WO2007000075A1 - Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium - Google Patents

Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium Download PDF

Info

Publication number
WO2007000075A1
WO2007000075A1 PCT/CN2005/000931 CN2005000931W WO2007000075A1 WO 2007000075 A1 WO2007000075 A1 WO 2007000075A1 CN 2005000931 W CN2005000931 W CN 2005000931W WO 2007000075 A1 WO2007000075 A1 WO 2007000075A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
nickel hydroxide
ammonia
concentration
doped nickel
Prior art date
Application number
PCT/CN2005/000931
Other languages
English (en)
French (fr)
Inventor
Long Li
Can Ren
Original Assignee
Shenzhen Bak Battery Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Bak Battery Co., Ltd filed Critical Shenzhen Bak Battery Co., Ltd
Priority to PCT/CN2005/000931 priority Critical patent/WO2007000075A1/zh
Priority to US11/922,908 priority patent/US7985503B2/en
Publication of WO2007000075A1 publication Critical patent/WO2007000075A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of high energy electrochemistry, and particularly relates to a method for preparing spherical doped nickel hydroxide and a multi-metal oxide and a lithium ion battery.
  • lithium-ion batteries are widely used in electronic devices such as mobile phones, laptop computers, portable audio-visual equipment, etc., but their cathode material lithium cobalt oxide (LiCoCh), due to resource problems, prices continue to rise, limiting the development of lithium-ion batteries. Therefore, people are constantly trying to find suitable alternative materials.
  • a composite positive electrode material such as cobalt nickel manganese.
  • the most commonly used method reported in the literature is the coprecipitation method. In this method, a metal salt is formulated into a solution in a certain ratio, and an additive such as ammonia water is added to control the crystallization rate of the hydroxide, and then reacted with a base to form a precipitate.
  • ammonia water is added to the bottom liquid.
  • Ni 2+ and Co 2+ react with hydrazine to form a hydroxide precipitate, the M(3 ⁇ 4)n 2+ releases the complexed metal ions, which keeps the metal ions in the solution at a certain concentration.
  • the object of the present invention is to provide a method for preparing spherical doped nickel hydroxide with structural rules, narrow particle size distribution, easy control of particle size, and favorable industrial production.
  • Another object of the present invention is to provide a multi-metal oxide having high electrical conductivity and cycle performance and a preparation method thereof: .
  • a further object of the present invention is to provide a lithium ion battery cathode material having high electrical conductivity and cycle performance and
  • a lithium ion secondary battery A lithium ion secondary battery.
  • the technical solution for achieving the above object is: a method for synthesizing spherical doped nickel hydroxide, comprising the following steps:
  • the metal salt is selected from an aluminum salt or a magnesium salt or a mixture of the two.
  • the aluminum salt, 'magnesium salt is preferably nitrate or acetate. . ' '
  • the ammonia concentration in the step 1) is 0.1 to hnol/L, and the ammonium salt concentration is 0.02 to 0.25 mol/L.
  • the molar ratio of ammonia to ammonium salt is 4: 1-5: 1, and the hinge salt is the same salt as nickel salt or cobalt hydrochloride.
  • the nickel salt and the cobalt salt are sulfates, nitrates, chlorides or acetates
  • the alkali solution is NaOH or KOH
  • the molar ratio of the nickel salt, the cobalt salt, the doped metal salt to the lye For 1: 2.1-1: 2.4.
  • the reaction vessel is further provided with a bottom liquid
  • the bottom liquid is a mixed buffer solution of ammonia water and ammonium salt
  • the ammonia water concentration in the bottom liquid is lower than the ammonia water concentration described in the step 1)
  • the bottom liquid amount is stirred.
  • the lower end of the slurry just protrudes into the bottom liquid at the bottom of the container and the bottom liquid is agitated.
  • the concentration of the ammonia in the bottom liquid is preferably half the concentration of the ammonia described in the step 1).
  • the stirring speed is preferably from 100 to 600 r/min.
  • a method for preparing a multi-metal oxide is further provided.
  • the spherical doped nickel hydroxide synthesized by the above method is precipitated and dried, and then uniformly mixed with lithium hydroxide, and the finished product is obtained by high-temperature sintering.
  • the sum of the nickel salt, the cobalt salt, and the metal salt (when the metal salt is selected from the group consisting of an aluminum salt or a magnesium salt or a mixture of the two, is a sum of Ni, Co, A1 or Ni, Co, Mg And the molar ratio of the sum of Ni, Co, Al, Mg) to lithium hydroxide monohydrate is 1: 1.02-1: 1.07.
