WO2006123796A1 - 係留浮上型水力発電機 - Google Patents

係留浮上型水力発電機 Download PDF

Info

Publication number
WO2006123796A1
WO2006123796A1 PCT/JP2006/310074 JP2006310074W WO2006123796A1 WO 2006123796 A1 WO2006123796 A1 WO 2006123796A1 JP 2006310074 W JP2006310074 W JP 2006310074W WO 2006123796 A1 WO2006123796 A1 WO 2006123796A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrofoil
turbine
hydroelectric generator
moored floating
Prior art date
Application number
PCT/JP2006/310074
Other languages
English (en)
French (fr)
Inventor
Kenichi Nakajima
Original Assignee
Kenichi Nakajima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenichi Nakajima filed Critical Kenichi Nakajima
Priority to JP2007516358A priority Critical patent/JP4753382B2/ja
Publication of WO2006123796A1 publication Critical patent/WO2006123796A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • F03B13/105Bulb groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/932Mounting on supporting structures or systems on a structure floating on a liquid surface which is a catamaran-like structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention is a field of flow, such as a place where the flow is fast and shallow, or a rapid stream where the flow is turbulent.
  • the moored floating hydroelectric generator of the present invention is small and easy to carry, so it can be used for doors, places where power transmission is difficult, or when temporary power is required.
  • Japanese Laid-Open Patent Publication No. 2003-286935 discloses a floating hydroelectric generator with a float on both sides of a water turbine.
  • Japanese Patent Application Laid-Open No. 2001-1 3 2607 discloses a generator provided with a propeller.
  • JP-A-2003-247481 Observing the river flow, there are many places where the flow is fast. The flow has a high energy density. By limiting the use to a place where the flow is fast, a moored floating hydroelectric generator can be configured with few components.
  • the conventional moored floating hydropower generator has a problem that such a device is not available.
  • the power output of the moored floating hydroelectric generator is proportional to the flow rate per unit time passing through the water turbine. As the flow velocity through the water turbine increases, the water turbine and other devices become smaller. Shi
  • the conventional moored levitated hydroelectric generators did not have the function of increasing the flow velocity through the turbine. Therefore, it was necessary to enlarge the water wheel and increase the flow rate through the water wheel. As a result, there is a problem that there is no conventional moored floating hydroelectric generator that is large in size, small and easy to carry.
  • an object of the present invention is to provide a moored levitated hydroelectric generator that has a simple configuration and is small and easy to carry by limiting the place of use to a place with low flow. Disclosure of the invention
  • the moored floating hydroelectric generator of the first invention uses the energy of flowing water to rotate the water wheel formed in the water turbine section and includes the generator driven by the water wheel.
  • the water intake part that leads to the downstream water turbine part
  • the water discharge part that guides the water flowing through the water wheel part to the downstream water outlet
  • the water intake part, the water wheel part, and the And a hydrofoil having a lower surface provided at a side of a structure including a water discharge portion and formed at a positive angle of attack with respect to flowing water, and the water discharge port
  • it is characterized in that it is arranged to discharge the flowing water at a place where the water level is low formed by the lower surface of the hydrofoil.
  • the moored levitated hydroelectric generator of the second invention is the moored levitated hydroelectric generator of the first invention.
  • the water intake section is formed such that the end portion of the water intake section is formed so that a cross-sectional area of running water led to the water turbine section is minimized.
  • the moored floating hydroelectric generator of the third invention is characterized in that, in the moored floating hydroelectric machine of the first or second invention, a floating adjustment blade is provided on a side portion of the water intake section.
  • a moored floating hydroelectric generator is a moored floating hydroelectric generator that uses the energy of flowing water to rotate a turbine and is equipped with a generator driven by the turbine. Is formed at the upstream portion from the water outlet, and is a positive portion with respect to the water flow, the water intake portion that leads to the water turbine, the water discharge portion that guides the water flowing through the water wheel to the water outlet downstream, It is characterized in that it comprises at least a hydrofoil as an angle of attack and a force, and the water outlet is arranged to discharge water into a low water level depression formed by the hydrofoil. It is characterized by that.
  • the moored levitated hydroelectric generator of the fifth invention is the moored levitated hydroelectric generator of the fourth invention, wherein the intake section has a cross-sectional area of flowing water that leads to the water turbine section at the end of the intake section. It is characterized by being formed so as to be minimized.
  • a moored floating hydroelectric generator according to a sixth aspect of the present invention is the moored levitated hydroelectric generator according to the fourth or fifth aspect of the present invention, wherein the intake section is provided with a levitating adjustment blade.
  • the lower surface of the hydrofoil is formed at a positive angle of attack with respect to the flowing water.
  • a lower water level is created on the downstream side of the trailing edge of the lower surface of the hydrofoil.
  • This low water place the outlet is arranged to discharge the running water. Due to this function and arrangement, there is a difference in water level between the intake and discharge. The energy of the difference in water level is added to the kinetic energy of running water. Therefore, the effect of increasing the flow velocity through the water turbine is effective.
  • the lower surface of the hydrofoil has a positive angle of attack with respect to the flowing water.
  • lift is generated on the lower surface of the hydrofoil.
  • This function has the effect that the moored floating hydroelectric generator does not require a floating device such as a float.
  • the hydrofoil is provided on a side portion of a structure including a water intake portion, a water turbine portion, and a water discharge portion.
  • a structure including a water intake portion, a water turbine portion, and a water discharge portion.
  • the hydrofoil is formed at a positive angle of attack with respect to the flowing water.
  • a dimple with a lower water level is created on the downstream side of the trailing edge of the hydrofoil.
  • a water outlet is arranged at the low water level so as to discharge water. Due to this function and arrangement, there is a difference in water level between the intake and discharge. The difference in water level is added to the kinetic energy of running water. Therefore, there is an effect of increasing the flow velocity passing through the water turbine.
  • the hydrofoil is formed at a positive angle of attack with respect to flowing water. As a result, lift is generated in this hydrofoil. To be born.
  • This function has the effect that the moored floating hydroelectric generator does not require a floating device such as a float.
  • FIG. 1 is a schematic perspective view for explaining a moored floating hydroelectric generator according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a moored floating hydroelectric generator according to a ⁇ embodiment of the present invention.
  • FIG. 3 is a front view of a moored floating hydroelectric generator according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV ′ of FIG.
  • FIG. 5 is a cross-sectional view taken along line V—V ′ of FIG.
  • FIG. 6 is a schematic perspective view for explaining a moored floating hydroelectric generator according to a second embodiment of the present invention.
  • FIG. 7 is a schematic perspective view for explaining a moored floating hydroelectric generator according to a third embodiment of the present invention.
  • FIG. 8 illustrates a moored floating hydroelectric generator according to a fourth embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the principle of the moored floating hydroelectric generator of the present invention, the best mode for carrying out the invention
  • the hydrofoil has the same function as an airplane wing. Airplane wings use lift.
  • a descending flow is generated on the downstream side of the trailing edge of the wing.
  • the present invention is characterized in that the descending flow is applied to a moored floating hydroelectric generator.
  • the experimental hydrofoil 8 2 is lowered in the flow 8 1 from the water surface at a positive angle of attack with respect to the flow 8 1.
  • the water level rises around the upstream edge of the leading edge of the experimental hydrofoil 8 2.
  • a depression 8 3 having a lower water level than the surroundings is formed.
  • a depression with a low water level and “a place with a low water level” have the same meaning.
  • the hydrofoil has a lower surface formed at a positive angle of attack with respect to the flowing water.
  • a lower water level is created on the downstream side of the trailing edge of the lower surface of the hydrofoil.
  • a water outlet is arranged to discharge the running water. Due to this structure and function, there is a difference in water level between the intake and discharge. The energy of the difference in water level is added to the kinetic energy of running water. As a result, the flow velocity through the water turbine is increased.
  • the power output of the moored floating hydroelectric generator is proportional to the flow rate per unit time passing through the water turbine. As the flow velocity through the water turbine increases, the water turbine and other devices become smaller. The function of the lower surface of the submerged wing makes the moored floating hydroelectric generator smaller.
  • the hydrofoil has a lower surface formed at a positive angle of attack with respect to the flowing water. As a result, lift occurs on the lower surface of the hydrofoil. Due to its function, the moored floating hydroelectric generator does not require a floating device such as a float. As a result, the moored floating hydroelectric generator becomes smaller.
  • the hydrofoil is provided on a side portion of the structure including a water intake portion, a water turbine portion, and a water discharge portion.
  • the flowing water that functions as a hydrofoil is separated from the flowing water that passes through the turbine.
  • the angle of attack of the lower surface of the hydrofoil is reduced, it can be formed into a shape that functions even in shallow locations.
  • the function and shape of the hydrofoil can reduce the size of the moored floating hydroelectric generator.
  • the hydrofoil may grow to locations other than the sides of the intake, turbine, and discharge sections.
  • the intake section is the end of the intake section. It is formed so that the cross-sectional area of flowing water leading to the hydraulic turbine section is minimized. As a result, the cross-sectional area of the flowing water is reduced while the flowing water is guided from the intake port to the water turbine section.
  • This shape and the function of the lower surface of the hydrofoil cooperate to increase the speed of running water. As a result, the performance of accelerating flowing water passing through the turbine is improved.
