WO2006129511A1 - 複合式ヒータおよび該複合式ヒータを備えた暖房システム - Google Patents

複合式ヒータおよび該複合式ヒータを備えた暖房システム Download PDF

Info

Publication number
WO2006129511A1
WO2006129511A1 PCT/JP2006/310153 JP2006310153W WO2006129511A1 WO 2006129511 A1 WO2006129511 A1 WO 2006129511A1 JP 2006310153 W JP2006310153 W JP 2006310153W WO 2006129511 A1 WO2006129511 A1 WO 2006129511A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heating
heater
heating element
temperature
Prior art date
Application number
PCT/JP2006/310153
Other languages
English (en)
French (fr)
Inventor
Takefumi Kono
Akiyoshi Kojima
Takeshi Kouchi
Tadayuki Gotou
Koji Hori
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to EP06746687A priority Critical patent/EP1890086A1/en
Priority to US11/915,763 priority patent/US20090103908A1/en
Publication of WO2006129511A1 publication Critical patent/WO2006129511A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/141Tube mountings specially adapted therefor
    • F24D3/142Tube mountings specially adapted therefor integrated in prefab construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/04Electric heating systems using electric heating of heat-transfer fluid in separate units of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/146Tubes specially adapted for underfloor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a composite heater suitably used for heating a building such as floor heating, and a heating system including the composite heater.
  • a floor heating system is roughly classified into a hot water type and an electric type.
  • a hot water floor heating system has a panel with a built-in hot water pipe laid between the floor base and the floor finishing material, and uses the heat generated by a heat source such as a boiler, heat pump, or fuel cell. The indoor water is heated by producing hot water and circulating the manufactured hot water through the hot water pipe.
  • the electric floor heating system has a panel with a built-in electric heater installed between the floor base and the floor finish, and heats the room by energizing the electric heater.
  • Japanese Patent Laid-Open No. 10-306926 discloses a heating device in which a copper wire is inserted as an electric heating heater over the entire length of the hot water pipe. According to this heating device, the water filled in the hot water pipe is heated by heating the copper wire. In order to obtain a sufficient calorific value, a copper wire uses a very thin wire having a diameter of 0.3 to 0.5 mm.
  • the manufactured hot water is also used for hot water supply, and has a hot water storage tank for storing the manufactured hot water in order to flexibly respond to changes in the amount of use.
  • hot water is supplied at midnight in consideration of the electricity charge. Manufactured and stored in hot water storage tanks. Since hot water requires a certain amount of time to produce hot water, there is a demerit such as taking up the location of the hot water tank if the capacity of the hot water storage tank is increased in accordance with the daytime usage (hot water supply amount) in order not to run out of hot water. To do.
  • the hot water in the hot water storage tank is not used for hot water supply and the amount of hot water has not decreased, or a long time has passed, or when only water is used for heating and the hot water whose temperature has decreased due to heat dissipation returns to the hot water storage tank
  • the temperature of the hot water in the hot water storage tank will decrease. Therefore, it is necessary to reheat the hot water in the hot water tank, but new costs are incurred by reheating the hot water in the hot water tank. However, the reheated hot water drops in temperature while being bowed into the building for use in heating, causing thermal loss.
  • an object of the present invention is to provide a composite heater that can perform highly efficient and highly efficient heating, and a heating system using the combined heater.
  • the composite heater of the present invention includes a hot water pipe through which hot water flows, and a heat generator that is fixed in contact with the outer peripheral surface or the inner peripheral surface of the hot water pipe and that generates heat when energized. And have.
  • the composite heater of the present invention includes a hot water pipe through which hot water flows, a groove formed on the upper surface, a panel-shaped base material containing the hot water pipe in the groove, an upper surface, a lower surface of the base material, Or a heating element that is fixed inside and generates heat when energized, and a soaking material provided to cover the upper surface of the substrate.
  • the heating element is in contact with the outer peripheral surface or the inner peripheral surface of the hot water pipe. Fixed to a panel-like base material. In this way, fixing the heating element to the hot water pipe or the base material stabilizes the position of the heating element and consequently prevents the heating element from being disconnected.
  • a heating element fixed to a hot water pipe is configured as a pipe heater, and a heating element fixed to a substrate is configured as a panel heater.
  • a pipe-shaped heater it is also possible to make a panel-shaped heater by accommodating a hot water nove to which a heating element is fixed in a panel-shaped base material.
  • a metal tube or a heating cable can be preferably used for the pipe heater, and a planar heating element can be preferably used for the panel heater.
  • the heating system of the present invention includes the above-described combined heater of the present invention, a heat source device that produces hot water by heating water, a hot water storage unit that stores hot water produced by the heat source device, and a hot water storage unit
  • the hot water pipe for circulating the hot water between the combined heater and a control unit for controlling the driving of the heating element of the combined heater.
  • the combined heater has a hot water pipe and a heating element. Therefore, heating by flowing hot water produced by a heat source device through the hot water pipe is also possible. Heating by energizing the heating element is also possible. Further, when the heating element is energized, the hot water in the hot water pipe is heated, and if it is circulated between the hot water storage units, the temperature drop in the hot water in the hot water storage unit is suppressed. Therefore, by appropriately controlling the drive of the heating element by the control unit, it is not necessary to reheat the hot water in the hot water storage unit, and the hot water in the composite heater can be directly heated. Loss, and as a result, highly efficient heating becomes possible.
  • the hot water storage unit has a tank for storing hot water and a temperature sensor for measuring the temperature of the hot water in the tank, and the control unit has a measured temperature higher than the energization control temperature.
  • the heating element When the temperature is low, the heating element is energized.
  • the heating element When the measured temperature is higher than the energization control temperature, the heating element is de-energized.
  • the temperature of the hot water in the hot water storage unit is kept almost constant, and reheating of the hot water in the hot water storage unit becomes unnecessary.
  • the present invention it is possible to achieve a highly reliable composite heater in which a heating element does not break during manufacture or use.
  • the combined heater of the present invention is used.
  • FIG. 1 is a perspective view of a composite heater according to an embodiment of the present invention.
  • FIG. 2A is a plan view of an example of a panel incorporating the heater shown in FIG.
  • FIG. 2B is a cross-sectional view of the panel shown in FIG. 2A along the line BB.
  • FIG. 3 is a perspective view showing another example of the composite heater according to the present invention.
  • FIG. 4 is a perspective view showing still another example of the composite heater according to the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the composite heater according to the present invention configured as a panel.