  • the mixing speed is 100 to 600 r/min during mixing
  • the drying temperature is 150 to 200 Torr
  • the high temperature sintering temperature is 700 to S00 ° C
  • the sintering time is 12 to 24 hours.
  • the above multi-metal oxide is suitable for use as a positive electrode material for lithium ion batteries.
  • the doping ions can better enter the voids of the material unit cell, improve the stability of the layered deintercalation structure, and inhibit or slow down the phase transition during charge and discharge;
  • the ammonium salt mixes to form a complex solution (the ammonium salt and ammonia can form a buffer solution with a pH of about 7, the complex solution does not precipitate, the main purpose is to prevent the cobalt from precipitating), and then the complex solution and the doping metal
  • the mixed solution of the salt and the lye is fed into the reaction vessel and reacted to form a spherical doped nickel hydroxide precipitate, thereby effectively avoiding the problem that the direct addition of the alkali solution causes the particles to grow hard to form a spherical shape;
  • the method of the present invention ensures uniform formation of spherical doped nickel hydroxide and uniform particle size in the reaction vessel, and can effectively control the size of the intermediate and the particle size distribution of the synthesized intermediate.
  • the multi-metal oxidation prepared by the method of the invention LiCo a Ni b M . b 0 2 has a uniform particle size distribution of about 6 ⁇ 10 ⁇ m, a first charge-discharge specific capacity of 170 mA / g, and the first charge-discharge efficiency is nearly 80%, 'tap density It is 2.4g/cm 3 , which maintains a high specific capacity and a high tap density.
  • the button cell experiment there is still a specific capacity of 120 mAi/g for 100 cycles, and the cycle performance is excellent. High voltage resistance, charging up to 45V, good safety performance.
  • Fig. 1 is a particle size analysis diagram of a spherically doped nickel hydroxide (hereinafter referred to as a product).
  • Figure 2 shows the XRD spectrum of the product phase as determined by X-ray diffractometry (XRD).
  • Figure 3 is a SEM photograph of a particle taken with a scanning electron microscope (SEM).
  • Figure 4 is a graph showing the first charge and discharge curves of a battery fabricated using a multi-metal oxide prepared from a product.
  • Figure 5 is a graph showing the cycle performance of a battery made using a multi-metal oxide prepared from a product.
  • the invention provides a method for synthesizing spherical doped nickel hydroxide, comprising the steps 1): firstly mixing a divalent nickel salt, a cobalt salt with an ammonia water and an ammonium salt to form a complex solution; and step 2): step 1
  • step 1 The mixed solution of the formed complex solution and the metal salt and the alkali solution is cocurrently added to the reaction vessel, stirred to form the spherically viscous nickel hydroxide precipitate, and the lacquer is removed to remove the impurity ions.
  • the spherical doped nickel hydroxide (hereinafter referred to as "doped nickel”) can be expressed by such a chemical formula: Ni b Co a M (1-a -b)(OH) n , 'where M represents doping
  • the metal element in the metal salt may be Al, Mg or a mixture thereof.
  • the multi-metal oxide LiC0aNi b M Iab O 2 can be further prepared, that is, the doped spherical nickel synthesized by the above method is dried and then oxidized. The lithium is uniformly mixed and sintered at a high temperature to obtain a finished product.
  • Example 1 Difficult ball nickel in the 'interbody Ni 0 . 75 Coo.
  • the ammonia concentration is 0.4mol/L, and the ammonium salt concentration is 0.09mol/L.
  • the amount of the bottom liquid is just stirred and stirred, and the feeding speed is controlled. / , reaction temperature 50 ° C, pH 11.5, stirring speed 600r / min, coprecipitation to obtain a dark green spherical nickel intermediate Ni c . 75 Co i () Al i5 (OH) n . After aging for 2 hours, wash it with distilled water for 5 to 7 times to remove S0 4 2 —, and dry it in an oven at 60 ° C for 12 hours to obtain the precursor material after ball milling.
  • the products prepared in this example were characterized by the following means: The phase of the particles was determined by X-ray diffractometry (XRD), and the shape and size of the product were directly observed by scanning electron microscopy (SEM).
  • XRD X-ray diffractometry
  • SEM scanning electron microscopy
  • the average particle size is ⁇ , and the particle size distribution of the product is relatively narrow, indicating that the particle size of the particles is relatively uniform. .
