WO2006137370A1 - Substrate transfer robot and processing apparatus - Google Patents

Substrate transfer robot and processing apparatus Download PDF

Info

Publication number
WO2006137370A1
WO2006137370A1 PCT/JP2006/312272 JP2006312272W WO2006137370A1 WO 2006137370 A1 WO2006137370 A1 WO 2006137370A1 JP 2006312272 W JP2006312272 W JP 2006312272W WO 2006137370 A1 WO2006137370 A1 WO 2006137370A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
transfer robot
drive
hand
drive source
Prior art date
Application number
PCT/JP2006/312272
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Sato
Daigo Tamatsukuri
Seiichi Fujii
Naoki Ogawa
Atsuyoshi Tanioka
Hirofumi Hosokawa
Kenji Hirota
Original Assignee
Rorze Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005181723A external-priority patent/JP2007005435A/en
Priority claimed from JP2005198460A external-priority patent/JP2007019216A/en
Application filed by Rorze Corporation filed Critical Rorze Corporation
Publication of WO2006137370A1 publication Critical patent/WO2006137370A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/067Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/043Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • B25J9/107Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms of the froglegs type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/02Controlled or contamination-free environments or clean space conditions

Definitions

  • the present invention relates to a transfer robot and a processing apparatus that move and process a substrate in a highly clean environment.
  • the present invention can be applied to either a substrate that requires a high clean environment or a similar article when moving and processing, and in particular, a semiconductor wafer or an LCD substrate as an electronic component. This is for illustrative purposes and is not intended to limit the present invention.
  • the yield (non-defective rate) of products decreases due to the adhesion of dust or the like to the surface of the substrate.
  • the substrate is manufactured in a highly clean environment such as a so-called clean room.
  • a processing apparatus cluster tool
  • each processing is performed in a clean environment by closing the processing chamber in an airtight and highly clean manner or by setting the inside of the processing chamber in a vacuum atmosphere or an inert gas atmosphere.
  • a processing apparatus includes a processing chamber (process chamber) for processing a substrate, a transfer chamber for loading / unloading a substrate into / from the processing chamber, and a load lock for carrying the substrate in / out of the apparatus. And a chamber.
  • a single processing apparatus is provided with a plurality of processing chambers for various processing.
  • the transfer chamber has a pentagonal or polygonal planar shape, and each processing chamber is arranged around the transfer chamber.
  • a transfer robot for loading / unloading substrates into / from each processing chamber is installed at the approximate center inside the transfer chamber.
  • a door that can be opened and closed air-tightly by a vacuum nozzle is installed on the peripheral wall of the transfer chamber. By opening this door, communication with the processing chamber or load lock chamber is possible.
  • the transfer robot is structured so that the substrate can be moved to each processing chamber by operating the center force of the transfer chamber radially.
  • FIG. 10 shows a substrate processing apparatus (multistage semiconductor processing apparatus described in FIG. 1 of Patent Document 1).
  • the processing apparatus 120 includes two polygonal transfer chambers (robot-type buffer chamber 124, transfer robot chamber 128), which are connected via two linked processing chambers (intermediate processing chambers 126, 127). It is connected.
  • connection processing chamber is subjected to, for example, plasma edge cleaning, heating, and cooling.
  • a transfer robot having a link mechanism that also has a four-arm force
  • transfer robot 142 holds the substrate and transfers it between the processing chambers. Buffer robot 140) is installed.
  • a plurality of processing chambers (vacuum processing chambers 101 to 107) and a load lock chamber (load lock chambers 121 and 122) for receiving and temporarily storing substrates from outside the apparatus are installed.
  • Openable and closable doors (vacuum valves) are installed between the transfer chambers, the connected processing chambers, the processing chambers, and the load lock chamber, and the chambers can be closed in an airtight state. Therefore, since each chamber can be selectively sealed and isolated from each other, the interiors of the chambers are mutually airtight so that the atmospheres have different vacuum degrees or are compatible with each other! /, And an inert gas atmosphere. can do.
  • the transfer chamber described above is evacuated, etc., and in order to facilitate sealing, a large lump of aluminum is scraped out by a caulking machine to process the connecting surface of the processing chamber, etc.
  • Patent Document 2 and Patent Document 3 Techniques described in Patent Document 2 and Patent Document 3 are known as conventional transfer robots.
  • FIG. 7 and 8 show the transfer robot (joint arm transfer device) described in FIGS. 2 and 4 of Patent Document 2.
  • FIG. 7 and 8 show the transfer robot (joint arm transfer device) described in FIGS. 2 and 4 of Patent Document 2.
  • this transfer robot 200 has a cylindrical mounting flange 238 attached to the bottom (bottom wall) 228 of the transfer chamber so as to protrude downward from the opening 227 (outside the transfer chamber). It is attached. Inside the mounting flange 238, two drive sources 215, 216 are installed concentrically with their positions shifted in the height direction.
  • the drive sources 215 and 216 are concentric and protrude from the top of the mounting flange 238 into the transfer chamber.
  • the rotating shaft (outer shaft 239, inner shaft 240) can be rotated independently.
  • each of the drive sources 215 and 216 includes one armature 230 (starter) in which a plurality of coils are arranged in a ring shape.
  • armature 230 starter
  • a rotating shaft (outer shaft 239 and inner shaft 240) is rotatably installed via a bearing 233 (guide bearing).
  • the outer shaft 239 is just inside the armature 230 and corresponds to the upper armature 230b.
  • the inner shaft 240 is just inside the outer shaft 239 and corresponds to the lower armature 230a.
  • Magnets 237 (237a, 237b) as rotors are installed on the outer wall surfaces of the outer shaft 239 and the inner shaft 240 and corresponding to the armatures 230 (230a, 230b) as starters.
  • a bellows 241 that separates the vacuum atmosphere from the space where the armature 230 etc. is separated is provided at the upper part of the housing of the drive sources 215, 216 to prevent dust generated in the space where the armature 230 etc. flows from entering the vacuum atmosphere be able to
  • a first drive arm 17 (first upper arm) and a second drive arm 18 (second upper arm) are attached to the upper ends of the rotating shafts 239 and 240.
  • the arms 217 and 218 are arranged in the inner region of the transfer chamber, and protrude in the radial direction from the rotation shaft centers of the drive sources 215 and 216.
  • First and second follower arms 219 and 220 (first forearm and second forearm) are attached to the upper end of the other end of the first drive arm 217, and third and second followers are attached to the second drive arm 18.
  • Four driven arms 221, 222 (first forearm, second forearm) are attached and can be rotated independently in the same horizontal plane.
  • a first hand 223 is rotatably supported on the other ends of the first and third driven arms 219 and 21, and a second hand 24 is rotatably supported on the second and fourth driven arms 220 and 222. ing.
  • the transfer robot 200 rotates the first and second hands 223 and 224 by rotating the rotation shafts 239 and 240 in different directions by the first and second drive sources 215 and 216, respectively. It can be extended or retracted in the radial direction (vertical direction in Fig. 9) with respect to the center of the shaft 239, 240. Further, the first and second hands 223 and 224 can be simultaneously rotated with respect to the centers of the rotation shafts 239 and 240 by rotating the rotation shafts 239 and 240 in the same direction.
  • FIG. 9 shows the transfer robot 300 (transfer device) shown in FIG.
  • the transfer robot 300 is different from the transfer robot 200 described above, which has two rotation shafts (an outer shaft 239 and an inner shaft 240) that are driven by driving sources 215 and 216 in a concentric manner. It has a parallel configuration.
  • the transfer robot 300 has two rotating shafts 342 (a first driving shaft 342a and a second driving shaft 342b), which are connected to the base plate 325 (support portion) on the nodes 323, 324. Are arranged side by side in the direction of travel.
  • the first drive arm 317 and the second drive arm 318 are arranged at different heights at the upper ends of the respective rotation shafts 342 (342a, 342b).
  • the shape of the upper surface of the first drive arm 317 is a rod having a partially recessed portion, and it is possible to avoid contact with the first drive shaft 342a when the second drive arm 318 is rotated.
  • the first and second driven arms 319 and 320 are placed on the top end of the first drive arm 317 (first drive link), and the third and top are placed on the top end of the second drive arm (second drive link).
  • the fourth follower arms 321, 322 are provided so as to be concentric with each other.
  • Each rotation shaft 342 has a drive source (not shown) for driving each rotation shaft 342, and is driven independently by each.
  • the drive sources are arranged side by side in a space below the base plate 325.
  • Patent Document 1 Japanese Patent Laid-Open No. 03-19252
  • Patent Document 2 Japanese Patent Publication No. 08-506771
  • Patent Document 3 Japanese Translation of Special Publication 2004-237436
  • the transfer chamber described above is desired to have a small internal volume. There are two reasons for this.
  • the first reason is to quickly make the inside a vacuum or an inert gas atmosphere.
  • the second reason is that, as described above, the transfer chamber is often manufactured by a chain that is cut out from a large aluminum lump, but it is small in order to reduce processing cost, time, and accuracy. is important.
  • the rotation shafts 342a and 342b are arranged in parallel, and the drive arms 317 and 318 are arranged to be rotatable in the same horizontal plane.
  • the rotational connection portions of the driven arms 319 to 322 are concentrically arranged, and the driven arms 319 to 322 are arranged at different heights.
  • the rotation shafts 239 and 240 are arranged concentrically, and the two drive arms 217 and 218 are arranged at different heights.
  • each of the follower arms 219 to 212 connected to each other is individually pivotally connected to the tip of each of the drive arms 217 and 218.
  • the end portions of the driven arms 219 to 212 are connected to the tip ends of the drive arms 217 and 218 by shifting their positions by a plurality of parallel rotation shafts.
  • each pivot shaft or connection portion between each drive arm and each driven arm increases, but the planar shape becomes smaller.
  • the height can be reduced, but the planar shape increases.
  • both the rotating shafts and the connecting portions of the drive arms and the driven arms are connected together.
  • the height dimension is the sum of the heights.
  • the rotating shafts and the connecting parts of each drive arm and each driven arm are arranged in parallel to reduce the height, the plane dimensions may increase cumulatively.
  • a main object of the present invention is to provide a substrate transfer robot capable of compactness.
  • the shape of the transfer chamber is a polygon having five or more corners, and the transfer chamber is radially arranged toward the rotation center of the transfer robot. .
  • the frog redder type transfer robot placed at the center of the transfer chamber allows the substrate to be transferred by simply moving the held substrate to the processing chamber on the center of rotation force radiation. It is. Further, such a processing apparatus can be realized by simple operation control for moving the transfer robot in the linear direction and in the rotational direction.
  • a plurality of processing chambers are provided for one side wall, and the connecting portions of all the processing chambers are inclined with respect to the side wall.
  • the same effect can be obtained by providing the (opening) toward the rotation center of the transport robot.
  • the area of the connecting portion is increased compared to the case where the connecting portion is provided facing the side wall, thereby increasing the vacuum valve for sealing the inside of the processing chamber when processing is performed in the processing chamber. Since the inside of the transfer chamber and the processing chamber are separated from each other, the internal processing environment that is harder to seal is more unstable when the opening area of the connecting portion is larger.
  • each transfer chamber is a polygon of pentagon or more, it is difficult to connect them vertically and horizontally, and the foot space becomes large. There is also a problem of widening.
  • the transfer chamber is produced by cutting out a large aluminum lump
  • the transfer chamber is square-shaped (the work of turning the aluminum lump by turning 90 degrees is very difficult due to the mechanism of the processing machine. Compared to), it is very difficult, and it is also very difficult to open an opening for communicating with the processing chamber on the side surface.
  • Another object of the present invention is to provide a processing apparatus that is compact and easy to manufacture.
  • the substrate transfer robot of the present invention includes a first drive source having a rotation axis on a base plate, a second drive source having a rotation axis concentrically with the rotation axis of the first drive source, A first drive arm provided protruding from a side surface of the first drive source; a second drive arm provided protruding from a side surface of the second drive source; and the other end of the first drive arm concentrically and independently.
  • a first driven arm and a second driven arm provided for rotation, and a third driven arm and a fourth provided for rotation independently at positions having different rotation axes on the other end of the second drive arm.
  • the first drive source and the second drive source are rotated in different directions or in the same direction. First hand through the arm, forward and backward movement of the second hand, and characterized in that it can be rotated.
  • the first drive source and the second drive source are rotated at different speeds, so that the first drive source and the second drive source are on a straight line that forms an angle with the radiation direction with respect to the rotation center of the first drive source. You can move the first hand, second hand, and hand.
  • the transfer robot includes a second drive arm and a third drive arm as a second drive source, projecting in a direction that forms an angle with respect to the rotation direction around the second drive source.
  • the drive arm may be provided with a third driven arm, and the third drive arm may be provided with a fourth driven arm.
  • the substrate transfer robot according to the present invention rotates the first drive source and the second drive source at different speeds, thereby setting a radiation direction and an angle with respect to the rotation center of the first drive source. It is preferable that the first hand and the second hand can be moved on a straight line formed.
  • the first hand and the second hand move forward and backward in the radiation direction with respect to the rotation centers of the first drive source and the second drive source.
  • the traveling direction of the first hand and the second hand is 150 to 179 degrees.
  • the substrate transfer robot of the present invention is a first drive source and a second drive source that are concentric with the base plate and are displaced in the height direction.
  • the first drive source is provided, and the second drive source is provided above the first drive source.
  • the present invention is a substrate transfer robot, which projects on a base plate and is arranged along a predetermined rotation axis and can be individually rotated.
  • a first drive arm extending in a radial direction from the first drive body; a second drive arm extending in a radial direction from the second drive body; and a first follower rotatably connected to a tip of the first drive arm. Supported by the arm and the second driven arm, the third driven arm and the fourth driven arm connected to the tip of the second drive arm, and the first driven arm and the third driven arm.
  • the moving arm is disposed closer to the base plate than the second driving arm, and the first driven arm and the second driven arm are concentric with respect to the tip of the first driving arm.
  • the third driven arm and the fourth driven arm are connected in series, and are individually connected to the tip of the second drive arm by a parallel rotation shaft.
  • the first drive body and the second drive body are arranged concentrically with each other, thereby suppressing the planar shape. Further, the first driven arm, the second driven arm, and the rotational connection of the tip of the first drive arm are also concentric, and this also suppresses the planar shape.
  • the connection between the first driven arm and the second driven arm and the tip of the first drive arm is concentric, the dimension in the height direction is increased.
  • the first drive arm is arranged closer to the base plate than the second drive arm, and therefore the height dimension at the connecting portion of the first drive arm or the first driven arm and the second driven arm is larger.
  • the overall height dimension of the base plate force is not easily affected.
  • the third driven arm and the fourth driven arm that are pivotally connected to the tip of the second drive arm are individually connected by a parallel rotary shaft, so that the planar drive arm has a planar shape.
  • the first driving body includes a first driving source
  • the second driving body includes a second driving source
  • the first driving body is mounted on a base plate. It is desirable that the second driving body is installed in a stacked manner on the first driving body.
  • a built-in drive source having a small size in the rotation axis direction, such as a direct drive type electric motor.