  • FIG. 6 is a schematic configuration diagram of an example of a heating system according to the present invention.
  • FIG. 1 is a perspective view of a composite heater according to an embodiment of the present invention.
  • the heater 1 has a hot water pipe la and a metal pipe lb fixed in contact with the inner surface of the hot water pipe la coaxially with the hot water pipe la.
  • the metal tube lb functions as a heating element, and generates heat when the metal tube lb is energized.
  • As the metal constituting the metal tube lb an appropriate metal that generates heat when energized can be used.
  • the inner surface of the metal tube lb is waterproofed.
  • the hot water pipe la can be made of any material such as metal or synthetic resin as long as it has a heat dissipation effect.
  • the heater 1 can be used for indoor heating, particularly for floor heating.
  • the heater 1 is laid in an appropriate routing pattern on a floor base (not shown), and a floor finish (attached) is further laid on the heater 1.
  • the heater 1 is prepared with an appropriate shape such as a force that makes itself flexible, a linear shape, a curved shape, a bent shape, and the like. To a predetermined pattern.
  • the heater 1 configured as described above, hot water produced using heat generated by a heat source such as a boiler, a heat pump, or a fuel cell is temporarily stored in a hot water storage tank (not shown). After that, it flows through the heater 1 and heats the room by releasing heat. Further, according to the heater 1, the hot water in the heater 1 can also be heated by energizing the metal tube lb to generate heat. In other words, the hot water can be heated by the caloric heat of the heater 1 itself.
  • the metal tube lb fixed in contact with the inner surface of the hot water nozzle la is used as the heating element, the position relative to the hot water pipe la is stable, and there is no risk of the heating element breaking during construction or use. ,.
  • the heater 1 may be laid on the floor base as it is, but in actual construction, it is desirable to construct it by incorporating it into a panel from the viewpoint of ease of construction.
  • FIG. 2A shows a plan view of an example of the panel 10 provided with the heater 1.
  • Fig. 2B shows a cross-sectional view along line BB in Fig. 2A.
  • the panel 10 includes a plate-like base material 12, a heat equalizing plate 13 attached so as to cover the surface of the base material 12, and a heater 1 disposed between the base material 12 and the heat equalizing plate 13. And have.
  • the base material 12 any material can be used as long as the mechanical strength and heat insulation performance necessary for the panel 10 can be ensured.
  • a foamed resin board is used.
  • Grooves 12a are formed on the upper surface of the substrate 12 in accordance with the routing pattern of the heater 1, and the heater 1 is accommodated in the grooves 12a.
  • the heat equalizing plate 13 uniformly distributes the heat generated from the heater 1 in the in-plane direction and transmits the heat to the floor finish material.
  • the heat equalizing plate 13 covers the upper surface of the substrate 12 with the heater 1 accommodated in the groove 12a. ing.
  • a metal foil or plate such as aluminum or copper can be used as the soaking plate 13 .
  • the plurality of panels 10 are joined together so that the heater 1 forms one hot water channel. Therefore, both ends of the heater 1 are exposed at the end face of the panel 10, and the adjacent panels 10 are joined so that the end portions of the heater 1 are connected.
  • a joint or the like is used to connect the ends of the heater 1 so as to prevent leakage of hot water and to electrically connect the metal tubes lb to each other.
  • FIG. 3 and FIG. 4 show another example of the composite heater according to the present invention.
  • a metal tube 2b as a heating element is fixed in contact with the outer peripheral surface of the hot water nozzle 2a coaxially with the hot water pipe 2a.
  • the heating element does not come into contact with the hot water, so even if the metal pipe 2b is used as the heating element, it is not necessary to waterproof the metal pipe 2b. . Further, if an insulating material such as a synthetic resin pipe is used as the hot water pipe 2a, an insulation process is not necessary.
  • the heater 3 shown in FIG. 4 is obtained by winding a heating cable 3b, which is a heating element, around the outer peripheral surface of a hot water pipe 3a in a spiral manner.
  • a heating cable 3b which is a heating element
  • general-purpose pipes can be used as the hot water pipe 3a and the heating cable 3b.
  • 4 shows an example in which the heating cable 3b is arranged on the outer peripheral surface of the hot water pipe 3a.
  • the heating cable 3b may be fixed in spiral contact with the inner peripheral surface of the hot water pipe 3a. You may embed it helically in a pipe wall.
  • FIG. 5 shows another example of the heater panel according to the present invention.
  • the hot water pipe itself has a heating element, but in this example, the heating element is configured separately from the hot water pipe.
  • the panel 20 includes a base material 22, a hot water pipe 21 accommodated in the base material 22, a planar heating element 24 that covers and fixes the upper surface of the base material 22, and a planar heating element 24. And a soaking plate 23 provided so as to cover.
  • the hot water pipe 21 is the same as that used in a general hot water heating system, and is accommodated in a groove formed in the base material 22.
  • the planar heating element 24 is not particularly limited, but from the viewpoint of durability, a carbon fiber heating element can be preferably used.
  • planar heating element 24 that uses carbon fiber as a heating resistor, the effect of heating the room by far-infrared radiation just by heating the hot water in the hot water pipe 21 can be expected.
  • the thickness of the planar heating element 24 is preferably 2 mm or less, more preferably 0.8 mm or less.
  • a conductive material is formed at both ends of a network structure formed by joining intersections of nonconductive fibers and conductive fibers. Examples thereof include a fiber-reinforced resin-molded product in which a conductive fiber and an electrode are connected and then embedded in a resin or laminated with a fiber-reinforced pre-preda sheet.
  • a force heating element 24 showing an example in which the sheet heating element 24 is arranged on the upper surface side of the heater panel 20 may be fixed to the lower surface of the substrate 22, or It may be embedded in.
  • the heating element provided on the panel 20 various members that generate heat when energized, such as a metal plate or a heating cable, which is not limited to the planar heating element 24, can be used.
  • FIG. 6 is a schematic configuration diagram of an example of a heating system according to the present invention.
  • the heating system shown in FIG. 1 includes a heat source device 101 that produces hot water by heating water, a hot water storage unit 102 that stores the hot water produced by the heat source device 101, a combined heater unit 103, and the like. And a control unit 104 for controlling.
  • the heat source device 101 and the hot water storage unit 102 are installed outside the building, and the combined heater unit 103 is installed inside the building.
  • hot water supply equipment such as a kitchen unit 105 and a bathtub 106, and electrical appliances such as an air conditioner 107 and lighting 108 are installed in the building.
  • a power generation unit such as a fuel cell or a gas engine, a heat pump, or the like can be used.
  • a power generation unit When a power generation unit is used as the heat source 101, gas is used as a fuel for power generation, The obtained electric power is supplied to electric products such as the air conditioner 107 and the lighting 108 and the control unit 104. Further, hot water is produced using heat generated by power generation, and the produced hot water is stored in the hot water storage unit 102. While the power generation unit is not in operation, the electric power supplied from the power company is supplied to the electrical products.
