WO2006129873A1 - Substrate inspection device and inspection method - Google Patents

Substrate inspection device and inspection method Download PDF

Info

Publication number
WO2006129873A1
WO2006129873A1 PCT/JP2006/311377 JP2006311377W WO2006129873A1 WO 2006129873 A1 WO2006129873 A1 WO 2006129873A1 JP 2006311377 W JP2006311377 W JP 2006311377W WO 2006129873 A1 WO2006129873 A1 WO 2006129873A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
region
output signal
calculated
substrate
Prior art date
Application number
PCT/JP2006/311377
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Wakita
Koichi Rikitake
Yuki Kitamura
Shinya Umetani
Original Assignee
Tecnos Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnos Co., Ltd. filed Critical Tecnos Co., Ltd.
Publication of WO2006129873A1 publication Critical patent/WO2006129873A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/69Arrangements or methods for testing or calibrating a device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a TCP (Tape Carrier) connected to a terminal of an electronic device board, for example, a printed circuit board (hereinafter referred to as PWB) via an anisotropic conductor.
  • PWB printed circuit board
  • Package, tape carrier package, claims and “TCP” includes “FPC”, “TAB”, and “COF” described below), etc.
  • the present invention relates to a substrate inspection apparatus and an inspection method for accurately and rapidly inspecting a conduction state of a connection portion with a terminal.
  • the "FPC (Flexible Printed Circuit)" exemplified as “TCP” refers to that used for an interface with a PWB or COG substrate on which a liquid crystal driver IC is mounted.
  • TCP liquid crystal driver IC
  • TAB Tape Automated Bonding
  • CF Chip On Flexible Printed Circuit Board
  • Liquid crystal display devices, plasma display devices, and the like are each manufactured by connecting and mounting a driving Ic chip or the like on a panel board.
  • a driving Ic chip or the like When connecting or mounting the IC chip or the like to the panel substrate, the opposing terminals of the substrate and the IC chip are connected in a conductive state.
  • Anisotropic Conductive Film hereinafter referred to as “ACF”
  • an anisotropic conductor such as an anisotropic conductive adhesive is used.
  • ACF used as an anisotropic conductor is a sheet in which an ACF particle is dispersed and an adhesive layer is laminated on the surface of a binder layer.
  • ACF exhibits the thermocompression bonding function by applying heat to melt the binder layer material and then curing it.
  • the anisotropic conductor is attached to the substrate side or the chip side in advance, and the parallel terminals provided on the panel substrate or PWB are opposed to the parallel terminals provided on the TCP. After positioning the corresponding terminals (electrodes) to face each other, add an ACF thermocompression bonding machine, etc. The pressure tool presses and heats the overlapping area between the terminal of the board and the terminal of TCP.
  • thermocompression bonding process it is necessary that ACF is uniformly filled between the terminals of the substrate and the TCP terminals, and that the terminals be crimped at an appropriate pressure, temperature, and time.
  • connection state by ACF depends on the ACF curing characteristics that change with time, the temperature, pressure, pressurization time, pressure distribution, etc., adjusted for the limited tact time. Since the parameters are intertwined with each other, optimization of the parameters is not easy and causes product defects in the mounting process.
  • TCP2 has a terminal 12 on a film that is also made of polyimide resin and the like, and after it is thermocompression-bonded with ACF3, it is cooled, and the adhesive layer shrinks when it is cooled. (See FIG. 2, which is an illustration of an embodiment of the present invention).
  • the degree of unevenness reflects the pressure, temperature, and time at the time of crimping, and with good crimping, the unevenness of the part where the terminal is present and the part where it is not present appears remarkably, and the period of the unevenness is constant, and the crimping is not good.
  • the gradient near the boundary between the concave and convex portions becomes gentle, and the irregularities are not remarkable, and the periodicity of the irregularities tends to be disturbed. .
  • the inspection method that the inspector visually inspects is a sensory inspection based on experience, there is a problem that only an ambiguous evaluation determination can be made. In addition, if a skilled inspector does not see it, fine defects cannot be found, the standards do not match between inspectors, labor is required, the inspection time is long, and the inspector fatigues. There is a problem that it is difficult to detect defects.
  • Patent Document 2 a sheet-like film (hereinafter referred to as a “polarizing film”) on which a plurality of films such as a polarizing film are bonded together, or minute irregularities on the surface of the polarizing film or foreign matter mixed inside the polarizing film A technique for detecting and inspecting foreign matter in a film having a function of detecting the like is disclosed.
  • This apparatus uses a photographed image detected by defocusing an image on the surface of a polarizing plate film. , Smoothing processing, second-order differentiation processing, and binary density processing are performed, and uneven defects and the like are detected based on the threshold value for extracting the bright and dark parts corresponding to the defective portion.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-342687
  • Patent Document 2 JP-A-6-235624
  • the mounting state between the printed circuit board 1 and the TCP 2 is determined in the same manner as in the Patent Document 1 or the Patent Document 2 described above, with illumination means (light source) 7 and photographing means (imaging device for acquiring images).
  • a method of evaluating and inspecting with images using 6 etc. is also conceptually conceivable. For example, from the oblique direction indicated by the arrow in FIG. 16 (b), the situation of unevenness generated on the film surface of TCP2 in the overlap region 10 is acquired as an image, and based on the image for each area corresponding to each terminal, A method for inspecting the unevenness of each area, that is, the crimping state between the terminals 11 and 12, by using an output signal obtained from the image can be considered. This is because the degree of reflection of light in a specific direction differs depending on the uneven shape of each part, and this is reflected in the image luminance or the distribution of output signals obtained by the image force.
  • the image acquired in this way The distances from the position of the photographing means 6 are different between the terminals arranged in parallel in one image and the film uneven surface on each terminal. Therefore, it is difficult to focus on all terminals and their film surface. In addition, even for a single terminal, the difference in distance occurs depending on the part, and the expected angle of the camera differs at each position, so it is difficult to focus on all parts of the terminal. is there. It is not possible to objectively evaluate the image brightness of the part that is out of focus and the image brightness of the part that is in focus using the same criteria.
  • the image luminance depends on the difference in distance from the photographing means 6 or the difference in distance from the illumination means 7, etc. Appears in different shades. Specifically, as shown in FIG. 17, the partial force S on the right side in the figure, which is close to the photographing means 6, shows a darker color compared to the part on the left side in the figure, and the degree of shading is It can be seen that it gradually changes according to the position in the left-right direction. Therefore, the conduction state of all terminals in parallel is good. There is a problem that V cannot be objectively evaluated based on the same standard, and the level of crimping between all terminals cannot be accurately evaluated.
  • the output signal also has a flat characteristic.It is easy to detect local fluctuations in the medium force, and foreign matter intervening in the inspection object, etc. The presence and position of various defects can be detected, but the quality of the crimped state between the substrate and the TCP terminal cannot be accurately determined only by this method.
  • Patent Document 2 cannot accurately evaluate the quality of the crimped state of all terminals parallel to the board and TCP.
  • the board and the TCP may be warped or bent during the mounting (see FIGS. 12A and 12B, which are explanatory diagrams of the embodiment of the present invention).
  • Fig. 12 (c) and Fig. 12 (d) show the cross sections in region A and region B, respectively.
  • Fig. 12 (a) shows the board 1 on which TCP2 is mounted along the upside down direction with respect to the stage S.
  • the above figures show the spacing between terminals. Etc. are exaggerated.
  • the output signal obtained from the acquired image in region A is as shown in Fig. 12 (e).
  • the periods L and L in region A are the output signal periods L, L, and L in region B n nf lm m + l tend to be shorter than m + 2.
  • TCP2 is curved in an arc as shown in Fig. 12 (a), (b), etc.
  • the states L, L,..., And L, L may all be different.
  • the present invention enables high-speed and accurate evaluation of the quality of the crimped state between the terminals of the portion where the terminal of the substrate and the terminal of the TCP are connected via the anisotropic conductor. Is an issue.
  • the present invention provides a TC in an overlapping region in which a plurality of terminals are arranged in parallel.
  • the area When acquiring an image on the upper surface of P, the area is subdivided along the parallel direction of the terminals, and the output signal characteristic value and calculation are calculated based on the output signal that also obtains the image power of each divided area.
  • the crimping state was evaluated from the value.
  • the present invention corrects an output signal of an acquired image based on a reference signal.
  • the quality of the crimped state between the terminals of the portion where the terminal of the substrate and the TCP terminal are connected via the anisotropic conductor can be evaluated at high speed and accurately.
  • FIG. 1 (a) shows a configuration of an inspection apparatus according to one embodiment, and (b) shows an enlarged plan view of a main part of an object to be inspected.
  • FIG. 3 is an explanatory view of the principle of detecting uneven portions in the substrate inspection apparatus according to the embodiment.
  • FIG. 4 An explanatory diagram of inspection contents of the OK and NG parts of the substrate inspection apparatus.
  • FIG. 5 is a photograph showing ⁇ K and NG images of the substrate inspection apparatus according to the embodiment.
  • FIG. 6 is a flowchart showing details of the inspection process. '
  • FIG. 7 An example of conversion from an area image to an output signal is shown.
  • (A) is a photograph showing the area image
  • (b) is an output signal after conversion.
  • FIG. 8 is an explanatory diagram showing the configuration of the substrate inspection apparatus.
  • FIG. 9 is an explanatory diagram showing the relationship between the light irradiation angle, the image acquisition angle, and the unevenness of the TCP.
  • FIG. 10 (a) shows a method of dividing an image area, and (b) is an explanatory diagram showing an output signal of the divided area.
  • FIG. 11 is an enlarged cross-sectional view of the main part showing an example of contamination.
  • FIG. 12 is an explanatory diagram showing the relationship between the board and TCP when warping or deflection occurs.
  • FIG. 13 shows signal waveforms before and after phase correction, and signal waveforms after phase correction.
  • FIG. 15 is an explanatory view showing a conventional inspection method.
  • FIG. 16A is an explanatory diagram showing a conventional inspection method
  • FIG. 16B is an explanatory diagram showing a conventional inspection method.
  • FIG. 17 is a photograph showing an image acquired by the method shown in FIG. 16 (b).
  • ACF Anisotropic Conductor
  • Imaging means imaging device
  • Illumination means light source
  • Control panel 0 Control device (controller) 1 PC (personal computer) 2 Display device (monitor) 50 Control panel
  • the substrate inspection apparatus that optically inspects the image data 20 of the overlapping regions 10 of the parallel terminals 11, 12; 11 ′, 12 ′ on the surface opposite to the side provided with the overlapping region 10, Divided into a plurality of areas A, B, C... along the parallel direction, and illuminating means 17 irradiates each area A, B, C ',' toward the parallel direction from the oblique direction. Then, the image data 20 of the superimposed region 10 is acquired for each of the regions A, B, C ′ ⁇ ′ by the photographing means 16, and the region images corresponding to the regions A, B, C ′,.
  • the amount of light applied to each of the regions A, B, C ⁇ when acquiring the region images 20a, 20b, 20c ⁇ , the regions A, B, C- And the imaging means 16, the light receiving sensitivity of the imaging means 16, the irradiation angle 0 of the light with respect to the surface direction of the substrate 1, and the image acquisition angle ⁇ are defined as the total areas A, B, C ′. ⁇ It is possible to adopt a configuration that is constant with '.
  • the quality of the crimped state between the terminals 11, 12; 11 ′, 12 ′ in the overlapping region 10 can be objectively evaluated based on the same criteria.
  • the illumination unit 17 and the imaging unit 16 are integrated, and the illumination unit 17 and the imaging unit 16 and the overlapping area 10 are relatively moved in the parallel direction.
  • the illumination means 17 for irradiating each area A, B, C There is no need to provide a large number of 16s.
  • a method of moving the substrate 1 mounted with TCP2 with respect to the illumination unit 17 and the imaging unit 16 For example, a method of moving the illumination unit 17 and the imaging unit 16 fixed to each other with respect to the substrate 1 on which TCP2 is mounted, a method of moving both of them together, and the like.
  • the illuminating means 17 and the photographing means 16 are integrated to mean that when the illuminating means 17 and the photographing means 16 are moved, the movement amounts of both are the same.
  • the characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31, an amplitude 32, a period 33, and a half-value width 34 calculated from the output signal 30, and the reference value Can be adopted for each of the areas a, b, c... Corresponding to the pair of opposing terminals 11, 12;
  • the level of the crimped state can be accurately evaluated for all terminals 11, 12; 11 ', 12' in parallel.
  • 'output signal 30' obtained from each and peak position 31 ', amplitude 32', period 33 ', half width 34' calculated from the output signal 30 '
  • the foreign matter 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ is detected by a value or a calculated value based on the calculated characteristic value. If the region is divided into a plurality of regions, it becomes easier to detect local fluctuations in the output signals 30, 30 ′ due to the inclusion of the foreign object 8.
  • the photographing means 16 is an area sensor, and the acquisition width in the parallel direction in each of the region images 20a, 20b, 20c,... Can be changed according to the overlapping region 10 to be inspected.
  • the difference in distance between each position in the single region where the image is acquired and the photographing means 16 is reduced, and further, the difference in the expected angle of the photographing means 16 with respect to each position is eliminated. For this reason, the error of the output signal 30 due to the difference in the degree of coincidence of the focus within a single region can be reduced.
  • This acquisition width can be adjusted according to the characteristics of the object to be inspected. Also, by scanning with a narrow acquisition width, images of each of the areas A, B, C-. Therefore, the inspection speed can be greatly reduced.
  • the illumination unit 17 may employ a configuration including a light source having a light emission spectrum that substantially matches the light receiving sensitivity of the imaging unit 16.
  • the photographing means 16 can efficiently receive the light emitted from the light source to each of the areas A, B,. Therefore, the amount of light to be irradiated can be suppressed, the exposure time can be shortened, and the inspection tact can be suppressed.
  • the irradiation angle 0 of the light by the illuminating means 17 and the acquisition angle 0 of the image by the photographing means 16 are respectively set in the TCP2 in the superposed region 10 to be inspected.
  • the irradiation direction of the illumination unit 17 and the image acquisition direction of the imaging unit 16 are arbitrarily set. Or, because it can be changed, it is possible to more effectively receive the reflected light from the uneven part generated on the surface opposite to the side where the terminal 12 of TCP2 is provided, and it is possible to judge whether the crimped state is good or not by the output signal 30 based on the image It becomes easy.
  • the shutter speed of the photographing means 16 can be changed or adjusted, the relative conditions between the illumination means 17 and the photographing means 16 can be optimized. For this reason, it is possible to flexibly deal with various substrates 1 with different uneven pitches and height differences, and an image can be acquired effectively.
  • the focus can be easily adjusted according to the unevenness of the overlapping area 10. Can be made.
  • the board inspection apparatus configured as described above is connected to an electronic component mounting apparatus, that is, the terminals 11 and 12; 11 'and 12' of the board 1 and TCP2 via an anisotropic conductor.
  • an electronic component mounting apparatus that is, the terminals 11 and 12; 11 'and 12' of the board 1 and TCP2 via an anisotropic conductor.
  • a configuration integrated with the electronic component mounting apparatus can also be adopted.
  • the opposing terminals 11, 12; 11 ′, 12 ′ are connected via the isotropic conductor 3, and the crimping state between the opposing terminals 11, 12; 11 ′, 12 ′ is Substrate optically detected by the image data 20 of the overlapping region 10 of the parallel terminals 11, 12; 11 ', 12' on the opposite surface of the TCP2 to the side where the terminals 12, 12 'are provided
  • the overlapping region 10 is divided into a plurality of regions A, B, C...
  • the image data 20 of the superimposed region 10 is acquired for each of the regions A, B, C ′ ⁇ ′, and the regions corresponding to the regions A, B, C ′ ⁇ Images 20a, 20b, 20c...
  • the both terminals 11, 12; 11 This is a configuration of the substrate inspection method for inspecting the crimped state between 'and 12'.
  • each of the regions A, B, C ⁇ when acquiring the region images 20a, 20b, 20c ⁇ The amount of light irradiated on each of the areas A, B, and so on.
  • the distance between the image capturing means 16 for acquiring the image data, the light receiving sensitivity of the image capturing means 16, the irradiation angle ⁇ of the light with respect to the surface direction of the substrate 1, and the image acquisition angle 0 A configuration in which A, B, C... Are constant can be adopted.
  • the characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31, an amplitude 32, a period 33, and a half-value width 34 calculated from the output signal 30, and the reference value
  • a peak position 31 an amplitude 32, a period 33, and a half-value width 34 calculated from the output signal 30, and the reference value
  • each of the area images 20a, 20b, 20 ⁇ ,... Is divided in a direction orthogonal to the parallel direction, and each of the divided area images 20a ′, 20b ′, 20c ′,.
  • a configuration of a substrate inspection method for detecting the foreign matter 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ by a calculated value based on the calculated characteristic value can be adopted.
  • the configuration of the substrate inspection method for correcting the phase and period by comparing the output signals 30, 30 'obtained from the superposition region 10 with a reference signal in the same superposition region 10 Can be adopted.
  • the substrate inspection apparatus of the present invention is a parallel inspection of printed circuit boards 1 of a test object in which a printed circuit board (PWB) 1 and a liquid crystal substrate 1 are connected via TCP2. And the terminals (electrodes) 12, 12, 12... Connected via the conductive particles 4 of the anisotropic conductor (ACF) 3. In the overlapping region 10, the crimping state between the corresponding terminals 11, 12; 11 ′, 12 ′ is inspected based on the image data 20 .
  • PWB printed circuit board
  • ACF anisotropic conductor
  • the configuration of the apparatus is as follows.
