WO2006126457A1 - Image processor - Google Patents

Image processor Download PDF

Info

Publication number
WO2006126457A1
WO2006126457A1 PCT/JP2006/310033 JP2006310033W WO2006126457A1 WO 2006126457 A1 WO2006126457 A1 WO 2006126457A1 JP 2006310033 W JP2006310033 W JP 2006310033W WO 2006126457 A1 WO2006126457 A1 WO 2006126457A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring pattern
image
data
display
resolution
Prior art date
Application number
PCT/JP2006/310033
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Toyofuku
Yukihisa Ozaki
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006126457A1 publication Critical patent/WO2006126457A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks

Definitions

  • the present invention relates to an image processing apparatus, and in particular, is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and vector format image data representing the inputted wiring pattern is drawn raster.
  • the present invention relates to an image processing apparatus that performs RIP processing to develop data.
  • a drawing system that performs drawing using a digital drawing method includes a drawing device that performs drawing on a substrate, and an image processing device that is connected to the drawing device.
  • the image processing device is a CAD (Computer Aided Design). ) / CAM (Computer Aided Manufacturing) ⁇ Ij image data (vector format and fixed format data representing the wiring pattern to be formed on the board) is input, and the input image data It has a function to perform RIP (Raster Image Processor) processing that expands to drawing raster data, and to supply drawing raster data obtained by RIP processing to the drawing device.
  • CAD Computer Aided Design
  • CAM Computer Aided Manufacturing
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-184921
  • the drawing apparatus When drawing a wiring pattern on a substrate, in order to prevent the substrate from being consumed unnecessarily due to some trouble S in the drawn wiring pattern, the drawing apparatus is arranged on the substrate. It is desirable to visually check the state of the wiring pattern before drawing the line pattern.
  • the above visual check is performed using the mask created by exposing the wiring pattern on the film.
  • the mask is not created. This is done by displaying the wiring pattern represented by the data on the display means.
  • the wiring pattern that can be displayed at once on the display means whose drawing raster data has an extremely higher resolution than the display means is limited to only a part of the wiring pattern represented by the drawing raster data. For this reason, in the visual check of the wiring pattern represented by the raster data for drawing, it is necessary to repeat the check while appropriately scrolling the portion of the wiring pattern to be displayed on the display means. However, there is a problem that it is difficult to grasp the force that the part currently displayed in the whole wiring pattern represented by the drawing raster data.
  • the raster data for drawing is data that represents the wiring pattern to be formed on the substrate at the same high resolution as the drawing by the drawing device, the amount of data is enormous, and the RIP processing takes a long time. If it is detected by visual check that there is a defect in the wiring pattern, it is necessary to correct the image data so that the detected defect can be resolved, and then perform the time-consuming RIP process again. There is also a problem if it has a great adverse effect on the progress of work such as substrate manufacturing.
  • the present invention has been made in consideration of the above facts, and an object thereof is to obtain an image processing apparatus capable of realizing labor saving of visual check for rendering raster data.
  • an image processing apparatus is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and the inputted wiring
  • An image processing apparatus that performs RIP processing for developing image data in a vector format representing a pattern into the drawing raster data, and based on the image data, generates a low-resolution wiring pattern image that represents the wiring pattern at a low resolution.
  • a low-resolution image display control means for generating and displaying the generated low-resolution wiring pattern image on the display means; and the low-resolution wiring displayed on the display means by the low-resolution display control means
  • the image data corresponding to the enlargement display target area is expanded into high-resolution raster data to expand the enlargement display area.
  • a developing unit that generates a high-resolution wiring pattern image that represents a wiring pattern in a display target region at a high resolution; a high-resolution image display control unit that displays the high-resolution wiring pattern image generated by the developing unit on the display unit; , Is further provided.
  • the image processing apparatus is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and is a vector image representing the wiring pattern. Data is input and RIP processing is performed to expand the input image data to raster data for drawing.
  • the low resolution image display control means generates a low resolution wiring pattern image representing the wiring pattern at a low resolution based on the image data, and the generated low resolution wiring pattern image is Displayed on the display means.
  • the expansion means corresponds to the enlargement display target area of the image data when the enlargement display target area is designated via the designation means on the low resolution wiring pattern image displayed on the display means by the low resolution display control means.
  • the high resolution image display control means causes the display means to display the high resolution wiring pattern image generated by the expansion means.
  • the wiring represented by the image data is specified by specifying the enlarged display target area via the specifying means on the low-resolution wiring pattern image displayed on the display means.
  • the desired part of the pattern can be displayed on the display means as a high-resolution wiring pattern image, and a visual check can be performed while grasping the position of this part on the entire wiring pattern, so that it is displayed on the display means.
  • the operation is simplified and the visual check can be performed efficiently. Therefore, according to the first aspect of the invention, it is possible to realize labor saving of visual check for the raster data for drawing.
  • data corresponding to the designated enlargement display target area in the image data is developed into high resolution raster data (high resolution wiring pattern image). Since it is displayed on the display means, it is not necessary to perform RIP processing prior to displaying the high-resolution wiring pattern image. This eliminates the need for time-consuming RIP processing multiple times even when a visual check detects a defect in the wiring pattern, which can adversely affect the progress of work such as board manufacturing. Can be avoided.
  • the wiring pattern drawn on the substrate by the drawing apparatus includes a plurality of sheets in which a plurality of the same unit wiring patterns corresponding to a single circuit pattern are arranged.
  • the low-resolution image display control unit generates an image representing the entire wiring pattern at a low resolution as a low-resolution wiring pattern image.
  • the expanding means displays a single specific unit in the specific sheet of the image data. Only the data corresponding to the wiring pattern is expanded into high-resolution raster data, and an image that displays only the specific unit wiring pattern is displayed as the high-resolution wiring pattern image of the specific sheet. It is preferable to be configured to formed.
  • the wiring pattern (whole wiring pattern) force drawn on the board by the drawing device is a wiring pattern in which a plurality of sheets each having a plurality of identical unit wiring patterns corresponding to a single circuit pattern are arranged.
  • the visual check is normally performed for only one of the unit wiring patterns in the entire wiring pattern.
  • a specific sheet in which a plurality of the same unit wiring patterns are arranged is designated as the enlargement display target area, a single specific unit wiring pattern in the specific sheet is specified. Only the data corresponding to the turn is expanded into high-resolution raster data, and an image that displays only a specific unit wiring pattern is generated as a high-resolution wiring pattern image of a specific sheet. A high-resolution wiring pattern image of a specific sheet can be generated and displayed in a short time.
  • the low-resolution image display control means uses the wiring pattern as a low-resolution wiring pattern image.
  • An image representing the entire screen is generated and displayed at a low resolution, and the developing means displays image data when a specific sheet is designated as an enlarged display target area on the low resolution wiring pattern image representing the entire wiring pattern.
  • data corresponding to unit wiring patterns other than a single specific unit wiring pattern in a specific sheet is excluded from the target of expansion to high resolution raster data, and data other than these specific unit wiring patterns is excluded.
  • a high-resolution wiring pattern image of a specific sheet that displays only the frame line representing the outer edge.
  • a high-resolution wiring pattern image of a specific sheet designated as an enlarged display target area can be generated and displayed in a short time.
  • the designation means is provided on the high-resolution wiring pattern image displayed on the display means by the high-resolution image display control means. It is preferable to further provide a distance calculation / display means that calculates the distance between the two specified points and displays them on the display means when two points for distance measurement are specified.
  • the wiring pattern represented by the drawing raster data is drawn on the substrate at a certain resolution
  • the wiring pattern represented by the drawing raster data and each part in the wiring pattern actually drawn on the substrate are drawn.
  • the position fluctuates with respect to the wiring pattern represented by the image data with the maximum distance between adjacent pixels in the resolution at the time of drawing due to the influence of rounding errors. For this reason, there is a pinhole area whose area is less than the predetermined value in the wiring pattern! /, Whether the force is sufficient, and the width of the area overlapping the adjacent pattern in the wiring pattern is a predetermined value.
  • the image data can be developed to determine whether or not there is a pattern with less than the pattern, and whether or not there is a pattern with a gap less than the predetermined value between the adjacent patterns in the wiring pattern. It is desirable to finally check on the wiring pattern represented by the resulting high resolution raster data.
  • the distance between the two specified points is calculated and displayed on the display means.
  • the visual check of the wiring pattern based on the resolution wiring pattern image the presence or absence of a pinhole area whose area is less than the predetermined value, or the width of the area overlapping with the adjacent pattern It is possible to accurately and easily check the presence or absence of a pattern with less than a predetermined value and the presence or absence of a pattern with a gap between adjacent patterns being less than a predetermined value. Can be realized.
  • the defect is not detected in the image data. It will be detected by inspection means before RIP processing, and based on the detected defect! / After correcting the image data, RIP processing will be performed on the board due to the image data. It is possible to prevent problems from occurring. And, since the error of the image data that causes the above errors and malfunctions can be detected before RIP processing, it is not necessary to repeat the RIP processing and the drawing process by the drawing device. It can be prevented that the defect of the image data has a great adverse effect on the progress of the work such as the manufacture of the substrate or the substrate is wasted due to the defect.
  • the drawing conditions when the drawing apparatus draws the wiring pattern on the board are indeterminate, so even if the image data is checked for defects in this process Therefore, it is difficult to effectively reduce the above problems.
  • the RIP process is a process of developing image data into drawing raster data corresponding to the drawing conditions (for example, resolution) when the drawing apparatus draws the wiring pattern on the board.
  • the above drawing conditions are fixed.
  • the drawing conditions are acquired, a threshold value used for determining a defect in the inspection is set according to the acquired drawing condition, and the inspection is performed using the set threshold value. Since the defect is performed, it is possible to determine with high accuracy whether or not the image data has a defect that causes a defect caused by the image data on the substrate created through the drawing process by the drawing apparatus. Accuracy can be improved.
  • the power pattern includes a circular portion whose circumference is less than the first predetermined value in the wiring pattern represented by the image data, and the radius at the starting position in the wiring pattern. Whether the difference in the radius at the end point includes an arc with a radius greater than or equal to the second predetermined value, and the wiring pattern includes an arc with an radius greater than or equal to the third predetermined value!
  • the wiring pattern includes a line using an aperture shape other than a circle, and the wiring pattern forms a closed curve with the same start point and end point, and the end point is determined from the start point. Whether or not it includes a self-intersecting line that intersects with its own line on the way to the wiring pattern Whether or not there is a coordinate that is more than the fourth predetermined value away from the origin force, and whether or not there is a pinhole area whose area is less than the fifth predetermined value in the wiring pattern represented by the image data Or whether there is a pattern whose width overlaps with an adjacent pattern in the wiring pattern is less than a sixth predetermined value, and whether there is an adjacent pattern in the wiring pattern. It can be configured to perform a process of inspecting at least one of whether or not there is a pattern having a gap less than a seventh predetermined value.
  • the inspection means is, for example, as described in claim 8.
  • the resolution which is one of the drawing conditions applied when the drawing device draws a wiring pattern on the board, is used to check whether or not the image data has a defect that causes the board to be defective.
  • the first predetermined value, the second predetermined value, and the fifth predetermined value to the seventh predetermined value are set according to the acquired resolution. It is preferable to perform an inspection using the value.
  • the circular arc portion whose circumferential length is less than the first predetermined value in the wiring pattern represented by the image data
  • the process of inspecting whether or not there is a pattern with a width less than the sixth predetermined value overlapping, and the gap between adjacent patterns in the wiring pattern is less than the seventh predetermined value At least one of the processes for checking whether a pattern exists or not When performing drawing apparatus based on the resolution when drawing a wiring pattern on the substrate Te, can improve the accuracy of these inspection process.
  • the inspection means draws the image data in order to inspect whether or not the generated substrate has a defect that causes a defect.
  • the inspection means inspects whether there is a defect that causes a defect in the created substrate in the image data, and there is a pinhole area whose area is less than the fifth predetermined value in the wiring pattern.
  • the inspecting means may inspect the power / power of the image data having a defect that causes an error in the RIP process as described in claim 10, for example. preferable. This prevents the RIP process from stopping due to an error in the RIP process caused by the image data, and the need to perform the RIP process again after correcting the image data. Can do.
  • the inspection means when it is determined by the inspection means that the image data is defective, it is determined that there is a defect. Defects that acquire coordinates on a wiring pattern in a state where the coordinates on the wiring pattern are acquired, and based on the acquired coordinates, the wiring pattern represented by the image data can be superimposed and displayed on the wiring pattern. It is preferable to further include data generation means for generating location explicit data. Accordingly, when the inspection unit determines that the image data is defective, the display unit of the information processing apparatus (for example, the information processing apparatus that realizes the CAM system) displays the wiring pattern represented by the image data.
  • the display unit of the information processing apparatus for example, the information processing apparatus that realizes the CAM system
  • a predetermined mark can be easily clearly specified (superimposed display) at a location determined to have a defect in the wiring pattern displayed by the data generation means, and a portion corresponding to the defect in the image data can be displayed. It is possible to easily perform the work of identifying and correcting the problem.
  • a drawing condition applied when the drawing apparatus draws a wiring pattern on the substrate is acquired.
  • the drawing conditions when the drawing apparatus draws the wiring pattern on the board include information that defines the drawing range of the wiring pattern on the board, but the content of this information is inappropriate In the drawing of the wiring pattern by the drawing apparatus, there is a possibility that inconveniences such as wasteful consumption of the substrate occur due to the drawing range deviating from the substrate.
  • the drawing range of the wiring pattern on the substrate is calculated based on the drawing conditions and the image data, and the positional relationship between the substrate and the drawing range of the wiring pattern on the substrate is calculated.
  • the drawing device checks whether the content of the information that defines the drawing range of the wiring pattern on the board is inappropriate or not before drawing the wiring pattern on the board. It is possible to avoid the occurrence of inconvenience such as wasteful consumption of the substrate.
  • the present invention generates a low-resolution wiring pattern image representing a wiring pattern at a low resolution based on the vector format image data representing the wiring pattern, and displays it on the display means.
  • the data corresponding to the enlarged display target area in the image data is expanded into the high-resolution raster data to display the enlarged display. Since a high-resolution wiring pattern image representing the wiring pattern in the target area with high resolution is generated and displayed on the display means, the excellent effect of saving labor for visual check for the raster data for drawing can be realized. Have.
  • FIG. 1 is a schematic configuration diagram of a substrate drawing system according to the present embodiment.
  • FIG. 2 is a functional block diagram illustrating the flow of data in the image processing apparatus.
  • FIG. 3 is a flowchart showing the contents of data check processing.
  • FIG. 4 is an image diagram for explaining various checks in data check processing.
  • FIG. 5 is an image diagram for explaining various checks in data check processing.
  • FIG. 6 is an image diagram showing an example of a Gerber error file.
  • FIG. 7 is an image diagram showing an example of an error location display.
  • FIG. 8 is a flowchart showing the contents of layout confirmation processing.
  • FIG. 9 is an image diagram showing an example of a layout display screen.
  • FIG. 10 is an image diagram showing the rotation of the wiring pattern on the layout display screen.
  • FIG. 11 is an image diagram showing a mirror display of a wiring pattern on a layout display screen.
  • FIG. 12 is a flowchart showing the contents of raster display processing.
  • FIG. 13 is an image diagram showing an example of the arrangement of pieces in a drawing unit (entire wiring pattern).
  • FIG. 14 is an image diagram showing an example of a raster display screen.
  • FIG. 15 is an image diagram showing a state in which pieces are displayed on the raster display screen.
  • FIG. 16 is an image diagram showing a state where a sheet of a raster display screen is displayed.
  • FIG. 17 is an image diagram showing a state in which a distance between two designated points is displayed in a raster display of a wiring pattern.
  • FIG. 1 shows a substrate drawing system 10 according to this embodiment.
  • the substrate drawing system 10 includes an exposure device 12 as a drawing device that directly draws a wiring pattern represented by the input drawing raster data on a substrate whose surface is coated with a photosensitive material.
  • the exposure apparatus 12 irradiates the substrate with a light beam modulated according to the raster data for drawing using a spatial light modulator such as a digital micromirror device (DMD). Can be used.
  • DMD digital micromirror device
  • the substrate on which the wiring pattern is drawn by the exposure apparatus 12 is shaped as a printed wiring board (PWB) on which a wiring pattern is formed and circuit elements can be mounted through known processes such as development, etching, cleaning, cutting, and drilling.
  • PWB printed wiring board
  • the exposure apparatus 12 is connected to an image processing apparatus 14 for supplying drawing raster data to the exposure apparatus 12, and this image processing apparatus 14 is connected as a CAD / CAM system via a network 16 such as a LAN.
  • a network 16 such as a LAN.
  • Each is connected to a plurality of functioning computers 18.
  • the power shown in FIG. 1 shows three computers 18 as an example. The number of such computers 18 is not limited to the above.
  • CAD system combined to function as 18 design electronic circuits to be mounted on a printed wiring board, design wiring patterns to be formed on a printed wiring board (wiring patterns corresponding to pieces (unit wiring patterns) described later), etc.
  • the data in a predetermined format describing the wiring pattern is output to another computer 18 (which may be the same computer) functioning as a CAM system via the network 16.
  • the image processing device 14 corresponds to the image processing device according to the present invention.
  • a computer includes a CPU, memory, HDD22 (see Fig. 2), display as display means, keyboard, mouse, etc.
  • the CPU of the image processing device 14 is connected to a job registration GUI (Graphical User Interface) 24, a data reception processing unit 26, a data check processing unit 28, a layout check GUI 30, and a layout display shown in FIG.
  • Various applications' programs for functioning as the processing unit 32, raster display GUI 34, RIP processing unit 36, job display GUI 38, and exposure apparatus control unit 40 are installed.
  • the HDD 22 has a received Gerber data folder 44 for storing Gerber data acquired from the CAM system, and a checked Gerber data folder for storing Gerber data that has been subjected to data check processing (details will be described later) by the data check processing unit 28.
  • Job condition information folder 48 for storing job condition information input via GUI 24, RIP processing unit 36
  • Each of the drawing raster data folders 50 for storing the drawing raster data obtained by the RIP process is provided.
  • the image processing apparatus 14 can connect up to two exposure apparatuses 12.
  • the Gerber data generated by the CAM system is built in the storage medium 54 (for example, the computer 18 functioning as the CAM system) that can be accessed by the image processing apparatus 14 via the network. It is stored in a specific folder) that is set up in the HDD that the image processing device 14 is set to be accessible.
  • the screen that the job registration GUI 24 can display on the display of the image processing apparatus 14 includes a data acquisition instruction screen for instructing acquisition of governor data from the storage medium 54. When the acquisition instruction screen is displayed on the display and the user instructs to acquire specific Gerber data from the storage medium 54 by operating the keyboard, mouse, or the like, this instruction is sent via the job registration GUI 24.
  • the data reception processing unit 26 reads and acquires the specified specific Gerber data from the storage medium 54 via the network 16, and stores the acquired Gerber data in the reception Gerber data folder 44. To do.
  • the CADZCAM system that can be realized by the computer 18 has a system with various specifications' function.
  • the data reception processing unit 26 acquires Gerber data from the storage medium 54, the format of the acquired Gerber data is changed. After checking and converting to Gerber data in a certain format as necessary, the data is also stored in the reception Gerber data folder 44.
  • a check instruction screen for instructing to check Gerber data stored in the reception Gerber data folder 44 is included. It is. Although not shown in the figure, this check instruction screen has a display column for displaying a list of file names of Gerber data stored in the reception Gerber data folder 44, and each of the garbs displayed in the display column.
  • the wiring pattern Drawing conditions for screen drawing for example, resolution, exposure device 12 model used for drawing the wiring pattern, drawing mode, size of the board on which the wiring pattern is drawn, rotation and inversion (mirror) of the wiring pattern represented by Gerber data
  • Input fields for inputting job conditions such as presence / absence, rotation angle, direction of reversal (mirror), type of photosensitive material applied to the substrate, etc.
  • a button is provided for instructing execution of data check processing for Gerber data selected as a processing target from among the Gerber data listed in the display column.
  • This data check process is created for the Gerber data to be processed by drawing a defect that causes an error in the RIP process by the RIP processing unit 36 and a wiring pattern on the substrate by the exposure apparatus 12. This is a process to check whether there is a defect that causes a failure in the printed circuit board to be printed.
  • step 100 the Gerber data to be processed is fetched from the checked Gerber data folder 46 and this Gerber Import job condition information corresponding to the data from the job condition information folder 48.
  • thresholds thl, th2, and th6 used in processing to be described later are set according to the resolution at the time of drawing included in the job condition information captured in step 100.
  • the threshold thl is a circumferential length threshold that is used when checking the presence or absence of a minute arc portion
  • the threshold th2 is a radius at the start and end points.
  • the threshold of the radius difference used when checking for the presence or absence of an arc, the threshold th6, is a threshold for the width used when checking for the presence or absence of a pattern with a small overlap (overlap area) width with an adjacent pattern.
  • the thresholds thl, th2, th6 are reduced so that the thresholds thl, th2, th6 become smaller as the resolution at the time of drawing becomes higher (that is, the interval between pixels in the wiring pattern drawn on the substrate by the exposure device 12 becomes smaller).
  • thresholds th5 and th7 used in processing described later are set according to the resolution at the time of drawing included in the job condition information captured in step 100 and the type of photosensitive material applied to the substrate.
  • the force threshold value th5 which will be described in detail later, is the threshold value of the area used when checking the presence or absence of a pinhole area with a small area
  • the threshold value th7 is the threshold value of the gap used when checking the presence or absence of a pattern with a small gap between adjacent patterns. It is.
  • the clarity of the boundary (edge portion) between the drawn portion and the non-drawn portion of the wiring pattern drawn on the substrate is determined by the sensitivity of the photosensitive material applied to the substrate.
  • Exposure amount Depending on the slope of the density characteristic, the position of the edge in the wiring pattern formed on the substrate through the etching process is the area of the exposed part and the non-exposed part that is removed by the etching process. In the direction in which the value increases, the amount of deviation depends on the degree of clarity of the edge part. And the area of said pinhole area
  • the change direction of the area of the pinhole region and the interval between adjacent patterns with respect to the change in the clarity of the edge portion is the side where the exposed portion in the wiring pattern drawing is left on the etching process (pattern portion) or is removed
  • this can be determined by the type of photosensitive material (negative or positive), and the slope of the exposure amount-density characteristic of the photosensitive material
  • the type of photosensitive material can be determined.
  • the thresholds th5 and th7 are set according to the resolution at the time of drawing, and then the type of photosensitive material applied to the substrate is referenced with reference to the above table.
  • the threshold value th5 and th7 are corrected according to the acquired deviation amount and the threshold value th according to the resolution and the type of photosensitive material. Set 5, th7.
  • the RIP processing unit 36 described above expands Gerber data (specifically, Gerber data stored in the checked Gerber data folder 46!) Into raster data for rendering in the raster format (bitmap format).
  • the types of characters that can be handled are limited, and the Gerber data subject to RIP processing includes characters other than those that can be handled (for example, half-width kana characters). In this case, an error occurs when this type of character is detected, and the RIP process stops. For this reason, in the next step 106, reference is made to the Gerber data to be processed in the order of the leading force, and a check process is performed to check whether characters other than the character types that can be handled by the RIP process are included. .
  • step 106 When the check process in step 106 is completed, the process proceeds to step 108, and it is determined whether or not the corresponding character is detected in the check process in step 106. If the determination is negative, the power to proceed to step 112 is determined. If the determination is affirmative, the process proceeds to step 110, and the detected error (defect) can be handled by the RIP process in the target Gerber data. After the error type information indicating that the error includes characters other than the character type is stored in the memory, the process proceeds to step 112.
  • the minute arc portion when a minute arc portion having an extremely small circumferential length (for example, about several zm) is included in the wiring pattern, the minute arc portion is printed through a drawing process by the exposure apparatus 12. It is preferable to replace it with a straight line because it causes a problem of the wiring board. For this reason, in the next step 112, a check process for inspecting whether or not the data specifying the minute arc portion whose circumferential length is less than the threshold thl is included in the target Gerber data! / ,! I do.
  • the threshold value thl is set according to the resolution at the time of drawing in the above-mentioned step 102, it is accurately inspected whether the wiring pattern includes a micro-arc portion that causes a failure of the printed wiring board. can do.
  • the process proceeds to step 114, where it is determined whether or not the corresponding data is detected in the check process in step 112. If the determination is negative, the process proceeds to step 118, but if the determination is affirmative, the process proceeds to step 116, and the detected error (defect) is the data that specifies the minute arc portion in the Gerber data to be processed. Error type information indicating that the error is included, and a minute arc on the wiring pattern indicated by Gerber data After the coordinate information representing the position of the position is stored in the memory, the routine proceeds to step 118.
  • ) between the radius L1 at the start point and the radius L2 at the end point is a certain value (for example, about several tens of meters) or more. If the part is included in the wiring pattern !, this arc part is also undesirable because it causes a defect in the printed wiring board created through the drawing process by the exposure apparatus 12. For this reason, in the next step 118, a check process is performed to check whether or not the data that defines the circular arc portion whose radius difference (
  • step 1 Since the threshold value th2 is also set according to the resolution at the time of drawing in the above-described step 102, whether or not the wiring pattern includes a circular arc portion with a radius difference that causes a failure of the printed wiring board. Can be accurately inspected.
  • step 1 Since the threshold value th2 is also set according to the resolution at the time of drawing in the above-described step 102, whether or not the wiring pattern includes a circular arc portion with a radius difference that causes a failure of the printed wiring board. Can be accurately inspected.
  • the process proceeds to 20, and it is determined whether or not the corresponding data is detected in the check processing in step 118. If the determination is negative, the force to move to step 124 If the determination is affirmative, the flow proceeds to step 122, and the detected error (defect) defines the arc part with a radius difference in the target Gerber data
  • the error type information indicating that the data contains the error data and the coordinate information indicating the position of the arc portion with the radius difference on the wiring pattern indicated by the Gerber data are stored in the memory, and then the process proceeds to step 124. To do.
  • step 124 a check process is performed to check whether or not the data defining the arc part having a radius equal to or greater than the threshold th3 is included in the target Gerber data.
  • the process proceeds to step 126, and it is determined whether or not the corresponding data is detected in the check process of step 124. If the determination is negative, the process proceeds to step 130.
  • the process proceeds to step 128, and the detected error (defect) defines an excessively large arc portion in the Gerber data to be processed.
  • the detected error (defect) defines an excessively large arc portion in the Gerber data to be processed.
  • the process proceeds to step 130.
  • the Gerber data specifies the aperture shape, the start point position, and the end point position, so that the aperture of the specified shape is changed from the start point position to the end point.
  • step 130 a check process is performed to check whether data for drawing a line using an aperture having a shape other than a circle is included in the processing target Gerber data.
  • step 130 the process proceeds to step 132, and it is determined whether or not the corresponding data is detected in the check process in step 130. If the determination is negative, the process proceeds to step 136. If the determination is affirmative, the process proceeds to step 134, and the detected error (defect) adds an aperture of a shape other than a circle to the target Gerber data.
  • the error type information that indicates that the line is drawn using the error type information and the aperture of the shape other than the circle on the wiring pattern that the Gerber data represents represents the position of the line that is drawn. After storing the coordinate information in the memory, go to Step 136.
