WO2006122534A2 - Sofc-stapel - Google Patents

Sofc-stapel Download PDF

Info

Publication number
WO2006122534A2
WO2006122534A2 PCT/DE2006/000853 DE2006000853W WO2006122534A2 WO 2006122534 A2 WO2006122534 A2 WO 2006122534A2 DE 2006000853 W DE2006000853 W DE 2006000853W WO 2006122534 A2 WO2006122534 A2 WO 2006122534A2
Authority
WO
WIPO (PCT)
Prior art keywords
sofc stack
contact elements
stack according
base plate
sofc
Prior art date
Application number
PCT/DE2006/000853
Other languages
English (en)
French (fr)
Other versions
WO2006122534A3 (de
Inventor
Michael Rozumek
Michael Stelter
Andreas Reinert
Original Assignee
Staxera Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Staxera Gmbh filed Critical Staxera Gmbh
Priority to CA002608813A priority Critical patent/CA2608813A1/en
Priority to JP2008511549A priority patent/JP2008541389A/ja
Priority to BRPI0610685-4A priority patent/BRPI0610685A2/pt
Priority to US11/920,640 priority patent/US20090297904A1/en
Priority to EP06742360A priority patent/EP1882279A2/de
Publication of WO2006122534A2 publication Critical patent/WO2006122534A2/de
Publication of WO2006122534A3 publication Critical patent/WO2006122534A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a SOFC stack according to the preamble of patent claim 1.
  • a fuel cell stack is an arrangement of several planar fuel cells.
  • Fuel cells consist of an ion-conducting electrolyte, electrodes and elements for contacting the electrodes and for distributing the fuels across the electrode surface.
  • Fuel cells are generally distinguished by the material of the electrolyte used, which also determines the operating conditions and in particular the operating temperature.
  • the solid oxide fuel cell (SOFC - Solid Oxide Fuel Cell) used here is operated at temperatures above 800 ° C.
  • SOFC - Solid Oxide Fuel Cell As an ion-conducting electrolyte, which is contacted on both sides via two electrodes, anode and cathode, a ceramic is used which conducts O 2 " ions, but is insulating for electrons Such a ceramic is, for example, yttrium-stabilized zirconium oxide, YSZ Because of the low conductivity of the ceramics, thin electrolytes ( ⁇ 50 ⁇ m) are preferably used either in a self-supporting or in a non-self-supporting form, eg as so-called ASE (anode supported electrolyte) .Ceramic layers, possibly with metals, also come as electrodes The unit of electrolyte and electrodes is called MEA (membr
  • each element is arranged between each two MEAs, which electrically connects the anode of an MEA to the cathode of the next MEA, with the best possible contact being distributed over the entire electrode surface being required.
  • These elements are referred to as bipolar plates, interconnectors or current collectors.
  • the anode of the fuel cells is supplied with a reducing, mostly hydrogen-containing fuel and the cathode is an oxidizing agent, e.g. Air.
  • the bipolar plates serve to separate these gases and to supply and distribute fuel and oxidant over the electrode surfaces.
  • channels for guiding the gas are usually formed on each side of the bipolar plate. In the edge area of the fuel cells, these channels typically go bundled into an external gas supply and are sealed off from the environment.
  • end plates are used. They are often thicker than the bipolar plates in order to be more mechanically stable and to allow current to flow parallel to the plane of the electrodes, and provide channels for gas conduction only on one side. Otherwise they are structurally and functionally analogous to the bipolar plates, which is why the following about bipolar plates also applies to the end plates.
  • Bipolar plates of ceramic material or metal are known from the prior art.
  • a ceramic material for example, LaCrO 3 is used, since it at the high Operating temperatures of the SOFC has sufficient conductivity and can be well adapted to the thermal expansion behavior of the electrolytes.
  • a disadvantage is the high production price due to the problematic processing of such large-area ceramic plates.
  • ferritic alloys which are alloyed in such a way that an oxide layer is formed on their surface, by means of which a necessary corrosion resistance of the metals is achieved without excessively impairing the electrical conductivity.
  • Such alloys for bipolar plates are known, for example, from the publication DE 197 05 874 A1 (Al and / or Cr oxide layer) or the document DE 100 50 010 A1 (Mn and / or Co oxide layer). In both cases (ceramic / metallic material), the bipolar plates for a prior art SOFC stack are rigid and of a given thickness.
  • a cohesive connection of the stack can take place.
  • the individual cells are provided at their edge with a hardening sealing paste, eg glass solder, which is applied around the bipolar plates around.
  • This sealing paste hardens when the stack heats up, the so-called joining, and connects the cells to one another.
  • a hardening sealing paste eg glass solder
  • This sealing paste hardens when the stack heats up, the so-called joining, and connects the cells to one another.
  • a ceramic paste preferably with a chemical composition corresponding to the contacted electrode.
  • Such a paste is known for example from the document DE 199 41 282 Al.
  • a disadvantage of these firmly joined fuel cell stacks is that subsequent shrinkage or bleeding of the seals or sintering or creep of the bipolar plates either lead to loss of contact or leakage of the stack. The reason is that there are no compensating elements for changes in the thickness of the gasket or bipolar plate.
  • a stack can be provided with flexible seals and be pressed together, wherein externally compensating elements are provided.
  • DE 19645111 C2 discloses an arrangement for a SOFC stack, in which buffer elements acting as springs are provided on the outside of the stack in the prestressing force path. Through these buffer elements, a nearly constant contact pressure is achieved over a wide temperature range.
  • a rod-shaped compression element is presented for biasing a SOFC stack, in which a combination of the materials used achieves a thermal expansion coefficient adapted to the stack. In this way, the contact force can either be kept constant over a wide temperature range or even controlled change in a predetermined manner depending on the temperature.
