyp81A6-2 single base deletion mutation site present in Nonglin No.8 m. Mutation site, primer sequence for PCR-specific amplification, Nael cleavage site originally present on the wild-type CYP81A6 coding sequence corresponding to the cyp81A6-2 single base deletion mutation site, and PCR amplification fragment with Nael pair The difference in length of the fragment subjected to digestion is shown in the figure.
  • Figure 6 Screening of the callus of CYP81A6 with 8077S as a receptor for callus. Left: Genetically modified callus, right: 8077S control callus. i Figure 7. Identification of bentazone resistance in CYP81A6 transgenic seedlings with 8077S as a receptor. Left: Transgenic seedlings; Right: 8077S control.
  • Figure 8 Structure of the CYP81A6 gene.
  • Black rectangle Represents the exon of the gene;
  • Gray rectangle Represents the 5, end and 3, non-coding regions of the gene;
  • Intermediate solid line The introns representing the genes, their lengths are marked above the figure. Indicated at the bottom of the figure are the start codon ATG, the stop codon TGA, and the splice point sequences GT and AG.
  • Figure 9 Target sequence of the Wax 3 gene and RNA ⁇ DNA chimeric oligonucleotide molecule RC01 designed according to this sequence.
  • Figure 10 Target sequence of the cyp81A6-1 gene and RNA DNA chimeric oligonucleotide molecule RC02 designed according to this sequence.
  • Figure 11. Target sequences for CYP81A5, CYP81A6, CYP81A7, CYP81A8 genes and RNA designed based on these sequences.
  • Figure 14 Target sequence of rice P450 (GenBank No. B1147A04) gene with unknown function and RNA ⁇ DNA chimeric oligonucleotide molecule RC06 designed according to this sequence.
  • Figure 17 PCR identification of CYP81A6 antisense RNA gene transformed plants using Minghui 63 restorer as a receptor.
  • M DL2000 (Takara) molecular weight marker; 1-2: transgenic plants; 3: wild type control plants; 4: plasmid control.
  • Figure 18 Results of the bentazone resistance test of CYP81A6 antisense RNA gene transformed with Minghui 63 restorer as a receptor. Left: a negative control of the bentazon-sensitive mutant; medium: antisense RNA transformed plants; right: Minghui 63 wild type positive control. The concentration of bentazon was 1250 mg/L.
  • FIG. 19 Plasmid map of CYP81A6 antisense RNA gene pOANTI1 driven by anther tissue-specific promoter Osg6B.
  • SEQ ID NO. 1 includes the CYP81A6 gene and the CYP81A6 gene promoter.
  • SEQ ID NO. 2 Full length cDNA sequence of CYP81A6 gene.
  • SEQ ID NO. 3 Amino acid sequence encoded by the CYP81A6 gene.
  • the mapping population used in this experiment consisted of F2 recessive individuals.
  • Pei Xiao MS backcross transfer line referred to as Pei'ai 64m
  • the restorer line obtained by the Agricultural Institute of Lixiahe, Jiangsu Republic
  • F1 hybridization obtained by the Agricultural Institute of Lixiahe, Jiangsu province
  • F1 self-crossed obtained F2, a total of 1000 strains.
  • the SSR amplification reaction system is: 50 ng of template DNA, 1 ⁇ PCR reaction buffer, 1.87 mM Mg 2+ , 0.2 mM dNTP, 1.0 u rTaq enzyme [Bao Bioengineering (Dalian) Co., Ltd., namely Takara Biotech, referred to as Takara , the same as below] and the forward and reverse primers each 0.2 ⁇ , the total reaction volume is 20 ⁇ 1.
  • the reaction conditions were: 95 ⁇ denaturation for 3 min, followed by 35 cycles (including 94 TC denaturation for 1 min, 60 TC annealing for 1 min and 721 C extension for 1 min), extension at 72 5 for 5 min, and finally storage at 10 C.
  • the PCR product was isolated using 3.5% agarose gel (Shanghai Shenggong), stained with EB (Shanghai Shenggong) and photographed with a UVP imaging system (Germany).
  • the applicant used the SSR marker to locate the Bentazon sensitive lethal gene in 80T7S on the long arm of the third chromosome of rice, and the genetic distance from SSR molecular marker RM168 was 7.1cM (Zhan et al., 2002). ).
  • the present invention analyzes the genomic sequence (http://btn.genomics. or .cn/rice) located between RM168 and the long arm end of the chromosome by SSR primer search software SSRHunter 1.3.
  • SSR markers such as 7a (forward primer: 5 -GTCAGAGCAAGGTCGGAGAG-3'; reverse primer: 5'- TCGGTGATCATTGTCATTTG-3 ') , 3a (forward introduction: 5 -TGT TTTCTTTTTCGCTGTGTG-3 '; reverse primer: 5 -GCAAGCCTTTTTGC GTATTC-3 ) and 8a (forward primer: 5 - GCTTCCCTCTCCTTCCACTT-3'; reverse primer: 5 -CTTGTGAGTGAGTGGTGACG-3), etc. (primer sequences were synthesized by Shanghai Biotech), in which 3a and 7a were located on the same BAC clone AC084282.
  • the 60kDa P450 protein plays a very important role in the degradation and metabolism of the herbicide BSM (bensulfuron-methyl). Therefore, we initially believe that the benda-sensitive lethal gene may be related to the P450 gene, thus preliminarily determining the four P450s.
  • the gene is a candidate gene.
  • Primers used for PCR amplification and sequencing of the above four genes are: CYP81A5: Pl-la and Pl-lb, Pl-2a and Pl-2b, Pl-3a and Pl-3b; CYP81A6; P2-la and P2-lb, P2-2a and P2-2b, P2-3a and P2-3b, P2-4a and P2-4b, P2-5a and P2-5b, P2-6a and P2-6b; CYP81A7; P3-la and P3-lb, P3-2a and P3-2b, P3-3a and P3-3b; CYP81A8: P4-la and P4-lb, P4-2a and P4-2b, P4-3a and P4- 3b. The sequences of the respective primers are shown in Table 2.
  • Fig. 2 After one week, all the plants are withered and died (Fig. 2). Thus, it was initially confirmed that the bentazone-sensitive lethal genes in the two mutants were in an allelic relationship with each other. At the same time, 800 F2 plant populations were sprayed, and all the treated plants were also dead. It was further confirmed that the bentazon-sensitive lethal gene in the two mutants was a pair of alleles. For the sake of distinction, we named cyp81A6 from 8 077S and Nonglin 8 m as cyp81A6-l and cyp81A6-2, respectively.
  • CYP81A6 and cyp81A6-2 were amplified from wild-type rice Nonglin 8 and mutant Nonglin No. 8 m with high-fidelity pyrobestTM polymerase and sequenced directly (Perkin Elmer AMI 377). , Shanghai Jikang). The results showed that cyp81A6-2 derived from the mutant Agroforestry No. 8 lacked a C at the 2455 bp of the sequence shown in SEQ ID NO. 1 of the CYP81A6 in wild type Nonglin No. 8. Therefore, the results of the equipotential analysis were further verified.
  • Table 2 Specific primers used in PCR reactions
  • PCR-RFLP primers were used to amplify 5 copies of DNA samples (46 phr/part) of two parental 93-11 and Pei'ai 64m and F2 mapping populations, and the amplified products were purified by PCR products.
  • the kit Takara
  • Bgl l Takara
  • the banding pattern of all F2 mixed samples was consistent with that of the parental culture of 6 4 m (Fig. 4), confirming the mutation against CYP81A6-1.
  • the Bgll-PCR-RFLP marker artificially introduced at the site was co-segregated together with the CYP81A6 gene.
  • the wild type and mutant DNA sequences were also subjected to restriction enzyme digestion analysis using WEBCUTTER 2.0 analysis software.
  • the results showed that the single base deletion mutation site occurred on the mutant was located at the same time.
  • the Nae I (GCCGGC) enzyme recognition sequence is thus no longer recognized by the enzyme, and another Nae l restriction site at 50 bp upstream (within the PCR amplification range) is not altered. Therefore, the PCR-RFLP analysis of the wild-type and mutant PCR amplification products of cyp81A6-2 was carried out by this enzyme (see Fig. 5 for the technical scheme), and the results showed that the PCR amplification product obtained from wild-type Nonglin No. 8 was obtained.
  • the full-length sequence of the candidate gene CYP81A6 was obtained by one-time amplification using the LA TaqTM enzyme produced by Takara and its kit, and the long-length PCR-specific amplification primer was used (forward primer: 5 -CAAACTTCCAACTTTCCCGTCACCTTCA CT-3)
  • the reverse primer is: 5 -CCGCGGGTCACCGAGCAGAAAGCC (: TTCCTCCCAAGTTAGAA-3 ', synthesized by Shanghai Biotech) according to the DNA sequence published in the Indica Genome Database (http://btn.genomics.org.cn/rice)
  • the BamH I restriction site at the 5' end of the gene was designed at 124 bp and 4145 bp later, and a BstE n restriction site was added to the 3' primer to generate sticky ends and clonal junctions.
  • the 4311 bp fragment consists of a 124 bp upstream BamH I sequence, a 1321 bp promoter sequence, a 2321 bp gene leader region plus an exon plus an intron sequence, a 272 bp 3'-IJTR and a subsequent 288 bp genomic sequence.
  • the TA plasmid vector (Takara) was subjected to repeated sequencing (Perkin Elmer AMI 377, Shanghai Keikang) analysis, and then, all the amplified clones of the exons were selected and used, and BamH I and BstE n ( Takara ) were used.
  • the enzyme was excised from the TA plasmid vector, it was ligated to the same double-cut pCAMBIA1301 genetic transformation vector; then, the plasmid with the correct insert was selected and introduced into Agrobacterium EHA105 strain by electroporation, and the strain was used.
  • the 8077S genome was transformed to confirm the complementation of biological functions.
  • the obtained resistance callus was screened by 50 mg/L hygromycin (ABI, USA) for 3 rounds, and then 4.2 M / L Bensulfuron-methyl (Sigma). Screening (Fig.
  • the obtained double-resistance callus was placed on a regeneration medium containing 50 mg/l hygromycin for green seedling differentiation, and the obtained plants were verified by PCR amplification, and then coated with bentazon ( Identification of 1250 mg/l. The results showed that all transformants recovered resistance to bentazon ( Figure 7 shows the results of one of them). These results confirmed that our cloned CYP81A6 gene is Bentazon and sulfonylurea herbicide resistance genes.
  • the primary structure of the CYP81A6 gene includes: long before the translation initiation codon a 5 UTR of 53 bp (1896-1948 bp of the sequence shown in SEQ ID NO. 1), a coding region of 2268 bp in length (1949- 4216 bp of the sequence shown in SEQ ID NO. 1), and located at The 3'-UTR after the stop codon was 272 bp in length ( ⁇ 4217-4488 bp of the sequence shown in SEQ ID NO. 1 of the Sequence Listing).
  • the coding region of this gene consists of two exons, separated by an intron (Fig. 8). The length of the two exons is 924 bp (1949-2872 bp of the sequence shown in SEQ ID NO.
  • This gene encodes a cytochrome P450 protein (see SEQ ID. NO. 3 for its sequence), which has four conserved domains shared by most P450 proteins, namely Phe-xx-Gly-x at the C-terminus.
  • this conserved sequence plays an important role in molecular oxygen activation; the curvature of Pro- Glu/Asp-Arg/His-Phe/Tr located between the heme binding domain and the I helix (meander ); and a proline-rich hinge at the N-terminus (Werch-Reichhart et al., 2000).
  • it is precisely because of the existence of these conserved domains that the conserved three-dimensional structure of most cytochrome P450 proteins is maintained
  • Wx a is characteristic of indica rice, and its expression activity at the RNA and protein levels is 10 times stronger than ⁇ Its high expression leads to high amylose content, and makes the cooked rice hard and loose, and the mouthfeel is poor; while Wx b is mainly found on indica rice, and its low expression leads to the amylose content of the japonica type. Its rice is generally soft and delicious after cooking.
  • a mutant molecule designed to mutate the G base of the splicing site was designed. 9 RCO1 ) and a repairer molecule that repairs a single base pair deletion site of cyp81A6-l (Fig. 10 RCO 2 ); one by one by gene gun method: 3 pieces of mutants are introduced simultaneously in pairs In the 8077S mutant, a sulfonylurea herbicide was used to screen a restorer of the cyp81A6-1 single base deletion mutation and a co-modified mutant of the Wx gene.
  • Example 3 Study on the biological functions of unknown genes such as CYP81A5, CYP81A7 and CYP81A8 by using double RCOs molecular gene co-modification technique
  • genes such as CYP81A5, CYP81A7 and CYP81A8 encode a class of cytochrome P450 monooxygenase proteins, while rice P450 is a large gene family with only 454 members in indica.
  • the highly conserved heme binding domain motif (FXXGXRXCXG) present at the protein level, especially the cystine core residue, is extremely important for determining the biological function of the P450 gene, so it is ideal. Mutant target.
  • the purpose of repairing the cyp81A6-2 single base deletion site is to provide a screening effect for mutation of other genes. Therefore, in theory, as long as a gene locus such as the sulfonylurea target enzyme acetolactate synthase (ALS) ( Okuzaki and Toriyama 2004) has a screenable property after modification, it can be used as a target for modification. .
  • ALS sulfonylurea target enzyme acetolactate synthase
  • Example 4 Studying the biological function of an unknown rice P450 gene by means of screening of exogenous marker genes and modification of RCOs
  • Exogenous selectable marker genes such as anti-antibiotic marker genes, biological or chemiluminescent genes, key enzyme genes for carbon metabolism, herbicide resistance genes derived from bacteria, animals or other plants, and GUS genes can be co-introduced, integrated and expressed.
  • the approach is to provide a screening effect for RCOs on mutations in the target gene. This is illustrated by the example of the hygromycin phosphotransferase gene.
  • a RCOs molecule was designed for an unknown function of the P450 gene (Fig. 14 RC06), and the hygromycin phosphotransferase gene (hph) was constructed on a plasmid vector to obtain a transforming plasmid pHPH (Fig. 15).
  • the plasmid pHPH and RCOs molecules were then introduced into the recipient cells using conventional gene gun co-transformation methods (Tu et al, 1998), and the P450 gene was screened for hygromycin resistance by hygromycin phosphotransferase gene integration and expression.
  • the RCO is modified with a mutant, and then the target DNA sequence of the mutant is subjected to PCR amplification and sequencing verification using a specific primer, and the obtained rice P450 modified mutant is compared with the wild type according to the phenotypic or biochemical difference presented. Presumably involved in the biological work
  • Example 5 Inhibition effect of antisense RA fragment on endogenous Bel gene in rice.
  • the antisense RNA or R Ai sequence was designed based on the coding sequence of cloned rice anti-bendazone and sulfonylurea herbicide gene (see SEQ
  • the nucleotide sequence from 1939 to 2439 of ID NO.l was ligated to a rice constitutive expression promoter such as Actinl, and the Agrobacterium binary vector pAANTI1 for genetic transformation was constructed (Fig. 16). ) and introduced into wild-type lines such as Minghui 63/Bt according to Agrobacterium-mediated standard transformation steps. After that, the specific primers were used to carry out PCR amplification analysis on the transgenic T0 plants.
  • the Agrobacterium binary vector pOANTI1 for genetic transformation was constructed (Fig. 19), and then Bacillus-mediated standard double-gene co-transformation step was introduced into the photo-thermophilic sterile line Pei'ai 64S, which is currently widely used in rice production, to specifically inhibit the endogenous anti-benzene to the thermo-sensitive sterile line.
  • Pei'ai 64S which is currently widely used in rice production.
  • the expression of pine and sulfonylurea herbicide genes in tapetum cells and pollen grains can be a new chemical supplement to kill male-resistant thermo-sensitive male sterile lines after field trials and pure line selection.
  • the entire gene sequence of the CYP81A6 gene of the anti-Betason and sulfonylurea herbicides, or the coding sequence thereof, is ligated to a constitutive expression promoter such as 35S, Ubi-1, Actinl, etc. and the nos terminator, On the bacillus binary vector, it replaces the commonly used hygromycin, kanamycin resistance gene or GUS reporter gene.
  • the resistance gene was introduced into rice 8077S cells sensitive to p-bendazone and sulfonylurea herbicides, and the transformed positive callus obtained was able to continue to grow on the medium containing BSM (Fig. 6 left), while the control was Growth was stopped on the medium (Fig. 6 right) to achieve the purpose of screening for resistance or positive callus with the herbicide.
  • Example 8 Breeding of transgenic plants with anti-Bendazon and sulfonylurea herbicides
  • the entire gene sequence of the CYP81A6 gene of the anti-Betason and sulfonylurea herbicides, or the coding sequence thereof, is ligated to a constitutive expression promoter such as 35S, Ubi-1, Actinl, etc. and the nos terminator, Directly used for transformation and screening on the bacillus binary vector, the obtained transgenic plants verified by molecular analysis and phenotypic identification can be used as anti-bendazone and sulfonylurea herbicides by field trial and pure line selection.
  • Transgenic line The whole gene sequence of CYP81A6 gene was introduced into sensitive rice 8077S, and a new transgenic line resistant to bentazon and sulfonylurea herbicides was obtained (Fig. 7 left).
  • Example 9 Isogenic clone of rice benzodiazepine and sulfonylurea herbicide gene CYP81A6
  • cytochrome P450 members There are four conserved sequences in cytochrome P450 members, including the heme-binding domain that plays a key role in catalysis, important for membrane binding.

