WO2006129735A1 - 遺伝子導入細胞及び細胞分析方法 - Google Patents

遺伝子導入細胞及び細胞分析方法 Download PDF

Info

Publication number
WO2006129735A1
WO2006129735A1 PCT/JP2006/310935 JP2006310935W WO2006129735A1 WO 2006129735 A1 WO2006129735 A1 WO 2006129735A1 JP 2006310935 W JP2006310935 W JP 2006310935W WO 2006129735 A1 WO2006129735 A1 WO 2006129735A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
estrogen
breast cancer
aromatase
Prior art date
Application number
PCT/JP2006/310935
Other languages
English (en)
French (fr)
Inventor
Yuri Yamaguchi
Shinichi Hayashi
Yoshihiro Shimada
Kosuke Takagi
Hiroko Sakamoto
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP06756855A priority Critical patent/EP1905824A4/en
Priority to JP2007519051A priority patent/JPWO2006129735A1/ja
Publication of WO2006129735A1 publication Critical patent/WO2006129735A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/743Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a transgenic cell, an estrogen signal evaluation method using the transgenic cell, an inhibitor analysis method using the evaluation method, and a cell analysis method, and in particular, gene transfer using a reporter gene.
  • the present invention relates to a cell, an estrogen signal evaluation method using the gene-transferred cell, an inhibitor analysis method using the evaluation method, and a cell analysis method using a reporter gene.
  • Hormones are substances that are produced and secreted by specific cells (mainly endocrine cells, some nerve cells) according to information inside and outside the body, and that information is transmitted to other cells via body fluids.
  • Hormones are mainly classified into three types: peptide hormones such as insulin and glucagon, steroid hormones such as androgens and estrogens, and amine hormones such as adrenaline. Each hormone binds to the target cell's hormone receptor and alters its physical properties, thereby inducing changes in intracellular responses.
  • Amines and peptide hormones act mainly on the cell membrane and control intracellular metabolism by changing the function of the cell membrane or regulating production of second messengers, and steroid hormones mainly in the cytoplasm or nucleus. It binds to the receptor and controls the expression of genetic information.
  • estrogen is a female hormone closely related to the development and growth of breast cancer.
  • Breast cancer is currently the world's most prevalent cancer among women, and countermeasures are urgently needed.
  • Many breast cancers are hormone-dependent tumors that grow in a hormone (estrogen) -dependent manner.
  • estrogen receptor ER
  • the signal transduction system related to cell proliferation is activated, and as a result, cell proliferation is promoted and cancer progresses. Therefore, it is very useful to analyze the activity of signal transduction through the estrogen receptor (hereinafter referred to as estrogen signal) in breast cancer thread and tissue in the evaluation of the pathology of breast cancer.
  • estradien antagonists bind to estrogen receptors in cancer cells but, unlike natural estrogens, do not activate the signal transduction system for cell proliferation and thus exert antitumor effects.
  • estrogen receptor ER
  • the applicability of hormone therapy to breast cancer cases is evaluated by the presence or absence of estrogen receptor (ER) expression in cancer cells in the breast cancer tissue of each cancer case, and ER expression positive cases are applied. This is in contrast to estrogen signals in breast cancer tissue, assessing whether the cancer cell side retains the ability to accept estrogen.
  • ER estrogen receptor
  • Estrogen which has a growth-promoting action in breast cancer, is produced mainly in the ovary before menopause, but generally, the blood estrogen concentration in women decreases sharply compared with that before premenopause due to ovarian function regression.
  • high concentrations of estrogen are detected locally in postmenopausal women's breast cancer tissue, mainly in the fat stromal cells (hereinafter referred to as fat stromal cells) surrounding the cancer cells in the mammary gland tissue. It is thought that an enzyme called aromatase synthesizes estrogen using androgen as a substrate and releases it into mammary tissue.
  • the aromatase inhibitor that inhibits the aromatase activity of adipose stromal cells and suppresses estrogen supply to stromal cell force cancer cells, thereby suppressing breast cancer growth.
  • Treatments have been attempted and have been shown to be as effective or equivalent to treatment with drugs such as tamoxifen that target conventional estrogen receptors themselves, and this aromatase inhibitor It is becoming the first-line drug for breast cancer hormone therapy.
  • aromatase inhibitors have been evaluated in the case of drugs that target the estrogen receptor itself such as tamoxifen. It is clear that the presence or absence of this is insufficient. This is because adipose stromal cells surrounding cancer cells mainly have aromatase enzyme activity, and there is a demand for a good predictive method for measuring the response.
  • hormone information is not always grasped by accurately grasping hormone information.
  • the efficacy is only found after administration of drugs and inhibitors.
  • the efficacy of drugs, etc. is often specific for each patient, and even if the effect acts on one patient, it often does not act on other patients. If clinical administration increases the treatment period and the administered drug is not effective Can also extend the duration of unnecessary treatment.
  • the side effects of hormonal therapy are generally very mild compared to chemotherapy, but for long-term users of tamoxifen, the risk potential of uterine cancer and thrombosis is a selective aromatase inhibitor. Side effects such as increased risk of osteoporosis. Therefore, if an objective material for determining whether or not hormonal therapy is effective can be provided to breast cancer patients in advance, a specific and effective treatment can be provided to the patient without causing unnecessary side effects. . Such objective judgment materials can be provided if the dynamics of the estrogen signal can be grasped at the stage of the onset of action, but such judgment materials are known so far.
  • an object of the present invention is to provide an assembly system that is very important in the evaluation of breast cancer pathology and that can evaluate estrogen signals in breast cancer tissue.
  • the primary objective is to establish a new transgenic cell line that can quantitatively evaluate estrogen signals, and an aromatase inhibitor that is a novel drug in breast cancer hormone therapy using this cell line.
  • the second object of the present invention is to provide an accessory system that can predict the effectiveness of treatment for individual cancer cases.
  • the present invention provides an accessory system that can predict the therapeutic efficacy of an aromatase inhibitor, which is a novel drug in breast cancer hormone therapy, for individual cancer cases.
  • the present invention provides a novel transgenic cell line that enables quantitative evaluation of an estrogen signal that is very important for the pathological evaluation of breast cancer, and a novel drug in breast cancer hormone therapy using the cell line. It is an object of the present invention to provide an assay system that can predict the therapeutic efficacy of individual aromatase inhibitors for individual cancer cases.
  • an object of the present invention is to provide a cell analysis method capable of visualizing matters transmitted in cells such as hormone information.
  • GFP green jellyfish-derived green fluorescent protein
  • MCF7 and T47D breast cancer cell lines
  • Adipose stromal cells are co-cultured with a new breast cancer cell line that stably introduces a reporter gene that incorporates ERE (estrogen response element) into the transcriptional regulatory region of the reporter gene, and this is an androgen that serves as a substrate for aromatase.
  • ERE estrogen response element
  • the reporter protein is expressed mainly depending on the estrogen signal via the aromatase enzyme activity of adipose stromal cells, and the estrogen signal from the stromal cells can be quantitatively evaluated.
  • a system was constructed.
  • Atsy system it is possible to quantitatively evaluate the intensity of estrogen signals mainly via aromatase enzyme activity of adipose stromal cells in patient cancer tissues, and using this as an index, mainly aromatase activity of adipose stromal cells is measured. It was possible to evaluate the ability to promote cancer cell proliferation.
  • the estrogen signal detected by quantifying the reporter protein does not necessarily correlate with the expression level of the aromatase enzyme gene in adipose stromal cells. .
  • the gen signal can also be evaluated in this Atsy system. Therefore, in this assay system, not only estrogen signals derived from aromatase activity from adipose stromal cells but also estrogen signals through unexplained mechanisms other than estrogen can be quantitatively evaluated. It has been found that it is possible to quantify substantial estrogen signals involved in cancer cell proliferation in tissues.
  • the gene-introduced cell of the present invention contains a gene encoding a reporter protein, and contains an estrogen response element (ERE) upstream of the promoter region of the reporter protein.
  • EEE estrogen response element
  • the cell into which the reporter vector is stably introduced is a human breast cancer-derived cultured cell line.
  • the cell force into which the reporter vector is stably introduced is a human breast cancer-derived cultured cell line MCF7 that endogenously highly expresses the estrogen receptor.
  • the reporter protein is a fluorescent protein such as GFP, RFP, luciferase, j8-galactosidase, j8 ratatamase, and / 3 darc mouth-tase and so on. It is a protein derived from at least one selected.
  • the reporter protein is a fluorescent protein such as GFP, RFP, luciferase, j8-galactosidase, j8 ratatamase, and / 3 darc mouth-tase, etc.
  • the expression level of the reporter gene is compared between when the cell is treated with estrogen and when it is not treated. Have a difference to the extent that they are visible or distinguishable.
  • the difference when the difference is not treated with estrogen, the difference is that the expression intensity of the reporter gene that maximizes the number of cells and the case where estrogen is treated.
  • the difference is from the reporter gene expression intensity that maximizes the number of cells.
  • the number of cells with high expression intensity bordering on the reporter gene expression intensity that maximizes the number of cells when treated with the estrogen is the reporter gene. It is characterized by sufficient existence to allow visualization by
  • the expression level of the reporter gene varies depending on the treated estrogen concentration.
  • the transgenic cell is
  • the cell is deposited under the accession number FERM BP-10610.
  • the estrogen signal evaluation method of the present invention is evaluated by visualizing the responsiveness of the estrogen signal using the cells according to claims 1 and 10 of claims 1 to 10. It is characterized by.
  • the evaluation method for quantitatively evaluating the intensity of the estrogen signal of the present invention quantitatively evaluates the intensity of the estrogen signal derived from a breast stromal tissue-derived adipose stromal cell and mainly mediated by an aromatase enzyme activity.
  • D a step of quantitatively evaluating estrogen signal intensity mainly due to aromatase enzyme activity in adipose stromal cells from the amount of reporter protein quantified in C. It is characterized by including.
  • the cell according to any one of claims 1 to 10 is transformed into the bottom surface of the culture vessel.
  • a breast cancer tissue slice obtained by cultivating a breast cancer tissue containing adipose stromal cells and adding it to a culture vessel using an insert, And symbiotic culture of adipose stromal cells derived from breast cancer tissue.
  • the evaluation method of the present invention for quantitatively evaluating the intensity of an estrogen signal quantitatively evaluates the intensity of an estrogen signal derived from a breast cancer tissue-derived adipose stromal cell and mainly mediated by an aromatase enzyme activity.
  • A a step of obtaining a supernatant by centrifugation after chopping breast cancer tissue containing adipose stromal cells in a culture solution
  • D A step of quantitatively evaluating estrogen signal intensity mainly due to aromatase enzyme activity in adipose stromal cells from the amount of reporter protein quantified in C.
  • the evaluation method for quantitatively evaluating the intensity of estrogen signal of the present invention quantitatively evaluates the intensity of estrogen signal derived from breast cancer tissue-derived adipose stromal cells and mainly mediated by aromatase enzyme activity.
  • A The step of co-culturing any one of claims 1 and 10, and a breast stromal tissue-derived adipose stromal cell,
  • estrogen receptor activation mechanism There is both an estrogen receptor activation mechanism and a process for quantifying the reporter protein induced by either
  • D A step of quantitatively evaluating estrogen signal intensity mainly due to aromatase enzyme activity in adipose stromal cells from the amount of reporter protein quantified in C.
  • the force according to any one of claims 1 to 10 is applied to the bottom surface of the culture vessel.
  • a breast cancer tissue slice obtained by cultivating a breast cancer tissue containing adipose stromal cells and adding it to a culture vessel using an insert, And symbiotic culture of adipose stromal cells derived from breast cancer tissue.
  • the evaluation method for quantitatively evaluating the intensity of the estrogen signal of the present invention quantitatively evaluates the intensity of the estrogen signal derived from a breast stromal tissue-derived adipose stromal cell mainly via the aromatase enzyme activity.
  • A a step of obtaining a supernatant by centrifugation after chopping breast cancer tissue containing adipose stromal cells in a culture solution
  • D A step of quantitatively evaluating estrogen signal intensity mainly due to aromatase enzyme activity in adipose stromal cells from the amount of reporter protein quantified in C.
  • the method for evaluating the inhibitory action of the present invention quantitatively evaluates the inhibitory action of an estrogen signal derived from a breast stromal tissue-derived adipose stromal cell mainly by an aromatase enzyme activity by an aromatase inhibitor.
  • a way to A The step of co-culturing any one of claims 1 and 10, and a breast stromal tissue-derived adipose stromal cell,
  • B a process in which the two types of cells co-cultured with androgen, which is a substrate for aromatase, and an aromatase inhibitor are simultaneously administered and cultured;
  • D a step of quantitatively evaluating the inhibitory action of the estrogen signal mainly by the aromatase enzyme activity of adipose stromal cells by the aromatase inhibitor from the amount of the reporter protein quantified in C.
  • the method for evaluating the inhibitory action of the present invention is performed by culturing the cell according to any one of claims 1 to 10 on the bottom surface of the culture vessel. Then, by adding a breast cancer tissue slice obtained by chopping breast cancer tissue containing fat stromal cells to a culture container using an insert, the cells according to any one of claims 1 to 10, Breast cancer Tissue-derived adipose stromal cells are co-cultured.
  • the method for evaluating the inhibitory action of the present invention quantitatively evaluates the inhibitory action of an estrogen signal derived from a breast stromal tissue-derived adipose stromal cell mainly by an aromatase enzyme activity by an aromatase inhibitor.
  • A a step of obtaining a supernatant by centrifugation after chopping breast cancer tissue containing adipose stromal cells in a culture solution
  • D a step of quantitatively evaluating the inhibitory action of the estrogen signal mainly by the aromatase enzyme activity of adipose stromal cells by the aromatase inhibitor from the amount of the reporter protein quantified in C.
  • the analysis method of the inhibitor of the present invention uses the evaluation method according to any one of claims 18 to 20, and the presence or absence of an estrogen signal after adding the aromatase inhibitor, It is characterized by analyzing whether the said aromatase inhibitor has a cancer suppression effect specific to the said patient.
  • the method for quantitatively evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal by the breast cancer tissue
  • B The step of adding the supernatant to the cell according to claim 1 or 10 according to claim 1, B: quantifying the reporter protein induced by the supernatant,
  • C a step of quantitatively evaluating the intensity of estrogen signal by breast cancer tissue from the amount of reporter protein quantified in C
  • the method for quantitatively evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal by the breast cancer tissue
  • A Breast cancer tissue slices obtained by culturing the cells according to claim 1 on the bottom surface of the culture vessel and chopping the breast cancer tissue, using an insert. And culturing the cells according to any one of claims 1 and 10 and the breast cancer tissue slice,
  • C a step of quantitatively evaluating the intensity of estrogen signal by breast cancer tissue from the amount of reporter protein quantified in C
  • the cell analysis method of the present invention includes a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to the chemical substance (A) is introduced, and a substrate for the production reaction of the chemical substance (A).
  • Incorporates (B) expresses an enzyme (C) that causes conversion to chemical substance (A), and finally produces chemical substance (A) and releases it into the culture medium.
  • the reporter gene-introduced cell is cultured on the bottom surface of the culture container, and the tissue containing chemical substance-producing cells is obtained by chopping the tissue.
  • the tissue cut material is added to a culture vessel using an insert, whereby the reporter gene-introduced cells and the chemical substance-producing cells are co-cultured.
  • the cell analysis method of the present invention provides a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to a chemical substance (A) is introduced, and a substrate for a reaction for producing the chemical substance (A).
  • a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to a chemical substance (A) is introduced, and a substrate for a reaction for producing the chemical substance (A).
  • the tissue is chopped in culture medium and then cultured with the supernatant obtained by centrifugation.
  • the chemical substance-producing cells are analyzed for the ability to produce the chemical substance (A).
  • the reporter gene-introduced cell is made free of the chemical-producing cell using a culture solution containing a known amount (including zero) of the chemical substance (A).
  • a culture solution containing a known amount (including zero) of the chemical substance (A) Using the expression level of the reporter gene obtained by culturing in a state as a comparative value, the production ability of the chemical substance (A) by the chemical substance-producing cells is quantitatively analyzed.
  • the cell analysis method of the present invention comprises a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to a chemical substance (A) is introduced, and a substrate for a reaction for producing the chemical substance (A).
  • Incorporates (B) expresses an enzyme (C) that causes conversion to chemical substance (A), and finally produces chemical substance (A) and releases it into the culture medium.
  • the reporter gene-introduced cell is cultured on the bottom of a culture container, and the tissue containing the chemical substance-producing cell is minced. Add the tissue slices to the culture vessel using an insert, By adding the inhibitor, the reporter gene-introduced cell and the chemical substance-producing cell are co-cultured together with the inhibitor.
  • the cell analysis method of the present invention provides a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to the chemical substance (A) is introduced, and a substrate for the chemical substance (A) production reaction.
  • a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to the chemical substance (A) is introduced, and a substrate for the chemical substance (A) production reaction.
  • the inhibitor obtained by centrifuging the tissue and centrifuged with an inhibitor that inhibits the enzyme (C), and the inhibitor based on the amount of reporter gene expressed from the reporter gene-introduced cell. It is characterized by analyzing the response.
  • the reporter gene-introduced cell is converted to the chemical substance using a culture solution containing a known amount (including zero) of the chemical substance (A).
  • the reporter gene expression level obtained by culturing in a production cell-free state is used as a comparative value to quantitatively analyze the efficacy of the inhibitor.
  • the chemical substance (A) is estrogen
  • the gene encoding the reporter protein is a fluorescent protein such as GFP or RFP.
  • Luciferase, j8-galactosidase, j8 ratatamase and j8 dulc-tase, etc. group power is a gene derived from at least one selected
  • the reporter gene-introduced cell is derived from breast cancer
  • the substrate (B) is It is androgen
  • the enzyme (C) is aromatase
  • the chemical-producing cells are adipose stromal cells isolated from breast cancer tissue.
  • the chemical substance (A) is estrogen
  • the gene encoding the reporter protein is a fluorescent protein such as GFP or RFP.
  • Luciferase, j8-galactosidase, j8 ratatamase, and j8 dulc-tase, etc. are also selected from the group of at least one selected gene, and the half-life of the reporter protein encoded by the gene is 2 hours to About 6 hours, the reporter gene-introduced cell is derived from breast cancer, the substrate (B) is androgen, the enzyme (C) is aromatase, and the chemical-producing cells are isolated from breast cancer thread and tissue. It is a separated fat stromal cell.
  • the chemical substance (A) is estrogen
  • the reporter gene-introduced cell is any one of claims 1 to 10.
  • the substrate (B) is androgen
  • the enzyme (C) is aromatase
  • the chemical-producing cell is an adipose stromal cell isolated from breast cancer tissue.
  • the analysis is performed based on an average value of the expression level of the reporter gene.
  • the expression level of the reporter gene is measured from an acquired image.
  • the reporter gene-introduced cells are cultured in a single layer on the bottom surface of the culture container, and the chemical substance-producing cells are located above the bottom surface of the culture container.
  • the reporter gene-introduced cell image is obtained through the objective lens from the bottom of the culture vessel.
  • the millet is configured to be removable, and an image is acquired after the millet is removed.
  • the distance L is at least a value outside the focal range of the objective lens, and an image is acquired without removing the collar.
  • the nucleus of the reporter gene-introduced cell is labeled with a spectral characteristic different from the spectral characteristic of the introduced reporter protein.
  • the reporter gene-introduced cells are recognized by image processing based on fluorescence or luminescence images, and the expression level of the reporter protein is evaluated.
  • the luminance characteristics of the nuclear image are processed to recognize cells in the image, and the region of the nucleus recognized by this image processing is binarized.
  • the amount of fluorescence or luminescence in the region corresponding to the obtained binarized image is measured for each cell, and the expression level of the reporter gene is evaluated.
  • a preferred embodiment of the cell analysis method of the present invention is characterized in that the nuclear label has a longer wavelength characteristic than the spectral characteristic of the reporter protein.
  • the reporter protein is a green fluorescent protein.
  • the nuclear labeling is characterized by DRAQ5.
  • the chemical substance (A) for analysis and / or the inhibitor is quantified in a well of the well of the microplate. Zero) and is attached to each well in a solid state, and the chemical substance (A) and / or the inhibitor is dissolved in a predetermined melt and is used for analysis. .
  • the expression level of the reporter gene is measured within 24 to 96 hours after the start of co-cultivation.