  • levitation control blades are installed on the side of the intake section. If this levitation control wing is installed on the upper part of the intake section so as to slide on the water surface, the levitation adjustment wing slides on the water surface, so that the position of the intake is fixed relative to the water surface. This function stabilizes water intake. And it is possible to take a fast flowing water near the surface of the water.
  • the moored floating hydropower generator can ascend stably in cooperation with the hydrofoil.
  • the intake port position can be made constant with respect to the water surface by controlling the angle of attack of the levitation control blade against the flowing water. As a result, it is possible to obtain the same function as that provided for sliding. Depending on the shape of the levitation control blade, it may become larger than the intake section.
  • the hydrofoil is formed at a positive angle of attack with respect to the flowing water.
  • a dimple with a lower water level than the surroundings is formed downstream of the trailing edge of the hydrofoil.
  • a water outlet is arranged at the low water level so as to discharge water. Due to this function and arrangement, there will be a difference in water level between the intake and outlet. The energy of the difference in water level is added to the kinetic energy of running water. As a result, the flow velocity through the water turbine is increased.
  • the power output of the moored floating hydroelectric generator is proportional to the flow rate per unit time passing through the water turbine. As the flow velocity through the water turbine increases, the water turbine and other devices become smaller.
  • This hydrofoil function reduces the size of the moored floating hydroelectric generator. It should be noted that the angle of attack of the hydrofoil of the present invention and flowing water is fixed. Righteousness is the same as the angle of attack of an airplane wing. The angle between the straight line connecting the leading edge of the hydrofoil and the trailing edge of the hydrofoil and the flow is called the angle of attack.
  • the leading edge of the hydrofoil In the case of the present invention, in the case of a hydrofoil where the trailing edge side of the hydrofoil is cut and the rear edge of the lower surface of the hydrofoil and the rear edge of the upper surface of the hydrofoil do not match, the leading edge of the hydrofoil The angle between the straight line connecting the wing and the rear edge of the hydrofoil and the flow is written as the angle of attack.
  • the hydrofoil is formed at a positive angle of attack with respect to the flowing water. As a result, lift is generated in the hydrofoil. Due to its function, the moored floating hydroelectric generator does not require a floating device such as a float. As a result, the moored floating hydroelectric generator becomes smaller.
  • the hydrofoil is provided upstream of the water outlet of the moored levitated hydroelectric generator.
  • the flowing water that functions as a hydrofoil is separated from the flowing water that passes through the turbine.
  • the angle of attack of the hydrofoil is reduced, it can be formed into a shape that can function even in shallow locations.
  • the function and shape of the hydrofoil can reduce the size of the moored floating hydroelectric generator.
  • the hydrofoil may extend downstream from the outlet without changing its function depending on the shape. +
  • the intake section is formed so that the cross-sectional area of the flowing water to the partial force turbine section at the end of the intake section is minimized.
  • the cross-sectional area of the flowing water is reduced while the flowing water is guided from the intake port to the water turbine section.
  • This shape and the function of the hydrofoil cooperate to increase the speed of running water. This improves the performance of accelerating running water that passes through the water turbine.
  • the intake adjustment blade is provided in the intake section.
  • this levitation control wing is installed on the upper part of the intake section so that it slides on the water surface, the levitation adjustment wing slides on the water surface, so that the position of the intake is fixed relative to the water surface.
  • This function stabilizes water intake. And it is possible to take a fast flowing water near the surface of the water.
  • the moored floating hydropower generator can ascend stably in cooperation with the hydrofoil.
  • the intake port position can be made constant with respect to the water surface by controlling the angle of attack of the levitation control blade against the flowing water. This makes it possible to obtain the same function as when it is provided for sliding. Depending on the shape of the levitation control blade, it may become larger than the intake section.
  • the function of the lower surface of the hydrofoil can be improved by making the rear wing of the hydrofoil a sharp angle.
  • the lower surface of the hydrofoil can also be formed by processing a shape other than a flat plate such as a corrugated plate by inserting a slit or dividing it.
  • a shape other than a flat plate such as a corrugated plate
  • the function of the hydrofoil is improved by making the trailing edge of the hydrofoil an acute angle.
  • the hydrofoil can be formed by machining a slit, dividing it, or making it a shape other than a flat plate such as a corrugated plate.
  • the jet wing is a function called the jumping water that tries to eliminate the low water level depression that occurs downstream of the low water level depression, which is formed by the function of the lower level of the hydrofoil or the function of the hydrofoil.
  • the upper surface of the jet wing acts as a temporary river bottom, and in the range of the upper surface of the jet wing, jumping is difficult to occur, and the low water level depression is stabilized.
  • the shape of the jet wing is effective even if it is formed in a shape that uses the inertia of flowing water and separates the flowing water into both sides and underside like a bow.
  • a moored floating hydroelectric power generation having the same function is possible even if a structure composed of a water intake part, a water wheel part, and a water discharge part is sandwiched between hydrofoil like a catamaran type airplane.
  • the machine can be configured. In this way, it is possible to apply a hydrofoil that is provided at the side of a moored floating hydroelectric generator and whose bottom surface is formed at a positive angle of attack with respect to the flowing water.
  • a moored floating hydroelectric generator having the same function can be configured even if the leading edge of the hydrofoil and the trailing edge of the levitation control blade are formed in an integrated shape, which is a modified type of the present invention. .
  • the hydrofoil can be applied to the moored levitation hydroelectric generator, which is formed on the side of the hydrofoil and has a positive angle of attack with respect to the underwater force of the hydrofoil.
  • Fig. 1, Fig. 2 and Fig. 3 show the moored floating hydroelectric generator of Example 1 respectively.
  • FIG. 11 is a schematic perspective view, a plan view, and a front view for explaining 1.
  • FIG. 4 and 5 are a cross-sectional view taken along the line IV-IV 'in FIG. 2 and a cross-sectional view taken along the line V-V in FIG. 2, respectively. is there.
  • the moored floating hydroelectric generator 1 of Example 1 takes in flowing water from a water inlet 1 2 1 and leads it to a downstream turbine 1 3 and a turbine 1 3 1 rotated by the flowing water,
  • the water turbine 1 3 1 The generator 1 4 1 driven by the water turbine 1 3 1
  • the water turbine 1 3 1 The water turbine 1 3 1 and the water 1
  • the lower surface 1 6 1 of the hydrofoil is located on both sides of the structure consisting of the intake section 1 2, the turbine section 1 3 and the discharge section 1 5, and is formed at a positive angle of attack with respect to the flowing water It has a hydrofoil 1 6 and
  • the intake portion 1 2 is a cylindrical body provided with an intake port 1 2 1 on the upstream side, and is arranged so that the upper portion of the intake port 1 2 1 is slightly above the water surface. It is formed so as to become narrower in the downstream direction and below the surface of the water.
  • a turbine section 13 is provided downstream of the intake section 1 2. The flowing water taken from the water intake 1 2 1 is accelerated by passing through the water intake part 1 2 and enters the water wheel part 1 3 to rotate the water wheel 1 3 1.
  • the intake section 12 is provided with a levitation control blade 1 2 2 and a mooring member 1 2 3.
  • the levitation control blade 1 2 2 is disposed on the side of the intake portion 1 2. And it is provided to slide on the water surface with a positive angle of attack against the flow. As the levitation control blade 1 2 2 slides on the surface of the water, the position of the intake port 1 2 1 with respect to the water surface becomes constant. This function stabilizes water intake. And it is possible to take a fast flowing water near the surface of the water. In addition, the moored floating hydroelectric generator 1 1 can ascend in a stable state in cooperation with the hydrofoil 16.
  • the mooring member 1 2 3 is a metal fitting to which the mooring wire 1 2 4 is attached, and the mooring floating hydroelectric generator 1 1 is moored by the mooring wire 1 2 4.
  • the turbine unit 1 3 includes a turbine 1 3 1 that is rotated by running water accelerated by the intake unit 1 2, a generator 1 4 1 that is formed inside the turbine 1 3 1 and is driven by the turbine 1 3 1, It consists of a front strut body 1 3 4 and a rear strut body 1 3 5 that support the turbine 1 3 1 and the generator 1 4 1.
  • the turbine blade 1 3 2 is formed in the turbine blade mounting portion 1 3 3.
  • the turbine blade mounting part 1 3 3 is fixed to the generator drive shaft 1 4 2, and the turbine blade 1 3 2, the turbine blade mounting part 1 3 3 and the generator drive shaft 1 4 2 rotate as a unit. It has become.
  • the generator drive shaft 1 4 2 is rotatably supported by bearings 1 3 6 attached to the front support bodies 1 3 4.
  • the generator 1 4 1 is formed inside the turbine blade mounting portion 1 3 3 and is covered with a waterproof generator outer cover 1 4 4.
  • the portion where the generator drive shaft 1 4 2 penetrates the generator outer force par 1 4 4 is waterproofed by a mechanical seal 1 4 3. Further, the generator outer cover 1 4 4 is fixed by a rear support body 1 3 5.
  • the electric power generated by the generator 1 4 1 is output to the outside through an output lead wire (not shown).
  • the water discharge unit 15 5 guides the water flowing through the water turbine unit 13 to the water discharge port 15 1 while deforming the water flow into the shape of the water discharge port 15 1.
  • the water outlet 15 1 is structured to be sandwiched between the lower surface 16 1 of the hydrofoil and the upper surface 16 2 of the hydrofoil.
  • a part of the water discharge part 15 is formed inside the hydrofoil 16.
  • a guide plate (not shown) is provided inside the water discharge part in order to discharge the flowing water evenly from the water discharge outlet 15 1.
  • Outlet 1 5 1 is sandwiched between the lower surface 1 6 1 of the hydrofoil and the upper surface 1 6 2 of the hydrofoil It has become.
  • the flowing water discharged from the outlet 15 1 is sandwiched between the flowing water flowing on the lower surface 16 1 of the hydrofoil and the flowing water flowing on the upper surface 16 2 of the hydrofoil. For this reason, the flowing water that has passed through the water turbine 1 3 1 can be discharged efficiently.
  • the hydrofoil 1 '& & has the leading edge of the hydrofoil 1 6 3 located below the surface of the water.
  • the lower surface 16 1 of the hydrofoil has a positive angle of attack with respect to the flowing water, and is formed up to one side of the outlet 15 1.
  • the upper surface 16 2 of the hydrofoil has a negative angle of attack at the leading edge, and is shaped to push up running water.