Description

水稻抗苯达松和磺酰脲类除草剂的基因 CYP81A6 技术领域
本发明涉及基因工程技术领域。 具体地说, 涉及水稻中的一种抗 苯达松和磺酰脲类除草剂基因的精确定位、 分离和克隆。 此外本发明 还涉及借助所述抗除草剂基因对其它重要农艺性状基因进行定向突变 来改良水稻等作物的重要农艺性状和防止杂交制种时的自交混杂, 以 及进行基因定向遗传操作等方面的应用。
技术背景
利用水稻杂种优势, 中国成功研制了杂交水稻, 使水稻产量总体 得以大幅度地提高。 中国杂交水稻继成功的利用基于核质互作雄性不 育的三系法杂种优势利用之后,正在大规模开展两系法杂交稻的研究、 开发与推广。 两系法杂交稻种子是用光温敏雄性不育系制种生产的,但 光温敏雄性不育系的育性较易受到环境温度的影响,夏季的异常低温可 能导致光温敏雄性不育系的育性恢复。 这就造成了一种潜在的危险:当 两系法杂交制种时遇到低温后,收获的种子可能是真杂种中混有假杂种 (即不育系自交结实种子) ,而一旦出现这种母本自交混杂,如果不能有 效地清除,将造成种子或大田生产的严重损失。广西 1989年和湖南 1999 年都因此遭受了较大损失。 有资料证明,杂交水稻种子纯度每降低 1个 百分点,大田生产每公顷将减产 75kg。 因此我国种子标准规定杂交稻 种子纯度要达到 98 %以上。 不仅用光温敏雄性不育系制种生产的两 系法杂交稻种子存在混杂问题,而且在应用有修饰基因参与的核主效基 因不育、 受药剂和施药条件影响的人工化学杀雄不育、 受核内温度敏 感基因影响的质核互作雄性不育、 人工培育的非整倍体雄性不育等这 些不完全雄性不育系制种时,都有可能在其生产的杂交种子中混有母本 自交种子。 为了排除这种自交混杂,使作物杂种优势利用的推广应用建 立在更可靠的基础之上,人们做了多种尝试。 鉴于耐 (抗)除草剂特性被 广泛应用于现代作物育种工作, 不少科学家也尝试利用野生型水稻对 苯达松和磺酰脲类除草剂具有抗性的特征来解决上述杂交水稻育种过 程中种子混杂的问题。
在野生型水稻上应用的选择性除草剂主要有两类。 一类是苯并噻 二唑类 ( benzothiadiazole ) 除草剂, 如苯达松, 其有效成分能通过作 物的根、 叶吸收, 它对豆科以外的绝大多数双子叶植物和莎草科杂草 有杀除作用, 对禾本科植物无害。 苯达松的除草机理是抑制植物光合 作用中的希尔反应。 迄今, 还没有从植物中克隆到抗苯达松和磺酰脲 类除草剂的内源基因。 另一类是磺酰脲类除草剂, 它们是由杜邦公司 开发的一类新型超高效的高选择性、 广谱、 低毒、 内吸型除草剂, 其 中由杜邦公司开发的苄嘧磺隆、 苯磺隆及其复配剂型等是目前我国稻 田除草中应用最广泛的除草剂。 磺酰脲类除草剂的最大特点是高活 性, 使用剂量通常在 5-100g/公顷。 磺酰脲类除草剂是一种乙酸乳酸合 成酶(ALS )抑制剂, 对许多一年或多年生杂草尤其是阔叶杂草有特 效, 已广泛用于除水稻、 小麦、 大豆、 玉米、 油茱(抗胺苯磺隆) 、 草坪和其他非耕地的杂草。 杜邦公司已经开发了多个抗磺酰脲基因, 一个是从烟草抗性突变体中克隆出来的抗磺酰脲 SURB-Hra基因, 该 基因是基于烟草 ALS 基因的突变而形成的抗性, 已经在棉花、 大豆 等多种作物上得到应用 (US5013659 , US5084086 , US5141870 , US5378824, US5605011 ) ; 另一个抗磺酰脲基因是来源于土壤细菌 的 P450 sul 基因, 它是通过加速代谢磺酰脲使之无毒的途径实现抗 性, 杜邦公司就 P450基因及其应用进行了深入的研究, 相关内容参 见 US5349127等。 日本日产化学株式会社在 WO9708327专利申请中 公开了从一种双子叶阔叶植物地肤 ( Kochia coparia ) 的 cDNA 中分 离的乙酰乳酸合成酶(ALS )基因, 具有使转化植株抗磺醜脲的功能。
目前, 培育耐 (抗)除草剂作物的主要方法有两种: 一是通过理化 诱变, 获得耐 (抗)除草剂作物的突变体; 二是通过 DNA重组技术, 将 耐 (抗)除草剂基因导入现有的物种中, 创造耐 (抗)除草剂的新材料。 其 中尤以后者的应用最为广泛。 当前提高物种耐 (抗)除草剂的基因工程 策略也有两种: 一是导入修饰除草剂作用的靶蛋白 ( herbicide target protein ) , 使其对除草剂不敏感, 或使其过量表达以使植物吸收除草 剂后仍能进行正常代谢; 二是引入新的酶或酶系统, 在除草剂发生作 用前将其降解或解毒, 如 P4S0基因等(王关林和方宏筠, 1998 ) 。
野生型水稻天然地对苯达松和磺酰脲类除草剂具有抗性。 采用 γ- 射线辐射技术, 日本学者 Mori和湖北省农业科学院张集文等先后获 得了水稻苯达松敏感致死突变体农林 8号 M ( Mori, 1984 )和 8077S (张集文和武晓智, 1999 ) 。 张集文等还进一步开发了用对苯达松除 草剂敏感的隐性基因位点标记母本不育系的去杂保纯技术系统(张集 文等, 2001 ) 。 由于这样一种种质资源在杂交稻特别是在两系杂交稻 的种子纯度安全保障体系中的重要应用, 如用 8077S携带的突变位点 标记的两系不育系, 就能最大限度地降低两系杂交稻的制种风险, 保 证杂种的种子纯度, 因而受到育种家和种子企业的高度重视。 但是, 由于这种去杂保纯系统是在制种后去杂, 即便效果较佳, 但因出售前 这种低纯度的种子与国家规定的种子纯度标准有冲突, 而难以被种子 管理部门放行。 因此, 需要有一种新的去杂保純机制。 然而, 问题在 于多年来控制该性状的基因始终没能被准确定位和 /或分离克隆, 使得 人们无法对该性状进行遗传操作和进一步利用, 这成为本领域的一大 技术障碍。
基于上述情况, 本发明人通过广泛深入地研究, 以水稻中现有的 两个苯达松敏感致死突变体为材料, 对其突变的基因位点进行了精细 定位, 并克隆出其野生型等位基因。 同时, 在此基础上研究开发了几 种有用的方法和技术, 如创造植物化学补充杀雄温敏不育系的方法, 基因组双位点或多位点定向共修饰遗传操作技术, 植物基因生物学功 能研究新方法和植物性状改良新方法。 由此, 不仅解决了杂交水稻育 种过程中的去杂保純问题, 还为在研究基因生物学功能和改良生物性 状方面提供了极具应用前景的实用方法。
发明内容
本发明的一个目的在于提供一种经分离的水稻内源抗苯达松和磺 酰脲类除草剂基因 (以下称作 CYP81A6基因) , 及其功能保守性变 体、 功能等同的生物活性亚片段或衍生物。
本发明的另一个目的在于提供上述经分离的水稻内源抗苯达松和 磺酰脲类除草剂基因的 cDNA序列, 及其功能保守性变体、 功能等同 的生物活性亚片段或衍生物。
本发明的另一个目的在于提供苯达松和磺酰脲类除草剂敏感基 因。
本发明的另一个目的在于提供包含 CYP81A6基因、 苯达松和磺 酰脲类除草剂敏感基因或两者功能等同物的重组载体。
本发明的另一个目的在于提供由 CYP81A6基因、 苯达松和磺酰 脲类除草剂敏感基因或两者的功能等同物所编码的多肽。 本发明的另一个目的在于提供包含 CYP81A6基因、 苯达松和磺 酰脲类除草剂敏感基因或两者的功能等同物, 或者包含由 CYP81A6 基因或两者的功能等同物所编码的多肽的基因工程化细胞。
本发明的另一个目的在于提供一种防止杂交稻杂交制种时的自交 混杂的方法。
本发明的又一个目的在于提供一种定向遗传操作的新方法。
本发明的再一个目的在于提供一种改良植物性状的新方法。
本发明的上述目的是通过下述的具体事实方案实现的。
首先, 本发明人对突变体 8077S和农林 8号 m中苯达松和磺酰脲 类除草剂敏感基因进行精细定位, 并从野生型栽培稻中分离了一个抗 苯达松和磺酰脲类除草剂的 CYP81A6基因及调控该基因的启动子的 DNA 片段, 利用该基因可以改良除大豆外的绝大多数双子叶植物以 及莎草科杂草植物的抗苯达松和磺酰脲类除草剂的特性。
本发明所提供的苯达松和磺酰脲类除草剂抗性基因包括选自下组 的一种核苷酸序列:
( 1 )具有如 SEQ ID NO.l所示核苷酸序列的核苷酸序列;
( 2 )与 SEQ ID NO.l所示第 1949位到第 4216位的核苷酸序列 的功能等同的亚片段或衍生物;
( 3 )具有如 SEQ ID NO.2所示核苷酸序列的核苷酸序列;
( 4 )与 SEQ ID NO.2所示第 54位到第 155>5位的核苷酸序列的 功能等同的亚片段或衍生物;
( 5 ) 能与 SEQ ID NO.l或 SEQ ID NO.2所示核苷酸序列在严紧 条件下杂交的核苷酸序列。
特别优选地, 上述经分离的水稻内源抗苯达松和磺酰脲类除草剂 基因具有如 SEQ ID NO 1所示的核苷酸序列; 上述经分离的水稻内源 抗苯达松和磺酰脲类除草剂基因的 cDNA具有如 SEQ ID NO 2所示 的核苷酸序列。
本发明所提供的苯达松和磺酰脲类除草剂抗性基因所编码的多肽 包括选自下组的一种核苷酸序列所编码的氨基酸序列的多肽:
( 1 )具有如 SEQ ID NO.l所示核苷酸序列的核苷酸序列;
( 2 ) 与 SEQ ID NO.l所示第 1 9位到第 4216位的核苷酸序列 的功能等同的亚片段或衍生物; ( 3 )具有如 SEQ ID NO.2所示核苷酸序列的核苷酸序列;
( 4 )与 SEQ ID NO.2所示第 54位到第 1595位的核苷酸序列的 功能等同的亚片段或衍生物;
( 5 ) 能与 SEQ ID NO.l或 SEQ ID NO.2所示核苷酸序列在严紧 条件下杂交的核苷酸序列。
其中, 特别优选具有如 SEQ ID NO.3所示的氨基酸序列。
本发明还提供一种在活体细胞内于基因组的两个或多个位点上同 时定向地对目标序列进行共修饰的遗传操作方法, 其特征在于, 该方 法是以可作为筛选标记的核苷酸序列为第一修饰靶标, 以活体细胞内 的目标内源基因的关键碱基对为附加修饰靶标, 采用共导入技术向目 标受体细胞导入针对所述不同修饰靶标序列设计的双或多 R A'DNA 嵌合寡聚核苷酸分子 (RCOs ) , 对上述靶标位点同时进行定向修复 或突变, 然后, 进一步利用所述的作为筛选标记的核苷酸序列的修饰 表型对目标内源基因修复或突变后的基因型进行相关选择。
在上述的遗传操作方法中, 可作为筛选标记的核苷酸序列包括但 不限于突变或未突变的抗 /感除草剂基因, 抗抗生素基因、 生物或化学 发光基因、 酶基因等, 本领域技术人员可根据常规知识自由选择, 其 中优选除草剂抗性 /敏感基因, 特别优选具有 SEQ ID NO.l 或 SEQ ID NO.2的核苷酸序列或其功能等同的亚片段或衍生物;以及缺失 SEQ ID NO.l所示的核苷酸序列中第 2455位碱基 C或第 4006位碱基 G后所 得的核苷酸序列; 缺失 SEQ ID NO.2所示的核苷酸序列中第 560位碱 基 (:或第 1385位碱基 G后所得的核苷酸序列。