  • the transfection cell of the present invention and the stromal cells derived from breast cancer tissue or the breast cancer tissue containing the cells as the estrogen signal indicating cells are co-cultured, or breast cancer tissue
  • the extract is added to the transfected cells and cultured, the characteristic of breast cancer can be analyzed.
  • the cell analysis method of the present invention there is an advantageous effect that it is possible to provide a cell analysis method capable of visualizing in-cell transmission matters such as hormone information in advance.
  • FIG. 1 shows a diagram of the constructed estrogen signal reporter gene ERE-GFP.
  • Figure 2 shows the established ERE-GFP stable MCF7 cell line (ERE-GFP-E series) and the cell line stably transfected with only pd2EGFP-l vector without ERE.
  • E shows the evaluation of GFP expression in the untreated and untreated groups (evaluation by fluorescence microscope).
  • FIG. 3 shows the established ECF-GFP stable MCF7 cell line (ERE-GFP-E series) and the cell line stably transfected with MCF7 only pd2EGFP-l vector without ERE. Evaluation of GFP expression in the E-treated and untreated groups (assessment by flow cytometer)
  • Figure 4 shows the evaluation of GFP expression induced by E-addition in the ERE-GFP-E10 cell line.
  • FIG. 5 shows estrogen signal detection in breast cancer by co-cultivation of breast cancer tissue-derived adipose stromal cells and ERE-GFP stably introduced MCF7 cell line ERE-G FP-E10.
  • FIG. 6 shows estrogen signal detection in each case of breast cancer by co-culture with breast cancer tissue-derived adipose stromal cells and ERE-GFP stably introduced MCF7 cell line ERE-G FP-E10.
  • FIG. 7 shows detection of estrogen signal in each case of breast cancer by co-culture with breast cancer tissue-derived adipose stromal cells and ERE-GFP stably introduced MCF7 cell line ERE-G FP-E10.
  • Fig. 8 shows the quantification of estrogen signals in breast cancer cases by co-cultivation of breast cancer tissue-derived adipose stromal cells and ERE-GFP stably introduced MCF7 cell line ERE-G FP-E10. The comparison with the expression level of the aromatase gene mRNA level is shown.
  • Fig. 9 shows estrogen signals from aromatase inhibitors by co-cultivation of breast cancer tissue-derived adipose stromal cells and ERE-GFP stable MCF7 cell line ERE-GFP-E10 in the presence of various aromatase inhibitors. The analysis of the inhibitory effect is shown.
  • FIG. 10 shows quantitative detection of estrogen signal induction by the breast cancer tissue using the surgically extracted breast cancer tissue specimen extract supernatant.
  • FIG. 11 shows quantitative detection of estrogen signal induction in the breast cancer tissue by symbiotic culture with surgically excised breast cancer tissue specimens using insert wells.
  • FIG. 12 is a view showing a microplate having 24 wells.
  • FIG. 13 is a cross-sectional view of a microplate.
  • FIG. 14 is a diagram showing a flow of a cell image analysis method.
  • FIG. 15 is a diagram showing the flow of image analysis.
  • FIG. 16 is a diagram showing how a cell region of a binarized image is divided.
  • FIG. 17 is a diagram showing a state of recognition of multiple cell nuclei.
  • the gene-introduced cell of the present application contains a gene encoding a reporter protein, and contains an estrogen response element (ERE) upstream of the promoter region of the reporter protein, thereby expressing the reporter protein.
  • EER estrogen response element
  • examples of cells that can be used as host cells into which DNA is introduced include human breast cancer-derived cultured cells.
  • examples of cells include human-derived MCF7 cells and T47D. A cell etc. can be mentioned.
  • an estrogen recognition sequence is a specific base sequence generally called an estrogen response element (ERE), which is present in the transcriptional regulatory region of a target gene whose transcriptional activity is regulated by an estrogen receptor.
  • ERE estrogen response element
  • Specific examples of such estrogen recognition sequences include ERE of PS2, prodosterone receptor, vitellogenin which is an egg yolk protein precursor, and RRE of egg white protein ovalbumin.
  • DNA having a strong base sequence can be prepared by chemical synthesis or by amplification and cloning using a PCR method or the like.
  • DNA that also has a nucleotide sequence ability that contains the ERE consensus sequence [5'-AGGTCAnnnTGACCTT-3 '(SEQ ID NO: 1)] at least once may be chemically synthesized and used.
  • TK thymidine kinase
  • TK thymidine kinase
  • the DNA used for transformation of the host cell can contain a cell selection marker gene that can function in the host cell in addition to the reporter gene.
  • the reporter gene means a gene encoding a reporter protein.
  • a cell selectable marker gene is a gene that encodes a phenotype that can be used as a mark when distinguishing cells transformed with DNA containing the gene from non-transformed cells. “Functional in cultured cells” means that the trait can be expressed in cultured cells. For example, it can be expressed in cultured cells under the control of a promoter capable of initiating transcription in cultured cells.
  • cell selection marker genes effective in cultured cells include drugs that suppress or inhibit the growth of cultured cells.
  • genes that can confer resistance to cells include neomycin resistance conferring genes (aminoglycoside phosphotransferase genes), hygromycin metabolizing genes (noigromycin phosphotransferase genes). Genes), blasticidin S resistance conferring genes (blastcidin S deaminase gene), etc., and the blasticidin S resistance conferring gene can be preferably raised in that selection of transformed cells can be performed in a shorter period of time. .
  • Blasticidin s resistance conferring gene is
  • force such as the commercially available plasmid pUCSV-BSD can also be obtained.
  • DNA containing a gene encoding a reporter protein and containing an estrogen response element (ERE) upstream of the promoter region of the reporter protein refers to, for example, these genes on the same vector. It can be prepared by incorporating it into The vector is expected to be compact in size because it is expected that the frequency of gene recombination within a vector molecule or between molecules that will be easy to handle and the loss of chromosome power in stable transformed cells will be low. For example, a plasmid of about 2 kb to about LOkb can be mentioned. In addition, when using E. coli as a host in integrating the gene into the vector, it can be efficiently operated. Therefore, it functions as an E.
  • E. coli when using E. coli as a host in integrating the gene into the vector, it can be efficiently operated. Therefore, it functions as an E.
  • coli vector that is, an origin of replication that can function in E. coli, a drug resistance gene, gene insertion, and the like. It preferably has an entry restriction enzyme recognition site. More specifically, for example, a base containing an estrogen receptor recognition sequence derived from the 5 ′ upstream region of the Xenopus vitellogenin gene upstream of the plasmid carrying the firefly luciferase gene (reporter gene). Incorporating a DNA consisting of a sequence and a minimal promoter derived from the mouse metathionine I gene, and further incorporating into the plasmid, for example, a blasticidin S resistance-conferring gene connected to the SV40 early promoter.
  • the DNA having the above-described configuration can be prepared.
  • the reporter protein is a fluorescent protein such as GFP or RFP, luciferase, j8-galactosidase, j8 ratatamase and j8 dulc mouth-tase isotonic force.
  • the group power is a protein derived from at least one selected species.
  • the reporter protein is preferably a fluorescent protein such as GFP or RFP.
  • the protein has a half-life of about 2 to 6 hours.
  • the expression level of the estrogen receptor is compared between the case where the cell is treated with estrogen and the case where the cell is not treated according to the embodiment.
  • FIG. Figure 3 shows the E treatment and absence of stable ERE-GFP stably transfected MCF7 cell line (ERE-GFP-E series) and the cell line stably transfected with only pd2EGFP-1 vector without ERE in MCF 7. Evaluation of GFP expression in treatment group # 2
  • pdE2—GFP-4 represents a control.
  • pdE2—GFP-4 lacks (estrogen recognition sequence) ERE.
  • ERE—GFP-E5 and E10 are the cells of the present invention.
  • -E2 in the upper figure shows the relationship between the number of cells and the fluorescence intensity by the reporter gene in the case of estrogen-free potassium, and + E2 in the lower figure.
  • the case where estrogen is treated means the case of + E2 in FIG. 3, and the case where estrogen is not treated means the case of -E2.
  • the expression level of the expression product due to binding to the estrogen recognition sequence is so different that it can be visualized by the reporter gene.
  • the viewpoint power of increasing the detection sensitivity is also preferable when the difference in fluorescence intensity is sufficiently wide.
  • the sharper the peak formed by the number of cells and the fluorescence intensity the better from the viewpoint of increasing detection sensitivity.
  • E10 is sharp and has a shape!
  • estrogen when estrogen is added (+ E2), it is preferable that there is a difference so that the difference in fluorescence intensity is sufficiently divided compared to the case where no estrogen is added. Further, from the viewpoint of increasing the detection sensitivity, it is preferable that the fluorescence intensity is lower when it is not added. In this regard, when comparing E5 and E10 in Fig. 3, it can be seen that the fluorescence intensity is lower when E10 is not added, and the difference in fluorescence intensity is greater between + E2 and no addition.
  • the estrogen is treated.
  • the number of cells with a high expression intensity at the border of the expression intensity of the reporter gene that maximizes the number of cells when processed is sufficient to allow visualization with the reporter gene. This is because, in Fig. 3, when comparing E5 and E10 under + E2, E5 shows the expression intensity at the position of the maximum expression intensity at -E2 and also remains at + E2. is doing. On the other hand, in E10, it does not remain so much, and the number of cells is large at an intensity greater than the maximum expression intensity, which is almost the left and right control with the maximum expression intensity at the time of + E2. -Can be clearly distinguished from E2 expression intensity. Therefore, comparing E5 and E10, it can be said that E10 is a better quality cell with better detection sensitivity.
  • the above-mentioned “DNA containing a gene encoding a reporter protein and containing an estrogen response element (ERE) upstream of the promoter region of the reporter protein” is used. It is recommended to introduce the cells into cultured cells and select stable transformed cells. Specifically, for example, first, host cells such as MCF7 cells are seeded in a petri dish (10 5 to 10 7 cells / diameter 6 to 10 cm), and an ⁇ MEM medium containing about 5 to 10% serum is used. Several hours at approximately 37 ° C under 5% CO and saturated humidity conditions
  • the DNA can be introduced into the cells cultured in this manner.
  • Examples of the DNA introduction method include general methods such as an electopore position method, a calcium phosphate method, and a lipofusion method.
  • the purity of the DNA introduced into the host cell is preferably plasmid DNA purified by CsCl density gradient centrifugation or approximately the same purity.
  • the shape of the DNA introduced into the host cell the plasmid DNA in which the reporter gene and the cell selection marker gene as described above are incorporated may be introduced into the host cell in a circular form. In this case, DNA that has been linearized by being cleaved at a restriction enzyme site located in a region that does not affect the expression of each gene is introduced into the host cell.
  • the cells into which DNA has been introduced as described above are treated with a normal cell culture medium (medium). ) Incubate for about a day. Next, the cells are peeled off according to a conventional method (trypsin treatment, etc.) and re-seeded, and immediately, the culture is started under selection conditions corresponding to the cell selection marker gene introduced into the host cell. That is, when the cell selection marker gene is a drug resistance-conferring gene, a drug that imparts resistance to transformed cells is added to the medium, and the colony derived from the transformed cells is present in the presence of the drug until an appropriate size is obtained.
  • a normal cell culture medium medium
  • the colony derived from the transformed cells is present in the presence of the drug until an appropriate size is obtained.
  • the cell membrane is disrupted to prepare a cell extract, and the reporter gene product contained in the extract is quantified.
  • the reporter gene product is an enzyme protein
  • the reporter gene product is measured by reacting the enzyme protein in the extract with a substrate specific to the enzyme and measuring the amount of emitted light, the amount of fluorescence, the absorbance, etc. Enzyme activity is quantified and used as an indicator of the amount of reporter gene product, and hence the expression level of the reporter gene.
  • the expression level of the reporter gene in the system in which the cells are contacted with the ligand in this way. Cells that show a value at least 2 times, preferably 5 times or more higher than the expression level of the reporter gene in the system to which only the solvent is added Select.
  • the cells thus obtained are composed of a single transformed cell, the cell may be subjected to limiting dilution culture to select a colony having a single cell strength. .
  • the estrogen signal evaluation method of the present invention is evaluated by visualizing estrogen signal response using the cells of the present invention.
  • the principle of the estrogen signal evaluation method of the present invention will be described.
  • a transcription factor that binds to an estrogen recognition sequence binds to the estrogen recognition sequence
  • a downstream gene is expressed by the binding. This downstream gene It is thought to be a factor that causes cancer cells to grow.
  • the downstream gene of the estrogen recognition sequence is expressed and the incorporated reporter gene is also expressed. By measuring the expression intensity of the reporter gene, the expression of the downstream gene is expressed. Can be visualized. That is, the estrogen signal can be evaluated.
  • the evaluation method of the present invention utilizes such a principle.
  • a typical example of a transcription factor that binds to an estrogen recognition sequence is an estrogen-one estrogen receptor complex. From the inventors' research according to the present invention, other factors may be involved. It was suggested.
  • the evaluation method for quantitatively evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal derived from breast cancer adipose stromal cells mainly via the aromatase enzyme activity. Because
  • A The step of co-culturing any one of claims 1 and 10, and a breast stromal tissue-derived adipose stromal cell,
  • D The step of quantitatively evaluating the estrogen signal intensity mainly due to the aromatase enzyme activity of adipose stromal cells from the amount of the reporter protein quantified in C.
  • this method it is possible to quantitatively measure an estrogen signal induced by adipose stromal cells through an estrogen production reaction by an aromatase enzyme. Furthermore, different signals can be found for each cancer case from the evaluation results of the estrogen signal, and if these evaluation results are applied, application to a treatment method specific to cancer cases can be expected.
  • step A the cell according to any one of claims 1 to 10 is cultured on the bottom surface of the culture vessel, and the breast cancer tissue containing adipose stromal cells is minced. It is preferable to co-cultivate the cells of any one of claims 1 to 10 and breast cancer thread and tissue-derived adipose stromal cells by adding the obtained breast cancer tissue slices to a culture vessel using an insert. .
  • the expression intensity of the reporter gene in the gene-introduced cells of the present invention can be more accurately determined in an environment close to the living body. It becomes possible to measure.
  • the insert for example, an insert provided with a porous membrane generally used for cell culture can be used.
  • the cells according to any one of claims 1 to 10 and the breast cancer tissue-derived adipose stromal cells are co-cultivated and symbiotic
  • the supernatant is obtained by centrifuging a breast cancer tissue containing adipose stromal cells in a culture solution instead of administering androgen to the above-mentioned two types of cultured cells, and centrifuging the culture, and any one of claims 1 and 10
  • the cells according to claim 1 may be administered with the supernatant, an androgen that is a substrate for aromatase, and an aromatase inhibitor, and cultured.
  • the evaluation method for quantitatively evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal derived from breast cancer adipose stromal cells, mainly via the aromatase enzyme activity.
  • A The step of co-culturing any one of claims 1 and 10, and a breast stromal tissue-derived adipose stromal cell,
  • D a step of quantitatively evaluating estrogen signal intensity mainly due to aromatase enzyme activity in adipose stromal cells from the amount of reporter protein quantified in C. including.
  • the cell according to any one of claims 1 to 10 is cultured on the bottom surface of the culture vessel, and a breast cancer tissue slice obtained by chopping breast cancer tissue containing adipose stromal cells is inserted, It is preferable to co-cultivate the cells according to any one of claims 1 to 10 and breast cancer tissue-derived adipose stromal cells by adding to a culture vessel.
  • the cells according to any one of claims 1 to 10 and the breast cancer tissue-derived adipose stromal cells are co-cultured. 11.
  • a supernatant is obtained by centrifugation, and the supernatant is obtained by any one of claims 1 to 10.
  • the supernatant described above, androgen which is a substrate for aromatase, and an aromatase inhibitor may be administered and cultured.
  • the evaluation method for quantitatively evaluating the intensity of the estrogen signal of the present invention is an inhibitory action of an estrogen signal derived from breast cancer adipose stromal cells, mainly via an aromatase enzyme activity, by an aromatase inhibitor.
  • B a process in which the two types of cells co-cultured with androgen, which is a substrate for aromatase, and an aromatase inhibitor are simultaneously administered and cultured;
  • D a step of quantitatively evaluating the inhibitory action of the estrogen signal mainly by the aromatase enzyme activity of adipose stromal cells by the aromatase inhibitor from the amount of the reporter protein quantified in C.
  • the estrogen signal inhibitory effect of various aromatase inhibitors in each cancer case can be quantitatively evaluated. Susceptibility to mon therapy can be assessed for each case.
  • Step A a breast cancer tissue slice obtained by culturing the cell according to any one of claims 1 to 10 on the bottom surface of a culture vessel and chopping breast cancer tissue containing adipose stromal cells. It is preferable to co-cultivate the cells according to any one of claims 1 to 10 and breast cancer tissue-derived adipose stromal cells by adding to a culture vessel using an insert. In addition, as with the two evaluation methods described above, it is possible to simplify the operation and evaluate the estrogen signal more quickly.
  • aromatase is an enzyme present in peripheral adipose tissue and the like. Androgens produced from the adrenal cortex are converted to estrogens by aromatase. Because aromatase inhibitors inhibit androgenic estrogen synthesis, hormonal therapies that suppress breast cancer growth using aromatase inhibitors are actively used.
  • an aromatase inhibitor is added to the cells of the present invention to reduce the expression level of the reporter gene, the presence or absence of expression of a gene involved in cancer growth downstream of the estrogen recognition sequence can be evaluated. This is because the expression of a gene involved in cancer growth and the expression of the reporter gene of the cell of the present invention are synchronized.
  • the inhibitor analysis method of the present invention uses the estrogen signal evaluation method of the present invention to determine whether the aromatase inhibitor is present in the patient depending on the presence or absence of the estrogen signal after adding the aromatase inhibitor. It is possible to analyze whether or not it has a specific cancer inhibitory effect. [0090] That is, if there is an estrogen signal, that is, if the reporter gene is expressed, it can be determined that the aromatase inhibitor is not acting. Conversely, if there is no estrogen signal, that is, the reporter gene is expressed. Otherwise, it can be determined that an aromatase inhibitor is acting, and this aromatase inhibitor is a particularly effective inhibitor for cancer patients.
  • the method for evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal by the breast cancer tissue
  • C a step of quantitatively evaluating the intensity of estrogen signal by breast cancer tissue from the amount of reporter protein quantified in C
  • estrogen receptor is also activated by a phosphate-mediated pathway by growth factors such as EGF and IGF-1, and the production of these growth factors involves fat stroma
  • growth factors such as EGF and IGF-1
  • the production of these growth factors involves fat stroma
  • the microenvironment of breast cancer including cells is greatly affected.
  • this evaluation method it is possible to grasp the control of estrogen signals by the microenvironment of breast cancer, and it is possible to grasp comprehensive estrogen signals.
  • the proliferation effect on breast cancer cells can be quantified, and it is effective for analysis of factors other than estrogen.
  • estrogen receptor activation ability and breast cancer growth-promoting action can be easily and quickly ascertained for individual cases, and application to rapid prediction of hormonal therapy response is possible.
  • the method for evaluating the intensity of the estrogen signal of the present invention is a method for quantitatively evaluating the intensity of the estrogen signal by the breast cancer tissue
  • A Breast cancer tissue slices obtained by culturing the cells according to claim 1 on the bottom surface of the culture vessel and chopping the breast cancer tissue, using an insert. And culturing the cells according to any one of claims 1 and 10 and the breast cancer tissue slice,
  • B quantifying the reporter protein induced by the breast cancer tissue slice
  • C a step of quantitatively evaluating the intensity of estrogen signal by breast cancer tissue from the amount of reporter protein quantified in C
  • the cell analysis method of the present invention comprises a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to a chemical substance (A) is introduced, and a substrate (B) for the production reaction of the chemical substance (A). Co-cultured with chemical-producing cells that express the enzyme (C) that causes conversion to the chemical substance (A), and finally produce the chemical substance (A) and release it into the culture medium. Based on the reporter gene expression level from the reporter gene-introduced cell, the chemical substance-producing cells are analyzed for the ability to produce the chemical substance (A).
  • a reporter gene-introduced cell into which a reporter gene that specifically responds to a chemical substance (A) has been introduced means that the presence of the chemical substance (A) causes the transcription factor to eventually become a transcription factor through various cascade reactions. It means a transgenic cell into which a reporter gene is incorporated so that it is expressed in synchronism with the gene to be regulated.
  • a reporter gene-introduced cell for example, a cell in which a DNA containing a reporter gene and a cell selection marker gene that can function in the cultured cell is introduced into the chromosome of a cancer cell-derived cultured cell is used. Can do.
  • the transgenic cell when the transgenic cell is derived from breast cancer, the transgenic cell contains a gene encoding a reporter protein, such as the above-described transgenic cell of the present invention, and the promoter region of the reporter protein.
  • a reporter vector containing an estrogen response element (ERE) upstream and in which the expression of the reporter protein is substantially controlled by the estrogen response element has been stably introduced.