  • a disadvantage of these solutions is that a resilient or ausreted with, whereby neither manufacturing tolerances of the bipolar plates and electrodes are compensated, nor a secure contact is ensured in non-permanently elastic seals.
  • the PEMFC Polymer Electrolyte Membrane Fuel Cell
  • this stack elastic, balancing elements are used. Such elements include a gauze made of graphite fibers, which is used between the electrode and bipolar plate for better contacting or resilient bipolar plates.
  • the polymer film used as electrolyte is elastic. In this concept, both manufacturing tolerances and thermal expansion can be compensated by the contact elements, which leads to a secure contacting of the electrodes. At the same time, external compensating elements can be dispensed with, allowing a more compact construction of the stack.
  • the object of the invention is therefore to specify a SOFC stack which has internal balancing elements which satisfy the stated requirements and adversely affect neither the compact design nor the production costs of the SOFC stack.
  • a SOFC stack with bipolar plates, each having a base plate and thus connected one or more contact elements on one or both sides of the base plate, which are characterized in that the base plate is rigid and gas-tight and the contact elements are elastically or plastically deformable and arranged or designed so that they are gas-permeable perpendicular to the plane of the base plate ,
  • the contact elements of the bipolar plates according to the invention realize the internal compensating elements.
  • the bipolar plates are rigid on the one hand by their base plate, whereby they stabilize the stack and prevent breakage of the MEAs. On the other hand, they are able by the contact elements, local thickness differences due to manufacturing tolerances of the electrodes or due to thermal expansion or creep processes o.a. compensate.
  • the gas permeability of the contact elements serves to supply the reaction gases to the electrodes.
  • a lateral distribution of the gases can take place between the base plate and the contact element, if appropriate by means of additional channels incorporated in the base plate.
  • the invention will be explained in more detail with reference to a Principalsbeiffles shown in a drawing.
  • the figure shows an embodiment of the SOFC stack according to the invention in a schematic cross-sectional drawing. Only part of the SOFC stack is reproduced.
  • the MEAs 1 of two fuel cells are shown.
  • the MEAs 1 each have an electrolyte 2, and two electrodes, cathode 3 and anode 4, on.
  • Between or above and below the MEAs 1 are bipolar plates 5, which consist of a base plate 6 and contact elements 7. O- and below the outer bipolar plates 5 close in the SOFC stack more, not shown here MEAs 1 at.
  • a rigid seal 8 is arranged between the individual MEAs 1.
  • the contact elements 7 are made of expanded metal.
  • the material used is a ferritic metal which is mixed with finely divided, highly dispersive oxides of rare earth metals. Such metal alloys are characterized by a high elasticity even at high temperatures, since the finely divided additives a coarse-grained recrystallization of the material is prevented. A sheet of this material is suitably cut and subsequently stretched. This results in a 3-dimensional structure that springs perpendicular to the plane of the sheet.
  • the erected webs act as contact points and the cuts serve as gas passages. By varying the arrangement and the length of the cuts, the density of the contact points and the size of the gas passages can be optimally balanced against each other.
  • a plurality of superimposed contact elements 7 can also be made Expanded metal are used, which differ in the arrangement and / or the size of the gas passages. In this case, an arrangement is preferred which has smaller gas openings in a greater density with contact elements 7 closer to the MEAs than spring elements 7 located closer to the bipolar plates 5.
  • contact elements 7 it is advantageous to produce the contact elements 7 in one piece over the entire surface of the electrodes to be contacted. If a plurality of contact elements 7 are used next to each other or above each other, it is favorable to use them in a materially cohesive manner, e.g. by welding, to connect together to prevent an increase in the electrical contact resistance between the individual contact elements 7 by surface oxidation.
  • a ferritic metal is also provided.
  • the material thickness is chosen so that the base plate 6 mechanically stabilizes the stack.
  • the contact elements 7 are arranged on both sides materially, e.g. by laser or spot welding.
  • the base plate 6 can be incorporated channels for the distribution of fuel and / or oxidant.
  • the gas distribution can also take place only through the open structure of the contact elements 7.
  • protruding tips can be smoothed after stretching by a rolling process.
  • the contact element is brought to a defined thickness.
  • Another way to Preventing pressure peaks is to additionally insert porous metal foils between contact elements 7 and electrodes 3, 4. This also advantageously results in an increased electrical conductivity in the direction of the plane of the electrodes 3, 4.
  • the metal foils can also be connected to the contact elements 7, for example, again by welding.
  • the contact element 7 has elastic properties and is therefore able to compensate for manufacturing tolerances of the MEAs and shifts of the components of the stack to each other due to thermal expansion or Kriechreaen. Also, contact disturbances are prevented by external influences such as shocks and vibrations.
  • plastically deformable contact elements 7 see by means of a curing ceramic see paste according to the mentioned in the introduction state of
  • the application of the ceramic paste can be carried out by screen printing, stencil printing or in a spray process.
  • a sheet can be provided with punched holes and embossed in a three-dimensional, resilient structure (waves, trapezoids, etc.).
  • U-shaped incisions can be punched into a metal sheet and the resulting webs can be used as resilient tongues. conditions are pushed out of the sheet metal plane.
  • spiral or circular cuts can be punched, resulting in the formation of spiral or cup springs.
  • a suitable base plate 6 as a bipolar plate 5 of the SOFC stack according to the invention.