研究表明, 所分离克隆的抗苯达松和磺酰脲类除草剂基因编码细 胞色素 P450 蛋白, 在国际标准分类和命名系统中被正式定名为 CYP81A6 ( http:// drnelson. utmen.edu/cytochromep450. html ) , 含 有一般 P450蛋白的保守结构域, 其氨基酸序列见 SEQ ID NO. 3。 目 前, 尽管已经从植物中克隆了抗除草剂的 P450 基因, 如烟草的 CYP71A11 和 CYP81B2(Yamada 等, 2000), 大豆的 CYP71A10 (Siminszk 等, 1999), 高粱的 CYP73Al(Pierrel等, 1994)和 CYP76B1 (Didierjean等, 2002), 以及 hlaspi arvensae 的 CYP71B1 ( Lamb等, 1998 ) 。 但这些 P450基因与 CYP81A6基因的同源性均低于 40%, 且不能降解苯达松和磺酰脲类除草剂。 这些结果表明, CYP81A6基 因是一类新的抗除草剂 P450基因。 因此, 本发明涉及矛 i用该基因与 基因自身启动子或其它组成型或特异启动子相连, 导入除豆科外的绝 大多数阔叶植物或莎草科杂草中, 创造新的抗除草剂品系。
本发明所示的 DNA 片段的表达是组成型表达, 因此, 可以利用 该基因的反义 RJVA或 RNAi与花药组织特异表达特异启动子如 Osg6B 和 RA39 等相连, 然后导入水稻等温敏不育系中, 使该基因在其花药 中不能表达, 从而可以利用磺酰脲类除草剂杀死花粉, 创造新的化学 补充杀雄温敏不育系。
此外, 本发明鉴定出的对苯达松和磺酰脲类除草剂敏感的两个 CYP81A6单碱基缺失突变位点为基因定向突变提供了可利用的修饰 靶标。 因此,可以利用 RCOs分子定向修复突变体中的 cyp81A6基因, 从而赋予修复体对苯达松和磺酰脲类除草剂具有抗性, 达到筛选的目 的。 借助该突变基因, 可以同时设计和导入两种或两种以上针对不同 靶标的 RCOs分子, 其中, 一种分子用于定向修饰 cyp81A6基因的单 核苷酸缺失突变, 以期恢复它对苯达松和磺酰脲类除草剂抗性并作为 筛选标记, 另一种或多种分子则用于定向地对内源目的基因进行突 变, 然后根据突变体与野生型之间所呈现的表型或生理生化型差异, 推定其确切的生物学功能, 或对目的基因的突变体进行纯系选育, 从 而获得有关农艺性状被改良的新品系。 此外, 也可以通过其它基因位 点的可选择性修饰表型或共导入一个外源可选择性基因来对目标基因 的突变体进行相关性选择。
另外, 也可以利用该技术或其他的 DNA 同源重组技术或理化诱 变技术对 CYP81A6基因进行定向或随机的突变, 从而改变该基因的 功能, 创造新的可用于去杂保纯的苯达松和磺酰脲类除草剂敏感突变 体。 此外, 所克隆的野生型等位基因经遗传转化后能够赋予除豆科外 的绝大多数阔叶植物或莎草科杂草抗苯达松和磺酰脲类除草剂特性。
CYP81A6 编码序列在不同物种的植物中广泛保守, 因此利用水 稻的 CYP81A6基因及其衍生序列的约 8个或更多个核苷酸的引物和 探针用于制备禾本科中的其他属种的同源基因的分离和克隆。 采用上 述方法, 可以克隆到与水稻 CYP81A6 高度同源的基因, 将这一序列 与合适的载体相连, 导入对苯达松和磺酰脲类除草剂敏感的植物细 胞, 创造抗苯达松和磺酰脲类除草剂的转基因植物。 本说明书和权利要求书中使用的下列术语的含义是本领域技术人 员所熟知且常用的, 下面对其中部分术语作示例性的简要说明。
"核苷酸序列" 是指寡核苷酸、 核苷酸和多核苷酸及其片段或部 分, 也可以指基因组或合成的 DNA或 RNA, 它们可以是单链或双链 的, 代表有义链或反义链。
"功能等同的亚片段" 、 "功能等同的生物活性亚片段" 是指分 离的 DNA 片段的一部分或亚序列, 其中无论这些片段或亚序列是否 编码活性蛋白质, 都保留改变基因表达或产生一定抗除草剂的能力。 如所述片段可用于嵌合基因的设计或反义抑制等。 "功能等同的衍生 物" 、 "功能保守性变体" 是指分离的 DNA 片段的全部、 或更多、 或一部分序列, 其中无论这些片段是否编码活性蛋白质, 都保留改变 基因表达或产生一定抗除草剂的能力, 并可以用于嵌合基因的设计或 反义抑制等。
"变体" 是指一种具有一个或几个氨基酸或核苷酸改变的氨基酸 序列或多核苷酸序列。 所述的改变包括氨基酸序列或核苷酸序列中氨 基酸或核苷酸的缺失、 插入或替换等。 本发明中所述的 "变体" 具有 保守性改变, 其中改变的氨基酸具有与原氨基酸相类似的结构或化学 性质。 此多核苷酸的变体可以是天然发生的和非天然发生的变体。 这 些核苷酸变体包括取代变体、 缺失变体和插入变体。 如本领域所知的, 等位变体是一个多核苷酸的替换形式, 它可能是一个和几个核苷酸的 取代、 缺失和插入, 但不会实质上改变其编码多肽的功能。
"氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部 分。 本发明所涉及的 "多肽" 或 "蛋白质" 不局限于所述多肽或蛋白 质分子的完整的天然氨基酸序列。
"同源性" 是指在两种或多种氨基酸或核酸序列比较中序列相同 或相似的百分率。 可用于测定同源性方法如通过 MEGALIGN 程序 ( Lasergene software package, DNASTAR, Inc., Madison Wis. ) 。 MEGALIGN程序可根据不同的方法如 Cluster 法比较两种或多种序 列 ( Higgins, D.G. 和 P.M.Sharp (1988)Gene 73:237-244 ) 。 也可以通 过 Cluster法和本领域所公知的方法如 Jotun Hein测定核酸序列之间 的同源性(Hein J" (1990) Methods in emzumology 183:625-645 ) 。
"严紧奈件" 是指 (1 )在较低离子强度和较高温度下的杂交和 洗脱, 如 0.2xSSC, 0.1%SDS, 60*C或 (2 ) 杂交时加用变性剂, 如 50 % ( v/v ) 甲酰胺, 0.1 %小牛血清 /0.1 % Ficoll, 42 Ό等; 或 (3 )仅 在两条序列之间的相同性至少在 95 %以上, 优选 97 %以上时才发生 杂交。 并且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO.l所示核苷 酸所编码的多肽具有相同的生物学功能。
"载体" 指本领域所熟知的细菌质粒, 噬菌体, 酵母质粒, 植物 细胞病毒等等。 在本发明中适用的载体包括农杆菌载体、 大肠杆菌质 粒载体和病毒载体等。 总之, 只要能在宿主体内复制和稳定遗传, 任 何质粒和载体都可以用于本发明的构建重组表达载体。
"宿主细胞" 指可导入本发明的核苷酸序列或包含本发明的核苷 酸序列的重组载体的基因工程化宿主细胞。 其包括十字花科植物细 胞、 茄科植物细胞、 莎草科植物细胞、 旋花科植物细胞、 锦葵科植物 细胞、 亚麻科植物细胞等。
"磺酰脲类除草剂" 是一类超高效、 广傳、 低毒和高选择性的除 草剂, 其生物活性超过传统除草剂 100-1000倍, 其可以被植物的根、 茎、 叶吸收, 作用于乙酸乳酸合成酶, 抑制纈氨酸与异亮氨酸的生物 合成, 导致蛋白质合成受阻, 从而抑制敏感植物生长点部位的生长。 本发明中的 CYP81A6基因所抗的包括但不限于表 1 所列的磺酰脲类 除草剂。
另外, 本发明的核酸序列或含有本发明的核酸序列的重组载体转 化宿主细胞可以用本领域技术人员所熟知的常规技术进行。 当宿主为 原核生物, 如大肠杆菌时可应用 CaCl2法, 电穿孔法等。 当宿主是真 核细胞, 可选用农杆菌介导的转化法、 基因枪介导的转化法、 DNA 转染法、 磷酸钙共沉淀法、 显微注射法或脂盾体包装等等。 表 1· 稻田除草的主要磺酰脲类除草剂
通用名 开发公司 用量 (g/hm) 甲横隆 (Metsulfuron-methyl) 杜邦 3-7.5
苯磺隆 (Tribenuron-ethyl) 杜邦 9-18
苄嘧橫隆 (Bensulfuron-methyl) 杜邦 20-30
p比 碌隆 (Pyrazosulfuron-methyl) 曰产化学 20-50 附图说明
图 1. 本发明的水稻苯达松敏感致死遗传位点 bel 与其共分离的 PCR-RFLP标记 DPI和 DP2在第 3染色体分子标记遗传连锁图上的 位置。
图 2. 农林 8号 m和 8077S中的苯达松敏感致死位点的等位性测 验。 a:苯达松处理之前的植株, 图左: 为农林 8号 m; 图右: 8077S; 图中: 农林 8号 m与 8077S的 F1杂种。 b:苯达松处理一周后的植株。 处理时, 使用的苯达松浓度为 1250mg/l。
图 3. PCR-RFLP分析验证存在于 8077S中的 cyp81A6-l单碱基 缺失突变位点的流程图。 突变位点、 用于 PCR特异扩增的引物序列、 利用引物设计人工引入的包含突变位点的 Bgll酶切位点、 以及用 Bgll 对 PCR扩增片段进行酶切的片段长度差异详见图中标注。
图 4· 作图群体的 PCR-RFLP 标记分析结果。 M: lOObp DNA Ladder ( Takara ); 1-5: F2作图群体(隐性敏感致死纯合体) 的 5 个 DNA混样( 46株 /样本) ; 6: 93-11; 7: 培矮 64m。
图 5. PCR-RFLP分析验证存在于农林 8号 m中的 cyp81A6-2单 碱基缺失突变位点的流程图。 突变位点、 用于 PCR特异扩增的引物 序列、 与 cyp81A6-2单碱基缺失突变位点对应的野生型 CYP81A6编 码序列上原本存在的 Nael酶切位点、 以及用 Nael对 PCR扩增片段 进行酶切的片段长度差异详见图中标注。
图 6, 以 8077S 为受体的 CYP81A6转化愈伤的苄嘧磺隆筛选结 果。 图左: 转基因愈伤, 图右: 8077S对照愈伤。 i 图 7. 以 8077S为受体的 CYP81A6转基因幼苗的苯达松抗性鉴定 结果。 图左: 转基因苗; 图右: 8077S对照。
图 8. CYP81A6基因的结构。 黑色长方形: 代表基因的外显子; 灰色长方形: 代表基因的 5,端和 3,端非编码区; 中间实线: 代表示基 因的内含子, 它们的长度分别标注于图的上方。 在图的下方标注的是 起始密码子 ATG、 终止密码子 TGA, 以及剪接点序列 GT和 AG。
图 9. Wax3基因的靶标序列和根据该序列设计的 RNA · DNA嵌 合寡聚核苷酸分子 RC01。
图 10. cyp81A6-l基因的靶标序列和根据该序列设计的 RNA DNA 嵌合寡聚核苷酸分子 RC02。 图 11. CYP81A5、 CYP81A6, CYP81A7, CYP81A8基因的靶标 序列和根据这些序列设计的 RNA · DNA嵌合寡聚核苷酸分子 RC03.
图 12. CYP81A8 基因的的靶标序列和根据该序列设计的 RNA · DNA嵌合寡聚核苷酸分子 RC04。
图 13. cyp81A6-2 基因的的靶标序列和根据该序列设计的 RNA · DNA嵌合寡聚核苷酸分子 RC05。
图 14 功能未知的水稻 P450(GenBank号为 B1147A04) 基因的靶 标序列和根据该序列设计的 RNA · DNA嵌合寡聚核苷酸分子 RC06。
图 15. 携带潮霉素磷酸转移酶基因的 pHPH质粒图谱。
图 16. 以 Actin I启动子驱动的 CYP81A6反义 RNA基因 pAANTIl 质粒图 i瞽。
图 17. 以明恢 63恢复系为受体的 CYP81A6反义 RNA基因转化 植株的 PCR鉴定结果。 M: DL2000(Takara)分子量标记; 1-2: 转基 因植株;3: 野生型对照植株; 4: 质粒对照。