  • the trailing edge of the upper surface 16 2 of the hydrofoil is formed up to one side of the opposite side of the water outlet 1 51 in such a shape that the pushed-up water flows down into a depression with a low water level.
  • the leading edge 1 6 3 of the hydrofoil is located below the surface of the water.
  • the trailing edge 1 6 4 side of the hydrofoil is cut, and the location of the cut surface is the outlet 1 5 1. Therefore, the outlet 15 1 is formed so as to be sandwiched between the lower surface 16 1 of the hydrofoil and the upper surface 16 2 of the hydrofoil.
  • the hydrofoil 16 has a structure in which the outlet 15 1 is sandwiched between the lower surface 16 1 of the hydrofoil and the upper surface 16 2 of the hydrofoil. With this structure, the outlet 15 1 can be placed at the optimum position of the depression with a low water level, which can be achieved by the function of the lower surface 16 1 of the hydrofoil.
  • the hydrofoil 16 has a negative angle of attack on the upper surface 1 6 2 of the hydrofoil, so a negative lift is generated on the upper surface 16 2 of the hydrofoil. That is, for the hydrofoil 16, the leading edge 1 6 3 of the hydrofoil is located below the surface of the water. Therefore, the flowing water passes from the leading edge 1 6 3 of the hydrofoil through the upper surface 16 2 of the hydrofoil and flows down to the trailing edge 1 6 6 side of the upper surface of the hydrofoil. The flowing water generates negative lift on the upper surface 16 2 of the hydrofoil. This negative lift is generated by the lift generated on the lower surface 1 6 1 of the hydrofoil. 1 Adjust the phenomenon that 5 rises excessively. If the water discharge part 15 rises excessively, the difference in water level decreases.
  • the hydrofoil 16 is provided with a hydrofoil elevator 17 on the leading edge of the hydrofoil, upstream of 1 63.
  • hydrofoil vertical plates 18 are provided at both ends of the hydrofoil 16.
  • Side hydrofoil 19 is provided outside the hydrofoil vertical plate 18.
  • the hydrofoil vertical plate 1 8 is shaped to extend above the upper surface 16 2 of the hydrofoil at both ends of the hydrofoil 16, like an airplane with vertical tails formed at both ends of the horizontal tail. Has been. This shape prevents the flowing water flowing on the upper surface 16 2 of the hydrofoil from flowing down to the side surface of the hydrofoil 16. In addition, the direction of the moored floating hydroelectric generator will be kept constant against the flow.
  • the side hydrofoil 19 has a trailing edge 1 6 5 on the bottom surface of the hydrofoil, and one side is arranged on the line extending to the side. In addition, one side of the hydrofoil vertical plate 18 is closely attached. And, the positive angle of attack with respect to the flowing water is larger than the lower surface 16 1 of the hydrofoil, and it is formed in a triangular shape.
  • the hydrofoil elevator 17 is formed in a shape that extends upstream from the leading edge 16 3 of the hydrofoil. Also, the hydrofoil elevator motor 1 76 is used to drive from the positive angle of attack to the negative angle of attack with respect to the running water, with the front wing 1 6 3 of the hydrofoil as the central axis. By controlling the attitude with the hydrofoil elevator 17, it is possible to maintain an attitude that improves power generation efficiency.
  • Figure 5 shows the outline of the drive of the hydrofoil elevator 17.
  • Control device for hydrofoil elevator 1 is
  • the hydrofoil elevator controller 1 7 7 drives the hydrofoil elevator motor 1 7 6, thereby rotating the hydrofoil elevator worm gear 1 7 4. Thereby, the gear with pins 1 7 5 One rotates. This gear 1 is limited to half rotation by the hydrofoil elevator controller 1 7 7.
  • the rotating member 1 7 2 with the pins 1 7 5 and the long hole 1 7 3 is combined, and the hydrofoil elevator 1 7 rotates up and down around the waterfoil elevator fulcrum 1 7 1.
  • the hydrofoil elevator controller 1 7 7 is programmed to maximize attitude control and power output.
  • FIG. 6 is a schematic perspective view for explaining the moored floating hydroelectric generator 11 according to the second embodiment.
  • the moored floating hydroelectric generator 1 1 of the second embodiment has a simpler structure than the moored levitated hydroelectric generator 1 1 of the first embodiment.
  • the hydrofoil 16 is shaped so that running water does not overflow the upper surface 16 2 of the hydrofoil.
  • the function of the lower surface of the hydrofoil 1 6 1 is equivalent to the function of the lower surface of the hydrofoil of the present invention.
  • the hydrofoil 16 is formed at a positive angle of attack with respect to flowing water. Due to the shape of the hydrofoil 16, a depression with a lower water level than the surroundings is formed on the downstream side of the trailing edge 1 6 4 of the hydrofoil. Therefore, even in the structure of Example 2, a difference in water level occurs between the intake port 1 2 1 and the discharge port 1 5 1.
  • the water discharge part 15 is directly from the water turbine part 13 and has a water discharge opening 15 1. For this reason, it has a structure in which running water is discharged onto the water surface of a depression with a low water level. With such a structure, the energy of the difference in water level is added to the kinetic energy of the flowing water, so that the flow velocity passing through the turbine 1 31 can be increased.
  • the power output of the moored floating hydroelectric generator 1 1 is proportional to the flow rate per unit time passing through the turbine 1 3 1. As the flow velocity through water turbine 1 3 1 increases, the water turbine 1 3 1 and other devices become smaller. This hydrofoil 1 of 6 The function makes the moored floating hydroelectric generator 1 1 1 smaller.
  • the discharge section 1 5 1 rises excessively due to the function of the lower surface 16 1 of the hydrofoil.
  • One solution is to insert a slit in the hydrofoil 16 and change the width, spacing, and shape of the slits to change the lift. If the slit shape is an inverted triangle, there is an effect that a vortex is generated at the location of the outlet 1 51 and water discharge is improved. This means that even if the hydrofoil 16 is divided, the same function and effect will occur.
  • FIG. 7 is a schematic perspective view for explaining the moored floating hydroelectric generator 11 of the third embodiment.
  • the moored levitated hydroelectric generator 1 1 of Example 3 differs from Example 1 and Example 2 in that it has an inclined surface 2 0 1 at the front in the vicinity of the water outlet 1 5 1 and descending in the riverbed direction.
  • a jet wing 20 is provided.
  • the mounting positions of the levitation control blade 1 2 2 ⁇ and the generator section 1 4 are different.
  • the basic principle and basic structure are common.
  • the hydrofoil 16 is shaped so that running water does not overflow the upper surface 16 2 of the hydrofoil.
  • the function of the lower surface of the hydrofoil 1 6 1 is equivalent to the function of the lower surface of the hydrofoil of the present invention.
  • the levitation control wing 1 2 2 ⁇ is installed in the water. And it controls by changing the angle of attack to running water. By this method, the position of the intake 1 2 1 is constant with respect to the water surface. This stabilizes water intake. And the flow near the surface of the water Quick running water can be taken. In addition, the moored floating hydroelectric generator 1 1 can ascend in a stable state in cooperation with the hydrofoil 16.
  • the jet vane 20 is provided in a shape having an inclined surface 20 01 in the front part in the vicinity of the water outlet 15 1 and descending in the river bottom direction. This inclined surface 2 0 1 adjusts that the water discharge part 1 5 is too lifted by the function of the lower surface 16 1 of the hydrofoil.
  • the jet vane 20 increases the efficiency of discharging the flowing water from the outlet 15 1.
  • the jet vane 20 is arranged in the vicinity of the water outlet 15 1. It is effective to move this arrangement upstream.
  • the electric power generated by the generator section 14 is output to the outside through the output lead wires 1 4 5.
  • FIG. 8 is a schematic perspective view for explaining the moored floating hydroelectric generator of the fourth embodiment.
  • the moored floating hydroelectric generator 1 of Example 4 is provided with a wing-shaped jet blade 20 near the outlet, and the attachment positions of the levitation control blade 1 2 A and the generator section 1 4 are different.
  • the basic principle and the basic structure are common to the first and second embodiments.
  • the leading edge 1 6 3 of the hydrofoil is disposed below the surface of the water.
  • the flowing water overflows the upper surface 16 2 of the hydrofoil.
  • the outlet 15 1 is structured to be sandwiched between the lower surface 16 1 of the hydrofoil and the upper surface 16 2 of the hydrofoil.
  • the flowing water discharged from the outlet 15 1 is sandwiched between the flowing water flowing on the lower surface 16 1 of the hydrofoil and the flowing water flowing on the upper surface 16 2 of the hydrofoil. For this reason, the flowing water that has passed through the turbine section 13 can be discharged efficiently.
  • the levitation control wing 1 2 2 A is installed in the water. And it controls by changing the angle of attack to running water.
  • the position of the intake 1 2 1 is constant with respect to the water surface. This stabilizes water intake. And it can take in the fast flowing water near the water surface.
  • the moored floating hydroelectric generator 1 1 can ascend in a stable state in cooperation with the hydrofoil 16.
  • the jet vane 20 is provided in a wing shape in the vicinity of the water outlet 15 1. By making the wing-like jet wing 20 have a negative angle of attack with respect to the flowing water, it is controlled that the water discharge section 15 is too lifted by the function of the lower surface 16 1 of the hydrofoil.
  • the jet vane 20 increases the efficiency of discharging the flowing water from the outlet 15 1.
  • the jet vane 20 is arranged in the vicinity of the water outlet 15 1. It is also effective to move this arrangement upstream.
  • each part of the moored floating hydroelectric generator described in the present embodiment it is desirable to use a member that does not crack, and a well-known or well-known metal and synthetic resin member can be used.
  • a well-known or well-known metal and synthetic resin member can be used.
  • the inclination of the intake part, the intake port The shape of the water outlet, the shape of the water outlet, the angle of attack of the lower surface of the hydrofoil, the angle of attack of the upper surface of the hydrofoil, the angle of attack of the levitation control blade, etc. Can do. They can also be controlled automatically.
  • the hydrofoil has a hydrofoil having a lower surface formed at a positive angle of attack with respect to flowing water. Since there is a difference in water level between the intake and outlet, and the energy of the difference in water level is added to the kinetic energy of the running water, the flow velocity through the water turbine is increased. be able to. In addition, since the lower surface of the hydrofoil is formed at a positive angle of attack with respect to the flowing water, lift is generated on the lower surface of the hydrofoil, so a floating device such as a float is not required.
  • the moored levitated hydroelectric generator of the present invention is small and easy to carry, and can be used for doors, places where power transmission is difficult, or when a temporary power supply is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本発明は、流れの速い浅い場所、流れが波立ち荒れている急流など、流れの速い場所で使用する、小型で携帯が容易な、係留浮上型水力発電機(11)である。本発明の係留浮上型水力発電機(11)は、流水のエネルギーを利用して、水車部(13)に形成される水車(131)を回転させるとともに、前記水車(131)によって駆動される発電機(141)を備えている係留浮上型水力発電機(11)において、流水を取水口(121)から取り入れて、下流の前記水車部(13)へ導く取水部(12)と、前記水車部(13)を通過した流水を、下流の放水口(151)ヘ導く放水部(15)と、前記取水部(12)と前記水車部(13)と前記放水部(15)から構成する構造体の側部に設けられ、流水に対してプラスの迎え角に形成する下面を持つ水中翼(16)と、から構成することを特徴とするとともに、前記放水口が前記水中翼の下面(161)の機能により形成する水位の低い場所に、流水を放水するように配置する構成を有する。