  • EEE estrogen response element
  • the chemical substance-producing cell takes in the substrate (B) of the chemical substance (A) production reaction, expresses the enzyme (C) that causes conversion to the chemical substance (A), and finally the chemical substance. It is a cell that produces (A) and releases it into the culture medium.
  • the interaction between the chemical substance-producing cell to which the chemical substance is provided and the cell having a function to respond to the chemical substance is reported. It can be visualized through genes.
  • the reporter single gene-introduced cell is used.
  • Reporter gene-introduced cells and chemical-producing cells can be obtained by adding tissue slices obtained by culturing on the bottom of the culture vessel and chopping the tissue containing the chemical-producing cells to the culture vessel using inserts. And symbiotic culture.
  • the reporter is preferred.
  • the gene-transferred cells may be cultured together with the supernatant obtained by centrifuging the tissue containing chemical substance-producing cells.
  • the reporter gene-introduced cell is cultured in a state free of the chemical substance-producing cells using a culture solution containing a known amount (including zero) of the chemical substance (A).
  • a culture solution containing a known amount (including zero) of the chemical substance (A) By using the expression level of the reporter gene thus obtained as a comparative value, the ability to produce the chemical substance (A) by the chemical substance-producing cells can be quantitatively analyzed.
  • a reporter gene-introduced cell into which a gene encoding a reporter protein that specifically responds to the chemical substance (A) is introduced; and a chemical substance (A) Chemical substance that takes in the substrate (B) of the production reaction and expresses the enzyme (C) that causes conversion to the chemical substance (A), and finally produces the chemical substance (A) and releases it into the culture medium
  • Production cells are co-cultured with an inhibitor that inhibits the enzyme (C), and the inhibition is performed based on the expression level of the reporter gene from the reporter gene-introduced cell.
  • the efficacy of the agent can be analyzed.
  • the reporter gene-introduced cell is cultured on the bottom surface of the culture vessel.
  • the reporter gene-introduced cells, the chemical substance-producing cells, and the chemical substance-producing cells are obtained by adding a tissue slice obtained by chopping a tissue containing the chemical substance-producing cells to the culture vessel using an insert. May be co-cultured with the inhibitor.
  • the reporter gene-introduced cell and the chemical substance-producing cell are symbiotic with the inhibitor.
  • the gene-introduced cell may be cultured with the inhibitor and the supernatant obtained by centrifuging the tissue containing the chemical substance-producing cell and the inhibitor! / ⁇ .
  • the reporter gene-introduced cell is cultured in a state free of the chemical substance-producing cells using a culture solution containing a known amount (including zero) of the chemical substance (A).
  • a culture solution containing a known amount (including zero) of the chemical substance (A) By using the expression level of the reporter gene obtained as a comparative value, the efficacy of the inhibitor can be quantitatively analyzed.
  • the chemical substance (A) is an estrogen
  • a gene encoding the reporter protein is a fluorescent protein such as GFP or RFP, luciferase, j8- Galactosidase, j8 latatamase and j8 glucurotase etc.
  • group force is a gene derived from at least one selected
  • the reporter gene-introduced cell is derived from breast cancer
  • the substrate (B) is an androgen
  • the enzyme (C) is aromatase
  • the chemical-producing cells are adipose stromal cells isolated from breast cancer tissue.
  • the gene encoding the reporter protein is a gene derived from at least one species selected from a group consisting of fluorescent proteins such as GFP and RFP, luciferase, galactosidase, lactamase, and darc mouth-tase.
  • the reporter protein encoded by the gene has a half-life of about 2 to 6 hours.
  • the reporter gene-introduced cell is the above-described gene-introduced cell of the present invention.
  • the analysis is performed based on the average value of the expression level of the reporter gene, and the expression level of the reporter gene can be measured. .
  • quantified (including zero) estrogen is added to the culture medium to culture the reporter gene-introduced cell, and the fluorescence or luminescence from the reporter gene-introduced cell is measured and compared to determine the amount of time. It is possible to quantitatively analyze the ability of stromal cells to produce aromatase. As a result, the effect of estrogen supplementation on the production of chemical substances can be grasped by visible light. In addition, the action of an aromatase inhibitor on a culture system can be visualized, and for example, the most effective aromatase inhibitor against patient-specific cancer cells can be examined before administration to a patient.
  • the reporter gene-introduced cells are provided in a monolayer at the bottom of the culture vessel,
  • the chemical substance-producing cells are co-cultivated in a single layer on millet having a culture surface at a distance L upward from the bottom of the culture vessel,
  • a fluorescence or luminescence image of the reporter gene-introduced cell is obtained from below the culture vessel via the objective lens.
  • it was installed at a distance L because the autofluorescence from the chemical-producing cells, the autoluminescence, or the reflected light from the illumination light source is the background light, and the S of the signal light of the reporter gene-introduced cell force. This is because / N is reduced.
  • the distance L is preferably a value that is at least out of the focal range of the objective lens, because the S / N of the signal light of the cell force of the reporter gene-introduced cell force needs to be kept sufficiently high. In this case, a fluorescent or luminescent image is acquired without removing the millet.
  • the millet is configured to be removable, and a fluorescence or luminescence image is acquired after the millet is removed. If it is removable, the analysis can be easily performed, and stable fluorescence or luminescence photometry can be performed without any reduction in the S / N ratio of signal light from the reporter gene-introduced cells.
  • the transduced fluorescent protein has a half-life of 4 hours or less.
  • the nucleus of the reporter gene-introduced cell is labeled with a spectral characteristic different from the spectral characteristic of the introduced reporter protein, and the reporter single gene-introduced cell is recognized by image processing based on the fluorescence or luminescence image of the nucleus.
  • the expression level of the reporter protein is evaluated.
  • the nuclear image recognized by the image processing is binarized, and the fluorescence or luminescence amount in the region corresponding to the obtained binarized image is measured for each cell to report the reporter gene.
  • the expression level is evaluated.
  • the spectral wavelength characteristics of fluorescence and light emission usually have a tail on the long wavelength side.
  • the light from the nucleus has a longer wavelength than the spectral wavelength characteristics of the signal light to be analyzed. Is more advantageous. From this point of view, it is preferable that the nuclear label has a longer wavelength characteristic than the spectral characteristic of the reporter protein. Since DRAQ5 has a long fluorescence wavelength of about 680 nm that does not require cells to be immobilized at the time of labeling, DRAQ5 is most suitable for this analytical method. From this point of view, it is preferable that nuclear labeling is performed by DRAQ5.
  • the chemical substance (A) for praying and / or the inhibitor is quantified (including zero) in each microplate well.
  • Each is attached to the well in a solid state, and the above-mentioned conversion is performed with a predetermined melt.
  • the chemical (A) or / and the inhibitor are dissolved and subjected to analysis.
  • the expression level of the reporter gene is preferably measured within 24 to 96 hours after the start of symbiotic culture.
  • Estrogen signal reporter gene ⁇ ERE-GFP was prepared as follows. In other words, the multicloning site of the pd2EGFP-1 vector (Clontech) containing the GFP-1 gene encoding the unstable green jellyfish-derived green fluorescent protein 'GFP (Green Fluorescent Protein) with a half-life of about 2 hours On the Smal site in (MCS), an estrogen response element (AGCTAGGTCAGGATGACCTAGCTACAGCT) (SEQ ID NO: 2) and HSV-TK F as shown in FIG. Mouth motor arrangement (GGCCCCGCCC AGCGTCTTGTC
  • a 314 bp DNA fragment (SEQ ID NO: 4) containing CAGCGACCCGCTTAACAGCGTCAACAGCGTGCCGC) (SEQ ID NO: 3) was introduced according to a standard method to prepare the ERE-GFP gene.
  • This ERE-GFP gene was introduced into a human breast cancer-derived cultured cell line MCF7 (transfusion), and an MCF7 cell line in which the gene was stably introduced into the genome was isolated and established.
  • MCF7 cell line is widely used as a cell line that highly expresses estrogen receptor ⁇ (hereinafter referred to as ER1), and it is a 37 ° C, 5% C02 incubator in RPMI-1640 culture medium containing 10% FCS. Cultured.
  • a Trans IT LT-1 kit (Cat #: V2304T / Takara Shuzo Co., Ltd.), which is a gene introduction reagent, was used. The specific processing for gene transfer is the same. This was performed according to the protocol of the kit. Add Trans IT-LT-l to serum-free medium 300 1 and mix at room temperature for 5 minutes, then add 1 to 2 ⁇ g / ml of DNA 1 ⁇ 1 and mix at room temperature for 5 minutes. did. 300 ⁇ l of this solution was added to 50% confluent MCF-7 cells in a 6 cm dish.
  • ERE-GFP gene stably introduced MCF7 cell lines were established.
  • a cell system in which only the pd2EGFP-1 vector was stably introduced into MCF7 was established in the same manner without introducing an ERE sequence!
  • a stable GFP with a long half-life was used as a reporter gene, and a reporter vector incorporating the transcriptional regulatory region ERE was also constructed and introduced into MCF7 cells. As a result, the reporter vector was stably introduced.
  • a cell line was also established.
  • ERE-GFP gene stably introduced MCF7 cell line ⁇ 47 lines (ERE-GFP-E1 to E47) were evaluated for responsiveness to estrogen signals. Specifically, each cell line was treated with 17 ⁇ estradiol (synthetic estrogen: E) (+ E group) and induced GFP expression.
  • each cell line was collected by trypsin treatment, washed with PBS, 60 mm
  • the ERE-GFP-E10 cell line (accession number: FERM BP-10610) was low in GFP without E treatment and GFP Often
  • ERE-GFP-E10 cells After culturing ERE-GFP-E10 cells for 3 days in RPMI1640 medium (10% DCC-FCS / PRF-RPMI) without phenol red supplemented with 10% FCS treated with thiacol dextran, the cells were treated with trypsin. Disperse and seed 1 ml of the same cell dispersion prepared to a cell density of 1 ⁇ 10 4 cells / mL in a 24-well multi-dish and add E to the final concentrations of 0, 1, 3, 10, 30, 100, and
  • the number of viable cells was measured by MTT assembly for each addition group, and GFP-expressing cells were measured under a fluorescence microscope.
  • MTT Atsei add 5 mg / ml of MTT solution on the 4th day after adding E to 100 ⁇ l per well.
  • the cells were collected on the 4th day after the addition of E, as in the case of MTT assembly.
  • GFP expression positive cells Disperse by ribsin treatment, drop it on a slide glass, and count the number of cells (GFP expression positive cells) that express GFP more than a certain amount by visual observation under a fluorescence microscope. This was done by calculating the percentage of expression positive cells.
  • the cells were treated with trypsin 1 to 4 days after adding E at a final concentration of 3 pM and InM.
  • a breast cancer tissue specimen removed by surgery was divided, a part was subjected to histopathological diagnosis, and a part was used for separation and culture of adipose stromal cells. Separation and cultivation of adipose stromal cells from the specimen was performed as follows. That is, the tissue piece was immersed in HBSS and rinsed, and then cut into pieces of 1 mm 3 or less with a dissecting scissor.
  • HBSS solution supplemented with lmg / ml collagenase, 40 mg / ml BSA, 2 mg / ml gnolecose, IX antibiotic-antimycotic, and 50 g / mL gentam icin for 2-3 hours at 37 ° Incubate at C to further disperse the cells.
  • the cell dispersion solution was filtered through a nylon mesh, and then the filtrate containing the dispersed cells was centrifuged to precipitate the cells, washed several times with HBSS, and the breast cancer tissue-derived cells were collected.
  • the cells were suspended in a 10% FCS-added MEM- ⁇ culture solution and cultured in a 37 ° C, 5% C02 incubator.
  • the non-adherent cells were removed by changing the medium the next day.
  • the proliferation of adipose stromal cells was confirmed on the 7th to 10th day after the start of the culture, and then the culture medium was removed twice a week and replaced with a new culture medium.
  • ERE-GFP-E10 cells Prior to the start of co-cultivation, ERE-GFP-E10 cells were cultured for 72 hours in a 10% DCC-FCS / PRF-RPMI culture medium (hereinafter referred to as estrogen blight medium).
  • Adipose stromal cells were prepared at a cell density of 5 ⁇ 10 4 cells / mL in the same bacterial culture medium, and 1 ml of this cell dispersion was seeded in a 24-well multi-dish to start culture.
  • Seed adipose stromal cells in wells 1 day after the start of culture add 5X10 4 ERE-GFP-E10 cells per well onto the adipose stromal cells, and at the same time , 4 days was added so that the testosterone, a substrate for estrogen production reaction by Aromataze enzyme to a final concentration of 10- 7 pM, and co-cultivation. After 4 days of co-cultivation, the cells were dispersed by gentle trypsin treatment, and GFP expression positive cells were detected under a microscope.
  • ERE-GFP-EIO cells and adipose stromal cells could be distinguished under a microscope due to differences in morphology ERE-GFP-EIO by co-cultivation of breast cancer tissue-derived adipose stromal cells and ERE-GFP-EIO cells
  • Figure 5 shows the results of GFP expression induction in cells.
  • testosterone a substrate for the estrogen production reaction by the aromatase enzyme
  • co-cultivation of breast cancer tissue-derived adipose stromal cells and ERE-GFP-EIO cells induces GFP expression in ERE-GFP-EIO cells.
  • the percentage of GFP-expressing positive cells increased depending on the number of breast stromal tissue-derived fat stromal cells co-cultured.
  • breast cancer 3 cases force-out adipose stromal cells Nitsu collected respectively, added testosterone, no additives, further testosterone simultaneously Aromataze inducers and is a Dekisometazon 2X10- 6 M ⁇ Ka ⁇ The percentage of GFP expression positive cells in ERE-GFP-E10 cells was calculated. The result is shown in FIG. In symbiotic culture with adipose stromal cells, a significant increase in the proportion of GFP-positive cells was observed in ERE-GFP-E10 cells when supplemented with androgen-free. In addition, dexamethasone, an aromatase inducer, was further added in the group, and the percentage of GFP positive cells further increased compared to the case of androgen alone.
  • breast cancer tissue-derived adipose stromal cells collected from 2 sites and ERE-GFP stably introduced MCF7 cell line ERE-GFP-E10 were co-cultured and derived from adipose stromal cells in individual cancer cases Quantification of estrogen signal was performed. Co-cultivation was carried out in RPMI 1640 medium (10% DCC-FCS / PRF-RPMI) without Tearcholdextran-treated FCS 10% supplemented phenol red. The collected adipose stromal cells were used within 2-3 passages after the start of culture in order to minimize the effects of aging.
  • ERE-GFP-E10 cells were cultured for 72 hours in a 10% DCC-FCS / PRF-RPMI culture medium (hereinafter referred to as a dry medium).
  • Adipose stromal cells were prepared at a cell density of 5 ⁇ 10 4 cells / mL in the same sterilized medium, and 1 ml of this cell dispersion was seeded in a 24-well multi-dish to start culture.
  • Figure 12 shows the results of induction of GFP expression in ERE-GFP-E10 cells by co-culturing of breast cancer tissue-derived adipose stromal cells and ERE-GFP-E10 cells collected from two cancer tissues in each case for 12 breast cancer cases. Shown in In addition, adipose stromal cells were collected from each of two cases in the excised cancer tissue, that is, a cancerous part and a part 2 cm away from the cancerous part. As a result, it became clear that the estrogen signal induced by adipose stromal cells is different in each cancer case, and even in the same case, it is different depending on the sampling location. This suggests that the intensity of estrogen signals derived from adipose stromal cells varies among individual breast cancer cases, and thus susceptibility to hormone therapy with aromatase inhibitors. It was also suggested that there is a possibility of different.
  • FIG. 8 shows the results of gene mRNA quantification. As a result, it was shown that the estrogen signal induced by adipose stromal cells is different in each cancer case, and that the intensity of the estrogen signal and the analysis result of the expression level of the aromatase gene mRNA are not necessarily correlated.
  • Breast cancer 4 cases power Collected breast cancer tissue-derived adipose stromal cells and ERE-GFP stably introduced MCF 7 cell line ERE-GFP-E10, 4 concentrations of aromatase inhibitor simultaneously with testosterone Co-cultured under a total of 4 different conditions (0, 0.01, 0.03, and 0.1 / z M), and quantified adipose stromal cell-derived estrogen signals under each condition .
  • an aromatase inhibitor three types of anastrozole, letrozole and exemestane were used, and each experiment was conducted.
  • the proportion of GFP-positive cells decreased depending on the concentration of the added aromatase inhibitor.
  • the decrease in the proportion of GFP-positive cells was different for each cancer case, and even in the same cancer case, it was shown that it was different depending on the type of aromatase inhibitor added.
  • the estrogen signal induced by adipose stromal cells is different in each cancer case, and that the suppression effect of estrogen signal by various aromatase inhibitors is different in each case. It was suggested that the estrogen signal inhibitory effect of various aromatase inhibitors in cancer cases can be quantitatively evaluated, and the sensitivity to hormone therapy using various aromatase inhibitors may be evaluated for each case.
  • microplate 1 has 24 wells (A1 to D6), and breast cancer tissue force obtained by surgery from the patient is also assigned to the isolated stromal cell sample as follows.
  • A1 to A6 In order to evaluate the estrogen production ability of adipose stromal cells, the test conditions for each well are assigned as follows. Each well contains a common culture medium containing androgen.
  • A1 Fluorescent protein gene-introduced breast cancer cells only
  • A2 Fluorescent protein gene-introduced breast cancer cells + estrogen (0.3 pM)
  • A3 Fluorescent protein gene-introduced breast cancer cells + estrogen ( ⁇ )
  • A4 Fluorescent protein gene-introduced breast cancer cells + estrogen (3pM)
  • A5 Fluorescent protein gene-introduced breast cancer cells + estrogen ( ⁇ )
  • A6 Fluorescent protein gene-introduced breast cancer cells + stromal cells
  • B 1 Fluorescent protein gene-introduced breast cancer cells + stromal cells + aromatase inhibitor X ( ⁇ )
  • B2 Fluorescent protein gene-introduced breast cancer cells + stromal cells + aromatase inhibitor X (30pM)
  • B3 Fluorescent protein gene-introduced breast cancer cells + stromal cells + aromatase inhibitor X ( ⁇ )
  • C1 Fluorescent protein gene-introduced breast cancer cell + stromal cell + aromatase inhibitor ⁇ ( ⁇ )
  • C2 Fluorescent protein gene-introduced breast cancer cell + stromal cell + aromatase inhibitor Y (30pM)
  • C3 Fluorescent protein gene-introduced breast cancer cell + Stromal cells + aromatase inhibitor ⁇ ( ⁇ )
  • D 1 Fluorescent protein gene-introduced breast cancer cell + stromal cell + aromatase inhibitor Z ( ⁇ )
  • D2 Fluorescent protein gene-introduced breast cancer cell + stromal cell + aromatase inhibitor Z (30pM)
  • D3 Fluorescent protein gene-introduced breast cancer cell + Stromal cells + aromatase inhibitor Z ( ⁇ )
  • FIG. 13 is a partial cross-sectional view of the microplate.
  • the fluorescent protein gene-introduced breast cancer cells are cultured on the bottom surface la of the microplate 1, and the stromal cells have at least the androgen in the kiban part 2a that also has the membrane surface having the culture surface of the insert 2.
  • a fluorescent image of a fluorescent protein gene-introduced breast cancer cell is taken through an objective lens 4 of an inverted cubic microscope (not shown).
  • the objective lens 4 is aimed at the bottom surface la of the microplate on which the fluorescent protein gene-introduced breast cancer cells are cultured, and is driven by an electric stage (not shown) to each well and attached to the microscope.
  • about 4 to 16 fluorescent images are taken by the camera, and the average fluorescence intensity of the fluorescent protein gene-introduced breast cancer cells is measured.
  • the insert 2 is configured to be removable and is removed before being imaged. As a result, stray light generated from the insert rib portion 2a can be eliminated, and the background of the fluorescent image can be kept low. Furthermore, if the distance between the insert part 2a and the bottom surface la of the microplate 1 is set to be at least outside the focal range of the objective lens 4, the fluorescent image of the fluorescent protein gene-introduced breast cancer cells without removing the insert 2 Imaging This makes it easy to automate this cell analysis (see Figure 14).
  • the present invention is not limited to the above-described embodiments, and various examples are possible. In this example, a fluorescence image is acquired using a microscope, and the fluorescence emission amount is evaluated based on the obtained image. However, the fluorescence emission amount may be evaluated using a flow cytometer. .
  • the expression level of the introduced fluorescent protein is determined by analyzing the cell image acquired by the above-mentioned device, specifying the position or boundary region of each cell in the image, and the region surrounded by the position or boundary. It is quantified by calculating the luminance value of the image.
  • the luminance value of the nuclear image is binarized using an appropriate luminance as a threshold value, and the target nuclear region is specified.
  • a partial area having a certain size in the binary image is selected.
  • the size is determined by the maximum or minimum width of the region or the radius of the largest inscribed circle that can be included in the region.
  • non-cell regions such as dust contained in the cell nucleus image are removed.
  • each cell is isolated and observed in the nuclear image, so each region obtained by the above method corresponds to a single nucleus. Are recognized as a single cell, and for example, the center position of the nucleus is acquired.
  • individual cells can be obtained by an appropriate method as described below. Divided into vesicles, the position and size of a single cell is recognized.
  • the fluorescence expression level of each cell is quantified by comparing the position of the cell nucleus, the size of the cell nucleus, and the morphology of the cell nucleus obtained by the above operation with the fluorescent protein image.
  • the obtained fluorescence expression amount is statistically processed by operations such as averaging, low !, and cutting the fluorescence amount, and is provided as quantitative data when determining the efficacy of the inhibitor. . ⁇ Analysis>
  • Quantify estrogen production capacity by comparing the fluorescence average brightness of the fluorescent protein gene-introduced breast cancer cells with the wells A1 to A5 (fluorescence protein gene-introduced breast cancer cells + stromal cells). It was found that can be analyzed. In addition, fluorescent protein gene-introduced breast cancer cells of well A6 (fluorescent protein gene-introduced breast cancer cells + stromal cells), fluorescence average brightness of Bl-3, Cl-3, Dl-3, and fluorescence of wells Al-A5 It was found that the effectiveness of an aromatase inhibitor can be quantitatively analyzed by comparing the average luminance with each other.