  • the method of this embodiment is basically the same as that of the first embodiment, except that the nickel salt, the cobalt salt and the ammonium salt and the aluminum salt of the present embodiment are acetate, the alkali is KLOH, the stirring speed is 300 r/min, and the coprecipitation is deep. Green ball nickel intermediate aged 2t, washed with distilled water 5
  • the acetate ions were removed 7 times, and the precursor material was obtained by buffing in an oven at 60 ° C for 12 hours. .
  • Example 3 doped spherical nickel intermediate Ni ⁇ Coo. Ak ⁇ OH ⁇ -
  • the method of this example is basically the same as that of the first embodiment, except that the ammonia concentration of the present embodiment is 1 mol/L, and the ammonium sulfate concentration is 0.25 mol. /L, the ammonia concentration in the bottom liquid is 0.5 mol/L. Coprecipitation to obtain dark green spherical nickel intermediate Nio. 75 Co 0 .ioAlo.i5(OH) n o
  • Example 4 ⁇ ball nickel intermediate N. 75 Co i oAlo. 15 (OH) n -
  • the method of this embodiment is basically the same as in the first embodiment, different The ammonia concentration in this embodiment is 0.1 mol/L, and the ammonium sulfate concentration is
  • the ammonia concentration in the bottom solution is 0.05mol/L
  • the stirring speed is lOOr/min to obtain a dark green spherical nickel intermediate.
  • Example 6 Doped spherical nickel intermediate Ni CocusMgo OH ⁇ Preparation method of the above doped spherical nickel intermediate: a cobalt solution of nickel sulfate, cobalt sulfate, magnesium nitrate with ammonia water and ammonium sulfate, and NaQH cocurrently added
  • the molar ratio of Ni 2+ , Co 2+ and Mg 2+ is 0.82:0.15:0.03
  • the total salt concentration is 1 mol/L
  • the ammonia concentration is 0.8 mol/L
  • the ammonium sulfate concentration is 0.4 mol/ L
  • NaOH concentration is 2.4mol / L
  • the bottom solution is a mixed solution of ammonia and ammonium sulfate
  • the ammonia concentration is 0.4mol / L
  • the ammonium salt concentration is 0.09mol 7L
  • the amount of the bottom liquid is just stirred and stirred
  • the preparation method of the above intermediate The difference between the present embodiment and the seventh embodiment is that the doped metal magnesium is changed to aluminum and magnesium, and the mixed salt liquids are Ni 2+ , Co 2+ , Al 3+ and Mg 2+ .
  • the molar ratio was 0.82:0.15:0.02:0.01, the total salt concentration was 1 mol/L, the ammonia concentration was 0.4 mol/L, and the 'ammonium sulfate concentration was 0.72 mol/L.
  • the salt solution and NaOH are co-currently added to the 40L reaction vessel, the concentration of NaOH is 2.3 ⁇ 2.4mol/L, the bottom solution is a mixed solution of ammonia and ammonium sulfate, the ammonia concentration is 0.2mol/L, and the ammonium salt concentration is 0.09mol/L.
  • the amount of the bottom liquid is adjusted by the stirring slurry, and the feeding speed is controlled at lL/h, the reaction temperature is 50 ° C, the pH value is 11.5, the stirring speed is 60 ⁇ / ⁇ , and the coprecipitation is obtained to obtain a dark green spherical doped multi-oxide.
  • the molar ratio of LiOH is 1:1.06.
  • the crucible is placed in a resistance furnace and heated at a temperature of 5 °C to 250 °C. The temperature is maintained for 2 h, and then the temperature is raised to 700 °C for 12 h. Below 200 ° C, the crucible is removed, and the ball mill is pulverized to obtain a lithium ion battery positive electrode material with high capacity, high voltage resistance and good cycle performance.
  • Example 8 Synthesis of a multi-metal oxide LiCo iQ Ni a75 Al Q . 15 0 2
  • Example 1 The substance synthesized in Example 1 was The molar ratio of LiOH is 1:1.06. After ball milling and mixing, the crucible is placed in an electric resistance furnace and heated at a temperature of 5 °C to 250 °C for 2 h. Then, the temperature is further increased to 700 °C for 12 h, and the temperature is lowered to below 20 CTC. After removing the crucible and pulverizing the ball, a multi-component metal oxide having high capacity, high voltage resistance and good cycle performance can be obtained.
  • a button-type lithium ion battery was prepared by using the multi-metal oxide according to a conventional procedure, and its electrochemical performance was examined. According to the first charge and discharge curve of Fig. 4, the obtained product is resistant to high voltage and can be charged to 4.5V, and the safety performance is good.
  • the first charge has a specific capacity of 210 mAh/g, a discharge specific capacity of 170 mAh/g, and a charge and discharge efficiency of 81%.
  • the multi-metal oxide of the present invention is a lithium ion battery cathode material having high electrical conductivity and cycle performance.