图 18. 以明恢 63恢复系为受体的 CYP81A6反义 RNA基因转化 植株的苯达松抗性试验结果。 左: 苯达松敏感突变体负对照; 中: 反 义 RNA转化植株; 右: 明恢 63 野生型正对照。 苯达松处理浓度为 1250mg/L。
图 19. 以花药组织特异型启动子 Osg6B 驱动的 CYP81A6反义 RNA基因 pOANTIl质粒图谱。
SEQ ID NO.l: 包括 CYP81A6基因及 CYP81A6基因启动子。
SEQ ID NO. 2: CYP81A6基因的全长 cDNA序列。
SEQ ID NO. 3: CYP81A6基因编码的氨基酸序列。
下面结合具体实施例, 对本发明作进一步地详细描述。 本领域的 技术人员可以了解, 这些实施例仅用于对本发明范围。 下列实施例中 未注明条件和试验方法的通常按照常规条件如 Sambrook等人编写的 分子克隆实验指南( Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, 2001 ) 中所述的条件, 按照制 造商的建议进行操作。
具体实施方式 '
实施例 1: 基因位点的精细定位与克隆
1、 水稻品种 8077S中的苯达松敏感致死基因 bel的精细定位 1.1 作图群体
本实验中应用的作图群体由 F2 隐性单株组成。 构建时, 先用携 带有 bel基因位点^培矮 MS回交转育系 (简称为培矮 64m ) (野生 型培矮 64S由湖南国家杂交水稻研究与开发中心提供)与野生型 93-11 恢复系 (江苏里下河地区农科所提供)杂交获得 Fl, 再由 F1 自交获 得 F2, 共 1000株。 播种后, 待幼苗生长至 3-4叶时, 按张集文和武 晓智 (1999 )描述的苯达松涂药婆定法, 用浓度为 1250mg/L 的苯达 松(江苏剑牌农药化工有限公司生产的 25%灭草松水剂)对该 F2群 体的所有单株逐一进行剪叶 (自叶尖处剪去 1cm左右)和涂药处理, 每株 3片叶, 然后, 根据处理叶片的苯达松敏感性反应, 确定 231株 隐性敏感致死纯合体作为本实验的作图群体。
1.2 DNA提取
应用 McCouch等 (1988)描述的 CTAB法, 分别从两个亲本 93-11 和培矮 64m, 以及 231 个敏感性致死个体中分离提取叶片总 DNA。 分离 DNA所用的试剂全部从上海生工生物工程技术服务有限公司(简 称上海生工, 下同) 购得。
1.3 SSR分析和 bel基因的精细定位
SSR扩增反应体系为: 50 ng模板 DNA, 1 χ PCR反应緩冲液, 1.87mM Mg2+, 0.2mM dNTP, 1.0 u rTaq酶 [宝生物工程 (大连)有限 公司, 即 Takara Biotech, 简称 Takara, 下同]和正反向引物各 0.2 μΜ , 反应总体积为 20μ1。 反应条件为: 95Ό变性 3 min, 然后进行 35个循环(包括 94TC变性 1 min, 60TC退火 1 min和 721C延伸 1 min ) , 再于 72Ό延伸 5 min, 最后于 10 C保存。 用 3.5%的琼脂糖胶(上海 生工)分离 PCR产物, 用 EB (上海生工)进行染色并用 UVP 成像 系统 (Germany)观察拍照。
申请人在前期的研究工作中, 利用 SSR标记将 80T7S中的苯达松 敏感致死基因初步定位在水稻第三染色体的长臂上, 与 SSR分子标记 RM168的遗传距离为 7.1cM ( Zhan 等, 2002 ) 。 为了进一步对 bel 基因进行精细定位, 本发明借助 SSR引物搜索软件 SSRHunter 1.3对 位于 RM168 至染色体长臂末端之间的基因组序列 ( http: //btn. genomics. or .cn/rice )进行分析,设计并合成 SSR标记,如 7a (正 向引物: 5 -GTCAGAGCAAGGTCGGAGAG-3'; 反向引物: 5'- TCGGTGATCATTGTCATTTG-3 ') , 3a ( 正向 引 : 5 -TGT TTTCTTTTTCGCTGTGTG-3 '; 反向引物: 5 -GCAAGCCTTTTTGC GTATTC-3 )和 8a (正向引物: 5 - GCTTCCCTCTCCTTCCACTT- 3'; 反向引物: 5 -CTTGTGAGTGAGTGGTGACG-3 ) 等 (引物序 列均由上海生工合成),其中 3a和 7a位于同一个 BAC克隆 AC084282 上。 用 8a标记在隐性致死群体中检测到四个发生单交换的重组单株, 而 7a 标记在敏感致死群体中则检测到另外四个不同的单交换重组单 株。 这一结果进一步证实苯达松敏感致死基因位于这两个标记之间。 进一步利用靠近 8a的分子标记 3a对 bel基因进行精细定位, 结果仅 有一个单交换重组单株出现, 从而将苯达松敏感致死基因定位在 3a 和 7a之间。 利用 MAPMARKER3.0构建了 bel基因位点的精细定位 图谱(图 1 ) , 其中分子标记 3a和 7a 距 bel基因的遗传距离分别为 O.lcM和 0.4cM。
2 候选基因的确定及其分离克隆
2.1候选基因的确定及测序分析
序列分析表明, 位于分子标记 3a和 7a之间共有 18个推测的基 因 (putative genes ) , 其中包括 4个连续排列的细胞色素 P450基因
( GenBank收录号分别为 AAK63940.1, AAK63920.1, AAK63922.1 和 AAK63925.1 ) , 在国际标准分类和命名系统中被正式定名为 CYP81A5, CYP81A6, CYP81A7 和 CYP81A8( http://drnelson.utmen. edn/cytnchroTnep450.htTnn - ,水稻的微粒体中的 P450 基因参与了苯达松的脱毒作用 (Haack等, 1994 ) 。 而且, Deng 和 Hatzios ( 2003 )从水稻的幼苗中分离纯化到一个约 60kDa的 P450蛋 白, 其在除草剂 BSM(bensulfuron-methyl)的降解代谢过程中起到非 常重要的作用。 因而我们初步认为苯达松敏感致死基因可能与 P450 基因有关, 从而初步确定这四个 P450基因为候选基因。
为了进一步准确确定候选基因, 我们根据四个 P450基因的基因 组序列分别合成特异引物 (表 2 ) 。 利用高保真 pyrobest™聚合酶
( Takara )从野生型水稻 W6154S和突变体 8077S中分别扩增候选基 因并直接测序 ( Perkin Elmer AMI 377, 上海基康生物技术有限公司, 以下简称上海基康)。 测序结果分析表明, 来源于野生型水稻 W6154S 和突变体 8077S中的 CYP81A5、 CYP81A7 和 CYP81A8等之间没有 任何差异, 而来源突变体 80T7S 的 cyp81A6 比野生型 W61S4S 中的 CYP81A6缺少一个 G (序列表 SEQ ID NO.l所示序列的第 4006碱 基) 。 因此, 我们确定 CYP81A6为唯一候选基因。
对上述 4个基因进行 PCR扩增和测序所用的引物 (序列由上海 生工合成) 为: CYP81A5: Pl-la和 Pl-lb, Pl-2a和 Pl-2b, Pl-3a 和 Pl-3b; CYP81A6; P2-la和 P2-lb,P2-2a和 P2-2b,P2-3a和 P2-3b, P2-4a和 P2-4b, P2-5a和 P2-5b, P2-6a和 P2-6b; CYP81A7; P3-la 和 P3-lb,P3-2a和 P3-2b,P3-3a和 P3-3b; CYP81A8: P4-la和 P4-lb, P4-2a和 P4-2b, P4-3a和 P4-3b。 各引物的序列列于表 2。
2.2粳稻和籼稻中的苯达松敏感致死基因的等位性测验
早在 1984年, 日本学者 Mori利用辐射诱变技术诱变农林 8号获 得一个对苯达松敏感致死的突变体农林 8号 m ( Mori, 1984 ) 。 经典 遗传学分析认为该性状受一对隐性基因控制。 为了验证 8077S和农林 8号 m中的苯达松敏感致死基因是否等位, 我们利用 8077S和农林 8 号 m进行杂交, 荻得了 F1杂种和一个 800株的 F2群体。 播种后, 待秧苗生长至 9-10叶时, 用浓度为 1250mg/L的苯达松喷洒 8077S、 农林 8号 m和他们的 F1植株, 一个星期后, 所有的植株全部枯萎死 亡(图 2 ) , 从而初步证实两个突变体中的苯达松敏感致死基因互为 等位关系。 同时, 对 800个 F2植株群体进行喷药处理, 结果所有的 处理植株也都枯死, 进一步证实两个突变体中的苯达松敏感致死基因 是一对等位基因。 为了区别起见, 我们将来源于 8077S和农林 8号 m 中的 cyp81A6分别命名为 cyp81A6-l和 cyp81A6-2。
利用 CYP81A6基因的特异引物 (见表 2 ) , 用高保真 pyrobest™ 聚合酶从野生型水稻农林 8 号和突变体农林 8 号 m 中分别扩增 CYP81A6和 cyp81A6-2并直接测序 (Perkin Elmer AMI 377,上海基 康) 。 结果表明, 来源于突变体农林 8号 m的 cyp81A6-2比野生型农 林 8号中的 CYP81A6于序列表 SEQ ID NO. 1所示序列的第 2455bp 处缺少一个 C。 因此, 进一步验证了等位分析的结果。 表 2: PCR反应所使用的特异引物
引物名称 引物序列 (5'-3' )
Pl-la GCTGTGCGTATCCAATGAAG
Pl-lb TCAGGGAGAGCTCGAACAG
Pl-2a CTCATGTCGGGGCTCATC
Pl-2b TAGCTTTCTCCCGATTGACC
Pl-3a TTCATGACCCAGACGAAAAA
Pl-3b ATGAGTTTGCCCTGGAGATG
P2-la TGAGAAGACCAAGGCAGGAG
P2-lb GGCAACAAATCGACACACG
P2 - 2a GGCTGCCTCCTCCTCTCT
P2-2b TGAGGATCGAGAGTCCGAGA
P2-3a AATAATCGCCCAACGATTGA
P2-3b GGAGACAATCCAGGCATCTC
P2-4a GATCGCATCTGCGTTTCAG
P2-4b GATGAGCCCCGACATGAG
P2-5a CCTCATGTCGGGGCTCAT
P2-5b CGCACCAATGAGAGAATTCAG
P2-6a AAATCTTAGTTCCACCCTCTTGC
P2-6b TCGTCCTGGAGATGCAAAC
P3-la TGCGTAATACAACTTACTATTTCCGTA
P3-lb GAACAGCCTCCGCTTCAG
P3-2a ATGGTGCAGAGGATGTACCG
P3-2b TTCAAATTAAGCGTTCAAAATTCA
P3-3a ACCCCTTTTCCTCTTTCGTG
P3-3b GATGAAGCCTACCTGGTGGA
P4-la CCTCAAGGCTCAAGCATCAT
P4-lb GAACAGCCTCCGATTCAGC