Description

係留浮上型水力発電機
技術分野 明 本発明は、 流れが速く浅い場所、 流れが波立ち荒れている急流など、 流れの 田
速い場所で使用する、 小型で携帯が容易な、 係留浮上型水力発電機に関するもの 書
である。 また、 本発明の係留浮上型水力発電機は、 小型で携帯が容易なため、 ァ ゥトドア一用、送電が困難な場所、臨時に電源が必要な場合、などに利用できる。
背景技術 従来から川の流れを利用する、係留浮上型水力発電機が多数考案されている。 たとえば、 特開 2003— 286 93 5号公報には、 水車の両側にフロ一トを付 けた浮上式水力発電機が開示されている。 特開 200 1— 1 3 2607号公報に は、 発電機にプロペラを付けたものが開示されている。 その他、 特開 200 3— 24748 1号公報がある。 川の流れを観察すると、 流れの速い場所が数多くある。 その流れは、 高いェ ネルギー密度を持っている。その流れの速い場所に、使用を限定することにより、 少ない構成要素で係留浮上型水力発電機が構成できる。 しカゝし、 従来の係留浮上 型水力発電機では、 そのような装置がない問題があった。 係留浮上型水力発電機の発電出力は、 水車を通過する単位時間当たりの流量 に比例する。 水車を通過する流速が速くなると、 水車など装置が小型になる。 し かし、 従来の係留浮上型水力発電機は、 水車を通過する流速を速くする機能がな かった。 そのため、 水車を大きく して、 水車を通過する流量を多くする必要があ つた。 そのことにより、 形状が大きくなり、 小型で携帯が容易な、 従来の係留浮 上型水力発電機がない問題があった。
従来の係留浮上型水力発電機は、 フロートなどの浮上装置が必要だった。 そ のため、 形状が大きくなり、 小型で携帯が容易な、 従来の係留浮上型水力発電機 がない問題があった。
従って、 本発明は、 使用場所を流れの^い所に限定することで、 構成を簡単 にして、 小型で携帯が容易な、 係留浮上型水力発電機を提供することを目的とす る。 発明の開示
第 1発明の係留浮上型水力発電機は、 流水のエネルギーを利用して、 水車部 に形成されている水車を回転させるとともに、 前記水車によって駆動される発電 機を備えている係留浮上型水力発電機において、 流水を取水口から取り入れて、 下流の前記水車部へ導く取水部と、 前記水車部を通過した流水を、 下流の放水口 へ導く放水部と、 前記取水部と前記水車部と前記放水部から構成される構造体の 側部に設けられ、 流水に対してプラスの迎え角に形成されている下面を持つ水中 翼と、 から構成されていることを特徴とするとともに、 前記放水口が、 前記水中 翼の下面により形成される水位の低い場所に、 流水を放水するように配置されて いることを特徴としている。
第 2発明の係留浮上型水力発電機は、 第 1発明の係留浮上型水力発電機にお いて、 前記取水部は、 前記取水部の終りの部分が、 前記水車部へ導く流水の断面 積が最小になるように、 形成されていることを特徴としている。
第 3発明の係留浮上型水力発電機は、 第 1発明または第 2発明の係留浮上型 水力茶電機において、 前記取水部の側部に浮上調節翼が設けられていることを特 徴としている。
第 4発明の係留浮上型水力発電機は、流水のエネルギーを利用して水車を回 転させるとともに、前記水車によって駆動される発電機を備えている係留浮上型 水力発電機において、流水を取水口から取り入れて、前記水車へと導く取水部と、 前記水車を通過した流水を下流の放水口へ放水するように導く放水部と、前記放 水口より上流部分に形成され、流水に対してプラスの迎え角となる水中翼と、力、 ら少なくとも構成されていることを特徴とするとともに、前記放水口が、流水を 前記水中翼によって形成される水位の低い窪みに、放水するように配置されてい ることを特徴としている。
第 5発明の係留浮上型水力発電機は、 第 4発明の係留浮上型水力発電機にお いて、 前記取水部は、 前記取水部の終りの部分が、 前記水車部へ導く流水の断面 積が最小になるように、 形成されていることを特徴としている。
第 6発明の係留浮上型水力発電機は、 第 4発明または第 5発明の係留浮上型 水力発電機において、 前記取水部に浮上調節翼が設けられていることを特徴とし ている。
第 1発明の係留浮上型水力発電機によれば、水中翼は、その水中翼の下面が、 流水に対してプラスの迎え角に形成されている。 そのことにより、 その水中翼の 下面の後縁の下流側に、 周りより水位の低い場所ができる。 この水位の低い場所 に、 流水を放水するように、 放水口が配置されている。 この機能と配置により、 取水口と放水口の間に水位の差ができる。 その水位の差のエネルギーが、 流水の 運動エネルギーに加算される。 そのため、 水車を通過する流速が速くなる効果が め O p„ . ..
また、 第 1発明の係留浮上型水力発電機によれば、 上記水中翼は、 その水中 翼の下面が、 流水に対してプラスの迎え角に形成されている。 そのことにより、 この水中翼の下面に揚力が発生する。 この機能により、 係留浮上型水力発電機が フロートなどの浮上装置を必要としない効果がある。
また、 第 1発明の係留浮上型水力発電機によれば、 上記水中翼は、 取水部、 水車部、放水部から構成される構造体の側部に設けられている。この構造により、 水中翼の下面を機能する流水は、 水車を通過する流水と、 別の流水になる。 これ により、 水中翼の下面を通過する流水を多くして、 水中翼の下面の機能を高めて も、 水車など他の部分を大きくする必要がない。 これにより、 係留浮上型水力発 電機を小型にできる効果がある。
第 4発明の係留浮上型水力発電機によれば、 水中翼は、 流水に対してプラス の迎え角に形成されている。 そのことにより、 その水中翼の後縁の下流側に周り より水位の低い窪みができる。 この水位の低い窪みの場所に、 流水を放水するよ うに、 放水口が配置されている。 この機能と配置により、 取水口と放水口の間に 水位の差ができる。 その水位の差のヱネルギ一が、 流水の運動エネルギーに加算 される。 そのため、 水車を通過する流速が速くなる効果がある。
また、 第 4発明の係留浮上型水力発電機によれば、 上記水中翼は、 流水に対 してプラスの迎え角に形成されている。 そのことにより、 この水中翼に揚力が発 生する。 この機能により、 係留浮上型水力発電機がフロートなどの浮上装置を必 要としない効果がある。
また、 第 4発明の係留浮上型水力発電機によれば、 上記水中翼は、 放水口よ り上流部分に形成されている。 この構造により、 水中翼を機能する流水は、 水車 を通過する流水と、 別の流水になる。 これにより、 水中翼を通過する流水を多く して、 水中翼の機能を高めても、 水車など他の部分を大きくする必要がない。 こ れにより、 係留浮上型水力発電機を小型にできる効果がある。 図面の簡単な説明 - 第 1図は、 本発明の第 1の実施例に係る係留浮上型水力発電機を説明するた めの模式斜視図である。
第 2図は、 本発明の第 Γの実施例に係る係留浮上型水力発電機の平面図であ る。
第 3図は、 本発明の第 1の実施例に係る係留浮上型水力発電機の正面図であ る。
第 4図は、 第 2図の IV— IV ' 線の断面図である。
第 5図は、 第 2図の V— V ' 線の断面図である。
第 6図は、 本発明の第 2の実施例に係る係留浮上型水力発電機を説明するた めの模式斜視図である。
第 7図は、 本発明の第 3の実施例に係る係留浮上型水力発電機を説明するた めの模式斜視図である。
第 8図は、 本発明の第 4の実施例に係る係留浮上型水力発電機を説明するた めの模式斜視図である。
第 9図は、本発明の係留浮上型水力発電機の原理を説明するための図である, 発明を実施するための最良の形態
本発明の係留浮上型水力発電機において、 水中翼は、 飛行機の翼と同じ機能 を持っている。 飛行機の翼は、 揚力が利用されている。 また、 その翼の後縁の下 流側に、 下降する流れが発生している。 本発明は、 その下降する流れを、 係留浮 上型水力発電機に、 応用したことが特徴である。