  • the heat pump when a heat pump is used as the heat source device 101, the heat pump is operated by electric power supplied from an electric power company, and hot water is produced using heat in the atmosphere. The produced hot water is stored in the hot water storage unit 102.
  • the hot water storage unit 102 is connected to hot water supply facilities such as the kitchen unit 105 and the bathtub 106 and the combined heater unit 103 by hot water piping, and the hot water stored in the hot water storage unit 102 is supplied to the kitchen as needed. It is used in hot water supply facilities such as the unit 105 and the bathtub 106, and is supplied to the combined heater unit 103.
  • the hot water supplied to the composite heater unit 103 passes through the hot water path in the composite heater unit 103 and is then returned to the hot water storage unit 102 via the return hot water pipe.
  • the composite heater unit 103 includes, for example, a composite system in which a hot water pipe and a heating element are combined, such as the heater 1 shown in FIG. 1, the panel 10 shown in FIG. 2A, the panel 20 shown in FIG. It includes a heater, here it is configured as a floor heating panel.
  • the composite heater is installed in an appropriate combination according to the area of the area to be installed and the planar shape.
  • the combined heater unit 103 is supplied with electric power supplied from an electric power company or electric power obtained from a power generation unit in order to drive a heating element.
  • the power path is indicated by a one-dot chain line
  • the water path is indicated by a broken line
  • the hot water path is indicated by a thick solid line.
  • the hot water storage unit 102 includes a tank that stores hot water, a pump that also sends out hot water with a tank power, and a temperature sensor that measures the temperature of the hot water in the tank. During the operation of this heating system, the temperature of the hot water measured by the temperature sensor is sent as an electrical signal to the control unit 104, and the control unit operates the pump and the combined heater unit based on the measured temperature. Controls energization to 103.
  • This heating system uses the produced hot water for hot water supply and heating. However, since the operation during hot water supply is the same as that of a conventional hot water heating system, a description thereof will be omitted. The operation of the time will be explained.
  • the combined heater unit 103 is operating. During operation of the combined heater unit 103, hot water is circulated between the tank of the hot water storage unit 102 and the combined heater unit 103. During this time, if hot water in the tank is not used for hot water supply, hot water is not newly produced, so the temperature of the hot water in the tank decreases with time.
  • the temperature of the hot water in the hot water storage unit 102 is measured in real time or at regular time intervals by a temperature sensor, and the result is sent to the control unit 104.
  • the control unit 104 is set with an energization control temperature serving as a reference for controlling energization of the composite heater unit 103. If the measured temperature is equal to or higher than the energization control temperature, the heat generation of the composite heater unit 103 is set. It does not energize the body, it only heats by circulating hot water.
  • the temperature of the hot water produced by the heat source device 101 is generally 60 ° C. to 80 ° C. In this case, the energization control temperature is, for example, 50 ° C.
  • the heating element of the combined heater unit 103 is heated and heated with the heat generated by energizing the heating element of the combined heater unit 103. I do.
  • the heated hot water in the combined heater unit 103 returns to the tank of the hot water storage unit 102 and raises the temperature of the hot water in the tank.
  • the temperature of the hot water in the hot water storage unit 102 is kept substantially constant regardless of whether hot water is used for hot water supply. Therefore, it is not necessary to reheat the hot water in the hot water storage unit 102 as in the prior art. In this example as well, the power that consumes energy to heat the hot water whose temperature has decreased.
  • the hot water in the combined heater unit 103 is heated rather than heating the hot water in the hot water storage unit 102 as in the past. Most of the energy used for the heating can be used for heating, resulting in a highly efficient heating system. In conventional hot water heating systems, about 50% of the energy used to heat the hot water in the hot water storage unit 102 is said to be lost before hot water is introduced into the building. Then, such a loss hardly occurs.
  • the tank capacity of the hot water storage unit 102 since the temperature of the hot water in the hot water storage unit 102 is kept substantially constant, the tank capacity of the hot water storage unit 102 must be excessively increased in consideration of a temperature drop due to use in heating. In short, the capacity of the tank can be reduced by optimizing the capacity according to the power generation capacity or heating capacity of the heat source 101. Most of the size of the hot water storage unit 102 is occupied by the tank, and the size of the hot water storage unit 102 can be reduced by reducing the capacity of the tank.
  • the hot water when the thermal load is low, the hot water can be sufficiently used for heating even when the temperature of the hot water is low, and heating by energization may not be necessary.
  • the heat load is high, it is often used for hot water supply, so even if the temperature of the hot water is high, the hot water in the tank of the hot water storage unit 102 decreases, and heating with the hot water can be performed sufficiently. Sometimes not. In this case, it is preferable to heat the composite heater unit 103 by energizing it.
  • the heat source 101 is a heat pump
  • the coefficient of performance (COP) for producing hot water tends to decrease as the temperature decreases. If the loss from the piping is included, the combined heater unit 103 generates heat. It may be more efficient to warm it directly with your body.
  • the heat source 101 is a power generation unit
  • the power charge may be cheaper.
  • the power to the heating element of the combined heater unit 103 may be reduced. It is more efficient to use the heating method.
  • the heating system further includes an air temperature sensor (not shown) that measures the air temperature, and the control unit 104 is based on the measurement result by the air temperature sensor and the measurement result by the temperature sensor that measures the temperature in the tank. The power supply to the heater 103 is controlled.
  • the control of the energization control temperature in consideration of the thermal load (air temperature) can be performed as follows, for example.
  • the control unit 104 is provided with a table of energization control temperatures using air temperature as a parameter in advance. This table includes the temperature, for example, from -30 ° C to + 50 ° C, 5. C is ranked for each temperature range, and the energization control temperature is determined for each rank. Yes. As a whole, the energization control temperature is determined such that the energization control temperature decreases as the air temperature increases.
  • the control unit 104 determines the energization control temperature from the sent temperature data according to the rank in the table. Thereafter, similarly to the above, the energization to the composite heater unit 103 is controlled based on the determined energization control temperature.
  • the power supply to the combined heater unit 103 is controlled based on the power supply control temperature determined by the new rank.
  • the force that the control unit 104 automatically changes the energization control temperature according to the temperature may be changed manually by the user!