Abstract

 本発明の遺伝子導入細胞は、レポーター蛋白質をコードする遺伝子を含み、かつ、該レポーター蛋白質のプロモーター領域の上流にエストロゲン応答配列(ERE: estrogen response element)を含み、該レポーター蛋白質の発現が実質的にエストロゲン応答配列により制御されるレポーターベクターが安定的に導入されていることを特徴とする。

Description

明 細 書
遺伝子導入細胞及び細胞分析方法
技術分野
[0001] 本発明は、遺伝子導入細胞、当該遺伝子導入細胞を用いたエストロゲンシグナル 評価方法、当該評価方法を利用した阻害剤の解析方法、及び細胞分析方法に関し 、特に、レポーター遺伝子を利用した遺伝子導入細胞、当該遺伝子導入細胞を用い たエストロゲンシグナル評価方法、当該評価方法を利用した阻害剤の解析方法、及 びレポーター遺伝子を利用した細胞分析方法に関する。
背景技術
[0002] ホルモンは、特定の細胞 (主として内分泌細胞、一部の神経細胞)によって、生体内 外の情報に応じて生産分泌され、体液を介してのその情報を他の細胞へ伝達する物 質をいう。主として、ホルモンは、インスリン、グルカゴンなどのペプチドホルモン、アン ドロゲン、エストロゲンなどのステロイドホルモン、及びアドレナリンなどのアミンホルモ ンの 3種に分類される。どのホルモンも標的細胞のホルモンレセプターと結合し、その 物理的性質を変化させることにより、細胞内の反応に変化を誘起する。ァミン、ぺプ チドホルモンは、主として細胞膜上で作用し、細胞膜の機能変化又は第二メッセンジ ヤーの生産調節を解して細胞内の代謝を制御し、ステロイドホルモンは主として細胞 質内、または核内でレセプターと結合し、遺伝情報の発現などを制御する。
[0003] これらのホルモンの情報は、機能発現、恒常性 (ホメォスタシス)の維持など生物の 正常な生活を保証する重要な要因である。
[0004] これらのホルモン情報には、種々の反応、酵素等が関係しており、時にはカスケ一 ド反応によって複雑に制御されて、生体内での恒常性が維持されている。
[0005] ところで、上述したホルモンの中でエストロゲンは、乳癌発生、増殖と深く関係する 女性ホルモンである。乳癌は、現在世界的にみて女性において罹患率第 1位のがん であり、その対策が急務となっている。乳癌の多くはホルモン (エストロゲン)依存的に 増殖する性質を持つホルモン依存性腫瘍である。乳癌細胞が外界カゝらエストロゲン を受容すると、癌細胞において、エストロゲン受容体 (エストロゲンレセプター: ER)を 介して細胞増殖に関わるシグナル伝達系が活性化され、結果、細胞増殖が促進され て癌が進展する。ゆえに、乳癌の病態の評価において、乳癌糸且織におけるエストロゲ ンレセプターを介したシグナル伝達の活性ィ匕(以下エストロゲンシグナル)を解析する ことは非常に有用である。
現在、乳癌に対する薬剤治療の第 1選択肢は、エストロゲンアンタゴニストであるタ モキシフェンに代表されるような、抗エストロゲン効果のある薬剤を投与する、いわゆ るホルモン療法である。エストロゲンアンタゴ-ストは、癌細胞中のエストロゲン受容体 に結合するが、本来のエストロゲンと異なり、細胞増殖に関するシグナル伝達系を活 性化せず、ゆえに抗腫瘍効果を発揮する。
現在、乳癌症例に対するホルモン療法の適用性は、各癌症例の乳癌組織中の癌 細胞におけるエストロゲン受容体(エストロゲンレセプター: ER)の発現の有無により 評価され、 ER発現陽性症例が適用とされる。これは乳癌組織におけるエストロゲンシ グナルにつ ヽて、癌細胞側がエストロゲンを受容する能力を保持して ヽるかを評価し て 、ること〖こなる。
さて、癌細胞の増殖には癌細胞自身の性質も重要である力 癌細胞と癌細胞をとり まく間質細胞との相互作用も非常に重要であるとの知見が近年得られている。乳癌 において増殖促進作用をもつエストロゲンは、閉経前は主に卵巣にて産生されるが、 閉経後は卵巣機能退縮のため、一般に女性の血中エストロゲン濃度は閉経前と比較 し急激に低下する。しかしながら、閉経後女性の乳癌組織においては、局所的に高 濃度のエストロゲンが検出され、これは主として、乳腺組織中で、癌細胞をとりまく脂 肪間質細胞 (以下、脂肪間質細胞)において、ァロマターゼと呼ばれる酵素により、ァ ンドロゲンを基質としてエストロゲンが合成され、乳腺組織中に放出されることによると 考えられている。
よって近年、特に閉経後の乳癌に対しては、この脂肪間質細胞のァロマターゼ活 性を阻害し、間質細胞力 癌細胞へのエストロゲン供給を阻害することにより乳癌増 殖を抑えるァロマターゼ阻害剤による治療が試みられ、これが従来のエストロゲンレ セプター自身を標的とするタモキシフェンのような薬剤による治療と同等あるいは同 等以上の効果があることが明らかになっており、このァロマターゼ阻害剤が、閉経後 乳癌ホルモン療法における第 1選択薬剤になりつつある。
し力しながら、個々の症例についてァロマターゼ阻害剤が有効である力、その適用 の評価は、従来のタモキシフェン等のエストロゲンレセプター自体を標的とした薬剤 の場合に行われていた癌細胞におけるエストロゲンレセプター発現の有無のみでは 不十分であるのは明らかである。なぜなら、癌細胞をとりまく脂肪間質細胞が、主とし てァロマターゼ酵素活性を持つからであり、これを測定可能な、良い奏功性予測法 が望まれている。
従来、乳癌組織中のァロマターゼ酵素活性を測定する試みはいくつかなされてき ている。 Santnerらは、乳癌あるいは境界悪性乳腺組織の間質細胞におけるァロマタ ーゼ酵素活性の測定を、同細胞をトリチウム標識のアンドロステネジオン存在下で培 養し、トリチウムの放出を測定することにより算出している(Journal of Clinical Endocri nology and Metabolism, 82(1), pp200- 208, 2005)。また Qing Luらは、乳癌組織中の 上皮細胞あるいは間質細胞について、ァロマターゼ酵素活性そのものを測定するの でなぐァロマターゼに対する抗体を用いた組織免疫染色、あるいはウェスタンブロッ ティングにて、ァロマターゼ酵素蛋白質の発現量を定量することにより、ァロマターゼ 酵素活性定量の代替を試みている(Journal of Endocrinology, 137(7), pp3061- 3067, 2005) o
発明の開示
[0006] し力しながら、いずれの場合も、乳癌脂肪間質細胞における主としてァロマターゼ 活性を介した乳癌細胞増殖促進能を評価するには、前者手法では RIを用いるため 非常に煩雑であること、後者ではァロマターゼ酵素量のみの評価であり、酵素活性と は必ずしも相関しない可能性もある等、実際、臨床においてァロマターゼ阻害剤の 奏功性を評価する実用手法としては不十分と考えられる。
[0007] 上述したように、現在ホルモン療法にぉ 、ては、必ずしもホルモン情報を的確に把 握して、ホルモン療法が行われているのではない。臨床的には、薬剤、阻害剤などを 投与して初めて効能が判明する。薬剤などの奏効性は、患者ごとに特異的な場合が 多ぐある患者に対して効能が作用しても、他の患者には作用しない場合も多い。一 且臨床的に投与するとその分治療期間が増し、投与された薬剤が有効でない場合 は、無用な治療期間を延長させることにもなる。
したがって、予め個々の患者にエストロゲンシグナルを介したホルモン療法が有効 か否力をより的確に予想できるような細胞の分析方法が提供されれば、有用な情報 を提供し得ることなる。しかしながら、このような細胞分析方法に関してこれまで知られ ていない。
また、ホルモン療法の副作用は、化学療法に比べて一般的に極めて軽いのが特徴 であるが、タモキシフェンの長期間使用者では子宮がんや血栓症のリスク力 選択的 ァロマターゼ阻害剤の場合には骨粗鬆症のリスクが高まるなどの副作用がある。よつ て、予め乳がん患者にホルモン療法が有効であるか否かの客観的な判断材料を提 供できれば、無用な副作用を発生させることなしに、患者に特異的なかつ有効な処 方を提供できる。このような客観的判断材料は、エストロゲンシグナルの動態をその 作用発現の段階において把握できれば、提供可能であるが、このような判断材料は これまで知られて ヽな 、。
[0008] そこで、本発明は、上記状況を鑑み、乳癌の病態評価において非常に重要である 、乳癌組織におけるエストロゲンシグナルを評価可能なアツセィ系の提供を目的とす る。具体的には、エストロゲンシグナルを定量的に評価可能な、新規遺伝子導入細 胞系の榭立を第一の目的とし、また同細胞系を用いた、乳癌ホルモン療法における 新規薬剤であるァロマターゼ阻害剤の、個々の癌症例に対する治療奏功性を予測 可能なアツセィ系を提供することを第二の目的とする。
[0009] さらに、本発明は、乳癌ホルモン療法における新規薬剤であるァロマターゼ阻害剤 の、個々の癌症例に対する治療奏功性を予測可能なアツセィ系を提供する。
さらに、本発明は、乳癌の病態評価に非常に重要なエストロゲンシグナルの定量的 な評価を可能とする新規遺伝子導入細胞系を提供すること、また同細胞系を用いた 、乳癌ホルモン療法における新規薬剤である主としてァロマターゼ阻害剤の、個々の 癌症例に対する治療奏功性を予測可能なアツセィ系を提供することを目的とする。
[0010] さらに、本発明は、ホルモン情報など、細胞内での伝達事項を可視化し得る細胞分 析方法を提供することを目的とするものである。
[0011] 1.エストロゲンシグナルの定量的評価が可能な新規遺伝子導入細胞系の確立 エストロゲンシグナルを定量的に評価することを目的とし、新規細胞系を榭立した。 具体的には、エストロゲンを受容し活性ィ匕されたエストロゲンレセプターが特異的に 結合する DNA配列、すなわち ERE (エストロゲン応答配列)を、レポーター遺伝子の 転写調節領域に組み込んだレポーター遺伝子を構築し、エストロゲンレセプターを内 在的に高発現して ヽるヒト乳癌由来培養細胞株に安定的に導入した新規乳癌培養 細胞系を榭立した。
レポーター遺伝子としてはォワンクラゲ由来の緑色蛍光蛋白質 (以下 GFP)を第一 に選択した。 GFPは他の多くのレポーター蛋白質と異なり、基質を添加せずともその 発現量を可視的に検出 ·定量することが可能である。そのため、レポーター蛋白質発 現量の定量時に細胞を破壊する必要がなぐゆえにレポーター遺伝子導入細胞に おいて、刺激を与えてからの経時的なレポーター蛋白質発現量の推移を検出するこ とが可能となる。このような性質は、本発明の目的に好適であり、今回 GFPを選択した よって本発明では、互いに異なる性質をもつ複数種類の GFPを選択し、各々をレポ 一ター遺伝子として、それぞれの転写調節領域に ERE (エストロゲン応答配列)を組 み込んだレポーター遺伝子を複数種類構築した。これらを内在性にエストロゲンレセ プターを高発現している 2種の乳癌細胞株(MCF7および T47D)に導入し、レポータ 一遺伝子が安定的にゲノム中に導入されたクローンを複数クローン分離、新規細胞 系として樹立し、榭立した個々の細胞系につき、そのエストロゲンシグナルに対する 反応性を検証した。
その結果、レポーター遺伝子に用いた GFPの種類によって、あるいは同一のレポ一 ター遺伝子を導入して得られた細胞系においても、個々の細胞系によって、エストロ ゲンシグナルに対する反応性は異なることが明ら力となった。特にエストロゲンシグナ ルを定量的に評価する場合には、レポーター蛋白質である GFPの性質が重要であり 、その半減期が 2〜6時間程度であるものでないと定量評価が困難であることが本発 明の過程で判明した。さらに半減期が 2〜6時間程度の GFPをレポーター遺伝子とし て用いた場合でも、クローンにより反応性が異なり、添加したエストロゲンの濃度依存 的に GFPが検出されるクローンを選択し、本発明の細胞を確立するに至った。 乳癌症例のァロマターゼ阻害剤奏功性を予測可能なアツセィ系の構築
次に、前記で確立した細胞系を用い、乳癌症例におけるァロマターゼ阻害剤奏功 性を予測可能なアツセィ系の構築を実施した。具体的には、ァロマターゼを産生し、 アンドロゲンを基質としてエストロゲンを産生することにより、乳癌組織中の局所的な エストロゲン濃度を高め、乳癌増殖促進に大きく寄与していると考えられる患者乳癌 組織中の脂肪間質細胞と、 ERE (エストロゲン応答配列)をレポーター遺伝子の転写 調節領域に組み込んだレポーター遺伝子を安定的に導入した新規乳癌培養細胞系 とを共生培養し、さらにこれにァロマターゼの基質となるアンドロゲンを添加して培養 することにより、脂肪間質細胞の主にァロマターゼ酵素活性を介したエストロゲンシグ ナルに依存してレポーター蛋白質が発現し、間質細胞からのエストロゲンシグナルを 定量的に評価可能なアツセィ系を構築した。
このアツセィ系を用いれば、患者癌組織中の脂肪間質細胞の主としてァロマターゼ 酵素活性を介したエストロゲンシグナルの強度を定量的に評価可能となり、これを指 標として脂肪間質細胞の主としてァロマターゼ活性を介した癌細胞増殖促進能を評 価することが可能となった。
さらには、脂肪間質細胞と前記レポーター遺伝子を安定的に導入した乳癌細胞系 を共生培養し、これにァロマターゼの基質であるアンドロゲンのみを投与した場合 (場 合(1) )と、同一濃度のアンドロゲン (テストステロンを添加し、さらにァロマターゼ阻害 剤を添加して培養した場合 (場合 (2) )で、それぞれレポーター遺伝子導入乳癌培養 細胞におけるレポーター蛋白質の発現量を比較することで、添加したァロマターゼ阻 害剤の阻害効果を定量的に評価可能となり、これを指標として、その脂肪間質細胞 をもつ癌症例に対するァロマターゼ阻害剤の抗腫瘍効果、奏功性を予測することが 可能となった。
また本発明において、前記アツセィ系を構築 ·評価する過程で、レポーター蛋白質 の定量により検出されるエストロゲンシグナルが、必ずしも脂肪間質細胞におけるァ ロマターゼ酵素遺伝子の発現量と相関しないことが明らかになった。これは従来から 予想されている、外界力ゝらのエストロゲン以外にエストロゲン受容体活性化機構が存 在することを示唆し、この未解明のエストロゲンシグナル活性化機構に基づくエストロ ゲンシグナルをも本アツセィ系にて評価可能であることを示唆している。よって、本ァ ッセィ系においては、脂肪間質細胞からのァロマターゼ活性由来のエストロゲンシグ ルのみならず、エストロゲン以外の未解明の機構を介したエストロゲンシグナルをも定 量的に評価可能であり、乳癌組織において癌細胞の増殖に関わる実質的なエストロ ゲンシグナルの定量が可能であることが判明した。
[0013] さらに、本発明者らは、上記目的を達成すべく特定組織の細胞株同士の共生培養 について鋭意研究した結果、本発明の細胞分析方法を完成するに至った。
[0014] 本発明の遺伝子導入細胞は、レポーター蛋白質をコードする遺伝子を含み、かつ 、該レポーター蛋白質のプロモーター領域の上流にエストロゲン応答配列(ERE: estr ogen response element)を含み、該レポーター蛋白質の発現が実質的にエストロゲン 応答配列により制御されるレポーターベクターが安定的に導入されていることを特徴 とする。
[0015] 本発明の遺伝子導入細胞の好ましい実施態様において、レポーターベクターが安 定的に導入された細胞が、ヒト乳癌由来培養細胞株であることを特徴とする。
[0016] 本発明の遺伝子導入細胞の好ましい実施態様において、レポーターベクターが安 定的に導入された細胞力 内在的にエストロゲンレセプターを高発現しているヒト乳 癌由来培養細胞株 MCF7であることを特徴とする。
[0017] 本発明の遺伝子導入細胞の好ましい実施態様において、レポーター蛋白質が、 G FP, RFP等の蛍光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼおよ び /3ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の蛋白質である ことを特徴とする。
[0018] 本発明の遺伝子導入細胞の好ましい実施態様において、レポーター蛋白質が、 G FP, RFP等の蛍光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼおよ び /3ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の蛋白質であり 、かつ該蛋白質の半減期が 2時間〜 6時間程度であることを特徴とする請求項 1〜3 項の 、ずれか 1項に記載の細胞。
[0019] 本発明の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、前記細胞が、エストロゲ ンを処理した場合と、処理しない場合との間で比較して、レポーター遺伝子の発現量 が可視化又は区別可能な程度に差異を有することを特徴とする。
[0020] 本発明の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、前記差異が、エストロゲ ンを処理しな 、場合の細胞数が最大となるレポーター遺伝子発現強度と、エストロゲ ンを処理した場合の細胞数が最大となるレポーター遺伝子発現強度との違いである ことを特徴とする。
[0021] 本発明の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、前記エストロゲンを処理 した場合の細胞数が最大となるレポーター遺伝子発現強度を境に高い発現強度の 細胞数が、前記レポーター遺伝子による可視化が可能な程度に十分存在することを 特徴とする。
[0022] 本発明の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、前記細胞にエストロゲン を処理した場合、処理したエストロゲン濃度に依存してレポーター遺伝子の発現量が 変化することを特徴とする。
[0023] 本発明の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、上記遺伝子導入細胞が
、受託番号 FERM BP-10610として寄託されている細胞であることを特徴とする。
[0024] また、本発明のエストロゲンシグナル評価方法は、請求項 1〜10項の!/、ずれか 1項 に記載の細胞を用いて、エストロゲンシグナルの応答性を可視化することによって評 価することを特徴とする。
[0025] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、乳癌 組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロ ゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれか 1項に記載の細胞と、乳癌組織由来脂肪間質細胞 を共生培養する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲンを投与し 培養する工程
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含むことを特徴とする。
[0026] 本発明のエストロゲンシグナルの強度を定量的に評価する評価方法の好ま 、実 施態様において、前記 A工程において、請求項 1ないし 10のいずれ力 1項に記載の 細胞を培養容器の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られ た乳癌組織細切物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10のいずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養することを 特徴とする。
[0027] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、乳癌 組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロ ゲンシグナルの強度を定量的に評価する方法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンを投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含むことを特徴とする。
[0028] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、乳癌 組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロ ゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲン (テ ストステロン)を投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたエストロゲンシグナル、あるいは脂肪間質細胞由来の、ァロマターゼ酵 素によらな 、エストロゲンレセプター活性化機構の双方ある 、は 、ずれかによつて誘 導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含むことを特徴とする。
[0029] 本発明のエストロゲンシグナルの強度を定量的に評価する評価方法の好ま 、実 施態様において、前記 A工程において、請求項 1ないし 10のいずれ力 1項に記載の 細胞を培養容器の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られ た乳癌組織細切物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10のいずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養することを 特徴とする。
[0030] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、乳癌 組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロ ゲンシグナルの強度を定量的に評価する方法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンを投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたエストロゲンシグナル、あるいは脂肪間質細胞由来の、ァロマターゼ酵 素によらな 、エストロゲンレセプター活性化機構の双方ある 、は 、ずれかによつて誘 導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含むことを特徴とする。
[0031] また、本発明の阻害作用の評価方法は、ァロマターゼ阻害剤による、乳癌組織由 来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロゲンシ グナルの阻害作用を定量的に評価する方法であって、 A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B :共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲン、および ァロマターゼ阻害剤を同時に投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、ァロマターゼ阻害剤による、 脂肪間質細胞の主としてァロマターゼ酵素活性によるエストロゲンシグナルの阻害作 用を定量評価する工程、
を含むことを特徴とする。
[0032] 本発明の阻害作用の評価方法の好ま 、実施態様にぉ 、て、前記 A工程にぉ 、 て、請求項 1ないし 10のいずれか 1項に記載の細胞を培養容器の底面に培養し、脂 肪間質細胞を含む乳癌組織を細切して得られた乳癌組織細切物を、インサートを用 いて培養容器に添加することによって、請求項 1ないし 10のいずれかの細胞と、乳癌 組織由来脂肪間質細胞を共生培養することを特徴とする。
[0033] また、本発明の阻害作用の評価方法は、ァロマターゼ阻害剤による、乳癌組織由 来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロゲンシ グナルの阻害作用を定量的に評価する方法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンとァロマターゼ阻害剤を投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、ァロマターゼ阻害剤による、 脂肪間質細胞の主としてァロマターゼ酵素活性によるエストロゲンシグナルの阻害作 用を定量評価する工程、
を含むことを特徴とする。 [0034] また、本発明の阻害剤の解析方法は、請求項 18〜20項のいずれか 1項に記載の 評価方法を用いて、前記ァロマターゼ阻害剤を添加した後のエストロゲンシグナルの 有無によって、当該ァロマターゼ阻害剤が、前記患者に特異的な癌抑制作用がある か否かを解析することを特徴とする。
[0035] また、本発明のエストロゲンシグナルの強度を定量的に評価する方法は、乳癌組織 によるエストロゲンシグナルの強度を定量的に評価する方法であって、
A:乳癌組織を培養液中で細切した後に遠心により上清を得る工程、
B:前記上清を、請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に添加する工程、 B :前記上清により誘導されたレポーター蛋白質を定量する工程、
C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含むことを特徴とする。
[0036] また、本発明のエストロゲンシグナルの強度を定量的に評価する方法は、乳癌組織 によるエストロゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれか 1項に記載の細胞を培養容器の底面に培養し、乳 癌組織を細切して得られた乳癌組織細切物を、インサートを用いて培養容器に添カロ し、請求項 1な 、し 10の 、ずれか 1項に記載の細胞と前記乳癌組織細切物を培養す る工程、
B:前記乳癌組織細切物により誘導されたレポーター蛋白質を定量する工程、
C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含むことを特徴とする。