P4-2a ACATGGTGCGGAGGATGTA
P4-2b TGGTTTCTGATCAAGCGTTTT
P4-3a AGGCATGTTTCGAATTGTACTT
P4-3b AACTTTATTCCCTGCTACACAGC 2.3 PCR-RFLP分析
为了防止测序分析中可能出现的误差, 我们进一步利用 PCR-RFLP 分析法对两个突变体中的 cyp81A6-l和 cyp81A6-2的单碱基突变位点 进行了检测和验证。 实验中, 首先利用 WEBCUTTER 2.0分析软件 对包含 cyp81A6-l 突变位点的一段野生型和突变型序列进行对比分 析, 观察其在突变前后有无被改变的或新产生的限制性内切酶酶切位 点, 结果没有找到这样的位点。 为此, 我们通过引物设计将 cyp81A6- 1突变位点上游邻近的两个不同碱基 G和 A突变为两个 C, 从而使利 用该引物扩增的包含该突变位点的一段 DNA序列能人工引入一个新 的 Bgl l ( GCCNNNNNGGC ) 酶切位点。 检测结果显示, 在野生型 水稻品种中, 其扩增产物由于多了一个未缺失的碱基 G, 因而不能被 Bgl l识别为酶切位点, 当用该酶酶切后只形成一条长度为 251bp 的 带; 而在突变体中, 其 PCR产物经过 Bgl l酶切后则可形成两条带, 一条为 24bp 的带, 另一条为 227bp 的带 (图 3 ) 。 进一步利用该 PCR-RFLP引物分别扩增两个亲本 93-11和培矮 64m及其 F2作图群 体的 5 份 DNA混样(46林/份) , 所获得的扩增产物经 PCR产物专 用纯化试剂盒( Takara ) 纯化后, 再用 Bgl l ( Takara )酶切, 所有 F2 混合样品的带型均和母本培矮 64m 的带型一致(图 4 ) , 从而证 实针对 CYP81A6-1 突变位点人工引入的 Bgll-PCR-RFLP标记是与 CYP81A6基因一起共分离的。 我们将该标记命名为 DPI (图 1)。
而对于 cyp81A6-2 突变体, 同样利用 WEBCUTTER 2.0分析软 件对其野生型和突变体 DNA序列进行限制性酶切位点分析, 结果表 明, 该突变体上发生的单碱基缺失突变位点正好处于 Nae I ( GCCGGC )酶识别序列之中, 因而不再被该酶识别, 其上游 50bp 处(PCR扩增范围内) 的另一个 Nae l 酶切位点未被改变。 因此, 用 该酶对 cyp81A6-2的野生型和突变体的 PCR扩增产物进行 PCR-RFLP 的分析(技术流程见图 5 ) , 其结果显示, 由野生型农林 8号获得的 PCR扩增产物, 经 Takara纯化试剂盒纯化后能被 Nae l ( Takara ) 酶切成三条带 (21bp、 50bp和 151bp ) , 而由突变体农林 8号 m获 得的 PCR扩增产物, 经 Takara纯化试剂盒纯化后在该位点上则不能 被 Nae l酶切, 仅产生大小为 21bp和 200bp 的两条带 (图 5 ) 。 和 CYP81A6-1的 PCR-RLP分析结果一样, 该结果证实基于突变位点的 Nae I-PCR-RFLP标记是与 CYP81A6基因一起共分离的, 因此, 命 名为 DP2 (图 1 ) 。 同时, 这些结果也进一步验证了前述的测序结果。
2.4 候选基因 CYP81A6的克隆及其生物学功能互补验证
候选基因 CYP81A6 的全基因序列是用 Takara公司生产的 LA Taq™酶及其试剂盒经一次性扩增获得的, 所用的长片段 PCR特异扩 增引物(正向引物为: 5 -CAAACTTCCAACTTTCCCGTCACCTTCA CT-3'; 反向引物为: 5 -CCGCGGGTCACCGAGCAGAAAGCC (: TTCCTCCCAAGTTAGAA-3 ' , 由上海生工合成)按照籼稻基因组数 据库 ( http: //btn.genomics.org.cn/rice ) 中公布的 DNA序列分别于 该基因 5 '端的 BamH I酶切位点之前 124bp处和之后 4145bp处进 行设计, 并在 3 '端引物上附加一个 BstE n酶切位点以便产生粘性末 端和克隆连接。 由这对引物扩增的大小为 4311bp 的片段包括长度分 别为 124bp 的 BamH I上游序列、 1321bp的启动子序列, 2321bp的 基因引导区加外显子加内含子序列、 272bp的 3'-IJTR和其后的 288bp 基因组序列(其中含 7bpBstEII 限制性内切酶识别位点及 5bp保护碱 基); 扩增后, 所获得的片段先用噬菌体 T4-DNA连接酶连接到 TA质 粒载体(Takara )上进行有重复的测序 (Perkin Elmer AMI 377, 上 海基康)分析, 之后, 选择外显子全部扩增无误的克隆, 将其用 BamH I和 BstE n ( Takara )酶从 TA质粒载体上切下后, 连接到经同样的 双酶切的 pCAMBIA1301遗传转化载体上; 接着, 选择插入片段正确 的质粒用电转化法将其导入到农杆菌 EHA105菌株中, 用该菌株转化 8077S基因组进行生物学功能互补验证, 所获得的抗性愈伤经 50mg/L 潮霉素 ( ABI, USA ) 筛选 3 轮后, 再用 4.2 M /L 苄嘧磺隆 ( Bensulfonyluron- methyl, Sigma ) 筛选(图 6 ) , 由此获得的双抗 愈伤置于含 50mg/l 潮霉素的再生培养基上进行绿苗分化, 所获得的 植株经 PCR扩增验证, 再涂苯达松(1250mg/l )鉴定。 结果显示, 所有的转化体均恢复了对苯达松的抗性(图 7 显示了其中一株的结 果) 。 这些结果证实了我们克隆的 CYP81A6基因就是苯达松和磺酰 脲类除草剂抗性基因。
2.5 基因的结构特征
CYP81A6基因的一级结构包括: 位于翻译起始密码子之前的长 度为 53bp (序列表 SEQ ID NO.l所示序列的第 1896-1948bp ) 的 5 UTR, 长度为 2268bp (序列表 SEQ ID NO.l 所示序列的第 1949- 4216bp ) 的编码区, 和位于终止密码子之后的长度为 272bp (序列表 SEQ ID NO.l所示序列的笫 4217-4488bp ) 的 3'-UTR。 该基因的编码 区由两个外显子组成, 中间间隔一个内含子 (图 8 ) 。 两个外显子的 长度分别为 924bp (序列表 SEQ ID NO.l所示序列的 1949-2872 bp ) 和 618bp (序列表 SEQ ID NO.l所示序列的 3599-4216bp ) , 内含子 的长度为 726bp (序列表 SEQ ID NO.l所示序列的第 2873-3598bp ) 。
该基因编码一种细胞色素 P450蛋白 (其序列见 SEQ ID.NO.3 ) , 它具有绝大多数 P450蛋白所共有的四个保守结构域, 即位于 C末端 的 Phe-x-x-Gly-x-Arg-x-Cys-x-GIy的血红素结合功能域( heme-binding domain ) ; 位于血红素结合功能域上游 150个氨基酸残基的 Ala/Gly- Gly-x-Asp/Glu-Thr-Thr/ Ser的 I螺旋(I helix ) , 该保守序列在分子 氧活化方面起重要作用; 位于血红素结合功能域和 I 螺旋间的 Pro- Glu/Asp-Arg/His-Phe/Tr 的弯曲 (meander ) 区; 以及位于 N末端 的富含脯氨酸的铰合功能域( proline-rich hinge ) ( Werch- Reichhart 等, 2000 ) 。 事实上, 也正是由于这些保守结构域的存在, 维系着大 多数细胞色素 P450蛋白保守的三维空间结构。
实施例 2: 水稻 Wx基因的定向突变和遗传改良
在栽培稻上有两个野生型等位基因 Wxa¾广泛地分布于该 Wx基因位点上, 其中, Wxa是籼稻的特征, 在 RNA和蛋白质水平上 的表达活性比 ¥ 强 10倍, 它的高量表达导致高的直链淀粉含量, 并使得蒸煮的米饭硬而松散, 口感差; 而 Wxb主要存在于粳稻上, 它 的低量表达导致出现粳稻类型的直链淀粉含量, 其稻米蒸煮后一般柔 软可口。 研究发现, Wxa和 Wxb两个等位基因在表达活性上的的差异, 主要在于后者的前导内含子 5'剪接点上有一个 G→T的突变 (程世军 等 2001 ) , 该突变导致 Wxh前体 mRNA中前导内含子剪接效率的降 低,使得成熟的 mRNA和基因编码的直链淀粉合成酶(granule-bound starch synthase, GBSS ) 的量减少, 并最终反映在直链淀粉的合成量 减少上。
根据 Wx基因前导内含子 5'剪接点序列和 CYP81A6单碱基缺失 突变序列,分别设计可针对剪接点的 G碱基进行突变的突变子分子(图 9 RCOl )和针对 cyp81A6-l 的单碱基对缺失位点进行修复的修复子 分子 (图 10 RCO 2 ) ; 用基因枪法分别将其按 1份修复子: 3份突变 子同时成对地导入 8077S突变体中, 用磺酰脲类除草剂筛选 cyp81A6- 1 单碱基缺失突变的恢复体和 Wx基因的共修饰突变体。 之后, 利用 所设计的特异引 物对 ( 正向 引 物: 5'-CTCTCTCACCATTC CTTCAG-3', 反向引物: 5 -AGCCTAACCAAACATAACGA-3' ) 共 修饰突变体的目标 DNA序列进行 PCR扩增及 Accl ( Takara )酶切, 成功获得了 Wx基因真实突变体, 再经大田中试和纯系选育荻得了新 的 Wx基因改良系。
实施例 3 : 利用双 RCOs 分子基因定向共修饰技术研究水稻 CYP81A5、 CYP81A7和 CYP81A8等未知基因的生物学功能
基因打靶修饰技术在理论上是针对具体的目标基因位点精确地进 行。 已知 CYP81A5、 CYP81A7和 CYP81A8等基因编码的是一类细 胞色素 P450单加氧酶蛋白, 而水稻 P450是一个庞大的基因家族, 仅 籼稻就有 454个成员。 该基因家族在蛋白水平上存在的高度保守的血 红素结合功能域基序 (F-X-X-G-X-R-X-C-X-G ), 特别是其中的胱氨 酸核心残基, 对决定 P450基因的生物学功能极为重要, 因此, 可作 为理想的突变靶标。
从现有水稻 P450数据库 ( http://drnelsoii.utmen.edu/cytochromep 450.html ) 中, 已经查明水稻 CYP81A5、 CYP81A7和 CYP81A8等 3 个细胞色素 P450 酶血红素保守基序中的氨基酸序列分别是 FGMG RRRCPGETLA, FGMGRRKCPGETMA和 FGMGRRRCPGEMLA。 利用这些基序的核苷酸序列信息和 CYP81A6单碱基缺失突变序列信 息分别设计可针对基序中的关键残基胱氨酸 (C)密码子或其它碱基进 行突变的突变子分子(图 11 RC0 3和图 12 RCO 4 )和针对 cyp81A6-2 的单碱基对缺失位点进行修复的修复分子 (图 13 RCO 5 ) , 用基因 枪法分别将其按 1 份修复子: 3份突变子或其它比率同时成对地导入 农林 8号 m突变体中 , 用磺酰脲类除草剂筛选 cyp81A6-2单碱基缺失 突变的恢复体和推定的 CYP81A5、 CYP81A7和 CYPS1A8的共修饰 突变体, 之后, 利用特异引物对这些推定突变体的目标 DNA序列进 行 PCR扩增和测序验证,将获得的 CYP81A5、 CYP81A7和 CYP81A8 的共修饰突变体与野生型进行比较, 根据所呈现的表型或生化型差 异, 推测其涉及的生物学功能。