ここで、 本発明の係留浮上型水力発電機の原理について、 第 9図を用いて説 明する。 第 9図において、 流れ 8 1の中に実験用水中翼 8 2を、 流れ 8 1に対し てプラスの迎え角にして、 水面から下降させる。 これにより、 実験用水中翼 8 2 の前縁の上流側は、 周りより水位が上昇する。 また、 実験用水中翼 8 2の後縁の 下流側は、 周りより水位が低い窪み 8 3ができる。 この現象を利用して、 実験用 水中翼 8 2の前縁の水位の高い場所から流水を取り入れて、 水車を回し、 実験用 水中翼 8 2の後縁の周りより水位の低い窪み 8 3に、 水車を通過した流水を放水 する。この原理により、流水が持つ運動エネルギーと、水位の差のエネルギーが、 水車を回すエネルギーとして利用できる。 また、 実験用水中翼 8 2の下面を流れ る流水により、 実験用水中翼が上に押し上げられる力が発生する。 これらの機能 を応用することにより、 小型で効率の良い係留浮上型水力発電が可能になる。 な お、 本発明において、 この実験用水中翼が上に押し上げられる力を揚力と定義す る。 また、 本発明において、 「水位の低い窪み」 と 「水位の低い場所」 は、 同じ意 味を有する。 第 1発明の係留浮上型水力発電機において、水中翼は、その水中翼の下面が、 流水に対してプラスの迎え角に形成されている。 そのことにより、 その水中翼の 下面の後縁の下流側に、 周りより水位の低い場所ができる。 この水位の低い場所 に、 流水を放水するように、 放水口が配置されている。 この構造と機能により、 取水口と放水口の間に水位の差が発生する。 その水位の差のエネルギーが、 流水 の運動エネルギーに加算される。 そのため、 水車を通過する流速が速くなる。 係 留浮上型水力発電機の発電出力は、 水車を通過する、 単位時間当たりの流量に比 例する。 水車を通過する流速が速くなると、 水車など装置が小型になる。 この水 中翼の下面の機能により、 係留浮上型水力発電機が小型になる。
第 1発明の係留浮上型水力発電機において、水中翼は、その水中翼の下面が、 流水に対してプラスの迎え角に形成されている。 そのことにより、 この水中翼の 下面に揚力が発生する。 その機能により、 係留浮上型水力発電機が、 フロートな どの浮上装置を必要としない。それにより、係留浮上型水力発電機が小型になる。
第 1発明の係留浮上型水力発電機において、 水中翼は、 取水部、 水車部、 放 水部から構成される構造体の側部に設けられている。 この構造により、 水中翼を 機能する流水は、 水車を通過する流水と、 別の流水になる。 これにより、 水中翼 を通過する流水を多く して、 水中翼の機能を高めても、 水車など他の部分を大き くする必要がない。 また、 水中翼の下面の迎え角を小さくすると、 浅い場所でも 機能する形状に形成できる。 この水中翼の機能および形状により、 係留浮上型水 力発電機を小型にできる。 なお、 水中翼は形状により、 取水部、 水車部、 放水部 の側部以外の場所まで大きくなることがある。
第 2発明の係留浮上型水力発電機において、取水部は、取水部の終りの部分 力 水車部へ導く流水の断面積が最小になるように、形成されている。 これによ り、流水が取水口から水車部へ導かれる間に流水の断面積が小さくなる。 この形 状と、 水中翼の下面の機能が協調して、 流水の速度が速くなる。 それにより、 水 車を通-過する流水を加速する性能が向上する。
第 3究明の係留浮上型水力発電機において、 取水部の側部に浮上調節翼が設 けられている。 この浮上調節翼は、 取水部の上部に水面を滑走するように設けれ ば、 浮上調節翼が水面を滑走することにより、 水面に対して取水口の位置が一定 になる。 この機能により、 取水が安定する。 そして、 水面近くの流れの速い流水 を取水できる。 また、 水中翼と協調して係留浮上型水力発電機が安定した状態で 浮上できる。 また、 浮上調節翼を水中に設けた場合、 浮上調節翼の流水に対する 迎え角を制御することにより、 水面に対して取水口の位置を一定にすることがで きる。 これにより、 滑走するように設けた場合と同じ機能を得ることができる。 なお、 浮上調節翼の形状により、 取水部以外の場所まで大きくなることがある。
第 4発明の係留浮上型水力発電機において、 水中翼は、 流水に対してプラス の迎え角に形成されている。 そのことにより、 その水中翼の後縁の下流側に、 周 りより水位の低い窪みができる。 この水位の低い窪みの場所に、 流水を放水する ように、 放水口が配置されている。 この機能と配置により、 取水口と放水口の間 に水位の差が発生する。 その水位の差のエネルギーが、 流水の運動エネルギーに 加算される。 そのため、 水車を通過する流速が速くなる。 係留浮上型水力発電機 の発電出力は、 水車を通過する、 単位時間当たりの流量に比例する。 水車を通過 する流速が速くなると、 水車など装置が小型になる。 この水中翼の機能により、 係留浮上型水力発電機が小型になる。 なお、 本発明の水中翼と流水の迎え角の定 義は、 飛行機の翼の迎え角の定義と同じで、 水中翼の前縁と水中翼の後縁を結ぶ 直線と、 流れとの角を迎え角と呼んでいる。 また、 本発明の場合、 水中翼の後縁 側が切断されていて、 水中翼の下面の後縁と、 水中翼の上面の後縁が一致してな い水中翼の場合、 水中翼の前縁と水中翼の下面の後縁とを結ぶ直線と、 流れとの 角を迎え角と書いている。
第 4発明の係留浮上型水力発電機において、 水中翼は、 流水に対してプラス の迎え角に形成されている。 そのことにより、 この水中翼に揚力が発生する。 そ の機能により、 係留浮上型水力発電機が、 フロートなどの浮上装置を必要としな い。 それにより、 係留浮上型水力発電機が小型になる。
第 4発明の係留浮上型水力発電機において、 水中翼は、 係留浮上型水力発電 機の放水口より上流部分に設けられている。 この構造により、 水中翼を機能する 流水は、 水車を通過する流水と、 別の流水になる。 これにより、 水中翼を通過す る流水を多くして、 水中翼の機能を高めても、 水車など他の部分を大きくする必 要がない。 また、 水中翼の迎え角を小さくすると、 浅い場所でも機能する形状に 形成できる。 この水中翼の機能および形状により、 係留浮上型水力発電機を小型 にできる。 なお、 水中翼は形状により、 機能を変えずに、 放水口より下流側に伸 びることがある。 +
第 5発明の係留浮上型水力発電機において、取水部は、取水部の終りの部分 力 水車部へ導く流水の断面積が最小になるように、形成されている。 これによ り、流水が取水口から水車部へ導かれる間に流水の断面積が小さくなる。 この形 状と、 水中翼の機能が協調して、 流水の速度が速くなる。 それにより、 水車を通 過する流水を加速する性能が向上する。 第 6発明の係留浮上型水力発電機において、 取水部に浮上調節翼が設けられ ている。 この浮上調節翼は、 取水部の上部に水面を滑走するように設ければ、 浮 上調節翼が水面を滑走することにより、水面に対して取水口の位置が一定になる。 この機能により、 取水が安定する。 そして、 水面近くの流れの速い流水を取水で きる。 また、 水中翼と協調して係留浮上型水力発電機が安定した状態で浮上でき る。 また、 浮上調節翼を水中に設けた場合、 浮上調節翼の流水に対する迎え角を 制御することにより、 水面に対して取水口の位置を一定にすることができる。 こ れにより、 滑走するように設けた場合と同じ機能を得ることができる。 なお、 浮 上調節翼の形状により、 取水部以外の場所まで大きくなることがある。
水中翼は、 水中翼の下面の後緣を鋭角にすると、 水中翼の下面の機能が向上
' する。 また、 水中翼の下面は、 スリットをいれる、 分割する、 波板など平板以外 の形状に加工して形成することもできる。 しかし、 流水に対してプラス迎え角に 形成することにより、 機能に変化は無い。
水中翼は、 水中翼の後縁を鋭角にすると、 水中翼の機能が向上する。 また、 水中翼は、 スリットをいれる、 分割する、 波板など平板以外の形状にする、 など 加工して形成することもできる。 しかし、 流水に対してプラス迎え角に形成する ことにより、 機能に変化は無い。 ·
射流翼は、 水中翼の下 ®の機能または、 水中翼の機能によりできる、 水位の 低い窪みの下流側に発生する、 水位の低い窪みをなくそうとする、 跳水と呼ばれ る現象が、 水深が浅い場所では起き難い性質を利用して、 射流翼の上面を仮の川 底として作用させ、 射流翼の上面の範囲では、 跳水を起き難く して水位の低い窪 みを安定させる。 なお、 射流翼の形状は、 流水の慣性を利用して、 船首のように、 流水を両脇 と下側に搔き分ける形状に形成された形状でも効果がある。