  • the start point position and the end point position are the same (form a closed curve) and the self-intersection intersects with the own line on the way from the start point position to the end point position.
  • Lines are generally not used for wiring patterns, but if such a self-intersecting line is included in the wiring pattern, it also causes a failure of the printed wiring board created through the drawing process by the exposure apparatus 12. Therefore, in the next step 136, a check process is performed to check whether or not the data defining the self-intersection line is included in the Gerber data to be processed!
  • step 138 it is determined whether or not the force at which the corresponding data is detected in the check process of step 136 is determined. If the judgment is negative, the process proceeds to step 142. If the determination is affirmative, the process proceeds to step 140, and the detected error (defect) force is self-excited to the target Gerber data. Steps after storing in memory the error type information that indicates the error that includes the data that defines the difference line and the coordinate information that indicates the position of the self-intersection line on the wiring pattern indicated by the barber data Move to 142.
  • step 142 When the check process in step 142 is completed, the process proceeds to step 144, and in the check process in step 142, it is determined whether or not the force has the number of vertices equal to or greater than the threshold th8. If the determination is negative, the process proceeds to step 148. If the determination is affirmative, the process proceeds to step 146, and the detected errors (defects) exceed the upper limit in the Gerber data to be processed. After the error type information indicating that the error is included and stored in the memory, the process proceeds to step 148.
  • the Gerber data is represented by decomposing a target image (wiring pattern) into images of a plurality of layers and adding or subtracting images of each layer.
  • step 150 it is determined whether or not the number of layers is greater than or equal to the threshold th9 in the check process of step 148. If the determination is negative, the power to proceed to step 154 If the determination is affirmative, the process proceeds to step 152, and the detected error (defect) exceeds the upper limit of the number of layers constituting the Gerber data to be processed. After the error type information indicating that the error has occurred is stored in memory, the process proceeds to step 154. [0052] Also, if there is a portion in the wiring pattern where the distance from the origin of the Gerber data is excessive (for example, about several thousand mm), in the drawing process by the exposure apparatus 12, the origin is as described above.
  • step 154 a check process is performed to check whether the wiring pattern represented by the processing target Gerber data includes a portion whose distance from the origin of the Gerber data is greater than or equal to the threshold th4. .
  • the process proceeds to step 156, and it is determined whether or not the corresponding part is detected in the check process of step 154. If the determination is negative, the process proceeds to step 160. If the determination is affirmative, the process proceeds to step 158, and the detected error (defect) is detected in the wiring pattern represented by the Gerber data to be processed.
  • the error type information that indicates an error that includes an excessive part of the origin force and the position of the excessive part from the above origin on the wiring pattern represented by Gerber data After the coordinate information is stored in the memory, the process proceeds to step 160.
  • a pinhole region having a very small area is generally not used for a wiring pattern. However, if such a pinhole region having a very small area is included in the wiring pattern, this pinhole region having a very small area may be used. However, there is also a possibility that the printed wiring board produced through the drawing process by the exposure apparatus 12 may be defective. For this reason, in step 160, a check process is performed to check whether or not the data defining the pinhole region whose area is less than the threshold th 5 is included in the Gerber data to be processed.
  • the threshold th5 is set according to the resolution at the time of drawing and the type of photosensitive material on the substrate in step 104 described above, so that a pinhole portion having a small area that causes a defect in the printed wiring board is wired. It can be accurately inspected whether it is included in the pattern!
  • the process proceeds to step 162, and it is determined whether or not the corresponding data is detected in the check process of step 160. If the determination is negative, the process proceeds to step 166. If the determination is affirmative, the process proceeds to step 164, and the detected error (defect) defines a pinhole area of a very small area in the Gerber data to be processed. Error type information indicating that the error is V, and the wiring pattern indicated by Gerber data After the coordinate information indicating the position of the pinhole region having a very small area is stored in the memory, the process proceeds to step 166.
  • FIG. 5A shows an example.
  • data indicating the filling of a desired area is set by instructing drawing of multiple lines so that adjacent lines overlap (the overlapping area is called an overlap area). If the width OVL of the overlap area is insufficient at this time, it corresponds to the overlap area among the wiring patterns on the printed circuit board created through the drawing process by the exposure device 12.
  • the part may be in the same state as the part that was not exposed in the drawing process.
  • step 166 a check process for checking whether or not data defining a pattern (such as a line) whose overlap area width is less than the threshold th6 is included in the target Gerber data.
  • the threshold th6 is set according to the resolution at the time of drawing in the above-described step 102, the wiring pattern includes a pattern with insufficient width in the overlap area that causes a failure of the printed wiring board. It is possible to accurately check whether or not the force is applied.
  • the check process of step 166 is completed, the process proceeds to step 168, and it is determined whether or not the corresponding data is detected in the check process of step 166.
  • Step 170 the detected error (defect) is not enough for the overwrap area in the Gerber data to be processed Error type information indicating that the error includes data defining the pattern of the pattern, and coordinate information indicating the position of the pattern with insufficient width of the overlap area on the wiring pattern indicated by the Gerber data are stored in the memory. After that, go to Step 1 72.
  • step 172 it is checked whether or not data defining a pattern whose gap GAP between adjacent patterns is less than the threshold th7 is included in the processing target Gerber data. Perform check processing.
  • the threshold th7 is set according to the resolution at the time of drawing and the type of photosensitive material on the substrate in Step 104 described above! It is possible to accurately detect whether or not the force is included in.
  • step 172 When the check process of step 172 is completed, the process proceeds to step 174, and it is determined whether or not the corresponding data is detected in the check process of step 172. If the determination is negative, the force to move to step 178 If the determination is affirmative, the flow moves to step 176, and the detected error (defect) is not the data that defines the gap gap pattern in the target Gerber data. After storing the error type information indicating the included error and the coordinate information indicating the position of the insufficient gap pattern on the wiring pattern indicated by the Gerber data, the process proceeds to step 178.
  • step 178 based on whether or not error information such as error type information is stored in the memory, whether or not any error (defect) is detected in the Gerber data to be processed in each check process described above. Determine. If the determination is negative (when no error is detected), the process proceeds to step 180, the target Gerber data is stored in the checked Gerber data folder 46, and the data check process is terminated.
  • error information such as error type information
  • step 182 first the error information stored in the memory is fetched, and the fetched error information It is determined whether or not the force includes coordinate information. If the coordinate information is included in the error information, that is, if an error that can clearly indicate the error location is detected on the wiring pattern represented by the target Gerber data! Based on the error information (error type information and coordinate information), a Gerber error file is generated to indicate the error location on the wiring pattern represented by the target Gerber data, and the generated Gerber error file is processed. Append to the Gerber data. Note that step 182 is processing corresponding to the data generation means according to the present invention, and the data check processing unit 28 that performs the processing of step 182 also corresponds to the data generation means according to the present invention.
  • the Gerber error file according to the present embodiment is data that can be handled as Gerber data.
  • the Gerber header part and Gerber end code In the meantime, mark data that specifies the shape and size of a given mark (aperture) that is clearly indicated at the error location (the position represented by the coordinate information included in the imported error information) (indicated as “aperture shape designation” in Fig. 6) And coordinate data (indicated as “error item nx, y coordinate designation” in FIG. 6) that defines the explicit position of a given mark on the wiring pattern.
  • step 182 the above coordinate data is set based on the coordinate information included in the fetched error information, and marks corresponding to the individual error types are clearly indicated at individual error locations defined by the coordinate data.
  • a Gerber error file is generated by setting the above mark data as described above.
  • a predetermined message is displayed on the display via the job registration GUI 24 to notify the processing target Gerber data that an error has been detected, and the details of the detected error. Is displayed on the display via the job registration GUI 24 and the data check process is terminated.
  • the error content is displayed as an error that makes it difficult to clearly indicate the error location (for example, the number of layers constituting the Gerber data to be processed exceeds the upper limit). Error is not memorized), it is made by simply displaying a message notifying the error content on the display, but the detected error can be specified in error (error coordinates are detected). For example, as shown in FIG.
  • the Gerber error file of the wiring pattern represented by the target Gerber data is displayed.
  • An error-clear image with each mark specified by the mark data superimposed and displayed at the error location indicated by the coordinate data of It demonstrates the error contents be displayed on the display.
  • the layout confirmation GUI 30 can display on the display of the image processing device 14, it is stored in the checked Gerber data folder 46 !, and Gerber data (Gerber data that has undergone data check processing)
  • a layout confirmation instruction screen for instructing confirmation of the layout of the wiring pattern represented by is included.
  • the layout confirmation instruction screen displays a display field for displaying a list of Gerber data file names and the like stored in the checked Gerber data folder 46, and each Gerber data listed in the display field. And a button for instructing execution of layout confirmation processing for Gerber data selected as a processing target.
  • the layout (the position of the wiring pattern drawing range relative to the substrate, the angle of the wiring pattern in the horizontal plane, the orientation of the front and back) can be confirmed.
  • the user operates the keyboard and mouse to instruct the layout confirmation GUI 30 to display the layout confirmation instruction screen on the display, and the layout confirmation instruction screen is displayed on the display.
  • Instruct the execution of the layout confirmation process for the target Gerber data by selecting the target Gerber data and selecting the button on the layout confirmation instruction screen. .
  • This instruction is 8 is input to the layout display processing unit 32 via the GUI 30 and the layout display processing unit 32 performs the layout confirmation processing shown in FIG.
  • step 200 the designated processing target Gerber data is fetched from the checked Gerber data folder 46, and job condition information corresponding to the Gerber data to be processed is stored in the job condition information folder 48.
  • Step 202 a layout confirmation screen (see Fig. 9) for displaying an image that can confirm the layout of the wiring pattern represented by the Gerber data to be processed is displayed on the display by the layout confirmation GUI 30 and is also captured in Step 200.
  • a frame line (indicated as “board frame” in FIG. 9) representing the outer edge of the board is displayed in the image display area in the layout confirmation screen.
  • step 204 after a message for requesting the user to specify the position of the origin on the board is displayed on the display, it is determined whether or not the position of the origin on the board is specified by the user. Make a determination and repeat step 204 until the determination is positive.
  • the determination in step 204 is affirmed and the process proceeds to step 206, which is fetched in step 200.
  • step 206 Based on the processing target Gerber data, a wiring pattern image for generating a reduced display of the wiring pattern represented by the processing target Gerber data in accordance with the size of the frame line displayed in the image display area in the layout confirmation screen is generated.
  • step 208 the positional relationship between the origin of the Gerber data included in the processing target Gerber data and the origin on the substrate, and the wiring represented by the Gerber data included in the job condition information corresponding to the processing target Gerber data Based on the presence or absence of pattern rotation or reversal (mirror), rotation angle ⁇ reversal (mirror) direction, and the origin position on the board specified by the user, the wiring pattern represented by the Gerber data to be processed When drawing on the board according to the current job condition information, calculate the position, rotation angle, inversion presence / absence, and direction of the wiring pattern drawing range based on the origin on the board.
  • step 208 is a process corresponding to the calculation means according to the present invention together with step 200 described above, and the layout display processing unit 32 that performs the processes of steps 200 and 208 corresponds to the calculation means according to the present invention. is doing.
  • step 210 the wiring pattern image generated in step 206 is rotated in a horizontal plane and the front and back directions are reversed as necessary based on the calculation result in step 208, and then the layout confirmation screen is displayed.
  • the image is displayed at the position calculated in step 208 in the image display area (state shown in FIG. 9).
  • step 210 is processing corresponding to the positional relationship display control means according to the present invention
  • the layout display processing unit 32 that performs the processing of step 210 corresponds to the positional relationship display control means according to the present invention.
  • the layout confirmation screen is provided with a rotation instruction button for instructing rotation of the wiring pattern and a mirror instruction button for instructing inversion (mirror) of the wiring pattern.
  • step 212 it is determined whether or not the rotation of the wiring pattern is instructed based on whether or not the rotation instruction button in the layout confirmation screen is selected. If the determination is negative, the process proceeds to step 216, and it is determined whether the mirror (reversal) of the wiring pattern is instructed based on whether the mirror instruction button in the layout confirmation screen is selected. If this determination is also denied, the process proceeds to step 220, and it is determined whether or not the instruction to end the display of the layout confirmation screen is given. If this determination is also negative, the process returns to step 212, and steps 212, 216, and 220 are repeated until the determination of any of steps 212, 216, and 220 is affirmed.
  • the user represents the outer edge of the substrate by the position of the displayed wiring pattern image with respect to the substrate, the angle in the horizontal plane, and the orientation of the front and back sides. Test whether the frame is appropriate. Here, if it is determined that the position of the wiring pattern image with respect to the substrate is not appropriate, the user ends the display of the layout confirmation screen and then terminates the display of the Gerber data included in the target Gerber data and the substrate. By correcting the data that defines the positional relationship with the upper origin, the position of the wiring pattern drawing range based on the origin on the board when the wiring pattern represented by the target Gerber data is drawn on the board is corrected. To do.
  • the user instructs the rotation of the wiring pattern by selecting the rotation instruction button.
  • different rotation angles for example, 90 °, 180 °, 2 A plurality of buttons are provided for rotation by 70 °
  • a rotation instruction button corresponding to a desired rotation angle is selected.
  • the determination in step 212 is affirmed and the process proceeds to step 214, and the wiring pattern image displayed in the image display area in the layout confirmation screen corresponds to the selected rotation instruction button.
  • the user instructs the reversal (mirror) of the front and back directions of the wiring pattern by selecting the mirror instruction button.
  • the layout confirmation screen has a plurality of buttons for inverting in different directions (for example, X direction and y direction) as mirror instruction buttons, and the mirror instruction button corresponding to the desired reverse direction is selected. Is done.
  • the determination in step 216 is affirmed, and the process proceeds to step 218.
  • the orientation of the front and back of the wiring pattern image displayed in the image display area in the layout confirmation screen is changed to the selected mirror instruction button. After reversing in the reversing direction corresponding to, step 220 is entered.
  • step 220 When the display end of the layout confirmation screen is instructed, the determination in step 220 is affirmed and the process proceeds to step 222.
  • the layout In the above-described processing, the layout is changed with respect to the wiring pattern (rotation within the horizontal plane or It is determined whether or not (reversal of direction) is instructed. If the determination is negative, the layout confirmation process is terminated without performing any processing. If the determination at step 222 is affirmative, the process proceeds to step 224, and the rotation in the horizontal plane indicated for the wiring pattern is performed. Corresponding part of the data such as rotation / reversal of the wiring pattern, rotation angle / reversal direction, etc. included in the job condition information of the Gerber data to be processed according to the reverse of the front and back direction The job condition information after correction The layout confirmation processing is finished after overwriting and storing in the condition information folder 48.
  • the wiring pattern layout when the wiring pattern represented by the target Gerber data is drawn on the board according to the current job condition information (the position of the wiring pattern drawing range relative to the board and the wiring pattern) It is possible to check whether the angle in the horizontal plane and the orientation of the front and back are appropriate or not before actually drawing the wiring pattern on the board, resulting in inconveniences such as wasted board. Can be avoided.
  • a part of specific Gerber data stored in the checked Gerber data folder 46 is expanded into raster data.
  • a raster display instruction screen for instructing display on the display is included.
  • the raster display instruction screen is displayed in the display column for displaying a list of file names of Gerber data stored in the checked Gerber data folder 46! And the display column.
  • a button for instructing execution of raster display for Gerber data selected as a processing target from among the Gerber data is provided.
  • the user When the visual check is performed on the wiring pattern represented by the Gerber data stored in the checked Gerber data folder 46, the user operates the keyboard or mouse to display the raster display GUI 34 on the display.
  • the display of the raster display instruction screen is instructed and the raster display instruction screen is displayed on the display, select the Gerber data to be processed from the Gerber data listed in the display field above, and By selecting a button in the star display instruction screen, execution of raster display processing is instructed for the target Gerber data.
  • This instruction is input to the RIP processing unit 36 through the raster display GUI 34, and the RIP processing unit 36 performs the raster display processing shown in FIG.
  • step 230 the specified processing target Gerber data is fetched from the checked Gerber data folder 46, and job condition information corresponding to the processing target Gerber data is stored in the job condition. Import from information folder 48.
  • step 232 the entire Gerber data to be processed is converted into low resolution raster data (all Expand to body image).
  • development from Gerber data to raster data secures a drawing area of a size corresponding to the resolution of the raster data to be output on the memory, and refers to the Gerber data in order of the leading force, and follows the line etc. in the drawing area. This can be done by repeating the drawing process. As a result, an overall image image representing the entire wiring pattern represented by the processing target Gerber data at a low resolution is obtained.
  • a raster display screen for displaying a raster image of the wiring pattern represented by the Gerber data to be processed is displayed on the display by the raster display GUI 34. Also, as shown in Fig. 14, this raster display screen displays a whole image display area for displaying a low resolution whole image, and a higher resolution detailed display image representing a wiring pattern. A detailed display area is provided, and the entire image obtained by the processing in step 232 is displayed on the entire image display area in the raster display screen by the raster display GUI.
  • Steps 232 and 234 are processes corresponding to the low-resolution image display control means according to the present invention, and the RIP processing unit 36 that performs the processes of steps 232 and 234 is included in the low-resolution image display control means according to the present invention. It corresponds.
  • the drawing unit of the wiring pattern on the substrate (the entire wiring pattern drawn by the exposure apparatus 12 on the substrate in one drawing) is called a panel (or work), but it is a printed wiring board as a final product.
  • a printed wiring board mounted on a small device such as a mobile phone or PDA (Personal Digital Assistant)
  • the size is much smaller than the size of the panel.
  • pieces which are units of the final product, are arranged in a panel.
  • the board is cut out from the panel in units of sheets in which a plurality of pieces representing the same wiring pattern are arranged, and each piece in the cut-out panel is cut.
  • each piece in the panel is cut out.
  • the detail display range is designated on the whole image image displayed in the whole image display area.
  • the display screen is provided with a button 64A for instructing detailed display in piece units and a button 64B for instructing detailed display in sheet units.
  • step 236 a frame representing the detailed display range (see Fig. 14) is drawn on the entire image displayed in the entire image display area, and displayed as a detailed display image in the detail display area. It is determined whether or not the detailed display range to be specified is a specified force. If the determination in step 236 is negative, the process proceeds to step 238, where a specific piece in the entire image is selected and the button 64A is selected to instruct detailed display in pieces, or When a specific sheet in the entire image is selected and the button 64B is selected, it is determined whether or not the force is instructed to display details in units of sheets. If the determination in step 238 is also negative, the process returns to step 236, and steps 236 and 238 are repeated until the determination in step 236 or step 238 is affirmed.
  • step 236 or step 238 is affirmed and the process proceeds to step 240, and the detailed display range specified by the user is set. recognize.
  • the detailed display range specified by the user is set. recognize.
  • the entire image image is displayed.
  • the entire specific piece selected in is recognized as the detailed display range, and when detailed display in units of sheets is instructed, the entire specific sheet selected on the entire image is recognized as the detailed display range.
  • next step 242 it is determined whether or not there is a force that includes a plurality of identical wiring patterns (pieces representing the same wiring pattern) within the detailed display range recognized in step 240. Based on, set the range to expand to the Gerber data force raster data in the detailed display range. For example, when detailed display in units of pieces is instructed, there are no more than one identical wiring pattern within the detailed display range.
  • the detailed display range recognized in 40 is set as the raster development range as it is.
  • the detailed display range is set to the raster development range as it is. If there are multiple pieces representing the same wiring pattern within the detailed display range, any force other than one piece will be used.
  • the range excluding is set as the raster expansion range.
  • step 244 Gerber data corresponding to the target Gerber data force raster development range is extracted, and the extracted Gerber data is developed into high-resolution raster data.
  • the resolution of the raster data is preferably the same as the resolution at the time of drawing in consideration of the distance calculation 'display described later, but the entire detailed display image representing the wiring pattern within the detailed display range is The resolution may be adjusted to fit within the detailed display area in the raster display screen. If the raster development range set in step 242 is the same as the detailed display range recognized in step 240, the above raster data matches the detailed display image representing the wiring pattern in the detailed display range.
  • step 246 the detailed display image obtained by the processing in step 244 is displayed in the detailed display area in the raster display screen by the raster display GUI.
  • Steps 242 and 244 are processes corresponding to the developing means according to the present invention
  • step 246 is a process corresponding to the high-resolution image display control means according to the present invention.
  • the RIP performs the processes of steps 242 to 246.
  • the processing unit 36 corresponds to the developing means and the high-resolution image display control means according to the present invention.
  • the detailed display area in the raster display screen has a single display selected as the detailed display target. Only the piece wiring pattern is displayed in detail. Also, when detailed display in units of sheets is instructed, as shown in FIG. 16 as an example, the wiring pattern of a single sheet selected as a detailed display target is displayed in detail in the detailed display area in the raster display screen. Although displayed, if multiple pieces representing the same wiring pattern are arranged in the selected sheet In this case, as shown in FIG. 16, only a single piece of the plurality of pieces is displayed in detail with respect to the wiring pattern, and the remaining pieces are displayed with only a frame representing the outer edge.
  • Gerber data is data that defines the wiring pattern only for a single piece. And the data for instructing copying to the position corresponding to each piece of the wiring pattern represented by the data, the entire wiring pattern is defined. It is not necessary to perform a visual check on all the arranged pieces. A visual check is performed on only one of a plurality of pieces representing the same wiring pattern. For this reason, if there are multiple pieces representing the same wiring pattern in the detailed display range, even if the wiring pattern is displayed in detail only by a single piece as described above, it will hinder the visual check. It is possible to display the detailed display image in the detailed display area in the raster display screen in a short time by performing the process of developing the high resolution raster data for only a single piece. .
  • the detailed display area in the raster display screen is displayed on the substrate at the time of drawing by the exposure device 12 as shown in FIG. 17 as an example.
  • An enlarged wiring pattern is displayed according to the ratio of the pixel interval to the pixel interval (display dot interval) on the display.
  • the wiring pattern is displayed in this state! It is also possible to calculate and display the distance between any two points specified on the wiring pattern. Calculating the distance between any two points' displaying the wiring pattern Instruct by specifying the position of the desired two points above (designated as the start and end points in Fig. 17) (by this, an auxiliary line connecting the two points will be displayed on the wiring pattern) This comes out.
  • step 248 it is determined whether or not the above-described operation is performed and the calculation of the distance between any two points on the wiring pattern is instructed. If the determination in step 248 is negative, the process proceeds to step 252 to determine whether display switching of the wiring pattern image displayed in the detailed display area in the raster display screen is instructed. If the determination in step 252 is also negative, the process proceeds to step 254, where it is determined whether the display end of the raster display screen is instructed. If the determination in step 254 is also negative, the process returns to step 248, and steps 248, 252 and 254 are repeated until the determination in any of steps 248, 252 and 254 is affirmed.
  • step 248 the determination in step 248 is affirmed and the step is performed.
  • step 250 Moves to step 250 and calculates and displays the distance between two specified points. Since the pixel interval on the substrate at the time of drawing by the exposure device 12 is known from the resolution at the time of drawing, the distance between the specified two points is the number of X-direction pixels between the specified two points and Y Count the number of pixels in the direction, and multiply the counted number of pixels by the pixel interval on the substrate to obtain the X-direction distance and Y-direction distance on the substrate between the two specified points. Distance and Y-direction distance force can also be calculated. FIG.
  • Step 250 is processing corresponding to the distance calculation / display means according to the present invention, and the RIP processing unit 36 that performs the processing of step 250 corresponds to the distance calculation 'display means according to the present invention.
  • the wiring pattern represented by the drawing raster data is drawn on the substrate with a predetermined resolution. Therefore, the boundary position between the exposed portion and the unexposed portion in the wiring pattern represented by the drawing raster data is affected by a rounding error. As a result, the wiring pattern represented by the Gerber data fluctuates with the distance between adjacent pixels at the resolution at the time of drawing as the maximum, and with this change, the exposed and unexposed areas in the wiring pattern actually drawn on the substrate boundary The position also varies. For this reason, it is desirable to finally confirm the size of the gap between adjacent patterns by performing a visual check on the wiring pattern represented by the drawing raster data.
  • calculation / display of the distance between any two points designated on the wiring pattern (detailed display image) displayed in the detailed display area in the raster display screen is instructed. And the distance between two specified points (distance reflecting the rounding error) is calculated and displayed, so the size of the gap between adjacent patterns can be confirmed accurately and easily, and a visual check is performed. The burden on the user can be reduced.
  • step 252 is affirmed and step 236 is performed.
  • step 236 is performed.
  • the process from step 236 is repeated according to the instruction from the user.
  • step 254 is affirmed and the raster display process is ended.
  • a visual check performed by the user during the above raster display processing detects that the wiring pattern has a defect such as a gap between adjacent patterns being insufficient
  • the CAM system The raster display process (visual check) described above is performed again after the work of correcting the Gerber data to be processed so that the detected malfunction is eliminated in the functioning computer 18 or the like.
  • the user instructs execution of the RIP process on the target Gerber data.
  • the RIP processing unit 36 performs RIP processing for capturing the Gerber data to be processed in the RIP from the checked Gerber data folder 46, and expanding the entire processed Gerber data into the raster data for drawing with high resolution.
  • the drawing raster data obtained by the RIP process is stored in the drawing raster data folder 50.
  • the user instructs the drawing of the wiring pattern represented by the drawing raster data on the substrate.
  • the exposure apparatus control unit 40 reads out the corresponding job condition information from the job condition information folder 48 and outputs it to the exposure apparatus 12, and sequentially reads out the drawing raster data from the drawing raster data folder 50 to the exposure apparatus 12. Output.
  • the wiring pattern represented by the drawing raster data is drawn on the substrate by the exposure device 12 in accordance with the job condition information described above. It will be awkward to be drawn.
  • the inspection process performed by the inspection unit according to the present invention is not limited to the check process shown in FIG. 3 as the data check process.
  • the presence or absence of a line whose thickness is less than the threshold is checked.
  • any other inspection process can be applied within the scope of the present invention without departing from the present invention. Needless to say.
  • the exposure apparatus 12 has been described as an example of a drawing apparatus to which the image processing apparatus according to the present invention is connected.
  • the drawing apparatus to which the image processing apparatus according to the present invention can be connected is described above. It is also possible to apply a drawing apparatus that draws a wiring pattern on a substrate by attaching a metal particle or a metal particle precursor to the substrate using an ink jet type liquid ejection drawing head, which is not limited. .
  • Examples of such a drawing apparatus include JP 2005-40665, JP 2005-47073, JP 2005-47085, JP 2005-81710, JP 2005-81711, Examples include the drawing devices described in JP-A-2005-81716, JP-A-2005-96332, JP-A-2005-96338, JP-A-2005-96345, and the like.