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Abstract

 本発明は、信頼性の高い複合式ヒータを提供することを目的とする。ヒータ1は、内部を温水が流れる温水パイプ1aと、温水パイプ1aと同軸に、温水パイプのない周面に接して固定された金属管1bとを有する。

Description

明 細 書
複合式ヒータおよび該複合式ヒータを備えた暖房システム
技術分野
[0001] 本発明は、床暖房といった建物内の暖房に好適に用いられる複合式ヒータ、および 複合式ヒータを備えた暖房システムに関する。
背景技術
[0002] 床暖房システムは、温水式と電気式に大別される。温水式の床暖房システムは、床 下地と床仕上げ材との間に敷設された、温水パイプを内蔵したパネルを有し、ボイラ 一、ヒートポンプあるいは燃料電池等の熱源器で発生した熱を利用して温水を製造 し、製造した温水を温水パイプに循環させることで室内の暖房を行う。電気式の床暖 房システムは、床下地と床仕上げ材との間に敷設された、電熱ヒータを内蔵したパネ ルを有し、電熱ヒータに通電することによって室内の暖房を行う。
[0003] さらに、特開平 10— 306926号公報には、温水パイプの全長にわたって電熱ヒー タとして銅線を内挿した暖房装置が開示されている。この暖房装置によれば、銅線に 通電することによって、温水パイプ内に充填された水を加熱し暖房を行う。銅線は、 十分な発熱量を得るために、直径が 0. 3〜0. 5mmといった極細の線が用いられる 発明の開示
[0004] し力しながら、特開平 10— 306926号公報に開示されたものは、極細の銅線を温 水パイプの全長にわたって内挿した構成であり、温水パイプへの銅線の挿入時、温 水パイプの設置時、および設置後における銅線の熱膨張 Z収縮の繰り返し等によつ て、銅線が切れてしまうおそれがある。また、夜間の暖房については安価な深夜電力 を利用できるが、昼間の暖房については電力料金の関係力も暖房コストがかさんでし まつ。
[0005] 一方、温水式の暖房システムでは、製造した温水は給湯にも用いており、使用量の 変化に柔軟に対応するため、製造された温水を貯える貯湯タンクを有している。
[0006] 熱源器として電気式ヒートポンプを用いた場合、電力料金を考慮して温水を深夜に 製造し、貯湯タンクに貯えておくことが行われている。温水の製造には所定の時間を 要するため、湯切れを起こさないために昼間の使用量 (給湯量)に合わせて貯湯タン クの容量を大きくすると、給湯タンクの設置場所をとるといったデメリットが発生する。 また、貯湯タンク内の温水を給湯に使用せず温水量が減らな 、まま長時間が経過し た場合や、暖房のみを行い、放熱によって温度低下した温水が貯湯タンク内に戻つ てきた場合は、貯湯タンク内の温水の温度が低下してしまう。そこで貯湯タンク内の 温水を再加熱する必要があるが、貯湯タンク内の温水を再加熱することによって、新 たなコストが発生する。し力も、再加熱された温水は、暖房に用いるために建物内に 弓 Iき込まれる間に温度低下し、熱的なロスが生じる。
[0007] 熱電併給型のコージエネシステムや家庭用燃料電池を熱源器に用いた場合、安定 した発電効率を維持するためには、定常運転が必要であり、温水の吐出量はほぼ一 定となる。また、発電効率を高めれば高めるほど、発生する熱は減り、温水の吐出量 が減る。温水の吐出量を夏場の使用量に合わせると、夏場は暖房を使用せず給湯 での使用が大部分なので、冬場に暖房による使用量が加算され、湯切れを起こして しまう。逆に、冬場の暖房による使用量も考慮して発電能力ゃ貯湯能力を大きくする と、夏場に温水が余ってしまい、その余剰を処理できなくなる。また、留守宅など電力 消費量が低下した際の余剰電力は、貯湯タンク内の温水の再加熱に利用することが できるが、結局は徐々に放熱されてしまうといったロスが生じる。
[0008] そこで本発明は、信頼性が高ぐかつ高効率な暖房を可能とする複合式ヒータおよ びそれを用いた暖房システムを提供することを目的とする。
[0009] 上記目的を達成するため本発明の複合式ヒータは、内部を温水が流れる温水パイ プと、温水パイプの外周面または内周面に接して固定された、通電により発熱する発 熱体とを有する。
[0010] また本発明の複合式ヒータは、内部を温水が流れる温水パイプと、上面に溝が形成 され、この溝に温水パイプを収容したパネル状の基材と、基材の上面、下面、または 内部に固定された、通電によって発熱する発熱体と、基材の上面を覆って設けられ た均熱材とを有する。
[0011] 本発明の複合式ヒータでは、発熱体は、温水パイプの外周面または内周面に接し て固定され、あるいはパネル状の基材に固定されている。このように、発熱体を温水 パイプまたは基材に固定することで、発熱体の位置が安定し、結果的に発熱体の断 線が防止される。発熱体を温水パイプに固定したものはパイプ状ヒータとして構成さ れ、発熱体を基材に固定したものはパネル状ヒータとして構成される。ただし、パイプ 状ヒータにおいても、発熱体が固定された温水ノイブをパネル状の基材に収容し、 パネル状ヒータとすることもできる。発熱体としては、パイプ状ヒータでは金属管やヒー ティングケーブルを好ましく用いることができ、パネル状ヒータでは面状発熱体を好ま しく用いることができる。
[0012] 本発明の暖房システムは、上記本発明の複合式ヒータと、水を加熱することにより 温水を製造する熱源器と、熱源器によって製造された温水を貯留する貯湯ユニットと 、貯湯ユニット内の温水を複合式ヒータとの間で循環させるための温水配管と、複合 式ヒータの発熱体の駆動を制御する制御部とを有する。
[0013] 本発明の暖房システムでは、複合式ヒータは、温水パイプと発熱体とを有して 、る ので、熱源器で製造された温水を温水パイプに流すことによる暖房も可能であるし、 発熱体への通電による暖房も可能である。また、発熱体に通電することによって、温 水パイプ内の温水が加熱され、それを貯湯ユニットとの間で循環させれば、貯湯ュ- ット内の温水の温度低下が抑制される。従って、制御部によって発熱体の駆動を適 宜制御することにより、貯湯ユニット内の温水の再加熱は不要であり複合式ヒータ内 の温水を直接加熱できるので、貯湯ユニットから複合式ヒータまでの間のロスがなくな り、結果的に高効率の暖房が可能となる。
[0014] 具体的には、貯湯ユニットは、温水を貯留するタンクと、タンク内の温水の温度を測 定する温度センサとを有し、制御部は、測定された温度が通電制御温度よりも低いと きに発熱体に通電させ、測定された温度が通電制御温度以上のときには発熱体へ の通電を停止させる。これにより、貯湯ユニット内の温水の温度がほぼ一定に保たれ 、貯湯ユニット内の温水の再加熱が不要となる。また、暖房での使用を考慮して過剰 にタンク容量を大きくする必要はなくなるので貯湯ユニットの小型化が可能となる。
[0015] 以上のように、本発明によれば、製造中や使用中に発熱体が断線することのない信 頼性の高い複合式ヒータを達成することができる。また、本発明の複合式ヒータを用 い、温水による暖房だけでなぐ発熱体への通電による暖房および温水の加熱を行 えるようにすることで、効率のよ!ヽ暖房を達成することができる。
図面の簡単な説明
[0016] [図 1]本発明の一実施形態による複合式ヒータの斜視図である。
[図 2A]図 1に示すヒータを内蔵したパネルの一例の平面図である。
[図 2B]図 2Aに示すパネルの B— B線断面図である。
[図 3]本発明による複合式ヒータの他の例を示す斜視図である。
[図 4]本発明による複合式ヒータのさらに他の例を示す斜視図である。
[図 5]パネルとして構成した本発明による複合式ヒータの他の例を示す断面図である
[図 6]本発明による暖房システムの一例の模式的構成図である。
符号の説明
[0017] 1, 2, 3 ヒータ
la, 2a, 3a, 21 温水ノィプ
lb, 2b 金属管
3b ヒーティングケープノレ
10, 20 パネル
12, 22 基材