なお、 本発明の変形型として、 双胴型の飛行機のように、 取水部と水車部と 放水部からなる構造体が、 水中翼を挟む形状にしても、 同じ機能を持つ係留浮上 型水力発電機が構成できる。 このように、 係留浮上型水力発電機の側部に設けら れ、 水中翼の下面が、 流水に対してプラスの迎え角に形成されている水中翼の応 用ができる。
なお、 本発明の変形型となる、 水中翼の前縁と浮上調節翼の後縁が、 一体に なる形状に形成されている構造でも、 同じ機能を持つ係留浮上型水力発電機が構 成できる。 このように、 係留浮上型水力発電機の側部に設けられ、 水中翼の下面 力 流水に対してプラスの迎え角に形成されている水中翼と、 浮上調節翼の応用 ができる。
(実施例)
以下に実施例を挙げて本発明を更に詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。
(実施例 1 )
第 1図乃至第 5図を用いて、 実施例 1の係留浮上型水力発電機 1 1を説明す る。
第 1図、 第 2図及び第 3図は、 それぞれ、 実施例 1の係留浮上型水力発電機
1 1を説明するための模式斜視図、 平面図及び正面図である。 第 4図及び第 5図 は、 それぞれ、 第 2図の IV— IV' 線の断面図及び第 2図の V— V, 線の断面図で ある。
実施例 1の係留浮上型水力発電機 1 1は、 流水を取水口 1 2 1から取り入れ て、 下流の水車部 1 3 へ導く取水部 1 2と、 その流水により回転する水車 1 3 1 と、 その水車 · 1 3 1により駆動される発電機 1 4 1が設けられている水車部 1 3 と、 水車部 1 3を通過した流水を、 下流の放水口 1 5 1 へ導く放水部 1 5と、 取 水部 1 2と水車部 1 3と放水部 1 5から構成される構造体の両側面に配置され、 流水に対してプラスの迎え角に形成されている水中翼の下面 1 6 1を持つ水中翼 1 6と、 から構成されている。
取水部 1 2は、 上流側に取水口 1 2 1が設けられた筒体であり、 取水口 1 2 1の上部が水面より少し上に出るように配置されている。 そして、 下流方向に向 かって狭くなるとともに水面下になるように形成されている。 取水部 1 2の下流 に水車部 1 3が設けられている。 取水口 1 2 1から取水された流水は、 取水部 1 2を通過することにより加速されて、水車部 1 3に入り水車 1 3 1を回転させる。 また、 取水部 1 2には、 浮上調節翼 1 2 2と係留部材 1 2 3が設けられている。
浮上調節翼 1 2 2は、 取水部 1 2の側部に配置されている。 そして、 流れに 対してプラスの迎え角で、 水面を滑走するように設けられている。 この浮上調節 翼 1 2 2が水面を滑走することにより、 水面に対して取水口 1 2 1の位置が一定 になる。 この機能により、 取水が安定する。 そして、 水面近くの流れの速い流水 を取水できる。 また、 水中翼 1 6と.協調して係留浮上型水力発電機 1 1が安定し た状態で浮上できる。
係留部材 1 2 3は、 係留ワイヤー 1 2 4を取り付ける金具で、 係留ワイヤー 1 2 4により係留浮上型水力発電機 1 1が係留される。 水車部 1 3は、 取水部 1 2により加速された流水により回転する水車 1 3 1 と、水車 1 3 1の内側に形成され、水車 1 3 1により駆動される発電機 1 4 1と、 その水車 1 3 1と発電機 1 4 1を支持する、 前支柱体 1 3 4と後支柱体 1 3 5と から構成されている。
水車 1 3 1は、水車羽 1 3 2が、水車羽取り付け部 1 3 3に形成されている。 そして、 水車羽取り付け部 1 3 3は、 発電機駆動軸 1 4 2に固定され、 水車羽 1 3 2と水車羽取り付け部 1 3 3と発電機駆動軸 1 4 2が、 一体で回転する構造に なっている。 また、 発電機駆動軸 1 4 2は、 前支柱体 1 3 4に装着された軸受 1 3 6により回転可能に支持されている。
発電機 1 4 1は、 水車羽取り付け部 1 3 3の内側に形成され、 防水の発電機 外側カバー 1 4 4に覆われている。 発電機駆動軸 1 4 2が発電機外側力パー 1 4 4を貫通する部分は、 メカニカルシール 1 4 3により防水されている。 また、 発 電機外側カバー 1 4 4は、 後支柱体 1 3 5により固定されている。 発電機 1 4 1 により発生した電力は、 出力リード線 (図示されていない) により外部に出力さ れている。
放水部 1 5は、 水車部 1 3を通過した流水を、 放水口 1 5 1の形状に、 流水 を変形させながら放水口 1 5 1へ導いている。 また、 放水口 1 5 1は、 水中翼の 下面 1 6 1と水中翼の上面 1 6 2に挟まれる構造になっている。 これにより、 一 部放水部 1 5が水中翼 1 6の内部に形成されている。 また、 流水を均等に放水口 1 5 1から放出させるために放水部の内部に案内板 (図示されていない) が設け られている。
放水口 1 5 1は、 水中翼の下面 1 6 1と水中翼の上面 1 6 2に挟まれる構造 になっている。 これにより、 放水口 1 5 1から放水される流水は、 水中翼の下面 1 6 1を流れる流水と、水中翼の上面 1 6 2を流れる流水に挟まれる。このため、 水車 1 3 1を通過した流水が、 効率良く放水できる。
水中翼 1'· &は、 水中翼の前縁 1 6 3が水面下に配置されている。 その、 水中 翼の前縁 1 6 3を起点に、 水中翼の下面 1 6 1は、 流水に対してプラス迎え角に なっていて、 放水口 1 5 1の一辺まで形成されている。 また、 水中翼の上面 1 6 2は、 前縁側はマイナス迎え角になっていて、 流水を押し上げる形状に形成され ている。 水中翼の上面 1 6 2の後縁側は、 その押し上げられた流水を、 水位の低 い窪みに、流れ落ちる形状に、放水口 1 5 1の反対側の一辺まで形成されている。 表現を変えると、 水中翼の前縁 1 6 3が水面下に配置されている。 水中翼の後縁 1 6 4側を切断して、 その切断面の場所が放水口 1 5 1になっている。 したがつ て、 放水口 1 5 1が水中翼の下面 1 6 1と水中翼の上面 1 6 2に挟まれるように 形成されている。
水中翼 1 6は、 放水口 1 5 1を、 水中翼の下面 1 6 1と水中翼の上面 1 6 2 で挟む構造になっている。 この構造により、 水中翼の下面 1 6 1の機能によりで きる、 水位の低い窪みの最適な位置に、 放水口 1 5 1を配置できる。
水中翼 1 6は、 水中翼の上面 1 6 2がマイナスの迎え角になっているので、 水中翼の上面 1 6 2にマイナスの揚力が発生する。 すなわち、 水中翼 1 6は、 水 中翼の前縁 1 6 3が水面下に配置されている。 そのため、 流水が水中翼の前縁 1 6 3から水中翼の上面 1 6 2を通過して、 水中翼の上面の後縁 1 6 6側へ流れ落 ちる。 そして、 その流水により、 水中翼の上面 1 6 2にマイナスの揚力が発生す る。 このマイナスの揚力が、 水中翼の下面 1 6 1に発生する揚力により、 放水部 1 5が過剰に浮き上がる現象を調節する。 なお、 放水部 1 5が過剰に浮き上がる と、 水位の差が減少する。
水中翼 1 6は、 水中翼の前縁, 1 6 3の上流側に、 水中翼昇降舵 1 7が設けら れている。 また、 水中翼 1 6の両端に、 水中翼垂直板 1 8が設けられている。 そ の水中翼垂直板 1 8の外側に、 側面水中翼 1 9が設けられている。
水中翼垂直板 1 8は、 水平尾翼の両端に、 垂直尾翼が形成されている飛行機 のように、 水中翼 1 6の両端に、 水中翼の上面 1 6 2より上に伸びる形状で、 形 成されている。 この形状により、 水中翼の上面 1 6 2を流れる流水が、 水中翼 1 6の側面に流れ落ちるのを防止する。 また、 流れに対して係留浮上型水力発電機 の向きを一定に安定させる。
側面水中翼 1 9は、 水中翼の下面の後縁 1 6 5が、 側面に延長された線上に 一辺が配置されている。 また、 水中翼垂直板 1 8に一辺が密着して配置されてい る。 そして、 流水に対してプラスの迎え角が水中翼の下面 1 6 1より大きく、 三 角形の形状で形成されている。