Abstract

Labor-saving of visual check of drawing raster data is realized. Before the image data (Gerber data ) of vector form representing the wiring pattern directly drawn on the board is developed into drawing raster data by RIP processing, the Gerber data is developed into low-resolution raster data when raster display of the wiring pattern is commanded, and the whole wiring pattern represented by the Gerber data is displayed as a whole image of low resolution in a whole image display area of the raster display screen. If a piece or sheet to be displayed or a given detail display portion is specified on the whole image, only the data corresponding to the specified detail display area out of the Gerber data is developed into high-resolution raster data, and the high-resolution raster data is displayed as a detail display image showing the wiring pattern in the detail display portion in the detail display area of the raster display screen. When calculation/display of the distance between two points specified on the detail display image is commanded, the distance is calculated and displayed.

Description

明 細 書  Specification
画像処理装置  Image processing device
技術分野  Technical field
[0001] 本発明は画像処理装置に係り、特に、描画用ラスタデータが表す配線パターンを 基板に直接描画する描画装置と接続され、入力された配線パターンを表すベクトル 形式の画像データを描画用ラスタデータへ展開する RIP処理を行う画像処理装置に 関する。  TECHNICAL FIELD [0001] The present invention relates to an image processing apparatus, and in particular, is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and vector format image data representing the inputted wiring pattern is drawn raster. The present invention relates to an image processing apparatus that performs RIP processing to develop data.
背景技術  Background art
[0002] プリント配線基板(PWB: Print Wired Board)やフラットパネルディスプレイ(FPD) の基板等を作成する際の描画方式としては、従来、基板上に形成すべき配線パター ンをー且フィルムに露光することでマスクを作成した後に、このマスクを用いて前記配 線パターンを基板に面露光により描画する方式 (アナログ描画方式と称する)が一般 的であつたが、近年、マスクを作成することなぐ配線パターンを表すデジタルデータ (描画用ラスタデータ)に基づいて基板に配線パターンを直接描画する、所謂デジタ ル描画方式が用いられるようになってきて!、る(例えば特許文献 1を参照)。  [0002] Conventionally, as a drawing method when creating printed wiring boards (PWBs) and flat panel display (FPD) substrates, the wiring pattern to be formed on the substrate is conventionally exposed to film. In general, a method of drawing a wiring pattern on a substrate by surface exposure using this mask after making a mask (referred to as an analog drawing method) has been used in recent years. A so-called digital drawing method, in which a wiring pattern is directly drawn on a substrate based on digital data (rendering raster data) representing the wiring pattern, has come to be used (see, for example, Patent Document 1).
[0003] デジタル描画方式で描画を行う描画システムには、基板への描画を行う描画装置と 該描画装置に接続された画像処理装置が設けられており、画像処理装置は CAD(C omputer Aided Design)/CAM(Computer Aided Manufacturing)を禾 Ij用して作成され た画像データ (基板上に形成すべき配線パターンを表すベクトル形式かつ一定フォ 一マットのデータ)が入力され、入力された画像データを描画用ラスタデータへ展開 する RIP(Raster Image Processor)処理を行い、 RIP処理によって得られた描画用ラス タデータを描画装置へ供給する機能を有して ヽる。 [0003] A drawing system that performs drawing using a digital drawing method includes a drawing device that performs drawing on a substrate, and an image processing device that is connected to the drawing device. The image processing device is a CAD (Computer Aided Design). ) / CAM (Computer Aided Manufacturing) 禾 Ij image data (vector format and fixed format data representing the wiring pattern to be formed on the board) is input, and the input image data It has a function to perform RIP (Raster Image Processor) processing that expands to drawing raster data, and to supply drawing raster data obtained by RIP processing to the drawing device.
特許文献 1 :特開 2004— 184921号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-184921
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 基板への配線パターンの描画に際し、描画された配線パターンに何らかの不具合 力 Sあることで基板が無駄に消費されることを回避するためには、描画装置が基板に配 線パターンを描画する前に、この配線パターンの様子を目視で事前にチェックするこ とが望ましい。従来のアナログ描画方式では、フィルムに配線パターンを露光すること で作成されたマスクを用いて上記の目視チェックを行っていた力 デジタル描画方式 ではマスクを作成しないので、上記の目視チェックは描画用ラスタデータが表す配線 パターンを表示手段に表示させることによって行われる。 [0004] When drawing a wiring pattern on a substrate, in order to prevent the substrate from being consumed unnecessarily due to some trouble S in the drawn wiring pattern, the drawing apparatus is arranged on the substrate. It is desirable to visually check the state of the wiring pattern before drawing the line pattern. In the conventional analog drawing method, the above visual check is performed using the mask created by exposing the wiring pattern on the film. In the digital drawing method, the mask is not created. This is done by displaying the wiring pattern represented by the data on the display means.
[0005] しかしながら、描画用ラスタデータは表示手段より解像度が極めて高ぐ表示手段 に一度に表示可能な配線パターンは描画用ラスタデータが表す配線パターンのうち のごく一部に限られる。このため、描画用ラスタデータが表す配線パターンの目視チ エックでは、その配線パターンのうちの表示手段に表示させる部分を適宜スクロール しながらチェックを繰り返す必要があり、操作が煩雑であると共に、表示手段に現在 表示させている部分が描画用ラスタデータが表す配線パターン全体のうちのどの部 分である力も把握し難 ヽと 、う問題がある。  [0005] However, the wiring pattern that can be displayed at once on the display means whose drawing raster data has an extremely higher resolution than the display means is limited to only a part of the wiring pattern represented by the drawing raster data. For this reason, in the visual check of the wiring pattern represented by the raster data for drawing, it is necessary to repeat the check while appropriately scrolling the portion of the wiring pattern to be displayed on the display means. However, there is a problem that it is difficult to grasp the force that the part currently displayed in the whole wiring pattern represented by the drawing raster data.
[0006] また、描画用ラスタデータは基板に形成すべき配線パターンを描画装置による描画 と同一の高解像度で表すデータであるのでデータ量が膨大であり、 RIP処理には長 い時間がかかるが、目視チェックによって配線パターンに不具合が有ることが検知さ れた場合には、検知された不具合が解消できるように画像データを修正した後、時間 の力かる RIP処理を再度行う必要があるので、基板製造等の作業の進拔に多大な悪 影響を及ぼすと ヽぅ問題もある。  [0006] In addition, since the raster data for drawing is data that represents the wiring pattern to be formed on the substrate at the same high resolution as the drawing by the drawing device, the amount of data is enormous, and the RIP processing takes a long time. If it is detected by visual check that there is a defect in the wiring pattern, it is necessary to correct the image data so that the detected defect can be resolved, and then perform the time-consuming RIP process again. There is also a problem if it has a great adverse effect on the progress of work such as substrate manufacturing.
[0007] 本発明は上記事実を考慮して成されたもので、描画用ラスタデータに対する目視 チェックの省力化を実現できる画像処理装置を得ることが目的である。  [0007] The present invention has been made in consideration of the above facts, and an object thereof is to obtain an image processing apparatus capable of realizing labor saving of visual check for rendering raster data.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するために請求項 1記載の発明に係る画像処理装置は、描画用ラ スタデータが表す配線パターンを基板に直接描画する描画装置と接続され、入力さ れた前記配線パターンを表すベクトル形式の画像データを前記描画用ラスタデータ へ展開する RIP処理を行う画像処理装置であって、前記画像データに基づいて、前 記配線パターンを低解像度で表す低解像度配線パターン画像を生成し、生成され た低解像度配線パターン画像を表示手段に表示させる低解像度画像表示制御手段 と、前記低解像度表示制御手段によって前記表示手段に表示された低解像度配線 ノ^ーン画像上で指定手段を介して拡大表示対象領域が指定された場合に、前記 画像データのうち前記拡大表示対象領域に相当するデータを高解像度ラスタデータ へ展開することで、前記拡大表示対象領域内の配線パターンを高解像度で表す高 解像度配線パターン画像を生成する展開手段と、前記展開手段によって生成された 高解像度配線パターン画像を前記表示手段に表示させる高解像度画像表示制御 手段と、を更に備えたことを特徴としている。 [0008] In order to achieve the above object, an image processing apparatus according to the invention of claim 1 is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and the inputted wiring An image processing apparatus that performs RIP processing for developing image data in a vector format representing a pattern into the drawing raster data, and based on the image data, generates a low-resolution wiring pattern image that represents the wiring pattern at a low resolution. A low-resolution image display control means for generating and displaying the generated low-resolution wiring pattern image on the display means; and the low-resolution wiring displayed on the display means by the low-resolution display control means When an enlargement display target area is specified via a specifying means on a non-image, the image data corresponding to the enlargement display target area is expanded into high-resolution raster data to expand the enlargement display area. A developing unit that generates a high-resolution wiring pattern image that represents a wiring pattern in a display target region at a high resolution; a high-resolution image display control unit that displays the high-resolution wiring pattern image generated by the developing unit on the display unit; , Is further provided.
[0009] 請求項 1記載の発明に係る画像処理装置は、描画用ラスタデータが表す配線バタ ーンを基板に直接描画する描画装置と接続されており、前記配線パターンを表すべ タトル形式の画像データが入力され、入力された画像データを描画用ラスタデータへ 展開する RIP処理を行う。ここで、請求項 1記載の発明では、低解像度画像表示制御 手段により、画像データに基づいて、配線パターンを低解像度で表す低解像度配線 パターン画像が生成され、生成された低解像度配線パターン画像が表示手段に表 示される。また展開手段は、低解像度表示制御手段によって表示手段に表示された 低解像度配線パターン画像上で指定手段を介して拡大表示対象領域が指定された 場合に、画像データのうち拡大表示対象領域に相当するデータを高解像度ラスタデ ータへ展開することで、拡大表示対象領域内の配線パターンを高解像度で表す高 解像度配線パターン画像を生成する。そして高解像度画像表示制御手段は、展開 手段によって生成された高解像度配線パターン画像を表示手段に表示させる。  [0009] The image processing apparatus according to the first aspect of the present invention is connected to a drawing apparatus that directly draws a wiring pattern represented by drawing raster data on a substrate, and is a vector image representing the wiring pattern. Data is input and RIP processing is performed to expand the input image data to raster data for drawing. In the first aspect of the present invention, the low resolution image display control means generates a low resolution wiring pattern image representing the wiring pattern at a low resolution based on the image data, and the generated low resolution wiring pattern image is Displayed on the display means. The expansion means corresponds to the enlargement display target area of the image data when the enlargement display target area is designated via the designation means on the low resolution wiring pattern image displayed on the display means by the low resolution display control means. By expanding the data to be processed into high-resolution raster data, a high-resolution wiring pattern image representing the wiring pattern in the enlarged display target area at high resolution is generated. Then, the high resolution image display control means causes the display means to display the high resolution wiring pattern image generated by the expansion means.
[0010] このように、請求項 1記載の発明では、表示手段に表示された低解像度配線パター ン画像上で指定手段を介して拡大表示対象領域を指定することで、画像データが表 す配線パターンのうちの所望の部分を高解像度配線パターン画像として表示手段に 表示させることができ、この部分の配線パターン全体上での位置を把握しながら目視 チェックを行うことができるので、表示手段に表示させる部分を適宜スクロールしなが ら目視チェックを繰り返す場合と比較して、操作が簡単になると共に、目視チェックを 効率良く行うことができる。従って、請求項 1記載の発明によれば、描画用ラスタデー タに対する目視チェックの省力化を実現することができる。  [0010] Thus, in the invention according to claim 1, the wiring represented by the image data is specified by specifying the enlarged display target area via the specifying means on the low-resolution wiring pattern image displayed on the display means. The desired part of the pattern can be displayed on the display means as a high-resolution wiring pattern image, and a visual check can be performed while grasping the position of this part on the entire wiring pattern, so that it is displayed on the display means. Compared with the case where the visual check is repeated while appropriately scrolling the portion to be performed, the operation is simplified and the visual check can be performed efficiently. Therefore, according to the first aspect of the invention, it is possible to realize labor saving of visual check for the raster data for drawing.
[0011] また、請求項 1記載の発明では、画像データのうち指定された拡大表示対象領域 に相当するデータを高解像度ラスタデータ(高解像度配線パターン画像)へ展開して 表示手段に表示させるので、高解像度配線パターン画像の表示に先立って RIP処 理を行う必要がなくなる。これにより、目視チェックで配線パターンに不具合が有るこ とが検知された場合にも、時間の力かる RIP処理を複数回行う必要がなくなるので、 基板製造等の作業の進拔に悪影響を及ぼすことを回避することができる。 [0011] Further, in the invention according to claim 1, data corresponding to the designated enlargement display target area in the image data is developed into high resolution raster data (high resolution wiring pattern image). Since it is displayed on the display means, it is not necessary to perform RIP processing prior to displaying the high-resolution wiring pattern image. This eliminates the need for time-consuming RIP processing multiple times even when a visual check detects a defect in the wiring pattern, which can adversely affect the progress of work such as board manufacturing. Can be avoided.
[0012] なお、請求項 1記載の発明において、描画装置によって基板に描画される配線パ ターンが、単一の回路パターンに相当する同一の単位配線パターンが複数配列され て成るシートが複数個配置されて構成されて!ヽる場合、例えば請求項 2に記載したよ うに、低解像度画像表示制御手段は、低解像度配線パターン画像として、配線バタ ーン全体を低解像度で表す画像を生成して表示させ、展開手段は、配線パターン全 体を表す低解像度配線パターン画像上で拡大表示対象領域として特定のシートが 指定された場合に、画像データのうち、特定のシート内の単一の特定単位配線バタ ーンに相当するデータのみを高解像度ラスタデータへ展開し、特定シートの高解像 度配線パターン画像として、特定単位配線パターンのみを表示する画像を生成する ように構成することが好まし 、。  [0012] Note that in the invention according to claim 1, the wiring pattern drawn on the substrate by the drawing apparatus includes a plurality of sheets in which a plurality of the same unit wiring patterns corresponding to a single circuit pattern are arranged. For example, as described in claim 2, the low-resolution image display control unit generates an image representing the entire wiring pattern at a low resolution as a low-resolution wiring pattern image. When a specific sheet is specified as an enlarged display target area on the low-resolution wiring pattern image representing the entire wiring pattern, the expanding means displays a single specific unit in the specific sheet of the image data. Only the data corresponding to the wiring pattern is expanded into high-resolution raster data, and an image that displays only the specific unit wiring pattern is displayed as the high-resolution wiring pattern image of the specific sheet. It is preferable to be configured to formed.
[0013] 描画装置によって基板に描画される配線パターン (配線パターン全体)力 単一の 回路パターンに相当する同一の単位配線パターンが複数配列されて成るシートが複 数個配置された配線パターンである場合、目視チェックは通常、配線パターン全体 内の各単位配線パターンのうちの 1つのみに対して行われる。これに基づき請求項 2 記載の発明では、同一の単位配線パターンが複数配列されて成る特定のシートが拡 大表示対象領域として指定された場合に、特定のシート内の単一の特定単位配線パ ターンに相当するデータのみを高解像度ラスタデータへ展開し、特定シートの高解 像度配線パターン画像として、特定単位配線パターンのみを表示する画像を生成す るので、拡大表示対象領域として指定された特定のシートの高解像度配線パターン 画像を短時間で生成 ·表示することができる。  [0013] The wiring pattern (whole wiring pattern) force drawn on the board by the drawing device is a wiring pattern in which a plurality of sheets each having a plurality of identical unit wiring patterns corresponding to a single circuit pattern are arranged. In this case, the visual check is normally performed for only one of the unit wiring patterns in the entire wiring pattern. Based on this, in the invention described in claim 2, when a specific sheet in which a plurality of the same unit wiring patterns are arranged is designated as the enlargement display target area, a single specific unit wiring pattern in the specific sheet is specified. Only the data corresponding to the turn is expanded into high-resolution raster data, and an image that displays only a specific unit wiring pattern is generated as a high-resolution wiring pattern image of a specific sheet. A high-resolution wiring pattern image of a specific sheet can be generated and displayed in a short time.
[0014] なお、請求項 1記載の発明において、描画装置によって基板に描画される配線パ ターンが、単一の回路パターンに相当する同一の単位配線パターンが複数配列され て成るシートが複数個配置されて構成されて!ヽる場合、例えば請求項 3に記載したよ うに、低解像度画像表示制御手段は、低解像度配線パターン画像として、配線バタ ーン全体を低解像度で表す画像を生成して表示させ、展開手段は、配線パターン全 体を表す低解像度配線パターン画像上で拡大表示対象領域として特定のシートが 指定された場合に、画像データのうち、特定のシート内の単一の特定単位配線バタ ーン以外の他の単位配線パターンに相当するデータを高解像度ラスタデータへの展 開対象から除外し、これらの特定単位配線パターン以外の他の単位配線パターンに ついては外縁を表す枠線のみ表示する特定シートの高解像度配線パターン画像を 生成するように構成することが好ましい。これにより、請求項 2記載の発明と同様に、 拡大表示対象領域として指定された特定のシートの高解像度配線パターン画像を短 時間で生成 ·表示することができる。 [0014] In the invention described in claim 1, a plurality of sheets in which a plurality of identical unit wiring patterns corresponding to a single circuit pattern are arranged as the wiring pattern drawn on the substrate by the drawing apparatus are arranged. For example, as described in claim 3, the low-resolution image display control means uses the wiring pattern as a low-resolution wiring pattern image. An image representing the entire screen is generated and displayed at a low resolution, and the developing means displays image data when a specific sheet is designated as an enlarged display target area on the low resolution wiring pattern image representing the entire wiring pattern. Of these, data corresponding to unit wiring patterns other than a single specific unit wiring pattern in a specific sheet is excluded from the target of expansion to high resolution raster data, and data other than these specific unit wiring patterns is excluded. For other unit wiring patterns, it is preferable to generate a high-resolution wiring pattern image of a specific sheet that displays only the frame line representing the outer edge. As a result, similarly to the invention described in claim 2, a high-resolution wiring pattern image of a specific sheet designated as an enlarged display target area can be generated and displayed in a short time.
[0015] また、請求項 1記載の発明にお 、て、例えば請求項 4に記載したように、高解像度 画像表示制御手段によって表示手段に表示された高解像度配線パターン画像上で 、指定手段を介して距離測定対象の 2点が指定された場合に、指定された 2点間の 距離を演算して表示手段に表示させる距離演算 ·表示手段を更に設けることが好ま しい。 [0015] Further, in the invention described in claim 1, for example, as described in claim 4, the designation means is provided on the high-resolution wiring pattern image displayed on the display means by the high-resolution image display control means. It is preferable to further provide a distance calculation / display means that calculates the distance between the two specified points and displays them on the display means when two points for distance measurement are specified.
[0016] デジタル描画方式では、描画用ラスタデータが表す配線パターンがある解像度で 基板に描画されるので、描画用ラスタデータが表す配線パターンや基板に実際に描 画される配線パターン中の各部の位置は、丸め誤差の影響により、画像データが表 す配線パターンに対して、描画時の解像度における隣り合う画素の距離を最大とし て変動する。このため、配線パターンの中に面積が所定値未満のピンホール領域が 存在して!/、る力否かや、配線パターンの中に隣接するパターンと重なり合って 、る領 域の幅が所定値未満のパターンが存在している力否かや、配線パターンの中に隣り 合うパターンとの隙間が所定値未満のパターンが存在している力否か等は、画像デ ータを展開することで得られる高解像度ラスタデータが表す配線パターン上で最終 的にチェックすることが望まし 、。  [0016] In the digital drawing method, since the wiring pattern represented by the drawing raster data is drawn on the substrate at a certain resolution, the wiring pattern represented by the drawing raster data and each part in the wiring pattern actually drawn on the substrate are drawn. The position fluctuates with respect to the wiring pattern represented by the image data with the maximum distance between adjacent pixels in the resolution at the time of drawing due to the influence of rounding errors. For this reason, there is a pinhole area whose area is less than the predetermined value in the wiring pattern! /, Whether the force is sufficient, and the width of the area overlapping the adjacent pattern in the wiring pattern is a predetermined value. The image data can be developed to determine whether or not there is a pattern with less than the pattern, and whether or not there is a pattern with a gap less than the predetermined value between the adjacent patterns in the wiring pattern. It is desirable to finally check on the wiring pattern represented by the resulting high resolution raster data.
[0017] 請求項 4記載の発明では、高解像度配線パターン画像上で距離測定対象の 2点が 指定されると、指定された 2点間の距離を演算して表示手段に表示させるので、高解 像度配線パターン画像に基づく配線パターンの目視チェックにおいて、面積が所定 値未満のピンホール領域の有無や、隣接するパターンと重なり合って 、る領域の幅 が所定値未満のパターンの有無や、隣り合うパターンとの隙間が所定値未満のバタ ーンの有無等を最終的にチェックすることを正確かつ容易に行うことができ、目視チ エックの省力化を実現することができる。 [0017] In the invention of claim 4, when two points for distance measurement are specified on the high-resolution wiring pattern image, the distance between the two specified points is calculated and displayed on the display means. In the visual check of the wiring pattern based on the resolution wiring pattern image, the presence or absence of a pinhole area whose area is less than the predetermined value, or the width of the area overlapping with the adjacent pattern It is possible to accurately and easily check the presence or absence of a pattern with less than a predetermined value and the presence or absence of a pattern with a gap between adjacent patterns being less than a predetermined value. Can be realized.
[0018] ところで、 RIP処理によって得られた描画用ラスタデータを用いて実際に基板に配 線パターンを描画して基板を作成してみたところ、例えば隣り合うパターンの隙間が 不足している等の配線パターンの不具合が発生していた場合、基板上に実際に形 成される配線パターンに不具合が発生しな ヽように画像データを修正した後、時間 の力かる RIP処理や基板への描画等の後工程を再度行う必要があるため、基板製造 等の作業の進拔に多大な悪影響を及ぼすと共に、基板が無駄に消費されるという問 題もある。上記を考慮すると、請求項 1乃至請求項 4の何れかに記載の発明において 、例えば請求項 5に記載したように、入力された画像データに対して RIP処理が行わ れる前に、画像データに、描画装置による描画工程を経て作成される基板に不具合 が発生する欠陥が有る力否かを検査する検査手段を更に設けることが好ましい。  [0018] By the way, when a board was created by actually drawing a wiring pattern on a board using the drawing raster data obtained by the RIP process, for example, a gap between adjacent patterns is insufficient. If there is a defect in the wiring pattern, after correcting the image data so that the defect does not occur in the wiring pattern actually formed on the board, time-consuming RIP processing, drawing on the board, etc. Since it is necessary to perform the subsequent process again, there is a problem that the progress of the work such as the substrate production is greatly adversely affected and the substrate is wasted. In consideration of the above, in the invention according to any one of claims 1 to 4, for example, as described in claim 5, before the RIP process is performed on the input image data, the image data is processed. It is preferable to further provide an inspection means for inspecting whether or not the substrate produced through the drawing process by the drawing apparatus has a defect that causes a defect.
[0019] 請求項 5記載の発明によって、入力された画像データに、描画装置による描画工程 を経て作成される基板に不具合が発生する欠陥が有ったとしても、この欠陥が画像 データに対して RIP処理を行う前に検査手段〖こよって検知されることになり、検知さ れた欠陥に基づ!/ヽて画像データを修正した後に RIP処理を行うことで、画像データを 原因として基板に不具合が発生することを防止することができる。そして、上記のエラ 一や不具合の原因となる画像データの欠陥を、 RIP処理を行う前に検知できるので、 RIP処理や描画装置による描画等の工程を無駄に繰り返す必要がなくなり、入力さ れた画像データの欠陥が、基板製造等の作業の進拔に多大な悪影響を及ぼしたり、 上記欠陥により基板が無駄に消費されたりすることを防止することができる。  [0019] According to the invention described in claim 5, even if the input image data has a defect that causes a defect in the substrate created through the drawing process by the drawing apparatus, the defect is not detected in the image data. It will be detected by inspection means before RIP processing, and based on the detected defect! / After correcting the image data, RIP processing will be performed on the board due to the image data. It is possible to prevent problems from occurring. And, since the error of the image data that causes the above errors and malfunctions can be detected before RIP processing, it is not necessary to repeat the RIP processing and the drawing process by the drawing device. It can be prevented that the defect of the image data has a great adverse effect on the progress of the work such as the manufacture of the substrate or the substrate is wasted due to the defect.
[0020] なお、描画装置による描画工程を経て作成される基板に画像データを原因とする 不具合が発生するか否かは、描画装置が基板に配線パターンを描画する際に適用 される描画条件にも依存する。これを考慮すると、請求項 5記載の発明において、検 查手段は、例えば請求項 6に記載したように、画像データに欠陥が有るか否かを検 查するにあたり、描画装置が基板に配線パターンを描画する際に適用される描画条 件を取得し、取得された描画条件に応じて前記検査における欠陥の判定に用いられ る閾値を設定し、設定された閾値を用いて検査を行うことが好ましい。 [0020] Note that whether or not a defect caused by image data occurs in a substrate created through a drawing process by the drawing device depends on the drawing conditions applied when the drawing device draws a wiring pattern on the substrate. Also depends. In view of this, in the invention described in claim 5, when the inspection means detects whether or not the image data has a defect, for example, as described in claim 6, the drawing apparatus has a wiring pattern on the substrate. Is used to determine the defect in the inspection according to the acquired drawing condition. It is preferable to set a threshold value to be used, and to perform an inspection using the set threshold value.
[0021] CADZCAMシステムで画像データを作成 ·生成する時点では、描画装置が基板 に配線パターンを描画する際の描画条件は不定であるので、この工程で画像データ の欠陥の有無を検査したとしても、上記の不具合を効果的に低減することは困難で ある。これに対して RIP処理は、画像データを、描画装置が基板に配線パターンを描 画する際の描画条件 (例えば解像度等)に応じた描画用ラスタデータへ展開する処 理であるので、 RIP処理を行う時点では上記の描画条件は確定している。請求項 6記 載の発明ではこれを利用し、上記の描画条件を取得し、取得された描画条件に応じ て検査における欠陥の判定に用いられる閾値を設定し、設定された閾値を用いて検 查を行うので、描画装置による描画工程を経て作成される基板に画像データを原因 とする不具合が発生する欠陥が画像データに有るか否かを高精度に判断することが でき、検査手段による検査の精度を向上させることができる。  [0021] At the time of creating and generating image data with the CADZCAM system, the drawing conditions when the drawing apparatus draws the wiring pattern on the board are indeterminate, so even if the image data is checked for defects in this process Therefore, it is difficult to effectively reduce the above problems. On the other hand, the RIP process is a process of developing image data into drawing raster data corresponding to the drawing conditions (for example, resolution) when the drawing apparatus draws the wiring pattern on the board. At the time of performing the above, the above drawing conditions are fixed. In the invention described in claim 6, using this, the drawing conditions are acquired, a threshold value used for determining a defect in the inspection is set according to the acquired drawing condition, and the inspection is performed using the set threshold value. Since the defect is performed, it is possible to determine with high accuracy whether or not the image data has a defect that causes a defect caused by the image data on the substrate created through the drawing process by the drawing apparatus. Accuracy can be improved.
[0022] また、請求項 5記載の発明にお 、て、検査手段は、作成される基板に不具合が発 生する欠陥が有るか否かを検査する処理として、具体的には、例えば請求項 7に記 載したように、画像データが表す配線パターンの中に円周長が第 1所定値未満の円 弧部が含まれている力否力、配線パターンの中に始点位置での半径と終点位置で の半径の差が第 2所定値以上の円弧部が含まれている力否力、配線パターンの中に 半径が第 3所定値以上の円弧部が含まれて!/、るか否か、配線パターンの中に円以 外のアパーチャ形状を用いたラインが含まれているか否力、配線パターンの中に、始 点位置と終点位置が同一の閉曲線を成しかつ始点位置から終点位置に至る途中で 自ラインと交差して 、る自己交差ラインが含まれて 、るか否か、配線パターンが原点 力ゝら第 4所定値以上離れた座標に存在しているか否か、画像データが表す配線バタ ーンの中に面積が第 5所定値未満のピンホール領域が存在して 、るか否か、配線パ ターンの中に隣接するパターンと重なり合つている領域の幅が第 6所定値未満のパタ ーンが存在しているか否力、及び、前記配線パターンの中に隣り合うパターンとの隙 間が第 7所定値未満のパターンが存在しているか否力、の少なくとも 1つを検査する 処理を行うように構成することができる。  [0022] Further, in the invention according to claim 5, specifically, as the processing for inspecting whether or not the inspected substrate has a defect that causes a defect, for example, the claim As described in Fig. 7, the power pattern includes a circular portion whose circumference is less than the first predetermined value in the wiring pattern represented by the image data, and the radius at the starting position in the wiring pattern. Whether the difference in the radius at the end point includes an arc with a radius greater than or equal to the second predetermined value, and the wiring pattern includes an arc with an radius greater than or equal to the third predetermined value! / Whether or not the wiring pattern includes a line using an aperture shape other than a circle, and the wiring pattern forms a closed curve with the same start point and end point, and the end point is determined from the start point. Whether or not it includes a self-intersecting line that intersects with its own line on the way to the wiring pattern Whether or not there is a coordinate that is more than the fourth predetermined value away from the origin force, and whether or not there is a pinhole area whose area is less than the fifth predetermined value in the wiring pattern represented by the image data Or whether there is a pattern whose width overlaps with an adjacent pattern in the wiring pattern is less than a sixth predetermined value, and whether there is an adjacent pattern in the wiring pattern. It can be configured to perform a process of inspecting at least one of whether or not there is a pattern having a gap less than a seventh predetermined value.