Description

球形揍杂氢氧化亚镍与多元金属氧化物的制备方法及锂离子电池
【技术领域】
本发明属于高能电化学领域, 具体涉及球形掺杂氢氧化亚镍与多元金属氧化物的制备 方法及锂离子电池。
【背景技术 3
目前锂离子电池在移动电话、 手提电脑、 便携式视听设备等电子器件上有着广泛应用, 但其正极材料钴酸锂 (LiCoCh) ,却因为资源问题而价格不断上涨, 限制了锂离子电池的发 展。 因此人们一直在不断努力寻找适合的替代材料。 近来研究最多的是钴镍锰等复合正极 材料。 文献报道最普遍使用的方法为共沉淀法。 此法是把金属盐按一定比例配成溶液, 并 加入氨水等添加剂用来控制氢氧化物结晶速度, 然后与碱反应生成沉淀。 这种方法是把氨 水加入到底液中, 当盐溶液滴加到底液中后, M2+、 Co2+等金属离子先与氨 (NH3) 发生络 合作用, 生成 X(N¾)n2+ (n=l~6, X= Ni, Co) 络离子, 金属离子浓度降低。 随着 Ni2+、 Co2+与 ΟΒΓ反应生成氢氧化物沉淀而急剧减少, M( ¾)n2+释放出络合的金属离子, 使溶液 中的金属离子保持一定浓度。 但这种方法的缺点是: 当盐液加到底液中后, 氨 (NH3) 和 Off同时存在与金属离子接触, 发生竞争作用, 由于 OH—比 M¾更容易跟 Ni2+、 Co2+等离子 反应, 氨 ( H3) 很难发挥控制结晶的作用, 中间体颗粒微观结构不规, 大小分布比较宽。 比利时五矿公司认为材料颗粒较大的循环性能较小。 吴国良等人研究表明了材料的粒 度分布对放电容量尤其是充放循环性能有显著的影响, 粒度分布越宽, 其循环性能就越差, B为当粒度分布较宽时, 其孔隙度差, 影响其对电解液的毛细管作用而使阻抗表现较大, 当充电至极限电位时,大颗粒表面的 Li+会过度脱嵌而破坏其层次结构,故不利于循环性能。
【发明内容】
本发明的目的在于针对以上方法的不足, 提出一种结构规则、 粒度分布较窄、 颗粒大 小易于控制、 有利于产业化生产的球形掺杂氢氧化亚镍的制备方法。 本发明的另一目的'在于提供一种具有高导电性能和循环性能的多元金属氧化物及其制 备方法: . .
• 本发明的又一目的在于提供一种具有高导电性能和循环性能的锂离子电池正极材料及
—种锂离子二次电池。
实现上述目的的技术方案是: 一种球形掺杂氢氧化亚镍的合成方法, 包_括如下步骤:
1 )先以二价的镍盐、 钴盐与氨水、 铵盐混合形成络合溶液;
. 2) 再以步骤 1 ) 所形成的络合溶液与金属盐和碱液的混合溶液并流加入反应容器中, 搅拌生成所述球形掺杂氢氧化亚镍沉淀, 洗涤去掉杂质离子。 优选的是: 所述金属盐选自铝盐或镁盐或者是两者的混合物。 所述铝盐、'镁盐最好是 硝酸盐或醋酸盐。 . ' '
优选的是: 所述步骤 1 )中氨水浓度为 0.1~hnol/L, 铵盐浓度为 0.02 ~0.25mol/L。氨水 和铵盐的摩尔比为 4: 1-5: 1, 铰盐采用和镍盐、 钴盐酸根相同的盐。 优选的是: 镍盐和钴盐是硫酸盐、 硝酸盐、 氯化盐或.醋酸盐, 碱液是 NaOH或 KOH, 镍盐、 钴盐、 掺杂金属盐的总和与碱液的摩尔比为 1 : 2.1-1: 2.4。 优选的是: 所述反应容器中还加有底液, 底液为氨水和铵盐的混合缓冲溶液, 底液中 的氨水浓度低于步骤 1 )中所述的氨水浓度,底液用量以搅拌浆的下端刚好能伸入位于容器 底部的底液中并将底液搅动起来为准。底液中的氨水浓度最好是步骤 1 )中所述的氨水浓度 的一半。 搅拌速度最好为 100〜600r/min。 为本发明的目的, 还提供一种多元金属氧化物的制备方法, BP , 将采用上述方法合成 的球形掺杂氢氧化亚镍沉淀干燥后, 与氢氧化锂混合均匀, 经高温烧结制得成品。 优选的是, 镍盐、 钴盐、 金属盐之和 (当金属盐为选自铝盐或镁盐或者是两者的混合 物时, 即为 Ni、 Co、 A1之和或 Ni、 Co、 Mg之和或 Ni、 Co、 Al、 Mg之和)与单水氢氧化 锂的摩尔比为 1 : 1.02-1: 1.07。 , 优选的是, 混合时搅拌速度为 100〜600r/min, 干燥温度为 150〜200Ό ; 高温烧结温度 为 700〜S00°C, 烧结 '时间为 12〜24小时。
本发明还提供一种锂离子二次电池, 其正极活性材料中含有按照上述制备方法制得的 多元金属氧化物。 以及,一种多元金属氧化物,表达式为 LiCoaMbM1-a-b02,其中 M为铝或镁, a=0.03~0.15, b=0.6~0.82。 · - 上述多元金属氧化物适合于用作锂离子电池正极材料。
采用上述技术方案, 结合下面将要详¾的实施例, 本发明有益的技术效果在于:
1 )在生成球镍中间体时进行金属离子掺杂, 使渗杂金属离子在液相中与镍、 钴形成更 均匀的混合氢氧化物中间体材料, 此种中间体在高温烧结过程中, 掺杂离子能更好的进入 材料晶胞的空隙, 提高层状脱嵌结构的稳定性、 抑制或减缓充放电过程中的相变;