  • the laminated structure of the base plate, the first driving body, and the second driving body as described above can be realized, and the conventional shaft or the second driving body can be used as the first driving body and the second driving body.
  • a rotating shaft is not necessary, and the structure can be simplified.
  • the first hand and the second hand are rotated relative to each other so that the first hand and the second hand are moved to the rotation axis, respectively.
  • each hand is expanded and contracted by rotating the first drive body and the second drive body in the opposite directions at the same speed. Then, by rotating them in the same direction at the same speed, the direction of each hand can be changed without changing the stretched state of each hand.
  • the angle formed by the first hand and the second hand is 180 degrees, the result is the same regardless of which direction it is rotated.
  • the angle on one side is smaller than 180 degrees as in the present invention, the required operating angle is reduced by actively using this small angle side when changing directions. As a result, the operation time can be shortened.
  • the first driving body and the second driving body are combined with each other.
  • the first hand and the second hand can move forward and backward in the opposite radial direction with respect to the rotational axis, respectively, and the first drive body and the second drive body are It is desirable to be able to operate at different rotational speeds.
  • the first driving body and the second driving body are operated in the same direction and at different rotational speeds, so that each hand is gradually expanded and contracted while changing the direction. be able to.
  • the direction can be changed while mainly expanding and contracting each hand.
  • the moving axis of each hand can be inclined with respect to the radial direction of each driving body, and can be applied to various transport operations.
  • the processing apparatus of the present invention is arranged on a transfer chamber having a square plane shape, a substrate transfer robot installed near the inner center of the transfer chamber, and each side wall surface of the transfer chamber. And a plurality of process chambers, wherein the transfer robot transfers a substrate by movement or combination in a radiation direction and a rotation direction with respect to a rotation center of the transfer robot. It is characterized by being able to.
  • the processing apparatus of the present invention includes a transfer chamber, a substrate transfer robot installed in the vicinity of the center inside the transfer chamber, and a plurality of side walls disposed on the side walls of the transfer chamber.
  • a processing chamber, wherein the transfer chamber has a substantially quadrangular planar shape.
  • the shape of the transfer chamber is a square shape. Because it has a simple shape, it is extremely easy to carry out Xiao IJ. Furthermore, since the transfer chamber has a quadrangular shape, it is easy to arrange a plurality of transfer chambers in parallel, and it is easy to connect them via the connection processing chamber.
  • the process chamber is attached in a direction in which the opening portion forms an angle with the radiation direction with respect to the rotation center of the transfer robot, and the substrate held by the transfer robot is delivered by performing linear and curved operations.
  • the processing apparatus of the present invention it is preferable that a plurality of the transfer chambers are provided and a connection processing chamber for connecting the transfer chambers to each other is provided.
  • more process chambers can be arranged by a plurality of transfer chambers. Then, by using the connection processing chamber, the substrate is temporarily placed in the connection processing chamber provided between the transfer chambers when the substrate is transported from one transfer chamber to the other transfer chamber. At this time, the substrate is heated or cooled by the substrate heating means or the cooling means provided in the connection processing chamber before and after performing various processes such as CVD and PVD in the other transfer chamber as the transfer destination. Thus, various processes can be performed promptly.
  • the plurality of connected processing chambers also serve as a substrate heating unit or a substrate cooling unit.
  • the substrate can be heated by the heating means, or the substrate can be cooled by the cooling means.
  • FIG. 1 is a plan view showing a processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a transfer chamber of the embodiment.
  • FIG. 3 is a perspective view showing the transfer robot of the embodiment.
  • FIG. 4 is a partially broken perspective view showing the drive unit of the embodiment.
  • FIG. 5 is a perspective view showing the hand and the rotation transmission means of the embodiment.
  • FIG. 6 is a perspective view showing a modification of the present invention.
  • FIG. 7 is a plan view showing a conventional transfer robot.
  • FIG. 8 is a cross-sectional view showing a conventional transfer robot.
  • FIG. 9 is a perspective view showing a conventional transfer robot.
  • FIG. 10 is a plan view showing a conventional processing apparatus.
  • a processing apparatus 1 is a processing apparatus according to the present invention, and this processing apparatus 1 includes a transfer robot 4 according to the present invention.
  • the processing apparatus 1 has two transfer chambers 2 (2a, 2b) inside.
  • Each transfer chamber 2 has a square planar shape, that is, a quadrangle having the same length on all four sides.
  • a side wall surface 5 is disposed on each side of each transfer chamber 2.
  • a transfer robot 4 for transferring the substrate 3 is installed in the approximate center! The transfer robot 4 will be described in detail later.
  • a connection processing chamber 7 is disposed between the transfer chambers 2a and 2b, and a load lock chamber 13 is disposed between the transfer chamber 2a and a transfer device 8 (described later).
  • processing chambers 6 are arranged on each side of each transfer chamber 2a, 2b except for the side where the above-described connection processing chamber 7 or load lock chamber 13 is installed. Is placed.
  • the substrate 3 is loaded into the inside by the transfer robot 4 (see FIG. 2), and various processes such as CVD can be performed on the loaded substrate 3.
  • connection processing chamber 7 a heating means for the substrate 3 is provided, and when the substrate 3 is transported from the transfer chamber 2a to the transfer chamber 2b, another substrate 3 is placed on the process chamber 6.
  • the substrate 3 stored in the connection processing chamber 7 can be heated using time or the like.
  • a transfer device 8 is installed adjacent to the load lock chamber 13.
  • the transfer device 8 carries the substrate 3 into and out of the processing device 1, and is used to remove the lid of the pod 9 and a mounting table on which the pod 9 for carrying the substrate 3 is carried in the talen room.
  • a load port 12 and a pod 9 internal force are also provided with a substrate transfer robot 14 that transfers the substrate 3 to the load lock chamber 13.
  • the transfer chamber 2 has a quadrangular shape, four side wall surfaces 5 are formed around the transfer chamber 2, and a process chamber 6 is installed on the outside thereof.
  • the side wall surface 5 is formed with an opening that communicates the inside of the process chamber 6 and the inside of the transfer chamber 2.
  • This opening can be opened and closed by a vacuum nozzle (not shown). In the closed state, the inside of the process chamber 6 and the inside of the transfer chamber 2 are separated in an airtight state.
  • the substrate 3 can be transferred from the transfer chamber 2 to the process chamber 6 by the transfer robot 4 or vice versa.
  • a circle indicated by a dotted line in the figure indicates a locus of the substrate 3 when the transfer robot 4 holds the substrate 3 and transfers the internal force to the process chamber 6 to another process chamber 6.
  • this transfer robot 4 by moving a first drive source 15 and a second drive source 16, which will be described later, at different speeds, each hand 23, 24 is linearly moved in a direction that forms a predetermined angle with respect to the radial direction. That's right.
  • the transfer robot 4 installed in the processing apparatus 1 of the present embodiment can transfer a substrate by radiation or movement in the rotation direction or a combination with respect to the rotation center of the transfer robot. Therefore, the substrate can be transferred even if the connecting portion (opening portion) of the processing chamber does not face in the radiation direction with respect to the rotation center of the transfer robot.
  • the transfer chamber 2 has a monolith structure in which a large aluminum lump is cut out by a processing machine and has a cavity or the like. At this time, the transfer chamber 2 has a quadrangular planar shape and a simple shape, so that it can be easily polished.
  • the transfer chamber 2 since the transfer chamber 2 has a quadrangular shape, it is easy to arrange a plurality of transfer chambers 2 in parallel and to continue them through the connection processing chamber 7. In addition, more process chambers 6 can be provided even if the foot space is smaller than the conventional polygonal (pentagonal or more polygonal) transfer chamber 2.
  • the plurality of transfer chambers 2 can be connected in a vertical and horizontal order via the connection processing chamber 7, the layout of the factory (process) is facilitated.
  • the transfer robot 4 of the present embodiment is a so-called frog redder type transfer port bot, which is fixed to the transfer chamber 2 of the processing apparatus 1 described above and transfers the substrate 3. .
  • a thin plate-shaped first drive source 15 is installed on the base plate 25, and a similar second drive source 16 is installed on the first drive source 15.
  • each of the first drive source 15 and the second drive source 16 includes an electric motor inside.
  • the base plate 25 is used to mount the first and second drive sources 15 and 16 on the inner bottom wall of the housing 28 of the transfer chamber 2.
  • the base plate 25 is in contact with the flange portion of the base plate 25 and the inner bottom wall.
  • a sealing member 27 for keeping the inside of the transfer chamber 2 airtight is installed between the two.
  • the central portion of the base plate 25 is a cylindrical portion 25a that also projects the opening force of the housing 28 to the outside (downward in the figure), and has a bottomed cylinder that protrudes to the inside (upward in the figure) of the housing 28 at the center.
  • a partition wall 29 is formed.
  • a fixed shaft member 32 is formed on the inner wall surface of the partition wall 29, and a plurality of armatures 30a and 30b and sensors 31a to 31d are arranged adjacent to each other in a ring shape on the fixed shaft member 32. Yes.
  • rotating members 26a and 26b are installed.
  • Each of the rotating members 26a and 26b has a cylindrical portion and a flange portion formed on the outer periphery of the upper end thereof.
  • This flange portion serves as a base plate 25 as the first drive source 15 and the second drive source 16 described above. It becomes a part exposed in a laminated state on the top.
  • the cylindrical portion of the rotating member 26a is rotatably supported on the base plate 25 via a bearing 33a.
  • the cylindrical portion of the rotating member 26b is rotatably supported inside the rotating member 26a via a bearing 33b.
  • the cylindrical portions of the rotating members 26a and 26b are arranged concentrically with each other, and are individually rotatable.
  • Each cylindrical part of the rotating members 26a and 26b is provided with a plurality of magnets 37a and 37b attached adjacent to each other in a ring shape.
  • These magnets 37a and 37b and the above-described armatures 30a and 30b of the fixed shaft member 32 are arranged at positions facing each other to constitute a direct drive type electric motor.
  • first and second drive arms 17 projecting in the horizontal direction on the peripheral surfaces of the first and second drive sources 15 and 16 (flange portions of the rotating members 26a and 26b), respectively. , 18 is formed.
  • the rotating member 26a to the first drive arm 17 are integrally formed, and the rotating member 26b to the second drive arm 18 are integrally formed.
  • a base end portion of the first driven arm 19 is rotatably connected to an upper portion near the distal end of the first drive arm 17, and a base end portion of the second driven arm 20 is further connected to the upper portion of the first driven arm 19.
  • the rotatable connecting portions of the first and second driven arms 19, 29 are arranged concentrically with each other and can be individually rotated.
  • the second driven arm 20 is rotatable in the region above the upper surface of the second drive source 16 (with a gap of several millimeters in this embodiment).
  • the upper part of the second drive arm 18 near the tip thereof has a third driven arm 21 and a fourth driven arm.
  • the base end force of the drum 22 is connected to each other in a rotatable manner.
  • the respective connecting positions are adjacent to each other, and the respective rotating shafts are arranged in parallel with each other, and are rotatable in substantially the same horizontal plane as that of the second driven arm 20 described above.
  • the first driven arm 19 is partially bent in the height direction so that the first driven arm 19 and the third driven arm 21 are the same as the height region in which the first driven arm 19 rotates.
  • the first hand 23 is rotatably installed at the tip of the first and third driven arms 19, 21.
  • a second hand 24 is rotatably installed at the distal ends of the second and fourth driven arms 20 and 22.
  • Each of the hands 23 and 24 has a tip portion formed into two forks, and has a concave portion corresponding to the substrate 3 on the upper surface side thereof. Then, the substrate 3 can be held in the recess, and can be moved back and forth and rotated in the same horizontal plane.
  • the rotation center force of the first drive source 15 is also equal to the distance between the rotation axes of the driven arms 19 to 22 on the drive arms 17 and 18.
  • the distance from the hand to the center of the support shaft is all equal, but the present invention is not limited to this.
  • the forward and backward directions of the first hand 23 and the second hand 24 are directed in the radial direction from the rotation center of each drive source, and the directions of both hands 23 and 24 are less than 180 degrees.
  • the angle is 175 degrees in this embodiment. For this reason, compared with a conventional transfer robot having an angle of 180 degrees, the rotation angle when transferring the substrate 3 is smaller, and the operation time for delivering the substrate 3 can be shortened.
  • the transfer robot 4 of the present embodiment includes a rotation transmission means 34 for adjusting the directions of the hands 23 and 24.
  • the drive arms 17 and 18, the driven arms 19 to 22, and the hands 23 and 24 form a substantially pentagonal link mechanism.
  • the above-mentioned link mechanism moves forward and backward to move each hand 23, 24.
  • the direction of each of the hands 23 and 24 is not constant and the substrate cannot be transported stably. Therefore, in this embodiment, the angle of the hand with respect to one driven arm and the other driven arm.
  • Rotation transmission means 34 is provided to ensure that the angle with the hand is always equal.
  • the rotation transmitting means 34 supports the first hand 23 (second hand 24) in a rotatable manner at the distal end portions of the driven arms 19 (22), 21 (20).
  • pulleys are formed on the support shafts 35a and 35b that support the hand 23 (24), and two steel belts 36 are shifted in the height direction on the pulleys to form an S-shape and an inverted S-shape.
  • the belts form a figure of 8 together.
  • Such a rotation transmission means 34 is not limited to the steel belt 36 but may be replaced with a gear or other link.
  • the transfer robot 4d in FIG. 6 is a person provided with three drive arms 17, 18a, and 18b, whereas the transfer robot 4 of the embodiment includes two drive arms 17 and 18. Specifically, the front end side of the drive arm 18 is divided into forks to form drive arms 18a and 18b.
  • the angle formed by the hands 23 and 24 (the angle on the second drive arm 19 side) can be further reduced.
  • the transfer robot provided on the inner bottom wall of the transfer chamber in the present embodiment is provided with two driven arms concentrically with the drive arm attached to the lower drive source and the drive arm attached to the upper drive source.
  • the transportable range maximum reach of the hand
  • the operating range during rotation can be reduced
  • the entire transport robot The height can be lowered.
  • the internal volume of the transfer chamber can be reduced, and the processing preparation time in various processing chambers can be shortened by shortening the time required for the inside of the transfer chamber to be in an atmosphere such as a vacuum. Also, when manufacturing the transfer chamber, it is smaller than the conventional size, so processing is highly accurate. It is easy and the cost is reduced.
  • the drive source of the transfer robot has a partition that hermetically separates the atmosphere side outside the transfer chamber and the vacuum atmosphere or inert gas atmosphere (hereinafter referred to as vacuum atmosphere) side inside the transfer chamber.
  • vacuum atmosphere the vacuum atmosphere or inert gas atmosphere
  • the present invention can be used as a transfer robot and a processing apparatus for moving and processing a substrate under a highly clean environment, and can be used particularly for manufacturing a semiconductor wafer that is an electronic component or an LCD substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

A transfer robot is composed of two concentrically arranged driving sources; a driving arm protruding from a side plane of each driving source; two driven arms arranged at the other end of the driving arm; and a hand arranged at a leading end of the driven arm to form a pair with another. The transfer robot advances, retracts and turns the first hand and the second hand through each arm by turning the driving sources in different directions or in the same direction. A processing apparatus provided with the transfer robot is provided with a plurality of placing chambers whose planar shapes are square, by connecting the chambers with connecting chambers, and transfer and receive substrates to and from two process chambers provided on each side wall plane of the placing chamber, by the substrate transfer robot arranged close to the center inside the placing chamber.