水中翼昇降舵 1 7は、 水中翼の前縁 1 6 3より、 上流側へ伸びる形状で形成 されている。 また、 水中翼の前緣 1 6 3を中心軸にして、 流水に対してプラス迎 え角から、 マイナス迎え角まで、 水中翼昇降舵用モーター 1 7 6より、 駆動する 構造になっている。 水中翼昇降舵 1 7により、 姿勢を制御することで、 発電効率 が良くなる姿勢を維持するができる。
第 5図は、 水中翼昇降舵 1 7の駆動概要を示す。 水中翼昇降舵用制御装置 1
7 7により、 水中翼昇降舵モーター 1 7 6が駆動され、 それにより、 水中翼昇降 舵用ウォームギア 1 7 4が回転する。 それにより、 ピン 1 7 5が付いているギア 一が回転する。 このギア一は半回転に、 水中翼昇降舵用制御装置 1 7 7により限 定制御される。 ピン 1 7 5と長穴 1 7 3を持つ回動部材 1 7 2が組み合って、 水 中翼昇降舵支点金具 1 7 1を軸に水中翼昇降舵 1 7が上下に回動する。 水中翼昇 降舵用制御装置 1 7 7は姿勢制御と発電出力が最大になるようにプログラムされ ている。
(実施例 2 )
第 6図は、 実施例 2の係留浮上型水力発電機 1 1を説明するための模式斜視 図である。 実施例 2の係留浮上型水力発電機 1 1は、 実施例 1の係留浮上型水力 発電機 1 1よりも簡単な構造になっている。
水中翼 1 6は、 水中翼の上面 1 6 2を流水がオーバーフローしない形状にな つている。 水中翼の下面 1 6 1の機能は、 本発明の水中翼の下面の機能と同等で める。
実施例 2の係留浮上型水力発電機 1 1において、 水中翼 1 6は、 流水に対し てプラスの迎え角に形成されている。 その水中翼 1 6の形状により、 水中翼の後 縁 1 6 4の下流側に、 周りより水位の低い窪みができる。 従って、 実施例 2の構 造でも、 取水口 1 2 1と放水口 1 5 1の間に水位の差が発生する。
また、 放水部 1 5は、 水車部 1 3から直接.、 放水口 1 5 1になっている。 こ のため、 水位の低い窪みの水面上に流水を放水する構造になっている。 このよう な構造により、 水位の差のエネルギーが、 流水の運動エネルギーに加算されて、 水車 1 3 1を通過する流速を速くできる。 係留浮上型水力発電機 1 1の発電出力 は、 水車 1 3 1を通過する、 単位時間当たりの流量に比例する。 水車 1 3 1を通 過する流速が速くなると、 水車 1 3 1など装置が小型になる。 この水中翼 1 6の 機能により、 係留浮上型水力発電機 1 1が小型になる。
なお、 放水口 1 5 1の形状を、 水位の低い窪みの形状と同じ、 横長にする方 法もある。
実施例 2 ·の係留浮上型水力発電機 1 1は、水中翼の下面 1 6 1の機能により、 放水部 1 5 1が過剰に浮き上がる。 その解決方法は、 水中翼 1 6にスリットをい れて、 このスリ ットの幅、 間隔、 形状を変化させて揚力の大きさを変える方法な どがある。 スリツトの形状を逆三角形にすると、 放水口 1 5 1の場所に渦ができ て放水が良くなる効果がある。 このことは、 水中翼 1 6を分割しても同じ機能、 効果が発生する。
(実施例 3 )
第 7図は実施例 3の係留浮上型水力発電機 1 1を説明するための模式斜視図 である。
実施例 3の係留浮上型水力発電機 1 1が、 実施例 1と実施例 2と異なってい る点は、 放水口 1 5 1近傍に川底方向に下がる傾斜面 2 0 1を前部に備えた射流 翼 2 0が設けられている。 また、 浮上調節翼 1 2 2 Α、 発電機部 1 4、 の取り付 け位置が異なっている。 しかし、 基本的原理、 基本的構造は共通している。
水中翼 1 6は、 水中翼の上面 1 6 2を流水がオーバーフローしない形状にな つている。 水中翼の下面 1 6 1の機能は、 本発明の水中翼の下面の機能と同等で める。
浮上調節翼 1 2 2 Αは、 水中に設けられている。 そして、 流水に対する迎え 角を変化させることにより制御する。 この方法より、 水面に対して取水口 1 2 1 の位置が一定になる。 これにより、 取水が安定する。 そして、 水面近くの流れの 速い流水を取水できる。 また、 水中翼 1 6と協調して係留浮上型水力発電機 1 1 が安定した状態で浮上できる。
射流翼 2 0は、 放水口 1 5 1近傍に川底方向に下がる傾斜面 2 0 1を前部に 備えた形状で設けられている。 この傾斜面 2 0 1により、 放水部 1 5が水中翼の 下面 1 6 1の機能により浮き上がり過ぎるのを調節する。 なお、 射流翼 2 0は、 流水を放水口 1 5 1から放水する効率を上げる。 なお、 射流翼 2 0は、 放水口 1 5 1の近傍に配置されている。 この配置を上流側に移動しても効果がある。 発電 機部 1 4により発生した電力は、 出力リード線 1 4 5により外部に出力されてい る。
(実施例 4 )
第 8図は実施例 4の係留浮上型水力発電機を説明するための模式斜視図であ る。
実施例 4の係留浮上型水力発電機 1 1は、 放水口近傍に翼状の射流翼 2 0が 設けられており、 浮上調節翼 1 2 A、 発電機部 1 4、 の取り付け位置が異なつ ている点で実施例 1と実施例 2と異なっているが、 基本的原理及び基本的構造に おいて共通している。
水中翼 1 6は、水中翼の前縁 1 6 3が水面下に配置されている。これにより、 水中翼の上面 1 6 2を流水がオーバーフローする形状になっている。 また、 放水 口 1 5 1は、 水中翼の下面 1 6 1と水中翼の上面 1 6 2に挟まれる構造になって いる。 これにより、 放水口 1 5 1から放水される流水は、 水中翼の下面 1 6 1を 流れる流水と、 水中翼の上面 1 6 2を流れる流水に挟まれる。 このため、 水車部 1 3を通過した流水が、 効率良く放水できる。 浮上調節翼 1 2 2 Aは、 水中に設けられている。 そして、 流水に対する迎え 角を変化させることにより制御する。 この方法より、 水面に対して取水口 1 2 1 の位置が一定になる。 これにより、 取水が安定する。 そして、 水面近くの流れの 速い流水を取水できる。 また、 水中翼 1 6と協調して係留浮上型水力発電機 1 1 が安定した状態で浮上できる。
射流翼 2 0は、 放水口 1 5 1近傍に翼状の形状で設けられている。 この翼状 の射流翼 2 0を流水に対してマイナスの迎え角にすることにより、 放水部 1 5が 水中翼の下面 1 6 1の機能により浮き上がり過ぎるのを調節する。 なお、 射流翼 2 0は、 流水を放水口 1 5 1から放水する効率を上げる。 なお、 射流翼 2 0は、 放水口 1 5 1の近傍に配置されている。 この配置を上流側に移動しても効果があ る。
以上、 本発明の実施例を詳述したが、 本発明は、 前記実施例に限定されるも のではなく、 特許請求の範囲に記載された事項を逸脱することがなければ、 種々 の設計変更を行うことが可能である。 本実施例に記載されている水車おょぴ発電 機は、 公知または周知のものを使用することができる。 本実施例に記載されてい る係留浮上型水力発電機の各部は、 鲭びない部材が望ましく公知または周知の金 属および合成樹脂部材を使用することができる ό さらに、 取水部の傾斜、 取水口 の形状、 放水口の形状、 水中翼の下面の迎え角、 水中翼の上面の迎え角、 浮上調 節翼の迎え角、 その他、 河川の流量、 流速、 深さ等によって必要に応じてかえる ことができる。 また、 それらを自動的に制御もできる。 産業上の利用可能性 以上のように、 本発明にかかる係留浮上型水力発電機は、 水中翼は、 その水 中翼の下面が、 流水に対してプラスの迎え角に形成された水中翼を有しているの で、 取水口と放水口の間に水位の差ができ、 その水位の差のエネルギーが、 流水 の運動エネルギーに加算されるため、 水車を通過する流速を速くするので、 水車 など装置を小型にすることができる。 また、 上記水中翼の下面が、 流水に対して プラスの迎え角に形成されているので、 水中翼の下面に揚力が発生するため、 フ ロートなどの浮上装置を必要としない。
従って、 本発明の係留浮上型水力発電機は、 小型で携帯が容易であり、 ァゥ トドア一用、 送電が困難な場所、 臨時に電源が必要な場合、 などに利用できる。