在上述实验步骤中, 对 cyp81A6-2单碱基缺失位点进行修复的目 的是为其它基因的突变提供一个筛选作用。 因此, 从理论上说, 只要 一个基因位点如磺酰脲靶标酶乙酰乳酸合成酶(ALS ) ( Okuzaki和 Toriyama 2004 )在修饰后具有可筛选的特性, 即可作为修饰靶标用 于这一目的。
实施例 4: 借助外源标记基因的筛选作用和 RCOs分子的修饰功 能研究未知水稻 P450基因基因的生物学功能
外源选择标记基因如抗抗生素标记基因、 生物或化学发光基因、 碳源代谢关键酶基因、 来源于细菌、 动物或其他植物的抗除草剂基因、 和 GUS基因等可通过共导入、 整合与表达的办法为 RCOs对目标基 因的突变提供筛选作用。 现以潮霉素磷酸转移酶基因为例说明这一情 况。 针对一个未知功能的 P450 基因设计一个 RCOs 分子(图 14 RC06), 同时将潮霉素磷酸转移酶基因 (hph)构建到质粒载体上, 获得 转化质粒 pHPH (图 15 ) 。 然后利用常规的基因枪共转化方法(Tu et al, 1998 )将质粒 pHPH和 RCOs分子一起导入受体细胞, 利用潮霉 素磷酸转移酶基因整合和表达产生的潮霉素抗性筛选 P450 基因的 RCO修饰突变体, 之后, 利用特异引物对该突变体的目标 DNA序列 进行 PCR扩增和测序验证, 将获得的水稻 P450修饰突变体与野生型 进行比较, 根据所呈现的表型或生化型差异, 推测其涉及的生物学功
!。
实施例 5: 反义 R A片段对水稻内源 Bel基因的抑制效果观察 根据克隆的水稻抗苯达松及磺酰脲类除草剂基因的编码序列, 设 计其反义 RNA或 R Ai序列(见 SEQ ID NO.l的第 1939位到第 2439 位的核苷酸序列) , 并将其与水稻组成型表达启动子如 Actinl相连接 后, 构建用于遗传转化的农杆菌双元载体 pAANTIl (图 16 ) , 并按 照农杆菌介导的标准转化步骤将其导入野生型品系如明恢 63/Bt 内。 之后, 利用特异引物对转基因 T0代植株进行 PCR扩增分析, 结果证 实, 所有转基因植株都呈现与对照质粒的扩增产物一致的片段, 表明 外源的反义 RNA片段已经导入明恢 63受体基因组(图 17 ) ; 进一步 地用 1250mg/L苯达松涂抹这些转基因植株的叶片 (3 片叶 /株) , 36 小时后, 这些处理叶片枯萎和死亡 (图 18 中) , 这一结果表明反义 RNA片段对水稻内源 Bel基因的表达抑制是有效的。
实施例 6: 化学补充杀雄温敏不育系的选育
将上述被证实有效的反义 RNA 片段与水稻絨粘层及花粉特异表 达启动子如 Osg6B或 RA39相连接后, 构建用于遗传转化的农杆菌双 元载体 pOANTIl (图 19 ) , 之后, 按照农杆菌介导的标准双基因共 转化步骤将其分别导入当前在水稻生产上大面积利用的光温敏不育系 培矮 64S上, 使其特异性地抑制温敏不育系内源抗苯达松及磺酰脲类 除草剂基因在绒毡层细胞及花粉粒中的表达, 经过大田中试和纯系选 育即可成为新的化学补充杀雄温敏不育系。 当这样的两系不育系在杂 交制种过程中因遭遇盛夏异常低温而出现可育花粉时, 通过使用磺酰 脲类除草剂将其杀灭, 达到防杂保纯的目的。
实施例 7: 新的抗除草剂筛选标记的构建与应用
将抗苯达松和磺酰脲类除草剂的 CYP81A6基因的全基因序列, 或者是其编码序列与组成型表达启动子如 35S、 Ubi-1、 Actinl等和 nos 终止子相连后, 构建到农杆菌双元载体上, 替代目前常用的潮霉素、 卡那霉素抗性基因或 GUS报告基因等。 将该抗性基因导入到对苯达 松和磺酰脲类除草剂敏感的水稻 8077S细胞内, 获得的转化阳性愈伤 能够在含有 BSM的培养基上继续生长(图 6左) , 而对照则在该培 养基上停止生长(图 6右) , 从而达到用除草剂筛选抗性或阳性愈伤 的目的。
实施例 8: 抗苯达松和磺跣脲类除草剂转基因植物的培育
将抗苯达松和磺酰脲类除草剂的 CYP81A6基因的全基因序列, 或者是其编码序列与组成型表达启动子如 35S、 Ubi-1, Actinl等和 nos 终止子相连后, 构建到农杆菌双元载体上, 直接用于转化和筛选, 所 获得的经分子分析和表型鉴定验证的转基因植株经大田中试和纯系选 育即可成为抗苯达松和磺酰脲类除草剂转基因系。 将 CYP81A6基因 的全基因序列导入到敏感水稻 8077S 中, 可以获得抗苯达松和磺酰脲 类除草剂的转基因新株系 (图 7左) 。
实施例 9: 水稻抗苯达松和磺酰脲类除草剂基因 CYP81A6 的同 源克隆
在细胞色素 P450成员中有 4个保守的序列, 包括对催化起关键 作用的血红素结合域 ( heme-binding domain ) , 对于膜结合重要的 N-末端疏水区, 负责蛋白质正确组装的富含脯氨酸 /甘氨酸区域, 以及 位于血红素结合区上游 150个氨基酸残基的 I链(I helix ) (Werch- Rdchhart等, 2000)。 因此, 利用这些保守区设计引物(如正向引物: 5 -GC AGGAACAGAGACAACC-3 ' , 反 向 引 物 : 5 -CACC TCCGCCTCCCCATC-3' )对水稻以外的禾本科或豆科植物的基因组 进行扩增, 分离高度同源的序列, 然后借助 5'RACE和 3'RACE法分 离得到同源序列两端的全部序列, 从而分离高度同源的基因。
参考文献
I. 张集文, 武晓智.中国水稻科学,1999, 13 ( 2 ) : 65-68。
2. 张集文. 武晓智. 谭禄宾.杂草科学, 2001, 2-5, 21。
3. 程世军, 葛鸿飞,王宗阳, 洪孟民.植物生理学报, 2001 , 27( 5) :381 - 386。
4. 刘秋华和陆作楣. 南京农业大学学报, 2004, 27(4): 17-19。
5. Barcelo P, Hagel C, Becker D, Martin A, Lorz H. Plant J, 1994, 4: 583-592.
6. Breitler JC, Meynard D, Legavre T, Guiderdoni E. Theor Appl Genet, 2002, 104: 709-719.
7. Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM. Plant J, 1998, 14(4):459-65.
8. Deng F and Hatzios KK. Pes tic Biochem Physiol, 2003, 74:
102-115.
9. Didierjean L., Gondet L., Perkins R., Lau S. C., Schaller H., O'Keefe D. P., and Werck-Reichhart D. E. Plant Physiol, 2002, 130: 179-189.
10. Frances H, Bligh J, Larkin PD, Roach PS, Jones CA, Fu H, Park WD. Plant Mol Biol, 1998, 38(3):407-15.
II. Haack A. E. and Balke N. E. in "Abstract of the 8th IUPAC Congress of Pesticide Chemistry", 1994, 2: 839.
12. Hirano HY, Eiguchi M, Sano Y. Mol Biol Evol , 1998, 15(8):978-87.
13. Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K. Plant J, 1998, 15(l):133-8. Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ Hepatology, 1997, 25: 1462-1468.
Kren BT, Metz R, Kumar R, Steer CJ. Semin Liver Dis, 1999, 19: 93-104.
Lamb S. B., Lamb D. C., Kelly S. L., Stuckey D. C. FEBS Letters, 1998, 431: 343-346.
McCouch S. R., Kochert G., Yu Ζ·, Wang Z., Khush G. S., Coffman W. R., Tanksley S. D. Theor Appl Genet, 1988, 76: 815-829.
Mori T. Jpn J Breed, 34(suppl.l): 1984, 421-422.
Pierrel M. A., Batard Y., Kazmaier M., Mignotte-Vieus C, Durst F., and Werck-Reichhart D. Eur. J. Biochem., 1994, 224(3): 835-44.
Sano, Y., Katsumata M., and Amana E. SABRAO J., 1985, 17:121-127
Siminszky B., Corbin F. T., Ward E. R" Fleischmann T. J" and Dewey R. E. Proc. Natl. Acad. Sci. USA, 1999, 4: 1750- 1755.
Tu J, Ona I, Zhang Q, Mew TW, Khush GS, Datta SK. Theor Appl Genet, 1998, 97:31-36.
Vidal JR, Kikkert JR, Wallace PG, Reisch BI. Plant Cell Rep., 2003, 22: 252 260.
Wang, Z., Zheng F., Shen G., Gao J., Snustad D. P., Li M., Zhang J" and Hong M. Plant J" 1995, 613-622.
Werch-Reichhart D, Hehn A, Didierjean L. Trends in Plant Sci, 2000, 5(3): 116-123.
Yamada T., Kambara Y., Imaishi H., and Ohkawa H. Pes tic. Biochem. Physiol., 2000, 68: 11-25.
Yoon K, Cole-Strauss A, Kmiec EB. Proc Natl Acad Sci USA, 1996, 93: 2071-2076.
Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszcynski CL. Nat Biotechnol, 2000, 18: 555-558。