Description

基板の搬送ロボットおよび処理装置  Substrate transfer robot and processing apparatus
技術分野  Technical field
[0001] 本発明は、高清浄な環境のもとで基板の移動及び処理を行う搬送ロボットおよび処 理装置に関するものである。  The present invention relates to a transfer robot and a processing apparatus that move and process a substrate in a highly clean environment.
本発明は、移動及び処理を行う際に高い清浄環境を必要とする基板あるいはこれ に類する物品のいずれにも適用可能であり、以下には特に電子部品である半導体ゥ ェハや、 LCDの基板をあげて説明する力 これは例示のためであり、本発明を限定 するものではない。  The present invention can be applied to either a substrate that requires a high clean environment or a similar article when moving and processing, and in particular, a semiconductor wafer or an LCD substrate as an electronic component. This is for illustrative purposes and is not intended to limit the present invention.
背景技術  Background art
[0002] 半導体や LCD (液晶ディスプレイ)等の基板の製造工程にお 、ては、基板の表面 に塵埃等が付着することで製品の歩留まり(良品率)が低下する。このような問題を防 止するため、基板の製造はいわゆるクリーンルーム等の高清浄な環境下で行われる 例えば、基板の製造には、多種多様の処理を行う処理装置 (クラスタツール)が用 いられる。この処理装置では、処理室内を気密で高清浄に閉鎖して、又はその内部 を真空雰囲気や不活性ガス雰囲気にして、清浄な環境下で各処理を行う。  [0002] In the manufacturing process of substrates such as semiconductors and LCDs (liquid crystal displays), the yield (non-defective rate) of products decreases due to the adhesion of dust or the like to the surface of the substrate. In order to prevent such problems, the substrate is manufactured in a highly clean environment such as a so-called clean room. For example, a processing apparatus (cluster tool) that performs a wide variety of processing is used for manufacturing a substrate. . In this processing apparatus, each processing is performed in a clean environment by closing the processing chamber in an airtight and highly clean manner or by setting the inside of the processing chamber in a vacuum atmosphere or an inert gas atmosphere.
[0003] 処理装置は、基板を処理する処理室(プロセスチャンバ)と、この処理室に対して基 板を出し入れするための移載室と、装置外部との間で基板の搬出入を行うロードロッ ク室とを有する。一般に、一つの処理装置には多様な処理に応じて複数の処理室が 設置される。移載室はその平面形状が五角形あるいは多角形とされ、各処理室は移 載室の周囲に配置される。移載室の内部の略中央には、各処理室に基板を搬出入 するための搬送ロボットが設置される。移載室の周辺壁面には真空ノ レブにより気密 に開閉可能な扉が設置され、この扉を開くことで処理室あるいはロードロック室との間 が連通可能である。搬送ロボットは移載室の中心力 放射状に動作することで、ロー ドロック室力 各処理室へ基板の移動ができる構造となっている。 [0003] A processing apparatus includes a processing chamber (process chamber) for processing a substrate, a transfer chamber for loading / unloading a substrate into / from the processing chamber, and a load lock for carrying the substrate in / out of the apparatus. And a chamber. In general, a single processing apparatus is provided with a plurality of processing chambers for various processing. The transfer chamber has a pentagonal or polygonal planar shape, and each processing chamber is arranged around the transfer chamber. A transfer robot for loading / unloading substrates into / from each processing chamber is installed at the approximate center inside the transfer chamber. A door that can be opened and closed air-tightly by a vacuum nozzle is installed on the peripheral wall of the transfer chamber. By opening this door, communication with the processing chamber or load lock chamber is possible. The transfer robot is structured so that the substrate can be moved to each processing chamber by operating the center force of the transfer chamber radially.
[0004] 従来の処理装置としては、特許文献 1の技術が知られている。 図 10は、特許文献 1の図 1に記載された基板の処理装置 (多段式半導体処理装置[0004] As a conventional processing apparatus, the technique of Patent Document 1 is known. FIG. 10 shows a substrate processing apparatus (multistage semiconductor processing apparatus described in FIG. 1 of Patent Document 1).
)の平面形状を示すものである。 ).
図 10において、処理装置 120は、二つの多角形の移載室(ロボット式バッファチヤ ンバ 124,移送ロボットチャンバ 128)を備え、これらは二つの連結処理室(中間処理 チャンバ 126, 127)を介して連結されている。  In FIG. 10, the processing apparatus 120 includes two polygonal transfer chambers (robot-type buffer chamber 124, transfer robot chamber 128), which are connected via two linked processing chambers (intermediate processing chambers 126, 127). It is connected.
連結処理室は、例えばプラズマエッジクリーニング、及び、加熱、並びに冷却が行 われる。各移載室 124, 128の内部中央には、基板を保持して各処理室間を搬送す る 、わゆるフロッグレッダ型 (4本アーム力もなるリンク機構を有する)搬送ロボット (移 送ロボット 142,バッファロボット 140)が設置されている。  The connection processing chamber is subjected to, for example, plasma edge cleaning, heating, and cooling. In the center of each of the transfer chambers 124 and 128, a transfer robot (having a link mechanism that also has a four-arm force) transfer robot (transfer robot 142) holds the substrate and transfers it between the processing chambers. Buffer robot 140) is installed.
[0005] 移載室の周辺には、複数の処理室 (真空処理チャンバ 101〜107)と、装置外部か ら基板を受け取って一時貯蔵するロードロック室(ロードロックチャンバ 121, 122)が 設置されている。各移載室、連結処理室、各処理室およびロードロック室との間には 、それぞれ開閉可能な扉 (真空バルブ)が設置され、各室は相互に気密状態に閉鎖 できる。従って、各室は選択的に密閉して互いに隔離することができるため、各室の 内部を互 、に気密にして双方異なる真空度の雰囲気若しくは両立しがた!/、不活性ガ ス雰囲気とすることができる。 [0005] Around the transfer chamber, a plurality of processing chambers (vacuum processing chambers 101 to 107) and a load lock chamber (load lock chambers 121 and 122) for receiving and temporarily storing substrates from outside the apparatus are installed. ing. Openable and closable doors (vacuum valves) are installed between the transfer chambers, the connected processing chambers, the processing chambers, and the load lock chamber, and the chambers can be closed in an airtight state. Therefore, since each chamber can be selectively sealed and isolated from each other, the interiors of the chambers are mutually airtight so that the atmospheres have different vacuum degrees or are compatible with each other! /, And an inert gas atmosphere. can do.
なお、前述した移載室は、内部を真空等にすることから、シーリングを容易にするた め、 1枚の大きなアルミニウムの塊をカ卩ェ機械により削りだして、処理室等の連結面 加工、処理室用の空洞等を成形するモノリス構造をしている。  In addition, the transfer chamber described above is evacuated, etc., and in order to facilitate sealing, a large lump of aluminum is scraped out by a caulking machine to process the connecting surface of the processing chamber, etc. A monolith structure for forming a cavity for a processing chamber or the like.
[0006] 従来の搬送ロボットとしては、特許文献 2および特許文献 3に記載の技術が知られ ている。 [0006] Techniques described in Patent Document 2 and Patent Document 3 are known as conventional transfer robots.
図 7および図 8は、特許文献 2の図 2および図 4に記載された搬送ロボット(関節ァー ム搬送装置)を示すものである。  7 and 8 show the transfer robot (joint arm transfer device) described in FIGS. 2 and 4 of Patent Document 2. FIG.
図 8において、この搬送ロボット 200は、移載室の底部(底壁) 228には、開口部 22 7から下方 (移載室の外部)に突出するように、円柱形状の取付フランジ 238が取り付 けられている。取付フランジ 238の内部には、高さ方向に位置をずらして同心状に二 つの駆動源 215, 216が設置されている。  In FIG. 8, this transfer robot 200 has a cylindrical mounting flange 238 attached to the bottom (bottom wall) 228 of the transfer chamber so as to protrude downward from the opening 227 (outside the transfer chamber). It is attached. Inside the mounting flange 238, two drive sources 215, 216 are installed concentrically with their positions shifted in the height direction.
駆動源 215, 216は、取付フランジ 238の上部から移載室内に突出する同心状の 回動軸(アウターシャフト 239、インナーシャフト 240)を独立して回動させることができ る。 The drive sources 215 and 216 are concentric and protrude from the top of the mounting flange 238 into the transfer chamber. The rotating shaft (outer shaft 239, inner shaft 240) can be rotated independently.
[0007] すなわち、駆動源 215, 216は、複数のコイルをリング状に配置した電機子 230 (ス タータ)を各 1つずつ備える。各電機子 230の内側には、軸受け 233 (案内軸受)を介 して回動軸(アウターシャフト 239およびインナーシャフト 240)が回転可能に設置さ れている。アウターシャフト 239は電機子 230のすぐ内側あって上側の電機子 230b に対応する。インナーシャフト 240は、アウターシャフト 239のすぐ内側にあって、下 側の電機子 230aに対応する。アウターシャフト 239およびインナーシャフト 240の外 壁面であってスタータである電機子 230 (230a, 230b)に対応する位置には、ロータ としての磁石 237 (237a, 237b)が設置されている。駆動源 215, 216の筐体上部 には、真空雰囲気と電機子 230等がある空間とを隔てるベローズ 241を備え、電機 子 230等がある空間に生じる塵埃を真空雰囲気内へ流入することを防ぐことができる  That is, each of the drive sources 215 and 216 includes one armature 230 (starter) in which a plurality of coils are arranged in a ring shape. Inside each armature 230, a rotating shaft (outer shaft 239 and inner shaft 240) is rotatably installed via a bearing 233 (guide bearing). The outer shaft 239 is just inside the armature 230 and corresponds to the upper armature 230b. The inner shaft 240 is just inside the outer shaft 239 and corresponds to the lower armature 230a. Magnets 237 (237a, 237b) as rotors are installed on the outer wall surfaces of the outer shaft 239 and the inner shaft 240 and corresponding to the armatures 230 (230a, 230b) as starters. A bellows 241 that separates the vacuum atmosphere from the space where the armature 230 etc. is separated is provided at the upper part of the housing of the drive sources 215, 216 to prevent dust generated in the space where the armature 230 etc. flows from entering the vacuum atmosphere be able to
[0008] 図 7において、回動軸 239, 240の上端部には、第一駆動アーム 17 (第一アッパー アーム)と第二駆動アーム 18 (第二アッパーアーム)が取り付けられて 、る。各アーム 217, 218は、移載室の内部領域に配置され、駆動源 215, 216の回動軸中心から 半径方向に突出している。第一駆動アーム 217の他端上部には、第一、第二従動ァ ーム 219, 220 (第一前アーム、第二前アーム)が取り付けられ、第二駆動アーム 18 には第三、第四従動アーム 221, 222 (第一前アーム、第二前アーム)が取り付けら れ、これらを同じ水平面内で独立して回動可能である。第一、第三従動アーム 219, 21の他端には第一ハンド 223が回動可能に支持され、第二、第四従動アーム 220, 222には第二ハンド 24が回動可能に支持されている。これにより、この搬送ロボット 2 00は、第一、第二駆動源 215, 216により回動軸 239, 240を互いに異なる方向に 回動させることで、第一、第二ハンド 223, 224を回動軸 239, 240の中心に対して 径方向(図 9の上下方向)に伸長または後退させることができる。また、回動軸 239, 2 40を同方向に回動させることで、回動軸 239, 240の中心に対して第一、第二ハンド 223, 224を同時に回動させることができる。 In FIG. 7, a first drive arm 17 (first upper arm) and a second drive arm 18 (second upper arm) are attached to the upper ends of the rotating shafts 239 and 240. The arms 217 and 218 are arranged in the inner region of the transfer chamber, and protrude in the radial direction from the rotation shaft centers of the drive sources 215 and 216. First and second follower arms 219 and 220 (first forearm and second forearm) are attached to the upper end of the other end of the first drive arm 217, and third and second followers are attached to the second drive arm 18. Four driven arms 221, 222 (first forearm, second forearm) are attached and can be rotated independently in the same horizontal plane. A first hand 223 is rotatably supported on the other ends of the first and third driven arms 219 and 21, and a second hand 24 is rotatably supported on the second and fourth driven arms 220 and 222. ing. As a result, the transfer robot 200 rotates the first and second hands 223 and 224 by rotating the rotation shafts 239 and 240 in different directions by the first and second drive sources 215 and 216, respectively. It can be extended or retracted in the radial direction (vertical direction in Fig. 9) with respect to the center of the shaft 239, 240. Further, the first and second hands 223 and 224 can be simultaneously rotated with respect to the centers of the rotation shafts 239 and 240 by rotating the rotation shafts 239 and 240 in the same direction.
[0009] 図 9は、特許文献 3の図 4に示す搬送ロボット 300 (移送装置)である。 この搬送ロボット 300は、前述した搬送ロボット 200が駆動源 215, 216で駆動され る二つの回動軸(アウターシャフト 239とインナーシャフト 240と)を同心状に備えるの に対して、これとは異なる並列状の構成を備えている。 FIG. 9 shows the transfer robot 300 (transfer device) shown in FIG. The transfer robot 300 is different from the transfer robot 200 described above, which has two rotation shafts (an outer shaft 239 and an inner shaft 240) that are driven by driving sources 215 and 216 in a concentric manner. It has a parallel configuration.
図 9において、搬送ロボット 300は、二つの回動軸 342 (第一駆動軸 342a、第二駆 動軸 342b)を有し、これらがベース板 325 (支持部)上に、ノヽンド 323, 324の進行方 向に並べて配置されている。この搬送ロボットでは、各回動軸 342 (342a、 342b)の 上端に第一駆動アーム 317および第二駆動アーム 318が異なる高さに配置される。 また、第一駆動アーム 317の上面の形状が、一部凹部を有する棒状であり、第二駆 動アーム 318を回動した際に第一駆動軸 342aと当接するのを回避できる。また、第 一駆動アーム 317 (第一駆動リンク)の先端上部に第一、第二従動アーム 319, 320 (伝達リンク)を、第二駆動アーム (第二駆動リンク)の先端上部に第三、第四従動ァ ーム 321, 322 (伝達リンク)を、それぞれ同心状となるように備える。なお、各回動軸 342は各々を駆動する駆動源(図示せず)を有し、各々により独立して駆動される。 通常、各駆動源はベース板 325より下方の空間に並べて配置される。  In FIG. 9, the transfer robot 300 has two rotating shafts 342 (a first driving shaft 342a and a second driving shaft 342b), which are connected to the base plate 325 (support portion) on the nodes 323, 324. Are arranged side by side in the direction of travel. In this transfer robot, the first drive arm 317 and the second drive arm 318 are arranged at different heights at the upper ends of the respective rotation shafts 342 (342a, 342b). Further, the shape of the upper surface of the first drive arm 317 is a rod having a partially recessed portion, and it is possible to avoid contact with the first drive shaft 342a when the second drive arm 318 is rotated. The first and second driven arms 319 and 320 (transmission link) are placed on the top end of the first drive arm 317 (first drive link), and the third and top are placed on the top end of the second drive arm (second drive link). The fourth follower arms 321, 322 (transmission links) are provided so as to be concentric with each other. Each rotation shaft 342 has a drive source (not shown) for driving each rotation shaft 342, and is driven independently by each. Usually, the drive sources are arranged side by side in a space below the base plate 325.