Abstract

Die Erfindung betrifft einen SOFC-Stapel mit Bipolarplatten (5) zur Verbindung von Elektroden (3, 4) zweier benachbarter Brennstoffzellen, die einen keramischen Elektrolyten aufweisen, wobei die Bipolarplatten (5) je eine Grundplatte (6) und damit verbunden ein oder mehrere Kontakt elemente (7) auf einer oder beiden Seiten der Grundplatte (6) aufweisen. Die Bipolarplatten zeichnen sich dadurch aus, dass die Grundplatte (6) starr und gasdicht ist und die Kontakt elemente (7) elastisch oder plastisch verformbar sind und so angeordnet oder ausgeführt sind, dass sie senkrecht zur Ebene der Grundplatte (6) gasdurchlässig sind. Die Bipolarplatten (5) stabilisieren den SOFC-Stapel mechanisch und gewährleisten eine sichere Kontaktierung der Elektroden (3, 4) , wobei Fertigungstoleranzen der Elektroden (3, 4) und Verschiebungen der Komponenten des Stapel zueinander durch thermische Ausdehnung oder Kriechprozesse ausgeglichen werden.

Description

Beschreibung '
SOFC-Stapel
Die Erfindung betrifft einen SOFC-Stapel gemäß dem Oberbegriff des Patentanspruchs 1.
Als Brennstoffzellenstapel wird eine Anordnung mehrerer pla- narer Brennstoffzellen bezeichnet. Brennstoffzellen bestehen aus einem ionenleitenden Elektrolyten, Elektroden und Elementen zur Kontaktierung der Elektroden und zur Verteilung der Brennstoffe über die Elektrodenfläche.
Brennstoffzellen werden im allgemeinen nach dem Material des benutzten Elektrolyten unterschieden, der auch die Betriebsbedingungen und insbesondere die Betriebstemperatur bestimmt. Die hier eingesetzte Festoxidbrennstoffzelle (SOFC - Solid Oxide Fuel Cell) , wird bei Temperaturen oberhalb von 800° C betrieben. Als ionenleitender Elektrolyt, der beidseitig über zwei Elektroden, Anode und Kathode, kontaktiert wird, wird eine Keramik eingesetzt, die 02"-lonen leitet, aber für E- lektronen isolierend ist. Eine solche Keramik ist beispielsweise Yttrium stabilisiertes Zirkonoxid, YSZ. Die wegen der geringen Leitfähigkeit der Keramiken bevorzugt dünn ausge- führten Elektrolyte (<50 μm) werden entweder in einer selbsttragenden oder in einer nicht selbsttragenden Form, z.B. als sogenannte ASE (anode supported electrolyte) eingesetzt. Als Elektroden kommen ebenfalls keramische Schichten, u.U. mit Metallen vermengt, zum Einsatz. Die Einheit aus Elektrolyt und Elektroden wird als MEA (membrane elektrode assembly) bezeichnet und bildet die Grundlage einer Brennstoffzelle. Im Brennstoffzellenstapel werden mehrere einzelne Brennstoffzellen elektrisch in Reihe geschaltet. Zu diesem Zweck wird zwischen je zwei MEAs je ein Element angeordnet, das die Anode einer MEA mit der Kathode der nächsten MEA elektrisch ver- bindet, wobei eine möglichst gute Kontaktierung verteilt über die gesamte Elektrodenfläche erforderlich ist. Diese Elemente werden als Bipolarplatten, Interkonnektoren oder Stromsammler bezeichnet.
Der Anode der Brennstoffzellen wird ein reduzierender, meist Wasserstoffhaltiger Brennstoff zugeführt und der Kathode ein Oxidationsmittel, z.B. Luft. Neben der elektrischen Verbindung zweier MEAs dienen die Bipolarplatten der Trennung dieser Gase und der Zuführung und Verteilung von Brennstoff und Oxidationsmittel über die Elektrodenflächen. Zu diesem Zweck sind üblicherweise auf jeder Seite der Bipolarplatte Kanäle zur Gasführung ausgebildet. Im Randbereich der Brennstoffzellen gehen diese Kanäle typischerweise gebündelt in eine externe Gaszuführung über und sind gegenüber der Umgebung abge- dichtet.
An den beiden Enden eines Brennstoffzellenstapels werden sogenannte Endplatten eingesetzt. Sie sind häufig dicker als die Bipolarplatten, um mechanisch stabiler zu sein und um ei- ne Stromableitung parallel zur Ebene der Elektroden zu ermöglichen, und stellen nur auf einer Seite Kanäle für die Gasführung bereit. Ansonsten sind sie in Aufbau und Funktion a- nalog zu den Bipolarplatten, weswegen das im Folgenden über Bipolarplatten gesagte auch für die Endplatten gilt.
Aus dem Stand der Technik sind Bipolarplatten aus keramischen Material oder aus Metall bekannt. Als keramisches Material wird beispielsweise LaCrO3 eingesetzt, da es bei den hohen Betriebstemperaturen der SOFC eine ausreichende Leitfähigkeit besitzt und gut an das thermische Ausdehnungsverhalten der Elektrolyte angepasst werden kann. Nachteilig ist der hohe Herstellungspreis durch die problematische Verarbeitung sol- eher großflächigen keramischen Platten. Als metallisches Material für Bipolarplatten können ferritische Legierungen eingesetzt werden, die so legiert sind, dass sich an ihrer Oberfläche eine Oxidschicht bildet, durch die eine notwendige Korrosionsbeständigkeit der Metalle erreicht wird, ohne die elektrische Leitfähigkeit zu sehr zu beeinträchtigen. Solche Legierungen für Bipolarplatten sind z.B. aus der Druckschrift DE 197 05 874 Al (Al- und/oder Cr-Oxidschicht) oder der Druckschrift DE 100 50 010 Al (Mn- und/oder Co-Oxidschicht) bekannt. In beiden Fällen (keramischer/metallisches Material) sind die Bipolarplatten für einen SOFC-Stapel nach dem Stand der Technik starr und in einer vorgegebenen Dicke ausgeführt.
Weitere Komponenten eines Brennstoffzellenstapels sind Dichtungen, mit der der Stapel nach außen abgedichtet wird. Sie liegt typischerweise in einer Ebene mit den Bipolarplatten.
Es werden häufig starre Dichtungen, z.B. aus Glaslot eingesetzt .
Es sind dann zwei verschiedene Konzepte üblich, um die ein- zelnen Komponenten (Brennstoffzellen, Bipolarplatten und Endplatten) zu einem Stapel zusammenzusetzen.