[0023] また、請求項 7記載の発明にお 、て、検査手段は、例えば請求項 8に記載したよう に、画像データに、作成される基板に不具合が発生する欠陥が有るか否かを検査す るにあたり、描画装置が基板に配線パターンを描画する際に適用される描画条件の 一つである解像度を取得し、第 1所定値、第 2所定値、第 5所定値〜第 7所定値のう ち実行される検査に対応する所定値を取得された解像度に応じて設定し、設定され た所定値を用いて検査を行うことが好ましい。これにより、検査手段が、作成される基 板に不具合が発生する欠陥が有るか否かを検査する処理として、画像データが表す 配線パターンの中に円周長が第 1所定値未満の円弧部が含まれて 、る力否かを検 查する処理、配線パターンの中に始点位置での半径と終点位置での半径の差が第 2所定値以上の円弧部が含まれて ヽるか否かを検査する処理、画像データが表す配 線パターンの中に面積が第 5所定値未満のピンホール領域が存在して 、るか否かを 検査する処理、配線パターンの中に隣接するパターンと重なり合って 、る領域の幅 が第 6所定値未満のパターンが存在して ヽるか否かを検査する処理、及び配線パタ ーンの中に隣り合うパターンとの隙間が第 7所定値未満のパターンが存在しているか 否かを検査する処理、の少なくとも一つを行う場合に、描画装置が基板に配線パター ンを描画する際の解像度に基づ 、て、これらの検査処理の精度を向上させることが できる。 [0023] In the invention described in claim 7, the inspection means is, for example, as described in claim 8. In addition, the resolution, which is one of the drawing conditions applied when the drawing device draws a wiring pattern on the board, is used to check whether or not the image data has a defect that causes the board to be defective. The first predetermined value, the second predetermined value, and the fifth predetermined value to the seventh predetermined value are set according to the acquired resolution. It is preferable to perform an inspection using the value. As a result, as a process for the inspection means to inspect whether or not there is a defect that causes a defect in the created board, the circular arc portion whose circumferential length is less than the first predetermined value in the wiring pattern represented by the image data The process of detecting whether or not the force is included, whether or not the wiring pattern includes an arc portion in which the difference between the radius at the start point and the radius at the end point is greater than or equal to the second predetermined value A process for inspecting whether there is a pinhole area whose area is less than the fifth predetermined value in the wiring pattern represented by the image data, and an adjacent pattern in the wiring pattern. The process of inspecting whether or not there is a pattern with a width less than the sixth predetermined value overlapping, and the gap between adjacent patterns in the wiring pattern is less than the seventh predetermined value At least one of the processes for checking whether a pattern exists or not When performing drawing apparatus based on the resolution when drawing a wiring pattern on the substrate Te, can improve the accuracy of these inspection process.
また、請求項 7記載の発明において、検査手段は、例えば請求項 9に記載したよう に、画像データに、作成される基板に不具合が発生する欠陥が有るか否かを検査す るにあたり、描画装置が基板に配線パターンを描画する際に適用される描画条件の 一つである、基板に設けられた感光材料の種類を取得し、第 5所定値及び第 7所定 値のうち実行される検査に対応する所定値を取得された感光材料の種類に応じて設 定し、設定された所定値を用いて検査を行うことが好ましい。これにより、検査手段が 、画像データに、作成される基板に不具合が発生する欠陥が有るか否かを検査する 処理として、配線パターンの中に面積が第 5所定値未満のピンホール領域が存在し て!、るか否かを検査する処理、及び配線パターンの中に隣り合うパターンとの隙間が 第 7所定値未満のパターンが存在している力否かを検査する処理の少なくとも 1つを 行う場合に、描画装置が配線パターンを描画する基板に設けられた感光材料の種類 に基づ!/、て、これらの検査処理の精度を向上させることができる。 [0025] また、請求項 5記載の発明にお 、て、検査手段は、例えば請求項 10に記載したよう に、画像データに RIP処理でエラーが発生する欠陥がある力否力も検査することが 好ましい。これにより、画像データを原因として RIP処理でエラーが発生することで RI P処理が停止してしま 、、画像データを修正した上で再度 RIP処理を行う必要が生 ずることも未然に防止することができる。なお、画像データに RIP処理でエラーが発 生する欠陥があるか否かを検査する処理としては、具体的には、例えば請求項 11に 記載したように、 RIP処理で取扱可能な文字種以外の文字が画像データに含まれて いる力否力、配線パターンの頂点の数が第 8所定値以上力否力 画像データを構成 するレイヤの数が第 9所定値以上力否力、の少なくとも 1つを検査する処理が挙げら れる。 Further, in the invention described in claim 7, the inspection means, as described in claim 9, for example, draws the image data in order to inspect whether or not the generated substrate has a defect that causes a defect. Acquires the type of photosensitive material provided on the substrate, which is one of the drawing conditions applied when the device draws the wiring pattern on the substrate, and performs the inspection that is executed out of the fifth and seventh predetermined values. It is preferable that a predetermined value corresponding to the above is set according to the type of the obtained photosensitive material, and inspection is performed using the set predetermined value. As a result, the inspection means inspects whether there is a defect that causes a defect in the created substrate in the image data, and there is a pinhole area whose area is less than the fifth predetermined value in the wiring pattern. And at least one of a process for inspecting whether or not there is a pattern in which a gap between adjacent patterns in the wiring pattern is less than a seventh predetermined value exists. In this case, the accuracy of these inspection processes can be improved based on the type of photosensitive material provided on the substrate on which the drawing apparatus draws the wiring pattern. [0025] Further, in the invention according to claim 5, the inspecting means may inspect the power / power of the image data having a defect that causes an error in the RIP process as described in claim 10, for example. preferable. This prevents the RIP process from stopping due to an error in the RIP process caused by the image data, and the need to perform the RIP process again after correcting the image data. Can do. In addition, as a process for inspecting whether there is a defect that causes an error in the RIP process in the image data, specifically, for example, as described in claim 11, other than character types that can be handled by the RIP process. At least one of the following: the power force force in which the text is included in the image data, the number of vertices of the wiring pattern is the eighth predetermined value or more, the power force force, the number of layers constituting the image data is the ninth predetermined value or more A process for inspecting
[0026] また、請求項 5記載の発明にお 、て、例えば請求項 12に記載したように、検査手段 によって画像データに欠陥が有ると判断された場合に、欠陥が有ると判断された箇 所の配線パターン上での座標を取得し、取得された座標に基づいて、画像データが 表す配線パターンに重畳表示可能にされた状態で配線パターン上の前記箇所に所 定のマークを明示させる欠陥箇所明示データを生成するデータ生成手段を更に備え ることが好ましい。これにより、検査手段によって画像データに欠陥が有ると判断され たことに基づき、情報処理装置 (例えば CAMシステムを実現する情報処理装置)の 表示手段に前記画像データが表す配線パターンを表示させる際に、データ生成手 段によって表示された配線パターンのうち欠陥が有ると判断された箇所に所定のマ ークを容易に明示 (重畳表示)させることができ、画像データのうち欠陥に相当する部 分を特定して修正する作業を容易に行うことができる。  [0026] Further, in the invention described in claim 5, for example, as described in claim 12, when it is determined by the inspection means that the image data is defective, it is determined that there is a defect. Defects that acquire coordinates on a wiring pattern in a state where the coordinates on the wiring pattern are acquired, and based on the acquired coordinates, the wiring pattern represented by the image data can be superimposed and displayed on the wiring pattern. It is preferable to further include data generation means for generating location explicit data. Accordingly, when the inspection unit determines that the image data is defective, the display unit of the information processing apparatus (for example, the information processing apparatus that realizes the CAM system) displays the wiring pattern represented by the image data. In addition, a predetermined mark can be easily clearly specified (superimposed display) at a location determined to have a defect in the wiring pattern displayed by the data generation means, and a portion corresponding to the defect in the image data can be displayed. It is possible to easily perform the work of identifying and correcting the problem.
[0027] また、請求項 1乃至請求項 10の何れかに記載の発明において、例えば請求項 13 に記載したように、描画装置が基板に配線パターンを描画する際に適用される描画 条件を取得し、取得された描画条件と画像データとに基づいて、描画装置が現在の 描画条件で画像データが表す配線パターンを描画した場合の基板上での配線バタ ーンの描画範囲を演算する演算手段と、演算手段によって演算された描画範囲に基 づ 、て、描画装置が現在の描画条件で画像データが表す配線パターンを描画した 場合の、基板と基板上での配線パターンの描画範囲との位置関係を表示手段に表 示させる位置関係表示制御手段と、を更に設けることが好ましい。 [0027] Further, in the invention according to any one of claims 1 to 10, for example, as described in claim 13, a drawing condition applied when the drawing apparatus draws a wiring pattern on the substrate is acquired. And calculating means for calculating the drawing range of the wiring pattern on the substrate when the drawing device draws the wiring pattern represented by the image data under the current drawing condition based on the acquired drawing condition and image data. And the position of the wiring pattern drawing range on the board when the drawing apparatus draws the wiring pattern represented by the image data under the current drawing conditions based on the drawing range calculated by the calculation means. Display relationships on display It is preferable to further provide a positional relationship display control means to be shown.
[0028] 描画装置が基板に配線パターンを描画する際の描画条件には、基板上での配線 ノターンの描画範囲を規定する情報が含まれているが、この情報の内容が不適であ つた場合、描画装置による配線パターンの描画において、描画範囲が基板上から逸 脱してしまうことで基板が無駄に消費されてしまう等の不都合が生ずる可能性がある 。これに対して請求項 13記載の発明では、描画条件と画像データに基づいて基板 上での配線パターンの描画範囲を演算し、基板と基板上での配線パターンの描画範 囲との位置関係を表示手段に表示させることによって、描画条件のうち基板上での 配線パターンの描画範囲を規定する情報の内容が不適か否かを、描画装置が基板 に配線パターンを実際に描画する前にチェックすることができ、基板が無駄に消費さ れる等の不都合が生ずることを回避することができる。 発明の効果  [0028] The drawing conditions when the drawing apparatus draws the wiring pattern on the board include information that defines the drawing range of the wiring pattern on the board, but the content of this information is inappropriate In the drawing of the wiring pattern by the drawing apparatus, there is a possibility that inconveniences such as wasteful consumption of the substrate occur due to the drawing range deviating from the substrate. On the other hand, in the invention of claim 13, the drawing range of the wiring pattern on the substrate is calculated based on the drawing conditions and the image data, and the positional relationship between the substrate and the drawing range of the wiring pattern on the substrate is calculated. By displaying on the display means, the drawing device checks whether the content of the information that defines the drawing range of the wiring pattern on the board is inappropriate or not before drawing the wiring pattern on the board. It is possible to avoid the occurrence of inconvenience such as wasteful consumption of the substrate. The invention's effect
[0029] 以上説明したように、本発明は、配線パターンを表すベクトル形式の画像データに 基づ 、て、配線パターンを低解像度で表す低解像度配線パターン画像を生成して 表示手段に表示させると共に、低解像度配線パターン画像上で指定手段を介して拡 大表示対象領域が指定された場合に、画像データのうち拡大表示対象領域に相当 するデータを高解像度ラスタデータへ展開することで、拡大表示対象領域内の配線 ノターンを高解像度で表す高解像度配線パターン画像を生成して表示手段に表示 させるようにしたので、描画用ラスタデータに対する目視チェックの省力化を実現でき る、という優れた効果を有する。  [0029] As described above, the present invention generates a low-resolution wiring pattern image representing a wiring pattern at a low resolution based on the vector format image data representing the wiring pattern, and displays it on the display means. When the enlarged display target area is specified on the low-resolution wiring pattern image via the specifying means, the data corresponding to the enlarged display target area in the image data is expanded into the high-resolution raster data to display the enlarged display. Since a high-resolution wiring pattern image representing the wiring pattern in the target area with high resolution is generated and displayed on the display means, the excellent effect of saving labor for visual check for the raster data for drawing can be realized. Have.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本実施形態に係る基板描画システムの概略構成図である。  FIG. 1 is a schematic configuration diagram of a substrate drawing system according to the present embodiment.
[図 2]画像処理装置におけるデータの流れを併記した機能ブロック図である。  FIG. 2 is a functional block diagram illustrating the flow of data in the image processing apparatus.
[図 3]データチェック処理の内容を示すフローチャートである。  FIG. 3 is a flowchart showing the contents of data check processing.
[図 4]データチェック処理における各種チェックを説明するためのイメージ図である。  FIG. 4 is an image diagram for explaining various checks in data check processing.
[図 5]データチェック処理における各種チェックを説明するためのイメージ図である。  FIG. 5 is an image diagram for explaining various checks in data check processing.
[図 6]ガーバーエラーファイルの一例を示すイメージ図である。  FIG. 6 is an image diagram showing an example of a Gerber error file.
[図 7]エラー箇所表示の一例を示すイメージ図である。 [図 8]レイアウト確認処理の内容を示すフローチャートである。 FIG. 7 is an image diagram showing an example of an error location display. FIG. 8 is a flowchart showing the contents of layout confirmation processing.
[図 9]レイアウト表示画面の一例を示すイメージ図である。  FIG. 9 is an image diagram showing an example of a layout display screen.
[図 10]レイアウト表示画面での配線パターンの回転を示すイメージ図である。  FIG. 10 is an image diagram showing the rotation of the wiring pattern on the layout display screen.
[図 11]レイアウト表示画面での配線パターンのミラー表示を示すイメージ図である。  FIG. 11 is an image diagram showing a mirror display of a wiring pattern on a layout display screen.
[図 12]ラスタ表示処理の内容を示すフローチャートである。  FIG. 12 is a flowchart showing the contents of raster display processing.
[図 13]描画単位 (配線パターン全体)内におけるピースの配置の一例を示すイメージ 図である。  FIG. 13 is an image diagram showing an example of the arrangement of pieces in a drawing unit (entire wiring pattern).
[図 14]ラスタ表示画面の一例を示すイメージ図である。  FIG. 14 is an image diagram showing an example of a raster display screen.
[図 15]ラスタ表示画面でピースを表示している状態を示すイメージ図である。  FIG. 15 is an image diagram showing a state in which pieces are displayed on the raster display screen.
[図 16]ラスタ表示画面のシートを表示している状態を示すイメージ図である。  FIG. 16 is an image diagram showing a state where a sheet of a raster display screen is displayed.
[図 17]配線パターンのラスタ表示において、指定された 2点間の距離を表示している 状態を示すイメージ図である。  FIG. 17 is an image diagram showing a state in which a distance between two designated points is displayed in a raster display of a wiring pattern.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、図面を参照して本発明の実施形態の一例を詳細に説明する。図 1には本実 施形態に係る基板描画システム 10が示されている。基板描画システム 10は、入力さ れた描画用ラスタデータが表す配線パターンを、表面に感光材料が塗布された基板 に直接描画する描画装置としての露光装置 12を備えている。露光装置 12としては、 例えばデジタル ·マイクロミラー ·デバイス (DMD)等の空間光変調素子を用いて描 画用ラスタデータに応じて変調された光ビームを基板に照射することで、基板に配線 パターンを描画する構成を用いることができる。露光装置 12によって配線パターンが 描画された基板は、現像やエッチング、洗浄、カット、穿孔等の公知の工程を経て、 配線パターンが形成され回路素子を実装可能なプリント配線基板 (PWB)として整形 される。 Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a substrate drawing system 10 according to this embodiment. The substrate drawing system 10 includes an exposure device 12 as a drawing device that directly draws a wiring pattern represented by the input drawing raster data on a substrate whose surface is coated with a photosensitive material. For example, the exposure apparatus 12 irradiates the substrate with a light beam modulated according to the raster data for drawing using a spatial light modulator such as a digital micromirror device (DMD). Can be used. The substrate on which the wiring pattern is drawn by the exposure apparatus 12 is shaped as a printed wiring board (PWB) on which a wiring pattern is formed and circuit elements can be mounted through known processes such as development, etching, cleaning, cutting, and drilling. The
[0032] 露光装置 12には、露光装置 12へ描画用ラスタデータを供給する画像処理装置 14 が接続されており、この画像処理装置 14は、 LAN等のネットワーク 16を介し、 CAD /CAMシステムとして機能する複数台のコンピュータ 18と各々接続されている。な お、図 1では一例として 3台のコンピュータ 18を示している力 このようなコンピュータ 18の台数は上記に限られるものではない。 CADシステム(として機能するコンビユー タ 18)では、プリント配線基板に実装される電子回路を設計したり、プリント配線基板 に形成すべき配線パターン (後述するピース(単位配線パターン)に相当する配線パ ターン)を設計したりする等の工程が行われ、配線パターンを記述した所定フォーマ ットのデータが CAMシステムとして機能する別のコンピュータ 18 (同一のコンビユー タであってもよい)へネットワーク 16を介して出力される。 The exposure apparatus 12 is connected to an image processing apparatus 14 for supplying drawing raster data to the exposure apparatus 12, and this image processing apparatus 14 is connected as a CAD / CAM system via a network 16 such as a LAN. Each is connected to a plurality of functioning computers 18. Note that the power shown in FIG. 1 shows three computers 18 as an example. The number of such computers 18 is not limited to the above. CAD system (combined to function as 18) design electronic circuits to be mounted on a printed wiring board, design wiring patterns to be formed on a printed wiring board (wiring patterns corresponding to pieces (unit wiring patterns) described later), etc. The data in a predetermined format describing the wiring pattern is output to another computer 18 (which may be the same computer) functioning as a CAM system via the network 16.
[0033] CAMシステム(として機能するコンピュータ 18)では、配線パターンを記述したデー タが入力されると、入力されたデータが表す配線パターンを基板への描画時にどの ように配置するか (レイアウト)を決定したり、穿孔工程で基板上のどの位置に穿孔す るかを決定したり、配線パターンと共に描画すべきコメントを付加したりする等の編集 工程が行われる。そして、 1回の描画で基板に描画すべき配線パターン全体をべタト ル形式 (画像を、始点ゃ終点等の点の座標とそれを結ぶ線や面の方程式等のパラメ ータ、塗りつぶしや特殊効果等の描画情報の集合として表現するデータ形式)で記 述した画像データ(以下、ガーバーデータと称する)が生成され、このガーバーデー タがネットワーク 16を介して画像処理装置 14へ転送される。なお、上記の編集工程 で決定された基板上の穿孔位置は、基板への穿孔を行うドリル機(図示せず)へドリ ル孔データとして出力される。  [0033] In the CAM system (computer 18 functioning as), when data describing the wiring pattern is input, how the wiring pattern represented by the input data is arranged when drawing on the board (layout) Editing steps such as determining the position on the substrate in the drilling process, adding a comment to be drawn together with the wiring pattern, etc. are performed. Then, the entire wiring pattern to be drawn on the board in a single drawing is in a solid format (images include the coordinates of points such as start and end points and parameters such as line and surface equations connecting them, fill and special Image data (hereinafter referred to as Gerber data) described in a data format expressed as a set of rendering information such as effects is generated, and this Gerber data is transferred to the image processing device 14 via the network 16. The drilling position on the substrate determined in the editing step is output as drill hole data to a drilling machine (not shown) for drilling the substrate.
[0034] 一方、画像処理装置 14は本発明に係る画像処理装置に対応しており、パーソナル  On the other hand, the image processing device 14 corresponds to the image processing device according to the present invention, and
'コンピュータ(PC)等から成り、 CPU,メモリ、 HDD22 (図 2参照)、表示手段として のディスプレイ、キーボード、マウス等を含んで構成されている。画像処理装置 14の HDDには、画像処理装置 14の CPUを、図 2に示すジョブ登録 GUI(Graphical User Interface)24、データ受付処理部 26、データチェック処理部 28、レイアウト確認 GUI 30、レイアウト表示処理部 32、ラスタ表示 GUI34、 RIP処理部 36、ジョブ表示 GUI3 8及び露光装置制御部 40として機能させるための各種のアプリケーション 'プロダラ ムが各々インストールされている。また HDD22には、 CAMシステムから取得された ガーバーデータを格納するための受信ガーバーデータフォルダ 44、データチェック 処理部 28によるデータチェック処理 (詳細は後述)を経たガーバーデータを格納する ためのチェック済みガーバーデータフォルダ 46、ジョブ登録 GUI24を介して入力さ れたジョブ条件情報を格納するためのジョブ条件情報フォルダ 48、 RIP処理部 36の RIP処理によって得られた描画用ラスタデータを格納するための描画用ラスタデータ フォルダ 50が各々設けられている。なお、本実施形態に係る画像処理装置 14は露 光装置 12を最大 2台まで接続可能とされている。 'Comprising a computer (PC), etc., it includes a CPU, memory, HDD22 (see Fig. 2), display as display means, keyboard, mouse, etc. In the HDD of the image processing device 14, the CPU of the image processing device 14 is connected to a job registration GUI (Graphical User Interface) 24, a data reception processing unit 26, a data check processing unit 28, a layout check GUI 30, and a layout display shown in FIG. Various applications' programs for functioning as the processing unit 32, raster display GUI 34, RIP processing unit 36, job display GUI 38, and exposure apparatus control unit 40 are installed. In addition, the HDD 22 has a received Gerber data folder 44 for storing Gerber data acquired from the CAM system, and a checked Gerber data folder for storing Gerber data that has been subjected to data check processing (details will be described later) by the data check processing unit 28. 46, Job condition information folder 48 for storing job condition information input via GUI 24, RIP processing unit 36 Each of the drawing raster data folders 50 for storing the drawing raster data obtained by the RIP process is provided. Note that the image processing apparatus 14 according to the present embodiment can connect up to two exposure apparatuses 12.
[0035] 次に本実施形態の作用として、ガーバーデータ力 描画用ラスタデータを得るため に画像処理装置 14で行われる一連の処理を順に説明する。  Next, as an operation of the present embodiment, a series of processes performed in the image processing apparatus 14 to obtain Gerber data force drawing raster data will be described in order.
[0036] 本実施形態にぉ 、て、 CAMシステムで生成されたガーバーデータは、画像処理 装置 14がネットワークを介してアクセス可能な記憶媒体 54 (例えば CAMシステムと して機能するコンピュータ 18に内蔵されている HDDに設けられ画像処理装置 14が アクセス可能に設定された特定フォルダ)に記憶 '保管される。ジョブ登録 GUI24が 画像処理装置 14のディスプレイに表示可能な画面の中には、記憶媒体 54からのガ 一バーデータの取得を指示するためのデータ取得指示画面が含まれており、このデ ータ取得指示画面がディスプレイに表示されて 、る状態で、ユーザがキーボードや マウス等を操作することによって記憶媒体 54からの特定のガーバーデータの取得が 指示されると、この指示はジョブ登録 GUI24を介してデータ受付処理部 26に入力さ れ、データ受付処理部 26は指示された特定のガーバーデータをネットワーク 16経由 で記憶媒体 54から読み出して取得し、取得されたガーバーデータを受信ガーバー データフォルダ 44に格納する。  In this embodiment, the Gerber data generated by the CAM system is built in the storage medium 54 (for example, the computer 18 functioning as the CAM system) that can be accessed by the image processing apparatus 14 via the network. It is stored in a specific folder) that is set up in the HDD that the image processing device 14 is set to be accessible. The screen that the job registration GUI 24 can display on the display of the image processing apparatus 14 includes a data acquisition instruction screen for instructing acquisition of governor data from the storage medium 54. When the acquisition instruction screen is displayed on the display and the user instructs to acquire specific Gerber data from the storage medium 54 by operating the keyboard, mouse, or the like, this instruction is sent via the job registration GUI 24. The data reception processing unit 26 reads and acquires the specified specific Gerber data from the storage medium 54 via the network 16, and stores the acquired Gerber data in the reception Gerber data folder 44. To do.
[0037] なお、コンピュータ 18によって実現可能な CADZCAMシステムには種々の仕様' 機能のシステムがあり、データ受付処理部 26は、記憶媒体 54からガーバーデータを 取得すると、取得されたガーバーデータのフォーマットをチェックし、必要に応じて一 定のフォーマットのガーバーデータへ変換する処理を行った後に、受信ガーバーデ 一タフオルダ 44に格納する処理も行う。  [0037] The CADZCAM system that can be realized by the computer 18 has a system with various specifications' function. When the data reception processing unit 26 acquires Gerber data from the storage medium 54, the format of the acquired Gerber data is changed. After checking and converting to Gerber data in a certain format as necessary, the data is also stored in the reception Gerber data folder 44.
[0038] また、ジョブ登録 GUI24が画像処理装置 14のディスプレイに表示可能な画面の中 には、受信ガーバーデータフォルダ 44に格納されて!、るガーバーデータのチェック を指示するためのチェック指示画面が含まれている。図示は省略するが、このチエツ ク指示画面には、受信ガーバーデータフォルダ 44に格納されて 、るガーバーデータ のファイル名等を一覧表示するための表示欄と、該表示欄に一覧表示された各ガー バーデータの中力 処理対象として選択されたガーバーデータについて、配線パタ ーン描画時の描画条件 (例えば解像度、配線パターンの描画に用いる露光装置 12 の機種、描画モード、配線パターンを描画する基板のサイズ、ガーバーデータが表 す配線パターンの回転や反転 (ミラー)の有無や回転角度,反転 (ミラー)の方向、基 板に塗布されて ヽる感光材料の種類等)や、配線パターンを描画する基板の枚数等 のジョブ条件を入力するための入力欄と、前記表示欄に一覧表示された各ガーバー データの中から処理対象として選択されたガーバーデータに対するデータチェック処 理の実行を指示するためのボタンが設けられて 、る。 [0038] Among the screens that the job registration GUI 24 can display on the display of the image processing apparatus 14, a check instruction screen for instructing to check Gerber data stored in the reception Gerber data folder 44 is included. It is. Although not shown in the figure, this check instruction screen has a display column for displaying a list of file names of Gerber data stored in the reception Gerber data folder 44, and each of the garbs displayed in the display column. For the Gerber data selected as the processing target of the bar data, the wiring pattern Drawing conditions for screen drawing (for example, resolution, exposure device 12 model used for drawing the wiring pattern, drawing mode, size of the board on which the wiring pattern is drawn, rotation and inversion (mirror) of the wiring pattern represented by Gerber data) Input fields for inputting job conditions such as presence / absence, rotation angle, direction of reversal (mirror), type of photosensitive material applied to the substrate, etc.) and the number of substrates on which a wiring pattern is drawn, A button is provided for instructing execution of data check processing for Gerber data selected as a processing target from among the Gerber data listed in the display column.
[0039] 上記のチェック指示画面がディスプレイに表示されている状態で、ユーザがキーボ ードゃマウスを介し、チェック指示画面内の表示欄に一覧表示されて 、るガーバー データの中力 処理対象のガーバーデータを選択し、チェック指示画面内の入力欄 に処理対象のガーバーデータのジョブ条件を入力すると、入力されたジョブ条件を表 すジョブ条件情報が、処理対象のガーバーデータのジョブ条件としてジョブ条件情報 フォルダ 48に格納される。そして、チェック指示画面内のボタンを選択することで、処 理対象のガーバーデータに対するデータチェック処理の実行を指示すると、この指 示がジョブ登録 GUI24を介してデータチェック処理部 28に入力され、このデータチ エック処理部 28によって図 3に示すデータチェック処理が行われる。なお、このデー タチェック処理は本発明に係る検査手段に相当する処理であり、データチェック処理 を実行するデータチェック処理部 28は本発明に係る検査手段に対応している。  [0039] While the above check instruction screen is displayed on the display, the user is displayed in a list in the display column in the check instruction screen via the mouse or the mouse, When you select Gerber data and enter the job condition of the Gerber data to be processed in the input field on the check instruction screen, the job condition information that represents the input job condition is displayed as the job condition of the Gerber data to be processed. Information is stored in folder 48. When the button on the check instruction screen is selected to instruct execution of the data check process for the target Gerber data, this instruction is input to the data check processing unit 28 via the job registration GUI 24, and this The data check processing shown in FIG. Note that this data check process is a process corresponding to the inspection means according to the present invention, and the data check processing unit 28 for executing the data check process corresponds to the inspection means according to the present invention.
[0040] このデータチェック処理は、処理対象のガーバーデータに対し、 RIP処理部 36によ る RIP処理においてエラーが発生する欠陥や、露光装置 12による基板への配線パタ ーンの描画を経て作成されるプリント配線基板に不具合が発生する原因となる欠陥 が有るか否かをチェックする処理であり、まずステップ 100では、チェック済みガーバ 一データフォルダ 46から処理対象のガーバーデータを取り込むと共に、このガーバ 一データに対応するジョブ条件情報をジョブ条件情報フォルダ 48から取り込む。  [0040] This data check process is created for the Gerber data to be processed by drawing a defect that causes an error in the RIP process by the RIP processing unit 36 and a wiring pattern on the substrate by the exposure apparatus 12. This is a process to check whether there is a defect that causes a failure in the printed circuit board to be printed. First, in step 100, the Gerber data to be processed is fetched from the checked Gerber data folder 46 and this Gerber Import job condition information corresponding to the data from the job condition information folder 48.
[0041] ステップ 102では、ステップ 100で取り込んだジョブ条件情報に含まれる描画時の 解像度に応じて、後述する処理で用いる閾値 thl,th2,th6を設定する。なお、詳細は 後述するが、閾値 thlは円周長が極めて小さい (例えば数; z m程度)微小円弧部の有 無をチェックする際に用いる円周長の閾値、閾値 th2は始終点での半径に差がある 円弧の有無をチェックする際に用いる半径差の閾値、閾値 th6は隣接するパターンと の重なり(オーバーラップ領域)の幅が小さいパターンの有無をチェックする際に用い る幅の閾値であり、ステップ 102では、描画時の解像度が高くなる(すなわち露光装 置 12によって基板上に描画される配線パターンにおける画素の間隔が小さくなる)に 従って閾値 thl,th2,th6が各々小さくなるように、閾値 thl,th2,th6を設定する。 In step 102, thresholds thl, th2, and th6 used in processing to be described later are set according to the resolution at the time of drawing included in the job condition information captured in step 100. Although details will be described later, the threshold thl is a circumferential length threshold that is used when checking the presence or absence of a minute arc portion, and the threshold th2 is a radius at the start and end points. There is a difference The threshold of the radius difference used when checking for the presence or absence of an arc, the threshold th6, is a threshold for the width used when checking for the presence or absence of a pattern with a small overlap (overlap area) width with an adjacent pattern. In this case, the thresholds thl, th2, th6 are reduced so that the thresholds thl, th2, th6 become smaller as the resolution at the time of drawing becomes higher (that is, the interval between pixels in the wiring pattern drawn on the substrate by the exposure device 12 becomes smaller). Set th2 and th6.