[0010] 特許文献 1 :特開平 03— 19252号公報 Patent Document 1: Japanese Patent Laid-Open No. 03-19252
特許文献 2:特表平 08— 506771号公報  Patent Document 2: Japanese Patent Publication No. 08-506771
特許文献 3:特表 2004 - 237436号公報  Patent Document 3: Japanese Translation of Special Publication 2004-237436
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 前述した移載室は、内容積の小さいことが望まれている。これには理由が 2つある。 [0011] The transfer chamber described above is desired to have a small internal volume. There are two reasons for this.
第一の理由は、内部を迅速に真空若しくは不活性ガス雰囲気とするためである。第 二の理由は、前述のように移載室は大きなアルミ塊から削り出すカ卩ェにより製造され ることが多いが、加工コスト、時間の軽減、精度の向上等のためには小さいことが重 要である。  The first reason is to quickly make the inside a vacuum or an inert gas atmosphere. The second reason is that, as described above, the transfer chamber is often manufactured by a chain that is cut out from a large aluminum lump, but it is small in order to reduce processing cost, time, and accuracy. is important.
ところが、移載室を小さくすれば、移載室の内部に備える搬送ロボットをストローク( 可搬送距離)はそのままに、搬送ロボット自体の大きさおよび稼動範囲を小さくする必 要がある。また、移載室に搬送ロボットを容易に取り付けできるように搬送ロボット自体 をコンパクトにすることも必要になる。 [0012] 前述した図 7および図 9の搬送ロボット 200, 300についてそのコンパクトィ匕につい て考えると、次のような問題がある。 However, if the transfer chamber is made smaller, it is necessary to reduce the size and operating range of the transfer robot itself while maintaining the stroke (allowable transfer distance) of the transfer robot provided inside the transfer chamber. It is also necessary to make the transfer robot itself compact so that the transfer robot can be easily attached to the transfer chamber. Considering the compactness of the transfer robots 200 and 300 shown in FIGS. 7 and 9 described above, there are the following problems.
図 9の搬送ロボット 300では、各回動軸 342a, 342bが並列に配置され、各駆動ァ ーム 317, 318は同じ水平面内で回動可能に配置されている。一方、各駆動アーム 217, 218の先端では各従動アーム 319〜322の回動連結部分が同心状に構成さ れ、各従動アーム 319〜322は高さが異なる配置とされている。  In the transfer robot 300 of FIG. 9, the rotation shafts 342a and 342b are arranged in parallel, and the drive arms 317 and 318 are arranged to be rotatable in the same horizontal plane. On the other hand, at the front ends of the drive arms 217 and 218, the rotational connection portions of the driven arms 319 to 322 are concentrically arranged, and the driven arms 319 to 322 are arranged at different heights.
[0013] 図 7の搬送ロボット 200では、回動軸 239, 240が同心状に配置され、 2つの駆動ァ ーム 217, 218は高さが異なる配置とされている。一方、各々に連結される各従動ァ ーム 219〜212は各駆動アーム 217, 218の先端に個別に回動連結されている。つ まり、各従動アーム 219〜212の端部は複数の並列な回動軸により位置をずらして 各駆動アーム 217, 218の先端に連結されている。  In the transfer robot 200 of FIG. 7, the rotation shafts 239 and 240 are arranged concentrically, and the two drive arms 217 and 218 are arranged at different heights. On the other hand, each of the follower arms 219 to 212 connected to each other is individually pivotally connected to the tip of each of the drive arms 217 and 218. In other words, the end portions of the driven arms 219 to 212 are connected to the tip ends of the drive arms 217 and 218 by shifting their positions by a plurality of parallel rotation shafts.
[0014] このように、各回動軸あるいは各駆動アームと各従動アームとの連結部分につ!、て は、各々を同心状にした場合には高さが大きくなるが平面形状は小さくなり、各々を 並列化した場合には高さを小さくできるが平面形状は大きくなるという状況にある。 これらの相反する関係を考慮して搬送ロボットのコンパクトィ匕を図ることが要求され るのである力 例えば平面形状を抑えるために各回動軸および各駆動アームと各従 動アームとの連結部分をともに同心状に配置した場合、高さ寸法は各々の高さを合 算したものとなる。一方で高さ寸法を抑えるために各回動軸および各駆動アームと各 従動アームとの連結部分をともに並列状に配置した場合、平面寸法は累積的に拡大 する可能性がある。  [0014] In this way, each pivot shaft or connection portion between each drive arm and each driven arm! However, when each is concentric, the height increases, but the planar shape becomes smaller. When the components are arranged in parallel, the height can be reduced, but the planar shape increases. Considering these contradictory relationships, it is required to make the transport robot compact. For example, in order to suppress the planar shape, both the rotating shafts and the connecting portions of the drive arms and the driven arms are connected together. When arranged concentrically, the height dimension is the sum of the heights. On the other hand, if the rotating shafts and the connecting parts of each drive arm and each driven arm are arranged in parallel to reduce the height, the plane dimensions may increase cumulatively.
このような構造上の相違から、駆動アームや従動アームの長さが同じであっても、搬 送ロボットのコンパクトィ匕が難し ヽと 、う問題があった。  Due to such structural differences, there is a problem that even if the lengths of the drive arm and the follower arm are the same, the compactness of the transport robot is difficult.
[0015] 本発明の主な目的は、コンパクトィ匕が可能な基板の搬送ロボットを提供することにあ る。 A main object of the present invention is to provide a substrate transfer robot capable of compactness.
[0016] 一方、従来の処理装置は、移載室の形状が、五角以上を有する多角形であり、移 載室を搬送ロボットの回動中心にむけて、放射線状に配置するものであった。これは 、移載室中心に配置するフロッグレッダ型搬送ロボットが、保持した基板を回動中心 力 放射線上にある処理室へ直線動作するだけで基板の受け渡し可能にするため である。また、このような処理装置では、搬送ロボットを直線方向へと回転方向への移 動動作を行うための単純な動作制御により実現可能であるためである。 [0016] On the other hand, in the conventional processing apparatus, the shape of the transfer chamber is a polygon having five or more corners, and the transfer chamber is radially arranged toward the rotation center of the transfer robot. . This is because the frog redder type transfer robot placed at the center of the transfer chamber allows the substrate to be transferred by simply moving the held substrate to the processing chamber on the center of rotation force radiation. It is. Further, such a processing apparatus can be realized by simple operation control for moving the transfer robot in the linear direction and in the rotational direction.
[0017] しかし、搬送ロボットを中心にして、放射線方向に搬送先である処理室を配備する 必要があるため、移載室の一辺につき一つの処理室を設けるという条件の下でより多 くのプロセスチャンバを備えたい場合には、移載室の辺の数を増加する必要があつ た。当然、処理室には所定の横幅があり、これに伴い最低限の移載室の一辺の長さ を確保する必要があり、そのため、移載室を大きくせざるを得なぐそれに伴い、搬送 ロボットのストロークも長くする必要があり、また、処理装置全体を大型化する必要もあ る。  [0017] However, since it is necessary to provide a processing chamber as a transfer destination in the radiation direction with the transfer robot as the center, there is more under the condition that one processing chamber is provided for each side of the transfer chamber. If you wanted to have a process chamber, you had to increase the number of sides of the transfer chamber. Naturally, the processing chamber has a predetermined width, and as a result, it is necessary to secure the minimum length of one side of the transfer chamber. Therefore, the transfer robot must be enlarged, and accordingly, the transfer robot In addition, it is necessary to lengthen the stroke, and it is also necessary to increase the size of the entire processing apparatus.
[0018] これに対し、移載室の角数を増加せずに、 1つの側壁に対して複数の処理室を備 えるとともに、側壁に対して傾斜した向きで、全ての処理室の連結部(開口部)を搬送 ロボットの回動中心に向けて備えることにより、同様の効果を得ることができる。しかし 、連結部を側壁に面して備えるのに対して連結部の面積が大きくなり、これにより処 理室で処理する際に処理室内部を密閉するための真空バルブも大きくなる。移載室 や処理室の内部は、隔離してそれぞれ処理が行われるため、連結部の開口面積が 広い方が密閉しにくぐ内部の処理環境も不安定である。  [0018] On the other hand, without increasing the number of corners of the transfer chamber, a plurality of processing chambers are provided for one side wall, and the connecting portions of all the processing chambers are inclined with respect to the side wall. The same effect can be obtained by providing the (opening) toward the rotation center of the transport robot. However, the area of the connecting portion is increased compared to the case where the connecting portion is provided facing the side wall, thereby increasing the vacuum valve for sealing the inside of the processing chamber when processing is performed in the processing chamber. Since the inside of the transfer chamber and the processing chamber are separated from each other, the internal processing environment that is harder to seal is more unstable when the opening area of the connecting portion is larger.
[0019] また、処理装置が大型化した場合の問題点として、第一にフットスペース (設備の床 占有面積)が増大することとなり、第二に移載室の容積が増大することにより、内部を 真空、または、不活性ガスで満たす場合には所望する圧力又は濃度とするための時 間とコストが余計に力かることとなる。  [0019] Further, as a problem when the processing apparatus is increased in size, firstly, the foot space (the floor occupied area of the facility) increases, and secondly, the volume of the transfer chamber increases, If the vacuum is filled with a vacuum or inert gas, the time and cost for obtaining the desired pressure or concentration will be increased.
[0020] また、複数の移載室を連結して備える処理装置では、個々の移載室の形状が五角 形以上の多角形であれば、縦横規則正しく連結するのが困難であり、フットスペース が広くなる不具合も生じる。  [0020] In addition, in a processing apparatus having a plurality of transfer chambers connected to each other, if the shape of each transfer chamber is a polygon of pentagon or more, it is difficult to connect them vertically and horizontally, and the foot space becomes large. There is also a problem of widening.
[0021] また、移載室は、巨大なアルミ塊を削りだして生産するため、この移載室の加工は 四角形 (アルミ塊を 90度旋回させて削り出す作業は非常に加工機械の機構上容易 である。 )に比べて、非常に困難であり、その側面に処理室と連通するための開口部 を開ける加工なども非常に困難である。  [0021] In addition, since the transfer chamber is produced by cutting out a large aluminum lump, the transfer chamber is square-shaped (the work of turning the aluminum lump by turning 90 degrees is very difficult due to the mechanism of the processing machine. Compared to), it is very difficult, and it is also very difficult to open an opening for communicating with the processing chamber on the side surface.
[0022] 上述のように、より多くの処理装置を備えることができ、移載室の容積が最小になり 、フットスペースが狭ぐ移載室の加工が容易であり、複数の移載室を連結しやすい 形状であり、搬送ロボットが自在に動作可能である等の要件力 Sバランスよく有すること が望まれている。 [0022] As described above, more processing devices can be provided, and the volume of the transfer chamber is minimized. In addition, it is easy to process the transfer chamber where the foot space is narrow, it is easy to connect multiple transfer chambers, and the required force that the transfer robot can operate freely is desirable. ing.
[0023] 本発明の他の目的は、コンパクトかつ製造が容易な処理装置を提供することにある 課題を解決するための手段  [0023] Another object of the present invention is to provide a processing apparatus that is compact and easy to manufacture.
[0024] 本発明の基板の搬送ロボットは、ベース板上に回動軸を有する第一駆動源と、第 一駆動源の回動軸と同心状に回動軸を有する第二駆動源と、該第一駆動源の側面 に突出して備える第一駆動アームと、該第二駆動源の側面に突出して備える第二駆 動アームと、該第一駆動アームの他端に同心状で独立して回動可能に備える第一 従動アームと第二従動アームと、該第二駆動アームの他端に、異なる回転軸を有す る位置に独立して回動可能に備える第三従動アームと第四従動アームと、第一従動 アームと第三従動アームとにより回動可能に支持して備える第一ハンドと、第二従動 アームと第四従動アームとにより回動可能に支持して備える第二ハンドと、からなり、 第一駆動源と第二駆動源とが異方向、若しくは同方向に回動することで各アームを 介して第一ハンド、第二ハンドを進退動作、及び、回動できることを特徴とする。  The substrate transfer robot of the present invention includes a first drive source having a rotation axis on a base plate, a second drive source having a rotation axis concentrically with the rotation axis of the first drive source, A first drive arm provided protruding from a side surface of the first drive source; a second drive arm provided protruding from a side surface of the second drive source; and the other end of the first drive arm concentrically and independently. A first driven arm and a second driven arm provided for rotation, and a third driven arm and a fourth provided for rotation independently at positions having different rotation axes on the other end of the second drive arm. A first hand supported and provided rotatably by a driven arm, a first driven arm and a third driven arm, and a second hand provided supported and rotatably by a second driven arm and a fourth driven arm The first drive source and the second drive source are rotated in different directions or in the same direction. First hand through the arm, forward and backward movement of the second hand, and characterized in that it can be rotated.
[0025] 本発明にお 、ては、第一駆動源と第二駆動源とを異なる速度で回転することで、第 一駆動源の回動中心に対して放射線方向と角をなす直線上で第一ハンド及び第二 ノ、ンドを移動することちできる。  [0025] In the present invention, the first drive source and the second drive source are rotated at different speeds, so that the first drive source and the second drive source are on a straight line that forms an angle with the radiation direction with respect to the rotation center of the first drive source. You can move the first hand, second hand, and hand.