Zum einen kann eine stoffschlüssige Verbindung des Stapels erfolgen. Dabei werden die einzelnen Zellen an ihrem Rand mit einer aushärtenden Dichtpaste, z.B. Glaslot, das um die Bipolarplatten herum aufgetragen wird, versehen. Diese Dichtpaste härtet bei einem Aufheizen des Stapels, dem sogenannten Fügen, aus und verbindet die Zellen miteinander. Zur besseren Kontaktierung der Elektroden ist bekannt, die Bipolarplatten zusätzlich mit einer Schicht einer keramischen Paste, vorzugsweise mit einer chemischen Zusammensetzung, die der kontaktierten Elektrode entspricht, zu versehen. Eine solche Paste ist beispielsweise aus der Druckschrift DE 199 41 282 Al bekannt. Nachteilig bei diesen fest gefügten Brennstoff- Zellenstapeln ist, dass nachträgliches Schrumpfen oder Verlaufen der Dichtungen oder Versintern oder Kriechen der Bipolarplatten entweder zum Kontaktverlust oder zur Undichtigkeit des Stapels führen. Der Grund ist, dass keine ausgleichenden Elemente für Änderungen der Dicke von Dichtung oder Bipolarplatte vorhanden sind.
Zum anderen kann ein Stapel mit flexiblen Dichtungen versehen sein und zusammengepresst werden, wobei extern ausgleichenende Elemente vorgesehen sind. Aus der DE 19645111 C2 ist eine Anordnung für einen SOFC-Stapel angegeben, bei der als Federn wirkende Pufferelemente außen am Stapel im Vorspannungs- Kraftpfad vorgesehen sind. Durch diese Pufferelemente wird über einen weiten Temperaturbereich eine nahezu konstante Anpresskraft erreicht. In der US 2002/0142204 Al wird zum Vorspannen eines SOFC-Stapels ein stabförmiges Kompressionselement vorgestellt, bei dem durch die Kombination der eingesetzten Materialien ein an den Stapel angepasster thermischer Ausdehnungskoeffizient erzielt wird. Auf diese Weise lässt sich die Kontaktkraft entweder über einen weiten Temperaturbereich konstant halten oder sogar in Abhängigkeit der Temperatur kontrolliert auf vorgegebene Weise verändern. Nachteilig bei diesen Lösungen ist, dass ein federndes oder ausglei- chendes Element jeweils extern angebracht, wodurch weder Fertigungstoleranzen der Bipolarplatten und Elektroden ausgeglichen werden, noch eine sichere Kontaktierung bei nicht dauerhaft elastischen Dichtungen gewährleistet ist. Bei Niedertemperatur-Brennstoffzellen, z.B. der PEMFC (Polymer Electrolyte Membrane Fuel Cell) , die bei etwa 100° C betrieben wird, ist ein weiteres Konzept für das Zusammensetz- ten der Stapel bekannt. Bei diesem werden im Stapel elastische, ausgleichende Elemente eingesetzt. Solche Elemente sind z.B. eine Gaze aus Graphitfasern, die zwischen Elektrode und Bipolarplatte zur besseren Kontaktierung benutzt wird oder federnd ausgeführte Bipolarplatten. Darüber hinaus ist auch die als Elektrolyt eingesetzte Polymerfolie elastisch. Bei diesem Konzept können sowohl Fertigungstoleranzen als auch thermische Ausdehnung durch die Kontaktelemente ausgeglichen werden, was zu einer sicheren Kontaktierung der Elektroden führt. Gleichzeitig können externe Ausgleichselemente entfal- len, wodurch ein kompakterer Aufbau des Stapels ermöglicht wird.
Für die hohen Betriebstemperaturen der SOFC sind nur wenige Materialien dauerhaft elastisch und somit als interne aus- gleichende Elemente geeignet. Im Gegensatz zu den verformbaren Polymermembranen der PEMFC sind die keramischen MEAs der SOFC darüber hinaus zerbrechlich. Aus diesen Gründen konnte bei SOFC-Stapeln ein Konzept mit internen ausgleichenden Elementen bislang nicht zufriedenstellend verwirklicht werden.
Aufgabe der Erfindung ist daher, einen SOFC-Stapel anzugeben, der interne ausgleichende Elemente aufweist, die den genannten Anforderungen genügen und weder die kompakte Bauweise, noch die Herstellungskosten des SOFC-Stapels nachteilig be- einflussen.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen SOFC- Stapel mit Bipolarplatten, die je eine Grundplatte und damit verbunden ein oder mehrere Kontaktelemente auf einer oder beiden Seiten der Grundplatte aufweisen, die dadurch gekennzeichnet sind, dass die Grundplatte starr und gasdicht ist und die Kontaktelemente elastisch oder plastisch verformbar sind und so angeordnet oder ausgeführt sind, dass sie senkrecht zur Ebene der Grundplatte gasdurchlässig sind.
Die Kontaktelemente der Bipolarplatten realisieren erfindungsgemäß die internen ausgleichenden Elemente. Die Bipo- larplatten sind einerseits durch ihre Grundplatte starr, wodurch sie den Stapel stabilisieren und ein Brechen der MEAs verhindern. Andererseits sind sie durch die Kontaktelemente in der Lage, lokale Dickenunterschiede aufgrund von Fertigungstoleranzen der Elektroden oder aufgrund von thermischer Ausdehnung oder Kriechprozessen o.a. auszugleichen.
Die Gasdurchlässigkeit der Kontaktelemente dient der Zuführung der Reaktionsgase zu den Elektroden. Eine laterale Verteilung der Gase kann zwischen der Grundplatte und dem Kon- taktelement, gegebenenfalls mittels zusätzlicher, in die Grundplatte eingearbeiteter Kanäle, erfolgen.
Durch die Integration interner ausgleichender Elemente in die Bipolarplatten wird erreicht, dass keine zusätzlichen Kompo- nenten in den Stapel eingesetzt werden müssen. Dadurch wird weder das Zusammenfügen des Stapels verkompliziert noch seine kompakte Bauform beeinträchtigt.
Vorteilhafte Ausführungen, z.B. die Geometrie und die Materi- alauswahl betreffend, sind Gegenstand der Unteransprüche.