[0037] また、本発明の細胞分析方法は、化学物質 (A)に特異的に応答するレポーター蛋 白質をコードする遺伝子を導入したレポーター遺伝子導入細胞と、化学物質 (A)の 生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換をもたらす酵素 (C) を発現し、最終的に化学物質 (A)を産生して培養液中に放出する化学物質産生細 胞とを共生培養し、前記レポーター遺伝子導入細胞からのレポーター遺伝子発現量 に基づいて、前記化学物質産生細胞による前記化学物質 (A)の産生能の分析を行う ことを特徴とする。
[0038] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、前記レポーター遺伝 子導入細胞を培養容器底面に培養し、化学物質産生細胞を含む組織を細切して得 られた組織細切物を、インサートを用いて培養容器に添加することによって、前記レ ポーター遺伝子導入細胞と、前記化学物質産生細胞を共生培養することを特徴とす る。
[0039] また、本発明の細胞分析方法は、化学物質 (A)に特異的に応答するレポーター蛋 白質をコードする遺伝子を導入したレポーター遺伝子導入細胞を、化学物質 (A)の 生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換をもたらす酵素 (C) を発現し、最終的に化学物質 (A)を産生して培養液中に放出する化学物質産生細 胞を含む組織を培養液中で細切した後に遠心により得られた上清とともに培養し、前
Figure imgf000014_0001
、て、前記化 学物質産生細胞による前記化学物質 (A)の産生能の分析を行うことを特徴とする。
[0040] また、本発明の細胞分析方法の好ましい実施態様において、既知量 (ゼロを含む) の化学物質 (A)を含む培養液を用いて前記レポーター遺伝子導入細胞を前記化学 物質産生細胞フリーの状態で培養して得られたレポーター遺伝子発現量を比較値と して用いることにより、前記化学物質産生細胞による前記化学物質 (A)の産生能を定 量的に分析することを特徴とする。
[0041] また、本発明の細胞分析方法は、化学物質 (A)に特異的に応答するレポーター蛋 白質をコードする遺伝子を導入したレポーター遺伝子導入細胞と、化学物質 (A)の 生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換をもたらす酵素 (C) を発現し、最終的に化学物質 (A)を産生して培養液中に放出する化学物質産生細 胞とを前記酵素 (C)を阻害する阻害剤とともに共生培養し、前記レポーター遺伝子 導入細胞からのレポーター遺伝子発現量に基づ!ヽて、前記阻害剤の奏効性を分析 することを特徴とする。
[0042] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、前記レポーター遺伝 子導入細胞を培養容器底面に培養し、前記化学物質産生細胞を含む組織を細切し て得られた組織細切物を、インサートを用いて該培養容器に添加し、該培養容器に 前記阻害剤を添加することによって、前記レポーター遺伝子導入細胞と、前記化学 物質産生細胞とを前記阻害剤とともに共生培養することを特徴とする。
[0043] また、本発明の細胞分析方法は、化学物質 (A)に特異的に応答するレポーター蛋 白質をコードする遺伝子を導入したレポーター遺伝子導入細胞を、化学物質 (A)の 生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換をもたらす酵素 (C) を発現し、最終的に化学物質 (A)を産生して培養液中に放出する化学物質産生細 胞を含む組織を細切した後に遠心により得られた上清と、前記酵素 (C)を阻害する 阻害剤とともに培養し、前記レポーター遺伝子導入細胞からのレポーター遺伝子発 現量に基づ ヽて、前記阻害剤の奏効性を分析することを特徴とする。
[0044] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、既知量 (ゼロを含む) の化学物質 (A)を含む培養液を用いて前記レポーター遺伝子導入細胞を前記化学 物質産生細胞フリーの状態で培養して得られたレポーター遺伝子発現量を比較値と して用いることにより、前記阻害剤の奏効性を定量的に分析することを特徴とする。
[0045] また、本発明の細胞分析方法の好ま 、実施態様にお!、て、前記化学物質 (A)は エストロゲンであり、前記レポーター蛋白質をコードする遺伝子は、 GFP, RFP等の蛍 光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼおよび j8ダルク口- ターゼ等力 なる群力 選択される少なくとも 1種由来の遺伝子であり、前記レポータ 一遺伝子導入細胞は乳癌由来であり、前記基質 (B)はアンドロゲンであり、前記酵素 (C)はァロマターゼであり、前記化学物質産生細胞は乳癌組織から単離した脂肪間 質細胞であることを特徴とする。
[0046] また、本発明の細胞分析方法の好ま 、実施態様にお!、て、前記化学物質 (A)は エストロゲンであり、前記レポーター蛋白質をコードする遺伝子は、 GFP, RFP等の蛍 光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼおよび j8ダルク口- ターゼ等カもなる群力 選択される少なくとも 1種由来の遺伝子であり、かつ該遺伝 子によってコードされるレポーター蛋白質の半減期が 2時間〜 6時間程度であり、前 記レポーター遺伝子導入細胞は乳癌由来であり、前記基質 (B)はアンドロゲンであり 、前記酵素 (C)はァロマターゼであり、前記化学物質産生細胞は乳癌糸且織から単離 した脂肪間質細胞であることを特徴とする。 [0047] また、本発明の細胞分析方法の好ま 、実施態様にお!、て、前記化学物質 (A)は エストロゲンであり、前記レポーター遺伝子導入細胞は請求項 1〜10項のいずれか 1 項に記載の遺伝子導入細胞であり、前記基質 (B)はアンドロゲンであり、前記酵素( C)はァロマターゼであり、前記化学物質産生細胞は乳癌組織から単離した脂肪間 質細胞であることを特徴とする。
[0048] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、分析は前記レポータ 一遺伝子発現量の平均値に基づいて行われることを特徴とする。
[0049] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、前記レポーター遺伝 子発現量は取得画像から計測されることを特徴とする。
[0050] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、前記レポーター遺伝 子導入細胞は培養容器底面に単層状に培養され、前記化学物質産生細胞は前記 培養容器底面から上方に距離 Lをおいて培養表面を有するキバン上に単層状に共 生培養され、培養容器の下方カゝら対物レンズを介して前記レポーター遺伝子導入細 胞の画像が取得されることを特徴とする。
[0051] また、本発明の細胞分析方法の好ましい実施態様において、前記キバンは取り外 し可能に構成されており、前記キバンが取り外された後に画像が取得されることを特 徴とする。
[0052] また、本発明の細胞分析方法の好ましい実施態様において、前記距離 Lは少なくと も前記対物レンズの焦点範囲外となる値であり、前記キバンは取り外されずに画像が 取得されることを特徴とする。
[0053] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、前記レポーター遺伝 子導入細胞の核は、導入されたレポーター蛋白質の分光特性とは異なる分光特性 で標識され、核の蛍光または発光画像により前記レポーター遺伝子導入細胞が画像 処理により認識されてレポーター蛋白質の発現量が評価されることを特徴とする。
[0054] また、本発明の細胞分析方法の好ま 、実施態様にぉ ヽて、核画像の輝度特性を 処理し画像中の細胞を認識し、この画像処理により認識された核の領域を 2値ィ匕処 理し、得られた 2値化画像に対応する領域の蛍光または発光量が各細胞毎に計測さ れてレポーター遺伝子の発現量が評価されることを特徴とする。 [0055] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、核の標識はレポータ 一蛋白質の分光特性よりも長波長の特性を有していることを特徴とする。
[0056] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、前記レポーター蛋白 質は緑色蛍光蛋白質であることを特徴とする。
[0057] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、核の標識は DRAQ5 によることを特徴とする。
[0058] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、マイクロプレートのゥ エル内部に分析のための化学物質 (A)または/および前記阻害剤があら力じめ定量 (ゼロを含む)されて各ゥエルにそれぞれ固相状態で添着されており、所定の溶融液 により前記化学物質 (A)または/および前記阻害剤が溶解され、分析に供されること を特徴とする。
[0059] また、本発明の細胞分析方法の好ま 、実施態様にぉ 、て、レポーター遺伝子の 発現量の計測は共生培養開始後 24〜96時間までの間に行われることを特徴とする
[0060] 本発明によれば、本発明の遺伝子導入細胞とエストロゲンシグナルの指示細胞とし て乳癌組織由来の間質細胞又は当該細胞を含む乳癌組織とを共生培養すること〖こ より、あるいは乳癌組織の抽出物を遺伝子導入細胞に添加して培養することにより、 乳癌の特性を解析することができるという有利な効果を奏する。
[0061] また、本発明の細胞分析方法によれば、予めホルモン情報など、細胞内での伝達 事項を可視化し得る細胞分析方法を提供することが可能であるという有利な効果を 奏する。
図面の簡単な説明
[0062] [図 1]図 1は、構築したエストロゲンシグナルレポーター遺伝子 ERE-GFPの図を示す。
[図 2]図 2は、榭立した ERE-GFP安定導入 MCF7細胞系(ERE-GFP-Eシリーズ)、お よび EREを含まない pd2EGFP-lベクターのみを MCF7に安定導入した細胞系におけ る、 E処理ならびに無処理群での GFP発現の評価 (蛍光顕微鏡による評価)を示す。
2
[図 3]図 3は、榭立した ERE-GFP安定導入 MCF7細胞系(ERE-GFP-Eシリーズ)、お よび EREを含まない pd2EGFP-lベクターのみを MCF7に安定導入した細胞系におけ る、 E処理ならびに無処理群での GFP発現の評価 (フローサイトメーターによる評価)
2
を示す。
[図 4]図 4は、 ERE-GFP-E10細胞系において E添カ卩により誘導される GFP発現の評
2
価と生細胞数の計測結果を示す。
[図 5]図 5は、乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-G FP-E10との共生培養による乳癌におけるエストロゲンシグナル検出を示す。
[図 6]図 6は、乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-G FP-E10との共生培養による乳癌各症例におけるエストロゲンシグナル検出を示す。
[図 7]図 7は、乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-G FP-E10との共生培養による乳癌各症例におけるエストロゲンシグナル検出を示す。
[図 8]図 8は、乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-G FP-E10との共生培養による乳癌各症例におけるエストロゲンシグナルの定量と、同 脂肪間質細胞中のァロマターゼ遺伝子 mRNA量の発現量との比較を示す。
[図 9]図 9は、各種ァロマターゼ阻害剤存在下での、乳癌組織由来脂肪間質細胞と E RE-GFP安定導入 MCF7細胞系 ERE-GFP-E10との共生培養によるァロマターゼ阻害 剤によるエストロゲンシグナル阻害効果の解析を示す。
[図 10]図 10は、手術摘出乳癌組織検体抽出上清を用いた、当該乳癌組織によるェ ストロゲンシグナル誘導の定量的検出を示す。
[図 11]図 11は、インサートゥエルを用いた手術摘出乳癌組織検体細切物との共生培 養による当該乳癌組織のエストロゲンシグナル誘導の定量的検出を示す。
[図 12]図 12は、 24ゥエルを有するマイクロプレートを示す図である。
[図 13]図 13は、マイクロプレートの断面図である。
[図 14]図 14は、細胞画像解析方法の流れを示す図である。
[図 15]図 15は、画像解析の流れを示す図である。
[図 16]図 16は、二値化画像の細胞領域の分割の様子を示す図である。
[図 17]図 17は、複数細胞核の認識の様子を示す図である。
発明を実施するための最良の形態
以下、さらに詳細に本発明を説明する。 [0064] 本願の遺伝子導入細胞には、レポーター蛋白質をコードする遺伝子を含み、かつ 、該レポーター蛋白質のプロモーター領域の上流にエストロゲン応答配列(ERE: estr ogen response element)を含み、該レポーター蛋白質の発現が実質的にエストロゲン 応答配列により制御されるレポーターベクターが安定的に導入されている。
本発明細胞を調製するに際し、 DNAを導入する宿主細胞として用いることのできる 細胞としては、例えば、ヒト乳癌由来培養細胞を挙げることができ、細胞としては、例 えば、ヒト由来の MCF7細胞、 T47D細胞などを挙げることができる。
ここで、エストロゲン認識配列とは、一般にエストロゲン応答配列(estrogen response element; ERE)と呼ばれる特定の塩基配列であって、エストロゲンレセプターによって 転写活性が調節される標的遺伝子の転写調節領域に存在し、エストロゲンとエストロ ゲンレセプターとの複合体力 該配列を認識しここに結合してエストロゲン依存性に 標的遺伝子の転写を促進する。このようなエストロゲン認識配列としては、具体的に は例えば、 PS2の ERE、プロダステロンレセプター、卵黄タンパク前駆体であるビテロ ゲニン、卵白タンパクのォバルブミンの RRE等が挙げられる。力かる塩基配列を有す る DNAは、化学合成するか、 PCR法などにより増幅しクローユングする等により調製 することができる。また、 EREのコンセンサス配列 [5'-AGGTCAnnnTGACCTT-3' (配 列番号 1) ]を 1回以上含む塩基配列力もなる DNAをィ匕学合成して用いてもょ 、。プロ モーター配列としては、例えば、 TK (チミジンキナーゼ)を用いることができる。
[0065] 本発明細胞を作製するに際し、宿主細胞 (培養細胞)の形質転換に用いられる DN Aには、レポーター遺伝子の他に、宿主細胞で機能可能な細胞選択マーカー遺伝 子を含むことができる。ここでレポーター遺伝子とは、レポーター蛋白質をコードする 遺伝子を意味する。細胞選択マーカー遺伝子とは、該遺伝子を含む DNAで形質転 換された細胞を非形質転換細胞と見分ける際に目印となり得る表現形質をコードす る遺伝子である。培養細胞内で機能可能なとは、培養細胞で前記形質を発現するこ とができることを意味し、例えば、培養細胞で転写開始能を有するプロモーターの制 御下にあって培養細胞で発現可能な状態にある遺伝子であって、培養細胞で有効 な細胞選択用の表現形質をコードする遺伝子があげられる。培養細胞で有効な細胞 選択マーカー遺伝子としては、例えば、培養細胞の増殖を抑制または阻害する薬剤 に対する耐性を細胞に付与することの可能な遺伝子をあげることができ、具体的には 例えば、ネオマイシン耐性付与遺伝子 (アミノグリコシドホスホトランスフェラーゼ遺伝 子)、ハイグロマイシン而性付与遺伝子(ノヽィグロマイシンホスホトランスフェラーゼ遺 伝子)、ブラストサイジン S耐性付与遺伝子 (ブラストサイジン Sデァミナーゼ遺伝子) などが挙げられ、形質転換細胞の選抜がより短期間で行える点でブラストサイジン S 耐性付与遺伝子を好ましくあげることができる。ブラストサイジン s耐性付与遺伝子は
、例えば、市販のプラスミド pUCSV-BSDなど力も得ることができる。
[0066] 「レポーター蛋白質をコードする遺伝子を含み、かつ、該レポーター蛋白質のプロモ 一ター領域の上流にエストロゲン応答配列(ERE: estrogen response element)を含む DNA」は、例えばこれらの遺伝子を同一ベクター上に組込むことによって調製するこ とができる。ベクターとしては、取扱い易ぐベクター分子内または分子間の遺伝子組 換えや安定形質転換細胞における染色体力 の脱落等が起こる頻度が低くなると期 待される点から、コンパクトな大きさであることが望ましぐ例えば、およそ 2kb〜: LOkb 程度のプラスミドがあげられる。また、該ベクターに遺伝子を組込むにあたって大腸 菌を宿主として使用すると効率よく操作を行うことができる点から、大腸菌ベクターとし ての機能、すなわち大腸菌内で機能可能な複製起点、薬剤耐性遺伝子、遺伝子挿 入用制限酵素認識部位等を有していることが好ましい。より具体的には例えば、ホタ ルルシフェラーゼ遺伝子(レポーター遺伝子)を保有するプラスミドの該遺伝子の上 流に、アフリカッメガエルのビテロゲニン遺伝子の 5'上流領域に由来しエストロゲンレ セプター認識配列を含む塩基配列カゝらなる DNAとマウスメタ口チォネイン I遺伝子由 来の最小プロモーターとを糸且込み、さらに、該プラスミドに、例えば SV40初期プロモ 一ターに接続されてなるブラストサイジン S耐性付与遺伝子を組込むことにより、上記 の構成の DNAを調製することができる。
[0067] また、本願の遺伝子導入細胞の好適な実施態様にお!、て、レポーター蛋白質が、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼぉ よび j8ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の蛋白質であ る。レポーター蛋白質としては、好ましくは、 GFP、 RFP等の蛍光蛋白質である。また、 好ましい態様において、当該蛋白質の半減期は、 2時間〜 6時間程度である。 [0068] これらの遺伝子を組み込むことにより、エストロゲン一エストロゲンレセプター複合体 がエストロゲン認識配列に結合して発現する発現物質の発現量を可視化することが 可能となる。ここでいう発現物質とは、癌増殖に関与する因子等を含む。
[0069] また、本願の遺伝子導入細胞の好ま 、実施態様にぉ ヽて、前記細胞が、エストロ ゲンを処理した場合と、処理しない場合との間で比較して、エストロゲン受容体の発 現量が、前記レポーター遺伝子による可視化が可能な程度に差異を有する。これに ついて、図 3を用いて詳細に説明する。図 3は、榭立した ERE-GFP安定導入 MCF7細 胞系(ERE- GFP-Eシリーズ)、および EREを含まない pd2EGFP- 1ベクターのみを MCF 7に安定導入した細胞系における、 E処理ならびに無処理群での GFP発現の評価 #2
2
一フローサイトメーターによる評価を示す図である。
[0070] 図 3において、 pdE2— GFP- 4が、コントロールを示す。 pdE2— GFP- 4は、(エストロ ゲン認識配列) EREを欠く。 ERE— GFP-E5、 E10が本発明の細胞である。図 3におい て、上図の— E2とは、エストロゲン無添カ卩の場合、下図の +E2とは、エストロゲン添カロ の場合の、細胞数とレポーター遺伝子による蛍光強度との関係を示す。
[0071] エストロゲンを処理した場合とは、図 3にいう +E2の場合を、処理しない場合とは、 -E 2の場合を意味する。両者の間で比較して、エストロゲン認識配列への結合による発 現物の発現量が、前記レポーター遺伝子による可視化が可能な程度に差異を有す るとは、図 3の- E2と +E2とを比較した場合に、細胞数が最大となる蛍光強度の差異を 有するという意味である。当該蛍光強度の差異が十分広い方が、検出感度を増大さ せるという観点力も好ましい。また、細胞数と蛍光強度とによって形成されるピークが 鋭いほど、検出感度を増大させるという観点からも好ましい。この点、図 3の E5と E10を 比較した場合には、 E10が鋭 、形状を有して!/、るのが分かる。
[0072] また、エストロゲンを添加した場合 (+E2)に、無添加と比較して蛍光強度の差が十分 分力るように、差異を有することが好ましい。また、検出感度を増大させるという観点 から、無添加の場合に蛍光強度がより低いことが好ましい。この点、図 3の E5と E10を 比較した場合、 E10では無添加の時に蛍光強度がより低ぐ +E2時と無添加の時との 間で蛍光強度の差がより大きいことが分かる。
[0073] また、本願の遺伝子導入細胞の好ま 、実施態様にぉ 、て、前記エストロゲンを処 理した場合の細胞数が最大となるレポーター遺伝子発現強度を境に高い発現強度 の細胞数が、前記レポーター遺伝子による可視化が可能な程度に十分存在する。こ れは、図 3において、 +E2下で、 E5と E10を比較した場合に、 E5の方は、 -E2時の細胞 数最大の発現強度の位置での発現強度も、 +E2においても残存している。これに対し て、 E10においては、それほど残存せず、 +E2時の細胞数最大の発現強度を境に左 右ほぼ対照であり、かつ、最大の発現強度より大きい強度において、細胞数が多ぐ -E2での発現強度と明確に区別できる。したがって、 E5と E10を比較すると、 E10の方 が検出感度が良好で良質の細胞であるということが言える。
[0074] 上述した E10は、平成 17年 5月 25日付けで、独立行政法人産業技術総合研究所 特許生物寄託センター (日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番 号 FERM BP-10610として寄託されている。
[0075] 次に、本発明の細胞の調整方法について説明する。
本発明細胞を調製するには、例えば、前記した「レポーター蛋白質をコードする遺伝 子を含み、かつ、該レポーター蛋白質のプロモーター領域の上流にエストロゲン応答 配列(ERE: estrogen response element)を含む DNA」を培養細胞に導入し、安定形 質転換細胞を選抜するとよい。具体的には例えば、まず、 MCF7細胞などの宿主細 胞をシャーレに播き(105〜107細胞 /直径 6〜10cmシャーレ)、 5〜10%程度の血清を 含有する α MEM培地等を用いて、 5% COおよび飽和湿度条件下に約 37°Cで数時
2
間〜一晩程度培養する。このようにして培養した細胞へ、上記 DNAを導入することが できる。 DNA導入法としては、エレクト口ポレーシヨン法、燐酸カルシウム法、リポフエ クシヨン法等の一般的な方法があげられる。宿主細胞に導入される DNAの純度として は、 CsCl密度勾配遠心法で精製したプラスミド DNAまたはそれとほぼ同等の純度が 望ましい。宿主細胞に導入される DNAの形状としては、上記のようなレポーター遺伝 子と細胞選択マーカー遺伝子とが組込まれたプラスミドの DNAが環状のまま宿主細 胞へ導入されてもよいが、一般的には、各遺伝子の発現に影響を与えない領域に存 在する制限酵素部位で切断されることにより直鎖状とされた DNAが、宿主細胞に導 入されるとょ ヽ。導入された DNAによって安定に形質転換された細胞を取得する例 として、まず、前記のようにして DNAが導入された細胞を、通常の細胞培養液 (培地 )中で一日程度そのまま培養する。次に、細胞を常法 (トリプシン処理等)に従って剥 力 Sして播き直した後、直ちに、宿主細胞へ導入された細胞選択マーカー遺伝子に対 応する選択条件下に培養を開始する。即ち、細胞選択マーカー遺伝子が薬剤耐性 付与遺伝子である場合は、形質転換細胞に耐性が付与される薬剤を培地に加え、 形質転換細胞に由来するコロニーが適当な大きさになるまで該薬剤存在下で培養を 続ける。この間必要に応じて、薬剤が添加された新しい培地への培地交換を 1〜3回 /週の割合で行う。このようにして得られたコロニーを複数に分割して植え直し、細胞 を増殖させた後、その一部に、 目的とするエストロゲンレセプターのリガンドの溶媒溶 液を添加して 24時間程度培養した後、レポーター遺伝子の発現量を測定する。また 、対照として、溶媒のみを添加した系の発現量を測定する。レポーター遺伝子の発 現量の測定法は、用いる個々のレポーター遺伝子の種類による力 レポーター遺伝 子産物が培地に分泌される場合を除き、一般的には細胞溶解剤処理や超音波処理 等で該細胞の細胞膜を破壊して細胞抽出液を調製し、該抽出液に含まれるレポータ 一遺伝子産物を定量する。例えば、レポーター遺伝子産物が酵素蛋白質である場 合は、前記抽出液中の酵素蛋白質を該酵素に特異的な基質と反応させ、生ずる発 光量、蛍光量、吸光度などを測定することによりレポーター遺伝子産物による酵素活 性を定量し、レポーター遺伝子産物量、ひいては、レポーター遺伝子の発現量の指 標とする。このようにして細胞をリガンドと接触させた系のレポーター遺伝子の発現量 力 溶媒のみを添加した系におけるレポーター遺伝子の発現量に対して少なくとも 2 倍以上、好ましくは 5倍以上高い値を示した細胞を選択する。なお、このようにして得 られた細胞が単一の形質転換細胞で構成されて ヽな ヽ場合には、該細胞を限界希 釈培養し、単一の細胞力もなるコロニーを選択してもよい。
[0076] 次に、本発明のエストロゲンシグナル評価方法について説明する。本発明のェスト ロゲンシグナル評価方法は、上記本発明の細胞を用いて、エストロゲンシグナルの応 答性を可視化することによって評価する。
[0077] まず、本発明のエストロゲンシグナル評価方法の原理にっ 、て説明する。本発明の 細胞は、エストロゲン認識配列に結合する転写因子が、当該エストロゲン認識配列に 結合すると、当該結合によって、下流の遺伝子が発現される。この下流の遺伝子が、 癌細胞を増殖させる要因となっていると考えられている。本発明の細胞において、ェ ストロゲン認識配列の下流の遺伝子が発現されると共に、組み込まれたレポーター遺 伝子も発現することから、当該レポーター遺伝子の発現強度を測定することにより、 下流の遺伝子の発現の様子を可視化することが出来る。すなわち、エストロゲンシグ ナルを評価することができる。本発明の評価方法はこのような原理を利用したもので ある。