Claims

权 利 要 求
1. 一种苯达松和磺酰脲类除草剂抗性基因, 该基因包括选自下 组的一种核苷酸序列:
( 1 )具有如 SEQ ID NO.l所示核苷酸序列的核苷酸序列;
( 2 )与 SEQ ID NO.l所示第 位到第 4216位的核苷酸序列 的功能等同的亚片段或衍生物;
( 3 )具有如 SEQ ID NO.2所示核苷酸序列的核苷酸序列;
( 4 ) 与 SEQ ID ΝΟ·2所示第 54位到第 1595位的核苷酸序列的 功能等同的亚片段或衍生物;
( 5 ) 能与 SEQ ID NO.l或 SEQ ID NO.2所示核苷酸序列在严紧 条件下杂交的核苷酸序列。
2.—种苯达松和磺酰脲类除草剂抗性基因, 该基因具有如 SEQ ID NO.l或 SEQ ID NO.2所示核苷酸序列的核苷酸序列。
3.—种苯达松和磺酰脲类除草剂抗性基因所编码的多肽, 其中所 述苯达松和磺酰脲类除草剂抗性基因包括选自下组的一种核苷酸序 列:
( 1 )具有如 SEQ ID NO.l所示核苷酸序列的核苷酸序列;
( 2 ) 与 SEQ ID NO.l所示第 1949位到第 4216位的核苷酸序列 的功能等同的亚片段或衍生物;
( 3 )具有如 SEQ ID NO.2所示核苷酸序列的核苷酸序列;
( 4 ) 与 SEQ ID ΝΟ·2所示第 54位到第 I595位的核苷酸序列的 功能等同的亚片段或衍生物;
( 5 ) 能与 SEQ ID NO.l或 SEQ ID NO.2所示核苷酸序列在严紧 条件下杂交的核苷酸序列。
4.一种苯达松和磺酰脲类除草剂抗性基因所编码的多肽, 其中所 述多肽具有 SEQ ID N0.3所示的氨基酸序列。
5.—种重组载体, 其包括如权利要求 1或 2所述的核苷酸序列以 及使所述核苷酸分子转录或表达所必需的调控元件。
6.如权利要求 5 所述的重组载体, 其包含与转录调控元件连接的 如权利要求 1所述的核苷酸序列。
7.如权利要求 5 所述的重组载体, 其中, 所述转录或表达所必需 的调控元件包括启动子、 终止子、 增强子、 MAR序列以及 5' 端远上 游调控序列。
8.如权利要求 5所述的重组载体, 该载体为表达载体。
9.一种植物细胞, 其特征在于所述的细胞包含权利要求 1, 或者 权利要求 3所述的多肽。
10. 如权利要求 9 所述的植物细胞, 其中, 所述细胞包括除豆科 植物以外的绝大多数阔叶植物或莎草科杂草植物的细胞。
11.如权利要求 1所述的核苷酸序列或 5-8所述的重组载体作为抗 除草剂筛选标记的用途。
12. 一种苯达松和磺酰脲类除草剂敏感基因, 该基因包含选自下 组的一种核苷酸序列:
( 1 )缺失 SEQ ID NO.l所示的核苷酸序列中第 2455位碱基 C 或第 4006位碱基 G后所得的核苷酸序列;
( 2 )缺失 SEQ ID NO.2所示的核苷酸序列中第 560位碱基 C或 第 1385位碱基 G后所得的核苷酸序列;
( 3 )可与 (1 ) 或 (2 ) 中所述核苷酸序列在严紧条件下杂交的 核苷酸序列。
13. 一种重组核酸分子, 其包含人工设计的反义 RNA或 RNAi片 段, 其中, 所述的反义 RNA或 RNAi片段包含权利要求 1或 2或 12 所述的核苷酸序列。
14. 如权利要求 13所述的重组核苷酸分子作为选育植物化学补充 杀雄温敏不育系的用途。
15.—种重组载体, 其包含如权利要求 12 所述的核苷酸序列以及 使所述核苷酸分子转录或表达所必需的调控元件。
16.如权利要求 15 所述的重组载体, 其中, 所述转录或表达所必 需的调控元件包括启动子、 终止子、 增强子、 MAR序列以及 5' 端远 上游调控序列。
17.—种植物细胞, 其特征在于所述的细胞包含权利要求 12 所述 的核苷酸序列, 或者权利要求 15-16所述的重组载体。
18. 如权利要求 12所述的核苷酸序列或 15-16所述的重组载体作 为负筛选标记的用途。
19.一种在活体细胞内于基因组的两个或多个位点上同时定向地对 目标序列进行共修饰的遗传操作方法, 其特征在于, 该方法是以可作 为筛选标记的核苷酸序列为第一修饰靶标, 以活体细胞内的目标内源 基因的关键碱基对为附加修饰靶标, 采用共导入技术向目标受体细胞 导入针对所述不同修饰靶标序列设计的双或多 RNA'DNA嵌合寡聚核 苷酸分子 (RCOs ) , 对上述双或多靶标位点同时进行定向修复和 /或 突变, 然后, 进一步利用所述的作为筛选标记的核苷酸序列的修饰表 型 (可筛选表型)对目标内源基因修复或突变后的基因型进行相关选 择。
20. 如权利要求 19 所述的遗传操作方法, 其中, 所述的可作为 筛选标记的核苷酸序列包括突变了的或没有突变的抗除草剂基因、 抗 抗生素标记基因、 生物或化学发光基因、 碳源代谢关键酶基因、 来源 于细菌、 和 GUS基因等的编码序列或调控序列。
21.如权利要求 19 所述的遗传操作方法, 其中, 所述的可作为筛 选标记的核苷酸序列为权利要求 1或 2或 12所述的核苷酸序列。
22.如权利要求 19 所述的遗传操作方法, 其中, 所述的可筛选表 型还可由与 RCOs分子一起共导入的外源基因的表达提供。
23. 如权利要求 19 所述的遗传操作方法, 其中, 所述的附加修 饰靶标是未知功能的基因。
24. 如权利要求 19 所述的遗传操作方法, 其中, 所述的附加修 饰靶标是已知功能的基因。
25. 一种研究基因生物学功能的方法, 包括应用权利要求 1-8, 12, 15-16 和 21-24 所述的核苷酸序列、 多肽、 重组载体、 细胞和方法的 步骤。
26. 一种改良生物性状的方法, 包括应用权利要求 1-8, 12, 15- 16和 21-24所述的核苷酸序列、 多肽、 重组载体、 细胞和方法的步骤。
PCT/CN2005/000936 2005-06-28 2005-06-28 A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice WO2007000077A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2005/000936 WO2007000077A1 (en) 2005-06-28 2005-06-28 A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice
JP2008518589A JP5085539B2 (ja) 2005-06-28 2005-06-28 稲のベンタゾン及びスルホニルウレア系除草剤耐性遺伝子cyp81a6
EP05757223A EP1900817B1 (en) 2005-06-28 2005-06-28 A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice
US11/993,990 US8049063B2 (en) 2005-06-28 2005-06-28 Rice bentazon and sulfonylurea herbicide resistant gene Cyp81a6

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/000936 WO2007000077A1 (en) 2005-06-28 2005-06-28 A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice

Publications (1)

Publication Number Publication Date
WO2007000077A1 true WO2007000077A1 (en) 2007-01-04

Family

ID=37595040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000936 WO2007000077A1 (en) 2005-06-28 2005-06-28 A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice

Country Status (4)