Die Erfindung wird nachfolgend anhand eines in einer Zeichnung dargestellten AusführungsbeiSpiels näher erläutert. Die Figur zeigt ein Ausführungsbeispiel des erfindungsgemäßen SOFC-Stapels in einer schematischen Querschnittszeichnung. Von dem SOFC-Stapel ist lediglich ein Ausschnitt wiedergege- ben. Es sind die MEAs 1 zweier Brennstoffzellen dargestellt. Die MEAs 1 weisen jeweils einen Elektrolyten 2, und zwei E- lektroden, Kathode 3 und Anode 4, auf. Zwischen bzw. oberhalb und unterhalb der MEAs 1 befinden sich Bipolarplatten 5, die aus einer Grundplatte 6 und Kontaktelementen 7 bestehen. O- berhalb und unterhalb der äußeren Bipolarplatten 5 schließen sich im SOFC-Stapel weitere, hier nicht dargestellte MEAs 1 an. Umlaufend um die Bipolarplatten 5 ist eine starre Dichtung 8 zwischen den einzelnen MEAs 1 angeordnet.
In diesem Ausführungsbeispiel sind die Kontaktelemente 7 aus Streckmetall hergestellt. Als Material wird ein ferritisches Metall eingesetzt, das mit fein verteilten, hochdispersiven Oxiden von Seltenerdmetallen versetzt ist. Solche Metalllegierungen zeichnen sich durch eine hohe Elastizität auch bei hohen Temperaturen aus, da durch die fein verteilten Zusätze eine grobkörnige Rekristallisation des Materials verhindert wird. Ein Blech dieses Materials wird geeignet eingeschnitten und nachfolgend gestreckt. Es entsteht auf diese Weise eine 3-dimensionale Struktur, die senkrecht zur Ebene des Bleches federt. Beim Einsatz als Kontaktelernent 7 fungieren die aufgestellten Stege als Kontaktpunkte und die Einschnitte dienen als Gasdurchlässe. Durch Variation der Anordnung und die Länge der Einschnitte kann die Dichte der Kontaktpunkte und die Größe der Gasdurchlässe optimal gegeneinander ausgewogen wer- den.
Um eine bestmögliche Gasverteilung zu gewährleisten, können auch mehrere übereinander angeordnete Kontaktelemente 7 aus Streckmetall eingesetzt werden, die sich in der Anordnung und/oder der Größe der Gasdurchlässe unterscheiden. Bevorzugt ist hier eine Anordnung, bei näher an den MEAs liegende Kontaktelemente 7 kleinere Gasdurchbrüche in einer größeren Dichte aufweist als näher an den Bipolarplatten 5 liegende Federelemente 7.
Vorteilhaft ist, die Kontaktelemente 7 über die gesamte zu kontaktierende Fläche der Elektroden aus einem Stück zu fer- tigen. Wenn mehrere Kontaktelemente 7 nebeneinander oder ü- bereinander eingesetzt werden, ist es günstig, diese stoffschlüssig, z.B. durch Verschweißung, miteinander zu verbinden, um ein Ansteigen der elektrische Übergangswiderstände zwischen den einzelnen Kontaktelementen 7 durch Oberflächen- oxidation zu verhindern.
Für die Grundplatte 6 ist ebenfalls ein ferritisches Metall vorgesehen. Die Materialstärke ist so gewählt, dass die Grundplatte 6 den Stapel mechanisch stabilisiert. Auf die Grundplatte 6 werden beidseitig die Kontaktelemente 7 stoff- schlüssig angeordnet, z.B. mittels Laser- oder Punktschwei- ßung.
In die Grundplatte 6 können Kanäle zur Verteilung von Brenn- stoff- und/oder Oxidationsmittel eingearbeitet sein. Die Gasverteilung kann jedoch auch nur durch die offene Struktur der Kontaktelemente 7 erfolgen.
Um die Elektroden 3, 4 vor Beschädigung durch etwaige scharfe Kanten der Kontaktelemente 7 zu schützen, können hervorstehende Spitzen nach der Streckung durch einen Walzprozess geglättet werden. Zusätzlich wird das Kontaktelement so auf eine definierte Dicke gebracht. Eine weitere Möglichkeit, um Druckspitzen zu verhindern, besteht darin, zusätzlich zwischen Kontaktelementen 7 und Elektroden 3, 4 poröse Metallfolien einzulegen. Daraus ergibt sich zudem vorteilhaft eine erhöhte elektrische Leitfähigkeit in Richtung der Ebene der Elektroden 3, 4. Die Metallfolien können auch, z.B. wiederum durch Verschweißung, mit den Kontaktelementen 7 verbunden werden.
Im dargestellten Ausführungsbeispiel hat das Kontaktelement 7 elastische Eigenschaften und ist daher in der Lage, Fertigungstoleranzen der MEAs und Verschiebungen der Komponenten des Stapels zueinander aufgrund von thermischer Ausdehnung oder Kriechprozessen auszugleichen. Auch werden Kontaktstörungen durch äußere Einflüsse wie Stöße und Vibrationen ver- hindert .
In einer weiteren Ausführungsform der Erfindung kann Gleiches mit plastisch verformbaren Kontaktelementen 7 erreicht werden. Zu diesem Zweck wird mittels einer aushärtenden kerami- sehen Paste gemäß dem in der Einleitung genannten Stand der
Technik die an die Kontaktelementen 7 angeschweißte poröse Metallfolie stoffschlüssig mit der Kathode 3 bzw. der Anode 4 verbunden. Das Auftragen der keramischen Paste kann dabei durch Siebdruck, Schablonendruck oder in einem Sprühverfahren erfolgen.
Neben der beschriebenen Fertigung des Kontaktelementes 7 aus Streckmetall sind andere Möglichkeiten zur Herstellung des Kontaktelementes 7 gegeben. Beispielsweise kann ein Blech mit ausgestanzten Löchern versehen werden und in eine dreidimensionale, federnde Struktur (Wellen, Trapeze etc.) geprägt werden. Alternativ können U-förmige Einschnitte in ein Blech gestanzt werden und die entstehenden Stege als federnde Zun- gen aus der Blechebene herausgedrückt werden. In ähnlicher Weise können spiral- oder kreisförmige Einschnitte eingestanzt werden, die zur Ausbildung von Spiral- oder Tellerfedern führen. Weitere, hier nicht explizit genannte Ausführungsformen, die auf einem dreidimensional strukturierten Blech mit Materialdurchbrüchen beruhen, sind denkbar und können mit einer geeigneten Grundplatte 6 als Bipolarplatte 5 des erfindungsgemäßen SOFC-Stack eingesetzt werden.
Bezugszeichenliste
1 MEA (Membrane Electrode Assembly)
2 Elektrolyt
3 Kathode
4 Anode
5 Bipolarplatte
6 Grundplatte
7 Kontaktelement
8 Dichtung