. 2)在制备球形掺杂氢氧化亚镍时, 由于在共沉淀之前,先以二价的镍盐、钴盐与氨水、
'铵盐混合形成络合溶液 (铵盐和氨可以形成 pH=7左右的缓冲溶液,络合溶液不会出现沉淀, 主要目的是使钴不沉淀), .再将络合溶液与掺杂金属盐和碱液的混合溶液并流加入反应容器 中反应, 生成球形掺杂氢氧化亚镍沉淀, 有效避免了碱液直接加入造成粒子难以长大形成 球形的问题;
3) 由于是络合溶液与盐碱混合液是并流加入反应容器中生成球形掺杂氢氧化亚镍沉 淀, 只要流入速度保持恒定, 反应容器中的 pH值即可保持恒定, 不会出现 pH值由小到大 的问题, 因而, 釆用本发明方法保证了反应容器中生成球形掺杂氢氧化亚镍的速度和颗粒 大小均匀, 能够有效控制中间体的大小, 使合成的中间体粒度分布较窄;
4) 由于在反应容器中加有氨水和铵盐的混合缓冲溶液底液, 保证了在一开始加料时就 能使加入的络合溶液与碱液被搅拌均匀, 并且底部缓冲溶液的存在可以保证反应开始时 pH 值的波动很小;
5)结合下面将要详述的实施例和数据可以看到, 采用本发明方法制备的多元金属氧化 物 (LiCoaNibM .b02) 具有均匀的粒径分布, 大约为 6〜10 μ ιη, 首次充放电比容量可达 170mA /g, 首次充放电效率近 80%,'振实密度为 2.4g/cm3, 既保持了较高的比容量, 有 较高的振实密度。用扣式电池实验,循环 100周次仍有 120mAi/g的比容量,循环性能优良。 耐高电压, 充电可至 45V, 安全性能好。
6)由于采用上述控制结晶法制备球形揍杂氢氧化亚镍,制备工艺简单、过程容易控制, 不需要对反应容器作 "清空"处理, 可连续生产, 生产效率高, 适宜大规模 产。 下面结合附图和具体实施方式对本发明作进一步的详细说明。
【附图说明】
图 1是一种球形掺杂氢氧化亚镍(以下简称产品) 的粒度分析图。' 图 2是采用 X射线衍射仪 (XRD) 确定的产品颗粒物相 XRD谱图。 . , 图 3是利用扫描电镜 (SEM) 拍摄到的产品的颗粒 SEM照片。 图 4是使用产品制得的多元金属氧化物制作的电池的首次充放电曲线。 图 5是使用产品制得的多元金属氧化物制作的电池的循环性能曲线。
【具体实施方式】
本发明提供一种球形掺杂氢氧化亚镍的合成方法, 包括步骤 1 ): 先以二价的镍盐、 钴 盐与氨水、 铵盐混合形成络合溶液; 和步骤 2): 以步骤 1 )所形成的络合溶液与金属盐和 碱液的混合溶液并流加入反应容器中, 搅拌生成所述球形惨杂氢氧化亚镍沉淀, 洗漆去掉 杂质离子。 制得的球形掾杂氢氧化亚镍(以下简称掺杂琴镍)可以用这样的化学式来表示: NibCoaM(1-a-b)(OH)n, '其中 M代表掺杂用金属盐中的金属元素, 可以是 Al、 Mg或者它们的 混合物。 采用上述制得的球形掺杂氢氧化亚镍作为中间体, 可进一步制备多元金属氧化物 LiC0aNibMI-a-bO2, 即, 将采用上述方法合成的掺杂球镍沉淀千燥后, 与氢氧化锂混合均匀, 经高温烧结制得成品。 '得到的多元金属氧化物可用于制造锂离子电池的正极活性材料。 下 面用具体的实施例来详述本发明的实现和效果。 实施例一: .惨杂球镍中'间体 Ni0.75Coo.10Al i5(OH)n 上述掾杂球镍中间体的制备方法: 将硫酸镍、硫酸钴与氨水、硫酸铵的络合盐液, 与加 •入了硫酸铝的 aOH并流加入 40L反应釜中, Ni2+和 Co2+的摩尔比为 0.75:0.10, 总的盐浓度 为 0.85mol/L, 氨浓度为 O.&nol/L, 硫酸铵浓度为 0.1&nol/L, NaOH浓度为 2.3mol/L, 硫酸 铝浓度为 0.15 mol/L, 底液为氨和硫酸铵的混合溶液, 氨浓度为 0.4mol/L, 铵盐浓度为 0.09mol/L, 底液用量以搅拌浆搅刚好拌到为准, 控制加料速度 lL/ , 反应温度 50°C, pH值 11.5, 搅拌速度 600r/min, 共沉淀得到深绿色的球镍中间体 Nic.75Co i()Al i5(OH)n。 陈化 2h, 用蒸馏水洗浲 5〜7次去掉 S04 2—, 于 60°C烘箱中烘 12小时球磨过晒后得到前躯体材料。
用本实施例制备的产品通过以下手段进行结构和性能表征: 采用 X射线衍射仪(XRD) 确定颗粒的物相, 利用扫描电镜(SEM)直接观察产品的形状和尺寸。
根据图 1所示, 平均粒径为 ΙΟμπι, 本产品的粒径分布比较窄, 说明颗粒的粒径大小比 较均勾。 .
根据图 2所确定的产品颗粒物相 XRD谱图,从衍射峰的位置和数目来看,不存在杂峰, 表明掺杂并没有带来其他杂相, 该特征也表明产品具有规整的层状结构。
根据图 3产品的颗粒 SEM照片, 可以看出产品的颗粒接近球形, 球形有利于容量的充 分发挥。
实施例二: 惨杂球镍中间体 NiQ.75CoalQAl l5(OH)n