Country Link
US (1) US8049063B2 (zh)
EP (1) EP1900817B1 (zh)
JP (1) JP5085539B2 (zh)
WO (1) WO2007000077A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068567A1 (en) 2009-07-10 2011-06-09 Syngenta Participations Ag Novel hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
US8097774B2 (en) 2007-05-30 2012-01-17 Syngenta Participations Ag Cytochrome P450 genes conferring herbicide resistance
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
CN102577929A (zh) * 2012-02-27 2012-07-18 福建省三明市农业科学研究所 水稻三系不育系低发芽率的一种改良方法
EP2573183A1 (en) 2009-01-22 2013-03-27 Syngenta Participations AG. Mutant hydroxyphenylpyruvate dioxgenase polypeptids and methods of use
WO2013054890A1 (ja) * 2011-10-13 2013-04-18 独立行政法人農業生物資源研究所 チトクロームp450をコードする遺伝子及びその利用
CN104946671A (zh) * 2015-06-24 2015-09-30 海南波莲水稻基因科技有限公司 一种水稻CYP81A6基因突变体CYP81A6-m2及其应用
WO2016128470A1 (en) 2015-02-11 2016-08-18 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
CN107299149A (zh) * 2017-08-15 2017-10-27 江苏省农业科学院 利用分子标记辅助培育抗除草剂咪草烟粳稻品种的方法
WO2018019860A1 (en) 2016-07-27 2018-02-01 BASF Agro B.V. Plants having increased tolerance to herbicides
WO2019106568A1 (en) 2017-11-29 2019-06-06 Basf Se Plants having increased tolerance to herbicides
CN110408646A (zh) * 2018-04-28 2019-11-05 海南波莲水稻基因科技有限公司 一种植物遗传转化筛选载体及其应用
US10619138B2 (en) 2013-08-12 2020-04-14 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
US10829778B2 (en) 2013-04-30 2020-11-10 Basf Se Plants having increased tolerance to herbicides
WO2023031161A1 (en) 2021-09-03 2023-03-09 BASF Agricultural Solutions Seed US LLC Plants having increased tolerance to herbicides
US11959086B2 (en) 2016-05-20 2024-04-16 BASF Agro B.V. Dual transit peptides for targeting polypeptides

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220220B2 (en) 2005-09-09 2015-12-29 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Rice cultivar designated ‘CL131’
WO2011044002A1 (en) * 2009-10-08 2011-04-14 Board Of Supervisors Of Louisiana State University And Agricultural And Mechnical College Rice cultivar designated 'cl261'
WO2011044006A1 (en) * 2009-10-08 2011-04-14 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Rice cultivar designated 'cl111'
UY33999A (es) 2011-03-31 2012-10-31 Univ Louisiana State Cultivar de arroz nombrado cl152
KR101586526B1 (ko) * 2012-03-26 2016-01-20 경상대학교산학협력단 Dapg 가수분해효소 유전자의 형질전환 식물 선별 마커로서의 용도
CN105907782B (zh) * 2016-04-20 2018-03-09 海南波莲水稻基因科技有限公司 抑制细胞色素P450基因表达的RNAi植物表达载体及其应用
CN105886526B (zh) * 2016-04-20 2018-03-09 海南波莲水稻基因科技有限公司 一种抑制细胞色素p450基因表达的载体及其应用
CN111661893A (zh) * 2020-06-08 2020-09-15 江南大学 一种利用纳米生物炭消除水体中抗生素抗性基因的方法
KR20230038473A (ko) 2020-06-26 2023-03-20 구미아이 가가쿠 고교 가부시키가이샤 시토크롬 p450을 암호화하는 유전자 및 그의 이용

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380465B1 (en) * 1998-07-12 2002-04-30 University Of Kentucky Research Foundation Cytochrome P450 enzymes and related compounds and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152029A (zh) 1995-12-11 1997-06-18 浙江医科大学 人细胞色素p450系列转基因细胞株
US6121512A (en) 1997-10-10 2000-09-19 North Carolina State University Cytochrome P-450 constructs and method of producing herbicide-resistant transgenic plants
US6768043B2 (en) 2001-11-27 2004-07-27 The Salk Institute For Biological Studies Das5, a P450 protein involved in the brassinosteroid biosynthesis pathway in plants
AU2003214720A1 (en) 2002-03-11 2003-09-22 Plant Research International B.V. Inhibition of germination in plants
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
CN1190443C (zh) 2002-08-05 2005-02-23 安徽省农业科学院 鉴别水稻苯达松敏感致死基因的分子标记方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380465B1 (en) * 1998-07-12 2002-04-30 University Of Kentucky Research Foundation Cytochrome P450 enzymes and related compounds and methods

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BARCELO P ET AL., PLANT J, vol. 4, 1994, pages 583 - 592
BREITLER JC ET AL., THEOR APPL GENET, vol. 104, 2002, pages 709 - 719
CAI XL ET AL., PLANT J, vol. 14, no. 4, 1998, pages 459 - 65
CHENG SHIJUN ET AL., PLANT PHYSIOLOGY JOURNAL, vol. 27, no. 5, 2001, pages 381 - 386
DATABASE GENBANK [online] 24 July 2003 (2003-07-24), KIKUCHI S. ET AL.: "Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice", XP003006322, Database accession no. (AK066760) *
DENG F; HATZIOS KK., PESTIC BIOCHEM PHYSIOL, vol. 74, 2003, pages 102 - 115
DIDIERJEAN L. ET AL., PLANT PHYSIOL, vol. 130, 2002, pages 179 - 189
FRANCES H ET AL., PLANT MOL BIOL, vol. 38, no. 3, 1998, pages 407 - 15
HAACK A. E.; BALKE N. E., ABSTRACT OF THE 8TH IUPAC CONGRESS OF PESTICIDE CHEMISTRY, vol. 2, 1994, pages 839
HIRANO HY; EIGUCHI M; SANO Y., MOL BIOL EVOL, vol. 15, no. 8, 1998, pages 978 - 87
ISSHIKI M ET AL., PLANT J, vol. 15, no. 1, 1998, pages 133 - 8
KREN BT ET AL., HEPATOLOGY, vol. 25, 1997, pages 1462 - 1468
LIU QIUHUA; LU ZUOMEI, NANJING AGRICULTURAL UNIVERSITY JOURNAL, vol. 27, no. 4, 2004, pages 17 - 19
SCIENCE, vol. 301, no. 5631, 2003, pages 376 - 379 *
See also references of EP1900817A4 *
ZHANG J. ET AL.: "A bentazon and sulfonylurea sensitive mutant: Breeding, genetics and potential application in seed production of Hybrid rice", THEOR APPL GENET, vol. 105, 2002, pages 16 - 22, XP003006323 *
ZHANG JIWEN; WU XIAOZHI., CHINESE RICE SCIENCE, vol. 13, no. 2, 1999, pages 65 - 68
ZHANG JIWEN; WU XIAOZHI; TAN LUBIN., WEED SCIENCE, vol. 21, 2001, pages 2 - 5

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097774B2 (en) 2007-05-30 2012-01-17 Syngenta Participations Ag Cytochrome P450 genes conferring herbicide resistance
EP3156489A1 (en) 2009-01-22 2017-04-19 Syngenta Participations Ag Mutant hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
EP2573183A1 (en) 2009-01-22 2013-03-27 Syngenta Participations AG. Mutant hydroxyphenylpyruvate dioxgenase polypeptids and methods of use
WO2011068567A1 (en) 2009-07-10 2011-06-09 Syngenta Participations Ag Novel hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2013054890A1 (ja) * 2011-10-13 2013-04-18 独立行政法人農業生物資源研究所 チトクロームp450をコードする遺伝子及びその利用
JPWO2013054890A1 (ja) * 2011-10-13 2015-03-30 独立行政法人農業生物資源研究所 チトクロームp450をコードする遺伝子及びその利用
KR102060513B1 (ko) 2011-10-13 2019-12-30 국립연구개발법인농업생물자원연구소 시토크롬 p450을 코딩하는 유전자 및 그의 이용
CN102577929A (zh) * 2012-02-27 2012-07-18 福建省三明市农业科学研究所 水稻三系不育系低发芽率的一种改良方法
US10829778B2 (en) 2013-04-30 2020-11-10 Basf Se Plants having increased tolerance to herbicides
US10619138B2 (en) 2013-08-12 2020-04-14 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
US11248234B2 (en) 2015-02-11 2022-02-15 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
WO2016128470A1 (en) 2015-02-11 2016-08-18 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
CN104946671B (zh) * 2015-06-24 2016-09-28 海南波莲水稻基因科技有限公司 一种水稻CYP81A6基因突变体CYP81A6-m2及其应用
CN104946671A (zh) * 2015-06-24 2015-09-30 海南波莲水稻基因科技有限公司 一种水稻CYP81A6基因突变体CYP81A6-m2及其应用
US11959086B2 (en) 2016-05-20 2024-04-16 BASF Agro B.V. Dual transit peptides for targeting polypeptides
US11149030B2 (en) 2016-07-27 2021-10-19 BASF Agro B.V. Plants having increased tolerance to herbicides
WO2018019860A1 (en) 2016-07-27 2018-02-01 BASF Agro B.V. Plants having increased tolerance to herbicides
CN107299149B (zh) * 2017-08-15 2020-07-07 江苏省农业科学院 利用分子标记辅助培育抗除草剂咪草烟粳稻品种的方法
CN107299149A (zh) * 2017-08-15 2017-10-27 江苏省农业科学院 利用分子标记辅助培育抗除草剂咪草烟粳稻品种的方法
WO2019106568A1 (en) 2017-11-29 2019-06-06 Basf Se Plants having increased tolerance to herbicides
US11479786B2 (en) 2017-11-29 2022-10-25 Basf Se Plants having increased tolerance to herbicides
CN110408646A (zh) * 2018-04-28 2019-11-05 海南波莲水稻基因科技有限公司 一种植物遗传转化筛选载体及其应用
WO2023031161A1 (en) 2021-09-03 2023-03-09 BASF Agricultural Solutions Seed US LLC Plants having increased tolerance to herbicides

Also Published As

Publication number Publication date
US8049063B2 (en) 2011-11-01
US20080313772A1 (en) 2008-12-18
JP2008546419A (ja) 2008-12-25
EP1900817B1 (en) 2012-12-05
EP1900817A1 (en) 2008-03-19
JP5085539B2 (ja) 2012-11-28
EP1900817A4 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
WO2007000077A1 (en) A bentazon and sulfonylurea herbicide-resistant gene cyp81a6 of rice
Shi et al. ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions
EP3018217B1 (en) Maize cytoplasmic male sterility (cms) c-type restorer rf4 gene, molecular markers and their use
CN107920486B (zh) 用于加速基因组编辑的单倍体诱导系
JP4592954B2 (ja) グルホシネート耐性イネ
JP2021506232A (ja) Ppo除草剤耐性のための方法及び組成物
MXPA06002155A (es) Plantas de arroz que tienen una tolerancia incrementada a los herbicidas de imidazolinona.
JP2019103526A (ja) 植物における自家不和合性の操作
WO2019129145A1 (en) Flowering time-regulating gene cmp1 and related constructs and applications thereof
WO2023221826A1 (zh) 玉米穗粒重和产量调控基因 KWE2 、其编码蛋白、InDel1标记、表达载体及其在植物性状改良中的应用
US20030126630A1 (en) Plant sterol reductases and uses thereof
US7241878B1 (en) Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants
KR20190043551A (ko) 벼에서 제초제 저항성/내성과 연관된 돌연변이의 조합을 위한 방법 및 조성물
US20220213499A1 (en) Abiotic stress tolerant plants and methods
CN116529376A (zh) 一种育性相关基因及其在杂交育种中的应用
EP2534250B1 (en) Improvement of the grain filling of a plant through the modulation of nadh-glutamate synthase activity
US11312967B2 (en) Restorer plants
CN114540366B (zh) 一种水稻育性调控基因gms3及其突变体与应用
CN110846325B (zh) 一种水稻多花基因mof1及其编码的蛋白质的应用
WO2020037642A1 (zh) 油菜抗三唑嘧啶磺酰胺类除草剂基因及其应用
AU2011212138B2 (en) Improvement of the grain filling of a plant through the modulation of NADH-glutamate synthase activity
EA040147B1 (ru) Растение-восстановитель фертильности
Xu Characterization of endogenous transposon families and transposon tagged mutations in maize

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008518589

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005757223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 148/MUMNP/2008

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005757223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11993990

Country of ref document: US