Claims

請 求 の 範 囲 流水のエネルギーを利用して、 水車部に形成されている水車を回転させる -とともに、 前記水車によって駆動される発電機を備えている係留浮上型水 力発電機において、
流水を取水口から取り入れて、 下流の前記水車部へ導く取水部と、
前記水車部を通過した流水を、 下流の放水口へ導く放水部と、
前記取水部と前記水車部と前記放水部から構成される構造体の側部に設 けられ、 流水に対してプラスの迎え角に形成されている下面を持つ水中翼 と、
から構成されていることを特徴とするとともに、
前期放水口が、 記水中翼の下面により形成される水位の低い場所に、 流水 を放水するように配置されていることを特徴とする係留浮上型水力発電 機。
前記取水部は、前記取水部の終りの部分が、前記水車部へ導く流水の断面 ; 積が最小になるように形成されていることを特徴とする、
請求項 1に記載された係留浮上型水力発電機。
前記取水部の側部に浮上調節翼が設けられていることを特徴とする、 請求項 1または請求項 2に記載された係留浮上型水力発電機。
流水のエネルギーを利用して水車を回転させるとともに、 前記水車によつ て駆動される発電機を備えている係留浮上型水力発電機において、
流水を取水口から取り入れて、 前記水車へと導く取水部と、 前記水車を通過した流水を下流の放水口へ放水するように導く放水部と、 前記放水口より上流部分に形成され、 流水に対してプラスの迎え角となる 水中翼と、
—から少なく とも構成されていることを特徴とするとともに、
前記放水口が、 流水を前記水中翼によって形成される水位の低い窪みに放 水するように配置されていることを特徴とする係留浮上型水力発電機。 前記取水部は、 前記取水部の終りの部分が、 前記水車部へ導く流水の断面 積が最小になるように形成されていることを特徴とする、
請求項 4に記載された係留浮上型水力発電機。
前記取水部に、 浮上調節翼が設けられていることを特徴とする、 請求項 4または請求項 5に記載された係留浮上型水力発電機。
PCT/JP2006/310074 2005-05-17 2006-05-15 係留浮上型水力発電機 WO2006123796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007516358A JP4753382B2 (ja) 2005-05-17 2006-05-15 係留浮上型水力発電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-143512 2005-05-17
JP2005143512 2005-05-17

Publications (1)

Publication Number Publication Date
WO2006123796A1 true WO2006123796A1 (ja) 2006-11-23

Family

ID=37431365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310074 WO2006123796A1 (ja) 2005-05-17 2006-05-15 係留浮上型水力発電機

Country Status (2)

Country Link
JP (1) JP4753382B2 (ja)
WO (1) WO2006123796A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509368A (ja) * 2008-01-08 2011-03-24 レイノルズ,リチャード,アーサー,ヘンリー タービン組立体
WO2011048466A1 (en) * 2009-10-19 2011-04-28 Re.Co 2 Srl Underwater apparatus for obtaining electrical energy from river and sea streams
JP2011518976A (ja) * 2008-04-16 2011-06-30 フロデザイン ウィンド タービン コーポレーション ミキサおよびエジェクタを備える水力タービン
JP5458426B1 (ja) * 2013-02-05 2014-04-02 浩平 速水 発電システム
JP2015031168A (ja) * 2013-07-31 2015-02-16 独立行政法人国立高等専門学校機構 潮力発電装置
WO2015055962A1 (fr) 2013-10-17 2015-04-23 Centre National De La Recherche Scientifique Centrale hydroélectrique flottante compacte

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3532724B1 (en) 2016-10-27 2020-09-30 Upravljanje Kaoticnim Sustavima d.o.o. Floating screw turbines device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139979A (en) * 1979-04-18 1980-11-01 Fuji Electric Co Ltd Electricity generating plant of cylindrical water wheel
JPS57126564A (en) * 1981-01-27 1982-08-06 Tohoku Electric Power Co Inc Elevator type power generating unit
JPS6034569U (ja) * 1983-08-12 1985-03-09 青柳 嘉壽弥 係留水力発電装置
JPS6229768A (ja) * 1985-07-31 1987-02-07 Yamaha Motor Co Ltd 水力装置
JPS63128272U (ja) * 1987-02-17 1988-08-22
US6472768B1 (en) * 2000-09-26 2002-10-29 Darwin Aldis Salls Hydrokinetic generator
JP2005090318A (ja) * 2003-09-16 2005-04-07 Yoshisuke Nagaba 水車の保護装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913616A (ja) * 1972-05-19 1974-02-06
GB1573334A (en) * 1976-05-06 1980-08-20 Watts J Submersible power coverter
JPS5474043A (en) * 1978-06-26 1979-06-13 Shigeji Sugaya Diving floating marine current generator
JPS5572665A (en) * 1978-11-27 1980-05-31 Kunio Saito Flow generating set
WO1994016215A1 (en) * 1993-01-09 1994-07-21 Toshitaka Yasuda Water-jet hydraulic power generation method
JPH07158555A (ja) * 1993-12-03 1995-06-20 Ishikawajima Harima Heavy Ind Co Ltd 波力利用機能を備えた海洋構造物
JP3915960B2 (ja) * 1999-11-10 2007-05-16 株式会社エヌ・ティ・ティ・ドコモ北海道 水力発電装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139979A (en) * 1979-04-18 1980-11-01 Fuji Electric Co Ltd Electricity generating plant of cylindrical water wheel
JPS57126564A (en) * 1981-01-27 1982-08-06 Tohoku Electric Power Co Inc Elevator type power generating unit
JPS6034569U (ja) * 1983-08-12 1985-03-09 青柳 嘉壽弥 係留水力発電装置
JPS6229768A (ja) * 1985-07-31 1987-02-07 Yamaha Motor Co Ltd 水力装置
JPS63128272U (ja) * 1987-02-17 1988-08-22
US6472768B1 (en) * 2000-09-26 2002-10-29 Darwin Aldis Salls Hydrokinetic generator
JP2005090318A (ja) * 2003-09-16 2005-04-07 Yoshisuke Nagaba 水車の保護装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509368A (ja) * 2008-01-08 2011-03-24 レイノルズ,リチャード,アーサー,ヘンリー タービン組立体
KR101564475B1 (ko) * 2008-01-08 2015-10-29 리처드 아더 헨리 레이놀즈 터빈 어셈블리
JP2011518976A (ja) * 2008-04-16 2011-06-30 フロデザイン ウィンド タービン コーポレーション ミキサおよびエジェクタを備える水力タービン
WO2011048466A1 (en) * 2009-10-19 2011-04-28 Re.Co 2 Srl Underwater apparatus for obtaining electrical energy from river and sea streams
JP5458426B1 (ja) * 2013-02-05 2014-04-02 浩平 速水 発電システム
WO2014122731A1 (ja) * 2013-02-05 2014-08-14 株式会社音力発電 発電システム
JP2015031168A (ja) * 2013-07-31 2015-02-16 独立行政法人国立高等専門学校機構 潮力発電装置
WO2015055962A1 (fr) 2013-10-17 2015-04-23 Centre National De La Recherche Scientifique Centrale hydroélectrique flottante compacte

Also Published As

Publication number Publication date
JPWO2006123796A1 (ja) 2008-12-25
JP4753382B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2006123796A1 (ja) 係留浮上型水力発電機
AU2006250972B2 (en) Water turbine with bi-symmetric airfoil
JP3803251B2 (ja) 改良された水中翼装置
US8376686B2 (en) Water turbines with mixers and ejectors
US8475113B2 (en) Hydroelectric power device
TWI573935B (zh) 利用邊界層控制的單向雙層導罩的海流發電裝置
JP5454963B2 (ja) ミキサおよびエジェクタを備える水力タービン
JP2013528737A (ja) 強化されたダクト、ブレード及び発電機を有する一方向ハイドロタービン
JP2009501304A (ja) 流体力学的な力を生成する要素
KR20120063246A (ko) 선박용 덕트 구조체
WO2010093305A1 (en) Propulsion device for a boat
KR20090106118A (ko) 선박의 유동 박리 제어장치
EP3098436B1 (en) Noise reducing flap with opening
KR100807410B1 (ko) 선박의 점성저항과 반류를 고려한 냉각수 배출구조
KR102250863B1 (ko) 이륙 하중 조절 수단을 구비한 위그선
EP3693263A1 (en) Active stabilizing device and method
JP7485402B2 (ja) 船舶の流体抵抗低減装置
TWI778856B (zh) 洋流發電裝置
JP6108600B2 (ja) 波浪中推進性能向上装置及び船舶
JP2005030317A (ja) 七円弧薄型翼
JP2002284096A (ja) 翼構造
WO2009093052A1 (en) A turbine having a modified cowling
JP4482647B2 (ja) 浮体型水力発電装置
JP2005337124A (ja) バルブ型水車発電設備
JP2013126851A (ja) 船等の表面の波の運動方向を変える器具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007516358

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732648

Country of ref document: EP

Kind code of ref document: A1