[0042] またステップ 104では、ステップ 100で取り込んだジョブ条件情報に含まれる描画 時の解像度と基板に塗布されて ヽる感光材料の種類に応じて、後述する処理で用い る閾値 th5,th7を設定する。詳細は後述する力 閾値 th5は面積が微小なピンホール 領域の有無をチェックする際に用いる面積の閾値、閾値 th7は隣り合うパターンとの 隙間が小さいパターンの有無をチェックする際に用いる隙間の閾値である。露光装 置 12による基板への配線パターンの描画において、基板に描画された配線パター ンにおける描画部分と非描画部分の境界 (エッジ部分)の明瞭度は、基板に塗布さ れている感光材料の露光量 濃度特性の傾きの大きさに依存し、エッチング工程を 経て基板上に形成される配線パターンにおけるエッジ部の位置は、露光部分と非露 光部分のうちエッチング工程で除去される側の面積が大きくなる方向へ、エッジ部分 の明瞭度の小ささに応じた偏倚量だけ偏倚する。そして、エッジ部分の位置の偏倚 に伴って上記のピンホール領域の面積や隣り合うパターンの間隔が変化する。  In step 104, thresholds th5 and th7 used in processing described later are set according to the resolution at the time of drawing included in the job condition information captured in step 100 and the type of photosensitive material applied to the substrate. Set. The force threshold value th5, which will be described in detail later, is the threshold value of the area used when checking the presence or absence of a pinhole area with a small area, and the threshold value th7 is the threshold value of the gap used when checking the presence or absence of a pattern with a small gap between adjacent patterns. It is. In drawing a wiring pattern on a substrate by the exposure device 12, the clarity of the boundary (edge portion) between the drawn portion and the non-drawn portion of the wiring pattern drawn on the substrate is determined by the sensitivity of the photosensitive material applied to the substrate. Exposure amount Depending on the slope of the density characteristic, the position of the edge in the wiring pattern formed on the substrate through the etching process is the area of the exposed part and the non-exposed part that is removed by the etching process. In the direction in which the value increases, the amount of deviation depends on the degree of clarity of the edge part. And the area of said pinhole area | region and the space | interval of an adjacent pattern change with the deviation of the position of an edge part.
[0043] エッジ部分の明瞭度の変化に対するピンホール領域の面積や隣り合うパターンの 間隔の変化方向は、配線パターンの描画における露光部分がエッチング工程で残る 側 (パターン部)となるか除去される側(間隙部)となるかによつて相違するが、これは 感光材料の種類 (ネガかポジか)カゝら判断することができ、また感光材料の露光量— 濃度特性の傾きの大きさも感光材料の種類カゝら判断できる。本実施形態では、各種 の感光材料に配線パターンを描画してプリント配線基板を作成したときに、エッジ部 分の実際の位置が本来の位置に対してどの程度偏倚するかが測定され、測定結果 がテーブルとして HDDに記憶されており、ステップ 104では、描画時の解像度に応 じて閾値 th5,th7を設定した後に、上記のテーブルを参照して基板に塗布されている 感光材料の種類に対応するエッジ部分の偏倚量を取得し、取得された偏倚量に応じ て閾値 th5,th7を修正することで、描画時の解像度と感光材料の種類に応じた閾値 th 5,th7を設定する。 [0043] The change direction of the area of the pinhole region and the interval between adjacent patterns with respect to the change in the clarity of the edge portion is the side where the exposed portion in the wiring pattern drawing is left on the etching process (pattern portion) or is removed However, this can be determined by the type of photosensitive material (negative or positive), and the slope of the exposure amount-density characteristic of the photosensitive material The type of photosensitive material can be determined. In this embodiment, when a printed circuit board is created by drawing wiring patterns on various photosensitive materials, the degree to which the actual position of the edge portion deviates from the original position is measured, and the measurement result Is stored in the HDD as a table, and in step 104, the thresholds th5 and th7 are set according to the resolution at the time of drawing, and then the type of photosensitive material applied to the substrate is referenced with reference to the above table. The threshold value th5 and th7 are corrected according to the acquired deviation amount and the threshold value th according to the resolution and the type of photosensitive material. Set 5, th7.
[0044] ところで、前述した RIP処理部 36では、ガーバーデータ(詳しくはチェック済みガー バーデータフオルダ 46に格納されて!、るガーバーデータ)をラスタ形式(ビットマップ 形式)の描画用ラスタデータへ展開する RIP処理を行うが、この RIP処理では、取扱 可能な文字種が制限されており、 RIP処理対象のガーバーデータに取扱可能な文 字種以外の文字 (例えば半角カナ文字等)が含まれていた場合、この種の文字が検 知された段階でエラーとなって RIP処理が停止する。このため、次のステップ 106で は、処理対象のガーバーデータを先頭力 順に参照し、 RIP処理で取扱可能な文字 種以外の文字が含まれて ヽな 、か否かを検査するチェック処理を行う。ステップ 106 のチェック処理が完了するとステップ 108へ移行し、ステップ 106のチェック処理にお いて該当する文字が含まれていることが検知された力否力判定する。判定が否定さ れた場合はステップ 112へ移行する力 判定が肯定された場合はステップ 110へ移 行し、検知されたエラー (欠陥)が、処理対象のガーバーデータに RIP処理で取扱可 能な文字種以外の文字が含まれているエラーであることを表すエラー種情報をメモリ に記憶した後にステップ 112へ移行する。  [0044] By the way, the RIP processing unit 36 described above expands Gerber data (specifically, Gerber data stored in the checked Gerber data folder 46!) Into raster data for rendering in the raster format (bitmap format). In this RIP process, the types of characters that can be handled are limited, and the Gerber data subject to RIP processing includes characters other than those that can be handled (for example, half-width kana characters). In this case, an error occurs when this type of character is detected, and the RIP process stops. For this reason, in the next step 106, reference is made to the Gerber data to be processed in the order of the leading force, and a check process is performed to check whether characters other than the character types that can be handled by the RIP process are included. . When the check process in step 106 is completed, the process proceeds to step 108, and it is determined whether or not the corresponding character is detected in the check process in step 106. If the determination is negative, the power to proceed to step 112 is determined. If the determination is affirmative, the process proceeds to step 110, and the detected error (defect) can be handled by the RIP process in the target Gerber data. After the error type information indicating that the error includes characters other than the character type is stored in the memory, the process proceeds to step 112.
[0045] また、円周長が極めて小さい (例えば数; z m程度)微小円弧部が配線パターンに含 まれて ヽた場合、この微小円弧部は露光装置 12による描画工程を経て作成されるプ リント配線基板の不具合の原因となるので、直線に置き換えることが好ましい。このた め、次のステップ 112では、円周長が閾値 thl未満の微小円弧部を規定するデータ が処理対象のガーバーデータに含まれて!/、な!/、か否かを検査するチェック処理を行 う。なお、閾値 thlは前述のステップ 102で描画時の解像度に応じて設定されている ので、プリント配線基板の不具合の原因となる微小円弧部が配線パターンに含まれ ている力否かを精度良く検査することができる。ステップ 112のチェック処理が完了す るとステップ 114へ移行し、ステップ 112のチェック処理にお!、て該当するデータが 検知されたか否かを判定する。判定が否定された場合はステップ 118へ移行するが 、判定が肯定された場合はステップ 116へ移行し、検知されたエラー (欠陥)が、処理 対象のガーバーデータに微小円弧部を規定するデータが含まれているエラーである ことを表すエラー種情報と、ガーバーデータが表す配線パターン上での微小円弧部 の位置を表す座標情報をメモリに記憶した後にステップ 118へ移行する。 [0045] In addition, when a minute arc portion having an extremely small circumferential length (for example, about several zm) is included in the wiring pattern, the minute arc portion is printed through a drawing process by the exposure apparatus 12. It is preferable to replace it with a straight line because it causes a problem of the wiring board. For this reason, in the next step 112, a check process for inspecting whether or not the data specifying the minute arc portion whose circumferential length is less than the threshold thl is included in the target Gerber data! / ,! I do. Since the threshold value thl is set according to the resolution at the time of drawing in the above-mentioned step 102, it is accurately inspected whether the wiring pattern includes a micro-arc portion that causes a failure of the printed wiring board. can do. When the check process in step 112 is completed, the process proceeds to step 114, where it is determined whether or not the corresponding data is detected in the check process in step 112. If the determination is negative, the process proceeds to step 118, but if the determination is affirmative, the process proceeds to step 116, and the detected error (defect) is the data that specifies the minute arc portion in the Gerber data to be processed. Error type information indicating that the error is included, and a minute arc on the wiring pattern indicated by Gerber data After the coordinate information representing the position of the position is stored in the memory, the routine proceeds to step 118.
[0046] また、例として図 4 (A)にも示すように、始点における半径 L1と終点における半径 L2 との差 (|L1—L2|)が一定値 (例えば数十 m程度)以上の円弧部が配線パターンに 含まれて!/ヽた場合、この円弧部も露光装置 12による描画工程を経て作成されるプリ ント配線基板の不具合の原因となるので望ましくない。このため、次のステップ 118で は、半径差 (|L1—L2|)が閾値 th2以上の円弧部を規定するデータが処理対象のガー バーデータに含まれていないか否かを検査するチェック処理を行う。なお、閾値 th2も 前述のステップ 102で描画時の解像度に応じて設定されているので、プリント配線基 板の不具合の原因となる半径差有りの円弧部が配線パターンに含まれている力否か を精度良く検査することができる。ステップ 118のチェック処理が完了するとステップ 1As an example, as shown in FIG. 4A, an arc having a difference (| L1−L2 |) between the radius L1 at the start point and the radius L2 at the end point is a certain value (for example, about several tens of meters) or more. If the part is included in the wiring pattern !, this arc part is also undesirable because it causes a defect in the printed wiring board created through the drawing process by the exposure apparatus 12. For this reason, in the next step 118, a check process is performed to check whether or not the data that defines the circular arc portion whose radius difference (| L1−L2 |) is greater than or equal to the threshold th2 is not included in the target Gerber data. I do. Since the threshold value th2 is also set according to the resolution at the time of drawing in the above-described step 102, whether or not the wiring pattern includes a circular arc portion with a radius difference that causes a failure of the printed wiring board. Can be accurately inspected. When the check process of step 118 is completed, step 1
20へ移行し、ステップ 118のチェック処理において該当するデータが検知されたか 否かを判定する。判定が否定された場合はステップ 124へ移行する力 判定が肯定 された場合はステップ 122へ移行し、検知されたエラー (欠陥)が、処理対象のガー バーデータに半径差有りの円弧部を規定するデータが含まれているエラーであること を表すエラー種情報と、ガーバーデータが表す配線パターン上での半径差有りの円 弧部の位置を表す座標情報をメモリに記憶した後にステップ 124へ移行する。 The process proceeds to 20, and it is determined whether or not the corresponding data is detected in the check processing in step 118. If the determination is negative, the force to move to step 124 If the determination is affirmative, the flow proceeds to step 122, and the detected error (defect) defines the arc part with a radius difference in the target Gerber data The error type information indicating that the data contains the error data and the coordinate information indicating the position of the arc portion with the radius difference on the wiring pattern indicated by the Gerber data are stored in the memory, and then the process proceeds to step 124. To do.
[0047] また、半径が過大 (例えば千数百 mm程度)な円弧部は一般に配線パターンには 使用されないので、このような半径過大円弧部が配線パターンに含まれていた場合、 この円弧部が露光装置 12による描画工程を経て作成されるプリント配線基板の不具 合の原因となる可能性もある。このため、ステップ 124では、半径が閾値 th3以上の円 弧部を規定するデータが処理対象のガーバーデータに含まれて ヽな ヽか否かを検 查するチェック処理を行う。ステップ 124のチェック処理が完了するとステップ 126へ 移行し、ステップ 124のチェック処理において該当するデータが検知されたか否かを 判定する。判定が否定された場合はステップ 130へ移行するが、判定が肯定された 場合はステップ 128へ移行し、検知されたエラー (欠陥)が、処理対象のガーバーデ ータに半径過大円弧部を規定するデータが含まれているエラーであることを表すエラ 一種情報と、ガーバーデータが表す配線パターン上での半径過大円弧部の位置を 表す座標情報をメモリに記憶した後にステップ 130へ移行する。 [0048] また、ガーバーデータは、例として図 4 (B)にも示すように、アパーチャの形状、始 点位置及び終点位置を指定することで、指定された形状のアパーチャを始点位置か ら終点位置へ移動させたときの軌跡をラインとして描画させるが、アパーチャの形状 が円であればアパーチャの移動方向に拘わらずラインの幅は一定( =円の直径)とな る一方、アパーチャの形状が円でない場合はアパーチャの移動方向によってライン の幅が変化することになる。このため、円以外の形状のアパーチャを用いて描画する ラインを配線パターンに含まれていた場合、このラインが露光装置 12による描画工程 を経て作成されるプリント配線基板の不具合の原因となる可能性もある。このため、ス テツプ 130では、円以外の形状のアパーチャを用いてラインを描画するデータが処 理対象のガーバーデータに含まれて 、な ヽか否かを検査するチェック処理を行う。ス テツプ 130のチェック処理が完了するとステップ 132へ移行し、ステップ 130のチエツ ク処理において該当するデータが検知されたか否かを判定する。判定が否定された 場合はステップ 136へ移行するが、判定が肯定された場合はステップ 134へ移行し、 検知されたエラー (欠陥)が、処理対象のガーバーデータに円以外の形状のァパー チヤを用いてラインを描画するデータが含まれて 、るエラーであることを表すエラー 種情報と、ガーバーデータが表す配線パターン上での円以外の形状のアパーチャを 用いて描画されるラインの位置を表す座標情報をメモリに記憶した後にステップ 136 へ移行する。 [0047] In addition, since an arc portion having an excessive radius (for example, about several hundreds of millimeters) is generally not used in a wiring pattern, if such an excessive radius arc portion is included in the wiring pattern, the arc portion is There is also a possibility that the printed wiring board produced through the drawing process by the exposure apparatus 12 may be defective. For this reason, in step 124, a check process is performed to check whether or not the data defining the arc part having a radius equal to or greater than the threshold th3 is included in the target Gerber data. When the check process of step 124 is completed, the process proceeds to step 126, and it is determined whether or not the corresponding data is detected in the check process of step 124. If the determination is negative, the process proceeds to step 130. If the determination is affirmative, the process proceeds to step 128, and the detected error (defect) defines an excessively large arc portion in the Gerber data to be processed. After storing error type information indicating an error including data and coordinate information indicating the position of the excessive radius arc portion on the wiring pattern indicated by the Gerber data, the process proceeds to step 130. In addition, as shown in FIG. 4 (B) as an example, the Gerber data specifies the aperture shape, the start point position, and the end point position, so that the aperture of the specified shape is changed from the start point position to the end point. The trajectory when moved to a position is drawn as a line, but if the aperture shape is a circle, the line width is constant (= diameter of the circle) regardless of the direction of movement of the aperture, while the aperture shape is If it is not a circle, the line width will change depending on the direction of movement of the aperture. For this reason, if a line to be drawn using an aperture with a shape other than a circle is included in the wiring pattern, this line may cause defects in the printed wiring board created through the drawing process by the exposure device 12. There is also. For this reason, in step 130, a check process is performed to check whether data for drawing a line using an aperture having a shape other than a circle is included in the processing target Gerber data. When the check process in step 130 is completed, the process proceeds to step 132, and it is determined whether or not the corresponding data is detected in the check process in step 130. If the determination is negative, the process proceeds to step 136. If the determination is affirmative, the process proceeds to step 134, and the detected error (defect) adds an aperture of a shape other than a circle to the target Gerber data. The error type information that indicates that the line is drawn using the error type information and the aperture of the shape other than the circle on the wiring pattern that the Gerber data represents represents the position of the line that is drawn. After storing the coordinate information in the memory, go to Step 136.
[0049] また、例として図 4 (C)にも示すように、始点位置と終点位置が同一で(閉曲線を成 し)始点位置から終点位置に至る途中で自ラインと交差している自己交差ラインも一 般に配線パターンには使用されないが、このような自己交差ラインが配線パターンに 含まれていた場合も露光装置 12による描画工程を経て作成されるプリント配線基板 の不具合の原因となる。このため、次のステップ 136では、自己交差ラインを規定す るデータが処理対象のガーバーデータに含まれて!/、な!/、か否かを検査するチェック 処理を行う。ステップ 136のチェック処理が完了するとステップ 138へ移行し、ステツ プ 136のチェック処理において該当するデータが検知された力否かを判定する。判 定が否定された場合はステップ 142へ移行する力 判定が肯定された場合はステツ プ 140へ移行し、検知されたエラー (欠陥)力 処理対象のガーバーデータに自己交 差ラインを規定するデータが含まれて 、るエラーであることを表すエラー種情報と、ガ 一バーデータが表す配線パターン上での自己交差ラインの位置を表す座標情報を メモリに記憶した後にステップ 142へ移行する。 [0049] As an example, as shown in Fig. 4 (C), the start point position and the end point position are the same (form a closed curve) and the self-intersection intersects with the own line on the way from the start point position to the end point position. Lines are generally not used for wiring patterns, but if such a self-intersecting line is included in the wiring pattern, it also causes a failure of the printed wiring board created through the drawing process by the exposure apparatus 12. Therefore, in the next step 136, a check process is performed to check whether or not the data defining the self-intersection line is included in the Gerber data to be processed! When the check process of step 136 is completed, the process proceeds to step 138, and it is determined whether or not the force at which the corresponding data is detected in the check process of step 136 is determined. If the judgment is negative, the process proceeds to step 142. If the determination is affirmative, the process proceeds to step 140, and the detected error (defect) force is self-excited to the target Gerber data. Steps after storing in memory the error type information that indicates the error that includes the data that defines the difference line and the coordinate information that indicates the position of the self-intersection line on the wiring pattern indicated by the barber data Move to 142.
[0050] また、 RIP処理では、 RIP処理対象のガーバーデータに含まれる頂点の数に上限 があり(例えば 2048個)、 RIP処理対象のガーバーデータに上限を超える数の頂点が 含まれて!/、た場合、この上限以上の頂点数が検知された段階でエラーとなって RIP 処理が停止する。このため、ステップ 142では処理対象のガーバーデータに含まれ る頂点の数が閾値 th8 (=RIP処理における上限)以上力否かを検査するチェック処 理を行う。ステップ 142のチェック処理が完了するとステップ 144へ移行し、ステップ 1 42のチェック処理にぉ 、て頂点の数が閾値 th8以上であった力否かを判定する。判 定が否定された場合はステップ 148へ移行する力 判定が肯定された場合はステツ プ 146へ移行し、検知されたエラー (欠陥)が、処理対象のガーバーデータに上限以 上の数の頂点が含まれて 、るエラーであることを表すエラー種情報をメモリに記憶し た後にステップ 148へ移行する。  [0050] Also, in RIP processing, there is an upper limit on the number of vertices included in the Gerber data subject to RIP processing (for example, 2048), and the number of vertices exceeding the upper limit is included in the Gerber data subject to RIP processing! / In this case, an error occurs when the number of vertices exceeding this limit is detected, and RIP processing stops. Therefore, in step 142, a check process is performed to check whether the number of vertices included in the target Gerber data is greater than or equal to a threshold th8 (= the upper limit in the RIP process). When the check process in step 142 is completed, the process proceeds to step 144, and in the check process in step 142, it is determined whether or not the force has the number of vertices equal to or greater than the threshold th8. If the determination is negative, the process proceeds to step 148. If the determination is affirmative, the process proceeds to step 146, and the detected errors (defects) exceed the upper limit in the Gerber data to be processed. After the error type information indicating that the error is included and stored in the memory, the process proceeds to step 148.
[0051] またガーバーデータは、例として図 4 (D)にも示すように、目的の画像 (配線パター ン)を複数のレイヤの画像に分解して表すと共に、各レイヤの画像の加算又は減算を 指示するデータを付加することで目的の画像 (配線パターン)を表して!/、るデータで あるが、 RIP処理では、 RIP処理対象のガーバーデータを構成するレイヤの数に上 限があり(例えば 1024個)、 RIP処理対象のガーバーデータが上限を超える数のレイ ャで構成されて ヽた場合、この上限以上のレイヤ数が検知された段階でエラーとなつ て RIP処理が停止する。このため、ステップ 148では処理対象のガーバーデータを構 成するレイヤの数が閾値 th9 (=RIP処理における上限)以上か否かを検査するチェ ック処理を行う。ステップ 148のチェック処理が完了するとステップ 150へ移行し、ステ ップ 148のチェック処理においてレイヤの数が閾値 th9以上であつたか否かを判定す る。判定が否定された場合はステップ 154へ移行する力 判定が肯定された場合は ステップ 152へ移行し、検知されたエラー (欠陥)が、処理対象のガーバーデータを 構成するレイヤの数が上限を超えているエラーであることを表すエラー種情報をメモ リに記憶した後にステップ 154へ移行する。 [0052] また、配線パターンの中にガーバーデータの原点からの距離が過大(例えば千数 百 mm程度)な部分が存在していた場合、露光装置 12による描画工程において、上 記のように原点からの距離が過大な部分の描画位置が基板から逸脱するので、適正 なプリント配線基板が作成されない可能性が高い。このため、ステップ 154では、処 理対象のガーバーデータが表す配線パターンの中にガーバーデータの原点からの 距離が閾値 th4以上の部分が含まれて ヽな 、か否かを検査するチェック処理を行う。 ステップ 154のチェック処理が完了するとステップ 156へ移行し、ステップ 154のチェ ック処理において該当する部分が検知されたか否かを判定する。判定が否定された 場合はステップ 160へ移行するが、判定が肯定された場合はステップ 158へ移行し、 検知されたエラー (欠陥)が、処理対象のガーバーデータが表す配線パターンの中 にガーバーデータの原点力 の距離が過大な部分が含まれているエラーであること を表すエラー種情報と、ガーバーデータが表す配線パターン上での、上記の原点か らの距離が過大な部分の位置を表す座標情報をメモリに記憶した後にステップ 160 へ移行する。 In addition, as shown in FIG. 4D as an example, the Gerber data is represented by decomposing a target image (wiring pattern) into images of a plurality of layers and adding or subtracting images of each layer. By adding the data that indicates the target image (wiring pattern)! /, The RIP processing has an upper limit on the number of layers that make up the Gerber data that is the target of RIP processing ( For example, if the Gerber data subject to RIP processing consists of more layers than the upper limit, the RIP processing stops when an error occurs when the number of layers exceeding this upper limit is detected. For this reason, in step 148, check processing is performed to check whether the number of layers constituting the processing target Gerber data is equal to or greater than the threshold th9 (= the upper limit in RIP processing). When the check process of step 148 is completed, the process proceeds to step 150, and it is determined whether or not the number of layers is greater than or equal to the threshold th9 in the check process of step 148. If the determination is negative, the power to proceed to step 154 If the determination is affirmative, the process proceeds to step 152, and the detected error (defect) exceeds the upper limit of the number of layers constituting the Gerber data to be processed. After the error type information indicating that the error has occurred is stored in memory, the process proceeds to step 154. [0052] Also, if there is a portion in the wiring pattern where the distance from the origin of the Gerber data is excessive (for example, about several thousand mm), in the drawing process by the exposure apparatus 12, the origin is as described above. Since the drawing position of the part that is too far away from the board deviates from the board, there is a high possibility that an appropriate printed wiring board will not be created. For this reason, in step 154, a check process is performed to check whether the wiring pattern represented by the processing target Gerber data includes a portion whose distance from the origin of the Gerber data is greater than or equal to the threshold th4. . When the check process of step 154 is completed, the process proceeds to step 156, and it is determined whether or not the corresponding part is detected in the check process of step 154. If the determination is negative, the process proceeds to step 160. If the determination is affirmative, the process proceeds to step 158, and the detected error (defect) is detected in the wiring pattern represented by the Gerber data to be processed. The error type information that indicates an error that includes an excessive part of the origin force and the position of the excessive part from the above origin on the wiring pattern represented by Gerber data After the coordinate information is stored in the memory, the process proceeds to step 160.
[0053] また、面積が微小のピンホール領域は一般に配線パターンには使用されないが、こ のような微小面積のピンホール領域が配線パターンに含まれて 、た場合、この微小 面積のピンホール領域が露光装置 12による描画工程を経て作成されるプリント配線 基板の不具合の原因となる可能性もある。このため、ステップ 160では面積が閾値 th 5未満のピンホール領域を規定するデータが処理対象のガーバーデータに含まれて いないか否かを検査するチェック処理を行う。なお、閾値 th5は前述のステップ 104で 描画時の解像度及び基板上の感光材料の種類に応じて設定されて 、るので、プリン ト配線基板の不具合の原因となる微小面積のピンホール部が配線パターンに含まれ て!、る力否かを精度良く検査することができる。ステップ 160のチェック処理が完了す るとステップ 162へ移行し、ステップ 160のチェック処理において該当するデータが 検知されたカゝ否かを判定する。判定が否定された場合はステップ 166へ移行するが 、判定が肯定された場合はステップ 164へ移行し、検知されたエラー (欠陥)が、処理 対象のガーバーデータに微小面積のピンホール領域を規定するデータが含まれて V、るエラーであることを表すエラー種情報と、ガーバーデータが表す配線パターン上 での微小面積のピンホール領域の位置を表す座標情報をメモリに記憶した後にステ ップ 166へ移行する。 [0053] In addition, a pinhole region having a very small area is generally not used for a wiring pattern. However, if such a pinhole region having a very small area is included in the wiring pattern, this pinhole region having a very small area may be used. However, there is also a possibility that the printed wiring board produced through the drawing process by the exposure apparatus 12 may be defective. For this reason, in step 160, a check process is performed to check whether or not the data defining the pinhole region whose area is less than the threshold th 5 is included in the Gerber data to be processed. Note that the threshold th5 is set according to the resolution at the time of drawing and the type of photosensitive material on the substrate in step 104 described above, so that a pinhole portion having a small area that causes a defect in the printed wiring board is wired. It can be accurately inspected whether it is included in the pattern! When the check process of step 160 is completed, the process proceeds to step 162, and it is determined whether or not the corresponding data is detected in the check process of step 160. If the determination is negative, the process proceeds to step 166. If the determination is affirmative, the process proceeds to step 164, and the detected error (defect) defines a pinhole area of a very small area in the Gerber data to be processed. Error type information indicating that the error is V, and the wiring pattern indicated by Gerber data After the coordinate information indicating the position of the pinhole region having a very small area is stored in the memory, the process proceeds to step 166.
[0054] また、ガーバーデータにお 、て、 目的の画像 (配線パターン)中の任意の領域を塗 り潰す場合、塗り潰しを指示するコマンドを用いることに代えて、例として図 5 (A)にも 示すように、隣り合うラインの一部が重なるように(重なって 、る部分をオーバーラップ 領域と称する)複数のラインの描画を指示することで所望の領域の塗り潰しを指示す るデータが設定されることがあり、このときオーバラップ領域の幅 OVLが不足している と、露光装置 12による描画工程を経て作成されるプリント配線基板上の配線パター ンのうち上記のオーバーラップ領域に相当する部分が、描画工程で露光されなかつ た部分と同じ状態になってしまう可能性がある。  [0054] In addition, when an arbitrary area in the target image (wiring pattern) is filled in Gerber data, instead of using a command instructing filling, FIG. 5A shows an example. As shown in the figure, data indicating the filling of a desired area is set by instructing drawing of multiple lines so that adjacent lines overlap (the overlapping area is called an overlap area). If the width OVL of the overlap area is insufficient at this time, it corresponds to the overlap area among the wiring patterns on the printed circuit board created through the drawing process by the exposure device 12. The part may be in the same state as the part that was not exposed in the drawing process.
[0055] このため、ステップ 166ではオーバーラップ領域の幅が閾値 th6未満のパターン(ラ イン等)を規定するデータが処理対象のガーバーデータに含まれて 、な 、か否かを 検査するチェック処理を行う。なお、閾値 th6は前述のステップ 102で描画時の解像 度に応じて設定されているので、プリント配線基板の不具合の原因となるオーバーラ ップ領域の幅不足のパターンが配線パターンに含まれている力否かを精度良く検査 することができる。ステップ 166のチェック処理が完了するとステップ 168へ移行し、ス テツプ 166のチェック処理において該当するデータが検知されたか否かを判定する。 判定が否定された場合はステップ 172へ移行する力 判定が肯定された場合はステ ップ 170へ移行し、検知されたエラー(欠陥)が、処理対象のガーバーデータにォー バーラップ領域の幅不足のパターンを規定するデータが含まれているエラーであるこ とを表すエラー種情報と、ガーバーデータが表す配線パターン上でのオーバーラッ プ領域の幅不足のパターンの位置を表す座標情報をメモリに記憶した後にステップ 1 72へ移行する。  [0055] For this reason, in step 166, a check process for checking whether or not data defining a pattern (such as a line) whose overlap area width is less than the threshold th6 is included in the target Gerber data. I do. Since the threshold th6 is set according to the resolution at the time of drawing in the above-described step 102, the wiring pattern includes a pattern with insufficient width in the overlap area that causes a failure of the printed wiring board. It is possible to accurately check whether or not the force is applied. When the check process of step 166 is completed, the process proceeds to step 168, and it is determined whether or not the corresponding data is detected in the check process of step 166. If the determination is negative, the force to move to step 172 If the determination is affirmative, the flow moves to step 170, and the detected error (defect) is not enough for the overwrap area in the Gerber data to be processed Error type information indicating that the error includes data defining the pattern of the pattern, and coordinate information indicating the position of the pattern with insufficient width of the overlap area on the wiring pattern indicated by the Gerber data are stored in the memory. After that, go to Step 1 72.