  • the X-YZ- ⁇ stage S on which the substrate 1 is placed, and the substrate 1 placed on the stage S is lighted in one direction obliquely to the substrate 1.
  • the imaging device 16 is an area sensor (secondary Former sensor) is adopted. It is also possible to adopt a line sensor in which only one row of photosensitive parts that receive light is arranged.
  • the control device 40 processes the image acquired by the imaging device 16 to produce an output signal 30, and measures various characteristic values from the output signal 30, and further calculates based on the characteristic values. Registers information on the image processing apparatus to be processed and the substrate 1 to be inspected, and on the basis of the information, the characteristic values and calculated values measured in the image processing apparatus and preset pass / fail judgment reference values And a registration / determination processing device that performs a pass / fail determination and an XYZ- ⁇ stage S and a control panel 50 that controls the movement of the imaging device 16 and the like.
  • Reference numeral 41 indicates a PC (personal computer), and reference numeral 42 indicates a display device (monitor).
  • FIG. 1 (a) shows an inspection head 18 integrally including an imaging device 16, an illuminating means 17, and an alignment imaging device 15 for positioning, and a substrate 1 mounted on the XYZ- ⁇ stage S.
  • the other components are not shown in the figure.
  • the alignment imaging device 15 is a camera that measures the inspection position, and the X-YZ- ⁇ stage S is passed through the control device 40 and the control panel 50 according to a signal from the alignment imaging device 15. Each is operated, and alignment is performed by the operation.
  • a predetermined image can be acquired by the imaging device 16 that scans the image data 20.
  • the condition setting of the imaging device 16 to be scanned is appropriately set by the PC 41 and the control device 40.
  • the PC 41 can collectively manage various data transmitted from the control device 40.
  • the illumination means 17 can be adjusted to the optimum irradiation angle 0 by sliding in the F direction and operating in the 0 direction. Similarly, the imaging device 16 slides in the F direction.
  • the image acquisition angle ⁇ can be adjusted by operating in the ⁇ direction.
  • the adjustment related to the imaging device 16 is appropriately set manually or by an operation key (not shown).
  • control device 40 can perform shutter speed control and focus control.
  • the image data 20 captured by the imaging device 16 to be scanned or the captured image data 20 An image obtained by processing the processed image data 20 by the image processing device and an output signal 30 obtained from the image can be displayed on, for example, a display device (monitor) 42 having a liquid crystal monitor power. Become.
  • the object to be inspected is a printed circuit board (PWB) 1 of a liquid crystal display device and a liquid crystal substrate 1 'connected via TCP2, and TCP2 is an electronic component for driving such as an IC chip. It is manufactured by connecting and mounting.
  • PWB printed circuit board
  • TCP2 is an electronic component for driving such as an IC chip. It is manufactured by connecting and mounting.
  • an ACF (anisotropic conductor) 3 is employed as a connection member.
  • Printed circuit board (PWB) 1 terminal 11 and TCP2 terminal 12 and liquid crystal board 1 ′ terminal 11 ′ and TCP terminal 12 ′ are overlaid and connected via ACF3 conductive particles 4 respectively. ing.
  • FIG. 1 shows a diagram in which one printed circuit board 1 is mounted in the X direction and one printed circuit board in the Y direction.
  • the number of mounted substrates 1 is not limited to the X direction and the Y direction. It is possible to support the case where one or both of these are mounted in one or both! / Ugly ladies.
  • connection portion between the TCP 2 and the printed circuit board 1 is not the connection portion between the TCP 2 and the liquid crystal glass substrate 1.
  • the inspection procedure will be described.
  • the tatami area 10 is photographed by the imaging device 16 that scans.
  • the light irradiation to the overlapping region 10 relating to the connection portion between the TCP2 and the printed circuit board 1 is a surface light source power that irradiates light in an oblique direction with respect to the upper surface 13 of the TCP2. This is done by the illumination means 17. In this way, a wide overlapping area 10 can be dealt with.
  • the image data 20 is acquired by the imaging device 16 on the upper surface 13 side of the TCP 2 with respect to a direction orthogonal to the surface direction of the substrate 1 and an oblique direction force that is opposite to the irradiation direction.
  • the image acquisition direction 1) 3, ⁇ ′, / ⁇ ... are constant in all areas A, B, 0. (See Fig. 3.)
  • the irradiation direction ⁇ and the acquisition direction ⁇ are oblique directions opposite to the direction perpendicular to the surface direction of the substrate 1, and both directions ⁇ and ⁇ are the surfaces of the substrate 1, respectively.
  • the angles 0 and ⁇ formed with respect to the direction are not necessarily the same.
  • the imaging device 16 and the illuminating means 17 are integrally provided in the movable inspection head 18 as described above, the overlapping region 10 and the inspection head 18 are relatively moved, that is, the inspection head. 18 or by moving the stage S, along the scanning direction 19 (parallel direction of terminals 11 and 12 in parallel) shown in FIG.
  • the acquisition width of the image in the parallel direction is as narrow as possible and the acquisition pitch is as narrow as possible.
  • the difference in the distance between each position and the imaging device 16 in a single area where the image is acquired is reduced, and the difference in the expected angle of the camera for each position is also reduced.
  • the resolution (inspection accuracy) of signal 30 can be improved. For this reason, the error of the output signal 30 due to the difference in the degree of coincidence of the focus within a single region can be reduced.
  • the thickness of the ACF 3, the width and interval of the terminals 11 on the substrate 1, the width and interval of the terminals 12 on the TCP 2, etc., differ depending on the object to be inspected. For this reason, an area sensor is used.
  • the acquisition width variable by making the acquisition width variable, it becomes possible to deal with various types of test objects. For example, in the case of an object to be inspected with a small electrode width or electrode interval, the acquisition width can be narrowed. Conversely, in the case of an object to be inspected, the acquisition width can be increased.
  • the overlapping region 10 is divided into a plurality of regions A, B, C- ⁇ along the direction indicated by the arrow 19 in FIG.
  • the region images 20a, 20b, 20c, ..., for example, as shown in FIG. 4 (a) form a set of long areas in the direction orthogonal to the scanning direction 19 indicated by the arrow, and the acquired region images 20a,
  • the output signal 30 in the scanning direction 19 based on the image data 20 of 20b and 20 ′ ′ is obtained (see FIG. 4 (b)).
  • the imaging device 16 obtains the image data 20 by converting it to a value that is approximately proportional to the average value of the luminance signal during scanning, so the relationship between the scanning speed and the value measured by the imaging device 16 is calculated. By doing so, it is possible to obtain from the output signal 30 the values of peak position 31, amplitude 32, period 33, and half width 34.
  • the region images 20a, 20b, 20c- ⁇ are collections of data in the read direction (direction perpendicular to the scanning direction 19) and region data, respectively.
  • the representative value of the data force of each area image 20a, 20b, 20c ' is calculated.
  • various appropriate methods can be selectively employed according to the characteristics of the object to be inspected. For example, an average value, a standard deviation value, or the like can be used.
  • “light irradiation direction ⁇ 1, ⁇ ′, 0;“ “” ”and image acquisition direction; 3, ⁇ ′, j3”... Is constantly maintained while scanning one overlapping region 10 including the amount of light irradiated to each of the regions A, B, C... And each region A, B, C-" And the area image 20a, 20b, 20c- ⁇ 'the distance to the means for acquiring', and the light receiving sensitivity of the imaging device 16 corresponding to each of the area images 20a, 20b, 20c ...
  • the region images 20a, 20b, 20c ′... Of the regions a, b, c... Can be acquired under the same conditions.
  • the PC. Image built in 41) or control device (controller) 40 Whether the crimping state is good or bad is determined by the processing device and the registration / determination processing device.
  • the pass / fail judgment is performed by comparing the numerical value of the inspection item calculated by the image processing device with a pass / fail judgment reference value corresponding to the preset numerical value. From the output signal 30 of the image data 20, it is possible to determine the data such as the peak position and the width corresponding to the terminal interval by performing arithmetic processing by the image processing device.
  • the acquired image data 20 (a set of the region images 20a, 2Ob, 20c...) Or a set of representative values for each region 20a, 20b, 20c... Obtained from the image data 20 is scanned.
  • the numerical values of the peak position 31, amplitude 32, period 33, and half width 34 of the output signal 30 shown in FIG. 4 (b) can be calculated and calculated.
  • This calculation and calculated characteristic value can be arbitrarily set in the PC 41, and calculated and calculated based on the peak position 31, amplitude 32, period 33, half width 34, and other output signals 30.
  • a single or multiple characteristic values can be selected from the required characteristic values.
  • characteristic values such as the peak position 31, amplitude 32, period 33, half-value width 34, etc. of the calculated and calculated output signal 30 and the calculated values based on the calculated characteristic values are the above-mentioned pair of terminals. Judgment is made based on whether or not the force exceeds the preset reference value for each of the images a, b, c.
  • This determination is made, for example, when the images a, b, and c shown in FIG. 4 are portions where the conduction state is good (OK portion), and the images d, e, f, and g are portions where the conduction state is bad (NG) Show)! / Images a, b, and c in the OK section are output signal 30, peak position 31, amplitude 32, period 33, half-value width 34. In the images d, e, f, and g, the characteristic values of the output signal peak position 31, amplitude 32, period 33, and half width 34 are output as irregular values.
  • the result of the operation differs depending on the level at which any characteristic value (inspection item) force S, OK and NG can be determined.
  • the OK portion and NG The part can be clearly distinguished. ⁇ In this way, the quality of the crimped state between the corresponding terminals 11 and 12 can be judged at high speed and properly using the property that the output signal 30 represents a regular pattern.
  • FIG. 5 is a diagram for visually explaining the difference between the image 20 in the OK portion and the image 20 in the NG portion.
  • FIGS. 5 (a) and 5 (b) show an image 20 of the overlap region 10 including the connection portions of the terminals 11 and 12 in the OK portion
  • FIGS. 5 (c) and 5 (d) show the NG portion.
  • (b) applies image processing to (a)
  • (d) applies image processing to (c).
  • the reference numerals in FIG. 5 are those used for data arrangement, and are different from those described in the specification and claims of the present application.
  • the image 20 that can be captured by the imaging device 16 has a positional relationship with the unevenness generated on the upper surface 13 of the TCP2, as shown in Fig. 9 (a).
  • the state where the specular reflection is captured at the point (the place with the steepest inclination) is brightest.
  • the convex part 13a blocks the light, so it is in the darkest state.
  • the protrusion 13a on the upper surface 13 of the TCP2 has a portion with the largest protruding height that substantially coincides with the center in the width direction (parallel direction) of the terminals 11 and 12, so that the positions of the terminals 11 and 12 are ,
  • the peak position 31 of the output signal 30 based on the image data 20 acquired from each of the regions 20a, 20b ; 20c ′.
  • the center line positions of the areas a, b, c corresponding to the terminals 11, 12 and the peak position 31 of the output signal 30 are made to coincide with each other.
  • the illumination means 17 is arranged so that the image obtained at the slope A point becomes the brightest, that is, the specular reflection light is obtained, on the object to be inspected shown in FIG. 9 (a).
  • the irradiation angle ⁇ and the acquisition angle ⁇ of the imaging device 16 respectively, a bright and dark image can be obtained.
  • the irradiation angle 0 and the acquisition angle 0 set in FIG. 9 (a) are applied to other inspection objects as they are, it is not always possible to obtain a clear and bright image. If the test object is different, the thickness of each terminal 11, 12 and the width of each terminal 11, 12 and the pitch between adjacent terminals 11, 1 1, and between terminals 12, 1.2 are also different. The difference in height from 13b, pitch, slope gradient, etc.
  • the irradiation angle ⁇ and the acquisition angle ⁇ are adjusted.
  • the irradiation angle ⁇ and the acquisition angle ⁇ are adjusted.
  • the irradiation angle 0 and the acquisition angle 0 can be adjusted respectively ⁇
  • the pitch between adjacent terminals 11 and 11 is in the range of 0.2 mm to 2. Omm.
  • each of the area images 20a, 20b, 20c-" may be divided in a direction (read direction) orthogonal to the parallel direction! /, Respectively.
  • a deformation force S such as a local bulge 13c is generated on the surface of the TCP2, so that the output signal 30 Local outlier force is also generated in the value.
  • This abnormal value is smoothed by averaging the data within each region A, B, C-. However, if each of the regions A, B, C... Is divided into a plurality, it becomes easy to detect local fluctuations in the output signal 30.
  • each region image 20a, 20b, 20c ' is divided, as shown in Fig. 10
  • output obtained from each region image 20a ', 20b', 20c ' Single or multiple characteristic values selected from the signal 30 'and the peak position 31', amplitude 32 ', period' 33 ', half width 34' calculated from the output signal 30 ', or the calculated value
  • the foreign material 8 mixed between the opposing terminals 11 and 12 can be detected by the calculated value based on the characteristic value.
  • the board 1 and the TCP 2 may be warped or bent when mounted.
  • the test object is shown in FIGS. 12 (a) and 12 (b).
  • the states of the output signal 30 with different periods L, L ⁇ 'L, L, L are all n n + 1 m m + 1 m + 2
  • the correction is performed based on, for example, a reference waveform obtained from a good detection target cover in which no warpage or deflection occurs in the substrate 1 or the TCP 2.
  • the reference waveform can be calculated using theoretical calculation formulas. Terminals 11 and 12 with different characteristics are connected within a single overlapping region 10 If present, apply the reference waveform that matches terminals 11 and 12.
  • region C corresponding to a set of terminals 11 and 12 is specified in output signal 30
  • region C is the starting point of output signal 30 as shown in Fig. 13 (a). 3 ⁇ 4 point
  • the detection start point E of the output signal 30 is set at the start point (E point) based on this reference waveform.
  • Figure 13 (b) shows the corrected waveform. Point 35 "after correction is set to point E, which is the inspection start point.
  • FIG. 14 (a) shows the output signal 30 in the acquired state 30, and FIG. 14 (b) shows the inspection start point E adjusted by matching the output signal 30 with the period L of the reference waveform.
  • This phase correction can be performed automatically, and by performing phase correction, even if the board 1 or TCP2 is warped or bent, the portion of the output signal 30 corresponding to each terminal 11 and 12 can be specified. Can do. For this reason, the crimping state between all the terminals 11 and 12 in the overlapping region 10 can be accurately evaluated.
  • FIG. 6 is a flowchart showing details of the inspection process.
  • Step 22 position information is extracted in advance from the PWB pattern data of the printed circuit board (board) 1 of the design drawing of the object to be inspected and used as teaching master data.
  • a mask image is created in advance using.
  • an image force output signal 30 is acquired by the illumination means 17 that irradiates light with an oblique force in one direction to the object to be inspected and the imaging device 16 that performs scanning.
  • the output signal 30 acquired in (Step 23) is the output signal 30 corresponding to the image for the terminal 11 of all printed circuit boards 1, it includes an area other than the overlapping area 10 with the terminal 12 of TCP2. It is out. Therefore, in (Step 24), an area corresponding to the overlapped area 10 to be inspected is specified for the output signal 30 acquired in (Step 23).
  • the portion that is not the overlap region 10 does not have the period 33 and amplitude 32 that are similar to the sin waveform, but appears as fine vibrations, that is, noise, so that the output corresponding to the overlap region 10 is excluded. Take signal 30 only.
  • Step 26a From the output signal 30 ′ of the divided area, each terminal 11 (or TCP2) of the substrate 1 in the overlapping area 10 For each part corresponding to terminal 12), numerical values such as peak position 31 ', amplitude 32', period 33 ', half width 34', etc. are calculated and calculated. If the area is not divided, go to (Step 27a).
  • Step 26b the value of each inspection item calculated and calculated in (Step 26a) and the pass / fail judgment threshold set in advance for each inspection item, or the upper and lower inspection reference values. Make a comparison. (Step 26a) and (Step 26b) are executed for all divided regions.
  • Step 27b compare the value of each inspection item calculated and calculated in (Step 27a) with the pass / fail judgment threshold set in advance for that inspection item, or the upper and lower inspection reference values. I do.
  • Step 28 the determination result for each inspection item compared in (Step 27b) is comprehensively determined for each of the images a, b, c.
  • the final pass (OK) or fail (NG) is determined along with the determination result in (Step 26b). Since the peak position 31 or 31 ', amplitude 32 or 32', period 33 or 33 ', half width 34 or 34' of the NG part can be displayed easily and visually in accordance with the measurement position, It is easy to distinguish the detailed results of the NG part by numerical values.
  • the results are immediately sent to the ACF thermocompression machine, which is the previous process. Therefore, process loss can be reduced.
  • (Step 24) can be performed before (Step 23), and the order of (Step 24) and (Step 23) can be interchanged.
  • the crimping state inspection relating to the connection portion of the terminal 12 of TCP2 connected to the terminal 11 of the printed circuit board 1 via the ACF3 is performed. Can be detected at high speed and accurately.
  • the quality of the electrical connection state can be properly judged for all TCP2 and all terminals 11, 12; 11 ', 12' of all printed circuit boards 1.
  • the control device (controller) 40 or PC (personal computer) 41 that constitutes the inspection device has an arithmetic processing function, the inspection object can be obtained by performing arithmetic processing with some of the functions of the inspection device. Defects can be detected stably even when noise components due to other device elements are included.
  • FIG. 7 shows an embodiment in which the region images 20a, 20b, 20c ′... Of the regions A, B,.
  • the gray scale in FIG. 7 (a) is an image 20 composed of a collection of area images 20a, 20b, 20c..., And the waveform in FIG.
  • the amplitude of the output signal 30 is approximated by a female 1] to calculate the amplitude and other characteristic values.
  • the characteristic value is calculated based on the waveform of the output signal 30, the waveform As a result, the characteristic values such as the amplitude are not correctly calculated, and an erroneous pass / fail judgment is made. . Therefore, the waveform of the object to be inspected is detected with reference to the waveform used as a criterion for pass / fail judgment obtained by the teaching operation, and correction is performed by shifting the detected waveform by the detected phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