Claims

Patentansprüche
1. SOFC-Stapel mit Bipolarplatten (5) zur Verbindung von E- lektroden (3,4) zweier benachbarter Brennstoffzellen, die einen keramischen Elektrolyten aufweisen, wobei die Bipolarplatten (5) je eine Grundplatte (6) und damit verbunden ein oder mehrere Kontaktelemente (7) auf einer oder beiden Seite der Grundplatte (6) aufweisen, dadurch gekennzeichnet, dass die Grundplatte (6) starr und gasdicht ist und die Kontaktelemente (7) elastisch oder plastisch verformbar sind und so angeordnet oder ausgeführt sind, dass sie senkrecht zur Ebene der Grundplatte (6) gasdurchlässig sind.
2. SOFC-Stapel nach Anspruch 1, dadurch gekennzeichnet, dass das Material der Grundplatte (6) ein ferritischer Stahl ist .
3. SOFC-Stapel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Grundplatte (6) aus einem Metall besteht, das Zusätze von Oxiden von Seltenerdmetallen in einer hochdispersiven Verteilung enthält.
4. SOFC-Stapel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Grundplatte (6) Kanäle zur Gasverteilung aufweist.
5. SOFC-Stapel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Material der Kontaktelemente (7) ein ferritischer Stahl ist.
6. SOFC-Stapel nach einem der Ansprüche 1 bis 5, dadurch ge- kennzeichnet, dass die Kontaktelemente (7) aus einem Metall bestehen, das Zusätze von Oxiden von Seltenerdmetallen in einer hoch- dispersiven Verteilung enthält.
7. SOFC-Stapel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kontaktelemente (7) aus Streckmetall gefertigt sind.
8. SOFC-Stapel nach einem der Ansprüche 1 bis 6, dadurch ge- kennzeichnet, dass die Kontaktelemente (7) aus gewelltem Blech bestehen, in das Löcher eingestanzt sind.
9. SOFC-Stapel nach einem der Ansprüche 1 bis 6, dadurch ge- kennzeichnet, dass die Kontaktelemente (7) aus Blech bestehen, aus dem federnde Zungen herausgeprägt sind.
10. SOFC-Stapel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Grundplatte (6) und die Kontaktelemente (7) stoff- schlüssig miteinander verbunden sind.
11. SOFC-Stapel nach Anspruch 10, dadurch gekennzeichnet, dass die Grundplatte (6) und die Kontaktelemente (7) miteinander verschweißt sind.
12. SOFC-Stapel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass mindestens eine poröse Metallfolie vorgesehen ist, die ganzflächig auf dem oder den Kontaktelementen (7) angeord- net ist.
13. SOFC-Stapel nach Anspruch 12, dadurch gekennzeichnet, dass die mindestens eine poröse Metallfolie mit dem oder den Kontaktelementen (7) stoffschlüssig verbunden ist.
14. SOFC-Stapel nach Anspruch 13, dadurch gekennzeichnet, dass die mindestens eine poröse Metallfolie und das oder die Kontaktelementen (7) miteinander verschweißt sind.
15. SOFC-Stapel nach Anspruch 12, dadurch gekennzeichnet, dass die mindestens eine poröse Metallfolie und das oder die Kontaktelemente (7) miteinander durch eine bei Betriebstemperatur des SOFC-Stapels aushärtende, elektrisch leitende keramische Paste verbunden sind.
16. SOFC-Stapel nach Anspruch 15, dadurch gekennzeichnet, dass die mindestens eine poröse Metallfolie und die kontaktierte Elektrode (3,4) ebenfalls durch eine bei Betriebstemperatur des SOFC-Stapels aushärtende, elektrisch leitende keramische Paste miteinander verbunden sind.
17. SOFC-Stapel nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass die keramische Paste in ihrer chemischen Zusammensetzung der kontaktierten Elektrode (7) entspricht.
PCT/DE2006/000853 2005-05-18 2006-05-18 Sofc-stapel WO2006122534A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002608813A CA2608813A1 (en) 2005-05-18 2006-05-18 Sofc stack
JP2008511549A JP2008541389A (ja) 2005-05-18 2006-05-18 Sofcスタック
BRPI0610685-4A BRPI0610685A2 (pt) 2005-05-18 2006-05-18 pilhas sofc
US11/920,640 US20090297904A1 (en) 2005-05-18 2006-05-18 SOFC Stack
EP06742360A EP1882279A2 (de) 2005-05-18 2006-05-18 Sofc-stapel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005022894A DE102005022894A1 (de) 2005-05-18 2005-05-18 SOFC-Stapel
DE102005022894.1 2005-05-18