12a 溝
13, 23 均熱板
24 面状発熱体
101 熱源器
102 貯湯ユニット
103 複合式ヒータユニット
104 制御部
発明を実施するための最良の形態
[0018] 次に、本発明の実施形態について図面を参照して説明する。
[0019] 図 1は、本発明の一実施形態による複合式ヒータの斜視図である。図 1に示すヒー タ 1は、温水パイプ laと、温水パイプ laと同軸に、温水パイプ laの内面に接して固定 された金属管 lbとを有する。金属管 lbは、発熱体として機能するものであり、金属管 lbに通電することで発熱する。金属管 lbを構成する金属としては、通電によって発 熱する適宜金属を用いることができる。金属管 lbの内面には、防水絶縁処理が施さ れている。温水パイプ laは、放熱効果を有するものであれば、金属や合成樹脂など 任意の材料で構成することができる。
[0020] ヒータ 1は、室内の暖房用、特に床暖房用に用いることができる。ヒータ 1を床暖房 に使用する場合、ヒータ 1は、床下地 (不図示)の上に適宜引き回しパターンで引き回 されて敷設され、その上にさらに床仕上げ材 (付図示)が敷設される。ヒータ 1を引き 回すために、ヒータ 1は、それ自身が可撓性を有するものとされる力、あるいは直線形 状や曲線形状、屈曲形状など適宜形状のものを用意しておき、これらを組み合わせ て所定のパターンとされる。
[0021] 以上のように構成されたヒータ 1によれば、ボイラー、ヒートポンプあるいは燃料電池 等の熱源器で発生した熱を利用して製造された温水は、貯湯タンク (不図示)に一旦 貯えられた後、ヒータ 1の中を通って流れ、その間の放熱によって室内を暖房する。ま た、このヒータ 1によれば、金属管 lbへ通電して金属管 lbを発熱させることによつても 、ヒータ 1内の温水を加熱することができる。つまり、ヒータ 1自身のカロ熱によって、温 水を加熱することができる。ここで、発熱体として温水ノイブ laの内面に接して固定さ れた金属管 lbを用いているので、温水パイプ laに対する位置が安定し、施工時や 使用中に発熱体が断線するおそれはな 、。
[0022] ヒータ 1は、そのまま床下地上に敷設してもよいが、実際の施工においては、施工の 容易性の観点力 パネルに組み込んで構成するのが望ましい。図 2Aに、ヒータ 1を 備えたパネル 10の一例の平面図を示す。また、図 2Bに、図 2Aの B— B線断面図を 示す。
[0023] パネル 10は、板状の基材 12と、基材 12の表面を覆って貼り付けられた均熱板 13と 、基材 12と均熱板 13との間に配されたヒータ 1とを有する。基材 12としては、パネル 1 0に必要な機械的強度および断熱性能を確保できるものであれば任意の材料を用い ることができ、例えば、発泡榭脂板が用いられる。また、基材 12の構造についても任 意であり、単層構造であってもよいし積層構造であってもよい。基材 12の上面には溝 12aがヒータ 1の引き回しパターンに応じて形成されており、ヒータ 1は、この溝 12a内 に収容されている。均熱板 13は、ヒータ 1から発生した熱を面内方向に均一に分散し て床仕上げ材に伝えるものであり、溝 12a内にヒータ 1が収容された状態で基材 12の 上面を覆っている。均熱板 13としては、アルミニウムや銅といった金属製の箔あるい は板などを用いることができる。
[0024] 床暖房へのパネル 10の適用に際しては、ヒータ 1が 1本の温水流路を形成するよう に、複数のパネル 10を継ぎ合わせる。そのため、パネル 10の端面にはヒータ 1の両 端が露出しており、隣り合うパネル 10同士は、ヒータ 1の端部が接続されるように接合 される。ヒータ 1の端部の接続には、温水の漏れを防止し、かつ、金属管 lb同士が電 気的に接続されるようにジョイント等を用いる。
[0025] 図 3および図 4に、本発明による複合式ヒータの他の例を示す。
[0026] 図 3に示すヒータ 2は、発熱体である金属管 2bを温水パイプ 2aと同軸に温水ノイブ 2aの外周面に接して固定して 、る。発熱体を温水パイプ 2aの外周面に配することで 、発熱体が温水と接触しなくなるので、発熱体として金属管 2bを用いた場合であって も金属管 2bに防水処理を施す必要はなくなる。また、温水パイプ 2aとして合成樹脂 管など絶縁性材料を用いれば、絶縁処理も不要である。
[0027] 図 4に示すヒータ 3は、温水パイプ 3aの外周面に、発熱体であるヒーティングケープ ル 3bを螺旋状に巻き付けて固定したものである。この構成によれば、温水パイプ 3a およびヒーティングケーブル 3bとして汎用のものを用いることができるという利点があ る。なお、図 4ではヒーティングケーブル 3bを温水パイプ 3aの外周面に配した例を示 したが、ヒーティングケーブル 3bを温水パイプ 3aの内周面に螺旋状に接して固定し てもよいし、管壁内に螺旋状に埋設してもよい。
[0028] 図 5に、本発明によるヒータパネルの他の例を示す。
[0029] 前述した例では、温水パイプ自身が発熱体を有するものを示したが、本例では、発 熱体は温水パイプと別に構成されている。具体的には、パネル 20は、基材 22と、基 材 22に収容された温水パイプ 21と、基材 22の上面を覆って固定された面状発熱体 24と、さらに面状発熱体 24を覆って設けられた均熱板 23とを有する。 [0030] 温水パイプ 21は、一般的な温水式暖房システムに用いられるものと同様のものであ り、基材 22に形成された溝の中に収容されている。面状発熱体 24は、特に限定され るものではないが、耐久性の観点から、炭素繊維を発熱抵抗体とするものを好ましく 用いることができる。また、炭素繊維を発熱抵抗体とする面状発熱体 24を用いること で、温水パイプ 21内の温水を加熱するだけでなぐ遠赤外線放射による室内の暖房 効果も期待できる。面状発熱体 24の厚さは、好ましくは 2mm以下、より好ましくは 0. 8mm以下である。このような面状発熱体 24としては、例えば、特開平 8— 207191号 公報に開示されたような、非導電性繊維および導電性繊維の交点を接合してなる網 目構造体の両端で導電性繊維と電極とを接続した後、榭脂に包埋あるいは繊維強 化プリプレダシートを積層した繊維強化榭脂成形体が挙げられる。
[0031] 基材 22および均熱板 23としては、前述したものと同様のものを用いることができる ので、それらの説明は省略する。
[0032] ここでは、面状発熱体 24をヒータパネル 20の上面側に配した例を示した力 面状 発熱体 24は基材 22の下面に固定してもよいし、基材 22の中に埋め込んでもよい。ま た、パネル 20に設ける発熱体としては、面状発熱体 24に限定されるものではなぐ金 属板ゃヒーティングケーブルなど、通電することによって発熱する種々の部材を用い ることがでさる。
[0033] 次に、本発明の複合式ヒータを用いた暖房システムについて説明する。
[0034] 図 6は、本発明による暖房システムの一例の模式的構成図である。図 1に示す暖房 システムは、水を加熱することにより温水を製造する熱源器 101と、熱源器 101によつ て製造された温水を貯える貯湯ユニット 102と、複合式ヒータユニット 103と、これらを 制御する制御部 104とを有する。熱源器 101および貯湯ユニット 102は、建物外に設 置され、複合式ヒータユニット 103は建物内に設置されている。また、建物内には、複 合式ヒータユニット 103の他に、キッチンユニット 105、浴槽 106といった給湯設備や 、エアコン 107、照明 108といった電気製品が設置されている。
[0035] 熱源器 101には、例えば、燃料電池やガスエンジンといった発電ユニット、あるいは ヒートポンプなどを用いることができる。