[0026] また、搬送ロボットは、第二駆動源に第二駆動アームと第三駆動アームを、第二駆 動源を中心として回動方向に角度をなした方向に突出して備えて、第二駆動アーム に第三従動アームを第三駆動アームには第四従動アームを回動可能に備えてもよ い。  [0026] Further, the transfer robot includes a second drive arm and a third drive arm as a second drive source, projecting in a direction that forms an angle with respect to the rotation direction around the second drive source. The drive arm may be provided with a third driven arm, and the third drive arm may be provided with a fourth driven arm.
[0027] 本発明の基板の搬送ロボットは、前記第一駆動源と前記第二駆動源とを異なる速 度で回転することで、第一駆動源の回動中心に対して放射線方向と角をなす直線上 で第一ハンド及び第二ハンドを移動することができることが好ましい。  [0027] The substrate transfer robot according to the present invention rotates the first drive source and the second drive source at different speeds, thereby setting a radiation direction and an angle with respect to the rotation center of the first drive source. It is preferable that the first hand and the second hand can be moved on a straight line formed.
[0028] 本願発明の基板の搬送ロボットは、前記第一ハンドと前記第二ハンドとが前記第一 駆動源及び前記第二駆動源の回動中心に対して放射線方向に進退運動するもの であって、第一ハンドと第二ハンドの進行方向が 150度から 179度であることが好ま しい。 [0028] In the substrate transfer robot of the present invention, the first hand and the second hand move forward and backward in the radiation direction with respect to the rotation centers of the first drive source and the second drive source. However, it is preferable that the traveling direction of the first hand and the second hand is 150 to 179 degrees.
[0029] 本発明の基板の搬送ロボットは、前記ベース板状に同心状であって、高さ方向に位 置をずらして備える第一駆動源と第二駆動源であって、ベース板の上部に第一駆動 源を備えて、第一駆動源の上部に第二駆動源を備えることが好ましい。  [0029] The substrate transfer robot of the present invention is a first drive source and a second drive source that are concentric with the base plate and are displaced in the height direction. Preferably, the first drive source is provided, and the second drive source is provided above the first drive source.
[0030] 本発明は、基板の搬送ロボットであって、ベース板上に突出しかつ所定の回動軸線 に沿って配置されかつ個別に回動可能な第一駆動体および第二駆動体と、 前記第一駆動体から径方向に延びる第一駆動アームと、前記第二駆動体から径方 向に延びる第二駆動アームと、前記第一駆動アームの先端に回動自在に連結され た第一従動アームおよび第二従動アームと、前記第二駆動アームの先端に回動自 在に連結された第三従動アームおよび第四従動アームと、前記第一従動アームおよ び前記第三従動アームで支持された第一ハンドと、前記第二従動アームおよび前記 第四従動アームで支持された第二ハンドと、を有するとともに、前記第一駆動体およ び第二駆動体は互いに同心状かつ前記回動軸線方向にずらして配置され、前記第 一駆動アームは前記第二駆動アームよりも前記ベース板に近接して配置されており 、前記第一従動アームおよび第二従動アームは前記第一駆動アームの先端に対し て同心状の回動軸で一連に連結され、前記第三従動アームおよび第四従動アーム は前記第二駆動アームの先端に対して並列状の回動軸で個別に連結されているこ とを特徴とする。  [0030] The present invention is a substrate transfer robot, which projects on a base plate and is arranged along a predetermined rotation axis and can be individually rotated. A first drive arm extending in a radial direction from the first drive body; a second drive arm extending in a radial direction from the second drive body; and a first follower rotatably connected to a tip of the first drive arm. Supported by the arm and the second driven arm, the third driven arm and the fourth driven arm connected to the tip of the second drive arm, and the first driven arm and the third driven arm. And a second hand supported by the second driven arm and the fourth driven arm, and the first driving body and the second driving body are concentric with each other and are The first drive The moving arm is disposed closer to the base plate than the second driving arm, and the first driven arm and the second driven arm are concentric with respect to the tip of the first driving arm. The third driven arm and the fourth driven arm are connected in series, and are individually connected to the tip of the second drive arm by a parallel rotation shaft.
[0031] このような本発明においては、第一駆動体および第二駆動体は互いに同心状に配 置され、これにより平面形状の抑制が図られる。また、第一従動アームおよび第二従 動アームと第一駆動アームの先端との回動連結も同心状とされ、これによつても平面 形状の抑制が図られる。  [0031] In the present invention as described above, the first drive body and the second drive body are arranged concentrically with each other, thereby suppressing the planar shape. Further, the first driven arm, the second driven arm, and the rotational connection of the tip of the first drive arm are also concentric, and this also suppresses the planar shape.
ここで、第一従動アームおよび第二従動アームと第一駆動アームの先端との連結 は、同心状であるため高さ方向の寸法が大きくなる。しかし、第一駆動アームは第二 駆動アームよりもベース板に近接して配置されており、従って第一駆動アームないし 第一従動アームおよび第二従動アームの連結部分での高さ寸法が大きくなつても、 ベース板力 の全体的な高さ寸法は影響を受けにくい。 一方、ベース板力 離れた第二駆動アームにおいては、その先端に回動連結され る第三従動アームおよび第四従動アームは並列状の回動軸で個別に連結されてい るため、平面形状の抑制効果は低いが、前述した第一駆動アーム側での高さ寸法の 抑制効果を損なうことがなぐ全体としてのコンパクト化に有効である。 Here, since the connection between the first driven arm and the second driven arm and the tip of the first drive arm is concentric, the dimension in the height direction is increased. However, the first drive arm is arranged closer to the base plate than the second drive arm, and therefore the height dimension at the connecting portion of the first drive arm or the first driven arm and the second driven arm is larger. However, the overall height dimension of the base plate force is not easily affected. On the other hand, in the second drive arm separated from the base plate force, the third driven arm and the fourth driven arm that are pivotally connected to the tip of the second drive arm are individually connected by a parallel rotary shaft, so that the planar drive arm has a planar shape. Although the suppression effect is low, it is effective for reducing the overall size without impairing the above-described suppression effect of the height dimension on the first drive arm side.
[0032] 本発明の基板の搬送ロボットにおいて、前記第一駆動体は第一駆動源を内蔵し、 前記第二駆動体は第二駆動源を内蔵するとともに、前記第一駆動体はベース板上 に設置され、この第一駆動体上に第二駆動体が積層状に設置されていることが望ま しい。 In the substrate transfer robot of the present invention, the first driving body includes a first driving source, the second driving body includes a second driving source, and the first driving body is mounted on a base plate. It is desirable that the second driving body is installed in a stacked manner on the first driving body.
このような本発明においては、内蔵する駆動源として、回転軸方向の寸法の小さい もの、例えばダイレクトドライブ式の電動モータ等を利用することが望ましい。  In the present invention, it is desirable to use a built-in drive source having a small size in the rotation axis direction, such as a direct drive type electric motor.
このようなモータの利用により、上述のようなベース板、第一駆動体、第二駆動体と いう積層構造が可能となり、かつ第一駆動体および第二駆動体として従来のようなシ ャフトあるいは回転軸が必要なくなり、構造を簡略ィ匕できる。  By using such a motor, the laminated structure of the base plate, the first driving body, and the second driving body as described above can be realized, and the conventional shaft or the second driving body can be used as the first driving body and the second driving body. A rotating shaft is not necessary, and the structure can be simplified.
[0033] 本発明の基板の搬送ロボットにおいて、前記第一駆動体と前記第二駆動体とを相 対的に回転させることで、前記第一ハンドおよび前記第二ハンドをそれぞれ前記回 動軸線に対して径方向反対向きに進退移動可能であり、前記第一ハンドの移動軌 跡および前記第二ハンドの移動軌跡のなす角度が 150度から 179度の範囲であるこ とが望ましい。 [0033] In the substrate transfer robot of the present invention, the first hand and the second hand are rotated relative to each other so that the first hand and the second hand are moved to the rotation axis, respectively. In contrast, it is possible to move back and forth in the opposite radial direction, and it is desirable that the angle formed by the movement trajectory of the first hand and the movement trajectory of the second hand be in the range of 150 to 179 degrees.
このような本発明においては、前記第一駆動体と前記第二駆動体とを逆方向へ同 じ速度で回動させることで、各ハンドの伸縮が行われる。そして、これらを同じ方向へ 同じ速度で回動させることで、各ハンドの伸縮状態をそのままに各ハンドの方向転換 を行うことができる。  In the present invention, each hand is expanded and contracted by rotating the first drive body and the second drive body in the opposite directions at the same speed. Then, by rotating them in the same direction at the same speed, the direction of each hand can be changed without changing the stretched state of each hand.
ここで、第一ハンドおよび第二ハンドのなす角度が従来の 180度である場合、どち ら方向に回転しても結果は同じである。しかし、本発明のように一方の側の角度が 18 0度よりも小さくなることで、方向転換時にこの小さい角度の側を積極的に利用するこ とにより、必要な動作角度が小さくなる状況が生じ、結果として動作時間の短縮が図 れる。  Here, if the angle formed by the first hand and the second hand is 180 degrees, the result is the same regardless of which direction it is rotated. However, since the angle on one side is smaller than 180 degrees as in the present invention, the required operating angle is reduced by actively using this small angle side when changing directions. As a result, the operation time can be shortened.
[0034] 本発明の基板の搬送ロボットにお 、て、前記第一駆動体と前記第二駆動体とを相 対的に回転させることで、前記第一ハンドおよび前記第二ハンドをそれぞれ前記回 動軸線に対して径方向反対向きに進退移動可能であり、前記第一駆動体および前 記第二駆動体は互いに異なる回動速度で動作可能であることが望ましい。 In the substrate transfer robot of the present invention, the first driving body and the second driving body are combined with each other. By rotating counterclockwise, the first hand and the second hand can move forward and backward in the opposite radial direction with respect to the rotational axis, respectively, and the first drive body and the second drive body are It is desirable to be able to operate at different rotational speeds.
このような本発明においては、前記第一駆動体と前記第二駆動体とを、同方向であ つて異なる回動速度で動作させることで、方向転換を行いながら徐々に各ハンドを伸 縮させることができる。また、これらを逆方向であって異なる回動速度で動作させるこ とで、各ハンドの伸縮を主体に行いつつ、方向転換をも行うことができる。その結果、 各ハンドの移動軸線を、各駆動体の径方向に対して斜めにすることができ、多様な 搬送動作に適用することができる。  In the present invention, the first driving body and the second driving body are operated in the same direction and at different rotational speeds, so that each hand is gradually expanded and contracted while changing the direction. be able to. In addition, by operating them at different rotational speeds in the opposite directions, the direction can be changed while mainly expanding and contracting each hand. As a result, the moving axis of each hand can be inclined with respect to the radial direction of each driving body, and can be applied to various transport operations.
[0035] 本発明の処理装置は、平面形状が四角形の移載室と、この移載室の内部中央付 近に設置された基板の搬送ロボットと、前記移載室の各側壁面に配置された複数の プロセスチャンバと、を有する処理装置であって、前記搬送ロボットは、搬送ロボット の回動中心に対して放射線上、及び、回動方向への動作、又は、組合せにより基板 を搬送することができることを特徴とする。  The processing apparatus of the present invention is arranged on a transfer chamber having a square plane shape, a substrate transfer robot installed near the inner center of the transfer chamber, and each side wall surface of the transfer chamber. And a plurality of process chambers, wherein the transfer robot transfers a substrate by movement or combination in a radiation direction and a rotation direction with respect to a rotation center of the transfer robot. It is characterized by being able to.
[0036] あるいは、本発明の処理装置は、移載室と、この移載室の内部中央付近に設置さ れた基板の搬送ロボットと、前記移載室の各側壁面に配置された複数のプロセスチヤ ンバと、を有する処理装置であって、前記移載室は平面形状が略四角形であることを 特徴とする。  Alternatively, the processing apparatus of the present invention includes a transfer chamber, a substrate transfer robot installed in the vicinity of the center inside the transfer chamber, and a plurality of side walls disposed on the side walls of the transfer chamber. A processing chamber, wherein the transfer chamber has a substantially quadrangular planar shape.
[0037] このような本発明においては、一般に処理装置の製造に用いられるところの、 1枚の 大きなアルミニウムの塊を加工機械により削りだして成形する際に、移載室の形状が 四角形状であり簡易な形状をしているため、肖 IJり出し加工が著しく容易となる。更に、 移載室が四角形状であることから、複数の移載室を並列することが容易であり、連結 処理室を介して連結することが容易である。  [0037] In the present invention as described above, when a large aluminum lump, which is generally used for manufacturing a processing apparatus, is cut out and formed by a processing machine, the shape of the transfer chamber is a square shape. Because it has a simple shape, it is extremely easy to carry out Xiao IJ. Furthermore, since the transfer chamber has a quadrangular shape, it is easy to arrange a plurality of transfer chambers in parallel, and it is easy to connect them via the connection processing chamber.
[0038] 本発明の処理装置において、前記プロセスチャンバは、前記移載室の各側壁面に 2つ設けられて!/、ることが好まし!/、。  [0038] In the processing apparatus of the present invention, it is preferable that two process chambers are provided on each side wall surface of the transfer chamber! /.
この発明によれば、プロセスチャンバは、開口部が搬送ロボットの回動中心に対し て放射線方向と角度をなした方向に取り付け、搬送ロボットが保持した基板を、直線 及び曲線動作することにより受け渡すことができる。 [0039] 本発明の処理装置において、前記移載室を複数備えるとともに、前記各移載室を 互 ヽに連結する連結処理室を備えることが好ま 、。 According to the present invention, the process chamber is attached in a direction in which the opening portion forms an angle with the radiation direction with respect to the rotation center of the transfer robot, and the substrate held by the transfer robot is delivered by performing linear and curved operations. be able to. [0039] In the processing apparatus of the present invention, it is preferable that a plurality of the transfer chambers are provided and a connection processing chamber for connecting the transfer chambers to each other is provided.