该实施例方法基本和实施例一相同, 不同的是本实施例的镍盐、钴盐和铵盐及铝盐为醋 酸盐, 碱为 KLOH, 搅拌速度为 300 r/min , 共沉淀得到深绿色的球镍中间体 陈化 2t, 用蒸馏水洗涤 5
Figure imgf000007_0001
〜7次去掉醋酸根离子, 于 60°C烘箱中烘 12小时球磨过筛后得到前躯体材料。 .
实施例三: 掺杂球镍中间体 Ni^Coo. Ak^OH^ - 该实施例方法基本和实施例一相同,不同的是本实施例的氨浓度为 lmol/L,硫酸铵浓度 为 0.25mol/L, 底液中氨浓度为 0.5mol/L。 共沉淀得到深绿色的球镍中间体 Nio.75Co0.ioAlo.i5(OH)no 实施例四: 揍杂球镍中间体 N .75Co ioAlo.15(OH)n - 该实施例方法基本和实施例一相同,不同的是本实施例的氨浓度为 O.lmol/L,硫酸铵浓度为
0.02mol/L, 底液中氨浓度为 0.05mol/L, 搅拌速度为 lOOr/min共洱淀得到深绿色的球镍中间体
Nio.75Co0.10Al0.i5(OH)n。 实施例五: 掺杂球镍中间体
Figure imgf000008_0001
' 上述掺杂球镍中间体的制备方法: 本实施例与实施例一不同之处在于: a=0.03, b=0.6 即 Ni2+和 Co2+的摩尔比为 0.6: 0.03 , 总的盐浓度为 0.97inol/L, 镍钴和铝的摩尔比为 0.63:
0.37, 其它条件与制备方法同实施例一。 实施例六: 摻杂球镍中间体 Ni CocusMgo OH^ 上述掺杂球镍中间体的制备方法: 将硫酸镍、 硫酸钴、 硝酸镁与氨水、 硫酸铵的络合 盐液, 与 NaQH并流加入 40L反应釜中, Ni2+、 Co2+和 Mg2+的摩尔比为 0.82:0.15:0.03, 总 的盐浓度为 lmol/L, 氨浓度为 0.8mol/L, 硫酸铵浓度为 0.4mol/L, NaOH浓度为 2.4mol/L, 底液为氨和硫酸铵的混合溶液, 氨浓度为 0.4mol/L, 铵盐浓度为 0.09mol7L, 底液用量以搅 拌浆搅刚好拌到为准,控制加料速度 lL/ ,反库温度 50Ό, pH值 11.5,搅拌速度 600r/min, 共沉淀得到深绿色的球形掺杂多氧化物 MQ.82Co i5Mg Q3(OH)2。 实施例七: 掺¾球镍中间体 Ni。.S2Co。.15Al。.。2Mg。.Q1(OH)n
上述中间体的制备方法: 本实施例与实施例七的不同之处在于将掺杂金属镁改为铝和 镁,混合盐液中 Ni2+、Co2+、Al3+和 Mg2+的摩尔比为 0.82:0.15:0.02:0.01,总的盐浓度为 lmol/L, 氨浓度为 0.4mol/L,'硫酸铵浓度为 0.72mol/L。盐液与 NaOH并流加入 40L反应釜中, NaOH 浓度为 2.3〜2.4mol/L, 底液为氨和硫酸铵的混合溶液, 氨浓度为 0.2mol/L, 铵盐浓度为 . 0.09mol/L, 底液用量以搅拌浆搅刚好拌到为准, 控制加料速度 lL/h, 反应温度 50°C, pH值 11.5 , 搅拌速度 60θΓ/πώι, 共沉淀得到深绿色 的球形掺杂多氧化物 Nio.82Co0.i5Alo.o2Mgo.o, (ΟΗ)π , 陈化 2h, 用蒸馏水洗涤 5~7次去掉 S04 2—, 于 60Ό烘箱中烘 12小时球磨过晒后得到前
Figure imgf000009_0001
LiOH的摩尔比为 1 : 1.06, 球磨混合均匀后装入坩埚置于电阻炉中以 5°C的升温速率至 250 ' °C, 恒温 2h, 然后继续升温至 700°C恒温 12h,待温度降至 200°C以下, 取出坩埚,球磨粉碎, 即可得到高容量、 耐高电压、 循环性能好的锂离子电池正极材料。
.实施例八: 多元金属氧化物 LiCo iQNia75AlQ.1502的合成
将实施例一合成的物质按照
Figure imgf000009_0002
LiOH的摩尔比为 1: 1.06, 球磨 混合均匀后装入坩埚置于电阻炉中以 5°C的升温速率至 250°C, 恒温 2h, 然后继续升温至 700Ό恒温 12h,待温度降至 20CTC以下,取出坩埚,球磨粉碎, 即可得到高容量、耐高电压、 循环性能好的多元金属氧化物。
采用此多元金属氧化物按常规程序制得扣式锂离子电池, 对其电化学性能进行检测。 根据图 4首次充放电曲线可以看出, 制得的产品耐高电压, 充电可至 4.5V, 安全性能 好。 首次充电比容量 210 mAh/g, 放电比容量 170mAh/g, 充放电效率 81%。
根据图 5产品循环性能曲线, 从第一到第二个循环容量衰减比较大, 但这也为负极表 面形成 SEI膜提供了充足的锂源。在以后的循环中容量保持率都在 99%以上,循环 100次比 容量仍保持在 120mAh/g以上。 由此可见,本发明多元金属氧化物是一种具有高导电性能和循环性能的锂离子电池正极 材料