[0036] 熱源器 101として発電ユニットを用いた場合、発電用の燃料としてはガスを利用し、 得られた電力は、エアコン 107や照明 108といった電気製品、および制御部 104へ 供給される。また、発電によって発生した熱を利用して温水が製造され、製造された 温水は貯湯ユニット 102内に貯えられる。発電ユニットを稼動させていない間は、電 力会社から供給された電力が電気製品に供給される。
[0037] 一方、熱源器 101としてヒートポンプを用いた場合、電力会社から供給された電力 によってヒートポンプが稼動され、大気中の熱を利用して温水を製造する。製造され た温水は貯湯ユニット 102内に貯えられる。
[0038] 貯湯ユニット 102は、温水配管によって、キッチンユニット 105や浴槽 106といった 給湯設備、および複合式ヒータユニット 103と接続され、貯湯ユニット 102内に貯えら れた温水は、必要に応じて、キッチンユニット 105や浴槽 106などの給湯設備で使用 され、また、複合式ヒータユニット 103に供給される。複合式ヒータユニット 103に供給 された温水は、複合式ヒータユニット 103内の温水経路を通ったのち、戻り用の温水 配管を介して貯湯ユニット 102に戻される。
[0039] 複合式ヒータユニット 103は、例えば、図 1に示したヒータ 1、図 2Aに示したパネル 1 0、図 5に示したパネル 20など、温水パイプと発熱体とを複合化した複合式ヒータを 含み、ここでは床暖房パネルとして構成している。また、複合式ヒータは、設置される 領域の面積や平面形状に応じて適宜組み合わせて設置される。複合式ヒータュニッ ト 103には、発熱体を駆動するために、電力会社から供給された電力あるいは発電 ユニットから得られた電力が供給される。なそ、図 6では、電力の経路を一点鎖線、水 の経路を破線、温水の経路を太い実線で示している。
[0040] 貯湯ユニット 102は、温水を貯留するタンクと、タンク力も温水を送り出すポンプと、 タンク内の温水の温度を測定する温度センサとを有する。この暖房システムの動作中 は、温度センサで測定された温水の温度が電気信号として制御部 104へ送られ、制 御部は測定された温度に基づ 、て、ポンプの動作および複合式ヒータユニット 103 への通電を制御する。
[0041] 次に、上述した暖房システムの動作について説明する。
[0042] この暖房システムは、製造した温水を給湯用および暖房用に使用するものであるが 、給湯時の動作は従来の温水式暖房システムと同様であるので説明は省略し、暖房 時の動作にっ 、て説明する。
[0043] 暖房中は、複合式ヒータユニット 103が動作している。複合式ヒータユニット 103の 動作中は、貯湯ユニット 102のタンクと複合式ヒータユニット 103との間を温水が循環 している。この間、給湯によってタンク内の温水が使用されなければ、新たに温水が 製造されないので、タンク内の温水の温度は時間の経過とともに低下する。
[0044] 貯湯ユニット 102内の温水の温度は、温度センサによってリアルタイムあるいは一 定時間間隔で測定され、その結果が制御部 104に送られる。制御部 104には、複合 式ヒータユニット 103の通電を制御する基準となる通電制御温度が設定されており、 測定された温度が通電制御温度以上である場合は、複合式ヒータユニット 103の発 熱体への通電は行わず、温水の循環のみによる暖房を行う。熱源器 101により製造 される温水の温度は、一般には 60°C〜80°Cであり、その場合、通電制御温度とは、 例えば 50°Cである。一方、タンク内の温水の温度が通電制御温度よりも低い場合は 、複合式ヒータユニット 103の発熱体へ通電し、それによつて発生した熱で、複合式ヒ ータユニット 103内の温水の加熱および暖房を行う。加熱された複合式ヒータユニット 103内の温水は、貯湯ユニット 102のタンク内へ戻り、タンク内の温水の温度を上昇 させる。
[0045] 以上のような制御を行うことで、給湯によって温水が使用されるか否かに拘わらず、 貯湯ユニット 102内の温水の温度がほぼ一定に保たれる。したがって、従来のように 貯湯ユニット 102内の温水の再加熱が不要となる。本例でも温度低下した温水の加 熱のためにエネルギーを消費する力 従来のように貯湯ユニット 102内の温水を加熱 するのではなぐ複合式ヒータユニット 103内の温水を加熱するので、温水を加熱す るのに用いたエネルギーの大部分を暖房に利用することができ、結果的に高効率の 暖房システムが達成される。従来の温水式暖房システムでは、貯湯ユニット 102内の 温水を加熱するために用いたエネルギーのうち 50%程度は、温水を建物内に導入 するまでの間に失われるといわれている力 本暖房システムではこのようなロスは殆ど 生じない。
[0046] また、貯湯ユニット 102内の温水の温度がほぼ一定に保たれることから、貯湯ュ-ッ ト 102のタンク容量を、暖房での使用による温度低下を考慮して過剰に大きくする必 要はなぐ熱源器 101の発電能力または加熱能力に応じた最適な容量とし、タンクの 容量を小さくすることができる。貯湯ユニット 102のサイズの大部分はタンクが占めて おり、タンクの容量を小さくできることによって、貯湯ユニット 102の小型化が達成され る。
[0047] なお、上述した例では、通電制御温度を一定のものとして説明した力 暖房に用い るのに必要な温水の温度は熱負荷によっても変化する。
[0048] 例えば、熱負荷が低い場合は、温水の温度が低くても十分に暖房に利用すること ができ、通電による加熱が不要な場合もある。
[0049] 一方、熱負荷が高い場合は、給湯にも使用されるケースが多いため、温水の温度 が高くても貯湯ユニット 102のタンク内の温水が減少し、温水による暖房が十分に行 えないこともある。この場合は、複合式ヒータユニット 103への通電によって暖房を行 つたほうが好ましい。また、熱源器 101がヒートポンプの場合、温水を製造するための 成績係数(COP : Coefficient Of Performance)は気温の低下とともに下がる傾向が あり、配管からのロスを含めると、複合式ヒータユニット 103の発熱体で直接暖めたほ うが効率がよくなる場合もある。また、熱源器 101が発電ユニットの場合、燃料使用量 を電力会社の電力料金と比較したとき、電力料金のほうが安価であることがあり、その 場合は複合式ヒータユニット 103の発熱体への通電により暖房を行ったほうが効率的 である。
[0050] そこで、熱負荷に応じて通電制御温度を変化させることが好ま 、。熱負荷は、一 般に気温に依存しており、気温が高いほど熱負荷は低くなり、気温が低いほど熱負 荷は高くなる。従って、暖房システムは、気温を測定する気温センサ(不図示)をさら に備え、制御部 104は、気温センサによる測定結果とタンク内の温度を測定する温 度センサによる測定結果とに基づいて複合式ヒータユニット 103への通電を制御する ようにすることちでさる。
[0051] 熱負荷 (気温)を考慮した通電制御温度の制御は、例えば、以下のようにして行うこ とができる。制御部 104に、気温をパラメータとした通電制御温度のテーブルを予め 持たせておく。このテーブルには、気温を、例えば、—30°Cから + 50°Cまで、 5。Cの 温度範囲ごとにランク分けしておき、各ランクに対応して通電制御温度が定められて いる。通電制御温度は、全体として、気温が高くなればなるほど通電制御温度が低く なるように定められる。気温センサからの測定結果が電気信号として制御部 104に送 られると、制御部 104は、送られてきた気温データから、テーブル内のランクに従って 、通電制御温度を決定する。それ以降は、前述したのと同様に、決定した通電制御 温度に基づいて、複合式ヒータユニット 103への通電を制御する。気温が変化し、ラ ンクが変わった場合は、新たなランクにより決定された通電制御温度に基づ 、て複合 式ヒータユニット 103への通電を制御する。
このように、熱負荷に応じて通電制御温度を変更することで、より効率的な暖房が 可能となる。ここでは、気温に応じて制御部 104が自動的に通電制御温度を変更さ せるものとした力 ユーザがマニュアルで変更するようにしてもよ!、。