この発明によれば、移載室の複数ィ匕により、更に多くのプロセスチャンバを配置す ることができる。そして、連結処理室を用いることで、一方の移載室から他方の移載室 へと基板を搬送する際に、移載室の間に備える連結処理室に基板を仮置きする。こ の際に、搬送先である他方の移載室において、 CVDや PVD等の各種処理を行う前 後に連結処理室に備える基板の加熱手段、又は冷却手段により基板の加熱、又は、 冷却をすることで、各種処理を速やかに行うことができる。  According to the present invention, more process chambers can be arranged by a plurality of transfer chambers. Then, by using the connection processing chamber, the substrate is temporarily placed in the connection processing chamber provided between the transfer chambers when the substrate is transported from one transfer chamber to the other transfer chamber. At this time, the substrate is heated or cooled by the substrate heating means or the cooling means provided in the connection processing chamber before and after performing various processes such as CVD and PVD in the other transfer chamber as the transfer destination. Thus, various processes can be performed promptly.
[0040] 本発明の処理装置は、前記複数の連結処理室が、基板の加熱手段または基板の 冷却手段を兼ねることが好まし 、。  In the processing apparatus of the present invention, it is preferable that the plurality of connected processing chambers also serve as a substrate heating unit or a substrate cooling unit.
この発明によれば、たとえば、加熱手段により基板の加熱、又は、冷却手段により基 板の冷却を行うことができる。  According to this invention, for example, the substrate can be heated by the heating means, or the substrate can be cooled by the cooling means.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]本発明の一実施形態の処理装置を示す平面図である。  FIG. 1 is a plan view showing a processing apparatus according to an embodiment of the present invention.
[図 2]前記実施形態の移載室を示す平面図である。  FIG. 2 is a plan view showing a transfer chamber of the embodiment.
[図 3]前記実施形態の搬送ロボットを示す斜視図である。  FIG. 3 is a perspective view showing the transfer robot of the embodiment.
[図 4]前記実施形態の駆動部を示す一部破断した斜視図である。  FIG. 4 is a partially broken perspective view showing the drive unit of the embodiment.
[図 5]前記実施形態のハンドおよび回動伝達手段を示す斜視図である。  FIG. 5 is a perspective view showing the hand and the rotation transmission means of the embodiment.
[図 6]本発明の変形例を示す斜視図である。  FIG. 6 is a perspective view showing a modification of the present invention.
[図 7]従来の搬送ロボットを示す平面図である。  FIG. 7 is a plan view showing a conventional transfer robot.
[図 8]従来の搬送ロボット示す断面図である。  FIG. 8 is a cross-sectional view showing a conventional transfer robot.
[図 9]従来の搬送ロボットを示す斜視図である。  FIG. 9 is a perspective view showing a conventional transfer robot.
[図 10]従来の処理装置を示す平面図である。  FIG. 10 is a plan view showing a conventional processing apparatus.
符号の説明  Explanation of symbols
[0042] 1 処理装置 [0042] 1 Processing device
2 移載室  2 Transfer room
3 基板  3 Board
4 搬送ロボット 5 側壁面 4 Transfer robot 5 Side wall surface
6 プロセスチャンバ(処理室)  6 Process chamber
7 連結処理室  7 Consolidated processing room
13 口 -ド、ロック室  13 mouth-de, lock room
15 ·¾¾■  15 · ¾¾
柬—一駆動源  柬 —One drive source
16 二駆動源  16 Dual drive source
17 一駆動ァー -ム  17 One drive arm
18 二駆動ァー -ム  18 Double drive arm
19 一従動ァー -ム  19 One Follower Arm
20 二従動ァー -ム  20 Second Follower Arm
21 三従動ァー -ム  21 Three followers
22 第四従動ァー -ム  22 Fourth Follower Arm
23 ーノヽンド  23 -Nord
24 ニノヽンド  24 Ninond
25 ベ、ース板  25 base plate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明の一実施形態を図面に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1において、処理装置 1は本発明に基づく処理装置であり、この処理装置 1は本 発明に基づく搬送ロボット 4を備えて 、る。  In FIG. 1, a processing apparatus 1 is a processing apparatus according to the present invention, and this processing apparatus 1 includes a transfer robot 4 according to the present invention.
具体的に、処理装置 1は、内部に二つの移載室 2 (2a、 2b)を有する。 各移載室 2は、それぞれ平面形状が正方形、すなわち四辺が同じ長さの四角形とさ れて 、る。各移載室 2の各辺には側壁面 5が配置されて 、る。  Specifically, the processing apparatus 1 has two transfer chambers 2 (2a, 2b) inside. Each transfer chamber 2 has a square planar shape, that is, a quadrangle having the same length on all four sides. A side wall surface 5 is disposed on each side of each transfer chamber 2.
各移載室 2の内部には、その略中央に基板 3を搬送するための搬送ロボット 4が設 置されて!、る。この搬送ロボット 4につ ヽては後で詳細に説明する。  Inside each transfer chamber 2, a transfer robot 4 for transferring the substrate 3 is installed in the approximate center! The transfer robot 4 will be described in detail later.
[0044] 各移載室 2a, 2bの間には連結処理室 7が配置され、移載室 2aと搬送装置 8 (後述 )との間にはロードロック室 13が配置されている。 [0044] A connection processing chamber 7 is disposed between the transfer chambers 2a and 2b, and a load lock chamber 13 is disposed between the transfer chamber 2a and a transfer device 8 (described later).
更に、各移載室 2a, 2bの各辺には、前述した連結処理室 7あるいはロードロック室 13が設置されている辺を除き、それぞれ処理室(プロセスチャンバ) 6が二つづつ配 置されている。 Further, two processing chambers (process chambers) 6 are arranged on each side of each transfer chamber 2a, 2b except for the side where the above-described connection processing chamber 7 or load lock chamber 13 is installed. Is placed.
各プロセスチャンバ 6にお 、ては、搬送ロボット 4により内部に基板 3が搬入され(図 2参照)、搬入された基板 3に対して CVD等の各種処理を行うことができる。  In each process chamber 6, the substrate 3 is loaded into the inside by the transfer robot 4 (see FIG. 2), and various processes such as CVD can be performed on the loaded substrate 3.
連結処理室 7においては、基板 3の加熱手段等を備えており、移載室 2aから移載 室 2bへと基板 3を搬送する際に、別の基板 3をプロセスチャンバ 6に載置する待機時 間等を利用して、この連結処理室 7に保管されている基板 3の加熱処理を行うことが できる。  In the connection processing chamber 7, a heating means for the substrate 3 is provided, and when the substrate 3 is transported from the transfer chamber 2a to the transfer chamber 2b, another substrate 3 is placed on the process chamber 6. The substrate 3 stored in the connection processing chamber 7 can be heated using time or the like.
[0045] ロードロック室 13に隣接して搬送装置 8が設置されている。  A transfer device 8 is installed adjacent to the load lock chamber 13.
搬送装置 8は、処理装置 1に対する基板 3の搬入および搬出を行うものであり、タリ ーンルーム内で基板 3を運搬するためのポッド 9を載置する載置台と、ポッド 9の蓋を 取り外すためのロードポート 12と、ポッド 9内部力も基板 3をロードロック室 13に搬送 する基板搬送ロボット 14を備えている。  The transfer device 8 carries the substrate 3 into and out of the processing device 1, and is used to remove the lid of the pod 9 and a mounting table on which the pod 9 for carrying the substrate 3 is carried in the talen room. A load port 12 and a pod 9 internal force are also provided with a substrate transfer robot 14 that transfers the substrate 3 to the load lock chamber 13.
[0046] 図 2において、前述したように移載室 2は四角形状とされ、その周囲には四つの側 壁面 5が形成され、その外側にはプロセスチャンバ 6が設置されている。  In FIG. 2, as described above, the transfer chamber 2 has a quadrangular shape, four side wall surfaces 5 are formed around the transfer chamber 2, and a process chamber 6 is installed on the outside thereof.
側壁面 5には、プロセスチャンバ 6内部と移載室 2内部とを連通する開口が形成され ている。この開口は真空ノ レブ(図示省略)により開閉可能とされ、閉鎖状態ではプ ロセスチャンバ 6内部と移載室 2内部が気密状態で隔離されるようになっている。一方 、この開口を開いた状態では、搬送ロボット 4により基板 3が移載室 2からプロセスチヤ ンバ 6へと搬入あるいは逆に搬出可能である。  The side wall surface 5 is formed with an opening that communicates the inside of the process chamber 6 and the inside of the transfer chamber 2. This opening can be opened and closed by a vacuum nozzle (not shown). In the closed state, the inside of the process chamber 6 and the inside of the transfer chamber 2 are separated in an airtight state. On the other hand, when the opening is opened, the substrate 3 can be transferred from the transfer chamber 2 to the process chamber 6 by the transfer robot 4 or vice versa.
[0047] なお、図中点線で示す円は、搬送ロボット 4が基板 3を保持して、プロセスチャンバ 6 内力 他のプロセスチャンバ 6へ搬送するときの基板 3の軌跡を示すものである。この 搬送ロボット 4では、後述する第一駆動源 15と第二駆動源 16を異なる速度で動作さ せることで、各ハンド 23、 24を径方向に対して所定角度をなす方向に直線移動させ ることがでさる。  It should be noted that a circle indicated by a dotted line in the figure indicates a locus of the substrate 3 when the transfer robot 4 holds the substrate 3 and transfers the internal force to the process chamber 6 to another process chamber 6. In this transfer robot 4, by moving a first drive source 15 and a second drive source 16, which will be described later, at different speeds, each hand 23, 24 is linearly moved in a direction that forms a predetermined angle with respect to the radial direction. That's right.
このため、プロセスチャンバ 6が移載室 2の各辺に二つずつ配置され、つまり各プロ セスチャンバ 6に正面から出入りする移動軸線がそれぞれ移載室 2の中央、搬送ロボ ット 4の中心軸線を通らない場合でも、各プロセスチャンバ 6に対して正面力も基板 3 を搬入する等が可能である。 すなわち、本実施形態の処理装置 1に設置される搬送ロボット 4は、搬送ロボットの 回動中心に対して放射線上、及び、回動方向への動作、又は、組合せにより基板を 搬送することができるため、処理室の連結部(開口部)が搬送ロボットの回動中心に 対して放射線方向に向 ヽて ヽなくても、基板を搬送することができる。 For this reason, two process chambers 6 are arranged on each side of the transfer chamber 2, that is, the movement axes that enter and exit each process chamber 6 from the front are the center of the transfer chamber 2 and the central axis of the transfer robot 4, respectively. Even if it does not pass, the substrate 3 can be carried into each process chamber 6 with a frontal force. That is, the transfer robot 4 installed in the processing apparatus 1 of the present embodiment can transfer a substrate by radiation or movement in the rotation direction or a combination with respect to the rotation center of the transfer robot. Therefore, the substrate can be transferred even if the connecting portion (opening portion) of the processing chamber does not face in the radiation direction with respect to the rotation center of the transfer robot.
[0048] 本実施形態の処理装置 1にお 、て、移載室 2は、 1枚の大きなアルミニウムの塊を 加工機械により削り出して空洞等を有するモノリス構造としたものである。この際、移 載室 2はその平面形状が四角形であり、簡易な形状をしているため、肖艶出し加工が 容易である。 [0048] In the processing apparatus 1 of the present embodiment, the transfer chamber 2 has a monolith structure in which a large aluminum lump is cut out by a processing machine and has a cavity or the like. At this time, the transfer chamber 2 has a quadrangular planar shape and a simple shape, so that it can be easily polished.
また、移載室 2が四角形であるため、複数の移載室 2を並行に配列し、連結処理室 7を介して連続させることも容易である。また、従来の多角形(5角形あるいはそれ以 上の多角形)の移載室 2に比べてフットスペースが小さくても、より多くのプロセスチヤ ンバ 6を備えることができる。  In addition, since the transfer chamber 2 has a quadrangular shape, it is easy to arrange a plurality of transfer chambers 2 in parallel and to continue them through the connection processing chamber 7. In addition, more process chambers 6 can be provided even if the foot space is smaller than the conventional polygonal (pentagonal or more polygonal) transfer chamber 2.
更に、連結処理室 7を介して複数の移載室 2を縦横整然と連結することがきるため、 工場(工程)のレイアウトが容易になる。  Furthermore, since the plurality of transfer chambers 2 can be connected in a vertical and horizontal order via the connection processing chamber 7, the layout of the factory (process) is facilitated.
[0049] 次に、前述した処理装置 1に設置される基板の搬送ロボット 4について説明する。 Next, the substrate transfer robot 4 installed in the processing apparatus 1 will be described.
図 3において、本実施形態の搬送ロボット 4は、いわゆるフロッグレッダ型の搬送口 ボットであり、前述した前述した処理装置 1の移載室 2に固定されて基板 3の搬送を行 うものである。  In FIG. 3, the transfer robot 4 of the present embodiment is a so-called frog redder type transfer port bot, which is fixed to the transfer chamber 2 of the processing apparatus 1 described above and transfers the substrate 3. .
ベース板 25上には薄い板状の第一駆動源 15が設置され、この第一駆動源 15の 上には同様な第二駆動源 16が設置されている。  A thin plate-shaped first drive source 15 is installed on the base plate 25, and a similar second drive source 16 is installed on the first drive source 15.
[0050] 図 4において、第一駆動源 15および第二駆動源 16はそれぞれ内部に電動モータ を備えている。 In FIG. 4, each of the first drive source 15 and the second drive source 16 includes an electric motor inside.
ベース板 25は第一、第二駆動源 15、 16を移載室 2の筐体 28の内部底壁上に取り 付けるためのものであり、このベース板 25のフランジ部分と内部底壁の接触箇所との 間には移載室 2の内部を気密に保つシール部材 27が設置されて 、る。  The base plate 25 is used to mount the first and second drive sources 15 and 16 on the inner bottom wall of the housing 28 of the transfer chamber 2. The base plate 25 is in contact with the flange portion of the base plate 25 and the inner bottom wall. A sealing member 27 for keeping the inside of the transfer chamber 2 airtight is installed between the two.
ベース板 25の中央部分は筐体 28の開口力も外部(図中下方)に突出する筒状部 2 5aとされ、その中央には筐体 28の内側(図中上方)へ突出する有底筒状の隔壁 29 が形成されている。これらのシール部材 27、ベース板 25、筒状部 25a、隔壁 29によ り、筐体 28の内部である真空領域 IVと、筐体 28の外側である大気領域 IAとが気密 状態で遮断されている。 The central portion of the base plate 25 is a cylindrical portion 25a that also projects the opening force of the housing 28 to the outside (downward in the figure), and has a bottomed cylinder that protrudes to the inside (upward in the figure) of the housing 28 at the center. A partition wall 29 is formed. These sealing member 27, base plate 25, cylindrical portion 25a, partition wall 29 Thus, the vacuum region IV inside the housing 28 and the air region IA outside the housing 28 are shut off in an airtight state.