Claims

权 利 要 求
1、 一种球形掺杂氢氧化亚镍的合成方法, 包括如下步骤:.
1 ) 先以二价的镍、盐、 钴盐与氨氷、 铵盐混合形成络合溶液;
2)再以步骤 1 ) 所形成的络合溶液与金属盐和碱液的混合溶液并流加入反应容器中, 搅 拌生成所述球形掺杂氢氧化亚镍沉淀, 洗涤去掉杂质离子。
2、 根据权利要求 1所述的球形摻杂氢氧化亚镍的合成方法, 其特征在于: 所述金属盐选自 铝盐或镁盐或者是两者的混合物。
3、 根据权利要求 2所述的球形掺杂氢氧化亚镍的合成方法, 其特征在于:.所述铝盐、 镁盐 是硝酸盐或醋酸盐。
4、 根据权利要求 1~3任意一项所述的球形掺杂'氢氧化亚镍的合成方法, 其特征在于: 所述 氨水浓度为 0.1~lmol/L, 铵盐浓度为 0.02~0.25mol/L。
5、 根据权利要求 4所述的球形揍杂氢氧化亚镍的合成方法, 其特征在于: 所述氨水和铵盐. 的摩尔比为 4: 1-5: 1, 铵盐采用和镍盐、 钴盐酸根相同的盐。 .
6、 根据权利要求 1~3任意一项所述的球形掾杂氢氧化亚镍的合成方法, 其特征在于: 所述 反应容器中还加有底液,底液为氨水和铵盐的混合缓冲溶液,底液中的氨水浓度低于步骤 1 ) 中所述的氨水浓度, 底液用量以搅摔浆的下端刚好能伸入位于容器底部的底液中并将底液 ' 搅动起来为准。 -
7、 根据权利要求 1~3任意一项所述的球形掺杂氢氧化亚镍的合成方法, 其特征在于: 所述 镍盐和钴盐是硫酸盐、 硝酸盐、氧化盐或醋酸盐, 碱液是 NaOH或 KOH。
8、 根据权利要求 7·所述的球形掺杂氢氧化亚镍的合成方法, 其特征在于: 镍盐、 钴盐、 金 属盐的总和与碱液的摩尔比为 1 : 2.1-1: 2.4。
9、 根据权利要求 1~3任意一项所述的球形掺杂氢氧化亚镍的合成方法, 其特征在于: 搅拌 速度为 100〜600r/min。
10、 一种多元金属氧化物的制备方法, 其特征在于: 将按照上述任意一个权利要求所述方 法合成的球形掺杂氢氧化亚镍沉淀干燥后, 与氢氧化锂混合均匀, 经高温烧结制得成品。
11、 根据权利要求 10所述 β多元金属氧化物的制备方法, 其特征在于: 镍盐、 '钴盐、 金属 盐之和与单水氢氧化锂的摩尔比为 1: 1.02-1: 1.07。
12、一种锂离子二次电池, 其正极活性材料中含有按照权利要求 10所述制备方法制得的多 元金属氧化物。
13、 种多元金属氧化物, 表达式为
Figure imgf000011_0001
其中 M为铝或镁, a=0.03~0.15, b=0.6~0.82。
14、 权利要求 13所述的多元金属氧化物用作锂离子电池正极材料。
PCT/CN2005/000931 2005-06-27 2005-06-27 Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium WO2007000075A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2005/000931 WO2007000075A1 (fr) 2005-06-27 2005-06-27 Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
US11/922,908 US7985503B2 (en) 2005-06-27 2005-06-27 Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/000931 WO2007000075A1 (fr) 2005-06-27 2005-06-27 Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium

Publications (1)

Publication Number Publication Date
WO2007000075A1 true WO2007000075A1 (fr) 2007-01-04

Family

ID=37595038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000931 WO2007000075A1 (fr) 2005-06-27 2005-06-27 Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium

Country Status (2)