[0078] エストロゲン認識配列に結合する転写因子として、代表的なものは、エストロゲン一 エストロゲンレセプター複合体である力 本発明者らの本発明による研究から、他の 因子も関与して ヽることが示唆された。
[0079] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、乳癌 脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロゲンシグ ナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲンを投与し 培養する工程
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む。
この方法によれば、ァロマターゼ酵素によるエストロゲン生成反応を介して脂肪間 質細胞により誘導されるエストロゲンシグナルを定量的に測定することが可能である。 さらに、当該エストロゲンシグナルの評価結果から、癌症例ごとに異なるシグナルを見 出すことができ、これらの評価結果を応用すれば、癌症例特異的な治療法への応用 が期待できる。
なお、本発明の遺伝子導入細胞については、上述の説明をそのまま適用すること ができる。 [0080] 上記評価方法においては、 A工程において、請求項 1ないし 10のいずれ力 1項に 記載の細胞を培養容器の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して 得られた乳癌組織細切物を、インサートを用いて培養容器に添加することによって、 請求項 1ないし 10のいずれかの細胞と、乳癌糸且織由来脂肪間質細胞を共生培養す ることが好ましい。このようにして本発明の遺伝子導入細胞と乳癌組織由来脂肪間質 細胞とを共生培養することにより、生体内に近い環境で、本発明の遺伝子導入細胞 内のレポーター遺伝子の発現強度をより正確に測定することが可能となる。なお、ィ ンサートとしては、例えば、一般に細胞培養に用いられる多孔質メンブレンを備えた インサートを使用することができる。
[0081] また、操作を簡略化し、より迅速にエストロゲンシグナルを評価できると!ヽぅ観点から 、請求項 1ないし 10のいずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養し 、共生培養した上記 2種の細胞にアンドロゲンを投与し培養する代わりに、脂肪間質 細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得、請求項 1な 、 し 10のいずれか 1項に記載の細胞に、前記上清とァロマターゼの基質であるアンド口 ゲンとァロマターゼ阻害剤を投与し培養してもよ 、。
[0082] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、 乳癌脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介したエストロゲン シグナルの強度を定量的に評価する方法であって
A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲンを投与し 培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたエストロゲンによって、ならびに脂肪間質細胞由来のァロマターゼ酵素 によらないエストロゲンレセプター活性化機構によって誘導されたレポーター蛋白質 を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む。
[0083] 本評価方法においても、前述した評価方法と同様に、生体内に近い環境で、本発 明の遺伝子導入細胞内のレポーター遺伝子の発現強度をより正確に測定できるとい う観点から、 A工程において、請求項 1ないし 10のいずれ力 1項に記載の細胞を培養 容器の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られた乳癌組織 細切物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10 のいずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養することが好ましい。 また、前述した評価方法と同様に、操作を簡略化し、より迅速にエストロゲンシグナル を評価できるという観点から、請求項 1ないし 10のいずれかの細胞と、乳癌組織由来 脂肪間質細胞を共生培養し、共生培養した上記 2種の細胞にアンドロゲンを投与し 培養する代わりに、脂肪間質細胞を含む乳癌糸且織を細切した後に遠心により上清を 得、請求項 1ないし 10のいずれか 1項に記載の細胞に、前記上清とァロマターゼの 基質であるアンドロゲンとァロマターゼ阻害剤を投与し培養してもよい。
[0084] また、本発明のエストロゲンシグナルの強度を定量的に評価する評価方法は、ァロ マターゼ阻害剤による、乳癌脂肪間質細胞に由来する、主としてァロマターゼ酵素 活性を介したエストロゲンシグナルの阻害作用を定量的に評価する方法であって、 A:請求項 1な!、し 8の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B :共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲン、および ァロマターゼ阻害剤を同時に投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、ァロマターゼ阻害剤による、 脂肪間質細胞の主としてァロマターゼ酵素活性によるエストロゲンシグナルの阻害作 用を定量評価する工程、
を含む。
本評価方法によれば、各癌症例における各種ァロマターゼ阻害剤のエストロゲンシ グナル抑制効果を定量的に評価可能となり、各種ァロマターゼ阻害剤を用いたホル モン療法に対する感受性を、各症例につき評価できる。
[0085] 本評価方法においても、前述した 2種の評価方法と同様に、生体内に近い環境で 、本発明の遺伝子導入細胞内のレポーター遺伝子の発現強度をより正確に測定で きるという観点から、 A工程において、請求項 1ないし 10のいずれ力 1項に記載の細 胞を培養容器の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られた 乳癌組織細切物を、インサートを用いて培養容器に添加することによって、請求項 1 ないし 10のいずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養することが 好ましい。また、前述した 2種の評価方法と同様に、操作を簡略化し、より迅速にエス トロゲンシグナルを評価できると 、う観点から、
Figure imgf000027_0001
、し 10の 、ずれかの細胞と 、乳癌組織由来脂肪間質細胞を共生培養し、共生培養した上記 2種の細胞にアンド ロゲンを投与し培養する代わりに、脂肪間質細胞を含む乳癌組織を細切した後に遠 心により上清を得、請求項 1ないし 10のいずれか 1項に記載の細胞に、前記上清とァ ロマターゼの基質であるアンドロゲンとァロマターゼ阻害剤を投与し培養してもよい。
[0086] ここで、ァロマターゼとは、末梢の脂肪組織等に存在する酵素である。副腎皮質か ら産生されるアンドロゲンがァロマターゼによりエストロゲンに変換される。ァロマター ゼ阻害剤は、アンドロゲン力 のエストロゲン合成を阻害するため、ァロマターゼ阻害 剤を利用して乳癌の増殖を抑えるホルモン療法が盛んに行われている。
[0087] ァロマターゼ阻害剤を本発明の細胞へ添加して、レポーター遺伝子の発現量が低 下すれば、エストロゲン認識配列の下流の癌増殖に関与する遺伝子の発現の有無 を評価することができる。なぜなら、癌増殖に関与する遺伝子の発現と、本発明の細 胞のレポーター遺伝子の発現とは同期している力もである。
[0088] したがって、本発明のエストロゲンシグナルの評価を行うことにより、癌細胞増殖因 子の発現を抑制する、患者特異的ァロマターゼ阻害剤を早期に発見することができ る。
[0089] すなわち、本発明の阻害剤の解析方法は、本発明のエストロゲンシグナルの評価 方法を用いて、前記ァロマターゼ阻害剤を添加した後のエストロゲンシグナルの有無 によって、当該ァロマターゼ阻害剤が、前記患者に特異的な癌抑制作用がある力否 かを解析することができる。 [0090] すなわち、エストロゲンシグナルがあれば、すなわち、レポーター遺伝子が発現す れば、ァロマターゼ阻害剤が作用していないと判断することができ、逆にエストロゲン シグナルが無ければ、すなわち、レポーター遺伝子が発現しなければ、ァロマターゼ 阻害剤が作用していると判断することができ、このァロマターゼ阻害剤が、癌患者特 異的に有効な阻害剤であることが分力る。
[0091] また、本発明のエストロゲンシグナルの強度を評価する方法は、乳癌組織によるェ ストロゲンシグナルの強度を定量的に評価する方法であって、
A:乳癌組織を培養液中で細切した後に遠心により上清を得る工程、
B:前記上清を、請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に添加する工程、
B :前記上清により誘導されたレポーター蛋白質を定量する工程、
C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含む。
[0092] エストロゲン受容体は、 EGF、 IGF-1などの増殖因子によるリン酸ィ匕を介した経路で も活性化されることが知られており、これらの増殖因子の産生には脂肪間質細胞を含 めた乳癌の微小環境が大きく影響する。本評価方法によれば、乳癌の微小環境によ るエストロゲンシグナルの制御を把握することができ、総合的なエストロゲンシグナル を把握することが可能となる。また、同時に乳癌細胞に対する増殖作用の定量も可能 で、エストロゲン以外の因子の解析にも有効である。さらに、エストロゲン受容体活性 化能、乳癌増殖促進作用を個々の症例について簡便かつ迅速に把握することがで き、ホルモン療法の奏効性の迅速な予測への応用も可能となる。
[0093] また、本発明のエストロゲンシグナルの強度を評価する方法は、乳癌組織によるェ ストロゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれか 1項に記載の細胞を培養容器の底面に培養し、乳 癌組織を細切して得られた乳癌組織細切物を、インサートを用いて培養容器に添カロ し、請求項 1な 、し 10の 、ずれか 1項に記載の細胞と前記乳癌組織細切物を培養す る工程、
B:前記乳癌組織細切物により誘導されたレポーター蛋白質を定量する工程、 C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含む。
本評価方法によれば、より生体内に近!、環境で総合的なエストロゲンシグナルを迅 速に把握することが可能となる。
次に、本発明の細胞分析方法について説明する。本発明の細胞分析方法は、化 学物質 (A)に特異的に応答するレポーター蛋白をコードする遺伝子を導入したレポ 一ター遺伝子導入細胞と、化学物質 (A)の生成反応の基質 (B)を取り込むとともに、 化学物質 (A)への転換をもたらす酵素 (C)を発現し、最終的に化学物質 (A)を産生 して培養液中に放出する化学物質産生細胞とを共生培養し、前記レポーター遺伝子 導入細胞からのレポーター遺伝子発現量に基づいて、前記化学物質産生細胞によ る前記化学物質 (A)の産生能の分析を行う。化学物質 (A)に特異的に応答するレポ 一ター遺伝子を導入したレポーター遺伝子導入細胞とは、化学物質 (A)の存在により 、種々のカスケード反応を通じて、最終的に転写因子として当該転写因子の制御を 受ける遺伝子と同期して発現するようにレポーター遺伝子が組み込まれている遺伝 子導入細胞を意味する。
これによれば、化学物質 (A)の存在に起因して、転写制御されるオペロンの発現状 態をレポーター遺伝子を介して可視化することが可能となる。
このようなレポーター遺伝子導入細胞としては、例えば、癌細胞由来の培養細胞の 染色体へ、レポーター遺伝子と当該培養細胞内で機能可能な細胞選択マーカー遺 伝子を含む DNAが導入されたものを用いることができる。
例えば、遺伝子導入細胞が乳癌由来の場合ついて説明すると、遺伝子導入細胞 には例えば上述した本発明の遺伝子導入細胞のように、レポーター蛋白質をコード する遺伝子を含み、かつ、該レポーター蛋白質のプロモーター領域の上流にエストロ ゲン応答配列(ERE: estrogen response element)を含み、該レポーター蛋白質の発 現が実質的にエストロゲン応答配列により制御されるレポーターベクターが安定的に 導入されている。なお、本発明の遺伝子導入細胞については、上述の説明をそのま ま適用することができる。 [0095] そして、本発明の細胞分析方法は、上記のように例示したレポーター遺伝子導入 細胞と、化学物質産生細胞とを共生培養させる。当該化学物質産生細胞とは、化学 物質 (A)の生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換をもたら す酵素 (C)を発現し、最終的に化学物質 (A)を産生して培養液中に放出する細胞で ある。上記のレポーター遺伝子導入細胞と当該化学物質産生細胞とを共生培養させ ることにより、化学物質が提供される化学物質産生細胞と、当該化学物質に応答する 機能を有する細胞との相互作用を、レポーター遺伝子を通じて可視化することができ る。
[0096] なお、好ま 、態様にぉ 、て、生体内に近 、環境で、レポーター遺伝子導入細胞 内のレポーター遺伝子の発現強度をより正確に測定できると 、う観点から、レポータ 一遺伝子導入細胞を培養容器底面に培養し、化学物質産生細胞を含む組織を細切 して得られた組織細切物を、インサートを用いて培養容器に添加することによって、レ ポーター遺伝子導入細胞と化学物質産生細胞とを共生培養してもよい。
[0097] また、好ま U、態様にぉ 、て、操作を簡略化し、より迅速にエストロゲンシグナルを 評価できるという観点から、レポーター遺伝子導入細胞と化学物質産生細胞とを共 生培養する代わりに、レポーター遺伝子導入細胞を、化学物質産生細胞を含む組織 を細切した後に遠心により得られた上清とともに培養してもよい。
[0098] 例えば、好ま 、実施態様にぉ 、て、既知量 (ゼロを含む)の化学物質 (A)を含む 培養液を用いて前記レポーター遺伝子導入細胞を前記化学物質産生細胞フリーの 状態で培養して得られたレポーター遺伝子発現量を比較値として用いることにより、 前記化学物質産生細胞による前記化学物質 (A)の産生能を定量的に分析することが できる。
[0099] また、本発明の細胞分析方法の別の実施態様において、化学物質 (A)に特異的に 応答するレポーター蛋白をコードする遺伝子を導入したレポーター遺伝子導入細胞 と、化学物質 (A)の生成反応の基質 (B)を取り込むとともに、化学物質 (A)への転換 をもたらす酵素 (C)を発現し、最終的に化学物質 (A)を産生して培養液中に放出す る化学物質産生細胞とを前記酵素 (C)を阻害する阻害剤とともに共生培養し、前記 レポーター遺伝子導入細胞からのレポーター遺伝子発現量に基づ 、て、前記阻害 剤の奏効性を分析することができる。
[0100] なお、好ましい実施態様において、生体内に近い環境で、レポーター遺伝子導入 細胞内のレポーター遺伝子の発現強度をより正確に測定できるという観点から、前記 レポーター遺伝子導入細胞を培養容器底面に培養し、前記化学物質産生細胞を含 む組織を細切して得られた組織細切物を、インサートを用いて該培養容器に添加す ることによって、前記レポーター遺伝子導入細胞と前記化学物質産生細胞とを前記 阻害剤とともに共生培養してもよ ヽ。
[0101] また、好ましい実施態様において、操作を簡略化し、より迅速にエストロゲンシグナ ルを評価できると!、う観点から、前記レポーター遺伝子導入細胞と前記化学物質産 生細胞とを前記阻害剤とともに共生培養する代わりに、上記の遺伝子導入細胞を、 前記化学物質産生細胞を含む組織を細切した後に遠心により得られた上清と、前記 阻害剤とともに培養してもよ!/ヽ。
[0102] 好ま 、実施態様にぉ 、て、既知量 (ゼロを含む)の化学物質 (A)を含む培養液を 用いて前記レポーター遺伝子導入細胞を前記化学物質産生細胞フリーの状態で培 養して得られたレポーター遺伝子発現量を比較値として用いることにより、前記阻害 剤の奏効性を定量的に分析することができる。
[0103] 上述した本発明の細胞分析方法において、好ましくは、前記化学物質 (A)はェスト ロゲンであり、前記レポーター蛋白質をコードする遺伝子は、 GFP, RFP等の蛍光蛋 白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 j8ラタタマーゼおよび j8グルクロ-ター ゼ等力 なる群力 選択される少なくとも 1種由来の遺伝子であり、前記レポーター遺 伝子導入細胞は乳癌由来であり、前記基質 (B)はアンドロゲンであり、前記酵素 (C) はァロマターゼであり、前記化学物質産生細胞は乳癌組織力 単離した脂肪間質細 胞である。なお、より好ましくは、前記レポーター蛋白質をコードする遺伝子は、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 ガラクトシダーゼ、 ラクタマーゼおよび ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の遺伝子であり、 かつ該遺伝子によってコードされるレポーター蛋白質の半減期が 2時間〜 6時間程 度である。さらにより好ましくは、前記レポーター遺伝子導入細胞は上述した本発明 の遺伝子導入細胞である。なお、検出感度に優れているという観点から、本発明の 細胞分析方法において、前記レポーター遺伝子導入細胞として、受託番号 FERM B P-10610として寄託されて 、る細胞を使用するのが最も好まし!/、。
[0104] また、好ま U、実施態様にぉ 、て、分析は前記レポーター遺伝子発現量の平均値 に基づ!/、て行われ、前記レポーター遺伝子発現量は取得画像力 計測されることが できる。
[0105] また、定量 (ゼロを含む)したエストロゲンを培養液に添加して前記レポーター遺伝 子導入細胞を培養し、前記レポーター遺伝子導入細胞からの蛍光または発光量を 計測、比較することにより前記間質細胞のァロマターゼ産生能を定量的に分析するこ とができる。これによつて、エストロゲンの添カ卩による化学物質産生能を影響を可視光 化により把握することができる。また、ァロマターゼ阻害剤の培養系に対する作用を 可視化することができ、例えば、患者に投与する前に、患者特異的癌細胞に対して 最も有効なァロマターゼ阻害剤を調べることができる。
[0106] 別の態様において、前記レポーター遺伝子導入細胞は培養容器底面に単層状に 口 れ、
前記化学物質産生細胞は前記培養容器底面から上方に距離 Lをおいて培養表面を 有するキバン上に単層状に共生培養され、
培養容器の下方から対物レンズを介して前記レポーター遺伝子導入細胞の蛍光ま たは発光画像が取得される。また、距離 Lをおいて設置したのは、前記化学物質産 生細胞からの自家蛍光または自家発光や照明用光源からの反射光が背景光となつ て、レポーター遺伝子導入細胞力ものシグナル光の S/Nが低減するからである。前記 距離 Lは、好ましくは、レポーター遺伝子導入細胞力ものシグナル光の S/Nが十分に 高く保たれる必要性から、少なくとも前記対物レンズの焦点範囲外となる値である。こ の場合、前記キバンは取り外されずに蛍光または発光画像が取得される。
[0107] また、好ましい実施態様において、前記キバンは取り外し可能に構成されており、 前記キバンが取り外された後に蛍光または発光画像が取得される。取り外し可能で あれば、分析が容易に行われ、レポーター遺伝子導入細胞からのシグナル光の S/N が全く低減することなく安定した蛍光または発光測光が可能となるからである。
[0108] また、レポーター遺伝子として蛍光タンパク質由来のものを使用する場合には、好 ましくは、遺伝子導入される蛍光タンパク質の半減期は 4時間以下である。
[0109] また、レポーター遺伝子導入細胞からのシグナル光を精度よく測光するにはレポ一 ター遺伝子導入細胞を画像処理技術を用いて確実に認識することが重要である。な ぜなら通常細胞培養環境中には死細胞や不純物等、蛍光を発する物質が多く含ま れており、これらをシグナル光として検出してしまうと解析精度を大きく下げる結果とな るカゝらである。画像処理によりレポーター遺伝子導入細胞を細胞認識させるにはレポ 一ター遺伝子力 の光と分離して核を標識するとレポーター遺伝子導入細胞の画像 処理での認識処理が行い易い。なぜなら、核は細胞質全体と異なり隣接する細胞と の境界を共有することがないので容易に個々の細胞を区別できるからである。好まし くは、前記レポーター遺伝子導入細胞の核は、導入されたレポーター蛋白質の分光 特性とは異なる分光特性で標識され、核の蛍光または発光画像により前記レポータ 一遺伝子導入細胞が画像処理により認識されてレポーター蛋白質の発現量が評価 される。
[0110] さらに、好ましい実施態様において、画像処理によりレポーター遺伝子導入細胞を 細胞認識させるにはレポーター遺伝子力 の光と分離して核を標識するとレポーター 遺伝子導入細胞の画像処理での認識処理が行!ヽ易!ヽと!、う観点から、画像処理に より認識された核画像を 2値化処理し、得られた 2値化画像に対応する領域の蛍光ま たは発光量が各細胞毎に計測されてレポーター遺伝子の発現量が評価される。また 、通常蛍光や発光の分光波長特性は長波長側に尾をひく形となる。よって、細胞認 識のための核からの光 (蛍光/発光)がシグナル光として測光されな 、ようにするため には核からの光は解析対象であるシグナル光の分光波長特性よりも長波長である方 が有利である。かかる観点から、核の標識は、レポーター蛋白質の分光特性よりも長 波長の特性を有していることが好ましい。そして、 DRAQ5は標識に際して細胞を固定 する必要がなぐ蛍光波長が約 680nmと長波長であるのでこの分析方法の使用形 態に最適である。かかる観点から、核の標識は DRAQ5によることが好ましい。
[0111] 好ましくは、分析処理の自動化という観点から、マイクロプレートのゥエル内部に分 祈のための化学物質 (A)または/および前記阻害剤があら力じめ定量 (ゼロを含む) されて各ゥエルにそれぞれ固相状態で添着されており、所定の溶融液により前記化 学物質 (A)または/および前記阻害剤が溶解され、分析に供される。
[0112] また、本発明の細胞分析方法において、レポーター遺伝子の発現量の計測は共生 培養開始後 24〜96時間までの間に行われることが好ましい。
実施例
[0113] 以下、本発明を実施例により更に具体的に説明するが、本発明は、下記実施例に 限定して解釈される意図ではな 、。
[0114] 実施例 1
エス ロケノ]^、答目列 (estrogen responsive element: ERE)を含す eエストロゲンシグ ナルレポーター遣伝子 · ERE- GFPの作製、および ERE- GFP安定導人 MCF7細朐系 の
エストロゲンシグナルのレポーター遺伝子 · ERE-GFPの作製は以下のように行った 。すなわち、半減期が 2時間程度である不安定型のォワンクラゲ由来緑色蛍光タンパ ク質 'GFP(Green Fluorescent Protein)をコードする GFP- 1遺伝子を含む pd2EGFP- 1 ベクター (Clontech社)のマルチクロー-ングサイト(MCS)内の Smalサイトに、図 1に示 すようなエストロゲン応答配列(AGCTAGGTCAGGATGACCTAGCTACAGCT) (配 列番号 2)および、 HSV- TKフ。口モーター配列(GGCCCCGCCC AGCGTCTTGTC
Figure imgf000034_0001
CAGCGACCCGCTTAACAGCGTCAACAGCGTGCCGC) (配列番号 3)を含む 314 bpからなる DNA断片(配列番号 4)を定法に従 ヽ導入し、 ERE-GFP遺伝子を作製した
[0115] この ERE-GFP遺伝子を、ヒト乳癌由来培養細胞株 MCF7に遺伝子導入(トランスフ ェクシヨン)し、同遺伝子がゲノム中に安定導入された MCF7細胞系を分離 '榭立した 。 MCF7細胞株はエストロゲンレセプター α (以下 ER1とする)を高発現している細胞株 として広く用いられており、 10%FCSを含む RPMI-1640培養液で 37°C、 5%C02インキュ ベータにて培養した。
[0116] MCF7細胞株への ERE-GFP遺伝子の導入には、遺伝子導入試薬である Trans IT LT- 1キット(Cat#: V2304T/Takara酒造社)を用いた。遺伝子導入の具体的処理は同 キットのプロトコールに従い実施した。無血清培地 300 1に Trans IT-LT-lを 5 1添 加し、室温で 5分混合した後、 1〜2 μ g/mlの DNA 1 μ 1をカ卩えてさらに室温で 5分混 合した。この溶液 300 μ 1を 6cmシャーレで 50%コンフルェントの MCF-7細胞に添カ卩した 。遺伝子導入処理から 24時間後、培養液中にジエネティシンを最終濃度 lmg/mlにな るよう添加し、以降、 3〜4日毎にジエネテシンを添加した培地で培地交換する。 1個 の細胞力 形成されたコロニーをクローユングリングを用いて個別に採取し培養した 。合計 47系統の ERE-GFP遺伝子安定導入 MCF7細胞系を榭立した。またコントロー ルとして、 ERE配列を導入しな!、pd2EGFP-lベクターのみを MCF7に安定導入した細 胞系も同様に榭立した。さらに半減期の長い安定型 GFPをレポーター遺伝子として 、その転写調節領域の EREを組み込んだレポーターベクターも構築し、これを同様 に MCF7細胞に導入し、結果、安定して同レポーターベクターが導入された細胞系も 榭立した。
[0117] 実施例 2
榭立した ERE-GFP遺伝子安定導入 MCF7細胞系 47系統のエストロゲンシグナル]^ の龍
得られた ERE-GFP遺伝子安定導入 MCF7細胞系 · 47系統(ERE-GFP-E1〜E47) にっき、エストロゲンシグナルに対する応答性の評価を実施した。具体的には、各細 胞系に 17 β estradiol (合成エストロゲン: E )を処理し (+E群)、誘導された GFPの発現