[0051] 隔壁 29の内側壁面には固定軸部材 32が形成され、この固定軸部材 32には複数 の電機子 30a, 30bと、センサ 31a〜31dと力 それぞれリング状に隣接して配置され ている。 [0051] A fixed shaft member 32 is formed on the inner wall surface of the partition wall 29, and a plurality of armatures 30a and 30b and sensors 31a to 31d are arranged adjacent to each other in a ring shape on the fixed shaft member 32. Yes.
固定軸部材 32の周囲には回動部材 26a, 26bが設置されている。  Around the fixed shaft member 32, rotating members 26a and 26b are installed.
回動部材 26a, 26bはそれぞれ円筒状の部分と、その上端外周に形成されたフラ ンジ部分とを有し、このフランジ部分が前述した第一駆動源 15および第二駆動源 16 としてベース板 25上に積層状態で露出する部分となる。  Each of the rotating members 26a and 26b has a cylindrical portion and a flange portion formed on the outer periphery of the upper end thereof. This flange portion serves as a base plate 25 as the first drive source 15 and the second drive source 16 described above. It becomes a part exposed in a laminated state on the top.
回動部材 26aの円筒状部分は、軸受け 33aを介してベース板 25に回転自在に支 持されている。回動部材 26bの円筒状部分は、軸受け 33bを介して回動部材 26aの 内側に回転自在に支持されている。これにより、回動部材 26a, 26bの各円筒状部分 は互いに同心状に配置され、かつ各々が個別に回転自在とされて 、る。  The cylindrical portion of the rotating member 26a is rotatably supported on the base plate 25 via a bearing 33a. The cylindrical portion of the rotating member 26b is rotatably supported inside the rotating member 26a via a bearing 33b. As a result, the cylindrical portions of the rotating members 26a and 26b are arranged concentrically with each other, and are individually rotatable.
回動部材 26a, 26bの各円筒状部分には、リング状に隣接して取り付けられた複数 の磁石 37a, 37bを備えている。これらの磁石 37a, 37bと前述した固定軸部材 32の 電機子 30a, 30bとは、互いに対向した位置に配置されてダイレクトドライブ式の電動 モータを構成している。  Each cylindrical part of the rotating members 26a and 26b is provided with a plurality of magnets 37a and 37b attached adjacent to each other in a ring shape. These magnets 37a and 37b and the above-described armatures 30a and 30b of the fixed shaft member 32 are arranged at positions facing each other to constitute a direct drive type electric motor.
[0052] 図 3に戻って、第一、第二駆動源 15、 16 (回動部材 26a, 26bのフランジ部)の周 面には、それぞれ水平方向に突出する第一、第二駆動アーム 17、 18が形成されて いる。なお、本実施形態では、回動部材 26aから第一駆動アーム 17までが一体に形 成され、回動部材 26bから第二駆動アーム 18までが一体に形成されている。  Returning to FIG. 3, the first and second drive arms 17 projecting in the horizontal direction on the peripheral surfaces of the first and second drive sources 15 and 16 (flange portions of the rotating members 26a and 26b), respectively. , 18 is formed. In the present embodiment, the rotating member 26a to the first drive arm 17 are integrally formed, and the rotating member 26b to the second drive arm 18 are integrally formed.
第一駆動アーム 17の先端付近の上部には、第一従動アーム 19の基端部が回動 自在に連結され、この第一従動アーム 19の更に上部には第二従動アーム 20の基端 部が回転自在に連結されている。ここで、第一および第二の従動アーム 19, 29の回 動自在な連結部分は互いに同心状に配置されおり、かつ個別に回動自在である。こ の第二従動アーム 20は、第二駆動源 16の上面より上方 (本実施例においては数ミリ 隙間を隔てた)領域で回動可能である。  A base end portion of the first driven arm 19 is rotatably connected to an upper portion near the distal end of the first drive arm 17, and a base end portion of the second driven arm 20 is further connected to the upper portion of the first driven arm 19. Are rotatably connected. Here, the rotatable connecting portions of the first and second driven arms 19, 29 are arranged concentrically with each other and can be individually rotated. The second driven arm 20 is rotatable in the region above the upper surface of the second drive source 16 (with a gap of several millimeters in this embodiment).
第二駆動アーム 18の先端付近の上部には、第三従動アーム 21および第四従動ァ ーム 22の基端部力 それぞれ回転自在に連結されている。各々の連結位置は隣接 した位置とされ、各々の回動軸は互いに並列とされ、前述した第二従動アーム 20と ほぼ同じ水平面内で回動可能とされている。第一従動アーム 19は、第一従動アーム 19と第三従動アーム 21が、回動動作する高さ領域と同じとなるように、高さ方向に一 部屈曲されている。 The upper part of the second drive arm 18 near the tip thereof has a third driven arm 21 and a fourth driven arm. The base end force of the drum 22 is connected to each other in a rotatable manner. The respective connecting positions are adjacent to each other, and the respective rotating shafts are arranged in parallel with each other, and are rotatable in substantially the same horizontal plane as that of the second driven arm 20 described above. The first driven arm 19 is partially bent in the height direction so that the first driven arm 19 and the third driven arm 21 are the same as the height region in which the first driven arm 19 rotates.
[0053] 第一および第三の従動アーム 19, 21の先端部には第一ハンド 23が回動可能に設 置されている。第二および第四の従動アーム 20, 22の先端部には第二ハンド 24が 回動可能に設置されている。  [0053] The first hand 23 is rotatably installed at the tip of the first and third driven arms 19, 21. A second hand 24 is rotatably installed at the distal ends of the second and fourth driven arms 20 and 22.
各ハンド 23, 24は、先端部が二本のフォーク状に形成されており、その上面側に は基板 3に対応した凹部を有する。そして、この凹部に基板 3を保持して、同じ水平 面内で進退動作、及び、回動することができる。  Each of the hands 23 and 24 has a tip portion formed into two forks, and has a concave portion corresponding to the substrate 3 on the upper surface side thereof. Then, the substrate 3 can be held in the recess, and can be moved back and forth and rotated in the same horizontal plane.
この実施例において、第一駆動源 15の回動中心力も駆動アーム 17、 18上の各従 動アーム 19〜22の回動軸間での距離は全て等しぐ各従動アームの回動軸中心か ら各ハンドの支持軸中心までの距離も全て等しく備えているが、本発明はこれに限ら れるものではない。  In this embodiment, the rotation center force of the first drive source 15 is also equal to the distance between the rotation axes of the driven arms 19 to 22 on the drive arms 17 and 18. The distance from the hand to the center of the support shaft is all equal, but the present invention is not limited to this.
[0054] この搬送ロボット 4において、第一ハンド 23と第二ハンド 24の進退方向は各駆動源 の回動中心から半径方向に向いており、双方のハンド 23, 24の向きは、 180度未満 (この実施例では 175度)の角度をなしている。このため、なす角度が 180度の従来 の搬送ロボットに比べて、基板 3を搬送する際に回動する角度が少なくてすみ、基板 3を受け渡すための動作時間を短縮することができる。  [0054] In this transfer robot 4, the forward and backward directions of the first hand 23 and the second hand 24 are directed in the radial direction from the rotation center of each drive source, and the directions of both hands 23 and 24 are less than 180 degrees. The angle is 175 degrees in this embodiment. For this reason, compared with a conventional transfer robot having an angle of 180 degrees, the rotation angle when transferring the substrate 3 is smaller, and the operation time for delivering the substrate 3 can be shortened.
[0055] 図 5において、本実施形態の搬送ロボット 4は、各ハンド 23, 24の方向を調整する ための回動伝達手段 34を備えている。  In FIG. 5, the transfer robot 4 of the present embodiment includes a rotation transmission means 34 for adjusting the directions of the hands 23 and 24.
すなわち、本実施形態の搬送ロボット 4では、各駆動アーム 17, 18と各従動アーム 19〜22と各ハンド 23, 24とにより、略五角形のリンク機構が形成され、各駆動源 15 , 16の回動により前述したリンク機構が進退して各ハンド 23、 24を移動させる。この 際、各ハンド 23, 24と各従動アーム 19〜22とが単なる回動自在な連結であると、各 ハンド 23, 24の向きが一定とならず安定した基板の搬送ができない。そこで、本実施 形態では、一方の従動アームに対するハンドとの角度と、他方の従動アームに対す るハンドとの角度とが常に等しくするための回動伝達手段 34を設けている。 That is, in the transfer robot 4 of this embodiment, the drive arms 17 and 18, the driven arms 19 to 22, and the hands 23 and 24 form a substantially pentagonal link mechanism. As a result, the above-mentioned link mechanism moves forward and backward to move each hand 23, 24. At this time, if each of the hands 23 and 24 and each of the driven arms 19 to 22 are simply pivotably connected, the direction of each of the hands 23 and 24 is not constant and the substrate cannot be transported stably. Therefore, in this embodiment, the angle of the hand with respect to one driven arm and the other driven arm. Rotation transmission means 34 is provided to ensure that the angle with the hand is always equal.
[0056] 回動伝達手段 34は、従動アーム 19 (22) , 21 (20)の先端部に第一ハンド 23 (第 二ハンド 24)を回動可能に支持する。ここで、ハンド 23 (24)を支持する支軸 35a, 3 5bにはプーリが形成され、このプーリには 2本のスチールベルト 36が高さ方向にずら して、 S字状および逆 S字状に巻き付けられており、両方合わせてベルトは 8の字状を 構成している。これによりハンド 23 (24)に対する支軸 35aおよび支軸 35bの回動量 は互いに同じ、つまり互いに逆方向で同じ角度だけ回動するように規制され、ハンド 23 (24)を常に所定の方向に向けておくことができる。 The rotation transmitting means 34 supports the first hand 23 (second hand 24) in a rotatable manner at the distal end portions of the driven arms 19 (22), 21 (20). Here, pulleys are formed on the support shafts 35a and 35b that support the hand 23 (24), and two steel belts 36 are shifted in the height direction on the pulleys to form an S-shape and an inverted S-shape. The belts form a figure of 8 together. As a result, the amount of rotation of the support shaft 35a and the support shaft 35b with respect to the hand 23 (24) is controlled to be the same, that is, to be rotated by the same angle in the opposite directions, so I can keep it.
なお、このような回動伝達手段 34としては、スチールベルト 36に限らず歯車あるい はその他のリンク等で置き換えてもよ 、。  Such a rotation transmission means 34 is not limited to the steel belt 36 but may be replaced with a gear or other link.
[0057] なお、本発明は前述した実施形態に限定されるものではなぐ本発明の目的を達 成する範囲内の変形は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications within the scope of achieving the object of the present invention are included in the present invention.
前述した実施形態における各部の材質、寸法、形状などは、本発明の実施にあた つて適宜設定すればよい。  What is necessary is just to set suitably the material, dimension, shape, etc. of each part in embodiment mentioned above in the implementation of this invention.
例えば、図 6の搬送ロボット 4dは、前記実施形態の搬送ロボット 4が 2つの駆動ァー ム 17, 18を備えたのに対し、 3つの駆動アーム 17, 18a, 18bを備えた者である。具 体的には、駆動アーム 18の先端側をフォーク状に分割して駆動アーム 18a, 18bとし たものである。  For example, the transfer robot 4d in FIG. 6 is a person provided with three drive arms 17, 18a, and 18b, whereas the transfer robot 4 of the embodiment includes two drive arms 17 and 18. Specifically, the front end side of the drive arm 18 is divided into forks to form drive arms 18a and 18b.
このような構成にすることで、各ハンド 23, 24のなす角度 (第二駆動アーム 19側の 角度)をより小さくすることができる。  With such a configuration, the angle formed by the hands 23 and 24 (the angle on the second drive arm 19 side) can be further reduced.
[0058] 本実施形態における移載室の内部底壁に備える搬送ロボットは、下側の駆動源に 取り付ける駆動アームに二つの従動アームを同心状に備えるとともに、上側の駆動 源に取り付ける駆動アームに二つの従動アームを同じ水平面内で回動可能に備える ことで、可搬送範囲 (ハンドの最高到達距離)を広くすることができ、回動の際の稼動 範囲を小さくするとともに、搬送ロボット全体の高さを低くすることができる。 [0058] The transfer robot provided on the inner bottom wall of the transfer chamber in the present embodiment is provided with two driven arms concentrically with the drive arm attached to the lower drive source and the drive arm attached to the upper drive source. By providing two driven arms so that they can rotate in the same horizontal plane, the transportable range (maximum reach of the hand) can be increased, the operating range during rotation can be reduced, and the entire transport robot The height can be lowered.
これにより、移載室の内容積を小さくすることができ、移載室内部を真空等の雰囲 気にする時間を短縮することで、各種処理室における処理準備時間が短縮される。 また、移載室を製造する場合にも、従来のサイズより小さくなるため、加工が高精度で 容易であり、コストも軽減される。 As a result, the internal volume of the transfer chamber can be reduced, and the processing preparation time in various processing chambers can be shortened by shortening the time required for the inside of the transfer chamber to be in an atmosphere such as a vacuum. Also, when manufacturing the transfer chamber, it is smaller than the conventional size, so processing is highly accurate. It is easy and the cost is reduced.
[0059] この搬送ロボットの駆動源は、移載室外部である大気側と移載室内部である真空雰 囲気、若しくは不活性ガス雰囲気 (以下真空等雰囲気)側とを気密に隔てる隔壁を備 えるものであり、大気側にステータを備え、真空等雰囲気側にロータを備えることで真 空雰囲気中に塵埃が発生するのを低減することができる。 [0059] The drive source of the transfer robot has a partition that hermetically separates the atmosphere side outside the transfer chamber and the vacuum atmosphere or inert gas atmosphere (hereinafter referred to as vacuum atmosphere) side inside the transfer chamber. By providing a stator on the atmosphere side and a rotor on the atmosphere side such as a vacuum, generation of dust in the vacuum atmosphere can be reduced.
産業上の利用可能性  Industrial applicability
[0060] 本発明は、高清浄な環境のもとで基板の移動及び処理を行う搬送ロボットおよび処 理装置として利用でき、特に電子部品である半導体ウェハや、 LCDの基板の製造に 利用できる。 The present invention can be used as a transfer robot and a processing apparatus for moving and processing a substrate under a highly clean environment, and can be used particularly for manufacturing a semiconductor wafer that is an electronic component or an LCD substrate.