Publications (2)

Publication Number Publication Date
WO2006122534A2 true WO2006122534A2 (de) 2006-11-23
WO2006122534A3 WO2006122534A3 (de) 2007-06-21

Family

ID=37125352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000853 WO2006122534A2 (de) 2005-05-18 2006-05-18 Sofc-stapel

Country Status (10)

Country Link
US (1) US20090297904A1 (de)
EP (1) EP1882279A2 (de)
JP (1) JP2008541389A (de)
KR (1) KR20080008408A (de)
CN (1) CN101223664A (de)
BR (1) BRPI0610685A2 (de)
CA (1) CA2608813A1 (de)
DE (1) DE102005022894A1 (de)
RU (1) RU2007146984A (de)
WO (1) WO2006122534A2 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036848A1 (de) * 2008-08-07 2010-02-11 Elringklinger Ag Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte sowie Brennstoffzelleneinheit
DE102008052945B4 (de) 2008-10-23 2014-06-12 Staxera Gmbh Brennstoffzellenstapel und Verfahren zu dessen Herstellung
CA2744993C (en) * 2008-11-28 2013-12-24 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
FR2950635B1 (fr) * 2009-09-28 2011-09-09 Areva Dispositif d'electrolyse
WO2012040253A1 (en) 2010-09-20 2012-03-29 Nextech Materials, Ltd. Fuel cell repeat unit and fuel cell stack
CN102456906A (zh) * 2010-10-27 2012-05-16 扬光绿能股份有限公司 燃料电池堆
WO2014123150A1 (ja) * 2013-02-07 2014-08-14 日本特殊陶業株式会社 燃料電池およびその製造方法
DE102013206590A1 (de) 2013-04-12 2014-10-16 Elringklinger Ag Interkonnektorelement und Verfahren zur Herstellung eines Interkonnektorelements
CN103236513B (zh) * 2013-05-03 2015-06-03 北京科技大学 It-sofc电池堆合金连接体及电池堆的连接方法
JP6123642B2 (ja) * 2013-11-08 2017-05-10 トヨタ自動車株式会社 全固体電池の充電システム
CN103700801A (zh) * 2013-12-30 2014-04-02 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池堆及其电池连接件
DE102014106491A1 (de) 2014-05-08 2015-11-12 Elringklinger Ag Interkonnektorelement und Verfahren zur Herstellung eines Interkonnektorelements
CN105140456B (zh) * 2015-08-06 2017-08-11 江苏科技大学 一种平板式固体氧化物燃料电池
CN105336963B (zh) * 2015-11-13 2017-10-10 中国科学院上海硅酸盐研究所 一种平板式固体氧化物燃料电池用半柔性复合双极板及其制备方法
CN206742401U (zh) * 2016-03-25 2017-12-12 安徽巨大电池技术有限公司 电池组
US20190088974A1 (en) * 2017-09-19 2019-03-21 Phillips 66 Company Method for compressing a solid oxide fuel cell stack
JP6541854B2 (ja) * 2017-11-15 2019-07-10 日本碍子株式会社 セルスタック
DE102018212729A1 (de) * 2018-07-31 2020-02-06 Robert Bosch Gmbh Verfahren zur Herstellung eines dreidimensionalen Schwellkompensationselements eines Batteriemoduls sowie Batteriemodul mit einem solchen
CN113948748A (zh) * 2021-10-14 2022-01-18 广东省科学院新材料研究所 一种连接板和固体氧化物燃料电池/电解池电堆
WO2023119602A1 (ja) * 2021-12-23 2023-06-29 日産自動車株式会社 固体酸化物形燃料電池
WO2023119603A1 (ja) * 2021-12-23 2023-06-29 日産自動車株式会社 固体酸化物形燃料電池
CN114899429B (zh) * 2022-07-13 2022-10-14 潍柴动力股份有限公司 一种双极板粘合工装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016157A1 (de) * 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
EP0432381A1 (de) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Bauteilanordnung zur Stromführung für keramische Hochtemperatur-Brennstoffzellen
US5338621A (en) * 1991-03-05 1994-08-16 Bossel Ulf Dr Apparatus for converting chemical energy of fuel into electrical energy with a plurality of high-temperature fuel cells
DE10027311A1 (de) * 2000-06-05 2001-12-13 Forschungszentrum Juelich Gmbh Vorrichtung zur elektrischen Kontaktierung von Elektroden in Hochtemperaturbrennstoffzellen
DE10317388A1 (de) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446680A1 (de) * 1990-03-15 1991-09-18 Asea Brown Boveri Ag Stromkollektor zur Stromführung zwischen benachbarten stapelförmig angeordneten Hochtemperatur-Brennstoffzellen
DE19645111C2 (de) * 1996-11-01 1998-09-03 Aeg Energietechnik Gmbh Raumsparende Zellstapelanordnung aus Festoxidbrennstoffzellen
DE19705874C2 (de) * 1997-02-15 2000-01-20 Forschungszentrum Juelich Gmbh Stromkollektor für SOFC-Brennstoffzellenstapel
AUPP042597A0 (en) * 1997-11-17 1997-12-11 Ceramic Fuel Cells Limited A heat resistant steel
DE19941282A1 (de) * 1999-08-31 2001-03-01 Forschungszentrum Juelich Gmbh Schicht zwischen Kathode und Interkonnektor einer Brennstoffzelle sowie Herstellungsverfahren einer solchen Schicht
DE10033898B4 (de) * 2000-07-12 2009-06-18 Forschungszentrum Jülich GmbH Hochtemperaturbrennstoffzelle und Brennstoffzellenstapel
DE10050010A1 (de) * 2000-10-10 2002-04-18 Forschungszentrum Juelich Gmbh Interkonnektor für eine Hochtemperatur-Brennstoffzelle
AU2002244585A1 (en) * 2001-03-27 2002-10-08 Global Thermoelectric Inc. Sofc stack with thermal compression elements
US6843406B2 (en) * 2002-09-27 2005-01-18 Battelle Memorial Institute Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016157A1 (de) * 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
EP0432381A1 (de) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Bauteilanordnung zur Stromführung für keramische Hochtemperatur-Brennstoffzellen
US5338621A (en) * 1991-03-05 1994-08-16 Bossel Ulf Dr Apparatus for converting chemical energy of fuel into electrical energy with a plurality of high-temperature fuel cells
DE10027311A1 (de) * 2000-06-05 2001-12-13 Forschungszentrum Juelich Gmbh Vorrichtung zur elektrischen Kontaktierung von Elektroden in Hochtemperaturbrennstoffzellen
DE10317388A1 (de) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung

Also Published As

Publication number Publication date
JP2008541389A (ja) 2008-11-20
KR20080008408A (ko) 2008-01-23
WO2006122534A3 (de) 2007-06-21
DE102005022894A1 (de) 2006-11-23
EP1882279A2 (de) 2008-01-30
CA2608813A1 (en) 2006-11-23
RU2007146984A (ru) 2009-06-27
CN101223664A (zh) 2008-07-16
BRPI0610685A2 (pt) 2010-07-20
US20090297904A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1882279A2 (de) Sofc-stapel
EP0797847B1 (de) Polymerelektrolyt-membran-brennstoffzelle
EP0815609B1 (de) Zusammenfassung von einzelzellen zu einer membranelektroden-einheit und deren verwendung
EP1453133B1 (de) Brennstoffzelle bzw. Elektrolyseur sowie zugehöriges Verfahren zu deren Herstellung
EP1911114B1 (de) Dichtungsanordnung mit silberbasislot für eine hochtemperaturbrennstoffzelle und verfahren zum herstellen eines brennstoffzellenstapels
EP1662596A1 (de) Dichtungsanordnung für einen Hochtemperatur Brennstoffzellenstapel und Verfahren zum Herstellen dieses Brennstoffzellenstapels
DE60224250T2 (de) Brennstoffzellenstapel mit Folienverbindungen und Verbundabstandhaltern
DE102006016001A1 (de) Brennstoffzellenstapel
EP1314217B1 (de) Hochtemperaturbrennstoffzelle
WO1998025316A1 (de) Werkstoff für brennstoffzellen-interkonnektoren
EP2956981B1 (de) Energiewandlerzelle mit elektrochemischer wandlereinheit
WO2011141340A1 (de) Verfahren zur herstellung einer metallischen biopolarplatte, bipolarplatte sowie brennstoffzellenstapel und verfahren zu dessen herstellung
EP2054964B1 (de) Wiederholeinheit für einen stapel elektrochemischer zellen, sowie stapelanordnung
EP1596454A2 (de) Kontaktelement für einen Brennstoffzellenstapel
WO2006099830A1 (de) Interkonnektor für hochtemperaturbrennstoffzellen
WO2016016181A1 (de) Brennstoffzellenvorrichtung
DE10342691A1 (de) Stapelbare Hochtemperaturbrennstoffzelle
WO2000005776A1 (de) Polymerelektrolyt-membran-brennstoffzelle
DE102020209081A1 (de) Elektrochemischer Reaktionszellenstapel
EP1665431A1 (de) Interkonnektor für hochtemperatur-brennstoffzelleneinheit
AT16121U1 (de) Stromübertragungssystem
DE102004028142B4 (de) Bipolarseparator
DE202005008706U1 (de) Bipolarseparator
DE10350478A1 (de) Brennstoffzelleneinheit
EP2372825B1 (de) Brennstoffzellenmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006742360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008511549

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2608813

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077028597

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007146984

Country of ref document: RU

Ref document number: 5839/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680026322.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006742360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920640

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0610685

Country of ref document: BR

Kind code of ref document: A2