[0056] また、例として図 5 (B)に示すように、隣り合うパターンとの隙間 GAPが不足している パターンが配線パターンに含まれていた場合、このパターンは露光装置 12による描 画工程を経て作成されるプリント配線基板の不具合の原因となる可能性が高い。この ため、ステップ 172では隣り合うパターンとの隙間 GAPが閾値 th7未満のパターンを 規定するデータが処理対象のガーバーデータに含まれて 、な 、か否かを検査する チェック処理を行う。なお、閾値 th7は前述のステップ 104で描画時の解像度及び基 板上の感光材料の種類に応じて設定されて!、るので、プリント配線基板の不具合の 原因となる隙間不足のパターンが配線パターンに含まれている力否かを精度良く検 查することができる。ステップ 172のチェック処理が完了するとステップ 174へ移行し 、ステップ 172のチェック処理において該当するデータが検知されたか否かを判定す る。判定が否定された場合はステップ 178へ移行する力 判定が肯定された場合は ステップ 176へ移行し、検知されたエラー (欠陥)が、処理対象のガーバーデータに 隙間不足のパターンを規定するデータが含まれているエラーであることを表すエラー 種情報と、ガーバーデータが表す配線パターン上での隙間不足のパターンの位置を 表す座標情報をメモリに記憶した後にステップ 178へ移行する。 [0056] As an example, as shown in FIG. 5B, when the wiring pattern includes a pattern in which the gap GAP between adjacent patterns is insufficient, this pattern is drawn by the exposure device 12. There is a high possibility of causing a problem of a printed wiring board produced through the above process. For this reason, in step 172, it is checked whether or not data defining a pattern whose gap GAP between adjacent patterns is less than the threshold th7 is included in the processing target Gerber data. Perform check processing. Note that the threshold th7 is set according to the resolution at the time of drawing and the type of photosensitive material on the substrate in Step 104 described above! It is possible to accurately detect whether or not the force is included in. When the check process of step 172 is completed, the process proceeds to step 174, and it is determined whether or not the corresponding data is detected in the check process of step 172. If the determination is negative, the force to move to step 178 If the determination is affirmative, the flow moves to step 176, and the detected error (defect) is not the data that defines the gap gap pattern in the target Gerber data. After storing the error type information indicating the included error and the coordinate information indicating the position of the insufficient gap pattern on the wiring pattern indicated by the Gerber data, the process proceeds to step 178.
[0057] ステップ 178ではメモリにエラー種情報等のエラー情報が記憶されている力否かに 基づいて、上述した各チェック処理で処理対象のガーバーデータに何らかのエラー( 欠陥)が検知されたか否かを判定する。判定が否定された場合 (エラーが全く検知さ れな力つた場合)はステップ 180へ移行し、処理対象のガーバーデータをチェック済 みガーバーデータフォルダ 46に格納し、データチェック処理を終了する。  [0057] In step 178, based on whether or not error information such as error type information is stored in the memory, whether or not any error (defect) is detected in the Gerber data to be processed in each check process described above. Determine. If the determination is negative (when no error is detected), the process proceeds to step 180, the target Gerber data is stored in the checked Gerber data folder 46, and the data check process is terminated.
[0058] 一方、ステップ 178の判定が肯定された場合 (エラーが 1個以上検知された場合) はステップ 182へ移行し、まずメモリに記憶されているエラー情報を取り込み、取り込 まれたエラー情報の中に座標情報が含まれている力否かを判定する。そして、エラー 情報の中に座標情報が含まれて 、た場合、すなわち処理対象のガーバーデータが 表す配線パターン上でエラー箇所を明示可能なエラーが検知されて!、た場合は、取 り込まれたエラー情報 (エラー種情報及び座標情報)に基づき、処理対象のガーバ 一データが表す配線パターン上でエラー箇所を明示させるためのガーバーエラーフ アイルを生成し、生成されたガーバーエラーファイルを処理対象のガーバーデータに 付加する。なお、ステップ 182は本発明に係るデータ生成手段に対応する処理であ り、ステップ 182の処理を行うデータチェック処理部 28は本発明に係るデータ生成手 段にも対応している。  [0058] On the other hand, if the determination in step 178 is affirmative (if one or more errors are detected), the process proceeds to step 182 and first the error information stored in the memory is fetched, and the fetched error information It is determined whether or not the force includes coordinate information. If the coordinate information is included in the error information, that is, if an error that can clearly indicate the error location is detected on the wiring pattern represented by the target Gerber data! Based on the error information (error type information and coordinate information), a Gerber error file is generated to indicate the error location on the wiring pattern represented by the target Gerber data, and the generated Gerber error file is processed. Append to the Gerber data. Note that step 182 is processing corresponding to the data generation means according to the present invention, and the data check processing unit 28 that performs the processing of step 182 also corresponds to the data generation means according to the present invention.
[0059] 本実施形態に係るガーバーエラーファイルは、ガーバーデータとして取扱可能な データであり、例として図 6に示すように、ガーバーヘッダ部とガーバー終了コードの 間に、エラー箇所 (取り込まれたエラー情報に含まれる座標情報が表す位置)に明示 させる所定のマーク (アパーチャ)の形状やサイズを規定するマークデータ(図 6では 「アパーチャ形状指定」と表記)と、配線パターン上での所定のマークの明示位置を 規定する座標データ(図 6では「エラー項目 n x,y座標指定」と表記)が記述されて構 成される。ステップ 182では、取り込まれたエラー情報に含まれる座標情報に基づい て上記の座標データを設定すると共に、座標データによって規定された個々のエラ 一箇所に、個々のエラー種に対応するマークが明示されるように上記のマークデータ を設定することで、ガーバーエラーファイルを生成する。 [0059] The Gerber error file according to the present embodiment is data that can be handled as Gerber data. As an example, as shown in FIG. 6, the Gerber header part and Gerber end code In the meantime, mark data that specifies the shape and size of a given mark (aperture) that is clearly indicated at the error location (the position represented by the coordinate information included in the imported error information) (indicated as “aperture shape designation” in Fig. 6) And coordinate data (indicated as “error item nx, y coordinate designation” in FIG. 6) that defines the explicit position of a given mark on the wiring pattern. In step 182, the above coordinate data is set based on the coordinate information included in the fetched error information, and marks corresponding to the individual error types are clearly indicated at individual error locations defined by the coordinate data. A Gerber error file is generated by setting the above mark data as described above.
[0060] そしてステップ 184では、ジョブ登録 GUI24を介してディスプレイに所定のメッセ一 ジを表示させることで処理対象のガーバーデータにエラーが検知されたことを通知す ると共に、検知されたエラーの内容をジョブ登録 GUI24を介してディスプレイに表示 させ、データチェック処理を終了する。なお、エラー内容の表示は、検知されたエラ 一力 例えば処理対象のガーバーデータを構成するレイヤの数が上限を超えていた 等のように、エラー箇所を明示困難なエラー (エラー検知時に座標情報が記憶されな いエラー)であれば、エラーの内容を通知するメッセージを単にディスプレイに表示さ せることによって成されるが、検知されたエラーがエラー箇所を明示可能なエラー(ェ ラー検知時に座標情報が記憶されるエラー)であれば、ステップ 182で生成されたガ 一バーエラーファイルに基づき、例として図 7に示すように、処理対象のガーバーデ ータが表す配線パターンのうち、ガーバーエラーファイルの座標データが指し示すェ ラー箇所に、マークデータによって規定されたマークを各々重畳表示させたエラ一箇 所明示画像をディスプレイに表示させることでエラー内容を明示する。なお、エラー 内容の表示に際し、特定のエラー箇所を拡大表示させると共に、ユーザからの指示 に応じて、拡大表示させるエラー箇所を順次切り替えるようにしてもょ 、。 [0060] Then, in step 184, a predetermined message is displayed on the display via the job registration GUI 24 to notify the processing target Gerber data that an error has been detected, and the details of the detected error. Is displayed on the display via the job registration GUI 24 and the data check process is terminated. The error content is displayed as an error that makes it difficult to clearly indicate the error location (for example, the number of layers constituting the Gerber data to be processed exceeds the upper limit). Error is not memorized), it is made by simply displaying a message notifying the error content on the display, but the detected error can be specified in error (error coordinates are detected). For example, as shown in FIG. 7, based on the governor error file generated in step 182, the Gerber error file of the wiring pattern represented by the target Gerber data is displayed. An error-clear image with each mark specified by the mark data superimposed and displayed at the error location indicated by the coordinate data of It demonstrates the error contents be displayed on the display. In addition, when displaying the error contents, it is possible to enlarge the specific error location and switch the error location to be enlarged sequentially according to the instruction from the user.
[0061] 図 7に示すエラー箇所明示画像では、配線パターン上の各エラー箇所に、サイズ 及び形状の少なくとも一方が互いに異なるマーク 60A〜60Dのうち、各エラー箇所 におけるエラー種に対応するマークが表示されており、これによつて、ユーザはガー バーデータが表す配線パターン上におけるエラー箇所の位置及び各エラー箇所に おけるエラー種を容易に認識することができる。また、ガーバーエラーファイルはガー バーデータとして取扱可能な形式であるので、ガーバーエラーファイルが付加された 処理対象のガーバーデータを、 CAMシステムとして機能するコンピュータ 18に転送 し、該コンピュータ 18のディスプレイに図 7に示すようなエラー箇所明示画像を表示 することもできる。これにより、エラーチェック処理で検知されたエラーに基づき、 CA Mシステム上でガーバーデータを修正する作業をより容易に行うことができる。 [0061] In the error location explicit image shown in FIG. 7, at each error location on the wiring pattern, a mark corresponding to the error type at each error location is displayed among the marks 60A to 60D having at least one of different sizes and shapes. Thus, the user can easily recognize the position of the error location on the wiring pattern represented by the Gerber data and the error type at each error location. Gerber error files are Since it is a format that can be handled as bar data, the Gerber data to be processed with the Gerber error file added is transferred to the computer 18 that functions as the CAM system, and the error location shown in Fig. 7 is displayed on the computer 18 display. An explicit image can also be displayed. This makes it easier to correct Gerber data on the CAM system based on the error detected in the error check process.
[0062] このように、上述したデータチェック処理を行うことで、ガーバーデータを原因として 、露光装置 12による描画工程を経て作成されるプリント配線基板に不具合が発生す ることを未然に防止できると共に、上記の不具合の原因となるガーバーデータの欠陥 を、 RIP処理を行う前に検知できることで、 RIP処理や露光装置 12による描画等のェ 程を無駄に繰り返す必要がなくなり、ガーバーデータの欠陥が、基板製造等の作業 の進拔に多大な悪影響を及ぼしたり、上記欠陥により基板が無駄に消費されたりす ることを防止することができる。  As described above, by performing the above-described data check process, it is possible to prevent a problem from occurring in the printed wiring board created through the drawing process by the exposure apparatus 12 due to Gerber data. By detecting the Gerber data defects that cause the above-mentioned problems before performing the RIP process, it is not necessary to wastefully repeat the RIP process and the drawing process by the exposure device 12, and the Gerber data defects It is possible to prevent the progress of operations such as substrate manufacturing from being adversely affected and the substrate from being wasted due to the above defects.
[0063] ところで、レイアウト確認 GUI30が画像処理装置 14のディスプレイに表示可能な画 面の中には、チェック済みガーバーデータフォルダ 46に格納されて!、るガーバーデ ータ(データチェック処理を経たガーバーデータ)が表す配線パターンのレイアウトの 確認を指示するためのレイアウト確認指示画面が含まれている。図示は省略するが、 レイアウト確認指示画面には、チェック済みガーバーデータフォルダ 46に格納されて いるガーバーデータのファイル名等を一覧表示するための表示欄と、前記表示欄に 一覧表示された各ガーバーデータの中から処理対象として選択されたガーバーデー タに対するレイアウト確認処理の実行を指示するためのボタンとが設けられている。  [0063] By the way, in the screen that the layout confirmation GUI 30 can display on the display of the image processing device 14, it is stored in the checked Gerber data folder 46 !, and Gerber data (Gerber data that has undergone data check processing) A layout confirmation instruction screen for instructing confirmation of the layout of the wiring pattern represented by is included. Although illustration is omitted, the layout confirmation instruction screen displays a display field for displaying a list of Gerber data file names and the like stored in the checked Gerber data folder 46, and each Gerber data listed in the display field. And a button for instructing execution of layout confirmation processing for Gerber data selected as a processing target.
[0064] データチェック処理を経たガーバーデータが表す配線パターンに対して、そのレイ アウト(基板に対する配線パターンの描画範囲の位置や配線パターンの水平面内で の角度、表裏の向き)を確認することが所望されている場合、ユーザはキーボードや マウスを操作し、レイアウト確認 GUI30に対してディスプレイへのレイアウト確認指示 画面の表示を指示し、レイアウト確認指示画面がディスプレイに表示されて 、る状態 で、上記表示欄に一覧表示されているガーバーデータの中力 処理対象のガーバ 一データを選択し、レイアウト確認指示画面内のボタンを選択することで、処理対象 のガーバーデータに対するレイアウト確認処理の実行を指示する。この指示がレイァ ゥト確認 GUI30を介してレイアウト表示処理部 32に入力され、レイアウト表示処理部 32によって図 8に示すレイアウト確認処理が行われる。 [0064] For the wiring pattern represented by the Gerber data that has undergone the data check process, the layout (the position of the wiring pattern drawing range relative to the substrate, the angle of the wiring pattern in the horizontal plane, the orientation of the front and back) can be confirmed. If desired, the user operates the keyboard and mouse to instruct the layout confirmation GUI 30 to display the layout confirmation instruction screen on the display, and the layout confirmation instruction screen is displayed on the display. Instruct the execution of the layout confirmation process for the target Gerber data by selecting the target Gerber data and selecting the button on the layout confirmation instruction screen. . This instruction is 8 is input to the layout display processing unit 32 via the GUI 30 and the layout display processing unit 32 performs the layout confirmation processing shown in FIG.
[0065] レイアウト確認処理では、まずステップ 200において、指定された処理対象のガー バーデータをチェック済みガーバーデータフォルダ 46から取り込むと共に、処理対 象のガーバーデータに対応するジョブ条件情報をジョブ条件情報フォルダ 48から取 り込む。ステップ 202では、処理対象のガーバーデータが表す配線パターンのレイァ ゥトを確認可能な画像を表示させるためのレイアウト確認画面(図 9参照)をレイアウト 確認 GUI30によってディスプレイに表示させると共に、ステップ 200で取り込まれた ジョブ条件情報に含まれる基板のサイズ等の情報に基づ 、て、レイアウト確認画面内 の画像表示領域に基板の外縁を表す枠線(図 9では「基板枠」と表記)を表示させる In the layout confirmation process, first, in step 200, the designated processing target Gerber data is fetched from the checked Gerber data folder 46, and job condition information corresponding to the Gerber data to be processed is stored in the job condition information folder 48. Take in from. In Step 202, a layout confirmation screen (see Fig. 9) for displaying an image that can confirm the layout of the wiring pattern represented by the Gerber data to be processed is displayed on the display by the layout confirmation GUI 30 and is also captured in Step 200. Based on information such as the size of the board included in the job condition information, a frame line (indicated as “board frame” in FIG. 9) representing the outer edge of the board is displayed in the image display area in the layout confirmation screen.
[0066] ステップ 204では、ユーザに対して基板上の原点の位置を指定するように要請する メッセージをディスプレイに表示させた後に、ユーザによって基板上の原点の位置が 指定されたカゝ否かを判定し、判定が肯定されるまでステップ 204を繰り返す。ディスプ レイに表示されたメッセージに従い、ユーザが基板上の原点の位置 (通常は基板上 の中心位置)を指定すると、ステップ 204の判定が肯定されてステップ 206へ移行し 、ステップ 200で取り込まれた処理対象のガーバーデータに基づき、該処理対象の ガーバーデータが表す配線パターンを、レイアウト確認画面内の画像表示領域に表 示している枠線のサイズに合わせて縮小表示する配線パターン画像を生成する。 [0066] In step 204, after a message for requesting the user to specify the position of the origin on the board is displayed on the display, it is determined whether or not the position of the origin on the board is specified by the user. Make a determination and repeat step 204 until the determination is positive. When the user specifies the position of the origin on the board (usually the center position on the board) in accordance with the message displayed on the display, the determination in step 204 is affirmed and the process proceeds to step 206, which is fetched in step 200. Based on the processing target Gerber data, a wiring pattern image for generating a reduced display of the wiring pattern represented by the processing target Gerber data in accordance with the size of the frame line displayed in the image display area in the layout confirmation screen is generated.
[0067] またステップ 208では、処理対象のガーバーデータに含まれるガーバーデータの 原点と基板上の原点との位置関係、処理対象のガーバーデータに対応するジョブ条 件情報に含まれるガーバーデータが表す配線パターンの回転や反転 (ミラー)の有 無、回転角度 ·反転 (ミラー)の方向、及びユーザによって指定された基板上の原点 の位置に基づ 、て、処理対象のガーバーデータが表す配線パターンを現在のジョブ 条件情報に従って基板に描画した場合の、基板上の原点を基準とする配線パターン の描画範囲の位置、回転角度、反転の有無及び方向を演算する。なお、ステップ 20 8は前述のステップ 200と共に本発明に係る演算手段に相当する処理であり、ステツ プ 200、 208の処理を行うレイアウト表示処理部 32は本発明に係る演算手段に対応 している。 [0067] In step 208, the positional relationship between the origin of the Gerber data included in the processing target Gerber data and the origin on the substrate, and the wiring represented by the Gerber data included in the job condition information corresponding to the processing target Gerber data Based on the presence or absence of pattern rotation or reversal (mirror), rotation angle · reversal (mirror) direction, and the origin position on the board specified by the user, the wiring pattern represented by the Gerber data to be processed When drawing on the board according to the current job condition information, calculate the position, rotation angle, inversion presence / absence, and direction of the wiring pattern drawing range based on the origin on the board. Note that step 208 is a process corresponding to the calculation means according to the present invention together with step 200 described above, and the layout display processing unit 32 that performs the processes of steps 200 and 208 corresponds to the calculation means according to the present invention. is doing.
[0068] そしてステップ 210では、ステップ 206で生成された配線パターン画像を、ステップ 208の演算結果に基づき必要に応じて水平面内での回転や表裏の向きの反転を行 つた上で、レイアウト確認画面内の画像表示領域のうちステップ 208で演算された位 置に表示させる(図 9に示す状態)。なお、ステップ 210は本発明に係る位置関係表 示制御手段に相当する処理であり、ステップ 210の処理を行うレイアウト表示処理部 32は本発明に係る位置関係表示制御手段に対応して!/ヽる。  [0068] In step 210, the wiring pattern image generated in step 206 is rotated in a horizontal plane and the front and back directions are reversed as necessary based on the calculation result in step 208, and then the layout confirmation screen is displayed. The image is displayed at the position calculated in step 208 in the image display area (state shown in FIG. 9). Note that step 210 is processing corresponding to the positional relationship display control means according to the present invention, and the layout display processing unit 32 that performs the processing of step 210 corresponds to the positional relationship display control means according to the present invention. The
[0069] また図 9にも示すように、レイアウト確認画面には、配線パターンの回転を指示する ための回転指示ボタン、配線パターンの反転 (ミラー)を指示するためのミラー指示ボ タンが設けられており、次のステップ 212では、レイアウト確認画面内の回転指示ボタ ンが選択されたか否かに基づいて配線パターンの回転が指示されたか否かを判定 する。判定が否定された場合はステップ 216へ移行し、レイアウト確認画面内のミラー 指示ボタンが選択された力否かに基づいて配線パターンのミラー (反転)が指示され たカゝ否かを判定する。この判定も否定された場合はステップ 220へ移行し、レイアウト 確認画面の表示終了が指示されたカゝ否かを判定する。この判定も否定された場合は ステップ 212に戻り、ステップ 212, 216, 220の何れかの判定が肯定されるまで、ス テツプ 212, 216, 220を繰り返す。  Further, as shown in FIG. 9, the layout confirmation screen is provided with a rotation instruction button for instructing rotation of the wiring pattern and a mirror instruction button for instructing inversion (mirror) of the wiring pattern. In the next step 212, it is determined whether or not the rotation of the wiring pattern is instructed based on whether or not the rotation instruction button in the layout confirmation screen is selected. If the determination is negative, the process proceeds to step 216, and it is determined whether the mirror (reversal) of the wiring pattern is instructed based on whether the mirror instruction button in the layout confirmation screen is selected. If this determination is also denied, the process proceeds to step 220, and it is determined whether or not the instruction to end the display of the layout confirmation screen is given. If this determination is also negative, the process returns to step 212, and steps 212, 216, and 220 are repeated until the determination of any of steps 212, 216, and 220 is affirmed.
[0070] レイアウト確認画面内の画像表示領域に配線パターン画像が表示されると、ユーザ は、表示された配線パターン画像の基板に対する位置や水平面内の角度、表裏の 向きが、基板の外縁を表す枠線に対して適正か否かを検定する。ここで、配線パター ン画像の基板に対する位置が適正でないと判断した場合、ユーザは、レイアウト確認 画面の表示をー且終了させた後に、処理対象のガーバーデータに含まれるガーバ 一データの原点と基板上の原点との位置関係を規定するデータを修正することで、 処理対象のガーバーデータが表す配線パターンを基板に描画した場合の基板上の 原点を基準とする配線パターンの描画範囲の位置を修正する。  [0070] When the wiring pattern image is displayed in the image display area in the layout confirmation screen, the user represents the outer edge of the substrate by the position of the displayed wiring pattern image with respect to the substrate, the angle in the horizontal plane, and the orientation of the front and back sides. Test whether the frame is appropriate. Here, if it is determined that the position of the wiring pattern image with respect to the substrate is not appropriate, the user ends the display of the layout confirmation screen and then terminates the display of the Gerber data included in the target Gerber data and the substrate. By correcting the data that defines the positional relationship with the upper origin, the position of the wiring pattern drawing range based on the origin on the board when the wiring pattern represented by the target Gerber data is drawn on the board is corrected. To do.
[0071] また、配線パターン画像の水平面内の角度が適正でないと判断した場合、ユーザ は回転指示ボタンを選択することで配線パターンの回転を指示する。なお、レイアウト 確認画面には、回転指示ボタンとして、互いに異なる回転角度 (例えば 90° ,180° ,2 70° )だけ回転させるための複数のボタンが設けられており、所望の回転角度に対応 する回転指示ボタンが選択される。回転指示ボタンが選択されるとステップ 212の判 定が肯定されてステップ 214 移行し、レイアウト確認画面内の画像表示領域に表 示されている配線パターン画像を、選択された回転指示ボタンに対応する回転角度 だけ回転させた後にステップ 216へ移行する。例えば図 9に示す配線パターン画像 に対して 90° 回転が指示された場合、配線パターン画像は図 10 (A)に示すように回 転され、図 9に示す配線パターン画像に対して 180° 回転が指示された場合には、配 線パターン画像は図 10 (B)に示すように回転されることになる。 If it is determined that the angle in the horizontal plane of the wiring pattern image is not appropriate, the user instructs the rotation of the wiring pattern by selecting the rotation instruction button. In the layout confirmation screen, different rotation angles (for example, 90 °, 180 °, 2 A plurality of buttons are provided for rotation by 70 °), and a rotation instruction button corresponding to a desired rotation angle is selected. When the rotation instruction button is selected, the determination in step 212 is affirmed and the process proceeds to step 214, and the wiring pattern image displayed in the image display area in the layout confirmation screen corresponds to the selected rotation instruction button. After rotating the rotation angle, go to step 216. For example, when 90 ° rotation is instructed with respect to the wiring pattern image shown in FIG. 9, the wiring pattern image is rotated as shown in FIG. 10 (A), and rotated 180 ° with respect to the wiring pattern image shown in FIG. When is instructed, the wiring pattern image is rotated as shown in Fig. 10 (B).
[0072] また、配線パターン画像の表裏の向きが適正でな 、と判断した場合、ユーザはミラ 一指示ボタンを選択することで配線パターンの表裏の向きの反転 (ミラー)を指示する 。なお、レイアウト確認画面には、ミラー指示ボタンとして、互いに異なる方向(例えば X方向、 y方向)に反転させるための複数のボタンが設けられており、所望の反転方向 に対応するミラー指示ボタンが選択される。ミラー指示ボタンが選択されるとステップ 216の判定が肯定されてステップ 218 移行し、レイアウト確認画面内の画像表示領 域に表示されている配線パターン画像の表裏の向きを、選択されたミラー指示ボタン に対応する反転方向に反転させた後にステップ 220 移行する。例えば図 9に示す 配線パターン画像に対して表裏の向きを X方向に反転させることが指示された場合、 配線パターン画像の表裏の向きは図 11 (A)に示すように反転され、図 9に示す配線 タ 画像に対して表裏の向きを y方向に反転させることが指示された場合には、 配線パターン画像の表裏の向きは図 11 (B)に示すように反転されることになる。 If it is determined that the front and back directions of the wiring pattern image are not appropriate, the user instructs the reversal (mirror) of the front and back directions of the wiring pattern by selecting the mirror instruction button. Note that the layout confirmation screen has a plurality of buttons for inverting in different directions (for example, X direction and y direction) as mirror instruction buttons, and the mirror instruction button corresponding to the desired reverse direction is selected. Is done. When the mirror instruction button is selected, the determination in step 216 is affirmed, and the process proceeds to step 218.The orientation of the front and back of the wiring pattern image displayed in the image display area in the layout confirmation screen is changed to the selected mirror instruction button. After reversing in the reversing direction corresponding to, step 220 is entered. For example, when it is instructed to invert the front and back direction in the X direction with respect to the wiring pattern image shown in FIG. 9, the front and back direction of the wiring pattern image is reversed as shown in FIG. When it is instructed to reverse the front / back direction in the y direction with respect to the wiring pattern image shown, the front / back direction of the wiring pattern image is reversed as shown in FIG. 11 (B).
[0073] また、レイアウト確認画面の表示終了が指示されるとステップ 220の判定が肯定さ れてステップ 222 移行し、上述した処理において、配線パターンに対するレイァゥ トの変更 (水平面内の回転又は表裏の向きの反転)が指示されたか否かを判定する。 判定が否定された場合は何ら処理を行うことなくレイアウト確認処理を終了するが、ス テツプ 222の判定が肯定された場合はステップ 224へ移行し、配線パターンに対して 指示された水平面内の回転や表裏の向きの反転に応じて、処理対象のガーバーデ ータのジョブ条件情報に含まれる配線パターンの回転や反転の有無、回転角度 ·反 転の方向等のデータのうちの対応する部分を修正し、修正後のジョブ条件情報をジョ ブ条件情報フォルダ 48に上書き格納した後にレイアウト確認処理を終了する。 [0073] When the display end of the layout confirmation screen is instructed, the determination in step 220 is affirmed and the process proceeds to step 222. In the above-described processing, the layout is changed with respect to the wiring pattern (rotation within the horizontal plane or It is determined whether or not (reversal of direction) is instructed. If the determination is negative, the layout confirmation process is terminated without performing any processing. If the determination at step 222 is affirmative, the process proceeds to step 224, and the rotation in the horizontal plane indicated for the wiring pattern is performed. Corresponding part of the data such as rotation / reversal of the wiring pattern, rotation angle / reversal direction, etc. included in the job condition information of the Gerber data to be processed according to the reverse of the front and back direction The job condition information after correction The layout confirmation processing is finished after overwriting and storing in the condition information folder 48.
[0074] 上述したレイアウト確認処理により、処理対象のガーバーデータが表す配線パター ンを現在のジョブ条件情報に従って基板に描画した場合の配線パターンのレイアウト (基板に対する配線パターンの描画範囲の位置や配線パターンの水平面内での角 度、表裏の向き)が適正力否かを、基板に配線パターンを実際に描画する前に確認 することができるので、基板が無駄に消費される等の不都合が生ずることを回避する ことができる。 [0074] By the above-described layout confirmation processing, the wiring pattern layout when the wiring pattern represented by the target Gerber data is drawn on the board according to the current job condition information (the position of the wiring pattern drawing range relative to the board and the wiring pattern) It is possible to check whether the angle in the horizontal plane and the orientation of the front and back are appropriate or not before actually drawing the wiring pattern on the board, resulting in inconveniences such as wasted board. Can be avoided.
[0075] また、ラスタ表示 GUI34が画像処理装置 14のディスプレイに表示可能な画面の中 には、チェック済みガーバーデータフォルダ 46に格納されている特定のガーバーデ ータの一部をラスタデータへ展開してディスプレイに表示させることを指示するための ラスタ表示指示画面が含まれている。図示は省略するが、ラスタ表示指示画面には、 チェック済みガーバーデータフォルダ 46に格納されて!、るガーバーデータのフアイ ル名等を一覧表示するための表示欄と、前記表示欄に一覧表示された各ガーバー データの中から処理対象として選択されたガーバーデータに対するラスタ表示の実 行を指示するためのボタンとが設けられている。  [0075] Further, in a screen that can be displayed on the display of the image processing apparatus 14 by the raster display GUI 34, a part of specific Gerber data stored in the checked Gerber data folder 46 is expanded into raster data. A raster display instruction screen for instructing display on the display is included. Although not shown in the figure, the raster display instruction screen is displayed in the display column for displaying a list of file names of Gerber data stored in the checked Gerber data folder 46! And the display column. A button for instructing execution of raster display for Gerber data selected as a processing target from among the Gerber data is provided.