It is possible to rapidly and accurately evaluate a pressurized connection between terminals via an anisotropic conductor. An overlap region (10) between terminals (11, 12) arranged in parallel to a substrate (1) and a TCP (2), respectively is divided into a plurality of regions A, B, C, ... along the parallel direction and region images 20a, 20b, 20c, ... of the respective regions A, B, C, ... are obtained. When acquiring the images, the light irradiation and acquisition of the image (20) is performed in the oblique direction with respect to the overlap region (10) of the terminals (11, 12) in parallel on the surface opposite to the side where the terminal (12) of the TCP (2) is arranged and the light quantity applied tot he respective regions A, B, C, ... and the distance to imaging means (16), and the photo sensitivity of the imaging means (16) are made identical in all the regions A, B, C, .... An output signal (30) in the parallel direction corresponding to the respective images (20a, 20b, 20c, ...) is obtained and by utilizing the characteristic that the output signal (30) expresses a convex/concave shape, evaluation is made depending on whether a numeric value selected from the peak position (31), the amplitude (32), the frequency (33), the half band width (34) exceeds a reference value for each of the images a, b, c,... corresponding to the terminal. With this configuration, it is possible to rapidly and accurately evaluate the pressurized connection state.

Description

明 細 書  Specification
基板検査装置及ぴ検查方法  Substrate inspection device and inspection method
技術分野  Technical field
[0001] この発明は、電子機器の基板の端子、例えば、プリント基板(Printed Wire Boar d、以下 PWBと記す)の端子と、異方性導電体を介して接続される「TCP (Tape Ca rrier Package,テープキャリアパッケージ、特許請求の範囲及ぴ以下に記述する 「TCP」は「FPC」、「TAB」、「COF」を含むものとする)」等電子部品、特にフラットパ ネルディスプレイの実装工程に用レヽるものの端子との接続部分の導通状態を、高速 且つ正確に検査する基板検查装置及ぴ検査方法に関するものである。  The present invention relates to a TCP (Tape Carrier) connected to a terminal of an electronic device board, for example, a printed circuit board (hereinafter referred to as PWB) via an anisotropic conductor. Package, tape carrier package, claims and “TCP” includes “FPC”, “TAB”, and “COF” described below), etc. The present invention relates to a substrate inspection apparatus and an inspection method for accurately and rapidly inspecting a conduction state of a connection portion with a terminal.
[0002] ここで、「TCP」として例示した前記「FPC (Flexible Printed Circuit)」とは、液 晶ドライバ ICを実装した PWBや COG基板とのインターフェイスに用いるものを指す ものとする。また、前記「TAB (Tape Automated Bonding)」とは、 TCPに用いら れる ICチップの実装技術の一種を指すものとする。前記「C〇F (Chip On Flexibl e Printed Circuit Board)」とは、フレキシブルプリント基板上の電極端子に直接 ICチップを接続する方式を指すものとする。  [0002] Here, the "FPC (Flexible Printed Circuit)" exemplified as "TCP" refers to that used for an interface with a PWB or COG substrate on which a liquid crystal driver IC is mounted. The “TAB (Tape Automated Bonding)” refers to a kind of IC chip mounting technology used for TCP. The “CF (Chip On Flexible Printed Circuit Board)” refers to a system in which an IC chip is directly connected to an electrode terminal on a flexible printed circuit board.
背景技術  Background art
[0003] 液晶表示装置やプラズマディスプレイ装置等は、それぞれパネノレ基板に駆動用の I cチップ等を接続搭載して製造される。この ICチップ等を前記パネル基板への接続 したり搭載したりする際には、基板と ICチップとの対向する端子同士を導通状態で接 続させる.ために、異方性導電シ一ト (Anisotropic Conductive Film、以下「ACF 」と記す)、あるいは異方性導電接着材等の異方性導電体が用いられている。  [0003] Liquid crystal display devices, plasma display devices, and the like are each manufactured by connecting and mounting a driving Ic chip or the like on a panel board. When connecting or mounting the IC chip or the like to the panel substrate, the opposing terminals of the substrate and the IC chip are connected in a conductive state. Anisotropic Conductive Film (hereinafter referred to as “ACF”) or an anisotropic conductor such as an anisotropic conductive adhesive is used.
異方性導電体として用いられる ACFは、 ACF粒子を分散させてレ、るバインダ層の 表面に接着剤層が積層されシート状に形成されたものである。熱を加えてバインダ層 材料を溶かした後に熱硬化させることにより、 ACFは熱圧着機能を発揮する。  ACF used as an anisotropic conductor is a sheet in which an ACF particle is dispersed and an adhesive layer is laminated on the surface of a binder layer. ACF exhibits the thermocompression bonding function by applying heat to melt the binder layer material and then curing it.
[0004] 一般に、異方性導電体は、予め基板側かチップ側に貼付され、そのパネル基板や PWBに設けた並列する端子と TCPに設けた並列する端子とを対向させる。対応する 各端子 (電極)同士が対向する位置に位置決めされた後に、 ACF熱圧着機等の加 圧ツールがその基板の端子と TCPの端子との重畳領域を押圧'加熱する。 [0004] Generally, the anisotropic conductor is attached to the substrate side or the chip side in advance, and the parallel terminals provided on the panel substrate or PWB are opposed to the parallel terminals provided on the TCP. After positioning the corresponding terminals (electrodes) to face each other, add an ACF thermocompression bonding machine, etc. The pressure tool presses and heats the overlapping area between the terminal of the board and the terminal of TCP.
[0005] この押圧'加熱により、異方性導電体内の導電粒子は対向する端子同士間で押さ えられ、対向する両端子は、その導電粒子を介して電気的に導通接続される(図 15 参照)。 [0005] By this pressing and heating, the conductive particles in the anisotropic conductor are pressed between the opposing terminals, and both the opposing terminals are electrically connected via the conductive particles (FIG. 15). reference).
したがって、熱圧着工程において、基板の端子と TCPの端子との間に ACFが均一 に充填されるとともに、その端子間が適度な圧力、温度、及ぴ時間で圧着される必要 がある。  Therefore, in the thermocompression bonding process, it is necessary that ACF is uniformly filled between the terminals of the substrate and the TCP terminals, and that the terminals be crimped at an appropriate pressure, temperature, and time.
[0006] しかし、その端子間への接着材の過度な残存、気泡等の発生、導電膜のはがれ等 により、均一に充填、圧着できない場合も生じ得る。液晶表示装置やプラズマデイス プレイ装置の実装工程における製品不良は、この種の材料不良や基板に付着した 異物混入による端子間の圧着不良が挙げられる。  [0006] However, there may be a case where the adhesive cannot be uniformly filled or crimped due to excessive residual adhesive between the terminals, generation of bubbles or the like, peeling of the conductive film, and the like. Product defects in the mounting process of liquid crystal display devices and plasma display devices include this type of material failure and crimping failure between terminals due to foreign matter adhering to the substrate.
さらに、 ACFによる接続状態は、経時変化する ACFの硬化特性、限られたタクト時 間に対して調整された温度、圧力、加圧時間、圧力分布などの圧着条件によって左 右される。前記パラメータは相互に絡み合っているために、その最適化は簡単では 無ぐ実装工程での製品不良が発生する原因となっている。  Furthermore, the connection state by ACF depends on the ACF curing characteristics that change with time, the temperature, pressure, pressurization time, pressure distribution, etc., adjusted for the limited tact time. Since the parameters are intertwined with each other, optimization of the parameters is not easy and causes product defects in the mounting process.
[0007] 液晶基板 1'に TCP2が実装される場合において、両者の端子間の接続状態の検 査は、図 15に示すように、液晶基板 1 'の各端子 (リード) 11と、異方性導電体 3を介 [0007] When TCP2 is mounted on the liquid crystal substrate 1 ', the inspection of the connection state between the two terminals is different from that of each terminal (lead) 11 of the liquid crystal substrate 1' as shown in FIG. Via conductive conductor 3
' して接続された ICの端子 12との重畳領域を、その液晶基板 1,の裏面側から撮影し、 その撮影した画像の電極部分のエリア内における出力信号 30に基づいて、前記重 畳領域 10内における導電粒子 4の影像面積 (導電粒子が電極を変形させて生じた 圧痕 5 よる影像面積)を算出し、算出した影像面積が予め設定された基準値を超え てレ、るカ否かを判定して、その判定に合格した影像の数が予め設定されたエリア内 において基準数を超えた力否かを判定するものが一般的である (例えば、特許文献 1 参照)。 ′ Is taken from the back side of the liquid crystal substrate 1 and the overlap region with the terminal 12 of the connected IC is taken. Based on the output signal 30 in the area of the electrode portion of the photographed image, the overlap region is 10) Calculate the image area of the conductive particles 4 within 10 (the image area due to the indentation 5 generated by the conductive particles deforming the electrode), and whether the calculated image area exceeds the preset reference value. In general, it is determined whether or not the number of images that have passed the determination exceeds a reference number within a preset area (see, for example, Patent Document 1).
[0008] しかし、プリント基板に TCPが実装される場合にお!/ヽて、両者の電極端子間の接続 状態の検査は、依然として目視を中心に行っているのが現状である。これは、プリント 基板は液晶基板 1 'のように透明ではないため、前記図 15に記載のように、前記導電 粒子 4による圧痕 5の影像を液晶基板 1,の裏面側力 取得できな 、からである。 [0009] 検査員が、目視により検查する場合には、図 16 (a) (b)に示すように、 TCP2とプリ ント基板 1との重畳領域に TCP2側力 斜め方向の光を照射し、その反射光により、 重畳領域 10内の TCP2のフィルムに生じた前記凹凸の状況を検査員の眼で確認し ている。 [0008] However, when TCP is mounted on a printed circuit board! / The current situation is that the inspection of the connection state between the two electrode terminals is still focused on visual inspection. This is because the printed circuit board is not transparent like the liquid crystal substrate 1 ′, and as shown in FIG. 15, the image of the indentation 5 due to the conductive particles 4 cannot be obtained from the back side force of the liquid crystal substrate 1. It is. [0009] When the inspector visually inspects, as shown in FIGS. 16 (a) and 16 (b), the overlapping area of TCP2 and the printed circuit board 1 is irradiated with light in a direction oblique to the TCP2 side force. The state of the unevenness generated on the TCP2 film in the overlapping region 10 by the reflected light is confirmed by the eye of the inspector.
TCP2はポリイミド樹脂等力もなるフィルムに端子 12が設けられており、 ACF3にて 熱圧着された後、冷却されることで接着剤層が収縮し、その接続部分の TCP2上面 に凹凸が生じる力 である(本発明の実施形態の説明図である図 2を参照)。  TCP2 has a terminal 12 on a film that is also made of polyimide resin and the like, and after it is thermocompression-bonded with ACF3, it is cooled, and the adhesive layer shrinks when it is cooled. (See FIG. 2, which is an illustration of an embodiment of the present invention).
この凹凸の度合いは、圧着時の圧力、温度、時間が反映され、良好な圧着では、 端子の介在する部分と介在しない部分の凹凸は顕著に表れその凹凸の周期は一定 となり、不良好な圧着では、凹部と凸部の境目付近の勾配が緩やかになって凹凸が 顕著でなく凹凸の周期性が乱れる傾向がある。 .  The degree of unevenness reflects the pressure, temperature, and time at the time of crimping, and with good crimping, the unevenness of the part where the terminal is present and the part where it is not present appears remarkably, and the period of the unevenness is constant, and the crimping is not good. However, the gradient near the boundary between the concave and convex portions becomes gentle, and the irregularities are not remarkable, and the periodicity of the irregularities tends to be disturbed. .
[0010] 検査員が、目視により検査する検査手法は、経験に基づく官能検査であるために、 ' 曖昧な評価判定しかできないという問題がある。また、熟練した検査員が見なければ 、細かい不良は発見できず、基準が検査員間で一致しない、手間がかかり検査時間 が長い、検査員が疲労するために、高速且つ正確に安定して欠陥を検出することが 困難であるという問題がある。  [0010] Since the inspection method that the inspector visually inspects is a sensory inspection based on experience, there is a problem that only an ambiguous evaluation determination can be made. In addition, if a skilled inspector does not see it, fine defects cannot be found, the standards do not match between inspectors, labor is required, the inspection time is long, and the inspector fatigues. There is a problem that it is difficult to detect defects.
[0011] このように検査結果の信頼性が低いと、検査結果を上流設備である実装装置の AC F熱圧着機に対してフィードバックを行レ、、工程ロス対策を即座に行うことが難しレ、。 しかも、大型テレビの液晶表示装置用のパネノレ基板、あるいはプラズマディスプレイ 装置用のパネル基板のように、検査ワーク、検査面積が大きな場合には、検査する 箇所へスムースに被検査体を移動させる操作や移動させる時間がカゝかり、基板検査 が容易にできない上に、埃や塵 (パ一ティクル)の付着を防止するのが困難であると いう問題も生じうる。  [0011] As described above, when the reliability of the inspection result is low, it is difficult to immediately feed back the inspection result to the AC F thermocompression bonding machine of the mounting apparatus that is the upstream equipment, and to immediately take measures against the process loss. ,. In addition, when the inspection work and inspection area are large, such as a panel board for a liquid crystal display device of a large TV or a panel substrate for a plasma display device, the operation of moving the object to be inspected smoothly to the inspection location There is a problem that it takes time to move the substrate, it is difficult to inspect the board, and it is difficult to prevent adhesion of dust and particles (particles).
[0012] 一方、特許文献 2には、偏光フィルムなどの複数のフィルムが貼り合わされたシート 状のフィルム(以下「偏光フィルム」と呼ぶ)表面の微小な凹凸欠陥や偏光フィルム内 部に生じる異物混入等を検出する機能を備えたフィルム内の異物検出検査装置の 技術が開示されている。  On the other hand, in Patent Document 2, a sheet-like film (hereinafter referred to as a “polarizing film”) on which a plurality of films such as a polarizing film are bonded together, or minute irregularities on the surface of the polarizing film or foreign matter mixed inside the polarizing film A technique for detecting and inspecting foreign matter in a film having a function of detecting the like is disclosed.
[0013] この装置は、偏光板用フィルム表面の画像をデフォーカスして検出した撮影画像に 、平滑化処理、 2次微分処理、 2値ィヒ処理を行って、欠陥部に対応した明暗部分抽 出用の閾 :に基づいて凹凸欠陥などを検出するものである。 [0013] This apparatus uses a photographed image detected by defocusing an image on the surface of a polarizing plate film. , Smoothing processing, second-order differentiation processing, and binary density processing are performed, and uneven defects and the like are detected based on the threshold value for extracting the bright and dark parts corresponding to the defective portion.
特許文献 1:特開 2004— 342687号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-342687
特許文献 2 :特開平 6— 235624号公報  Patent Document 2: JP-A-6-235624
. 発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] ところで、前記プリント基板 1と TCP2との実装状態を、前記特許文献 1あるいは前 記特許文献 2と同様な手法で、照明手段 (光源) 7及び撮影手段 (画像を取得する撮 像装置) 6等を用いて、画像により評価し検査する手法も概念的には考えられる。 例えば、図 16 (b)に矢印で示す斜め方向から、前記重畳領域 10における TCP2の フィルム表面に生じた凹凸の状況を画像で取得し、各端子に対応するエリア毎の画 像に基づいて、各エリアの凹凸の状況、すなわち各端子 11, 12間の圧着状況を、画 像から得られる出力信号により検査する手法が考えられる。各部位の凹凸の形状に 応じて、特定の方向に対して光が反射する度合いが異なり、それが画像輝度、あるい はその画像力 得られる出力信号の分布に反映されるからである。  By the way, the mounting state between the printed circuit board 1 and the TCP 2 is determined in the same manner as in the Patent Document 1 or the Patent Document 2 described above, with illumination means (light source) 7 and photographing means (imaging device for acquiring images). ) A method of evaluating and inspecting with images using 6 etc. is also conceptually conceivable. For example, from the oblique direction indicated by the arrow in FIG. 16 (b), the situation of unevenness generated on the film surface of TCP2 in the overlap region 10 is acquired as an image, and based on the image for each area corresponding to each terminal, A method for inspecting the unevenness of each area, that is, the crimping state between the terminals 11 and 12, by using an output signal obtained from the image can be considered. This is because the degree of reflection of light in a specific direction differs depending on the uneven shape of each part, and this is reflected in the image luminance or the distribution of output signals obtained by the image force.
[0015] しかし、このように取得した画像にお!/、て、一つの画像内に多数並列する端子及ぴ その各端子上のフィルム凹凸表面は、それぞれ撮影手段 6の位置からの距離が異な る。したがって、すべての端子及びそのフィルム凹凸表面に焦点を合わせることは困 難である。また、単一の端子に対しても、その部位に応じて前記距離の差異は生じ、 さらにカメラの見込み角度が各位置で異なるので、端子のすべての部位に焦点を合 わせることは困難である。焦点が一致していない部分の画像輝度と、焦点が一致して いる部分の画像輝度とを、同一の基準で客観的に評価することはできない。  [0015] However, the image acquired in this way! The distances from the position of the photographing means 6 are different between the terminals arranged in parallel in one image and the film uneven surface on each terminal. Therefore, it is difficult to focus on all terminals and their film surface. In addition, even for a single terminal, the difference in distance occurs depending on the part, and the expected angle of the camera differs at each position, so it is difficult to focus on all parts of the terminal. is there. It is not possible to objectively evaluate the image brightness of the part that is out of focus and the image brightness of the part that is in focus using the same criteria.
さらに、例えば、複数の端子間において、その凹凸の断面形状が同一のものであつ ても、前記撮影手段 6からの距離の差異、あるいは照明手段 7からの距離の差異等 に応じて、画像輝度の濃淡の度合いが異なるものとなって現れる。具体的には、図 1 7に示すように、撮影手段 6からの距離が近い図中右側寄りの部分力 S左側寄りの部分 と比較して濃い色を呈しており、その濃淡の度合いは、左右方向の位置に応じて徐 々に変ィ匕しているのがわかる。したがって、並列するすべての端子の導通状態の良 否を、同一の基準で客観的に評価できず、また、すべての端子間の圧着状態のレべ ルを正確に評価できな V、と!/、う問題がある。 Further, for example, even if the concave and convex cross-sectional shape is the same among a plurality of terminals, the image luminance depends on the difference in distance from the photographing means 6 or the difference in distance from the illumination means 7, etc. Appears in different shades. Specifically, as shown in FIG. 17, the partial force S on the right side in the figure, which is close to the photographing means 6, shows a darker color compared to the part on the left side in the figure, and the degree of shading is It can be seen that it gradually changes according to the position in the left-right direction. Therefore, the conduction state of all terminals in parallel is good. There is a problem that V cannot be objectively evaluated based on the same standard, and the level of crimping between all terminals cannot be accurately evaluated.
[0016] また、特許文献 2に記載の手法によれば、偏光フィルムのようにフラットな表面を有 する検査領域中に生じた欠陥の有無は検査できる力 例えば、図 2に示すように、 T CP2の上面 (端子を設けた側の反対側の面) 13における凹凸の形成状況により、端 子の圧着状態が良好であるか不良であるかを判断する際には、その手法をそのまま 適用することはできない。 [0016] Further, according to the method described in Patent Document 2, it is possible to inspect the presence or absence of a defect generated in an inspection region having a flat surface such as a polarizing film. For example, as shown in FIG. When determining whether the crimping state of the terminal is good or bad based on the unevenness formation on the upper surface of CP2 (the surface opposite to the side where the terminal is provided) 13, apply that method as it is. It is not possible.
偏光フィルムのように表面がフラットであれば、その出力信号もフラットな特性を有し . 、その中力も局部的な変動を検出することは容易であり、検査対象内に介在する異 物等、各種欠陥の有無、位置を検出することができるが、その手法のみでは、基板と TCPの端子間の圧着状態の良否は正確に判定できないからである。  If the surface is flat like a polarizing film, the output signal also has a flat characteristic.It is easy to detect local fluctuations in the medium force, and foreign matter intervening in the inspection object, etc. The presence and position of various defects can be detected, but the quality of the crimped state between the substrate and the TCP terminal cannot be accurately determined only by this method.
したがって、特許文献 2に記載の手法は、基板と TCPの並列するすべての端子の 圧着状態の良否を、正確に評価できない。  Therefore, the method described in Patent Document 2 cannot accurately evaluate the quality of the crimped state of all terminals parallel to the board and TCP.
[0017] さらに、基板と TCPは、その実装の際に反りやたわみ等が生じることがある (本発明 の実施形態の説明図である図 12 (a) (b)参照)。 [0017] Furthermore, the board and the TCP may be warped or bent during the mounting (see FIGS. 12A and 12B, which are explanatory diagrams of the embodiment of the present invention).
TCPを実装した基板に反りやたわみ等が生じると、出力信号の位置が、実際の基 板の端子の位置からずれてしまう。  If warpage or deflection occurs on the board on which TCP is mounted, the position of the output signal will deviate from the actual terminal position of the board.
[0018] 例えば、図 12 (b)に示す領域 Aにおいて、 TCP2を実装した基板 1は、基板検査装 置のステージ Sに対してやや傾いた状態となっており、領域 Bにおいて、 TCP2を実 装した基板 1は、ステージ Sに対して平行に近い状態となっている。図 12 (c)及び図 1 2(d)は'、それぞれ領域 A,領域 Bにおける断面を示す。 [0018] For example, in area A shown in FIG. 12 (b), the board 1 on which TCP2 is mounted is slightly inclined with respect to the stage S of the board inspection apparatus, and TCP2 is implemented in area B. The mounted substrate 1 is almost parallel to the stage S. Fig. 12 (c) and Fig. 12 (d) show the cross sections in region A and region B, respectively.
なお、図 12 (a)は、 TCP2を実装した基板 1が、ステージ Sに対して上下逆向きに沿 つたものを表しており、上記各図は、説明を容易にするために、端子間間隔等が誇張 して描かれている。  Note that Fig. 12 (a) shows the board 1 on which TCP2 is mounted along the upside down direction with respect to the stage S. For ease of explanation, the above figures show the spacing between terminals. Etc. are exaggerated.
この領域 Aにおける取得画像から得られる出力信号は図 12(e)のようになり、その 領域 Aにおける周期 L, L は、領域 Bにおける出力信号の周期 L , L , L よ n n-f l m m+l m+2 りも短いものとなる傾向がある。  The output signal obtained from the acquired image in region A is as shown in Fig. 12 (e). The periods L and L in region A are the output signal periods L, L, and L in region B n nf lm m + l tend to be shorter than m + 2.
また、 TCP2が、図 12 (a) (b)等に示すように弧状に湾曲していれば、厳密にいえ ば、前記各周期 L , L …し , L , L がすべて異なる状態も起こり得る。 If TCP2 is curved in an arc as shown in Fig. 12 (a), (b), etc. For example, the states L, L,..., And L, L may all be different.
[0019] さらに、基板 1や TCP2に反りやたわみ等が生じたことにより、取得画像力 得られ る出力信号 30の位相がずれてしまう。 [0019] Further, the warp or deflection of the substrate 1 or TCP2 occurs, and the phase of the output signal 30 obtained from the acquired image force is shifted.
例えば、基板 1や TCP2に反りやたわみ等が生じて!/、な 、良好な被検査基板から 取得した基準波形に基づいて、出力信号 30中に一組の端子 11, 12に対応する領 域 Cを特定しょうとすると、その領域 Cは、図 13 (a)に示すように、始点が出力信号 30 上の E地点、終点が F地点となる。しかし、この E地点及び F地点は、ともに基準波形 に基づくものであり、出力信号 30の波形のピーク位置 31, 31から判断すると、波形 の位相がずれてレ、ることがわ力^)。  For example, warping or deflection occurs on board 1 or TCP2! /, Based on the reference waveform obtained from a good board to be inspected, the area corresponding to a pair of terminals 11 and 12 in output signal 30 If C is to be specified, the start point of region C is point E on output signal 30 and the end point is point F, as shown in Fig. 13 (a). However, point E and point F are both based on the reference waveform, and judging from the peak positions 31 and 31 of the waveform of the output signal 30, it is possible to shift the phase of the waveform.
[0020] このように、取得した画像及びその画像力 得られる出力信号の位相や周期等が ずれると、各端子に対応する出力信号等の範囲を特定できず、前記端子間の圧着 状態の良否を正確に判定できな!/、。 [0020] As described above, when the phase and period of the acquired image and the output force of the acquired image are shifted, the range of the output signal corresponding to each terminal cannot be specified, and whether the crimping state between the terminals is good or bad Can't judge accurately! /.
[0021] そこで、この発明は、異方性導電体を介して基板の端子と TCPの端子とを接続した 部分の端子間の圧着状態の良否を、高速で且つ正確に評価できるようにすることを 課題とする。 Therefore, the present invention enables high-speed and accurate evaluation of the quality of the crimped state between the terminals of the portion where the terminal of the substrate and the terminal of the TCP are connected via the anisotropic conductor. Is an issue.
課題を解決するための手段  Means for solving the problem
[0022] 上記の課題を解決するために、この発明は複数の端子が並列する重畳領域の TC[0022] In order to solve the above-described problem, the present invention provides a TC in an overlapping region in which a plurality of terminals are arranged in parallel.
P上面における画像取得にぉ 、て、その領域を端子の並列方向に沿って細力べ分割 し、その分割した各領域の画像力も得られる出力信号に基づいて、その出力信号の 特性値、演算値から圧着状態を評価するようにしたのである。 When acquiring an image on the upper surface of P, the area is subdivided along the parallel direction of the terminals, and the output signal characteristic value and calculation are calculated based on the output signal that also obtains the image power of each divided area. The crimping state was evaluated from the value.
このようにすれば、重畳領域内のすべての部位の画像に対する出力信号を客観的 に評価することができる。出力信号が客観的に評価できれば、端子間の圧着状態、 すなわちその端子間の導通状態の良否も客観的に評価できる。  In this way, it is possible to objectively evaluate the output signals for the images of all the parts in the superimposed region. If the output signal can be objectively evaluated, it is possible to objectively evaluate the quality of the crimped state between the terminals, that is, the conduction state between the terminals.
[0023] また、上記の課題を解決するために、この発明は、基準となる信号を元に、取得し た画像の出力信号を補正したものである。 [0023] Further, in order to solve the above-described problems, the present invention corrects an output signal of an acquired image based on a reference signal.
補正により、前記各端子に対応する出力信号の範囲を特定することができるので、 基板や TCPに反りやたわみがある場合でも、前記端子間の圧着状態の良否を正しく 判定できる。 発明の効果 Since the range of the output signal corresponding to each terminal can be specified by the correction, it is possible to correctly determine whether the crimping state between the terminals is good or not even when the substrate or TCP is warped or bent. The invention's effect
[0024] この発明は、異方性導電体を介して基板の端子と TCPの端子とを接続した部分の 端子間の圧着状態の良否を、高速で且つ正確に評価できる。  [0024] According to the present invention, the quality of the crimped state between the terminals of the portion where the terminal of the substrate and the TCP terminal are connected via the anisotropic conductor can be evaluated at high speed and accurately.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1] (a)は、一実施例の検査装置の構成を示し、 (b)は被検査体の要部拡大平面 図を示す。  [0025] [FIG. 1] (a) shows a configuration of an inspection apparatus according to one embodiment, and (b) shows an enlarged plan view of a main part of an object to be inspected.
園 2]被検査体の要部拡大断面図。  2] An enlarged cross-sectional view of the main part of the test object.
[図 3]同実施例に係る基板検査装置での凹凸部分の検出原理の説明図。  FIG. 3 is an explanatory view of the principle of detecting uneven portions in the substrate inspection apparatus according to the embodiment.
[図 4]基板検査装置の OK部と NG部の検査内容の説明図。  [FIG. 4] An explanatory diagram of inspection contents of the OK and NG parts of the substrate inspection apparatus.
[図 5]実施形態に係る基板検査装置の〇Kと NG画像を示す写真。  FIG. 5 is a photograph showing ◯ K and NG images of the substrate inspection apparatus according to the embodiment.
[図 6]検査処理の詳細を示すフローチャート。 '  FIG. 6 is a flowchart showing details of the inspection process. '
[図 7]領域画像から出力信号への変換例を示し、(a)は領域画像を示す写真、(b)は 変換後の出力信号を示す。  [Fig. 7] An example of conversion from an area image to an output signal is shown. (A) is a photograph showing the area image, and (b) is an output signal after conversion.
[図 8]基板検査装置の構成を示す説明図。  FIG. 8 is an explanatory diagram showing the configuration of the substrate inspection apparatus.
[図 9]光の照射角度、画像の取得角度と、 TCPの凹凸との関係を示す説明図。  FIG. 9 is an explanatory diagram showing the relationship between the light irradiation angle, the image acquisition angle, and the unevenness of the TCP.
[図 10] (a)は画像領域の分割方法を示し、 (b)はその分割領域の出力信号を示す説 明図。  [FIG. 10] (a) shows a method of dividing an image area, and (b) is an explanatory diagram showing an output signal of the divided area.
[図 11]異物混入の例を示す要部拡大断面図。  FIG. 11 is an enlarged cross-sectional view of the main part showing an example of contamination.
[図 12]反りやたわみが生じた場合の基板と TCPとの関係を示す説明図。  FIG. 12 is an explanatory diagram showing the relationship between the board and TCP when warping or deflection occurs.
[図 13]位相補正前と信号波形と位相補正後の信号波形を示す。  FIG. 13 shows signal waveforms before and after phase correction, and signal waveforms after phase correction.
[図 14]位相補正前の出力信号波形と、基準波形と、位相補正後の出力信号波形を 示す。  [Figure 14] Output signal waveform before phase correction, reference waveform, and output signal waveform after phase correction.
[図 15]従来例の検査の手法を示す説明図。  FIG. 15 is an explanatory view showing a conventional inspection method.
[図 16] (a)は従来例の検査の手法を示す説明図、(b)は従来例の検査の手法を示す 説明図。  FIG. 16A is an explanatory diagram showing a conventional inspection method, and FIG. 16B is an explanatory diagram showing a conventional inspection method.
[図 17]図 16 (b)に示す手法で取得した画像を示す写真。  FIG. 17 is a photograph showing an image acquired by the method shown in FIG. 16 (b).
符号の説明  Explanation of symbols
[0026] 1 プリント基板 (基板) '液晶基板 (基板) [0026] 1 Printed circuit board (board) 'LCD substrate (substrate)
TCP  TCP
異方性導電体 (ACF) 導電粒子  Anisotropic Conductor (ACF) Conductive Particle
圧痕 Indentation
, 16 撮影手段 (撮像装置), 17 照明手段 (光源) 異物, 16 Imaging means (imaging device), 17 Illumination means (light source) Foreign matter
0 重畳領域0 Superimposed area
1, 11', 12, 12, 端子(電極)3 TCP上面1, 11 ', 12, 12, Terminal (electrode) 3 TCP top surface
3a 凸部3a Convex
3b 凹部3b recess
4 ACF表面4 ACF surface
5 ァライメント用撮像装置8 検査ヘッド、5 Alignment imaging device 8 Inspection head,
9 走査方向9 Scan direction
0 画像 (画像データ)0 Image (image data)
0a, 20b, 20c- ·· 領域画像0a', 20b', 20c' ··· 領域画像0, 30' , 30" 出力信号1, 31,, 31" ピーク位置2 振幅0a, 20b, 20c- ... Area image 0a ', 20b', 20c '... Area image 0, 30', 30 "Output signal 1, 31, 31" Peak position 2 Amplitude
3 周期3 cycles
4 半値幅4 Half width
0 制御装置 (コントローラ)1 PC (パソコン)2 表示装置 (モニター) 50 制御盤 0 Control device (controller) 1 PC (personal computer) 2 Display device (monitor) 50 Control panel
a, b, c--- 影像 (エリア)  a, b, c --- image (area)
A, B, C--- 領域  A, B, C --- region
S X— Y— Z— 0ステージ  S X— Y— Z— 0 stage
a, a ' , a " 照射方向  a, a ', a "Irradiation direction
β, β ', β" 画像の取得方向  β, β ', β "Image acquisition direction
θ βΙ θ '照射角度 θ βΙ θ 'Irradiation angle
θ , θ ' 取得角度  θ, θ 'acquisition angle
Fa 照明手段の移動方向 F a Direction of illumination means
F 撮影手段の移動方向  F Moving direction of the shooting means
E 出力信号の始点  E Start point of output signal
F 出力信号の終点  F End point of output signal
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 前記手段の実施形態として、以下の検査装置を採用することができる。 [0027] As an embodiment of the above means, the following inspection apparatus can be adopted.
[0028] すなわち、基板 1と TCP2にそれぞれ並列して設けた複数の端子 11 , 12; 11 '[0028] That is, a plurality of terminals 11 and 12; 11 'provided in parallel with the substrate 1 and TCP2, respectively.
, 12' (複数の端子 11, 12又は複数の端子 11', 12')同士を重ねて、対向する前記 両端子 11, 12; 11', 12'間に異方性導電体 3を介在させて前記対向する両端子 11 , 12;11', 12'をそれぞれ接続し、その対向する前記両端子 11, 12;11', 12'間 の圧着状態を、前記 TCP2の前記端子 12, 12'を設けた側の反対側の面における 前記並列する両端子 11, 12;11', 12'の重畳領域 10の画像データ 20により光学 的に検査する基板検査装置において、前記重畳領域 10を、前記並列方向に沿って 複数の領域 A, B, C…に分割し、照明手段 17により各領域 A, B, C','に対して斜 め方向カゝら前記並列方向へ向けて光を照射して、撮影手段 16により前記重畳領域 1 0の画像データ 20を前記各領域 A, B, C' · '毎に取得し、前記各領域 A, B, C' · · に対応する各領域画像 20a, 20b, 20c…から得られる出力信号 30と、前記出力信 号 30から算出される特性値又はその算出された特性値に基づく演算値を、予め設 定された基準値と比較することにより前記両端子 11, 12;11', 12'間の圧着状態を 検査する構成を採用し得る。 [0029] また、前記各領域画像 20a, 20b, 20c ·· ·を取得する際の前記各領域 A, B, C · · ' に照射される光量、前記各領域 A, B, C- ··と前記撮影手段 16との距離及び前記撮 影手段 16の受光感度、前記基板 1の面方向に対する前記光の照射角度 0 及ぴ画 像の取得角度 Θ を、前記全領域 A, B, C' · 'で一定とする構成を採用し得る。 , 12 '(a plurality of terminals 11, 12 or a plurality of terminals 11', 12 ') are overlapped with each other, and an anisotropic conductor 3 is interposed between the opposite terminals 11, 12; 11', 12 '. The opposing terminals 11, 12; 11 ′, 12 ′ are connected to each other, and the crimped state between the opposing terminals 11, 12; 11 ′, 12 ′ is determined as the terminals 12, 12 ′ of the TCP 2. In the substrate inspection apparatus that optically inspects the image data 20 of the overlapping regions 10 of the parallel terminals 11, 12; 11 ′, 12 ′ on the surface opposite to the side provided with the overlapping region 10, Divided into a plurality of areas A, B, C… along the parallel direction, and illuminating means 17 irradiates each area A, B, C ',' toward the parallel direction from the oblique direction. Then, the image data 20 of the superimposed region 10 is acquired for each of the regions A, B, C ′ · ′ by the photographing means 16, and the region images corresponding to the regions A, B, C ′,. Output signal obtained from 20a, 20b, 20c… 30 and the characteristic value calculated from the output signal 30 or the calculated value based on the calculated characteristic value by comparing with the preset reference value, the both terminals 11, 12; 11 ', A configuration for inspecting the crimp state between 12 'can be adopted. [0029] Further, the amount of light applied to each of the regions A, B, C ··· when acquiring the region images 20a, 20b, 20c ···, the regions A, B, C- And the imaging means 16, the light receiving sensitivity of the imaging means 16, the irradiation angle 0 of the light with respect to the surface direction of the substrate 1, and the image acquisition angle Θ are defined as the total areas A, B, C ′. · It is possible to adopt a configuration that is constant with '.
このようにすれば、重畳領域 10内における端子 11, 12;11', 12'間の圧着状態の 良否を、同一の基準でもって客観的に評価できる。  In this way, the quality of the crimped state between the terminals 11, 12; 11 ′, 12 ′ in the overlapping region 10 can be objectively evaluated based on the same criteria.
[0030] この構成にぉレ、て、前記照明手段 17と前記撮影手段 16とを一体とし、その照明手 段 17及び前記撮影手段 16と、前記重畳領域 10とを前記並列方向へ相対移動させ ることにより、前記各領域画像 20a, 20b, 20c' ··の取得を順に行う構成を採用すれ ば、各領域 A, B, C…に光を照射する照明手段 17や画像を取得する撮影手段 16 を多数設ける必要がない。 With this configuration, the illumination unit 17 and the imaging unit 16 are integrated, and the illumination unit 17 and the imaging unit 16 and the overlapping area 10 are relatively moved in the parallel direction. Thus, if the configuration in which the respective area images 20a, 20b, 20c ′,... Are acquired in order is used, the illumination means 17 for irradiating each area A, B, C. There is no need to provide a large number of 16s.
前記照明手段 17及び前記撮影手段 16と、前記重畳領域 10とを前記並列方向へ 相対移動させる手法としては、 TCP2を実装した基板 1を照明手段 17及び撮影手段 16に対して移動させる手法、一体に固定した照明手段 17及び撮影手段 16を TCP2 を実装した基板 1に対して移動させる手法、両者をともに移動させる手法等が挙げら れる。  As a method of relatively moving the illumination unit 17 and the imaging unit 16 and the overlapping region 10 in the parallel direction, a method of moving the substrate 1 mounted with TCP2 with respect to the illumination unit 17 and the imaging unit 16, For example, a method of moving the illumination unit 17 and the imaging unit 16 fixed to each other with respect to the substrate 1 on which TCP2 is mounted, a method of moving both of them together, and the like.
なお、前記照明手段 17と前記撮影手段 16とを一体とするとは、前記照明手段 17 及ぴ前記撮影手段 16が動く場合に、その両者の移動量を同一にする趣旨である。  Note that the illuminating means 17 and the photographing means 16 are integrated to mean that when the illuminating means 17 and the photographing means 16 are moved, the movement amounts of both are the same.
[0031] また、前記特性値は、前記出力信号 30から算出されるピーク位置 31、振幅 32、周 期 33、半値幅 34から選択される単一の又は複数の特性値であり、前記基準値との 比較は'、前記対向する一組の端子 11, 12; 11,, 12'に対応するエリア a, b, c…毎 に行う構成を採用することができる。 [0031] The characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31, an amplitude 32, a period 33, and a half-value width 34 calculated from the output signal 30, and the reference value Can be adopted for each of the areas a, b, c... Corresponding to the pair of opposing terminals 11, 12;
このようにすれば、並列するすべての端子 11, 12;11', 12'において、その圧着 状態のレベルを正確に評価できる。  In this way, the level of the crimped state can be accurately evaluated for all terminals 11, 12; 11 ', 12' in parallel.
[0032] さらに、前記の構成において、前記各領域画像 20a, 20b, 20c- · 'を前記並列方 向に直交する方向にそれぞれ分割し、その分割した各領域画像 20a' , 20b', 20c' • · 'からそれぞれ得られる出力信号 30'と、その出力信号 30'から算出されるピーク 位置 31'、振幅 32'、周期 33'、半値幅 34'から選択される単一の又は複数の特性 値、又はその算出された特性値に基づく演算値により、対向する前記両端子 11, 12 ; 11 ' , 12'間に混入した異物 8を検出する構成を採用し得る。領域を複数に分割す れば、異物 8の混入による出力信号 30, 30'の局部的な変動を発見しやすくなる。 [0032] Further, in the above configuration, each of the region images 20a, 20b, 20c,... 'Is divided in a direction orthogonal to the parallel direction, and each of the divided region images 20a', 20b ', 20c' is divided. • Single or multiple characteristics selected from 'output signal 30' obtained from each and peak position 31 ', amplitude 32', period 33 ', half width 34' calculated from the output signal 30 ' It is possible to adopt a configuration in which the foreign matter 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ is detected by a value or a calculated value based on the calculated characteristic value. If the region is divided into a plurality of regions, it becomes easier to detect local fluctuations in the output signals 30, 30 ′ due to the inclusion of the foreign object 8.
[0033] また、前記重畳領域 10から得られた出力信号 30, 30'を、同一の重畳領域 10に おける基準となる信号と比較してその位相及び周期を補正する構成を採用すれば、 補正により、前記各端子 11, 12; 11' , 12'に対応する出力信号 30の範囲を特定す ることができるので、被検査体に反りやたわみがある場合でも、前記端子 11, 12 ; 11 12'間の圧着状態の良否を正しく判定できる。  [0033] Further, if a configuration is adopted in which the output signals 30, 30 'obtained from the superposition region 10 are compared with a reference signal in the same superposition region 10 and the phase and period thereof are corrected, the correction is performed. Thus, the range of the output signal 30 corresponding to each of the terminals 11, 12; 11 ′, 12 ′ can be specified. Therefore, even when the object to be inspected is warped or bent, the terminals 11, 12; It is possible to correctly determine the quality of the crimped state between 12 '.
[0034] さらに、前記撮影手段 16をエリアセンサーとし、前記各領域画像 20a, 20b, 20c- · •における前記並列方向に対する取得幅を、検査対象となる重畳領域 10に応じて可 変とすれば、画像を取得する単一の領域内における各位置と撮影手段 16との距離 の差異は少なくなり、さらに各位置に対する撮影手段 16の見込み角度の差異はなく なる。このため、単一の領域内における焦点の一致度合いの違いによる出力信号 30 の誤差を低減し得る。この取得幅は、被検査体の特性に応じて調整することができる また、取得幅を狭くして走査することで、前記各領域 A, B, C- · ·の画像をきわめて 高速に取得でき、したがって検査速度を大幅に短縮できる。  [0034] Further, if the photographing means 16 is an area sensor, and the acquisition width in the parallel direction in each of the region images 20a, 20b, 20c,... Can be changed according to the overlapping region 10 to be inspected. The difference in distance between each position in the single region where the image is acquired and the photographing means 16 is reduced, and further, the difference in the expected angle of the photographing means 16 with respect to each position is eliminated. For this reason, the error of the output signal 30 due to the difference in the degree of coincidence of the focus within a single region can be reduced. This acquisition width can be adjusted according to the characteristics of the object to be inspected. Also, by scanning with a narrow acquisition width, images of each of the areas A, B, C-. Therefore, the inspection speed can be greatly reduced.
[0035] また、前記照明手段 17は、前記撮影手段 16の受光感度とほぼ一致した発光スぺ クトノレを有する光源を備えた構成を採用し得る。  In addition, the illumination unit 17 may employ a configuration including a light source having a light emission spectrum that substantially matches the light receiving sensitivity of the imaging unit 16.
このようにすれば、撮影手段 16はその光源から各領域 A, B,〇· · ·に照射される光 を効率的に受光できる。このため、照射する光量を抑えられることができるとともに、 露光時間を短縮でき、検査タクトを抑えることができる。  In this way, the photographing means 16 can efficiently receive the light emitted from the light source to each of the areas A, B,. Therefore, the amount of light to be irradiated can be suppressed, the exposure time can be shortened, and the inspection tact can be suppressed.
[0036] また、前記照明手段 17による光の照射角度 0 、及び前記撮影手段 16による画像 の取得角度 0 を、それぞれ検査対象となる前記重畳領域 10における前記 TCP2の  [0036] Further, the irradiation angle 0 of the light by the illuminating means 17 and the acquisition angle 0 of the image by the photographing means 16 are respectively set in the TCP2 in the superposed region 10 to be inspected.
β  β
前記端子 12を設けた側の反対側の面の凹凸形状に応じて可変とする構成を採用し 得る。  It is possible to adopt a configuration that can be changed according to the uneven shape of the surface on the side opposite to the side where the terminal 12 is provided.
このようにすれば、対象となる基板 1の種別あるいは重畳領域 10の位置に応じて、 前記照明手段 17の照射方向と、前記撮影手段 16の画像の取得方向を任意に設定 または変更できるので、 TCP2の端子 12を設けた側の反対側の面に生じた凹凸部分 での反射光をより効果的に受光でき、その画像に基づく出力信号 30による圧着状態 の良否の判定が容易になる。 In this way, depending on the type of the target substrate 1 or the position of the overlapping region 10, the irradiation direction of the illumination unit 17 and the image acquisition direction of the imaging unit 16 are arbitrarily set. Or, because it can be changed, it is possible to more effectively receive the reflected light from the uneven part generated on the surface opposite to the side where the terminal 12 of TCP2 is provided, and it is possible to judge whether the crimped state is good or not by the output signal 30 based on the image It becomes easy.
なお、前記撮影手段 16のシャッター速度を変更あるいは調整できるようにすれば、 照明手段 17と撮影手段 16との相対条件を最適化することができる。このため、凹凸 のピッチや高低差が異なる様々な基板 1に対しても柔軟に対応でき、効果的に画像 の取得ができる。  If the shutter speed of the photographing means 16 can be changed or adjusted, the relative conditions between the illumination means 17 and the photographing means 16 can be optimized. For this reason, it is possible to flexibly deal with various substrates 1 with different uneven pitches and height differences, and an image can be acquired effectively.
また、照明手段 17をその光の照射方向に沿ってスライド可能、撮影手段 16をその 画像の取得方向に沿ってスライド可能とすれば、重畳領域 10の凹凸状況に応じて容 易に焦点を合致させることができる。  Also, if the illumination means 17 can be slid along the direction of light irradiation and the imaging means 16 can be slid along the image acquisition direction, the focus can be easily adjusted according to the unevenness of the overlapping area 10. Can be made.
[0037] なお、前記の各構成からなる基板検査装置を電子部品実装装置、すなわち、基板 1と TCP2の各端子 11, 12 ; 11 ' , 12'同士を異方性導電体を介して接続する電子 部品実装装置に一体化した構成を採用することもできる。  [0037] It is to be noted that the board inspection apparatus configured as described above is connected to an electronic component mounting apparatus, that is, the terminals 11 and 12; 11 'and 12' of the board 1 and TCP2 via an anisotropic conductor. A configuration integrated with the electronic component mounting apparatus can also be adopted.
[0038] 一方、前記手段の実施形態として以下の検査方法を採用することができる。  On the other hand, the following inspection method can be adopted as an embodiment of the means.
[0039] すなわち、基板 1と TCP2にそれぞれ並列して設けた複数の端子 11, 12; 11 ' , 12 ,同士を重ねて、対向する前記両端子 11, 12; 11 ' , 12'間に異方性導電体 3を介在 させて前記対向する両端子 11, 12; 11 ' , 12'をそれぞれ接続し、その対向する前 記両端子 11, 12; 11 ' , 12'間の圧着状態を、前記 TCP2の前記端子 12, 12'を設 けた側の反対側の面における前記並列する両端子 11, 12 ; 11 ' , 12'の重畳領域 1 0の画像データ 20により光学的に検查する基板検査装置において、前記重畳領域 1 0を、前記並列方向に沿って複数の領域 A, B, C…に分割し、前記各領域 A, B, C • · ·に対して斜め方向から前記並列方向へ向けて光を照射して、前記重畳領域 10 の画像データ 20を前記各領域 A, B, C' · '毎に取得し、前記各領域 A, B, C ' · ·に 対応する各領域画像 20a, 20b, 20c…から得られる出力信号 30と、前記出力信号 30から算出される特性値又はその算出された特性値に基づく演算値を、予め設定さ れた基準値と比較することにより前記両端子 11, 12 ; 11 ' , 12'間の圧着状態を検査 する基板検査方法の構成である。  [0039] That is, a plurality of terminals 11, 12; 11 ', 12, which are provided in parallel with the substrate 1 and TCP2, respectively, are overlapped with each other and are different between the opposing terminals 11, 12; 11', 12 '. The opposing terminals 11, 12; 11 ′, 12 ′ are connected via the isotropic conductor 3, and the crimping state between the opposing terminals 11, 12; 11 ′, 12 ′ is Substrate optically detected by the image data 20 of the overlapping region 10 of the parallel terminals 11, 12; 11 ', 12' on the opposite surface of the TCP2 to the side where the terminals 12, 12 'are provided In the inspection apparatus, the overlapping region 10 is divided into a plurality of regions A, B, C... Along the parallel direction, and the parallel direction from the oblique direction with respect to the regions A, B, C,. The image data 20 of the superimposed region 10 is acquired for each of the regions A, B, C ′ · ′, and the regions corresponding to the regions A, B, C ′ ·· Images 20a, 20b, 20c… By comparing the output signal 30 obtained and the characteristic value calculated from the output signal 30 or the calculated value based on the calculated characteristic value with a preset reference value, the both terminals 11, 12; 11 This is a configuration of the substrate inspection method for inspecting the crimped state between 'and 12'.
[0040] また、前記各領域画像 20a, 20b, 20c · · ·を取得する際の前記各領域 A, B, C · · · に照射される光量、前記各領域 A, B,。···と前記画像データを取得する撮影手段 16との距離及び前記撮影手段 16の受光感度、前記基板 1の面方向に対する前記 光の照射角度 Θ 及ぴ画像の取得角度 0 を、前記全領域 A, B, C…で一定とす る構成を採用し得る。 [0040] Further, each of the regions A, B, C ··· when acquiring the region images 20a, 20b, 20c ··· The amount of light irradiated on each of the areas A, B, and so on. The distance between the image capturing means 16 for acquiring the image data, the light receiving sensitivity of the image capturing means 16, the irradiation angle Θ of the light with respect to the surface direction of the substrate 1, and the image acquisition angle 0 A configuration in which A, B, C... Are constant can be adopted.
[0041] また、前記特性値は、前記出力信号 30から算出されるピーク位置 31、振幅 32、周 期 33、半値幅 34から選択される単一の又は複数の特性値であり、前記基準値との 比較は、前記対向する一組の端子 11, 12;11', 12'に対応するエリア a, b, c…毎 に行う基板検查方法の構成を採用し得る。  [0041] The characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31, an amplitude 32, a period 33, and a half-value width 34 calculated from the output signal 30, and the reference value For comparison with the above, it is possible to adopt the configuration of the substrate inspection method performed for each of the areas a, b, c... Corresponding to the pair of terminals 11, 12;
[0042] さらに、前記各領域画像 20a, 20b, 20α·· 'を前記並列方向に直交する方向にそ れぞれ分割し、その分割した各領域画像 20a' , 20b' , 20c'…からそれぞれ得られ る出力信号 30'と、その出力信号 30'から算出されるピーク位置 31'、振幅 32'、周 期 33'、半値幅 34'から選択される単一の又は複数の特性値、又はその算出された 特性値に基づく演算値により、対向する前記両端子 11, 12; 11', 12'間に混入した 異物 8を検出する基板検査方法の構成を採用し得る。  [0042] Further, each of the area images 20a, 20b, 20α,... Is divided in a direction orthogonal to the parallel direction, and each of the divided area images 20a ′, 20b ′, 20c ′,. Single or multiple characteristic values selected from the output signal 30 ′ obtained and the peak position 31 ′, amplitude 32 ′, period 33 ′, half width 34 ′ calculated from the output signal 30 ′, or A configuration of a substrate inspection method for detecting the foreign matter 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ by a calculated value based on the calculated characteristic value can be adopted.
[0043] また、前記重畳領域 10から得られた出力信号 30、 30'を、同一の重畳領域 10に おける基準となる信号と比較することによりその位相及び周期を補正する基板検査方 法の構成を採用し得る。  [0043] Also, the configuration of the substrate inspection method for correcting the phase and period by comparing the output signals 30, 30 'obtained from the superposition region 10 with a reference signal in the same superposition region 10 Can be adopted.
実施例  Example
[0044] 以下、本発明の実施例について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の基板検査装置は、図 1 (a) (b)に示すように、プリント基板 (PWB) 1と液晶 基板 1, を TCP2を介して接続した被検査体の、そのプリント基板 1の並列する端子 (リード) 11, 11, 11···と、異方性導電体 (ACF) 3の導電粒子 4を介して接続された TCP2の端子(電極) 12, 12, 12·· ·との重畳領域 10において、対応する端子 11, 12 ;11', 12'間の圧着状態を、画像データ 20に基づき検査するものである。 As shown in FIGS. 1 (a) and 1 (b), the substrate inspection apparatus of the present invention is a parallel inspection of printed circuit boards 1 of a test object in which a printed circuit board (PWB) 1 and a liquid crystal substrate 1 are connected via TCP2. And the terminals (electrodes) 12, 12, 12... Connected via the conductive particles 4 of the anisotropic conductor (ACF) 3. In the overlapping region 10, the crimping state between the corresponding terminals 11, 12; 11 ′, 12 ′ is inspected based on the image data 20 .
[0045] 装置の構成は、図 8に示すように、基板 1を載置する X- Y-Z- Θステージ Sと、その ステージ Sの上に載置した基板 1へ斜めカゝら一方向に光を照射する照明手段 (光源) 17と、走査して撮影を行う撮像装置 (撮影手段) 16、及び制御装置 (コントローラ) 40 、制御盤 50等を備えている。この実施例では、撮像装置 16は、エリアセンサー (二次 元センサー)を採用している。なお、光を受光する感光部が一列だけ配置されたライ ンセンサーを採用してもよ 、。 As shown in FIG. 8, the configuration of the apparatus is as follows. The X-YZ-Θ stage S on which the substrate 1 is placed, and the substrate 1 placed on the stage S is lighted in one direction obliquely to the substrate 1. Illuminating means (light source) 17 for irradiating, an imaging device (imaging means) 16 for scanning and photographing, a control device (controller) 40, a control panel 50, and the like. In this embodiment, the imaging device 16 is an area sensor (secondary Former sensor) is adopted. It is also possible to adopt a line sensor in which only one row of photosensitive parts that receive light is arranged.
[0046] 制御装置 40は、前記撮像装置 16で取得した画像を処理して出力信号 30とすると ともにその出力信号 30から各種特性値等を計測し、さらにその特性値等をもとに演 算処理を行う画像処理装置、被検査体となる基板 1の情報を登録するとともに、その 情報に基づ 、て前記画像処理装置で計測された特性値、演算値と予め設定された 良否判定基準値とを比較して良否判定を行う登録 ·判定処理装置、及び X- Y- Z - Θ ステージ Sや、前記撮像装置 16等の動きを制御する制御盤 50等を有している。符号 41は PC (パソコン)、符号 42は表示装置 (モニター)を示す。 [0046] The control device 40 processes the image acquired by the imaging device 16 to produce an output signal 30, and measures various characteristic values from the output signal 30, and further calculates based on the characteristic values. Registers information on the image processing apparatus to be processed and the substrate 1 to be inspected, and on the basis of the information, the characteristic values and calculated values measured in the image processing apparatus and preset pass / fail judgment reference values And a registration / determination processing device that performs a pass / fail determination and an XYZ-Θ stage S and a control panel 50 that controls the movement of the imaging device 16 and the like. Reference numeral 41 indicates a PC (personal computer), and reference numeral 42 indicates a display device (monitor).
[0047] 図 1 (a)は、撮像装置 16、照明手段 17、及び位置決め用のァライメント用撮像装置 15を一体に備えた検査ヘッド 18と、 X-Y-Z- Θステージ Sに载置された基板 1との位 置関係を示しており、他の構成要素については、図示省略している。  FIG. 1 (a) shows an inspection head 18 integrally including an imaging device 16, an illuminating means 17, and an alignment imaging device 15 for positioning, and a substrate 1 mounted on the XYZ-Θ stage S. The other components are not shown in the figure.
[0048] ァライメント用撮像装置 15は、検査位置を測定するカメラであって、そのァライメント 用撮像装置 15からの信号により、制御装置 40、制御盤 50を介して前記 X- Y-Z- Θ ステージ Sを各々動作させ、その動作により位置合わせを行う。  The alignment imaging device 15 is a camera that measures the inspection position, and the X-YZ-Θ stage S is passed through the control device 40 and the control panel 50 according to a signal from the alignment imaging device 15. Each is operated, and alignment is performed by the operation.
ァライメント用撮像装置 15と X- Y- Z- Θステージ Sを用いて正確に被検査体の測定 領域を特定させることができるので、ティ一チング操作で指定した検查領域に対して Using the alignment imaging device 15 and the X-Y-Z-Θ stage S, it is possible to accurately specify the measurement area of the object to be inspected.
' 、画像データ 20を走査する撮像装置 16により所定の画像を取得できる。走査する撮 像装置 16の条件設定は、 PC41と制御装置 40とにより適宜設定される。また、 PC41 では、制御装置 40から送信された各種データを一括管理することができる。 A predetermined image can be acquired by the imaging device 16 that scans the image data 20. The condition setting of the imaging device 16 to be scanned is appropriately set by the PC 41 and the control device 40. The PC 41 can collectively manage various data transmitted from the control device 40.
[0049] また、 l (a)に示すように照明手段 17は F 方向にスライドし、また 0 方向に動作 させて、最適な照射角度 0 に調整できる。同様に撮像装置 16も F 方向にスライドし' In addition, as shown in l (a), the illumination means 17 can be adjusted to the optimum irradiation angle 0 by sliding in the F direction and operating in the 0 direction. Similarly, the imaging device 16 slides in the F direction.
、 Θ 方向に動作させて、画像の取得角度 Θ を調整できる。これらの照明手段 17及 ø ø The image acquisition angle Θ can be adjusted by operating in the Θ direction. These illumination means 17 and ø ø
ぴ撮像装置 16に関する調整は、手動あるいは操作キー(図示せず)により適宜設定 される。  The adjustment related to the imaging device 16 is appropriately set manually or by an operation key (not shown).
さらに、撮像装置 16による画像取得に際し、制御装置 40において、シャッター速度 制御、焦点制御が可能となっている。  Further, when the image acquisition device 16 acquires an image, the control device 40 can perform shutter speed control and focus control.
[0050] また、走査する撮像装置 16により撮影された画像データ 20、若しくは、その撮影さ れた画像データ 20を前記画像処理装置により処理した画像、及ぴその画像から得ら れた出力信号 30は、例えば、液晶モニタ力 なる表示装置 (モニター) 42に表示させ ることができるようになって 、る。 [0050] Further, the image data 20 captured by the imaging device 16 to be scanned or the captured image data 20 An image obtained by processing the processed image data 20 by the image processing device and an output signal 30 obtained from the image can be displayed on, for example, a display device (monitor) 42 having a liquid crystal monitor power. Become.
このように、 -Y-Z- Θステージ Sに被検查体を載置した後は、その被検査体に触 れることなく必要な全領域の検査が可能となっており、検査工程での埃や塵 (パーテ ィクル)の付着を防止して、大型の液晶パネルの基板検査が容易にできるように配慮 されている。  In this way, after placing the test object on the -YZ- Θ stage S, all necessary areas can be inspected without touching the test object. It is designed to prevent the adhesion of particles (particles) and facilitate the inspection of large LCD panels.
[0051] 被検査体は、液晶表示装置のプリント基板 (PWB) 1と液晶基板 1 'とを TCP2を介 して接続したものであり、 TCP2は ICチップ等カゝらなる駆動用の電子部品を接続搭載 して製造される。この TCP2を、位置決めして前記基板 1及び液晶基板 1 'に接続搭 載する際に接続部材として ACF (異方性導電体) 3が採用される。  [0051] The object to be inspected is a printed circuit board (PWB) 1 of a liquid crystal display device and a liquid crystal substrate 1 'connected via TCP2, and TCP2 is an electronic component for driving such as an IC chip. It is manufactured by connecting and mounting. When the TCP 2 is positioned and connected to the substrate 1 and the liquid crystal substrate 1 ′, an ACF (anisotropic conductor) 3 is employed as a connection member.
プリント基板 (PWB) 1の端子 11と TCP2の端子 12間、及ぴ液晶基板 1 'の端子 11 'と TCPの端子 12'とが重ねられて、それぞれ ACF3の導電粒子 4を介して接続され . ている。  Printed circuit board (PWB) 1 terminal 11 and TCP2 terminal 12 and liquid crystal board 1 ′ terminal 11 ′ and TCP terminal 12 ′ are overlaid and connected via ACF3 conductive particles 4 respectively. ing.
[0052] なお、図 1では、プリント基板 1が X方向に 1個、 Y方向に 1個実装された図を示して いるが、実装される基板 1の数に限定はなぐ X方向、 Y方向の一方、又は両方にそ れぞれ 1個な 、し複数個実装される場合にも対応可能であることは!/、うまでもなレヽ。  [0052] FIG. 1 shows a diagram in which one printed circuit board 1 is mounted in the X direction and one printed circuit board in the Y direction. However, the number of mounted substrates 1 is not limited to the X direction and the Y direction. It is possible to support the case where one or both of these are mounted in one or both! / Ugly ladies.
[0053] この接続にぉレ、て、例えば、 ACF3が 170°Cで熱圧着された後、冷却することで材 料が硬化し、その接続部の TCP2の表面には、図 2に示すように凹凸(凸部 13a及ぴ 凹部 13b)が発生する。溶かした ACF3を、プリント基板 1の端子 11と TCP2の端子 1 2間に S隙が生じな 、よう均一にむら無く充填し圧着する必要があるが、接着材の残 りや、界面の発生、導電膜のはがれ等の介在により、均一に充填できないことがあり、 そのように充填不良を生じた箇所には TCP2の上面 13の凹凸にムラが生じる。した がって、対応する端子 11, 12間の接続状態 (導通状態)の不良は、このムラとなって 外観に現れる。  [0053] For this connection, for example, after ACF3 is thermocompression bonded at 170 ° C, the material is cured by cooling, and the surface of TCP2 at the connection portion is shown in FIG. Concavities and convexities (convex portions 13a and concave portions 13b) are generated on the surface. It is necessary to fill and crimp the melted ACF3 evenly so that there is no S gap between the terminal 11 of the printed circuit board 1 and the terminal 1 2 of the TCP2, but the remaining adhesive, interface, Due to the peeling of the film, it may not be possible to uniformly fill, and unevenness on the top surface 13 of the TCP2 is uneven at the location where such a filling failure has occurred. Therefore, the poor connection state (conducting state) between the corresponding terminals 11 and 12 becomes this unevenness and appears in the appearance.
[0054] この実施例にぉレ、ては、 TCP2と液晶ガラス基板 1,との接続部分ではなぐ TCP 2 とプリント基板 1との接続部分を対象としている。以下、検査の手順を説明する。被検 查体のプリント基板 1の各端子 11と、 ACF3を介して接続された TCP2の電極との重 畳領域 10を、走査する撮像装置 16で撮影する。なお、液晶基板 1 'の端子 11 'と TC Pの端子 12'との接続部分に係る重畳領域 10を検査の対象とすることももちろん可 能である。 In this embodiment, the connection portion between the TCP 2 and the printed circuit board 1 is not the connection portion between the TCP 2 and the liquid crystal glass substrate 1. Hereinafter, the inspection procedure will be described. The weight of each terminal 11 on the PCB 1 of the test body and the TCP2 electrode connected via the ACF3 The tatami area 10 is photographed by the imaging device 16 that scans. Of course, it is possible to inspect the overlapping region 10 related to the connection portion between the terminal 11 ′ of the liquid crystal substrate 1 ′ and the terminal 12 ′ of the TCP.
[0055] 図 3に示すように、その TCP2とプリント基板 1との接続部分に係る重畳領域 10への 光の照射は、前記 TCP2の上面 13に対し斜め方向に光を照射する面光源力 なる 照明手段 17によって行われる。このようにすることにより、広い重畳領域 10に対応で きる。また、撮像装置 16による画像データ 20の取得は、その TCP2の上面 13側にお いて、上記基板 1の面方向に直交する方向に対して、前記照射方向と相対する斜め 方向力 行い、その基板 1に対する前記光の照射方向 α , a , α " · · ·及ぴ画像の 取得方向 )3 , β ' , /Τ · · ·を、全領域 A, B,〇· · ·で一定としている(図 3参照)。この 照射方向 αと取得方向 βとは、上記基板 1の面方向に直交する方向に対して相対 する斜め方向となっており、その両方向 α , βが、それぞれ基板 1の面方向に対して 成す角度 0 , Θ は、必ずしも同一になるものではない。  [0055] As shown in FIG. 3, the light irradiation to the overlapping region 10 relating to the connection portion between the TCP2 and the printed circuit board 1 is a surface light source power that irradiates light in an oblique direction with respect to the upper surface 13 of the TCP2. This is done by the illumination means 17. In this way, a wide overlapping area 10 can be dealt with. In addition, the image data 20 is acquired by the imaging device 16 on the upper surface 13 side of the TCP 2 with respect to a direction orthogonal to the surface direction of the substrate 1 and an oblique direction force that is opposite to the irradiation direction. The light irradiation direction α 1, a 1, α “... And the image acquisition direction 1) 3, β ′, / Τ... Are constant in all areas A, B, 0. (See Fig. 3.) The irradiation direction α and the acquisition direction β are oblique directions opposite to the direction perpendicular to the surface direction of the substrate 1, and both directions α and β are the surfaces of the substrate 1, respectively. The angles 0 and Θ formed with respect to the direction are not necessarily the same.
a  a
[0056] 走查する撮像装置 16と照明手段 17は、前述のように移動自在の検査ヘッド 18内 に一体に設けられているので、重畳領域 10と検査ヘッド 18とを相対移動、すなわち 検査ヘッド 18を移動させるか、あるいはステージ Sを移動させることにより、図 3に示 す走査方向 19 (並列する各端子 11, 12の並列方向)に沿って、領域 A, B, Ο ' ,の [0056] Since the imaging device 16 and the illuminating means 17 are integrally provided in the movable inspection head 18 as described above, the overlapping region 10 and the inspection head 18 are relatively moved, that is, the inspection head. 18 or by moving the stage S, along the scanning direction 19 (parallel direction of terminals 11 and 12 in parallel) shown in FIG.
' 各検査ライン (検査領域)毎の画像 20あるレ、は出力信号 30を順に検出することがで きるようになっている。 'The image 20 for each inspection line (inspection area) can be detected in sequence with the output signal 30.
[0057] なお、この撮像装置 16としてエリアセンサーを採用するが、この場合、エリアセンサ 一によ 前記並列方向の画像の取得幅はできるだけ狭くして、且つ取得ピッチをでき るだけ狭めることが望ましい。取得幅を狭くすることにより、画像を取得する単一の領 域内における各位置と撮像装置 16との距離の差異は少なくなり、さらに各位置に対 するカメラの見込み角度の差異も少なくなり、出力信号 30の分解能 (検査精度)を良 くすることができる。このため、単一の領域内における焦点の一致度合いの違いによ る出力信号 30の誤差を低減し得る。  [0057] Although an area sensor is employed as the imaging device 16, in this case, it is desirable that the acquisition width of the image in the parallel direction is as narrow as possible and the acquisition pitch is as narrow as possible. . By narrowing the acquisition width, the difference in the distance between each position and the imaging device 16 in a single area where the image is acquired is reduced, and the difference in the expected angle of the camera for each position is also reduced. The resolution (inspection accuracy) of signal 30 can be improved. For this reason, the error of the output signal 30 due to the difference in the degree of coincidence of the focus within a single region can be reduced.
また、 ACF3の厚さや、基板 1の端子 11の幅、間隔、 TCP2の端子 12の幅、間隔 等は、被検査体によってそれぞれ異なっている。このため、エリアセンサーを採用し た場合、その取得幅を可変とすることにより、様々な種類の被検査体に対応できるよ うになる。例えば、電極幅や電極間隔の小さい被検査体の場合は前記取得幅を狭め 、逆に電極幅や電極間隔の大きレ、被検査体の場合は前記取得幅を広げることがで きる。 The thickness of the ACF 3, the width and interval of the terminals 11 on the substrate 1, the width and interval of the terminals 12 on the TCP 2, etc., differ depending on the object to be inspected. For this reason, an area sensor is used. In this case, by making the acquisition width variable, it becomes possible to deal with various types of test objects. For example, in the case of an object to be inspected with a small electrode width or electrode interval, the acquisition width can be narrowed. Conversely, in the case of an object to be inspected, the acquisition width can be increased.
[0058] このように走查することにより、重畳領域 10は、図 3の矢印 19に示す方向に沿って 複数の領域 A, B, C - · ·に分割され、撮像装置 16は、その各領域 A, B, C ' · ·内の 領域画像 20a, 20b, 20c…を取得する。領域画像 20a, 20b, 20c…は、例えば、 図 4 (a)に示すように、前記矢印に示す走査方向 19に直交する方向に長いエリアの 集合を形成し、その取得した各領域画像 20a, 20b, 20 ' 'の各画像データ 20に 基づく上記走査方向 19の出力信号 30を求める(図 4 (b)参照)。この撮像装置 16は 走査の際に、画像データ 20を輝度信号の平均値とほぼ比例する値へと換算して取 得するので、走査させる速度とこの撮像装置 16で測定した値との関係を演算すること により、出力信号 30からピーク位置 31、振幅 32、周期 33、半値幅 34の値としても取 得することがでさる。  [0058] By striding in this way, the overlapping region 10 is divided into a plurality of regions A, B, C-··· along the direction indicated by the arrow 19 in FIG. The region images 20a, 20b, 20c,... In the regions A, B, C ′. The region images 20a, 20b, 20c, ..., for example, as shown in FIG. 4 (a), form a set of long areas in the direction orthogonal to the scanning direction 19 indicated by the arrow, and the acquired region images 20a, The output signal 30 in the scanning direction 19 based on the image data 20 of 20b and 20 ′ ′ is obtained (see FIG. 4 (b)). The imaging device 16 obtains the image data 20 by converting it to a value that is approximately proportional to the average value of the luminance signal during scanning, so the relationship between the scanning speed and the value measured by the imaging device 16 is calculated. By doing so, it is possible to obtain from the output signal 30 the values of peak position 31, amplitude 32, period 33, and half width 34.
[0059] このとき、領域画像 20a, 20b, 20c - · ·は、それぞれリード方向(走査方向 19に直 交する方向)の細長レ、領域のデータの集合であり、そのデータの集合から、前記走 查方向 19の出力信号 30を求めるために、各領域画像 20a, 20b, 20c ' · ·のデータ 力 代表値を算出する。この代表値の算出に際し、被検査体の特性に応じて、適切 な種々の手法を選択的に採用し得るが、例えば、平均値や標準偏差の値等を使用 することが可能である。  [0059] At this time, the region images 20a, 20b, 20c-··· are collections of data in the read direction (direction perpendicular to the scanning direction 19) and region data, respectively. In order to obtain the output signal 30 in the strike direction 19, the representative value of the data force of each area image 20a, 20b, 20c 'is calculated. In calculating the representative value, various appropriate methods can be selectively employed according to the characteristics of the object to be inspected. For example, an average value, a standard deviation value, or the like can be used.
なお、''基板 1に対する前記光の照射方向 α , α ' , 0;" ' ' '及ぴ画像の取得方向;3 , β ' , j3 "…は、それぞれ、並列する一群の端子 11 , 12を含む一つの重畳領域 10 を走査している間は常に一定に保持されているので、前記各領域 A, B, C…に照 射される光量、及ぴ各領域 A, B, C - "と各領域画像 20a, 20b, 20c - · 'を取得する 手段との距離、前記各領域画像 20a, 20b, 20c…に対応する撮像装置 16の受光 感度は、各領域 A, B,〇· · ·を通して一定となり、同一の条件で各領域 a, b, c…の 領域画像 20a, 20b, 20c ' · ·を取得することができる。  It should be noted that “light irradiation direction α 1, α ′, 0;“ “” ”and image acquisition direction; 3, β ′, j3”... Is constantly maintained while scanning one overlapping region 10 including the amount of light irradiated to each of the regions A, B, C... And each region A, B, C-" And the area image 20a, 20b, 20c-· 'the distance to the means for acquiring', and the light receiving sensitivity of the imaging device 16 corresponding to each of the area images 20a, 20b, 20c ... The region images 20a, 20b, 20c ′... Of the regions a, b, c... Can be acquired under the same conditions.
[0060] 次に、前記 PCレ、。ソコン ) 41、若しくは制御装置 (コントローラ) 40に内蔵した画像 処理装置と前記登録 ·判定処理装置により圧着状態の良否判定を行う。画像処理装 置で演算された検查項目の数値と、予め設定されたその数値に対応する良否判定 基準値とを比較して良否判定を行う。画像データ 20の出力信号 30から、画像処理 装置により演算処理を行って、その端子間隔に対応したピークの位置やその幅など のデータを判定できる。具体的には、取得した画像データ 20 (前記領域画像 20a, 2 Ob, 20c…の集合)、またはその画像データ 20から得られる各領域 20a, 20b, 20c …毎の代表値の集合を前記走査方向 19の出力信号 30とし、それをもとに、図 4 (b) に示す出力信号 30のピーク位置 31、振幅 32、周期 33、半値幅 34の各数値も演算 、算出することができる。この演算、算出される特性値は、 PC41において任意に設 定することができ、前記ピーク位置 31、振幅 32、周期 33、半値幅 34、その他出力信 号 30をもとに演算、算出される必要な特性値の中から、単一の又は複数の特性値を 選択することができる。 [0060] Next, the PC. Image built in 41) or control device (controller) 40 Whether the crimping state is good or bad is determined by the processing device and the registration / determination processing device. The pass / fail judgment is performed by comparing the numerical value of the inspection item calculated by the image processing device with a pass / fail judgment reference value corresponding to the preset numerical value. From the output signal 30 of the image data 20, it is possible to determine the data such as the peak position and the width corresponding to the terminal interval by performing arithmetic processing by the image processing device. Specifically, the acquired image data 20 (a set of the region images 20a, 2Ob, 20c...) Or a set of representative values for each region 20a, 20b, 20c... Obtained from the image data 20 is scanned. Based on the output signal 30 in the direction 19, the numerical values of the peak position 31, amplitude 32, period 33, and half width 34 of the output signal 30 shown in FIG. 4 (b) can be calculated and calculated. This calculation and calculated characteristic value can be arbitrarily set in the PC 41, and calculated and calculated based on the peak position 31, amplitude 32, period 33, half width 34, and other output signals 30. A single or multiple characteristic values can be selected from the required characteristic values.
[0061] つぎに、演算、算出された出力信号 30のピーク位置 31、振幅 32、周期 33、半値 幅 34等の特性値、及びその算出された特性値に基づく演算値が、上記一対の端子 11, 12に対応する影像 a, b, c…毎に予め設定された基準値を超えている力否か により判定を行う。  [0061] Next, characteristic values such as the peak position 31, amplitude 32, period 33, half-value width 34, etc. of the calculated and calculated output signal 30 and the calculated values based on the calculated characteristic values are the above-mentioned pair of terminals. Judgment is made based on whether or not the force exceeds the preset reference value for each of the images a, b, c.
[0062] この判定は、例えば、図 4に示す影像 a, b, cが導通状態が良好な部分 (OK部)で あり、影像 d, e, f , gが導通状態が不良な部分 (NG部)を示して!/、る。 OK部である影 像 a, b, cは、出力信号 30、ピーク位置 31、振幅 32、周期 33、半値幅 34の各特性 値力 それぞれ規則的な数字で出力されており、一方、 NG部である影像 d, e, f, g は、出 信号ピーク位置 31、振幅 32、周期 33、半値幅 34の各特性値が、不規則な 値として出力されている。  [0062] This determination is made, for example, when the images a, b, and c shown in FIG. 4 are portions where the conduction state is good (OK portion), and the images d, e, f, and g are portions where the conduction state is bad (NG) Show)! / Images a, b, and c in the OK section are output signal 30, peak position 31, amplitude 32, period 33, half-value width 34. In the images d, e, f, and g, the characteristic values of the output signal peak position 31, amplitude 32, period 33, and half width 34 are output as irregular values.
このように、撮影した各領域画像 20a, 20b, 20c · · ·から演算された OK部と NG部 の各端子に対応した影像 (エリア) a, b, c' "において、出力信号ピーク位置 31、振 幅 32、周期 33、半値幅 34等に対する値と比較した場合、演算結果が、いずれかの 特性値 (検査項目)力 S、 OK部分と NG部分とで判定可能なレベルで異なってレ、る。  In this way, the output signal peak position 31 in the images (areas) a, b, c ′ ″ corresponding to the terminals of the OK part and the NG part calculated from the captured area images 20a, 20b, 20c. When compared with values for amplitude 32, period 33, half-value width 34, etc., the result of the operation differs depending on the level at which any characteristic value (inspection item) force S, OK and NG can be determined. RU
[0063] したがって、各特性値のレヽずれか又はすべてが、所定の閾値より小さな値、もしくは 大きな値、もしくは上限と下限の範囲に収まらない値となることにより、 OK部分と NG 部分とを明確に判別できる。 · ' このようにして、出力信号 30が規則的なパターンを表すという性質を利用し、対応 する端子 11, 12間の圧着状態の良否を高速で、適正に判断することができる。 [0063] Therefore, if the level deviation or all of the characteristic values become a value smaller than a predetermined threshold value, a larger value, or a value that does not fall within the upper and lower limits, the OK portion and NG The part can be clearly distinguished. · In this way, the quality of the crimped state between the corresponding terminals 11 and 12 can be judged at high speed and properly using the property that the output signal 30 represents a regular pattern.
[0064] なお、図 5は、 OK部の画像 20と NG部の画像 20との差異を視覚的に説明する図 である。図 5 (a) (b)は、 OK部における端子 11, 12の接続部分を含む重畳領域 10 の画像 20を示し、図 5 (c) (d)は、 NG部を示すものである。 (b)は(a)に対し、また、( d)は(c)に対し画像処理を施している。なお、図 5中の符号は、データ整理上使用し た符号であり、本願の明細書、特許請求の範囲等に記載した符号と異なる。  Note that FIG. 5 is a diagram for visually explaining the difference between the image 20 in the OK portion and the image 20 in the NG portion. FIGS. 5 (a) and 5 (b) show an image 20 of the overlap region 10 including the connection portions of the terminals 11 and 12 in the OK portion, and FIGS. 5 (c) and 5 (d) show the NG portion. (b) applies image processing to (a) and (d) applies image processing to (c). Note that the reference numerals in FIG. 5 are those used for data arrangement, and are different from those described in the specification and claims of the present application.
[0065] また、一般に、撮像装置 16が捉え得る画像 20は、 TCP2の上面 13に生じた凹凸と の位置関係において、図 9 (a)に示すように、その TCP2の凸部 13aにおける斜面 A 点 (傾きの最も急な場所)で正反射をとらえている状態が最も明るくなる。また、その 反対側の斜面 B点では凸部 13aが光を遮るので、最も暗い状態になる。  [0065] Also, in general, the image 20 that can be captured by the imaging device 16 has a positional relationship with the unevenness generated on the upper surface 13 of the TCP2, as shown in Fig. 9 (a). The state where the specular reflection is captured at the point (the place with the steepest inclination) is brightest. On the opposite slope B point, the convex part 13a blocks the light, so it is in the darkest state.
なお、 TCP2の上面 13の凸部 13aは、その突出高さが最も大きい部分が各端子 11 , 12の幅方向(並列方向)中心と概ね一致するので、したがって、各端子 11, 12の 位置と、各領域 20a, 20b; 20c' · ·から取得した画像データ 20に基づく出力信号 30 のピーク位置 31とは一致しない。図 4等においては、各端子 11, 12に対応するエリ ァ a, b, cの中心線位置と、出力信号 30のピーク位置 31とを一致させて、両者の関Note that the protrusion 13a on the upper surface 13 of the TCP2 has a portion with the largest protruding height that substantially coincides with the center in the width direction (parallel direction) of the terminals 11 and 12, so that the positions of the terminals 11 and 12 are , The peak position 31 of the output signal 30 based on the image data 20 acquired from each of the regions 20a, 20b ; 20c ′. In FIG. 4 etc., the center line positions of the areas a, b, c corresponding to the terminals 11, 12 and the peak position 31 of the output signal 30 are made to coincide with each other.
' 係をわ力りやすくしている。 'Makes the staff easy to help.
[0066] したがって、図 9 (a)に示す被検査体にぉレ、ては、斜面 A点で取得する画像が最も 明るくなるように、すなわち正反射光が得られるように、照明手段 17の照射角度 Θ と 撮像装'置 16の取得角度 Θ とをそれぞれ調整すれば、明暗のはっきりした画像が得 られることとなる。  [0066] Therefore, the illumination means 17 is arranged so that the image obtained at the slope A point becomes the brightest, that is, the specular reflection light is obtained, on the object to be inspected shown in FIG. 9 (a). By adjusting the irradiation angle Θ and the acquisition angle Θ of the imaging device 16 respectively, a bright and dark image can be obtained.
[0067] しかし、その図 9 (a)で設定された照射角度 0 及ぴ取得角度 0 を、そのまま他の 被検査体に適用すると、必ずしも明暗のはっきりした画像は得ることができない。被検 査体が異なれば、各端子 11, 12の厚さや、各端子 11, 12の幅、隣り合う端子 11, 1 1間、端子 12, 1.2間のピッチも異なるので、凸部 13aと凹部 13bとの高低差、ピッチ、 斜面の勾配等が異なる力 である。  However, if the irradiation angle 0 and the acquisition angle 0 set in FIG. 9 (a) are applied to other inspection objects as they are, it is not always possible to obtain a clear and bright image. If the test object is different, the thickness of each terminal 11, 12 and the width of each terminal 11, 12 and the pitch between adjacent terminals 11, 1 1, and between terminals 12, 1.2 are also different. The difference in height from 13b, pitch, slope gradient, etc.