Claims

請求の範囲
[1] 内部を温水が流れる温水パイプと、
前記温水パイプの外周面または内周面に接して固定された、通電により発熱する 発熱体とを有する複合式ヒータ。
[2] 前記発熱体は、前記温水パイプと同軸に設けられた金属管である、請求項 1に記 載の複合式ヒータ。
[3] 前記発熱体は、前記温水パイプの外周面、内周面または管壁内に螺旋状に設けら れたヒーティングケーブルである、請求項 1に記載の複合式ヒータ。
[4] 上面に溝が形成され、該溝に前記温水パイプを収容したパネル状の基材と、前記 基材の上面を覆って設けられた均熱材とをさらに有する、請求項 1に記載の複合式ヒ ータ。
[5] 内部を温水が流れる温水パイプと、
上面に溝が形成され、該溝に前記温水パイプを収容したパネル状の基材と、 前記基材の上面、下面、または内部に固定された、通電によって発熱する発熱体と 前記基材の上面を覆って設けられた均熱材とを有する複合式ヒータ。
[6] 前記発熱体は面状発熱体である、請求項 5に記載の複合式ヒータ。
[7] 請求項 1に記載の複合式ヒータと、
水を加熱することにより温水を製造する熱源器と、
前記熱源器によって製造された温水を貯留する貯湯ユニットと、
前記貯湯ユニット内の温水を前記複合式ヒータとの間で循環させるための温水配 管と、
前記複合式ヒータの発熱体の駆動を制御する制御部とを有する暖房システム。
[8] 前記貯湯ユニットは、温水を貯留するタンクと、該タンク内の温水の温度を測定する 温度センサとを有し、
前記制御部は、測定された温度が予め設定された通電制御温度よりも低いときに 前記発熱体に通電させ、測定された温度が前記通電制御温度以上のときには前記 発熱体への通電を停止させる、請求項 7に記載の暖房システム。
[9] 前記通電制御温度は変更可能である、請求項 8に記載の暖房システム。
[10] 気温を測定する気温センサをさらに有し、前記制御部は前記気温センサで測定さ れた気温に基づ!/、て前記通電制御温度を変更する、請求項 9に記載の暖房システ ム。
[11] 前記熱源器は発電ユニットである、請求項 7に記載の暖房システム。
[12] 前記熱源器はヒートポンプである、請求項 7に記載の暖房システム。
[13] 請求項 5に記載の複合式ヒータと、
水を加熱することにより温水を製造する熱源器と、
前記熱源器によって製造された温水を貯留する貯湯ユニットと、
前記貯湯ユニット内の温水を前記複合式ヒータとの間で循環させるための温水配 管と、
前記複合式ヒータの発熱体の駆動を制御する制御部とを有する暖房システム。
[14] 前記貯湯ユニットは、温水を貯留するタンクと、該タンク内の温水の温度を測定する 温度センサとを有し、
前記制御部は、測定された温度が予め設定された通電制御温度よりも低いときに 前記発熱体に通電させ、測定された温度が前記通電制御温度以上のときには前記 発熱体への通電を停止させる、請求項 13に記載の暖房システム。
[15] 前記通電制御温度は変更可能である、請求項 14に記載の暖房システム。
[16] 気温を測定する気温センサをさらに有し、前記制御部は前記気温センサで測定さ れた気温に基づ!/、て前記通電制御温度を変更する、請求項 15に記載の暖房システ ム。
[17] 前記熱源器は発電ユニットである、請求項 13に記載の暖房システム。
[18] 前記熱源器はヒートポンプである、請求項 13に記載の暖房システム。
PCT/JP2006/310153 2005-05-31 2006-05-22 複合式ヒータおよび該複合式ヒータを備えた暖房システム WO2006129511A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06746687A EP1890086A1 (en) 2005-05-31 2006-05-22 Composite heater and heating system with the composite heater
US11/915,763 US20090103908A1 (en) 2005-05-31 2006-05-22 Combined heater and space heating system including the combined heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-159079 2005-05-31
JP2005159079A JP2006336886A (ja) 2005-05-31 2005-05-31 複合式ヒータおよび該複合式ヒータを備えた暖房システム

Publications (1)

Publication Number Publication Date
WO2006129511A1 true WO2006129511A1 (ja) 2006-12-07

Family

ID=37481440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310153 WO2006129511A1 (ja) 2005-05-31 2006-05-22 複合式ヒータおよび該複合式ヒータを備えた暖房システム

Country Status (7)

Country Link
US (1) US20090103908A1 (ja)
EP (1) EP1890086A1 (ja)
JP (1) JP2006336886A (ja)
KR (1) KR20080028375A (ja)
CN (1) CN101189477A (ja)
TW (1) TW200716920A (ja)
WO (1) WO2006129511A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012904A3 (de) * 2007-07-24 2010-02-18 Bleckmann Gmbh & Co. Kg Kompakte hochdruckfähige spiraldurchfluss-heizeinheit
US9648983B2 (en) 2012-05-15 2017-05-16 Bleckmann Gmbh & Co. Kg Helical dynamic flow through heater
US9664414B2 (en) 2010-07-12 2017-05-30 Bleckmann Gmbh & Co. Kg Dynamic flow heater