[0076] チェック済みガーバーデータフォルダ 46に格納されて 、るガーバーデータが表す 配線パターンに対して目視チェックを行 、た 、場合、ユーザはキーボードやマウスを 操作し、ラスタ表示 GUI34に対してディスプレイへのラスタ表示指示画面の表示を指 示し、ラスタ表示指示画面がディスプレイに表示されている状態で、上記表示欄に一 覧表示されて ヽるガーバーデータの中から処理対象のガーバーデータを選択し、ラ スタ表示指示画面内のボタンを選択することで、処理対象のガーバーデータに対す るラスタ表示処理の実行を指示する。この指示がラスタ表示 GUI34を介して RIP処 理部 36に入力され、 RIP処理部 36によって図 12に示すラスタ表示処理が行われる [0076] When the visual check is performed on the wiring pattern represented by the Gerber data stored in the checked Gerber data folder 46, the user operates the keyboard or mouse to display the raster display GUI 34 on the display. When the display of the raster display instruction screen is instructed and the raster display instruction screen is displayed on the display, select the Gerber data to be processed from the Gerber data listed in the display field above, and By selecting a button in the star display instruction screen, execution of raster display processing is instructed for the target Gerber data. This instruction is input to the RIP processing unit 36 through the raster display GUI 34, and the RIP processing unit 36 performs the raster display processing shown in FIG.
[0077] ラスタ表示処理では、まずステップ 230にお 、て、指定された処理対象のガーバー データをチェック済みガーバーデータフォルダ 46から取り込むと共に、処理対象のガ 一バーデータに対応するジョブ条件情報をジョブ条件情報フォルダ 48から取り込む 。ステップ 232では、処理対象のガーバーデータ全体を低解像度のラスタデータ(全 体イメージ画像)へ展開する。なお、ガーバーデータからラスタデータへの展開は、 例えば出力するラスタデータの解像度に応じたサイズの描画領域をメモリ上に確保し 、ガーバーデータを先頭力 順に参照し従いながら、描画領域にライン等を描画する 処理を繰り返すことで行うことができる。これにより、処理対象のガーバーデータが表 す配線パターン全体を低解像度で表す全体イメージ画像が得られる。 [0077] In the raster display process, first, in step 230, the specified processing target Gerber data is fetched from the checked Gerber data folder 46, and job condition information corresponding to the processing target Gerber data is stored in the job condition. Import from information folder 48. In step 232, the entire Gerber data to be processed is converted into low resolution raster data (all Expand to body image). In addition, development from Gerber data to raster data, for example, secures a drawing area of a size corresponding to the resolution of the raster data to be output on the memory, and refers to the Gerber data in order of the leading force, and follows the line etc. in the drawing area. This can be done by repeating the drawing process. As a result, an overall image image representing the entire wiring pattern represented by the processing target Gerber data at a low resolution is obtained.
[0078] 次のステップ 234では、処理対象のガーバーデータが表す配線パターンのラスタ 画像を表示させるためのラスタ表示画面(図 14参照)をラスタ表示 GUI34によってデ イスプレイに表示させる。また、図 14に示すように、このラスタ表示画面には、低解像 度の全体イメージ画像を表示するための全体イメージ表示領域と、配線パターンを表 すより高解像度の詳細表示画像を表示するための詳細表示領域とが設けられており 、ステップ 232の処理によって得られた全体イメージ画像を、ラスタ表示 GUI34によ つてラスタ表示画面内の全体イメージ表示領域に表示させる。なお、ステップ 232, 2 34は本発明に係る低解像度画像表示制御手段に相当する処理であり、ステップ 23 2, 234の処理を行う RIP処理部 36は本発明に係る低解像度画像表示制御手段に 対応している。  In the next step 234, a raster display screen (see FIG. 14) for displaying a raster image of the wiring pattern represented by the Gerber data to be processed is displayed on the display by the raster display GUI 34. Also, as shown in Fig. 14, this raster display screen displays a whole image display area for displaying a low resolution whole image, and a higher resolution detailed display image representing a wiring pattern. A detailed display area is provided, and the entire image obtained by the processing in step 232 is displayed on the entire image display area in the raster display screen by the raster display GUI. Steps 232 and 234 are processes corresponding to the low-resolution image display control means according to the present invention, and the RIP processing unit 36 that performs the processes of steps 232 and 234 is included in the low-resolution image display control means according to the present invention. It corresponds.
[0079] ところで、基板への配線パターンの描画単位 (露光装置 12が 1回の描画で基板へ 描画する配線パターン全体)はパネル (或いはワーク)と称されるが、最終製品として のプリント配線基板力 特に携帯電話機や PDA(Personal Digital Assistant)等の小 型の機器に実装されるプリント配線基板である場合、そのサイズはパネルのサイズよ りも大幅に小さいので、例として図 13に示すように、最終製品の単位である「ピース」 がパネル内に多数配列されることが多い。また、ピースのサイズが小さい等の場合に は、同一の配線パターンを表すピースが複数配列されて成るシートを単位としてパネ ルからの基板の切り出しを行 、、切り出したパネル内の各ピースへの回路素子の実 装等の工程を経た後に、パネル内の各ピースの切り出しが行われる。本実施形態に 係るラスタ表示処理では、詳細表示領域に詳細表示画像として表示させる範囲を指 定する方法として、全体イメージ表示領域に表示されて ヽる全体イメージ画像上で詳 細表示範囲を指定する方法に加え、全体イメージ画像上で所望のピース又はパネル を詳細表示対象として指定する方法が用意されており、図 14にも示すように、ラスタ 表示画面にはピース単位での詳細表示を指示するためのボタン 64Aと、シート単位 での詳細表示を指示するためのボタン 64Bが設けられている。 [0079] By the way, the drawing unit of the wiring pattern on the substrate (the entire wiring pattern drawn by the exposure apparatus 12 on the substrate in one drawing) is called a panel (or work), but it is a printed wiring board as a final product. In particular, in the case of a printed wiring board mounted on a small device such as a mobile phone or PDA (Personal Digital Assistant), the size is much smaller than the size of the panel. In many cases, “pieces”, which are units of the final product, are arranged in a panel. When the size of the pieces is small, the board is cut out from the panel in units of sheets in which a plurality of pieces representing the same wiring pattern are arranged, and each piece in the cut-out panel is cut. After passing through steps such as mounting circuit elements, each piece in the panel is cut out. In the raster display processing according to the present embodiment, as a method for designating a range to be displayed as a detail display image in the detail display area, the detail display range is designated on the whole image image displayed in the whole image display area. In addition to this method, there is a method for specifying a desired piece or panel as a detailed display target on the entire image. The display screen is provided with a button 64A for instructing detailed display in piece units and a button 64B for instructing detailed display in sheet units.
[0080] 次のステップ 236では、全体イメージ表示領域に表示されている全体イメージ画像 上で詳細表示範囲を表す枠 (図 14参照)が描画されることで、詳細表示領域に詳細 表示画像として表示すべき詳細表示範囲が指定された力否かを判定する。ステップ 236の判定が否定された場合はステップ 238へ移行し、全体イメージ画像内の特定 のピースが選択されてボタン 64Aが選択されることでピース単位での詳細表示が指 示されるか、又は、全体イメージ画像内の特定のシートが選択されてボタン 64Bが選 択されることでシート単位での詳細表示が指示された力否かを判定する。ステップ 23 8の判定も否定された場合はステップ 236に戻り、ステップ 236又はステップ 238の判 定が肯定されるまでステップ 236, 238を繰り返す。  [0080] In the next step 236, a frame representing the detailed display range (see Fig. 14) is drawn on the entire image displayed in the entire image display area, and displayed as a detailed display image in the detail display area. It is determined whether or not the detailed display range to be specified is a specified force. If the determination in step 236 is negative, the process proceeds to step 238, where a specific piece in the entire image is selected and the button 64A is selected to instruct detailed display in pieces, or When a specific sheet in the entire image is selected and the button 64B is selected, it is determined whether or not the force is instructed to display details in units of sheets. If the determination in step 238 is also negative, the process returns to step 236, and steps 236 and 238 are repeated until the determination in step 236 or step 238 is affirmed.
[0081] 上記何れかの指定方法で詳細表示を指示する操作がユーザによって行われると、 ステップ 236又はステップ 238の判定が肯定されてステップ 240へ移行し、ユーザに よって指定された詳細表示範囲を認識する。すなわち、全体イメージ画像上で詳細 表示範囲を表す枠が描画された場合には、描画された枠内を詳細表示範囲と認識 し、ピース単位での詳細表示が指示された場合は全体イメージ画像上で選択された 特定のピース全体を詳細表示範囲と認識し、シート単位での詳細表示が指示された 場合は全体イメージ画像上で選択された特定のシート全体を詳細表示範囲と認識す る。  [0081] When an operation for instructing detailed display by any one of the above-described designation methods is performed by the user, the determination in step 236 or step 238 is affirmed and the process proceeds to step 240, and the detailed display range specified by the user is set. recognize. In other words, when a frame representing the detailed display range is drawn on the entire image, the inside of the drawn frame is recognized as the detailed display range, and when detailed display in pieces is instructed, the entire image image is displayed. The entire specific piece selected in is recognized as the detailed display range, and when detailed display in units of sheets is instructed, the entire specific sheet selected on the entire image is recognized as the detailed display range.
[0082] また、次のステップ 242では、ステップ 240で認識された詳細表示範囲内に同一の 配線パターン(同一の配線パターンを表すピース)が複数存在している力否かを判定 し、判定結果に基づいて、詳細表示範囲のうちガーバーデータ力 ラスタデータへの 展開を行う範囲を設定する。例えばピース単位での詳細表示が指示された場合は、 詳細表示範囲内に同一配線パターンが複数存在していることはないので、ステップ 2 [0082] Further, in the next step 242, it is determined whether or not there is a force that includes a plurality of identical wiring patterns (pieces representing the same wiring pattern) within the detailed display range recognized in step 240. Based on, set the range to expand to the Gerber data force raster data in the detailed display range. For example, when detailed display in units of pieces is instructed, there are no more than one identical wiring pattern within the detailed display range.
40で認識された詳細表示範囲がそのままラスタ展開範囲に設定される。一方、シート 単位での詳細表示が指示された場合や、全体イメージ画像上で描画された範囲の 詳細表示が指示された場合は、詳細表示範囲内に同一の配線パターンを表すピー スが複数存在している可能性がある。詳細表示範囲内に同一の配線パターンを表す ピースが複数存在していなければ詳細表示範囲がそのままラスタ展開範囲に設定さ れる力 詳細表示範囲内に同一の配線パターンを表すピースが複数存在していれ ば何れ力 1個のピース以外の各ピースを除外した範囲がラスタ展開範囲に設定され る。 The detailed display range recognized in 40 is set as the raster development range as it is. On the other hand, when detailed display in units of sheets is instructed, or when detailed display of the range drawn on the entire image is instructed, there are multiple pieces representing the same wiring pattern within the detailed display range. There is a possibility. Represent the same wiring pattern within the detailed display range If multiple pieces are not present, the detailed display range is set to the raster development range as it is. If there are multiple pieces representing the same wiring pattern within the detailed display range, any force other than one piece will be used. The range excluding is set as the raster expansion range.
[0083] 次のステップ 244では、処理対象のガーバーデータ力 ラスタ展開範囲に相当する ガーバーデータを抽出し、抽出されたガーバーデータを高解像度のラスタデータへ 展開する。なお、上記のラスタデータの解像度は、後述する距離の演算'表示を行う ことを考慮すると描画時の解像度と同一であることが望ましいが、詳細表示範囲内の 配線パターンを表す詳細表示画像全体がラスタ表示画面内の詳細表示領域に収ま るように解像度を調整してもよい。また、ステップ 242で設定されたラスタ展開範囲が ステップ 240で認識された詳細表示範囲と同一であれば、上記のラスタデータは詳 細表示範囲内の配線パターンを表す詳細表示画像に一致するが、詳細表示範囲内 に同一の配線パターンを表すピースが複数存在していたため詳細表示範囲内の一 部領域をラスタ展開範囲に設定した場合には、上記のラスタデータに、ラスタ展開範 囲から除外されたピースの外縁を表す枠線データを追加することで、詳細表示範囲 内の配線パターンを表す詳細表示画像を生成する。そして次のステップ 246では、ス テツプ 244の処理によって得られた詳細表示画像を、ラスタ表示 GUI34によってラス タ表示画面内の詳細表示領域に表示させる。  In the next step 244, Gerber data corresponding to the target Gerber data force raster development range is extracted, and the extracted Gerber data is developed into high-resolution raster data. Note that the resolution of the raster data is preferably the same as the resolution at the time of drawing in consideration of the distance calculation 'display described later, but the entire detailed display image representing the wiring pattern within the detailed display range is The resolution may be adjusted to fit within the detailed display area in the raster display screen. If the raster development range set in step 242 is the same as the detailed display range recognized in step 240, the above raster data matches the detailed display image representing the wiring pattern in the detailed display range. Since there are multiple pieces representing the same wiring pattern in the detailed display range, if a partial area in the detailed display range is set as the raster expansion range, the above raster data is excluded from the raster expansion range. A detailed display image representing a wiring pattern within the detailed display range is generated by adding frame line data representing the outer edge of each piece. In the next step 246, the detailed display image obtained by the processing in step 244 is displayed in the detailed display area in the raster display screen by the raster display GUI.
[0084] なお、ステップ 242, 244は本発明に係る展開手段に相当する処理、ステップ 246 は本発明に係る高解像度画像表示制御手段に相当する処理であり、ステップ 242〜 246の処理を行う RIP処理部 36は本発明に係る展開手段及び高解像度画像表示 制御手段に各々対応している。  Steps 242 and 244 are processes corresponding to the developing means according to the present invention, and step 246 is a process corresponding to the high-resolution image display control means according to the present invention. The RIP performs the processes of steps 242 to 246. The processing unit 36 corresponds to the developing means and the high-resolution image display control means according to the present invention.
[0085] これにより、ピース単位での詳細表示が指示された場合には、例として図 15に示す ように、ラスタ表示画面内の詳細表示領域には、詳細表示対象として選択された単一 のピースの配線パターンのみが詳細表示される。また、シート単位での詳細表示が 指示された場合には、例として図 16に示すように、詳細表示対象として選択された単 一のシートの配線パターンがラスタ表示画面内の詳細表示領域に詳細表示されるが 、選択されたシート内に同一の配線パターンを表すピースが複数配列されている場 合には、図 16に示すように、当該複数のピースのうちの単一のピースのみ、その配線 パターンが詳細表示され、残りのピースにっ 、てはその外縁を表す枠線のみが表示 される。 As a result, when detailed display in units of pieces is instructed, as shown in FIG. 15 as an example, the detailed display area in the raster display screen has a single display selected as the detailed display target. Only the piece wiring pattern is displayed in detail. Also, when detailed display in units of sheets is instructed, as shown in FIG. 16 as an example, the wiring pattern of a single sheet selected as a detailed display target is displayed in detail in the detailed display area in the raster display screen. Although displayed, if multiple pieces representing the same wiring pattern are arranged in the selected sheet In this case, as shown in FIG. 16, only a single piece of the plurality of pieces is displayed in detail with respect to the wiring pattern, and the remaining pieces are displayed with only a frame representing the outer edge. The
[0086] このように、ラスタ表示処理では、処理対象のガーバーデータが表す配線パターン のうちラスタ表示画面内の詳細表示領域に表示させる部分についてのみ、高解像度 のラスタデータを生成して表示するので、処理対象のガーバーデータ全体を RIP処 理によって描画用ラスタデータへ展開した後に、この描画用ラスタデータを用いて配 線パターンをラスタ表示する場合と比較して、配線パターンのラスタ表示を高速に行 うことができると共に、ラスタ表示された配線パターンに対して目視チェックにより不具 合が発見されたとしても、時間の力かる RIP処理を複数回行う必要がなくなる。  [0086] In this way, in the raster display processing, high-resolution raster data is generated and displayed only for the portion to be displayed in the detailed display area in the raster display screen of the wiring pattern represented by the processing target Gerber data. Compared to the case where the entire Gerber data to be processed is expanded into raster data for drawing by RIP processing and then the wiring pattern is raster displayed using this raster data for drawing, the raster display of the wiring pattern is faster. It is possible to perform the RIP process multiple times even if a defect is discovered by visual check for the wiring pattern displayed in the raster display.
[0087] また、上記のように、同一の配線パターンを表すピースが複数配列されたパネル( 配線パターン全体)を描画する場合、ガーバーデータは、単一のピースについての み配線パターンを規定するデータと、当該データが表す配線パターンの各ピースに 相当する位置への複写を指示するデータとによって上記の配線パターン全体を規定 するので、ガーバーデータが表す配線パターンの目視チェックに際しても、パネル内 に複数配列されている全てのピースに対して目視チェックを行う必要はなぐ同一の 配線パターンを表す複数のピースのうちの何れか 1つのみに対して目視チェックが行 われる。このため、同一の配線パターンを表すピースが詳細表示範囲内に複数存在 して 、た場合に、上記のように単一のピースにっ 、てのみ配線パターンが詳細表示 しても目視チェックの支障となることはなぐ単一のピースについてのみ高解像度のラ スタデータへ展開する処理を行うことで、ラスタ表示画面内の詳細表示領域への詳 細表示画像の表示を短時間で行うことができる。  [0087] As described above, when drawing a panel in which a plurality of pieces representing the same wiring pattern are arranged (entire wiring pattern), Gerber data is data that defines the wiring pattern only for a single piece. And the data for instructing copying to the position corresponding to each piece of the wiring pattern represented by the data, the entire wiring pattern is defined. It is not necessary to perform a visual check on all the arranged pieces. A visual check is performed on only one of a plurality of pieces representing the same wiring pattern. For this reason, if there are multiple pieces representing the same wiring pattern in the detailed display range, even if the wiring pattern is displayed in detail only by a single piece as described above, it will hinder the visual check. It is possible to display the detailed display image in the detailed display area in the raster display screen in a short time by performing the process of developing the high resolution raster data for only a single piece. .
[0088] ところで、ラスタデータの解像度が描画時の解像度と同一の場合、ラスタ表示画面 内の詳細表示領域には、例として図 17にも示すように、露光装置 12による描画時の 基板上での画素間隔とディスプレイ上での画素間隔 (表示ドットの間隔)の比に応じ て拡大表示された配線パターンが表示されるが、本実施形態では、この状態で、表 示されて!/ヽる配線パターン上で指定された任意の 2点間の距離を演算 ·表示させるこ とも可能とされている。任意の 2点間の距離を演算 '表示させることは、配線パターン 上で所望の 2点(図 17では始点、終点と表記)の位置を指定した後に (これにより 2点 間を結ぶ補助線が配線パターン上に表示される)所定の操作を行うことで指示するこ とがでさる。 By the way, when the resolution of the raster data is the same as the resolution at the time of drawing, the detailed display area in the raster display screen is displayed on the substrate at the time of drawing by the exposure device 12 as shown in FIG. 17 as an example. An enlarged wiring pattern is displayed according to the ratio of the pixel interval to the pixel interval (display dot interval) on the display. In this embodiment, the wiring pattern is displayed in this state! It is also possible to calculate and display the distance between any two points specified on the wiring pattern. Calculating the distance between any two points' displaying the wiring pattern Instruct by specifying the position of the desired two points above (designated as the start and end points in Fig. 17) (by this, an auxiliary line connecting the two points will be displayed on the wiring pattern) This comes out.
[0089] 次のステップ 248では、上記の操作が行われることで配線パターン上の任意の 2点 間の距離の演算 '表示が指示された力否かを判定する。ステップ 248の判定が否定 された場合はステップ 252へ移行し、ラスタ表示画面内の詳細表示領域に表示され て 、る配線パターン画像の表示切替が指示されたか否かを判定する。ステップ 252 の判定も否定された場合はステップ 254へ移行し、ラスタ表示画面の表示終了が指 示されたか否かを判定する。ステップ 254の判定も否定された場合はステップ 248に 戻り、ステップ 248、 252、 254の何れかの判定が肯定されるまでステップ 248、 252 、 254を繰り返す。  In the next step 248, it is determined whether or not the above-described operation is performed and the calculation of the distance between any two points on the wiring pattern is instructed. If the determination in step 248 is negative, the process proceeds to step 252 to determine whether display switching of the wiring pattern image displayed in the detailed display area in the raster display screen is instructed. If the determination in step 252 is also negative, the process proceeds to step 254, where it is determined whether the display end of the raster display screen is instructed. If the determination in step 254 is also negative, the process returns to step 248, and steps 248, 252 and 254 are repeated until the determination in any of steps 248, 252 and 254 is affirmed.
[0090] ここで、前述した操作が行われることで、配線パターン上で指定された任意の 2点 間の距離の演算.表示が指示された場合には、ステップ 248の判定が肯定されてス テツプ 250へ移行し、指定された 2点間の距離を演算して表示する。なお、露光装置 12による描画時の基板上での画素間隔は描画時の解像度より既知であるので、指 定された 2点間の距離は、指定された 2点間の X方向画素数及び Y方向画素数を計 数し、計数された画素数に基板上での画素間隔を乗することで、指定された 2点間の 基板上での X方向距離及び Y方向距離を求め、この X方向距離及び Y方向距離力も 演算によって算出することができる。図 17は、指定された 2点間の距離を演算した結 果が、演算した X方向距離及び Y方向距離と共に表示欄 68に表示されている状態を 示して 、る。ステップ 250は本発明に係る距離演算 ·表示手段に相当する処理であり 、ステップ 250の処理を行う RIP処理部 36は本発明に係る距離演算'表示手段に対 応している。  [0090] Here, when the above-described operation is performed, the calculation of the distance between any two points specified on the wiring pattern. When the display is instructed, the determination in step 248 is affirmed and the step is performed. Moves to step 250 and calculates and displays the distance between two specified points. Since the pixel interval on the substrate at the time of drawing by the exposure device 12 is known from the resolution at the time of drawing, the distance between the specified two points is the number of X-direction pixels between the specified two points and Y Count the number of pixels in the direction, and multiply the counted number of pixels by the pixel interval on the substrate to obtain the X-direction distance and Y-direction distance on the substrate between the two specified points. Distance and Y-direction distance force can also be calculated. FIG. 17 shows a state in which the result of calculating the distance between two designated points is displayed in the display column 68 together with the calculated X direction distance and Y direction distance. Step 250 is processing corresponding to the distance calculation / display means according to the present invention, and the RIP processing unit 36 that performs the processing of step 250 corresponds to the distance calculation 'display means according to the present invention.
[0091] デジタル描画方式では、描画用ラスタデータが表す配線パターンを所定の解像度 で基板に描画するので、描画用ラスタデータが表す配線パターンにおける露光部と 未露光部の境界位置は、丸め誤差の影響により、ガーバーデータが表す配線パター ンに対し、描画時の解像度における隣り合う画素の距離を最大として変動し、この変 動に伴い基板に実際に描画される配線パターンにおける露光部と未露光部の境界 位置も変動する。このため、隣り合うパターンの隙間の大きさ等は、描画用ラスタデー タが表す配線パターンに対して目視チェックを行って最終的に確認することが望まし い。本実施形態に係るラスタ表示処理では、ラスタ表示画面内の詳細表示領域に表 示された配線パターン (詳細表示画像)上で指定された任意の 2点間の距離の演算 · 表示が指示されると、指定された 2点間の距離 (丸め誤差が反映された距離)を演算- 表示するので、隣り合うパターンの隙間の大きさの確認等を正確かつ容易に行うこと ができ、目視チェックを行うユーザの負担を軽減することができる。 [0091] In the digital drawing method, the wiring pattern represented by the drawing raster data is drawn on the substrate with a predetermined resolution. Therefore, the boundary position between the exposed portion and the unexposed portion in the wiring pattern represented by the drawing raster data is affected by a rounding error. As a result, the wiring pattern represented by the Gerber data fluctuates with the distance between adjacent pixels at the resolution at the time of drawing as the maximum, and with this change, the exposed and unexposed areas in the wiring pattern actually drawn on the substrate boundary The position also varies. For this reason, it is desirable to finally confirm the size of the gap between adjacent patterns by performing a visual check on the wiring pattern represented by the drawing raster data. In the raster display processing according to the present embodiment, calculation / display of the distance between any two points designated on the wiring pattern (detailed display image) displayed in the detailed display area in the raster display screen is instructed. And the distance between two specified points (distance reflecting the rounding error) is calculated and displayed, so the size of the gap between adjacent patterns can be confirmed accurately and easily, and a visual check is performed. The burden on the user can be reduced.
[0092] また、ラスタ表示画面内の詳細表示領域に表示されている配線パターン画像の表 示切替 (詳細表示範囲の変更等)が指示された場合は、ステップ 252の判定が肯定 されてステップ 236へ戻り、ユーザからの指示に応じてステップ 236以降の処理が繰 り返される。また、ラスタ表示画面の表示終了が指示された場合はステップ 254の判 定が肯定され、ラスタ表示処理を終了する。上記のラスタ表示処理の実行中にユー ザによって行われる目視チェックにおいて、配線パターンに、例えば隣り合うパターン の隙間が不足している等の不具合があることが検知された場合には、 CAMシステム として機能するコンピュータ 18等において、検知された不具合が解消されるように処 理対象のガーバーデータを修正する作業が行われた後に、上記のラスタ表示処理( 目視チェック)が再度行われることになる。  [0092] If the display switching of the wiring pattern image displayed in the detailed display area in the raster display screen (change of the detailed display range, etc.) is instructed, the determination in step 252 is affirmed and step 236 is performed. The process from step 236 is repeated according to the instruction from the user. If the display end of the raster display screen is instructed, the determination in step 254 is affirmed and the raster display process is ended. When a visual check performed by the user during the above raster display processing detects that the wiring pattern has a defect such as a gap between adjacent patterns being insufficient, the CAM system The raster display process (visual check) described above is performed again after the work of correcting the Gerber data to be processed so that the detected malfunction is eliminated in the functioning computer 18 or the like.
[0093] また、目視チェックで配線パターンの不具合が検知されな力つた場合、ユーザは、 処理対象のガーバーデータに対する RIP処理の実行を指示する。これにより、 RIP処 理部 36は RIP処理対象のガーバーデータをチェック済みガーバーデータフォルダ 4 6から取り込み、取り込まれた処理対象のガーバーデータ全体を高解像度の描画用 ラスタデータに展開する RIP処理を行 、、 RIP処理によって得られた描画用ラスタデ ータを描画用ラスタデータフォルダ 50に格納する。 RIP処理が完了すると、ユーザは 、描画用ラスタデータが表す配線パターンの基板への描画を指示する。すると、露光 装置制御部 40はジョブ条件情報フォルダ 48から対応するジョブ条件情報を読み出 して露光装置 12へ出力すると共に、描画用ラスタデータフォルダ 50から描画用ラス タデータを順次読み出して露光装置 12へ出力する。これにより、描画用ラスタデータ が表す配線パターンが、露光装置 12で、上記のジョブ条件情報に従って基板に描 画されること〖こなる。 [0093] Also, if a visual check does not detect a defect in the wiring pattern, the user instructs execution of the RIP process on the target Gerber data. As a result, the RIP processing unit 36 performs RIP processing for capturing the Gerber data to be processed in the RIP from the checked Gerber data folder 46, and expanding the entire processed Gerber data into the raster data for drawing with high resolution. The drawing raster data obtained by the RIP process is stored in the drawing raster data folder 50. When the RIP process is completed, the user instructs the drawing of the wiring pattern represented by the drawing raster data on the substrate. Then, the exposure apparatus control unit 40 reads out the corresponding job condition information from the job condition information folder 48 and outputs it to the exposure apparatus 12, and sequentially reads out the drawing raster data from the drawing raster data folder 50 to the exposure apparatus 12. Output. As a result, the wiring pattern represented by the drawing raster data is drawn on the substrate by the exposure device 12 in accordance with the job condition information described above. It will be awkward to be drawn.
[0094] なお、本発明に係る検査手段が行う検査処理は、データチェック処理として図 3に 示した各チェック処理に限られるものではなく、例えば太さが閾値未満のラインの有 無をチェックしたり、配線パターン全体の倍率変更を指示するデータが含まれて ヽな V、か否かをチェックしたりする等、本発明を逸脱しな 、範囲で他の任意の検査処理を 適用可能であることは言うまでもない。  Note that the inspection process performed by the inspection unit according to the present invention is not limited to the check process shown in FIG. 3 as the data check process. For example, the presence or absence of a line whose thickness is less than the threshold is checked. Or any other inspection process can be applied within the scope of the present invention without departing from the present invention. Needless to say.
[0095] また、本実施形態では、本発明に係る画像処理装置が接続される描画装置として 露光装置 12を例に説明したが、本発明に係る画像処理装置が接続可能な描画装置 は上記に限られるものではなぐインクジェット型で液体吐出型の描画ヘッドを用い、 金属粒子や金属粒子の前駆体を基板に付着させることで配線パターンを基板に描 画する描画装置を適用することも可能である。このような描画装置としては、例えば特 開 2005-40665号公報、特開 2005-47073号公報、特開 2005-47085号公報、特開 200 5-81710号公報、特開 2005-81711号公報、特開 2005-81716号公報、特開 2005-963 32号公報、特開 2005-96338号公報、特開 2005-96345号公報等に記載の描画装置 が挙げられる。  In the present embodiment, the exposure apparatus 12 has been described as an example of a drawing apparatus to which the image processing apparatus according to the present invention is connected. However, the drawing apparatus to which the image processing apparatus according to the present invention can be connected is described above. It is also possible to apply a drawing apparatus that draws a wiring pattern on a substrate by attaching a metal particle or a metal particle precursor to the substrate using an ink jet type liquid ejection drawing head, which is not limited. . Examples of such a drawing apparatus include JP 2005-40665, JP 2005-47073, JP 2005-47085, JP 2005-81710, JP 2005-81711, Examples include the drawing devices described in JP-A-2005-81716, JP-A-2005-96332, JP-A-2005-96338, JP-A-2005-96345, and the like.
符号の説明  Explanation of symbols
[0096] 10基板描画システム [0096] 10-board drawing system
12露光装置  12 exposure equipment
14画像処理装置  14 Image processing device
18コンピュータ  18 computers
24ジョブ登録 GUI  24 job registration GUI
28データチェック処理部  28 Data check processing section
30レイアウト確認 GUI  30 Layout confirmation GUI
32レイアウト表示処理部  32 Layout display processing section
34ラスタ表示 GUI  34 raster display GUI
36 RIP処理部  36 RIP processing section