Country Link
US (1) US7985503B2 (zh)
WO (1) WO2007000075A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249349A (zh) * 2011-04-26 2011-11-23 北京化工大学 一种化学和电化学联用法合成多元掺杂球形纳米氢氧化镍
CN105070512A (zh) * 2015-08-06 2015-11-18 太原理工大学 掺Mg纳米球形花状α-Ni(OH)2电极材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985503B2 (en) * 2005-06-27 2011-07-26 Shenzhen Bak Battery Co., Ltd Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery
DE102007049108A1 (de) * 2007-10-12 2009-04-16 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Batterien
CN103490062B (zh) * 2013-08-27 2016-05-04 江苏华东锂电技术研究院有限公司 钴酸锂的制备方法
CN103482710B (zh) * 2013-08-27 2015-09-09 江苏华东锂电技术研究院有限公司 球形羟基氧化钴的制备方法
US10593942B2 (en) * 2014-10-30 2020-03-17 Sumitomo Metal Mining Co., Ltd. Nickel-containing composite hydroxide and production process therefor, positive-electrode active material for a nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
CN105118982A (zh) * 2015-07-16 2015-12-02 青岛新正锂业有限公司 一种锂离子电池正极材料的掺杂改性技术
EP3659975A1 (en) * 2018-11-28 2020-06-03 Basf Se Process for the manufacture of a nickel composite hydroxide
CN110339838B (zh) * 2019-06-28 2022-02-11 华东师范大学 一种过渡金属掺杂纳米α-氢氧化钴材料的制备方法及应用
CN111106238B (zh) * 2019-11-19 2023-08-29 中山大学 一种基于金属掺杂的双向阈值选通器及其制备方法
US20230108718A1 (en) 2020-03-27 2023-04-06 Board Of Regents, The University Of Texas System Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075697A (zh) * 1993-04-09 1993-09-01 河南师范大学 球形微粒氢氧化镍制造法
CN1107442A (zh) * 1994-02-26 1995-08-30 王维波 氢氧化镍的制造方法
CN1195897A (zh) * 1997-02-03 1998-10-14 松下电器产业株式会社 碱性蓄电池的正极活性材料的制造方法
JP2002343355A (ja) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004047180A (ja) * 2002-07-09 2004-02-12 Japan Storage Battery Co Ltd 非水電解質電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980080A (en) * 1988-06-09 1990-12-25 Societe Anonyme Dite: Saft Process of making a cathode material for a secondary battery including a lithium anode and application of said material
US5281494A (en) * 1990-05-04 1994-01-25 Inco Limited Nickel hydroxide
JP3192374B2 (ja) * 1996-07-01 2001-07-23 正同化学工業株式会社 水酸化ニッケルの製造方法
JP3205276B2 (ja) * 1997-02-14 2001-09-04 古河電池株式会社 アルカリ二次電池用正極活物質の製造法、ペースト式ニッケル極、アルカリ二次電池並びにその製造法
US5824283A (en) * 1997-04-28 1998-10-20 Inco Limited Process for producing nickel hydroxide from elemental nickel
JP4454052B2 (ja) * 1998-02-23 2010-04-21 パナソニック株式会社 アルカリ蓄電池用ニッケル電極活物質の製造方法、およびニッケル正極の製造方法
JP4174887B2 (ja) * 1998-05-21 2008-11-05 堺化学工業株式会社 ニッケル、コバルト又は銅の炭酸塩又は水酸化物の微細な球状の粒子の製造方法
EP1044927B1 (en) * 1998-06-10 2012-07-25 Sakai Chemical Industry Co., Ltd. Nickel hydroxide particles and production and use thereof
US6015538A (en) * 1998-06-16 2000-01-18 Inco Limited Methods for doping and coating nickel hydroxide
DE19939025A1 (de) * 1998-12-24 2000-06-29 Starck H C Gmbh Co Kg Nickel-Mischydroxid, Verfahren zu dessen Herstellung und dessen Verwendung als Kathodenmaterial in alkalischen Batterien
US7985503B2 (en) * 2005-06-27 2011-07-26 Shenzhen Bak Battery Co., Ltd Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075697A (zh) * 1993-04-09 1993-09-01 河南师范大学 球形微粒氢氧化镍制造法
CN1107442A (zh) * 1994-02-26 1995-08-30 王维波 氢氧化镍的制造方法
CN1195897A (zh) * 1997-02-03 1998-10-14 松下电器产业株式会社 碱性蓄电池的正极活性材料的制造方法
JP2002343355A (ja) * 2001-05-15 2002-11-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004047180A (ja) * 2002-07-09 2004-02-12 Japan Storage Battery Co Ltd 非水電解質電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249349A (zh) * 2011-04-26 2011-11-23 北京化工大学 一种化学和电化学联用法合成多元掺杂球形纳米氢氧化镍
CN105070512A (zh) * 2015-08-06 2015-11-18 太原理工大学 掺Mg纳米球形花状α-Ni(OH)2电极材料及其制备方法
CN105070512B (zh) * 2015-08-06 2017-11-17 太原理工大学 掺Mg纳米球形花状α‑Ni(OH)2电极材料及其制备方法

Also Published As

Publication number Publication date
US7985503B2 (en) 2011-07-26
US20100108938A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
CN106207138B (zh) 一种锂离子电池正极材料制备方法及其应用
CN101426728B (zh) 锂金属复合氧化物和使用其的电化学装置
CN102694166B (zh) 一种锂镍钴铝复合金属氧化物的制备方法
CN102983326B (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN103066261B (zh) 高容量高镍多元金属氧化物正极材料的合成方法
CN102891309B (zh) 一种浓度渐变的球形富锂正极材料的制备方法
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN105161679A (zh) 富锂正极材料及其制备方法和应用
CN103715424A (zh) 一种核壳结构正极材料及其制备方法
CN102683645A (zh) 一种锂离子电池正极材料层状富锂锰基氧化物的制备方法
CN103904323A (zh) 一种球形羟基氧化钴的制备方法
CN109461928A (zh) 一种高能量密度多元正极材料及其制备方法
CN110226251A (zh) 镍活性物质前驱体及其制备方法、镍活性物质以及锂二次电池
CN102916171B (zh) 一种浓度渐变的球形镍锰酸锂正极材料及其制备方法
CN108899480A (zh) 一种长循环寿命高比容量镍钴铝正极材料及其制备方法
CN103280570B (zh) 一种微米级单晶镍锰酸锂正极材料的制备方法
CN111916687A (zh) 一种正极材料及其制备方法和锂离子电池
CN108767216A (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
WO2010139142A1 (zh) 二次锂电池正极材料及其制备方法
CN106910887A (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
CN110233261B (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
CN108365216A (zh) 一种新型高镍三元正极材料及制备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11922908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 95/MUMNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 05766913

Country of ref document: EP

Kind code of ref document: A1