このため、 TCP2の上面 13の凹凸の高低差やそのピッチ、幅が異なる被検査体を 検査する際には、前記照射角度 Θ 、及び取得角度 Θ をそれぞれ調整する。例え ば、図 9 (b)に示す被検査体の場合は、凸部斜面で最も明るくなるように照射角度を Θ 'に、また取得角度を Θ 'に調整することが必要である。 For this reason, inspected objects with different height differences, pitches, and widths on the top surface 13 of TCP2 In the inspection, the irradiation angle Θ and the acquisition angle Θ are adjusted. For example, in the case of the specimen shown in Fig. 9 (b), it is necessary to adjust the irradiation angle to Θ 'and the acquisition angle to Θ' so that the convex slope is brightest.
このように、照射角度 0 、及ぴ前記取得角度 0 をそれぞれ調整できるようにした α  In this way, the irradiation angle 0 and the acquisition angle 0 can be adjusted respectively α
ので、例えば、隣り合う端子 11, 11間のピッチが 0. 2mmから 2. Ommの範囲にある ような各種用途の被検査体に対応できるようになる。  Therefore, for example, it becomes possible to deal with inspected objects for various purposes such that the pitch between adjacent terminals 11 and 11 is in the range of 0.2 mm to 2. Omm.
[0068] また、前記各領域画像 20a, 20b, 20c - "は、前記並列方向に直交する方向(リー ド方向)にそれぞれ分割してもよ!/、。 [0068] Further, each of the area images 20a, 20b, 20c-"may be divided in a direction (read direction) orthogonal to the parallel direction! /, Respectively.
例えば、異物 8が TCP2と基板 1の間に挟まった場合 (例えば、図 11に示す状態)、 TCP2表面には、局部的な膨らみ 13c等の変状力 S発生するので、その出力信号 30 の値にも局部的な異常値力発生する。この異常値は、各領域 A, B, C- · ·内におい てデータを平均等することにより平滑化され発見し難くなつてしまう。しかし、各領域 A , B, C…を複数に分割すれば、その出力信号 30の局部的な変動を検出することが 容易となる。  For example, when the foreign object 8 is sandwiched between the TCP2 and the substrate 1 (for example, the state shown in FIG. 11), a deformation force S such as a local bulge 13c is generated on the surface of the TCP2, so that the output signal 30 Local outlier force is also generated in the value. This abnormal value is smoothed by averaging the data within each region A, B, C-. However, if each of the regions A, B, C... Is divided into a plurality, it becomes easy to detect local fluctuations in the output signal 30.
各領域画像 20a, 20b, 20c ' · ·を分割する場合、図 10に示すように、その分割した 領域 20'において、各領域画像 20a' , 20b' , 20c' · · 'からそれぞれ得られる出力 信号 30'と、その出力信号 30'から算出されるピーク位置 31 '、振幅 32'、周期' 33'、 半値幅 34 'から選択される単一の又は複数の特性値、又はその算出された特性値に 基づく演算値により、対向する前記両端子 11, 12間に混入した異物 8を検出するこ とができる。  When each region image 20a, 20b, 20c 'is divided, as shown in Fig. 10, in the divided region 20', output obtained from each region image 20a ', 20b', 20c ' Single or multiple characteristic values selected from the signal 30 'and the peak position 31', amplitude 32 ', period' 33 ', half width 34' calculated from the output signal 30 ', or the calculated value The foreign material 8 mixed between the opposing terminals 11 and 12 can be detected by the calculated value based on the characteristic value.
[0069] さら 、前述のように、基板 1と TCP2は、その実装の際に反りやたわみ等が生じる ことがあり、例えば、被検查体が、図 12 (a) (b)等に示すように弧状に湾曲していれ ば、出力信号 30の前記各周期 L, L · · 'L , L , L がすべて異なる状態も n n+1 m m+1 m+2  [0069] Further, as described above, the board 1 and the TCP 2 may be warped or bent when mounted. For example, the test object is shown in FIGS. 12 (a) and 12 (b). In this case, the states of the output signal 30 with different periods L, L · 'L, L, L are all n n + 1 m m + 1 m + 2
起こり得る。したがって、その反りやたわみ等によって生じた出力信号 30の位相のず れを補正する。  Can happen. Therefore, the phase shift of the output signal 30 caused by the warp or deflection is corrected.
[0070] その補正は、例えば、基板 1や TCP2に反りやたわみ等が生じていない良好な検查 対象カゝら取得した基準波形に基づいて行う。なお、基準波形は、理論上の計算式等 により算定してもよレヽ。単一の重畳領域 10内に異なる特性を有する端子 11, 12が介 在する場合は、その端子 11, 12に合致する基準波形を適用する。 The correction is performed based on, for example, a reference waveform obtained from a good detection target cover in which no warpage or deflection occurs in the substrate 1 or the TCP 2. The reference waveform can be calculated using theoretical calculation formulas. Terminals 11 and 12 with different characteristics are connected within a single overlapping region 10 If present, apply the reference waveform that matches terminals 11 and 12.
基準波形に基づいて、出力信号 30中に一組の端子 11, 12に対応する領域 Cを特 定しょうとすると、その領域 Cは、図 13 (a)に示すように、出力信号 30の始点カ ¾地点 Based on the reference waveform, if region C corresponding to a set of terminals 11 and 12 is specified in output signal 30, region C is the starting point of output signal 30 as shown in Fig. 13 (a). ¾ point
、出力信号 30の終点力 地点となる。 This is the end point of the output signal 30.
しかし、この E地点及ぴ F地点は、ともに基準波形に基づくものであり、出力信号 30 の波形のピーク位置 31, 31"から判断すれば波形の位相がずれていることがわかる  However, the points E and F are both based on the reference waveform, and it can be seen that the phase of the waveform is deviated from the peak position 31, 31 "of the waveform of the output signal 30.
[0072] したがって、この基準波形に基づく始点 (E地点)に、出力信号 30の検查始点 Eを 設定する。図 13 (b)は、補正後の波形を示す。補正後の点 35"は検查始点である E 地点に設定されている。 Therefore, the detection start point E of the output signal 30 is set at the start point (E point) based on this reference waveform. Figure 13 (b) shows the corrected waveform. Point 35 "after correction is set to point E, which is the inspection start point.
[0073] 図 14 (a)は、取得した状態のままの出力信号 30,図 14 (b)は、その出力信号 30を 基準波形の周期 Lに合わせて検査始点 Eを調整したものである。  FIG. 14 (a) shows the output signal 30 in the acquired state 30, and FIG. 14 (b) shows the inspection start point E adjusted by matching the output signal 30 with the period L of the reference waveform.
0  0
この検査始点 Eを調整した出力信号 30に、基準波形の周期 Lを当てはめると、図 1  When the period L of the reference waveform is applied to the output signal 30 adjusted for this inspection start point E, Fig. 1
0  0
4 (c)のようになる。このため、出力信号 30に現れてレ、る一つ一つの波形の周期 Ll, L2, . ' 11 ' ' 'し111を、それぞれ基準波形の周期しに合わせて位相を補正する(図  4 As shown in (c). Therefore, the phase of each waveform Ll, L2,. '11' '' 111 appears in the output signal 30 and the phase is corrected in accordance with the period of the reference waveform (see figure).
0  0
中の矢印 wl, w2' ' 'w4','参照)。  Middle arrow wl, w2 '' 'w4', see).
この位相捕正は自動的に行うことができ、位相補正を行うことで、基板 1や TCP2に 反りやたわみがある場合でも、各端子 11, 12に該当する出力信号 30の部分を特定 することができる。このため、重畳領域 10内の全端子 11, 12間の圧着状態を正確に 評価できる。  This phase correction can be performed automatically, and by performing phase correction, even if the board 1 or TCP2 is warped or bent, the portion of the output signal 30 corresponding to each terminal 11 and 12 can be specified. Can do. For this reason, the crimping state between all the terminals 11 and 12 in the overlapping region 10 can be accurately evaluated.
[0074] 図 6 、検査処理の詳細を示すフローチャートである。  FIG. 6 is a flowchart showing details of the inspection process.
[0075] まず、(工程 22)にて、予め、被検査体の設計図面のプリント基板 (基板) 1の PWB パタ ンデータから位置情報を抽出して、ティ一チングのマスタデータとし、このマス タデータを用いてマスク画像を予め作成しておく。  [0075] First, in (Step 22), position information is extracted in advance from the PWB pattern data of the printed circuit board (board) 1 of the design drawing of the object to be inspected and used as teaching master data. A mask image is created in advance using.
[0076] (工程 23)にて、被検査体へ斜め力も一方向に光を照射する照明手段 17と、走査 する撮像装置 16により画像力 の出力信号 30を取得する。 In (Step 23), an image force output signal 30 is acquired by the illumination means 17 that irradiates light with an oblique force in one direction to the object to be inspected and the imaging device 16 that performs scanning.
(工程 23)で取得した出力信号 30は、全プリント基板 1の端子 11に対する画像に対 応した出力信号 30であるので、 TCP2の端子 12との重畳領域 10以外の領域を含ん でいる。そこで、(工程 24)では、(工程 23)で取得した出力信号 30に対して、検査の 対象とする重畳領域 10に対応する領域を特定する。 Since the output signal 30 acquired in (Step 23) is the output signal 30 corresponding to the image for the terminal 11 of all printed circuit boards 1, it includes an area other than the overlapping area 10 with the terminal 12 of TCP2. It is out. Therefore, in (Step 24), an area corresponding to the overlapped area 10 to be inspected is specified for the output signal 30 acquired in (Step 23).
このとき、重畳領域 10でない部分は、 sin波形に類似しだ周期 33、振幅 32にはなら ず、細かな振動つまりノイズとして現れるので、この部分をとりのぞいて、重畳領域 1 0に対応する出力信号 30のみを取り出す。  At this time, the portion that is not the overlap region 10 does not have the period 33 and amplitude 32 that are similar to the sin waveform, but appears as fine vibrations, that is, noise, so that the output corresponding to the overlap region 10 is excluded. Take signal 30 only.
次に、(工程 25)にて、(工程 22)で得られた基準波形を用いて、(工程 23)及ぴ( 工程 24)で取得した出力信号 30の位相のずれを補正する。  Next, in (Step 25), using the reference waveform obtained in (Step 22), the phase shift of the output signal 30 obtained in (Step 23) and (Step 24) is corrected.
次に、重畳領域 10を分割して異物混入等の検査を行う場合は (工程 26a)に進み、 分割した領域の出力信号 30'から、重畳領域 10内における基板 1の各端子 11 (又は TCP2の端子 12)に対応した部分毎に、ピーク位置 31 '、振幅 32'、周期 33'、半値 幅 34'等の数値を演算、算出する。なお、領域を分割しない場合は、(工程 27a)に 進む。  Next, when the overlapping area 10 is divided to inspect for contamination, etc., the process proceeds to (Step 26a) .From the output signal 30 ′ of the divided area, each terminal 11 (or TCP2) of the substrate 1 in the overlapping area 10 For each part corresponding to terminal 12), numerical values such as peak position 31 ', amplitude 32', period 33 ', half width 34', etc. are calculated and calculated. If the area is not divided, go to (Step 27a).
次に (工程 26b)にて、(工程 26a)で演算、算出された各検査項目の値と、その検 查項目毎に予め設定された良否判定閾値、又は上限、下限の検査基準値との比較 を行う。(工程 26a)と(工程 26b)をすベての分割した領域に対して実行する。  Next, in (Step 26b), the value of each inspection item calculated and calculated in (Step 26a) and the pass / fail judgment threshold set in advance for each inspection item, or the upper and lower inspection reference values. Make a comparison. (Step 26a) and (Step 26b) are executed for all divided regions.
[0077] 次に (工程 27a)にて、(工程 25)で位相捕正を行った出力信号 30から、重畳領域 1 0内における基板 1の各端子 11 (又は TCP2の端子 12)に対応した影像 a, b, c- · · [0077] Next, in (Step 27a), from the output signal 30 that was subjected to phase correction in (Step 25), it corresponds to each terminal 11 (or terminal 12 of TCP2) of the substrate 1 in the overlapping region 10 Image a, b, c-
' 毎に、ピーク位置 31、振幅 32、周期 33、半値幅 34等を演算して数値を演算、算出 する。 'Every time, the peak position 31, amplitude 32, period 33, half width 34, etc. are calculated, and the numerical value is calculated.
次に (工程 27b)にて、(工程 27a)で演算、算出された各検査項目の値と、その検 査項目 に予め設定された良否判定閾値、又は上限、下限の検査基準値との比較 を行う。  Next, in (Step 27b), compare the value of each inspection item calculated and calculated in (Step 27a) with the pass / fail judgment threshold set in advance for that inspection item, or the upper and lower inspection reference values. I do.
[0078] 次に (工程 28)にて、(工程 27b)で比較した各検査項目毎の判定結果を、基板 1の 端子 11に対応した影像 a, b, c…毎に総合的に判定し、(工程 26b)での判定結果 と併せて最終的な合格 (OK)若しくは不合格 (NG)の判定を行う。 NG部分のピーク 位置 31又は 31 '、振幅 32又は 32'、周期 33又は 33'、半値幅 34又は 34'の値を、 その測定位置に合わせて視覚的にわカゝりやすく表示できるため、 NG部の詳細結果 を数値により判別しやすい。また、その結果を、前工程となる ACF熱圧着機へ即時 にフィードバックできるので、工程ロスを削減することができる。なお、(工程 24)を(ェ 程 23)の前に行レ、、(工程 24)と(工程 23)の順序を入れ替えても良レ、。 [0078] Next, in (Step 28), the determination result for each inspection item compared in (Step 27b) is comprehensively determined for each of the images a, b, c. The final pass (OK) or fail (NG) is determined along with the determination result in (Step 26b). Since the peak position 31 or 31 ', amplitude 32 or 32', period 33 or 33 ', half width 34 or 34' of the NG part can be displayed easily and visually in accordance with the measurement position, It is easy to distinguish the detailed results of the NG part by numerical values. The results are immediately sent to the ACF thermocompression machine, which is the previous process. Therefore, process loss can be reduced. It should be noted that (Step 24) can be performed before (Step 23), and the order of (Step 24) and (Step 23) can be interchanged.
[0079] 以上のように、本発明の基板検査装置及び検査方法によれば、プリント基板 1の端 子 11に ACF3を介して接続された TCP2の端子 12の接続部分に係る圧着状態の検 査を高速、且つ正確に検查することができる。  [0079] As described above, according to the board inspection apparatus and the inspection method of the present invention, the crimping state inspection relating to the connection portion of the terminal 12 of TCP2 connected to the terminal 11 of the printed circuit board 1 via the ACF3 is performed. Can be detected at high speed and accurately.
また、その圧着状態の検査結果に基づいて、電気的接続状態の良否を全 TCP2、 全プリント基板 1の端子 11, 12; 11 ' , 12'を対象にして、適正に判断できる。さらに、 検査装置を構成する制御装置 (コントローラ) 40、若しくは PC (パソコン) 41が演算処 理機能を備えているため、その検査装置の機能の一部で演算処理を行うことにより、 被検査物以外の装置要素などに起因するノイズ成分も含む場合でも、安定して欠陥 を検出することができる。  In addition, based on the result of inspection of the crimped state, the quality of the electrical connection state can be properly judged for all TCP2 and all terminals 11, 12; 11 ', 12' of all printed circuit boards 1. In addition, since the control device (controller) 40 or PC (personal computer) 41 that constitutes the inspection device has an arithmetic processing function, the inspection object can be obtained by performing arithmetic processing with some of the functions of the inspection device. Defects can be detected stably even when noise components due to other device elements are included.
人間による目視誤りを撲滅し、良否判定基準の定量化を行い、信頼性が高く安定し て不良を検出する高速、且つ正確に検查可能な基板検査装置及び検査方法を提供 することがでさる。  It is possible to provide a board inspection apparatus and inspection method that can eliminate visual errors by humans, quantify pass / fail judgment criteria, and perform high-speed and accurate inspection that can detect defects with high reliability and stability. .
[0080] [実験例 1]  [0080] [Experiment 1]
なお、各領域毎 A, B,〇· · ·の領域画像 20a, 20b, 20c' · ·から出力信号 30に変 化した実施例を図 7に示す。図 7 (a)の濃淡図が領域画像 20a, 20b, 20c…の集 合からなる画像 20であり、図 7 (b)の波形が出力信号 30である。  FIG. 7 shows an embodiment in which the region images 20a, 20b, 20c ′... Of the regions A, B,. The gray scale in FIG. 7 (a) is an image 20 composed of a collection of area images 20a, 20b, 20c..., And the waveform in FIG.
[0081] [実験例 2] [0081] [Experiment 2]
図 13を用いて、位相のずれを補正する方法を説明する。本発明では出力信号 30 の波开'をほ女 1]で近似し振幅及びその他の特性値を算出している。  A method of correcting the phase shift will be described with reference to FIG. In the present invention, the amplitude of the output signal 30 is approximated by a female 1] to calculate the amplitude and other characteristic values.
[数 1]  [Number 1]
)'(0 = asin(iyi) ここで aは振幅、 ωは角周波数である。  ) '(0 = asin (iyi) where a is the amplitude and ω is the angular frequency.
[0082] しかし、上記被検査体のプリント基板 1の位置合わせを行っても微少のずれが生じ る場合があり、このような場合、出力信号 30の波形に基づいて特性値を算出すると、 波形がずれてレ、るために振幅等の特性値が正しく算出されず、誤った良否判定を行 つてしまう。 . そこで、ティーチング操作で得た良否判定の基準となる波形を基準にして、被検査 体の波形の位相を検出し、検出した位相だけ検出波形をずらすことで補正する。 However, a slight deviation may occur even when the printed circuit board 1 of the object to be inspected is aligned. In such a case, if the characteristic value is calculated based on the waveform of the output signal 30, the waveform As a result, the characteristic values such as the amplitude are not correctly calculated, and an erroneous pass / fail judgment is made. . Therefore, the waveform of the object to be inspected is detected with reference to the waveform used as a criterion for pass / fail judgment obtained by the teaching operation, and correction is performed by shifting the detected waveform by the detected phase.
[0083] このずれを φとすると、 ψの値は以下の式で求まる。 [0083] If this deviation is φ, the value of ψ is obtained by the following equation.
[数 2] φ = tan-1 (CS) ここで、 C、 Sは以下の式とする。 [Equation 2] φ = tan -1 (CS) where C and S are as follows.
[数 3]  [Equation 3]
S = I y{t) sm(0t)dt S = I y (t) sm (0t) dt
[数 4] [Equation 4]
C = ^ y{t) cos((M)dt t= 0 :対象とする信号の開始位置 C = ^ y {t) cos ((M) dt t = 0: Start position of target signal
t =T :対象とする信号の終了位置  t = T: End position of target signal
尚、 φを検出するための計算式 [数 2]の詳細については、以下のとおりである。  The details of the formula [2] for detecting φ are as follows.
[0084] ほ女 1]の式にぉレ、て位相が φずれた場合は以下の式で表せる。 [0084] If the phase is shifted by φ in the expression of Woman 1], it can be expressed by the following expression.
' [数 5] y(t) = α η{ωΐ + φ) ここで >端子間距離は基準波より既知なので、その角周波数 ωは既知である。 ほ女 5]に sin( co t)をかけて、一周期分 0〜Tまでを積分したものを Sとする。 [数 6]
Figure imgf000027_0001
'[Equation 5] y (t) = α η {ωΐ + φ) where> The distance between terminals is known from the reference wave, so its angular frequency ω is known. S is obtained by applying sin (cot) to woman 5] and integrating from 0 to T for one period. [Equation 6]
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
= acos(^) fsin2(iyi) + asin(^)〔sin(iyi)cos(iyi)<ii
Figure imgf000027_0003
= acos (^) fsin 2 (iyi) + asin (^) [sin (iyi) cos (iyi) <ii
Figure imgf000027_0003
sin(iy ) cos( >t)dt = 0 なので、ほ女 7]を [数 6]に代入して式を整理すると、  Since sin (iy) cos (> t) dt = 0, substituting woman 7] into [Equation 6]
[数 8] [Equation 8]
S = acos(^») I sin {cot)dt S = acos (^ ») I sin (cot) dt
. 、 f l— cos(2&>f)  , F l— cos (2 &> f)
- a cos(p)丄 dt  -a cos (p) 丄 dt
= - cos( ) 1 - ^cos(2<yi)^i} =-cos () 1-^ cos (2 <yi) ^ i}
= - cos ) { [t]T 0一 [― sin(2<yf)]S } =-cos) {[t] T 0 one [― sin (2 <yf)] S}
 2ω
 ,
Figure imgf000027_0004
となる。同様に、 [数 5]に cos( co t)をかけて、一周期分 0〜Tまでを積分したものを Cと し、上記と同様に計算すれば、以下の、 女 9]が得られる。
Figure imgf000027_0004
It becomes. Similarly, by multiplying [Equation 5] by cos (co t) and integrating from 0 to T for one period as C, and calculating in the same way as above, the following woman 9] is obtained. .
[数 9] αΤ [Equation 9] αΤ
C -—— SU1 (  C -—— SU1 (
2 Υ 2 Υ
[数 8]と [数 9]より、位相 φの計算式 [数 2]が求まる。 From [Equation 8] and [Equation 9], the formula [Equation 2] for phase φ is obtained.

Claims

請求の範囲 The scope of the claims
[1] 基板 1と TCP2にそれぞれ並列して設けた複数の端子 11, 12; 11', 12'同士を重 ねて、対向する前記両端子 11, 12;11', 12'間に異方性導電体 3を介在させて前 記対向する両端子 11, 12;11', 12'をそれぞれ接続し、その対向する前記両端子 11, 12;11', 12'間の圧着状態を、前記 TCP2の前記端子 12を設けた側の反対側 の面における前記並列する両端子 11, 12 ;11', 12,の重畳領域 10の画像データ 2 0により光学的に検査する基板検査装置において、  [1] A plurality of terminals 11, 12; 11 ', 12' provided in parallel to the board 1 and TCP2, respectively, are overlapped, and the opposite terminals 11, 12; 11 ', 12' are anisotropic The opposing terminals 11, 12; 11 ', 12' are connected with the conductive conductor 3 interposed therebetween, and the crimping state between the opposing terminals 11, 12; 11 ', 12' is In the substrate inspection apparatus for optically inspecting the image data 20 of the overlapping region 10 of the parallel terminals 11, 12; 11 ′, 12 on the surface opposite to the side on which the terminal 12 of the TCP 2 is provided,
前記重畳領域 10を、前記並列方向に沿って複数の領域 A, B, C…に分割し、照 明手段 17により各領域 A, B, C'"に対して斜め方向力 前記並列方向へ向けて光 を照射して、撮影手段 16により前記重畳領域 10の画像データ 20を前記各領域 A, B,〇···毎に取得し、前記各領域 A, B, C'*'に対応する各領域画像 20a, 20b, 2 Oc" ·から得られる出力信号 30と、前記出力信号 30から算出される特性値又はその 算出された特性値に基づく演算値を、予め設定された基準値と比較することにより前 記両端子 11, 12; 11', 12'間の圧着状態を検査することを特徴とする基板検査装 置。  The overlapping region 10 is divided into a plurality of regions A, B, C... Along the parallel direction, and an oblique force is applied to each region A, B, C ′ ″ by the illumination means 17 toward the parallel direction. The image data 20 of the superimposed region 10 is acquired for each of the regions A, B, ○... By the photographing means 16 and corresponds to the regions A, B, C ′ * ′. The output signal 30 obtained from each of the region images 20a, 20b, 2 Oc "· and the characteristic value calculated from the output signal 30 or the calculated value based on the calculated characteristic value are compared with a preset reference value. The board inspection device is characterized by inspecting the crimping state between the two terminals 11, 12; 11 ', 12'.
[2] 前記各領域画像 20a, 20b, 20c ·· ·を取得する際の前記各領域 A, B, C · · ·に照 射される光量、前記各領域 A, B,〇·'·と前記撮影手段 16との距離及び前記 影手 段 16の受光感度、前記基板 1の面方向に対する前記光の照射角度 Θ 及び画像の 取得角度 0 を、前記全領域 A, B, 'で一定とすることを特徴とする請求項 1に 記載の基板検査装置。  [2] The amount of light irradiated to each of the regions A, B, C,... When acquiring the region images 20a, 20b, 20c,. The distance to the imaging means 16 and the light receiving sensitivity of the shadowing means 16, the light irradiation angle Θ and the image acquisition angle 0 with respect to the surface direction of the substrate 1 are constant in the entire areas A, B, ′. The board inspection apparatus according to claim 1, wherein:
[3] 前記照明手段 17と前記撮影手段 16とを一体とし、その照明手段 17及び前記撮影 手段 16と、前記重畳領域 10とを前記並列方向へ相対移動させることにより、前記各 領域画像 20a, 20b, 20c' ··の取得を順に行うことを特徴とする請求項 1又は 2に記 載の基板検査装置。  [3] The illuminating means 17 and the photographing means 16 are integrated, and the illuminating means 17 and the photographing means 16 and the overlapping area 10 are relatively moved in the parallel direction, whereby the respective region images 20a, The board inspection apparatus according to claim 1, wherein 20b, 20c ′,... Are sequentially acquired.
[4] 前記特性値は、前記出力信号 30から算出されるピーク位置 31、振幅 32、周期 33 、半値幅 34から選択される単一の又は複数の特性値であり、前記基準値との比較は 、前記対向する一組の端子 11, 12; 11', 12'に対応するエリア a, b, ''毎に行う ことを特徴とする請求項 1乃至 3の!/ヽずれかに記載の基板検査装置。 [4] The characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31 calculated from the output signal 30, an amplitude 32, a period 33, and a half width 34, and is compared with the reference value. Is performed for each of the areas a, b, '' corresponding to the pair of terminals 11, 12; 11 ', 12' facing each other! / Board inspection device as described in any of the above.
[5] 前記各領域画像 20a, 20b, 20c ·· ·を前記並列方向に直交する方向にそれぞれ 分割し、その分割した各領域画像 20a' , 20b' ; 20c' ·· 'からそれぞれ得られる出力 信号 30'と、その出力信号 30'から算出されるピーク位置 31 '、振幅 32'、周期 33'、 半値幅 34'から選択される単一の又は複数の特性値、又はその算出された特性値に 基づく演算値により、対向する前記両端子 11, 12;11', 12'間に混入した異物 8を 検出することを特徴とする請求項 1乃至 3のいずれかに記載の基板検查装置。 [5] Each of the region images 20a, 20b, 20c,... Is divided in a direction orthogonal to the parallel direction, and outputs obtained from the divided region images 20a ′, 20b ′ ; 20c ′,. Single or multiple characteristic values selected from signal 30 'and peak position 31', amplitude 32 ', period 33', half width 34 'calculated from output signal 30', or calculated characteristics 4. The substrate inspection apparatus according to claim 1, wherein the foreign substance 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ is detected by a calculation value based on the value. .
[6] 前記重畳領域 10から得られた出力信号 30, 30'を、同一の重畳領域 10における 基準となる信号と比較することによりその位相及び周期を補正することを特徴とする 請求項 1乃至 5のいずれかに記載の基板検査装置。  6. The phase and period of the output signals 30 and 30 ′ obtained from the superposition region 10 are corrected by comparing them with a reference signal in the same superposition region 10. The board inspection apparatus according to any one of 5 above.
[7] 前記撮影手段 16はエリアセンサーであり、前記各領域画像 20a, 20b, 20c- "に おける前記並列方向に対する取得幅を、検査対象となる重畳領域 10に応じて可変と することを特徴とする請求項 1乃至 6のいずれかに記載の基板検査装置。  [7] The imaging means 16 is an area sensor, and the acquisition width with respect to the parallel direction in each of the area images 20a, 20b, 20c- ”is variable according to the overlapping area 10 to be inspected. The board inspection apparatus according to claim 1.
[8] 前記照明手段 17は、前記撮影手段 16の受光感度とほぼ一致した発光スペクトル を有する光源を備えることを特徴とする請求項 1乃至 7のいずれかに記載の基板検 査装置。  [8] The substrate inspection apparatus according to any one of [1] to [7], wherein the illuminating unit 17 includes a light source having an emission spectrum substantially coincident with a light receiving sensitivity of the imaging unit 16.
[9] 前記照明手段 17による光の照射角度 0 、及び前記撮影手段 16による画像の取 得角度 Θ を、それぞれ検査対象となる前記重畳領域 10における前記 TCP2の前  [9] The irradiation angle 0 of the light by the illumination unit 17 and the image acquisition angle Θ of the image by the imaging unit 16 are respectively set in front of the TCP 2 in the overlapping region 10 to be inspected.
β  β
記端子 12を設けた側の反対側の面の Μ凸形状に応じて可変とすることを特徴とする 請求項 1乃至 8のいずれかに記載の基板検查装置。  9. The substrate inspection device according to claim 1, wherein the substrate inspection device is variable in accordance with the convex shape of the surface opposite to the side on which the terminal 12 is provided.
[10] 請求項 1乃至 9のいずれかに記載の基板検査装置を、前記基板 1と前記 TCP2の 各端子 11, 12; 11', 12'同士を異方性導電体 3を介して接続する電子部品実装装 置と一体化したことを特徴とする基板検查装置。  [10] In the board inspection apparatus according to any one of claims 1 to 9, the terminals 1 and 12; 11 'and 12' of the board 1 and the TCP 2 are connected to each other through an anisotropic conductor 3. A board inspection device that is integrated with an electronic component mounting device.
[11] 基板 1と TCP2にそれぞれ並列して設けた複数の端子 11, 12;11', 12,同士を重 ねて、対向する前記両端子 11, 12;11', 12'間に異方性導電体 3を介在させて前 記対向する両端子 11, 12;11', 12'をそれぞれ接続し、その対向する前記両端子 11, 12;11', 12'間の圧着状態を、前記 TCP2の前記端子 12を設けた側の反対側 の面における前記並列する両端子 11, 12; 11', 12'の重畳領域 10の画像データ 2 0により光学的に検査する基板検査方法において、 前記重畳領域 10を、前記並列方向に沿って複数の領域 A, B, C…に分割し、前 記各領域 A, B, C…に対して斜め方向力 前記並列方向へ向けて光を照射して、 前記重畳領域 10の画像データ 20を前記各領域 A, B, C…毎に取得し、前記各領 域 A, B,〇· · ·に対応する各領域画像 20a, 20b, 20c' · ·から得られる出力信号 30 と、前記出力信号 30から算出される特性値又はその算出された特性値に基づく演算 値を、予め設定された基準値と比較することにより前記両端子 11, 12; 11 ' , 12'間 の圧着状態を検査することを特徴とする基板検査方法。 [11] A plurality of terminals 11, 12; 11 ', 12, which are provided in parallel on the board 1 and TCP2, respectively, are overlapped with each other, and the opposite terminals 11, 12; 11', 12 'are anisotropic The opposing terminals 11, 12; 11 ′, 12 ′ are connected to each other with the conductive conductor 3 interposed therebetween, and the crimped state between the opposing terminals 11, 12; 11 ′, 12 ′ is In the board inspection method for optically inspecting the image data 20 of the overlapping region 10 of the parallel terminals 11 and 12; 11 'and 12' on the opposite surface of the TCP2 to the side on which the terminal 12 is provided, The overlapping region 10 is divided into a plurality of regions A, B, C... Along the parallel direction, and an oblique direction force is applied to each of the regions A, B, C. Then, the image data 20 of the superimposed region 10 is acquired for each of the regions A, B, C..., And the region images 20a, 20b, 20c ′ corresponding to the regions A, B,. By comparing the output signal 30 obtained from the above and the characteristic value calculated from the output signal 30 or the calculated value based on the calculated characteristic value with a preset reference value, the both terminals 11, 12 ; A substrate inspection method characterized by inspecting the crimping state between 11 'and 12'.
[12] 前記各領域画像 20a, 20b, 20c- · 'を取得する際の前記各領域 A, B, C' · ·に照 射される光量、前記各領域 A, B, C- · ·と前記画像データ 20を取得する撮影手段 16 との距離及ぴ前記撮影手段 16の受光感度、前記基板 1の面方向に対する前記光の 照射角度 Θ 及び画像の取得角度 Θ を、前記全領域 A, B, C' · ·で一定とすること を特徴とする請求項 11に記載の基板検査方法。  [12] The amount of light irradiated to each of the areas A, B, C ′ when acquiring the area images 20a, 20b, 20c,. The distance between the image capturing means 16 for acquiring the image data 20, the light receiving sensitivity of the image capturing means 16, the irradiation angle Θ of the light with respect to the surface direction of the substrate 1, and the image acquisition angle Θ 12. The method of inspecting a substrate according to claim 11, wherein the constant is constant at C ′.
[13] 前記特性値は、前記出力信号 30から算出されるピーク位置 31、振幅 32、周期 33 、半値幅 34から選択される単一の又は複数の特性値であり、前記基準値との比較は 、前記対向する一組の端子 11, 12; 11' , 12'に対応するエリア a, b, c' ' '毎に行う ことを特徴とする請求項 11又は 12に記載の基板検査方法。  [13] The characteristic value is a single characteristic value or a plurality of characteristic values selected from a peak position 31 calculated from the output signal 30, an amplitude 32, a period 33, and a half width 34, and is compared with the reference value. 13. The substrate inspection method according to claim 11 or 12, wherein the inspection is performed for each of the areas a, b, c ′ ′ ′ corresponding to the pair of terminals 11, 12; 11 ′, 12 ′ facing each other.
[14] 前記各領域函像 20a, 20b, 20c- · 'を前記並列方向に直交する方向にそれぞれ 分割し、その分割した各領域画像 20a' , 20b' , 20c' · · 'からそれぞれ得られる出力 信号 30'と、その出力信号 30'から算出されるピーク位置 31 '、振幅 32'、周期 33'、 半値幅 34'から選択される単一の又は複数の特性値、又はその算出された特性値に 基づく 算値により、対向する前記両端子 11, 12 ; 11 ' , 12'間に混入した異物 8を 検出することを特徴とする請求項 11又は 12に記載の基板検査方法。  [14] Each of the region images 20a, 20b, 20c- 'is divided into directions orthogonal to the parallel direction, and obtained from the divided region images 20a', 20b ', 20c' Output signal 30 'and single or multiple characteristic values selected from peak position 31', amplitude 32 ', period 33', half width 34 'calculated from output signal 30', or calculated 13. The substrate inspection method according to claim 11, wherein the foreign matter 8 mixed between the opposing terminals 11, 12; 11 ′, 12 ′ is detected by an arithmetic value based on a characteristic value.
[15] 前記重畳領域 10から得られた出力信号 30, 30'を、同一の重畳領域 10における 基準となる信号と比較することによりその位相及び周期を補正することを特徴とする 請求項 11乃至 14の!/、ずれかに記載の基板検査方法。  15. The phase and period of the output signals 30, 30 ′ obtained from the superimposition region 10 are corrected by comparing them with a reference signal in the same superposition region 10. 14! /, The board inspection method described in the gap.
PCT/JP2006/311377 2005-06-01 2006-05-31 Substrate inspection device and inspection method WO2006129873A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-161760 2005-06-01
JP2005161760 2005-06-01
JP2006-145158 2006-05-25
JP2006145158A JP2007013112A (en) 2005-06-01 2006-05-25 Device and method for substrate inspection

Publications (1)

Publication Number Publication Date
WO2006129873A1 true WO2006129873A1 (en) 2006-12-07

Family

ID=37481776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311377 WO2006129873A1 (en) 2005-06-01 2006-05-31 Substrate inspection device and inspection method

Country Status (3)

Country Link
JP (1) JP2007013112A (en)
TW (1) TWI289658B (en)
WO (1) WO2006129873A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500050A (en) * 2023-06-28 2023-07-28 四川托璞勒科技有限公司 PCB visual inspection system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711859B2 (en) * 2006-03-02 2011-06-29 パナソニック株式会社 Component joining method and component joining apparatus
JP4966139B2 (en) * 2007-09-13 2012-07-04 株式会社東芝 Bonding material sticking inspection device, mounting device, and manufacturing method of electrical parts
JP6032696B2 (en) * 2011-06-30 2016-11-30 芝浦メカトロニクス株式会社 Bonded plate inspection apparatus and method
CN110609439B (en) * 2018-06-15 2023-01-17 夏普株式会社 Inspection apparatus
JPWO2023012966A1 (en) * 2021-08-05 2023-02-09
TWI787107B (en) * 2021-09-24 2022-12-11 盟立自動化股份有限公司 Non-contact curved surface measurement path planning method, non-contact curved surface measurement method and non-contact curved surface measurement system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352074A (en) * 1998-06-05 1999-12-24 Matsushita Electric Ind Co Ltd Inspection of connection part
JP2001264019A (en) * 2000-03-22 2001-09-26 Olympus Optical Co Ltd Device for appearance inspection of printed circuit board
JP2003069199A (en) * 2001-08-30 2003-03-07 Hitachi Electronics Eng Co Ltd Method for detecting whether acf is pasted

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283927A (en) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd Inspection method of connection part in liquid crystal display device
JP2003069169A (en) * 2001-08-22 2003-03-07 Nec Corp Circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352074A (en) * 1998-06-05 1999-12-24 Matsushita Electric Ind Co Ltd Inspection of connection part
JP2001264019A (en) * 2000-03-22 2001-09-26 Olympus Optical Co Ltd Device for appearance inspection of printed circuit board
JP2003069199A (en) * 2001-08-30 2003-03-07 Hitachi Electronics Eng Co Ltd Method for detecting whether acf is pasted

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500050A (en) * 2023-06-28 2023-07-28 四川托璞勒科技有限公司 PCB visual inspection system
CN116500050B (en) * 2023-06-28 2024-01-12 四川托璞勒科技有限公司 PCB visual inspection system

Also Published As

Publication number Publication date
TW200704912A (en) 2007-02-01
TWI289658B (en) 2007-11-11
JP2007013112A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
WO2006129873A1 (en) Substrate inspection device and inspection method
US8378708B2 (en) Inspecting method using an electro optical detector
JP4495250B2 (en) Inspection apparatus and inspection method
JP4628205B2 (en) Feedback correction method and component mounting method
KR100976802B1 (en) Apparatus for automatically inspeciting trace and method of the same
TWI248518B (en) Substrate inspection device and inspection method thereof
JP3323395B2 (en) Method of bonding IC components to flat panel display
KR20010040998A (en) Automatic inspection system with stereovision
KR100975832B1 (en) Denting inspecting apparatus and method thereof
JP2004233184A (en) Polarizing plate application accuracy inspection method of liquid crystal panel
JP2005122059A (en) Inspection device
JP7012575B2 (en) Inspection equipment and inspection method
JP2010212394A (en) Method and apparatus for inspecting component mounting substrate and component mounting apparatus
JP2008091843A (en) Crimped-state inspection apparatus of substrate
CN106345708B (en) Polarisation film detection apparatus
JP2006186179A (en) Electronic component compression bonding device, electronic component compression bonding inspecting device, and electronic component compression bonding inspection method
KR101111383B1 (en) Denting inspecting system having 3D surface measuring instrument
JP2014021087A (en) Inspection device and module assembly device
KR20070044897A (en) Auto trace tester
KR20100070814A (en) Apparatus for inspecting conjugation portion of c.o.g
KR100722608B1 (en) Inspection method of Printed Circuit Board
JP7300275B2 (en) Inspection device, mounting device and inspection method
JP2004334491A (en) Adhesion position image inspection device, adhesion position image inspection method, manufacturing device of electro-optical device module, manufacturing method of electro-optical device module, manufacturing device of circuit board with electronic component, and manufacturing method of circuit board with electronic component
JP2013145162A (en) Inspection device and module assembly apparatus
JP2012104543A (en) End portion detecting device of member mounted on fpd module, end portion detection method, and acf sticking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06747213

Country of ref document: EP

Kind code of ref document: A1