Claims

請求の範囲 The scope of the claims
[1] 描画用ラスタデータが表す配線パターンを基板に直接描画する描画装置と接続さ れ、入力された前記配線パターンを表すベクトル形式の画像データを前記描画用ラ スタデータへ展開する RIP処理を行う画像処理装置であつて、  [1] Connected to a drawing device that directly draws the wiring pattern represented by the drawing raster data on the substrate, and performs RIP processing to expand the input vector format image data representing the wiring pattern into the drawing raster data An image processing apparatus to perform,
前記画像データに基づ ヽて、前記配線パターンを低解像度で表す低解像度配線 パターン画像を生成し、生成された低解像度配線パターン画像を表示手段に表示さ せる低解像度画像表示制御手段と、  Low resolution image display control means for generating a low resolution wiring pattern image representing the wiring pattern at a low resolution based on the image data, and displaying the generated low resolution wiring pattern image on a display means;
前記低解像度表示制御手段によって前記表示手段に表示された低解像度配線パ ターン画像上で指定手段を介して拡大表示対象領域が指定された場合に、前記画 像データのうち前記拡大表示対象領域に相当するデータを高解像度ラスタデータへ 展開することで、前記拡大表示対象領域内の配線パターンを高解像度で表す高解 像度配線パターン画像を生成する展開手段と、  When an enlarged display target area is specified via the specifying means on the low resolution wiring pattern image displayed on the display means by the low resolution display control means, the enlarged display target area in the image data is displayed. Expansion means for generating a high-resolution wiring pattern image representing the wiring pattern in the enlarged display target area at a high resolution by expanding the corresponding data into high-resolution raster data;
前記展開手段によって生成された高解像度配線パターン画像を前記表示手段に 表示させる高解像度画像表示制御手段と、  High-resolution image display control means for displaying the high-resolution wiring pattern image generated by the developing means on the display means;
を更に備えたことを特徴とする画像処理装置。  An image processing apparatus further comprising:
[2] 前記描画装置によって基板に描画される配線パターンは、単一の回路パターンに 相当する同一の単位配線パターンが複数配列されて成るシートが複数個配置されて 構成されており、 [2] The wiring pattern drawn on the substrate by the drawing device is configured by arranging a plurality of sheets in which a plurality of identical unit wiring patterns corresponding to a single circuit pattern are arranged,
前記低解像度画像表示制御手段は、前記低解像度配線パターン画像として、前 記配線パターン全体を低解像度で表す画像を生成して表示させ、  The low resolution image display control means generates and displays an image representing the entire wiring pattern at a low resolution as the low resolution wiring pattern image,
前記展開手段は、前記配線パターン全体を表す低解像度配線パターン画像上で 前記拡大表示対象領域として特定のシートが指定された場合に、前記画像データの うち、前記特定のシート内の単一の特定単位配線パターンに相当するデータのみを 高解像度ラスタデータへ展開し、前記特定シートの高解像度配線パターン画像とし て、前記特定単位配線パターンにつ 、てのみ配線パターンを表示する画像を生成 することを特徴とする  When the specific sheet is designated as the enlargement display target area on the low-resolution wiring pattern image representing the entire wiring pattern, the expanding unit is configured to specify a single specific item in the specific sheet among the image data. Only data corresponding to a unit wiring pattern is expanded into high resolution raster data, and an image displaying a wiring pattern only for the specific unit wiring pattern is generated as a high resolution wiring pattern image of the specific sheet. Characterize
請求項 1記載の画像処理装置。  The image processing apparatus according to claim 1.
[3] 前記描画装置によって基板に描画される配線パターンは、単一の回路パターンに 相当する同一の単位配線パターンが複数配列されて成るシートが複数個配置されて 構成されており、 [3] The wiring pattern drawn on the substrate by the drawing device is a single circuit pattern. A plurality of sheets are formed by arranging a plurality of corresponding identical unit wiring patterns.
前記低解像度画像表示制御手段は、前記低解像度配線パターン画像として、前 記配線パターン全体を低解像度で表す画像を生成して表示させ、  The low resolution image display control means generates and displays an image representing the entire wiring pattern at a low resolution as the low resolution wiring pattern image,
前記展開手段は、前記配線パターン全体を表す低解像度配線パターン画像上で 前記拡大表示対象領域として特定のシートが指定された場合に、前記画像データの うち、前記特定のシート内の単一の特定単位配線パターン以外の他の単位配線パタ ーンに相当するデータについては高解像度ラスタデータへの展開対象から除外し、 前記特定シートの高解像度配線パターン画像として、前記特定単位配線パターン以 外の他の単位配線パターンについては外縁を表す枠線のみ表示する画像を生成す ることを特徴とする  When the specific sheet is designated as the enlargement display target area on the low-resolution wiring pattern image representing the entire wiring pattern, the expansion unit is configured to specify a single specific item in the specific sheet among the image data. Data corresponding to other unit wiring patterns other than the unit wiring pattern is excluded from the development target to the high resolution raster data, and other than the specific unit wiring pattern as the high resolution wiring pattern image of the specific sheet. For the unit wiring pattern, an image that displays only the frame line representing the outer edge is generated.
請求項 1記載の画像処理装置。  The image processing apparatus according to claim 1.
[4] 前記高解像度画像表示制御手段によって前記表示手段に表示された高解像度配 線パターン画像上で、指定手段を介して距離測定対象の 2点が指定された場合に、 指定された 2点間の距離を演算して前記表示手段に表示させる距離演算,表示手段 を更に備えたことを特徴とする [4] When two points for distance measurement are specified via the specifying means on the high-resolution wiring pattern image displayed on the display means by the high-resolution image display control means, the specified two points Further comprising distance calculation and display means for calculating the distance between them and displaying them on the display means
請求項 1記載の画像処理装置。  The image processing apparatus according to claim 1.
[5] 入力された前記画像データに対して前記 RIP処理が行われる前に、前記画像デー タに、前記描画装置による描画工程を経て作成される基板に不具合が発生する欠陥 が有るか否かを検査する検査手段を更に備えたことを特徴とする [5] Before the RIP processing is performed on the input image data, whether or not the image data has a defect that causes a defect in a substrate created through a drawing process by the drawing apparatus. Further comprising inspection means for inspecting
請求項 1乃至請求項 4の何れか 1項記載の画像処理装置。  The image processing device according to claim 1.
[6] 前記検査手段は、前記画像データに前記欠陥が有るか否かを検査するにあたり、 前記描画装置が前記基板に前記配線パターンを描画する際に適用される描画条件 を取得し、取得された描画条件に応じて前記検査における前記欠陥の判定に用いる 閾値を設定し、設定された閾値を用いて前記検査を行うことを特徴とする [6] The inspection unit acquires and acquires a drawing condition applied when the drawing apparatus draws the wiring pattern on the substrate when the image data is inspected for the defect. The threshold value used for the determination of the defect in the inspection is set according to the drawn drawing conditions, and the inspection is performed using the set threshold value
請求項 5記載の画像処理装置。  The image processing apparatus according to claim 5.
[7] 前記検査手段は、前記作成される基板に不具合が発生する欠陥が有るか否かを 検査する処理として、前記画像データが表す配線パターンの中に円周長が第 1所定 値未満の円弧部が含まれて!/ヽるか否か、前記配線パターンの中に始点位置での半 径と終点位置での半径の差が第 2所定値以上の円弧部が含まれている力否か、前 記配線パターンの中に半径が第 3所定値以上の円弧部が含まれて 、るか否か、前 記配線パターンの中に円以外のアパーチャ形状を用いたラインが含まれて 、るか否 力 前記配線パターンの中に、始点位置と終点位置が同一の閉曲線を成しかつ始 点位置から終点位置に至る途中で自ラインと交差している自己交差ラインが含まれ ているカゝ否か、前記配線パターンが原点から第 4所定値以上離れた座標に存在して V、るか否か、前記画像データが表す配線パターンの中に面積が第 5所定値未満のピ ンホール領域が存在して ヽるか否か、前記配線パターンの中に隣接するパターンと 重なり合って 、る領域の幅が第 6所定値未満のパターンが存在して 、るか否か、及 び前記配線パターンの中に隣り合うパターンとの隙間が第 7所定値未満のパターン が存在しているか否か、の少なくとも 1つを検査する処理を行うことを特徴とする 請求項 5記載の画像処理装置。 [7] As a process for inspecting whether or not the produced board has a defect that causes a defect, the inspection means has a first predetermined circumferential length in the wiring pattern represented by the image data. Whether or not the arc part is less than the value is included! / In the wiring pattern, the difference between the radius at the start point and the radius at the end point is not less than the second predetermined value in the wiring pattern. Whether or not there is an arc part with a radius greater than or equal to the third predetermined value in the wiring pattern, and whether or not there is a line using an aperture shape other than a circle in the wiring pattern The wiring pattern includes a self-intersection line in which the start point position and the end point position form the same closed curve and intersects with the own line on the way from the start point position to the end point position. Whether or not the wiring pattern is present at a coordinate that is at least a fourth predetermined value away from the origin and is V, and the area in the wiring pattern represented by the image data is less than a fifth predetermined value. Whether there is a pinhole area, whether it is adjacent to the wiring pattern or not. If there is a pattern whose width is less than the sixth predetermined value, and there is a pattern in which the gap between the adjacent patterns is less than the seventh predetermined value. 6. The image processing apparatus according to claim 5, wherein a process for inspecting at least one of whether or not the image processing is performed is performed.
[8] 前記検査手段は、前記画像データに、前記作成される基板に不具合が発生する欠 陥が有る力否かを検査するにあたり、前記描画装置が前記基板に配線パターンを描 画する際に適用される描画条件の一つである解像度を取得し、前記第 1所定値、前 記第 2所定値、前記第 5所定値〜前記第 7所定値のうち実行される検査に対応する 所定値を前記取得された解像度に応じて設定し、設定された前記所定値を用いて前 記検査を行うことを特徴とする  [8] The inspecting means, when inspecting whether or not the image data has a defect that causes a defect in the created substrate, the drawing apparatus draws a wiring pattern on the substrate. A resolution that is one of the drawing conditions to be applied is acquired, and a predetermined value corresponding to an inspection to be performed among the first predetermined value, the second predetermined value, and the fifth predetermined value to the seventh predetermined value. Is set according to the acquired resolution, and the inspection is performed using the set predetermined value.
請求項 7記載の画像処理装置。  The image processing apparatus according to claim 7.
[9] 前記検査手段は、前記画像データに、前記作成される基板に不具合が発生する欠 陥が有る力否かを検査するにあたり、前記描画装置が前記基板に配線パターンを描 画する際に適用される描画条件の一つである、前記基板に設けられた感光材料の 種類を取得し、前記第 5所定値及び前記第 7所定値のうち実行される検査に対応す る所定値を前記取得された感光材料の種類に応じて設定し、設定された前記所定値 を用いて前記検査を行うことを特徴とする  [9] The inspecting means, when inspecting whether the image data has a defect that causes a defect in the created substrate, the drawing apparatus draws a wiring pattern on the substrate. The type of photosensitive material provided on the substrate, which is one of the drawing conditions to be applied, is acquired, and a predetermined value corresponding to the inspection to be performed is selected from the fifth predetermined value and the seventh predetermined value. It is set according to the type of the obtained photosensitive material, and the inspection is performed using the set predetermined value.
請求項 7記載の画像処理装置。  The image processing apparatus according to claim 7.
[10] 前記検査手段は、前記画像データに前記 RIP処理でエラーが発生する欠陥がある か否かも検査することを特徴とする [10] The inspection means has a defect that causes an error in the RIP processing in the image data. It is also characterized by checking whether or not
請求項 5記載の画像処理装置。  The image processing apparatus according to claim 5.
[11] 前記検査手段は、前記画像データに前記 RIP処理でエラーが発生する欠陥がある か否かを検査する処理として、前記 RIP処理で取扱可能な文字種以外の文字が前 記画像データに含まれて 、るか否か、前記配線パターンの頂点の数が第 8所定値以 上か否か、前記画像データを構成するレイヤの数が第 9所定値以上カゝ否カゝ、の少な くとも 1つを検査する処理を行うことを特徴とする [11] The image data includes characters other than character types that can be handled by the RIP process as a process for inspecting whether or not the image data has a defect that causes an error in the RIP process. The number of vertices of the wiring pattern is not less than an eighth predetermined value, and the number of layers constituting the image data is not less than a ninth predetermined value. It is characterized by performing processing to inspect one
請求項 10記載の画像処理装置。  The image processing apparatus according to claim 10.
[12] 前記検査手段によって前記画像データに欠陥が有ると判断された場合に、前記欠 陥が有ると判断された箇所の前記配線パターン上での座標を取得し、取得された座 標に基づいて、前記画像データが表す配線パターンに重畳表示可能にされた状態 で前記配線パターン上の前記箇所に所定のマークを明示させる欠陥箇所明示デー タを生成するデータ生成手段を更に備えたことを特徴とする [12] When it is determined by the inspection means that the image data has a defect, the coordinates on the wiring pattern of the portion determined to have the defect are acquired and based on the acquired coordinate And a data generating means for generating defect location clarification data for clearly indicating a predetermined mark at the location on the wiring pattern in a state in which the wiring pattern represented by the image data can be superimposed and displayed. To
請求項 5記載の画像処理装置。  The image processing apparatus according to claim 5.
[13] 前記描画装置が前記基板に前記配線パターンを描画する際に適用される描画条 件を取得し、取得された描画条件と前記画像データとに基づいて、前記描画装置が 現在の描画条件で前記画像データが表す配線パターンを描画した場合の前記基板 上での前記配線パターンの描画範囲を演算する演算手段と、 [13] The drawing apparatus acquires a drawing condition applied when the wiring pattern is drawn on the substrate, and the drawing apparatus determines the current drawing condition based on the acquired drawing condition and the image data. Calculating means for calculating a drawing range of the wiring pattern on the substrate when the wiring pattern represented by the image data is drawn with
前記演算手段によって演算された描画範囲に基づいて、前記描画装置が現在の 描画条件で前記画像データが表す配線パターンを描画した場合の、前記基板と前 記基板上での前記配線パターンの描画範囲との位置関係を表示手段に表示させる 位置関係表示制御手段と、を更に備えたことを特徴とする  The drawing range of the wiring pattern on the substrate and the substrate when the drawing device draws the wiring pattern represented by the image data under the current drawing conditions based on the drawing range calculated by the calculating means And a positional relation display control means for displaying the positional relation on the display means.
請求項 1乃至請求項 12の何れか 1項記載の画像処理装置。  The image processing apparatus according to claim 1.
PCT/JP2006/310033 2005-05-24 2006-05-19 Image processor WO2006126457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005151296A JP2006330184A (en) 2005-05-24 2005-05-24 Image processing apparatus
JP2005-151296 2005-05-24

Publications (1)

Publication Number Publication Date
WO2006126457A1 true WO2006126457A1 (en) 2006-11-30

Family

ID=37451882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310033 WO2006126457A1 (en) 2005-05-24 2006-05-19 Image processor

Country Status (4)

Country Link
JP (1) JP2006330184A (en)
KR (1) KR20080009705A (en)
CN (1) CN101185032A (en)
WO (1) WO2006126457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153720A1 (en) * 2012-04-11 2013-10-17 株式会社図研 Information processing device, information processing method, program, and substrate production system
JP7455265B1 (en) 2023-08-24 2024-03-25 株式会社オーク製作所 Exposure equipment and exposure method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553698B2 (en) * 2010-07-06 2014-07-16 日置電機株式会社 Data analysis apparatus for creating printed circuit board, analysis method thereof, and data analysis program
JP5852374B2 (en) * 2011-09-07 2016-02-03 株式会社Screenホールディングス Drawing apparatus and drawing method
TW201314376A (en) 2011-09-30 2013-04-01 Dainippon Screen Mfg Image display apparatus for direct drawing apparatus and recording medium
JP5946620B2 (en) * 2011-09-30 2016-07-06 株式会社Screenホールディングス Image display device and program for direct drawing device
JP5801674B2 (en) * 2011-09-30 2015-10-28 株式会社Screenホールディングス Image display device and program for direct drawing device
JP5779145B2 (en) * 2012-06-28 2015-09-16 株式会社Screenホールディングス Wiring data generation device, generation method, program thereof, and drawing device
JP6034112B2 (en) * 2012-09-28 2016-11-30 株式会社Screenホールディングス Support device, drawing system, and support method
CN103605265B (en) * 2013-11-26 2015-11-18 上海宏盾防伪材料有限公司 A kind of curve lithography process system of the picture dot variable-angle based on vector curve path and photoetching method
CN103871086B (en) * 2014-02-18 2017-02-08 中国林业科学研究院资源信息研究所 FPGA (Field Programmable Gata Array) construction-based layered raster-to-vector processing method
CN109656492B (en) * 2018-12-19 2023-04-28 森大(深圳)技术有限公司 Print data processing method, system, device and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239969A (en) * 1985-08-16 1987-02-20 Dainippon Printing Co Ltd Trimming and layout method
JPH07219202A (en) * 1994-01-31 1995-08-18 Dainippon Screen Mfg Co Ltd Digital plate inspecting device
JP2003015309A (en) * 2001-06-29 2003-01-17 Pentax Corp Multiple exposure plotting method and multiple exposure plotting device
JP2005037911A (en) * 2003-07-02 2005-02-10 Fuji Photo Film Co Ltd Image recording apparatus, image recording method and program
JP2005079112A (en) * 2003-08-29 2005-03-24 Semiconductor Leading Edge Technologies Inc Method, device, and program for editing electron beam lithography data and electron beam lithography equipment
JP2005136121A (en) * 2003-10-30 2005-05-26 Fuji Photo Film Co Ltd Pattern manufacturing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239969A (en) * 1985-08-16 1987-02-20 Dainippon Printing Co Ltd Trimming and layout method
JPH07219202A (en) * 1994-01-31 1995-08-18 Dainippon Screen Mfg Co Ltd Digital plate inspecting device
JP2003015309A (en) * 2001-06-29 2003-01-17 Pentax Corp Multiple exposure plotting method and multiple exposure plotting device
JP2005037911A (en) * 2003-07-02 2005-02-10 Fuji Photo Film Co Ltd Image recording apparatus, image recording method and program
JP2005079112A (en) * 2003-08-29 2005-03-24 Semiconductor Leading Edge Technologies Inc Method, device, and program for editing electron beam lithography data and electron beam lithography equipment
JP2005136121A (en) * 2003-10-30 2005-05-26 Fuji Photo Film Co Ltd Pattern manufacturing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153720A1 (en) * 2012-04-11 2013-10-17 株式会社図研 Information processing device, information processing method, program, and substrate production system
JP2013219283A (en) * 2012-04-11 2013-10-24 Zuken Inc Information processor, information processing method, program and substrate manufacturing system
US9173296B2 (en) 2012-04-11 2015-10-27 Kabushiki Kaisha Zuken Information processing apparatus, information processing method, program, and board manufacturing system
JP7455265B1 (en) 2023-08-24 2024-03-25 株式会社オーク製作所 Exposure equipment and exposure method

Also Published As

Publication number Publication date
JP2006330184A (en) 2006-12-07
CN101185032A (en) 2008-05-21
KR20080009705A (en) 2008-01-29

Similar Documents

Publication Publication Date Title
JP4450769B2 (en) Image processing apparatus, image drawing apparatus and system
WO2006126457A1 (en) Image processor
JP5015721B2 (en) Defect inspection apparatus, defect inspection program, graphic drawing apparatus, and graphic drawing system
TWI448839B (en) Drawing data correction apparatus and drawing apparatus
JP2006194702A (en) Inspection device for gravure cylinder and inspection method using it
JP4914296B2 (en) Exposure pattern data inspection apparatus, method and program
US20060200332A1 (en) CAD system for a printed circuit board
JP4607380B2 (en) Pattern detection method, pattern inspection method, pattern correction, processing method
JP2013234976A (en) External appearance inspection device and external appearance inspection method
US10964080B2 (en) Apparatus for diagnosing and recording defects in structural objects
CN115686394A (en) Printing correction method, device, equipment and storage medium
JP2004030368A (en) Mask pattern appearance inspection method, program therefor, and mask pattern appearance inspection apparatus
JP2006106927A (en) Robot program generating device and analyzing device
US8300918B2 (en) Defect inspection apparatus, defect inspection program, recording medium storing defect inspection program, figure drawing apparatus and figure drawing system
JP2007065802A (en) Mesh division method, finite element analysis device and computer program
JP2010199451A (en) Installed data creation assisting apparatus and part-mounting apparatus
JP4812477B2 (en) Image measurement device part program generation device, image measurement device part program generation method, and image measurement device part program generation program
JP2005136121A (en) Pattern manufacturing system
JP2000127549A (en) Apparatus, method for controlling printing and recording medium
JP2006198804A (en) Misalignment measuring method, misalignment correction device and misalignment correction program
JP4073732B2 (en) Time chart creation device, time chart creation program and recording medium
JPH096975A (en) Block checking device
JPH1011615A (en) Three-dimensional design supporting device, and viewpoint position setting method therefor
JP2007072104A (en) Pattern inspection apparatus, pattern inspection method and program
JP2024046925A (en) Information processing device and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018228.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077025419

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756389

Country of ref document: EP

Kind code of ref document: A1