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305672A (ja) * 2007-06-07 2008-12-18 Alpha Oikos:Kk プレートヒータ
JP5378729B2 (ja) * 2008-08-29 2013-12-25 アァルピィ東プラ株式会社 樹脂成形体及びその製造方法
FR2944586A1 (fr) * 2009-04-20 2010-10-22 Hora Dispositif de chauffage par circulation de fluide caloporteur et installation de chauffage associe
US20110120163A1 (en) * 2009-10-19 2011-05-26 Carrier Corporation Semi-Frozen Product Dispenser
KR100962979B1 (ko) * 2009-10-19 2010-06-10 박자현 히트 유닛 및 이를 이용한 난방 패널
FR2962813B1 (fr) * 2010-07-19 2013-06-28 Acome Soc Cooperative De Production Sa A Capital Variable Dispositif de detection d'un composant enfoui ou recouvert d'une couche de revetement et procede associe
CN103128258A (zh) * 2011-11-30 2013-06-05 讯凯国际股份有限公司 导热模块及其制法
CN104469998A (zh) * 2014-11-17 2015-03-25 北京卫星环境工程研究所 卫星推进系统用管路加热器保护设置方法
CN106052135B (zh) * 2016-07-18 2021-12-14 珠海格力电器股份有限公司 热水机组及其排水结构
CN109788589B (zh) * 2019-01-24 2021-10-29 广西桂仪科技有限公司 一种圆管厚膜加热器及制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356847A (en) * 1976-11-01 1978-05-23 Furukawa Electric Co Ltd:The Heating apparatus
JPS5777838A (en) * 1980-10-30 1982-05-15 Matsushita Electric Works Ltd Floor heating panel
JPH08207191A (ja) 1995-02-06 1996-08-13 Nippon Oil Co Ltd 発熱体および発熱体用の網目状構造体
JPH09152140A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Works Ltd 床暖房装置
JPH10306926A (ja) 1996-02-26 1998-11-17 Kim Du Nyun 電熱温水管による暖房方法及びその装置
JP2000320846A (ja) * 1999-05-11 2000-11-24 Eidai Co Ltd 床暖房パネルの製造方法及びその方法によって製造された床暖房パネル
JP2002349964A (ja) * 2001-05-22 2002-12-04 Hitachi Air Conditioning System Co Ltd 電気温水器及びその運転方法
JP2005025986A (ja) * 2003-06-30 2005-01-27 Osaka Gas Co Ltd コージェネレーションシステム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274839A (en) * 1941-05-21 1942-03-03 Us Rubber Co Electrically heated hose
US2375563A (en) * 1942-04-02 1945-05-08 American Cyanamid Co Preparation of esters of aconitic acid
US3364337A (en) * 1963-07-26 1968-01-16 Electro Trace Corp Pipe heating arrangement
US3355572A (en) * 1964-07-01 1967-11-28 Moore & Co Samuel Composite electrically heated tubing product
US3519023A (en) * 1968-08-05 1970-07-07 Ora W Burns Sr Defrosting collar for pipes
US3808400A (en) * 1972-06-12 1974-04-30 E Cornella Resistance heating system
US3834458A (en) * 1973-06-15 1974-09-10 Thermon Mfg Co Pipe heat transfer assembly and method of making same
US4152577A (en) * 1976-06-23 1979-05-01 Leavines Joseph E Method of improving heat transfer for electric pipe heaters
US5933574A (en) * 1998-02-09 1999-08-03 Avansino; Gary L. Heated fluid conduit
JP3592691B2 (ja) * 1998-07-09 2004-11-24 新日本石油株式会社 床暖房用電熱ボード
JP2002276958A (ja) * 2001-03-15 2002-09-25 Inoac Corp 床暖房パネル
JP2003163070A (ja) * 2001-11-27 2003-06-06 Misawa Shokai:Kk 発熱装置
GB0219373D0 (en) * 2002-08-20 2002-09-25 Heat Trace Ltd Heated conduit
JP2004218973A (ja) * 2003-01-16 2004-08-05 Corona Corp 給湯装置
JP4089476B2 (ja) * 2003-03-18 2008-05-28 凸版印刷株式会社 床暖房構造
JP2004333040A (ja) * 2003-05-09 2004-11-25 Miyaden Co Ltd 流体加熱装置
EP1526322B1 (de) * 2003-10-21 2007-11-07 NORMA Germany GmbH Fluidleitung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356847A (en) * 1976-11-01 1978-05-23 Furukawa Electric Co Ltd:The Heating apparatus
JPS5777838A (en) * 1980-10-30 1982-05-15 Matsushita Electric Works Ltd Floor heating panel
JPH08207191A (ja) 1995-02-06 1996-08-13 Nippon Oil Co Ltd 発熱体および発熱体用の網目状構造体
JPH09152140A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Works Ltd 床暖房装置
JPH10306926A (ja) 1996-02-26 1998-11-17 Kim Du Nyun 電熱温水管による暖房方法及びその装置
JP2000320846A (ja) * 1999-05-11 2000-11-24 Eidai Co Ltd 床暖房パネルの製造方法及びその方法によって製造された床暖房パネル
JP2002349964A (ja) * 2001-05-22 2002-12-04 Hitachi Air Conditioning System Co Ltd 電気温水器及びその運転方法
JP2005025986A (ja) * 2003-06-30 2005-01-27 Osaka Gas Co Ltd コージェネレーションシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012904A3 (de) * 2007-07-24 2010-02-18 Bleckmann Gmbh & Co. Kg Kompakte hochdruckfähige spiraldurchfluss-heizeinheit
US9664414B2 (en) 2010-07-12 2017-05-30 Bleckmann Gmbh & Co. Kg Dynamic flow heater
US9648983B2 (en) 2012-05-15 2017-05-16 Bleckmann Gmbh & Co. Kg Helical dynamic flow through heater

Also Published As

Publication number Publication date
JP2006336886A (ja) 2006-12-14
KR20080028375A (ko) 2008-03-31
TW200716920A (en) 2007-05-01
EP1890086A1 (en) 2008-02-20
CN101189477A (zh) 2008-05-28
US20090103908A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2006129511A1 (ja) 複合式ヒータおよび該複合式ヒータを備えた暖房システム
US20100282458A1 (en) Carbon fiber heating source and heating system using the same
JP2009074743A (ja) ヒートポンプ式床暖房装置及び該装置に用いられる蓄熱容器
JP3195908B2 (ja) 電熱温水管による暖房方法及びその装置
JP5405964B2 (ja) ヒートポンプ給湯システム
JP2004526932A (ja) 建物暖房装置
CN110832953A (zh) 加热系统以及用于制造加热系统的方法
US7168917B2 (en) Heat-generating blower housing
JP2007003148A (ja) ハイブリッド式暖房マット、その制御方法、及びハイブリッド式暖房システム
JP4694168B2 (ja) 床暖房建築物
JP2012097998A (ja) 加熱器及び加熱器の製造方法
JP2006317072A (ja) 蓄熱式床下暖房システム
CN209991523U (zh) 一种地暖
CN2462276Y (zh) 供暖加热装置
Thieblemont et al. Alternative method to integrate electrically heated floor in TRNSYS: Load management
JP2006145180A (ja) 蓄熱式電気床暖房装置とその温度制御方法
RU7729U1 (ru) Устройство для отопления помещений
JP2000240958A (ja) 蓄熱床暖房装置
JPH04292719A (ja) 蓄熱型床暖房装置
KR100700636B1 (ko) 냉·난방 시스템
KR200223667Y1 (ko) 건축용 발열패널
CN212108614U (zh) 一种装修用的供暖管道系统
KR200367343Y1 (ko) 전기발열 보온배관 구조
JP2601770B2 (ja) 融雪屋根材
KR20030044317A (ko) 정온전선 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019431.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11915763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077030284

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746687

Country of ref document: EP