2 2
量が、 17 β estradiolの溶媒のみを処理した場合 (-Ε群)の GFP発現量と比較して、 E
2 2 処理 ·無処理間で GFP発現量に大きな差異があるものをエストロゲン応答性が良好な クローンと評価し、選択した。
[0118] E処理するに先立ち、各細胞系をトリプシン処理して回収し、 PBSで洗浄後 60mm
2
シャーレに約 2X105個播種し、 10%FCS/RPMI1640培地中に含まれるエストロゲン様 物質の影響を除去する目的で、チヤコールデキストラン処理した FCS (DCC-FCS)を 1 0%添カ卩したフエノールレッド不含 RPMI1640培地(PRF-RPMI)にて 3〜4日間培養した。 培地交換した後 Eを最終濃度 ΙΟηΜとなるよう培養液に添加し (+E群)、さらに 2日間
2 2
培養した。また対照群として Eの溶媒のみを添加した群も作製し (-E群)、同様に 2日
2 2
間培養した。 2日後、各細胞系につき +E群および- E群での GFPの発現量を、蛍光 顕微鏡下で観察、あるいはフローサイトメーター(Beckman Coulter社 Epics XL)を用 いて定量した。
結果を図 2および図 3に示す。榭立した 47系統(ERE-GFP-E1〜E47)にっき E投与
2 により誘導される GFPの発現量を比較したところ、 ERE-GFP-E10細胞系(受託番号: FERM BP-10610)が E無処理にて GFPの発現量が低ぐかつ E処理にて GFPがよく
2 2
誘導され発現量が高 ヽことが示され、エストロゲンにより誘導されるシグナル応答を評 価する細胞系として最も好適であることが示された。また EREを含まな 、pd2EGFP-l ベクターのみを MCF7に安定導入した細胞系では(pdE2-GFP_4)、 E処理/無処理に
2
かかわらず、 GFPの発現は認められなカゝつた。さらに半減期の長い安定型 GFPをレ ポーター遺伝子としたレポーターベクターを導入し榭立した細胞系についても、 E処
2 理と無処理の場合で GFPの誘導の差異を解析した。解析結果を表 1に示す。
[0119] [表 1] 表 1 安定型 G F Pをレポ一ターとした E R E— G F Pレポーター遺伝子安定導 入 MCF7細胞系 (クローン) におけるエス トロゲン (E 2) 添加、 無添加条件下で の G F P蛋白質誘導率
Figure imgf000036_0001
表 1に示すよう、半減期の長い安定型 GFPをレポーターとした場合には、 処理の 有無による GFP発現量の差異は検出できず、エストロゲンにより誘導されるシグナル 応答を評価する細胞系として不適であることが示された。
[0120] 実施例 3
ERE-GFP-E10細胞系において E添加により誘導される GFP発現の評価 牛.細胞
2
数の計測
上記 2においてエストロゲンにより誘導されるシグナル応答を評価する細胞系として 最も好適であることが示された ERE-GFP-E10細胞系につき、様々な濃度で Eを添カロ
2 した場合の生細胞数と、そのうちの GFP発現細胞数の計測を実施した。
チヤコールデキストラン処理した FCSを 10%添カ卩したフエノールレッド不含 RPMI1640 培地(10%DCC- FCS/PRF- RPMI)にて ERE- GFP- E10細胞を 3日間培養後、細胞をト リブシン処理により分散し、 1X104個/ mLの細胞密度に調製した同細胞分散液 lmlを 2 4穴のマルチディッシュに播種して、 Eをそれぞれ、最終濃度 0,1, 3, 10,30, 100,および
2
300pMとなるよう培養液に添加した。添加後、さらに 4日間細胞を培養し、各濃度の E
2 添加群につき MTTアツセィにより生細胞数の計測、および蛍光顕微鏡下で GFP発現 細胞の計測を行った。
MTTアツセィでは、 E添加後 4日目に 5mg/mlの MTT溶液を 1ゥエルあたり 100 μ 1添
2
加して 3時間インキュベートした後、細胞溶液を回収し 400Xgにて 10分遠心し、得られ た沈澱物を DMSOに溶解して、この溶解液につき 560nmの吸光度を測定し生細胞数 を測定した。
GFP発現細胞の計測は、 MTTアツセィの場合と同様に E添加後 4日目に、細胞をト
2
リブシン処理にて分散させ、これをスライドグラス上に滴下し、蛍光顕微鏡下で目視 にて GFPをある一定量以上発現して 、る細胞 (GFP発現陽性細胞)をカウントし、 100 細胞あたりの GFP発現陽性細胞の割合を算出することで行った。
結果を図 4Aに示す。 ERE-GFP-E10細胞系において、 E添カ卩により誘導される GFP
2
発現細胞の割合は E添加濃度依存的に増加することが示された。すなわち 3pM処理
2
にて有意な GFP発現誘導が検出され、 30pMで最大割合に達した。また生細胞数も E
2 添加濃度依存的に増加することが示され、これは MCF7細胞株において従来観察さ れている E添カ卩により細胞増殖活性が上昇するという従来の知見と一致した。図 4B
2
は、 Eを最終濃度 3pMおよび InM添加した後、 1〜4日目にトリプシン処理にて細胞を
2
分散させ、前記と同様に 100細胞あたりの GFP発現陽性細胞の割合を算出した結果 である。結果、添加した E量によらず、 E添加後 1日目力も GFP発現が観察でき、 2日
2 2
目に GFP発現陽性細胞の割合は最高に達した。
以上より、榭立した ERE-GFP-E10細胞においては、添カ卩されたエストロゲンの濃度 が 3pM〜30pMの範囲内で濃度依存的に GFPの発現が誘導されることが示され、エス トロゲンにより誘発されるシグナル応答の定量的な評価可能であることが示された。 実施例 4
乳癌組織の耐晷 同組織からの脂肪間皙細胞の分離 '培着
手術により摘出した乳癌組織検体を分割し、一部を病理組織学的診断に供し、ま た一部を脂肪間質細胞の分離'培養に用いた。検体からの脂肪間質細胞の分離'培 養は以下のように行った。すなわち、組織片を HBSSに浸漬しリンスした後、 1mm3以下 のサイズになるよう解剖ハサミにより細切した。これを lmg/mlの collagenase、 40mg/ml の BSA、 2mg/mlのグノレコース、 IX antibiotic- antimycotic、および 50 g/mLの gentam icinを添カ卩した HBSS溶液中にて 2-3時間、 37°Cにてインキュベートし、細胞をさらにば らばらに分散させた。この細胞分散溶液をナイロンメッシュにて濾過した後、分散した 細胞を含む濾過液を遠心して細胞を沈澱させ、 HBSSにより数回洗浄して、乳癌組織 由来細胞を回収した。この細胞を 10%FCS添加 MEM- α培養液にけん濁し 37°C、 5%C 02インキュベータにて培養した。翌日培地交換により非接着性の細胞を除去した。 培養開始後 7日〜 10日目に脂肪間質細胞の増殖が確認され、その後は 1週間に 2回 、培養液を除き、新しい培養液に交換した。
[0121] 実施例 5
¾,痛糸 fe H旨) 1方 糸田 H RRR- GFP安 人 MCF7糸田 H q RRR- GFP- R1 (^ の #牛培着による ,翻旨肪間皙細qから^ ¾されるエストロゲンシグナル檢出
乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-GFP-E10と の共生培養は、チヤコールデキストラン処理 FCS10%添カ卩フエノールレッド不含 RPMI1 640培地(10%DCC-FCS/PRF-RPMI)にて行った。なお採取した脂肪間質細胞は、ェ イジングによる影響を最小限にするため、培養開始後、 2-3回の継代以内に使用した
[0122] 共生培養開始に先立ち、 ERE- GFP- E10細胞を 72時間 10%DCC- FCS/PRF- RPMI 培養液 (以下エストロゲン枯渴培地)下で培養した。脂肪間質細胞は、同枯渴培地に て 5X104個/ mLの細胞密度に調製し、この細胞分散液 lmlを 24穴のマルチディッシュ に播種し培養開始した。脂肪間質細胞をゥエルに播種'培養開始後 1日目に、 1ゥェ ルあたり 5X104個の ERE-GFP-E10細胞を脂肪間質細胞の上に添カ卩し、さらに同時に 、ァロマターゼ酵素によるエストロゲン生成反応の基質である testosteroneを最終濃 度 10— 7pMになるよう添加して 4日間、共生培養した。共生培養 4日後、細胞をゆるや 力なトリプシン処理にて分散させ、顕微鏡下で GFP発現陽性細胞を検出した。 ERE- GFP-EIO細胞と脂肪間質細胞とは、形態の違いにより顕微鏡下で判別可能であった 乳癌組織由来脂肪間質細胞と ERE-GFP-EIO細胞との共生培養による ERE-GFP- EIO細胞における GFP発現誘導の結果を図 5に示す。ァロマターゼ酵素によるェスト ロゲン生成反応の基質である testosteroneを添加した場合に、乳癌組織由来脂肪間 質細胞と ERE-GFP-EIO細胞とを共生培養すると ERE-GFP-EIO細胞において GFPの 発現が誘導され、さらに GFP発現陽性細胞の割合が、共生培養した乳癌組織由来脂 肪間質細胞の細胞数に依存して上昇することが確認された。
さらに、同様な手法を用いて、乳癌 3症例力 それぞれ採取した脂肪間質細胞につ き、 testosteroneを添加、無添加、さらに testosteroneと同時にァロマターゼの誘導剤 であるデキソメタゾンを 2X10— 6M添カ卩した場合での、 ERE-GFP-E10細胞の GFP発現 陽性細胞の割合を算出した。結果を図 6に示す。脂肪間質細胞との共生培養におい て、アンドロゲン無添加と比較して、添カ卩した場合で、 ERE-GFP-E10細胞において、 GFP陽性細胞の割合の有意な上昇が見られた。さらにァロマターゼ誘導剤であるデ キサメタゾンをさらに添カ卩して群では、アンドロゲン単独の場合と比較し、さらに GFP 陽性細胞の割合が上昇した。
以上より、脂肪間質細胞乳癌組織由来脂肪間質細胞と ERE-GFP-E10細胞とを、ァ ロマターゼ酵素によるエストロゲン生成反応の基質である testosteroneの存在下で共 生培養すると、共生培養した脂肪間質細胞数に依存して ERE-GFP-E10細胞におけ る GFP発現陽性細胞の割合が増加することから、ァロマターゼ酵素によるエストロゲ ン生成反応を介して脂肪間質細胞により誘導されるエストロゲンシグナルを定量的に 測定可能であることが示され、さらに誘導されるエストロゲンシグナルは癌症例により 異なることが示された。またこのエストロゲンシグナルは、デキサメタゾン添カ卩によりさ らに増強されることから、主として脂肪間質細胞のァロマターゼ活性によるものである ことが示された。 実施例 6
乳癌組織由 脂肪間皙細朐 ERE- GFP安定導入 MCF7細朐系 ERE- GFP- E10 の共牛.培着による各癌症例ご の 癌脂肪間皙細朐に誘導されるエストロゲンシグ ナル強度の解析
異なる乳癌症例について、それぞれ 2箇所から採取された乳癌組織由来脂肪間質 細胞と ERE-GFP安定導入 MCF7細胞系 ERE-GFP-E10とを共生培養し、個々の癌症 例における脂肪間質細胞由来のエストロゲンシグナルの定量を実施した。共生培養 は、チヤコールデキストラン処理 FCS10%添カ卩フエノールレッド不含 RPMI1640培地(10 %DCC-FCS/PRF-RPMI)にて行った。なお採取した脂肪間質細胞は、エイジングに よる影響を最小限にするため、培養開始後、 2-3回の継代以内に使用した。
前記実施例と同様に、共生培養開始に先立ち、 ERE-GFP-E10細胞を 72時間 10%D CC-FCS/PRF-RPMI培養液 (以下、枯渴培地)下で培養した。脂肪間質細胞は、同 枯渴培地にて 5X104個/ mLの細胞密度に調製し、この細胞分散液 lmlを 24穴のマル チディッシュに播種し培養開始した。脂肪間質細胞をゥエルに播種 ·培養開始後 1日 目に、 1ゥエルあたり 5X104個の ERE-GFP-E10細胞を脂肪間質細胞の上に添カ卩し、さ らに同時に、ァロマターゼ酵素によるエストロゲン生成反応の基質である testosterone を最終濃度 10— 7pMになるよう添加して 4日間、共生培養した。共生培養 4日後、細胞 をゆるや力なトリプシン処理にて分散させ、顕微鏡下で GFP発現陽性細胞を検出した 。 ERE-GFP-E10細胞と脂肪間質細胞とは、形態の違いにより顕微鏡下で判別可能 であった。
乳癌 12症例につき、各症例癌組織 2箇所から採取した乳癌組織由来脂肪間質細 胞と ERE-GFP-E10細胞との共生培養による ERE-GFP-E10細胞における GFP発現誘 導の結果を図 7に示す。なお、脂肪間質細胞の採取は、各症例につき、摘出した癌 組織において、癌部と、癌部から 2cm離れた部分の、 2箇所よりそれぞれ採取した。結 果、脂肪間質細胞により誘導されるエストロゲンシグナルは各癌症例にて異なり、さら に同一症例においても、採取した箇所によって異なることが明らかになった。これは、 個々の乳癌症例により、脂肪間質細胞より誘導されるエストロゲンシグナルの強度が 異なることを示唆し、従ってァロマターゼ阻害剤によるホルモン療法に対する感受性 も異なる可能性があることが示唆された。
[0125] 実施例 7
乳癌組織由 脂肪間皙細朐 ERE- GFP安定導入 MCF7細朐系 ERE- GFP- E10 の共牛.培着により定量された各癌症例ご の 翻旨肪間皙細朐に誘導されるェスト ロゲンシグナル強度と同間晳細朐におけるァロマターゼ遣伝子 mRNAの発現量との 雄
異なる乳癌症例から採取された乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF7細胞系 ERE-GFP-E10とを共生培養し、個々の癌症例における脂肪間質細胞 由来のエストロゲンシグナルの定量を実施した。方法は、前記実施例と同様に実施し た。また同一由来の脂肪間質細胞につき、定量的 RT- PCR法を用いて、ァロマターゼ 遺伝子 mRNAの発現量を解析した。
乳癌 10症例につき、各症例癌糸且織由来脂肪間質細胞と ERE-GFP-E10細胞との共 生培養による ERE-GFP-E10細胞における GFP発現誘導の結果、および同脂肪間質 細胞におけるァロマターゼ遺伝子 mRNAの定量結果を図 8に示す。結果、脂肪間質 細胞により誘導されるエストロゲンシグナルは各癌症例にて異なること、さらにエストロ ゲンシグナルの強度とァロマターゼ遺伝子 mRNAの発現量の解析結果とは必ずしも 相関しないことが示された。これは、個々の乳癌症例により脂肪間質細胞より誘導さ れるエストロゲンシグナルの強度が異なること、またそのシグナル強度がァロマターゼ 遺伝子 mRNAの発現量と必ずしも相関しないことから、脂肪間質組織から誘導される 実質的なエストロゲンシグナル強度は、単純に同脂肪間質組織中のァロマターゼ遺 伝子 mRNA量を定量しても評価できない可能性が示唆された。
[0126] 実施例 8
乳癌組織由 脂肪間皙細朐 ERE- GFP安定導入 MCF7細朐系 ERE- GFP- E10の 各種ァロマターゼ阻害剤存在下における共生培着により誘導されるエストロゲンシグ ナル強度の解析と、各ァロマターゼ阻害剤によるエストロゲンシグナル阻害効果の評
M
乳癌 4症例力 採取された乳癌組織由来脂肪間質細胞と ERE-GFP安定導入 MCF 7細胞系 ERE-GFP-E10とを、テストステロンと同時にァロマターゼ阻害剤を 4通りの濃 度(0, 0.01, 0.03,および 0.1 /z M)でそれぞれ添カ卩した、合計 4通りの条件下で共生 培養し、個々の条件下における脂肪間質細胞由来のエストロゲンシグナルの定量を 実施した。ァロマターゼ阻害剤としては、アナストロゾール、レトロゾールおよびェグゼ メスタンの 3種を用い、それぞれにっき実験を行った。
結果を図 9に示す。いずれの症例の脂肪間質細胞を用いた場合でも、添加したァ ロマターゼ阻害剤の濃度依存的に、 GFP陽性細胞の割合は低下した。またその GFP 陽性細胞割合低下の様子は各癌症例により異なり、また同一の癌症例においても、 添加したァロマターゼ阻害剤の種類により異なることが示された。以上より、脂肪間質 細胞により誘導されるエストロゲンシグナルは各癌症例にて異なること、さらに各種ァ ロマターゼ阻害剤によるエストロゲンシグナルの抑制効果は、症例ごとに異なることが 示され、本手法により、各癌症例における各種ァロマターゼ阻害剤のエストロゲンシ グナル抑制効果を定量的に評価可能となり、各種ァロマターゼ阻害剤を用いたホル モン療法に対する感受性を、各症例につき評価できる可能性があることが示唆され た。
[0127] 実施例 9
丰術 織檢体柚 ト.清 用いた、 該 ¾,痛 織によるエストロゲンシグ ナル謙 の ^
フエノールレッド不含有の RPMI1640培地中で乳癌組織 (50mg/ml)をはさみで 1〜2 mm3に細切後、遠心(12000rpm、 10分間)により上清を調製した。この上清を、 20〜10 0%の濃度で、デキストラン-チヤコール処理した血清(10%)を含む枯渴 RPMI1640培 地中で ERE- GFP- E10細胞(3xl04細胞 /ml, 24ゥエル培養ディッシュ)に添加し、 4日 間培養後、 GFPを発現して ヽる E10細胞を蛍光顕微鏡下でカウントし陽性率で示した 。結果を、図 10に示す。図 10より、上清の濃度が増すにつれて、すなわち用量依存 的に GFP発現陽性細胞が増加していることが分かる。また、症例(図 10中の #107、 #1 08、 #138、 #140、 #141、 #142)によって、エストロゲンシグナルの強度が異なることが 示された。
[0128] 実施例 10
インサートゥエルを用いた丰術樯出乳癌組織檢体細切物 の共牛.培着による当該 乳癌組織のエストロゲンシグナル誘導の定量的枪出
乳癌組織による GFPの発現誘導
フエノールレッド不含有の RPMI1640培地中で乳癌組織 (50mg/ml)をはさみで 1〜2 mm3に細切した。得られた浮遊液をデキストラン-チヤコール処理した血清(10%)を含 む枯渴 RPMI1640培地中で ERE- GFP- E10細胞(3xl04細胞 /ml, 24ゥエル培養デイツ シュ)にインサートゥエルを用いて添カロし培養した。 4日後、 GFPを発現している E10細 胞を蛍光顕微鏡下でカウントし、陽性率で示した。結果を、図 11に示す。図 11より、 症例(図 11中の #343、 #344、 #345、 #358、 #359)によって、エストロゲンシグナルの強 度が異なることが示された。
実施例 11
次に、レポーター蛋白質をコードする遺伝子として蛍光蛋白質をコードする遺伝子 を乳癌細胞に導入した蛍光蛋白質遺伝子導入乳癌細胞を用いて、乳癌組織から単 離した間質細胞によるァロマターゼ産生能と、ァロマターゼ阻害剤の奏効性を定量 的に分析する方法にっ 、て調べた。
図 12でマイクロプレート 1は 24ゥエル (A1〜D6)を有しており、患者から手術により 採取した乳癌組織力も単離の間質細胞サンプルに対し、次のように割り当てる。
A1〜A6:脂肪間質細胞のエストロゲン産生能を評価するために以下のように各ゥ エルの試験条件を割り当てる。なお各ゥエルにはアンドロゲンを含む共通の培養液 が入っている。
A1:蛍光蛋白質遺伝子導入乳癌細胞のみ
A2:蛍光蛋白質遺伝子導入乳癌細胞 +エストロゲン (0. 3pM)
A3:蛍光蛋白質遺伝子導入乳癌細胞 +エストロゲン( ΙρΜ)
A4:蛍光蛋白質遺伝子導入乳癌細胞 +エストロゲン(3pM)
A5:蛍光蛋白質遺伝子導入乳癌細胞 +エストロゲン( ΙΟρΜ)
A6:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞
Bl〜3、 Cl〜3、 Dl〜3 :ァロマターゼ阻害剤 X, Υ, Zの 3種について奏功性を定量 的に分析するために以下のように各ゥエルの試験条件を割り当てる。
B 1:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 X (ΙΟρΜ) B2:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 X (30pM) B3:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 X (ΙΟΟρΜ )
C 1:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Υ (ΙΟρΜ) C2:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Y (30pM) C3:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Υ (ΙΟΟρΜ )
D 1:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Z (ΙΟρΜ) D2:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Z (30pM) D3:蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞 +ァロマターゼ阻害剤 Z (ΙΟΟρΜ )
次にマイクロプレートの各ゥエルに蛍光蛋白質遺伝子導入乳癌細胞および間質細 胞をそれぞれ培養する方法について述べると以下のようである。
<構成>
図 13はマイクロプレートの部分断面図である。この図に示すように、蛍光蛋白質遺 伝子導入乳癌細胞はマイクロプレート 1の底面 laに培養され、間質細胞はインサート 2の培養表面を有するメンブレン力もなるキバン部 2aにアンドロゲンを少なくとも含む 培養液 3により共生培養される。図示しない倒立方顕微鏡の対物レンズ 4を介して蛍 光蛋白質遺伝子導入乳癌細胞の蛍光画像が撮像される。対物レンズ 4は蛍光蛋白 質遺伝子導入乳癌細胞が培養されているマイクロプレートの底面 laに照準されるとと もに、各ゥエルに対して図示しない電動ステージで駆動されて、顕微鏡に装着された 図示しないカメラにより通常 4〜16枚程度の蛍光画像が撮像され、蛍光蛋白質遺伝 子導入乳癌細胞の蛍光平均輝度が測光される。
なお、インサート 2は取り外し可能に構成されており、撮像される前に取り外される。 これにより、インサートキバン部 2aから生ずる迷光を無くすことができ、蛍光画像のバ ックグランドを低く抑えることができる。更に、インサートのキバン部 2aとマイクロプレー ト 1の底面 laとの距離を少なくとも対物レンズ 4の焦点範囲外となるように設定すれば 、インサート 2を取り外すことなく蛍光蛋白質遺伝子導入乳癌細胞の蛍光画像を撮像 することができ、本細胞分析の自動化を容易に実現できる (図 14参照)。 なお、本発明は上記実施例に限られるものではなぐ様々な例が可能である。 本実施例では顕微鏡を使用して蛍光画像を取得し、得られた画像に基づ ヽて蛍光 発光量が評価されているが、フローサイトメータを使用して蛍光発光量を評価しても よい。
[0130] 請求項 41〜43記載の、レポーター蛋白質の発現量を定量的に評価する方法にお いて、レポーター蛋白質として蛍光蛋白質を使用した実施例について、(図 15 :画像 解析の流れ)に沿った方法で説明する。
[0131] 導入された蛍光蛋白質の発現量は、上記装置によって取得された細胞画像を解析 し、画像中の各細胞の位置、あるいは境界領域を特定し、これら位置、あるいは境界 によって囲まれた領域の画像の輝度値を算出することで定量化される。
[0132] 細胞の認識は、蛍光蛋白質の画像とは別に取得された核画像を主に使って行われ る。
[0133] 細胞の認識は、核画像の輝度値を適当な輝度を閾値として二値化を行 ヽ、対象と なる核領域を特定する。
[0134] まずニ値ィ匕した画像中で有る程度のサイズを有した部分領域のみを選択する。サ ィズは、領域の最大幅や最小幅、あるいは領域に含むことができる最大の内接円の 半径などによって決定される。
[0135] この選択により、例えば細胞核画像中に含まれるゴミなど非細胞領域が除かれる。
[0136] 解析対象となる細胞の密度が疎である場合、核画像中で各細胞は単離されて観察 されるので、上記方法で取得された各領域がそれぞれ単一の核に対応して 、ると考 えられ、それらをひとつの細胞として認識し、例えば核の中心位置などが取得される
[0137] さらに、細胞の密度が密である場合複数の細胞が接して、あるいは重なって観察さ れる領域がある。この場合、領域がどれだけ円に近いかという真円度を設定し、真円 度の高い領域を単一細胞領域とし、低い領域を複数細胞領域として分ける。(図 16 : 二値化画像の細胞領域の分割)
[0138] 複数細胞領域に対しては、以下の説明するような適当な方法によって、個々の細 胞に分割され、単一細胞の位置や大きさが認識される。
[0139] 複数の細胞を分割する方法としては例えば以下のような方法がある。(図 17 :複数 細胞核の認識)
[0140] 複数の細胞核を含むと思われる二値化され、境界が特定された領域に対して、 細胞核の標準的な大きさとして設定された内接円が入るかを判定し、これら内接円の うち大きいもの力も領域を埋めていき、設定された核の大きさの最小値以上の値で、 埋める操作ができなくなるまでを繰り返すことで、各単一の細胞の位置が特定される
[0141] 以上の操作により取得された細胞核の位置や細胞核の大きさ、細胞核の形態を 蛍光蛋白質画像と対照させることで、各細胞の蛍光発現量が定量化される。
[0142] 取得された蛍光発現量は、平均化や、低!、蛍光量をカットするなどの操作により統 計的に処理せられ、阻害剤の奏効性判定の際の定量データとして提供される。 <分析 >
ゥエル A6 (蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞)の蛍光蛋白質遺伝子導 入乳癌細胞の蛍光平均輝度とゥエル A1〜A5の蛍光平均輝度とを比較することによ り、エストロゲン産生能を定量的に分析することができることが判明した。更にゥエル A6 (蛍光蛋白質遺伝子導入乳癌細胞 +間質細胞)の蛍光蛋白質遺伝子導入乳癌 細胞の蛍光平均輝度と Bl〜3、 Cl〜3、 Dl〜3の蛍光平均輝度、更にゥエル Al〜 A5の蛍光平均輝度とを相互に比較することにより、ァロマターゼ阻害剤の奏功性を 定量的に分析することができることが判明した。