Claims

請求の範囲 The scope of the claims
[1] 基板を搬送する搬送ロボットにおいて、 [1] In a transfer robot that transfers substrates,
ベース板上に回動軸を有する第一駆動源と、  A first drive source having a pivot on the base plate;
第一駆動源の回動軸と同心状に回動軸を有する第二駆動源と、  A second drive source having a pivot axis concentrically with the pivot axis of the first drive source;
該第一駆動源の側面に突出して備える第一駆動アームと、  A first drive arm provided protruding from a side surface of the first drive source;
該第二駆動源の側面に突出して備える第二駆動アームと、  A second drive arm provided protruding from a side surface of the second drive source;
該第一駆動アームの他端に同心状で独立して回動可能に備える第一従動アーム と第二従動アームと、  A first driven arm and a second driven arm that are concentrically and independently rotatable at the other end of the first drive arm;
該第二駆動アームの他端に、同じ水平面内で回動可能に備える第三従動アームと 第四従動アームと、  A third driven arm and a fourth driven arm provided at the other end of the second drive arm so as to be rotatable in the same horizontal plane;
第一従動アームと第三従動アームとにより回動可能に備える第一ハンドと、 第二従動アームと第四従動アームとにより回動可能に備える第二ハンドと、 からなり、  A first hand provided rotatably with the first driven arm and the third driven arm, and a second hand provided rotatable with the second driven arm and the fourth driven arm,
第一駆動源と第二駆動源とが異方向、若しくは同方向に回動することで各アームを 介して第一ハンド、第二ハンドを進退動作、及び、回動できる  The first drive source and the second drive source can be rotated in different directions or in the same direction, so that the first hand and the second hand can be moved back and forth and rotated via each arm.
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[2] 請求項 1に記載の基板の搬送ロボットであって、 [2] The substrate transfer robot according to claim 1,
前記第一駆動源と前記第二駆動源とを異なる速度で回転することで、第一駆動源 の回動中心に対して放射線方向と角をなす直線上で第一ハンド及び第二ハンドを移 動することができる  By rotating the first drive source and the second drive source at different speeds, the first hand and the second hand are moved on a straight line that forms an angle with the radiation direction with respect to the rotation center of the first drive source. Can move
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[3] 請求項 1または請求項 2に記載の基板の搬送ロボットであって、 [3] A substrate transfer robot according to claim 1 or claim 2,
前記第一ハンドと前記第二ハンドとが前記第一駆動源及び前記第二駆動源の回 動中心に対して放射線方向に進退運動するものであって、  The first hand and the second hand move forward and backward in the radiation direction with respect to the rotation centers of the first drive source and the second drive source,
第一ハンドと第二ハンドの進行方向が 150度から 179度である  The direction of travel of the first hand and the second hand is 150 to 179 degrees
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[4] 請求項 1な 、し請求項 3の 、ずれかに記載の基板の搬送ロボットであって、 [4] The substrate transfer robot according to any one of claims 1 and 3, wherein:
前記ベース板上に同心状であって、 高さ方向に位置をずらして備える第一駆動源と第二駆動源であって、 ベース板の上部に第一駆動源を備えて、 Concentric on the base plate, A first drive source and a second drive source provided with a shifted position in the height direction, the first drive source provided on the upper part of the base plate,
第一駆動源の上部に第二駆動源を備える  A second drive source is provided above the first drive source.
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[5] 基板の搬送ロボットであって、 [5] A substrate transfer robot,
ベース板上に突出しかつ所定の回動軸線に沿って配置されかつ個別に回動可能 な第一駆動体および第二駆動体と、  A first driving body and a second driving body which protrude on the base plate and are arranged along a predetermined rotation axis and are individually rotatable;
前記第一駆動体から径方向に延びる第一駆動アームと、  A first drive arm extending radially from the first drive body;
前記第二駆動体から径方向に延びる第二駆動アームと、  A second drive arm extending radially from the second drive body;
前記第一駆動アームの先端に回動自在に連結された第一従動アームおよび第二 従動アームと、  A first driven arm and a second driven arm rotatably connected to the tip of the first drive arm;
前記第二駆動アームの先端に回動自在に連結された第三従動アームおよび第四 従動アームと、  A third driven arm and a fourth driven arm rotatably connected to the tip of the second drive arm;
前記第一従動アームおよび前記第三従動アームで支持された第一ハンドと、 前記第二従動アームおよび前記第四従動アームで支持された第二ハンドと、 を有するとともに、  A first hand supported by the first driven arm and the third driven arm, a second hand supported by the second driven arm and the fourth driven arm, and
前記第一駆動体および第二駆動体は互いに同心状かつ前記回動軸線方向にず らして配置され、前記第一駆動アームは前記第二駆動アームよりも前記ベース板に 近接して配置されており、  The first driving body and the second driving body are arranged concentrically and shifted from each other in the rotation axis direction, and the first driving arm is arranged closer to the base plate than the second driving arm. And
前記第一従動アームおよび第二従動アームは前記第一駆動アームの先端に対し て同心状の回動軸で一連に連結され、  The first driven arm and the second driven arm are connected in series with a concentric rotating shaft with respect to the tip of the first drive arm,
前記第三従動アームおよび第四従動アームは前記第二駆動アームの先端に対し て並列状の回動軸で個別に連結されている  The third driven arm and the fourth driven arm are individually connected to the tip of the second drive arm by a parallel rotation shaft.
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[6] 請求項 5に記載の基板の搬送ロボットであって、 [6] The substrate transfer robot according to claim 5,
前記第一駆動体は第一駆動源を内蔵し、前記第二駆動体は第二駆動源を内蔵す るとともに、  The first driver includes a first drive source, the second driver includes a second drive source,
前記第一駆動体はベース板上に設置され、この第一駆動体上に第二駆動体が積 層状に設置されている The first driving body is installed on a base plate, and a second driving body is stacked on the first driving body. It is installed in layers
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[7] 請求項 5または請求項 6に記載の基板の搬送ロボットであって、  [7] The substrate transfer robot according to claim 5 or claim 6,
前記第一駆動体と前記第二駆動体とを相対的に回転させることで、前記第一ハン ドおよび前記第二ハンドをそれぞれ前記回動軸線に対して径方向反対向きに進退 移動可能であり、  By rotating the first drive body and the second drive body relative to each other, the first hand and the second hand can be moved forward and backward in the radially opposite direction with respect to the rotation axis. ,
前記第一ハンドの移動軌跡および前記第二ハンドの移動軌跡のなす角度が 150 度から 179度の範囲である  The angle formed by the movement trajectory of the first hand and the movement trajectory of the second hand is in the range of 150 to 179 degrees.
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[8] 請求項 5な 、し請求項 7に記載の基板の搬送ロボットであって、 [8] The substrate transfer robot according to claim 5 or 7, wherein
前記第一駆動体と前記第二駆動体とを相対的に回転させることで、前記第一ハン ドおよび前記第二ハンドをそれぞれ前記回動軸線に対して径方向反対向きに進退 移動可能であり、  By rotating the first drive body and the second drive body relative to each other, the first hand and the second hand can be moved forward and backward in the radially opposite direction with respect to the rotation axis. ,
前記第一駆動体および前記第二駆動体は互いに異なる回動速度で動作可能であ る  The first driver and the second driver can be operated at different rotational speeds.
ことを特徴とする基板の搬送ロボット。  A substrate transfer robot characterized by that.
[9] 平面形状が四角形の移載室と、 [9] A transfer chamber having a square shape in plan view,
この移載室の内部中央付近に設置された基板の搬送ロボットと、  A substrate transfer robot installed near the center of the inside of the transfer chamber;
前記移載室の各側壁面に配置された複数のプロセスチャンバと、  A plurality of process chambers disposed on each side wall surface of the transfer chamber;
を有する処理装置であって、  A processing apparatus comprising:
前記搬送ロボットは、搬送ロボットの回動中心に対して放射線上、及び、回動方向 への動作、又は、組合せにより基板を搬送することができる  The transfer robot can transfer a substrate by movement or combination in the direction of rotation and rotation with respect to the rotation center of the transfer robot.
ことを特徴とする処理装置。  The processing apparatus characterized by the above-mentioned.
[10] 移載室と、この移載室の内部中央付近に設置された基板の搬送ロボットと、前記移 載室の各側壁面に配置された複数のプロセスチャンバと、を有する処理装置であつ て、 [10] A processing apparatus having a transfer chamber, a substrate transfer robot installed in the vicinity of the center inside the transfer chamber, and a plurality of process chambers arranged on each side wall of the transfer chamber. And
前記移載室は平面形状が略四角形である  The transfer chamber has a substantially quadrangular planar shape.
ことを特徴とする処理装置。 The processing apparatus characterized by the above-mentioned.
[11] 請求項 9または請求項 10に記載の処理装置であって、 [11] The processing apparatus according to claim 9 or claim 10,
前記プロセスチャンバは、前記移載室の各側壁面に 2つ設けられている ことを特徴とする処理装置。  Two processing chambers are provided on each side wall surface of the transfer chamber.
[12] 請求項 9な 、し請求項 11の 、ずれかに記載の処理装置であって、 [12] The processing apparatus according to any one of claims 9 and 11, wherein
前記移載室を複数備えるとともに、  With a plurality of the transfer chambers,
前記各移載室を互 ヽに連結する連結処理室を備える  Provided with a connected processing chamber for connecting the transfer chambers to each other.
ことを特徴とする処理装置。  The processing apparatus characterized by the above-mentioned.
[13] 請求項 12に記載の処理装置であって、 [13] The processing apparatus according to claim 12,
前記複数の連結処理室が、基板の加熱手段または基板の冷却手段を兼ねる ことを特徴とする処理装置。  The plurality of coupled processing chambers also serve as a substrate heating unit or a substrate cooling unit.
PCT/JP2006/312272 2005-06-22 2006-06-20 Substrate transfer robot and processing apparatus WO2006137370A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005181723A JP2007005435A (en) 2005-06-22 2005-06-22 Processing apparatus
JP2005-181723 2005-06-22
JP2005198460A JP2007019216A (en) 2005-07-07 2005-07-07 Transfer robot for board
JP2005-198460 2005-07-07

Publications (1)

Publication Number Publication Date
WO2006137370A1 true WO2006137370A1 (en) 2006-12-28

Family

ID=37570399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312272 WO2006137370A1 (en) 2005-06-22 2006-06-20 Substrate transfer robot and processing apparatus

Country Status (3)

Country Link
KR (1) KR20080018205A (en)
TW (1) TW200709900A (en)
WO (1) WO2006137370A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946800B2 (en) 2007-04-06 2011-05-24 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US8752449B2 (en) 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
JP2015009319A (en) * 2013-06-28 2015-01-19 株式会社ダイヘン Conveyance apparatus
CN104669277A (en) * 2015-03-11 2015-06-03 宿州学院 Double-arm writing robot and control method thereof
US9764465B2 (en) 2013-06-28 2017-09-19 Daihen Corporation Transfer apparatus
JP2017196732A (en) * 2017-04-20 2017-11-02 株式会社ダイヘン Carrier device
US20190088530A1 (en) * 2017-09-19 2019-03-21 Applied Materials, Inc. Dual-blade robot including vertically offset horizontally overlapping frog-leg linkages and systems and methods including same
EP4135015A4 (en) * 2020-04-10 2024-05-29 Beijing NAURA Microelectronics Equipment Co., Ltd. Semiconductor processing device
US12060942B2 (en) 2020-12-08 2024-08-13 Semes Co., Ltd. Sealing member and apparatus for treating substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216638B1 (en) * 2007-05-08 2021-02-17 브룩스 오토메이션 인코퍼레이티드 Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
KR100866094B1 (en) 2008-04-28 2008-10-30 주식회사 싸이맥스 Stack-type dual arm robot with independent drive
TWI392634B (en) * 2010-05-20 2013-04-11 Chroma Ate Inc Wafer conveying and dispensing device and method thereof
JP5525339B2 (en) * 2010-06-10 2014-06-18 ナブテスコ株式会社 Robot arm
KR101308517B1 (en) * 2012-07-27 2013-09-17 주식회사 티이에스 Wafer transferring robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272084A (en) * 1996-03-22 1997-10-21 Komatsu Ltd Handling robot
JP2003059999A (en) * 2001-08-14 2003-02-28 Tokyo Electron Ltd Treating system
JP2003203963A (en) * 2002-01-08 2003-07-18 Tokyo Electron Ltd Transport mechanism, processing system and transport method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272084A (en) * 1996-03-22 1997-10-21 Komatsu Ltd Handling robot
JP2003059999A (en) * 2001-08-14 2003-02-28 Tokyo Electron Ltd Treating system
JP2003203963A (en) * 2002-01-08 2003-07-18 Tokyo Electron Ltd Transport mechanism, processing system and transport method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651796B2 (en) 2007-04-06 2014-02-18 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US7946800B2 (en) 2007-04-06 2011-05-24 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US10335945B2 (en) 2007-05-08 2019-07-02 Brooks Automation, Inc. Substrate transport appartatus with multiple movable arms utilizing a mechanical switch mechanism
US8752449B2 (en) 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
JP2015009319A (en) * 2013-06-28 2015-01-19 株式会社ダイヘン Conveyance apparatus
US9764465B2 (en) 2013-06-28 2017-09-19 Daihen Corporation Transfer apparatus
US10144127B2 (en) 2013-06-28 2018-12-04 Daihen Corporation Transfer apparatus
CN104669277A (en) * 2015-03-11 2015-06-03 宿州学院 Double-arm writing robot and control method thereof
JP2017196732A (en) * 2017-04-20 2017-11-02 株式会社ダイヘン Carrier device
US20190088530A1 (en) * 2017-09-19 2019-03-21 Applied Materials, Inc. Dual-blade robot including vertically offset horizontally overlapping frog-leg linkages and systems and methods including same
US10453725B2 (en) * 2017-09-19 2019-10-22 Applied Materials, Inc. Dual-blade robot including vertically offset horizontally overlapping frog-leg linkages and systems and methods including same
TWI689032B (en) * 2017-09-19 2020-03-21 美商應用材料股份有限公司 Dual-blade robot including vertically offset horizontally overlapping frog-leg linkages and systems and methods including same
CN111133563A (en) * 2017-09-19 2020-05-08 应用材料公司 Two-bladed robot including vertically offset, horizontally overlapping frog leg links and systems and methods including the same
CN111133563B (en) * 2017-09-19 2021-04-02 应用材料公司 Two-bladed robot including vertically offset, horizontally overlapping frog leg links and systems and methods including the same
EP4135015A4 (en) * 2020-04-10 2024-05-29 Beijing NAURA Microelectronics Equipment Co., Ltd. Semiconductor processing device
US12060942B2 (en) 2020-12-08 2024-08-13 Semes Co., Ltd. Sealing member and apparatus for treating substrate

Also Published As

Publication number Publication date
TW200709900A (en) 2007-03-16
KR20080018205A (en) 2008-02-27

Similar Documents

Publication Publication Date Title
WO2006137370A1 (en) Substrate transfer robot and processing apparatus
JP7328183B2 (en) Substrate transport apparatus with multiple movable arms that utilizes a mechanical switch mechanism
KR101477366B1 (en) Drive device and conveyance device
US10335945B2 (en) Substrate transport appartatus with multiple movable arms utilizing a mechanical switch mechanism
CN109414821A (en) Including interval upper arm with the staggeredly dual robot of wrist and including the system and method for the dual robot
JP5627599B2 (en) Transfer arm and transfer robot including the same
WO2005022627A1 (en) Substrate processing device
TW201314828A (en) Robot systems, apparatus, and methods adapted to transport substrates in electronic device manufacturing
KR20100031681A (en) Compact substrate transport system with fast swap robot
CN101223636A (en) Substrate transfer robot and processing apparatus
JP2004288718A (en) Substrate carrying system and substrate processing system
JP2007019216A (en) Transfer robot for board
KR20200026745A (en) Substrate transfer mechanism, substrate processing apparatus, and substrate processing method
JP2004288720A (en) Substrate carrying system and substrate processing system
JP2006214489A (en) Vacuum processing device
TWI787730B (en) Horizontal articulated robot and substrate transfer system including the horizontal articulated robot
TWI514499B (en) Drive device and substrate processing system
TW202213601A (en) Substrate transport apparatus
JP4456725B2 (en) Transport device
US11769681B2 (en) Transfer robot and substrate processing apparatus having the same
JP2004146714A (en) Carrying mechanism for workpiece
JP2009194261A (en) Wafer conveyance system and wafer processor using wafer conveyance system
WO2020122125A1 (en) Load lock chamber
WO2019039316A1 (en) Substrate processing device and substrate transfer method
KR102139613B1 (en) Apparatus for transfer a substrate and apparatus for treating a substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022030.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077029890

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766933

Country of ref document: EP

Kind code of ref document: A1