Claims

請求の範囲
[1] レポーター蛋白質をコードする遺伝子を含み、かつ、該レポーター蛋白質のプロモ 一ター領域の上流にエストロゲン応答配列(ERE: estrogen response element)を含み
、該レポーター蛋白質の発現が実質的にエストロゲン応答配列により制御されるレポ 一ターベクターが安定的に導入されていることを特徴とする遺伝子導入細胞。
[2] レポーターベクターが安定的に導入された細胞力 ヒト乳癌由来培養細胞株である 請求項 1又は 2項に記載の細胞。
[3] レポーターベクターが安定的に導入された細胞力 内在的にエストロゲンレセプタ 一を高発現して 、るヒト乳癌由来培養細胞株 MCF7である請求項 1〜3項の 、ずれか
1項に記載の細胞。
[4] レポーター蛋白質が、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 13 -ガラタトシダ ーゼ、 j8ラクタマーゼおよび j8ダルク口-ターゼ等カもなる群力も選択される少なくと も 1種由来の蛋白質であることを特徴とする請求項 1〜3項のいずれ力 1項に記載の 細胞。
[5] レポーター蛋白質が、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 13 -ガラタトシダ ーゼ、 j8ラクタマーゼおよび j8ダルク口-ターゼ等カもなる群力も選択される少なくと も 1種由来の蛋白質であり、かつ該蛋白質の半減期が 2時間〜 6時間程度であること を特徴とする請求項 1〜3項のいずれか 1項に記載の細胞。
[6] 前記細胞が、エストロゲンを処理した場合と、処理しな!、場合との間で比較して、レ ポーター遺伝子の発現量が可視化又は区別可能な程度に差異を有する請求項 1〜 5項の!/、ずれか 1項に記載の細胞。
[7] 前記差異が、エストロゲンを処理しない場合の細胞数が最大となるレポーター遺伝 子発現強度と、エストロゲンを処理した場合の細胞数が最大となるレポーター遺伝子 発現強度との違いである請求項 6項に記載の細胞。
[8] 前記エストロゲンを処理した場合の細胞数が最大となるレポーター遺伝子発現強 度を境に高い発現強度の細胞数が、前記レポーター遺伝子による可視化が可能な 程度に十分存在する請求項 1〜7項のいずれか 1項に記載の細胞。
[9] 前記細胞にエストロゲンを処理した場合、処理したエストロゲン濃度に依存してレポ 一ター遺伝子の発現量が変化することを特徴とする請求項 1〜7項のいずれか 1項に 記載の細胞。
[10] 受託番号 FERM BP-10610として寄託されている細胞である請求項 1〜9項のいず れカ 1項に記載の細胞。
[11] 請求項 1〜10項のいずれ力 1項に記載の細胞を用いて、エストロゲンシグナルの応 答性を可視化することによって評価するエストロゲンシグナル評価方法。
[12] 乳癌組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介した エストロゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれか 1項に記載の細胞と、乳癌組織由来脂肪間質細胞 を共生培養する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲンを投与し 培養する工程
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む評価方法。
[13] 前記 A工程において、請求項 1ないし 10のいずれか 1項に記載の細胞を培養容器 の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られた乳癌組織細切 物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10のい ずれ力の細胞と、乳癌組織由来脂肪間質細胞を共生培養することを特徴とする請求 項 12記載の評価方法。
[14] 乳癌組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介した エストロゲンシグナルの強度を定量的に評価する方法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンを投与し培養する工程、 c :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む評価方法。
[15] 乳癌組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介した エストロゲンシグナルの強度を定量的に評価する方法であって、
A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B:共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲン (テ ストステロン)を投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたエストロゲンシグナル、あるいは脂肪間質細胞由来の、ァロマターゼ酵 素によらな 、エストロゲンレセプター活性化機構の双方ある 、は 、ずれかによつて誘 導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む評価方法。
[16] 前記 A工程において、請求項 1ないし 10のいずれか 1項に記載の細胞を培養容器 の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られた乳癌組織細切 物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10のい ずれ力の細胞と、乳癌組織由来脂肪間質細胞を共生培養することを特徴とする請求 項 15記載の評価方法。
[17] 乳癌組織由来脂肪間質細胞に由来する、主としてァロマターゼ酵素活性を介した エストロゲンシグナルの強度を定量的に評価する方法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンを投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたエストロゲンシグナル、あるいは脂肪間質細胞由来の、ァロマターゼ酵 素によらな 、エストロゲンレセプター活性化機構の双方ある 、は 、ずれかによつて誘 導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、脂肪間質細胞の主としてァ ロマターゼ酵素活性によるエストロゲンシグナル強度を定量評価する工程、 を含む評価方法。
[18] ァロマターゼ阻害剤による、乳癌組織由来脂肪間質細胞に由来する、主としてァロ マターゼ酵素活性を介したエストロゲンシグナルの阻害作用を定量的に評価する方 法であって、
A:請求項 1な!、し 10の 、ずれかの細胞と、乳癌組織由来脂肪間質細胞を共生培養 する工程、
B :共生培養した上記 2種の細胞に、ァロマターゼの基質であるアンドロゲン、および ァロマターゼ阻害剤を同時に投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、ァロマターゼ阻害剤による、 脂肪間質細胞の主としてァロマターゼ酵素活性によるエストロゲンシグナルの阻害作 用を定量評価する工程、
を含む評価方法。
[19] 前記 A工程において、請求項 1ないし 10のいずれか 1項に記載の細胞を培養容器 の底面に培養し、脂肪間質細胞を含む乳癌組織を細切して得られた乳癌組織細切 物を、インサートを用いて培養容器に添加することによって、請求項 1ないし 10のい ずれ力の細胞と、乳癌組織由来脂肪間質細胞を共生培養することを特徴とする請求 項 18記載の評価方法。
[20] ァロマターゼ阻害剤による、乳癌組織由来脂肪間質細胞に由来する、主としてァロ マターゼ酵素活性を介したエストロゲンシグナルの阻害作用を定量的に評価する方 法であって、
A:脂肪間質細胞を含む乳癌組織を培養液中で細切した後に遠心により上清を得る 工程、
B:請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に、前記上清とァロマターゼの基 質であるアンドロゲンとァロマターゼ阻害剤を投与し培養する工程、
C :脂肪間質細胞ァロマターゼより産生され、培養液中に放出されたエストロゲンによ り誘導されたレポーター蛋白質を定量する工程、
D:前記 Cにお 、て定量されたレポーター蛋白質量から、ァロマターゼ阻害剤による、 脂肪間質細胞の主としてァロマターゼ酵素活性によるエストロゲンシグナルの阻害作 用を定量評価する工程、
を含む評価方法。
[21] 請求項 18〜20項のいずれか 1項に記載の評価方法を用いて、前記ァロマターゼ 阻害剤を添加した後のエストロゲンシグナルの有無によって、当該ァロマターゼ阻害 剤が、前記患者に特異的な癌抑制作用がある力否かを解析する阻害剤の解析方法
[22] 乳癌組織によるエストロゲンシグナルの強度を定量的に評価する方法であって、 A:乳癌組織を培養液中で細切した後に遠心により上清を得る工程、
B:前記上清を、請求項 1な!、し 10の 、ずれ力 1項に記載の細胞に添加する工程、 B :前記上清により誘導されたレポーター蛋白質を定量する工程、
C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含む評価方法。
[23] 乳癌組織によるエストロゲンシグナルの強度を定量的に評価する方法であって、 A:請求項 1な!、し 10の 、ずれか 1項に記載の細胞を培養容器の底面に培養し、乳 癌組織を細切して得られた乳癌組織細切物を、インサートを用いて培養容器に添カロ し、請求項 1な 、し 10の 、ずれか 1項に記載の細胞と前記乳癌組織細切物を培養す る工程、
B:前記乳癌組織細切物により誘導されたレポーター蛋白質を定量する工程、 C :前記 Cにおいて定量されたレポーター蛋白質量から、乳癌組織によるエストロゲン シグナルの強度を定量評価する工程、
を含む評価方法。
[24] 化学物質 (A)に特異的に応答するレポーター蛋白質をコードする遺伝子を導入し たレポーター遺伝子導入細胞と、化学物質 (A)の生成反応の基質 (B)を取り込むとと もに、化学物質 (A)への転換をもたらす酵素 (C)を発現し、最終的に化学物質 (A)を 産生して培養液中に放出する化学物質産生細胞とを共生培養し、前記レポーター遺 伝子導入細胞からのレポーター遺伝子発現量に基づ 、て、前記化学物質産生細胞 による前記化学物質 (A)の産生能の分析を行うことを特徴とする細胞分析方法。
[25] 前記レポーター遺伝子導入細胞を培養容器底面に培養し、化学物質産生細胞を 含む組織を細切して得られた組織細切物を、インサートを用いて培養容器に添加す ることによって、前記レポーター遺伝子導入細胞と、前記化学物質産生細胞を共生 培養することを特徴とする請求項 24記載の細胞分析方法。
[26] 化学物質 (A)に特異的に応答するレポーター蛋白質をコードする遺伝子を導入し たレポーター遺伝子導入細胞を、化学物質 (A)の生成反応の基質 (B)を取り込むと ともに、化学物質 (A)への転換をもたらす酵素 (C)を発現し、最終的に化学物質 (A) を産生して培養液中に放出する化学物質産生細胞を含む組織を培養液中で細切し た後に遠心により得られた上清とともに培養し、前記レポーター遺伝子導入細胞から のレポーター遺伝子発現量に基づいて、前記化学物質産生細胞による前記化学物 質 (A)の産生能の分析を行うことを特徴とする細胞分析方法。
[27] 既知量 (ゼロを含む)の化学物質 (A)を含む培養液を用いて前記レポーター遺伝 子導入細胞を前記化学物質産生細胞フリーの状態で培養して得られたレポーター 遺伝子発現量を比較値として用いることにより、前記化学物質産生細胞による前記 化学物質 (A)の産生能を定量的に分析することを特徴とする請求項 24〜26項のい ずれ力 1項に記載の細胞分析方法。
[28] 化学物質 (A)に特異的に応答するレポーター蛋白質をコードする遺伝子を導入し たレポーター遺伝子導入細胞と、化学物質 (A)の生成反応の基質 (B)を取り込むとと もに、化学物質 (A)への転換をもたらす酵素 (C)を発現し、最終的に化学物質 (A)を 産生して培養液中に放出する化学物質産生細胞とを前記酵素 (C)を阻害する阻害 剤とともに共生培養し、前記レポーター遺伝子導入細胞からのレポーター遺伝子発
Figure imgf000053_0001
ヽて、前記阻害剤の奏効性を分析することを特徴とする細胞分析方法。
[29] 前記レポーター遺伝子導入細胞を培養容器底面に培養し、前記化学物質産生細 胞を含む組織を細切して得られた組織細切物を、インサートを用いて該培養容器に 添加し、該培養容器に前記阻害剤を添加することによって、前記レポーター遺伝子 導入細胞と、前記化学物質産生細胞とを前記阻害剤とともに共生培養することを特 徴とする請求項 28記載の細胞分析方法。
[30] 化学物質 (A)に特異的に応答するレポーター蛋白質をコードする遺伝子を導入し たレポーター遺伝子導入細胞を、化学物質 (A)の生成反応の基質 (B)を取り込むと ともに、化学物質 (A)への転換をもたらす酵素 (C)を発現し、最終的に化学物質 (A) を産生して培養液中に放出する化学物質産生細胞を含む組織を細切した後に遠心 により得られた上清と、前記酵素 (C)を阻害する阻害剤とともに培養し、前記レポータ 一遺伝子導入細胞からのレポーター遺伝子発現量に基づ 、て、前記阻害剤の奏効 性を分析することを特徴とする細胞分析方法。
[31] 既知量 (ゼロを含む)の化学物質 (A)を含む培養液を用いて前記レポーター遺伝 子導入細胞を前記化学物質産生細胞フリーの状態で培養して得られたレポーター 遺伝子発現量を比較値として用いることにより、前記阻害剤の奏効性を定量的に分 析することを特徴とする請求項 28〜30項のいずれか 1項に記載の細胞分析方法。
[32] 前記化学物質 (A)はエストロゲンであり、前記レポーター蛋白質をコードする遺伝 子は、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 βラクタマ ーゼおよび j8ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の遺 伝子であり、前記レポーター遺伝子導入細胞は乳癌由来であり、前記基質 (B)はァ ンドロゲンであり、前記酵素(C)はァロマターゼであり、前記化学物質産生細胞は乳 癌組織力も単離した脂肪間質細胞であることを特徴とする請求項 24〜31のいずれ 力 1項に記載の細胞分析方法。
[33] 前記化学物質 (A)はエストロゲンであり、前記レポーター蛋白質をコードする遺伝 子は、 GFP, RFP等の蛍光蛋白質、ルシフェラーゼ、 j8 -ガラクトシダーゼ、 βラクタマ ーゼおよび j8ダルク口-ターゼ等力 なる群力 選択される少なくとも 1種由来の遺 伝子であり、かつ該遺伝子によってコードされるレポーター蛋白質の半減期が 2時間 〜6時間程度であり、前記レポーター遺伝子導入細胞は乳癌由来であり、前記基質( B)はアンドロゲンであり、前記酵素(C)はァロマターゼであり、前記化学物質産生細 胞は乳癌組織力も単離した脂肪間質細胞であることを特徴とする請求項 24〜31の V、ずれか 1項に記載の細胞分析方法。
[34] 前記化学物質 (A)はエストロゲンであり、前記レポーター遺伝子導入細胞は請求項 1〜10項のいずれか 1項に記載の遺伝子導入細胞であり、前記基質 (B)はアンド口 ゲンであり、前記酵素(C)はァロマターゼであり、前記化学物質産生細胞は乳癌糸且 織から単離した脂肪間質細胞であることを特徴とする請求項 24〜31のいずれか 1項 に記載の細胞分析方法。
[35] 分析は前記レポーター遺伝子発現量の平均値に基づ!/、て行われることを特徴とす る請求項 24〜34項のいずれ力 1項に記載の細胞分析方法。
[36] 前記レポーター遺伝子発現量は取得画像力 計測されることを特徴とする請求項 2 4〜35項のいずれか 1項に記載の細胞分析方法。
[37] 前記レポーター遺伝子導入細胞は培養容器底面に単層状に培養され、前記化学 物質産生細胞は前記培養容器底面力 上方に距離 Lをおいて培養表面を有するキ バン上に単層状に共生培養され、培養容器の下方カゝら対物レンズを介して前記レポ 一ター遺伝子導入細胞の画像が取得される請求項 36に記載の細胞分析方法。
[38] 前記キバンは取り外し可能に構成されており、前記キバンが取り外された後に画像 が取得される請求項 37に記載の細胞分析方法。
[39] 前記距離 Lは少なくとも前記対物レンズの焦点範囲外となる値であり、前記キバン は取り外されずに画像が取得される請求項 37に記載の細胞分析方法。
[40] 前記レポーター遺伝子導入細胞の核は、導入されたレポーター蛋白質の分光特性 とは異なる分光特性で標識され、核の蛍光または発光画像により前記レポーター遺 伝子導入細胞が画像処理により認識されてレポーター蛋白質の発現量が評価される ことを特徴とする請求項 36に記載の細胞分析方法。
[41] 核画像の輝度特性を処理し画像中の細胞を認識し、この画像処理により認識され た核の領域を 2値化処理し、得られた 2値化画像に対応する領域の蛍光または発光 量が各細胞毎に計測されてレポーター遺伝子の発現量が評価されることを特徴とす る請求項 40に記載の細胞分析方法。
[42] 核の標識はレポーター蛋白質の分光特性よりも長波長の特性を有していることを特 徴とする請求項 40又は 41に記載の細胞分析方法。
[43] 前記レポーター蛋白質は緑色蛍光蛋白質であることを特徴とする請求項 32〜42 項の 、ずれか 1項に記載の細胞分析方法
[44] 核の標識は DRAQ5による請求項 40〜43項のいずれか 1項に記載の細胞分析方 法。
[45] マイクロプレートのゥエル内部に分析のための化学物質 (A)または/および前記阻 害剤があらかじめ定量 (ゼロを含む)されて各ゥエルにそれぞれ固相状態で添着され ており、所定の溶融液により前記化学物質 (A)または/および前記阻害剤が溶解され 、分析に供されることを特徴とする請求項 24〜44項の ヽずれか 1項に記載の細胞分 析方法。
[46] レポーター遺伝子の発現量の計測は共生培養開始後 24〜96時間までの間に行 われることを特徴とする請求項 24〜45項のいずれか 1項に記載の細胞分析方法。
PCT/JP2006/310935 2005-05-31 2006-05-31 遺伝子導入細胞及び細胞分析方法 WO2006129735A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06756855A EP1905824A4 (en) 2005-05-31 2006-05-31 TRANSFERRED GENE CELL AND CELL ANALYSIS METHOD
JP2007519051A JPWO2006129735A1 (ja) 2005-05-31 2006-05-31 遺伝子導入細胞及び細胞分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005160685 2005-05-31
JP2005-160621 2005-05-31
JP2005-160685 2005-05-31
JP2005160621 2005-05-31

Publications (1)

Publication Number Publication Date
WO2006129735A1 true WO2006129735A1 (ja) 2006-12-07

Family

ID=37481663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310935 WO2006129735A1 (ja) 2005-05-31 2006-05-31 遺伝子導入細胞及び細胞分析方法

Country Status (3)

Country Link
EP (1) EP1905824A4 (ja)
JP (1) JPWO2006129735A1 (ja)
WO (1) WO2006129735A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136258A (ja) * 2007-12-10 2009-06-25 Olympus Corp 遺伝子発現解析方法
WO2011090068A1 (ja) * 2010-01-19 2011-07-28 株式会社Reiメディカル 癌組織由来細胞塊または癌細胞凝集塊の培養方法、評価方法および保存方法
WO2012039097A1 (ja) * 2010-09-22 2012-03-29 シスメックス株式会社 細胞分析装置
CN102622585A (zh) * 2012-03-06 2012-08-01 同济大学 基于局部特征Gabor小波的BP神经网络人脸识别方法
US8841125B2 (en) 2009-03-02 2014-09-23 Renaissance Energy Investment Co., Ltd. Cancer tissue-derived cell mass and a process for preparing same
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
CN104573679A (zh) * 2015-02-08 2015-04-29 天津艾思科尔科技有限公司 监控场景下基于深度学习的人脸识别系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779483B2 (ja) * 2016-09-29 2020-11-04 住友ゴム工業株式会社 医療用検査装置及び細胞検査方法
JP7109719B2 (ja) 2018-02-14 2022-08-01 住友ゴム工業株式会社 特定細胞捕捉方法
US11614440B2 (en) 2019-01-24 2023-03-28 Sumitomo Rubber Industries, Ltd. Specific cell fractionating and capturing methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638727B1 (en) * 1999-01-26 2003-10-28 Cytyc Health Corporation Methods for identifying treating or monitoring asymptomatic patients for risk reduction or therapeutic treatment of breast cancer
GB0204967D0 (en) * 2002-03-02 2002-04-17 Imp College Innovations Ltd Methods
GB0317679D0 (en) * 2003-07-29 2003-09-03 Amersham Biosciences Uk Ltd Analysing biological entities

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAYASHI S. ET AL.: "Estrogen and growth factor signaling pathway: basic approaches for clinical application", J. STEROID BIOCHEM. MOL. BIOL., vol. 86, no. 3-5, 2003, pages 433 - 442 *
LU Q. ET AL.: "Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancers", ENDOCRINOLOGY, vol. 137, no. 7, 1996, pages 3061 - 3068, XP003005296 *
MILLER S. ET AL.: "A rapid and sensitive reporter gene that uses green fluorescent protein expression to detect chemicals with estrogenic activity", TOXICOL. SCI., vol. 55, no. 1, 2000, pages 69 - 77 *
SANTNER S.J. ET AL.: "Aromatase activity and expression in breast cancer and benign breast tissue stromal cells", J. CLIN. ENDOCRINOL. METAB., vol. 82, no. 1, 1997, pages 200 - 208, XP003005297 *
See also references of EP1905824A4 *
YAMAGUCHI Y. ET AL.: "Kanshitsu Saibo niyoru Nyugan no Estrogen Signal no Seigyo Kiko Oyobi Yogo Inshi tono Sokan", DAI 63 KAI NIHON GAN GAKKAI GAKUJUTSU SOKAI KIJI, 25 August 2004 (2004-08-25), pages 245 - 246 *
YAMAGUCHI Y. ET AL.: "Tumor-stromal interaction through the estrogen-signaling pathway in human breast cancer", CANCER RES., vol. 65, no. 11, 1 June 2005 (2005-06-01), pages 4653 - 4662, XP003005298 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136258A (ja) * 2007-12-10 2009-06-25 Olympus Corp 遺伝子発現解析方法
US8841125B2 (en) 2009-03-02 2014-09-23 Renaissance Energy Investment Co., Ltd. Cancer tissue-derived cell mass and a process for preparing same
WO2011090068A1 (ja) * 2010-01-19 2011-07-28 株式会社Reiメディカル 癌組織由来細胞塊または癌細胞凝集塊の培養方法、評価方法および保存方法
JP5774496B2 (ja) * 2010-01-19 2015-09-09 株式会社ルネッサンス・エナジー・インベストメント 癌組織由来細胞塊または癌細胞凝集塊の培養方法、評価方法および保存方法
WO2012039097A1 (ja) * 2010-09-22 2012-03-29 シスメックス株式会社 細胞分析装置
US8921099B2 (en) 2010-09-22 2014-12-30 Sysmex Corporation Cell analyzer, cell processing apparatus, specimen preparing apparatus
CN102622585A (zh) * 2012-03-06 2012-08-01 同济大学 基于局部特征Gabor小波的BP神经网络人脸识别方法
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
CN104573679A (zh) * 2015-02-08 2015-04-29 天津艾思科尔科技有限公司 监控场景下基于深度学习的人脸识别系统

Also Published As

Publication number Publication date
JPWO2006129735A1 (ja) 2009-01-08
EP1905824A1 (en) 2008-04-02
EP1905824A4 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
WO2006129735A1 (ja) 遺伝子導入細胞及び細胞分析方法
Ellis et al. Epithelial Vegfa specifies a distinct endothelial population in the mouse lung
Skibinski et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment
Rayon et al. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst
CN101087879B (zh) 气味受体的调控剂
Tao et al. Identification of the retinoic acid–inducible Gprc5a as a new lung tumor suppressor gene
US20180148486A1 (en) Human cell lines mutant for zic2
Muraoka-Cook et al. The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells
JP5431952B2 (ja) 患者の個別化治療的ワクチン接種の主成分となる、腫瘍患者の腫瘍関連抗原(taa)に対する個々のt細胞反応パターンの検出
Wang et al. Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation
Zhong et al. The essential role of Giα2 in prostate cancer cell migration
KR20130024904A (ko) 암 조직 유래 세포괴 또는 암 세포 응집괴의 약제 또는 방사선 감수성 평가 방법
US8674172B2 (en) Prostate cancer cell lines and their use in screening method
Di Pietro et al. An RNAi screen in a novel model of oriented divisions identifies the actin-capping protein Z β as an essential regulator of spindle orientation
Wang et al. Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research
Sandoval et al. Interplay of opposing fate choices stalls oncogenic growth in murine skin epithelium
Cai et al. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase
JP5809782B2 (ja) 癌組織由来細胞塊または癌細胞凝集塊の薬剤または放射線感受性評価方法
Wang et al. Increased expression of the metastasis‐associated gene Ehm2 in prostate cancer
Zheng et al. KDF1, a novel tumor suppressor in clear cell renal cell carcinoma
Hashimoto et al. Uncovering genes required for neuronal morphology by morphology-based gene trap screening with a revertible retrovirus vector
Arai et al. Metalloprotease-dependent attenuation of BMP signaling restricts cardiac neural crest cell fate
Chen et al. Loss of Ubr1 promotes aneuploidy and accelerates B-cell lymphomagenesis in TLX1/HOX11-transgenic mice
Liu The opposing action of stromal cell proenkephalin and stem cell transcription factors in prostate cancer differentiation
WO2003042364A2 (en) Identifying and controlling the growth of estrogen-responsive cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519051

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU