WO2006121130A1 - 複合管 - Google Patents

複合管 Download PDF

Info

Publication number
WO2006121130A1
WO2006121130A1 PCT/JP2006/309508 JP2006309508W WO2006121130A1 WO 2006121130 A1 WO2006121130 A1 WO 2006121130A1 JP 2006309508 W JP2006309508 W JP 2006309508W WO 2006121130 A1 WO2006121130 A1 WO 2006121130A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
pipe
die
composite pipe
tube
Prior art date
Application number
PCT/JP2006/309508
Other languages
English (en)
French (fr)
Inventor
Kojiro Inamori
Hiroyuki Yamasaki
Toshiyuki Andoh
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO2006121130A1 publication Critical patent/WO2006121130A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/32Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements
    • B29C44/322Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements the preformed parts being elongated inserts, e.g. cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement

Definitions

  • the present invention relates to a composite pipe and a method for manufacturing the same.
  • the cross-linking foaming method is a foaming method in which rosin is cross-linked before foaming, and has a characteristic that foaming ratio is easy to increase because of high tensile strength of rosin.
  • the sheet-like cross-linked foam is cut into a strip shape along the outer periphery of the tube, and the ends of the strip-shaped sheet are heat-sealed to form a pipe shape. There was a problem that it would be time-consuming.
  • the extrusion foaming method has a feature that it is less labor-intensive than the cross-linking foaming method because the resin foam is extruded from the crosshead die and the coating on the tube is completed at the same time. Furthermore, since the resin foam can be brought into close contact with the tube by vacuuming, there is also an advantage that condensation and creases are less likely to occur!
  • One of the ideas for increasing the expansion ratio by the extrusion foaming method is the shape of the die outlet.
  • the exit force of an annular (doughnut-shaped) cross section is more likely to increase the expansion ratio by extruding a rod-shaped foam having an exit force of a circular cross section than extruding a tubular foam.
  • the surface area of a circle is smaller than that of an annulus with the same cross-sectional area. This is probably because the gas is difficult to diffuse into the inside. Therefore, the die force at the annular outlet does not extrude the resin to form a tube-like foam, but extrudes the die force at the circular outlet to bond or fuse the rod-shaped foams together.
  • the extrusion method is known to extrude resin from a porous die at the circular outlet into a rod shape (thin string shape) and fuse it together by foaming to form a tubular foam and coat the tube.
  • FIG. 6 is a partial cross-sectional perspective view showing a conventional method for manufacturing a composite pipe
  • FIG. 7 is a cross-sectional plan view taken along arrow VII-VII in FIG. In FIG.
  • the outer surface of the pipe 62 is covered with the resin foam 61 in the composite pipe 6, but a gap 63 is formed between the pipe 62 and the resin foam 61.
  • the die 7 is provided with an annular die outlet 71 through which the resin composition is extruded and a pipe passage 73 through which the pipe 62 is inserted.
  • the resin composition is conveyed through a flow path sandwiched between the die 74 and the -apple 75.
  • An object of the present invention is to provide a composite pipe obtained by an extrusion foaming method, having a high expansion ratio and bonding strength, and having both high heat insulation and excellent workability.
  • a composite pipe in which an outer surface of a pipe is coated with a resin foam by an extrusion foaming method, wherein the resin foam is covered by being extruded from a die around a pipe passage, and the outlet of the die Is a composite pipe characterized by having at least one shielding part around the pipe passage and having a bonding strength of the resin foam to the outer surface of the pipe of 0.003 kgZcm 2 or more.
  • the composite pipe manufacturing method is characterized in that at least one shielding portion is provided, and the bonding strength of the resin foam to the outer surface of the pipe is 0.003 kg / cm 2 or more.
  • FIG. 1 is a partial cross-sectional perspective view showing a preferred embodiment of a method for manufacturing a composite pipe of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 (a) to FIG. 3 (g) are front views showing examples of preferable shapes of die exits used in the present invention, respectively.
  • FIG. 4 is a side view of the tube coating apparatus.
  • FIG. 5 is a schematic view of a method for measuring the bonding strength between a tube and a resin foam.
  • FIG. 6 is a partial cross-sectional perspective view showing a conventional method for manufacturing a composite pipe.
  • FIG. 7 is a plan sectional view taken along arrow VII-VII in FIG.
  • FIG. 1 is a partial cross-sectional perspective view showing a preferred embodiment of the method for manufacturing a composite pipe of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the composite pipe 1 has the outer surface of the pipe 12 covered with a resin foam 11.
  • the die 2 has a pipe passage 23 through which the pipe 12 is inserted and a die outlet 21 having at least one shielding portion 22 around the pipe passage 23.
  • the resin composition is extruded from the die outlet 21.
  • the resin composition is conveyed through a flow path sandwiched between the die 24 and the nipple 25.
  • a metal tube such as copper or iron or a tube made of resin can be used.
  • the force for using polyethylene, polybutene, polypropylene or a cross-linked material as a material for forming the tube is not limited to these.
  • any material can be used depending on the purpose, but a polyolefin resin is preferable from the viewpoint of extrusion stability and ease of increasing the expansion ratio.
  • polyolefin resin include low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, ethylene propylene rubber, and ethylene propylene. But are not limited to, such as, but not limited to, ene terpolymer, styrene butadiene rubber, ethylene acetate butyl copolymer, ethylene butyl alcohol resin, ethylene ethyl acrylate resin, ethylene acrylate resin. . Furthermore, modified products such as silane modification and carboxylic acid modification of each of the above resins can be used, and these resins can be used alone or as a mixture of two or more.
  • the material constituting the resin foam 11 is more preferably polypropylene from the viewpoint of high heat resistance.
  • coconut resin menoleto flow rate (MFR) (230.C, 2.16kgf) i, 0.05-: LO.
  • Og / 10min force MFRi is better than 0.5 ⁇ 3.
  • the foamed resin 11 includes a cell nucleating agent, a heat stabilizer, and a processing aid that are usually used as necessary.
  • lubricants such as stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acid, stearic acids, stea, stearic acid, stearic acid, stearic acid, stearic acid, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulfate, sulf
  • the expansion ratio represents the average value of the entire tubular foam configured as an aggregate of rod-shaped foams.
  • the expansion ratio ⁇ of the resin foam is expressed by the following formula (1) when the density of the unfoamed resin composition is p (g / cm 3 ) and the density of the resin foam is p (g / cm 3 ). Defined by
  • the expansion ratio of the resin foam 11 is preferably in the range of 5 to 30 times. If the expansion ratio of the resin foam is too small, the heat insulation of the composite pipe is not sufficient, and if it is too large, the convective heat transfer will increase and the heat insulation will be lowered. In view of heat insulation, the foam ratio of the resin foam is more preferably in the range of 5 to 20 times, and more preferably 10 to 15 times.
  • the composite pipe of the present invention is manufactured by coating the outer surface of the pipe 12 with the resin foam 11 by an extrusion foaming method.
  • the extrusion foaming method is a method in which a foaming agent is supplied to the extruder together with the resin and the die force is extruded and foamed at the same time. According to this method, the resin is foamed and simultaneously coated on the tube. Can do.
  • a gas foaming agent a gas foaming agent, an evaporating foaming agent, a chemical foaming agent, or the like can be used. Nitrogen gas or carbon dioxide gas can be used as the gas foaming agent.
  • the agent butane, pentane, methanol, water and the like can be used.
  • the chemical blowing agent azodicarbonamide, azobisisobutyronitrile, N, N-dinitrosopentamethyltetramine, p-toluenesulfo Forces that can use -hydrazide, p, p, monooxybis (benzenesulfurhydrazide), etc. are not limited thereto.
  • foaming agents in consideration of the influence on the environment, nitrogen gas, which is preferred as a gas blowing agent, or carbon dioxide gas, which is preferred over a carbon dioxide power, is particularly preferred.
  • the amount of the foaming agent is an amount necessary for realizing the above expansion ratio, and is appropriately determined.
  • a die having a pipe passage 23 through which the pipe 12 is inserted and a die outlet 21 having at least one shielding portion 22 around the pipe passage 23 is used as the die.
  • Examples of the shape of the die outlet are shown in FIGS. 3 (a) to 3 (g), but the present invention is not limited to these.
  • FIG. 3 (a) to FIG. 3 (g) are front views showing examples of preferable shapes of the die outlet used in the present invention.
  • FIG. 3A shows a die 2 in which a die outlet 21 is provided in an annular shape around the pipe passage 23, and a shielding portion 22 is provided in the upper part of the annular die outlet 21.
  • a die outlet 21 force is provided in an annular shape around the pipe passage 23, and shielding portions 22 are respectively provided in the annular die outlet 21, 2 and 4.
  • FIG. 3 (e) circular die outlets 21 are provided around the pipe passage 23 at equal intervals, and the circular die outlets 21 are shielded from each other. Die 2 provided with a portion 22 is shown.
  • the dies 2 shown in FIGS. 3 (f) and 3 (g) are the same as the dies 2 shown in FIG. 3 (e), except that the shape of the die outlet 21 is square or oval. is there.
  • a circle, a square, and an ellipse include a substantially circle, a substantially square, and a substantially ellipse, respectively.
  • the exit shape of the die is such that the exit force of the annular (doughnut-like) cross section is extruded.
  • the extruding force of the circular cross section is more likely to increase the expansion ratio than extruding the tubular foam. It has been known. This is thought to be due to the fact that the circular shape has a smaller surface area than the circular ring if the cross-sectional area is the same, so that gas is less likely to diffuse into the atmosphere. Therefore, the flow path cross-sectional shape at the die outlet has a ratio of the surface area to the cross-sectional area from the viewpoint of improving the expansion ratio.
  • the smallest circular shape as shown in FIG. 3 (e) is preferred.
  • the range of the bonding strength in the present invention is 0.003 kg / cm 2 or more, and 0.003-0. 1 kg / cm 2 force S preferred ⁇ , 0.003 to 0.08 kg / cm 2 force S Preferred ⁇ , 0.005 to 0.05 kg / cm 2 is more preferred. If the joint strength is too low, there will be a problem that the pipe will come off during construction. On the other hand, if the joint strength is too high, there arises a problem that it is difficult to peel off the pipe during construction (the pipe force is also peeled off).
  • FIG. 4 is a side view of the pipe coating apparatus.
  • the pipe coating apparatus includes an extruder 30 including a hopper 31, a gas injection valve 32, a crosshead 33 and a die 34, and a molding machine (sizing die) 36.
  • a rosin composition can be supplied to the hopper 31, and a gas blowing agent can be supplied to the gas injection valve 32.
  • a tube 12 is also passed through the crosshead 33, and the resin composition is extruded from a die 34 provided at the lower part of the crosshead 33 so that the tube 12 can be coated with the resin composition.
  • the pipe 12 coated with the resin composition that has passed through the crosshead 33 is molded by a molding machine 36 provided downstream.
  • a resin composition comprising a resin and a foaming agent and other additives is supplied to the hopper 31 of the extruder 30.
  • the extruder 30 can be either a single-screw extruder or a twin-screw extruder, or a combination of both can be used as a tandem extrusion system. Foaming viewpoint power It is preferable to use a tandem extrusion system.
  • gas foaming agent gas may be injected from a gas injection valve 32 provided on the side surface of the extruder 30.
  • the resin composition supplied to the hopper 31 passes through the crosshead 33 and is conveyed to the flow path sandwiched between the pull 25 and the die 24 shown in the cross-sectional view of FIG. At the same time as it is extruded from 21 and foamed, it is conveyed to the outside while covering the pipe 12 supplied to the crosshead 33.
  • the gas dissolved in the resin composition forms bubbles and foams inside the resin composition, and in the direction of arrow B It spreads to the outside of the resin foam through the outer surface of the oil foam and the tube side surface.
  • the foam 11 immediately after being extruded from the die outlet 21 has a notch 13 due to the presence of the shielding portion 22 of the die 2 in FIG. Gas diffused from the notch 13 to the surface of the resin foam 11 on the tube 12 side is exhausted, and further, the resin foam 11 adheres closely to the tube 12 by evacuating in the direction of arrow A in FIG. A composite pipe having a high expansion ratio and high adhesion (bonding strength) between the pipe and the resin foam can be obtained. Since the notch 13 is naturally closed by vacuuming, finally, the composite pipe 1 coated with the resin foam without the notch is obtained.
  • the composite tube having a smooth surface may be coated with a sheath.
  • the material for the sheath the above-mentioned polyolefin resin can be used, but it is not limited thereto.
  • the sheath material may or may not be foamed.
  • the above manufacturing method is an example for carrying out the present invention, and is not particularly limited to the above method as long as it is a method capable of realizing the present invention.
  • the composite pipe of the present invention is coated with a resin foam having a high expansion ratio and high bonding strength, and has both high heat insulation and excellent workability.
  • the composite pipe of the present invention has the advantage of being easily molded in addition to the above effects by using a polyolefin-based resin as the resin foam.
  • the composite pipe of the present invention has the advantage of high heat resistance in addition to the above effects by using polypropylene as the resin foam.
  • the composite pipe of the present invention has the advantage that, in addition to the above-described effects, the load exerted on the environment by the foaming agent is small by using carbon dioxide as the foaming agent in the extrusion foaming method.
  • the resin foam having a high expansion ratio and bonding strength can be coated on the pipe, and a composite pipe having high heat insulation and excellent workability can be manufactured.
  • a tandem extrusion system was used as an extruder.
  • a ⁇ 40 mm single screw extruder was used as the first stage extruder, and a ⁇ 65 mm single screw extruder was used as the second stage extruder.
  • a die having an exit shape shown in FIG. 3 (a) and having a shielding portion 22 force S 2 mm was used.
  • the prepared resin foam molding material is supplied to the first stage extruder, and further, carbon dioxide gas as a foaming agent is provided on the side of the first stage extruder. 2 Supplyed at a mass percentage.
  • the resin foam molding material in which the gas was dissolved was extruded from a perforated die and simultaneously coated on a copper tube having a diameter of 15.9 mm to obtain a composite tube.
  • the composite tube covered with the copper tube was supplied to a sizing die having an inner diameter of 25.9 mm installed at the exit of the perforated die, and the surface of the composite tube was shaped smoothly.
  • the composite pipe having a smooth surface was supplied to a second extruder not shown in the figure, and an unfoamed sheath made of polyethylene resin having a thickness of 1 mm was covered. Finally, the composite tube covered with the sheath was cut to a length of 20 m, and the force was also coiled. In this way, a composite tube having an expansion ratio of 10.1 (excluding the sheath) and a foam thickness of 5 mm was produced.
  • a composite tube was produced in the same manner as in Example 1 except that the die was changed to the outlet shape shown in FIG.
  • a composite tube was produced in the same manner as in Example 1 except that the die was changed to the outlet shape shown in FIG. [0039] Comparative Example 1
  • a composite tube was fabricated in the same manner as in Example 1 except that the die was changed to an annular shape (doughnut shape) with no shielding portion 22.
  • FIG. 5 is a schematic diagram of a method for measuring the joint strength between a tube and a resin foam.
  • Final pulling force (unit: kg / cm 2 ) as the maximum force (unit: kg) measured at this time divided by the contact area (unit: cm 2 ) between the tube and the resin foam was calculated.
  • the length of the portion where the tube and the resin foam are in contact is extremely short, for example, 20 cm or more. This measurement is performed once for each of three different samples! , Adopted the average value of each
  • the composite pipe of the present invention has high heat insulation and excellent workability, and is used for a cooling medium for a heat exchanger. It can be used for water supply and hot water supply pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

 管(12)の外表面に樹脂発泡体(11)を押出発泡法により被覆した複合管(1)であって、前記樹脂発泡体(11)が、管通路(23)の周囲のダイ(2)より押し出されて被覆され、そのダイの出口(21)は、管通路(23)の周囲において少なくとも1つの遮蔽部分(22)を有するダイ出口(21)より押し出されたものであり、かつ前記の管(12)の外表面に対する前記樹脂発泡体(11)の接合強度が0.003kg/cm2以上である複合管(1)、及びその製造方法。

Description

明 細 書
複合管
技術分野
[0001] 本発明は複合管及びその製造方法に関する。
背景技術
[0002] 従来、熱交換器の冷熱媒用配管や給水 ·給湯用配管として金属管ゃ榭脂管の周 囲に榭脂発泡体を被覆した複合管が使用されている。このような複合管の断熱性能 を高める方法として、榭脂発泡体の発泡倍率を上げることが知られている。発泡倍率 を上げることで断熱性が高まるのは、多くの榭脂が熱伝導率の低い空気で置き換え られるためと考えられて 、る。
[0003] 榭脂発泡体の発泡倍率を高める方法として架橋発泡法がある。架橋発泡法とは、 発泡前に榭脂を架橋させる発泡方法であり、榭脂の張力が高いので破泡が少なぐ 発泡倍率が上がりやすいという特徴がある。しかし、架橋発泡体を管に被覆するには 、シート状の架橋発泡体を管の外周に合わせて短冊状に切断し、短冊状シートの端 部同士を熱融着してパイプ状に成形しなければならないので手間がかかる、という問 題があった。
また、管と発泡シートとの間に大きな隙間が生じるため結露が生じやすい、複合管 を直線状に短く切断したときに中の管が抜けてしまう、さらに複合管を曲げた際に折 れシヮが出やすい、という問題があった。
[0004] 一方、押出発泡法では、クロスヘッドダイから榭脂発泡体を押し出すと同時に管へ の被覆が完了するので、架橋発泡法に比べて手間が力からないという特徴がある。さ らに、真空引きにより榭脂発泡体を管に密着させることができるので、結露や折れシ ヮが生じにくいと!/、う利点もある。
[0005] 押出発泡法で発泡倍率を上げるための工夫の 1つにダイの出口の形状がある。例 えば、円環 (ドーナッツ状)断面の出口力もチューブ状の発泡体を押し出すよりも、円 形断面の出口力 棒状発泡体を押し出した方が発泡倍率は上がりやす 、ことが知ら れている。これは、同じ断面積なら円形の方が円環よりも表面積が小さいので、大気 中へガスが拡散しにくいためと考えられる。そこで、円環出口のダイ力も榭脂を押し出 してチューブ状の発泡体を形成するのではなぐ円形出口のダイ力 榭脂を押し出し て、複数の棒状発泡体同士を接着または融着することで、高い発泡倍率のチューブ 状の発泡体を得る試みがなされてきた。例えば、押出発泡法で円形出口の多孔ダイ から榭脂を棒状 (細紐状)に押し出し、発泡により互いに融着させることでチューブ状 の発泡体に成形しつつ管に被覆すると 、う方法が知られて 、る。
[0006] しかし、押出発泡法で榭脂発泡体の発泡倍率を上げると、榭脂発泡体と管の融着 における接合強度が劣るという問題があった。この点につき、従来の押出発泡法によ る複合管の製造方法について図 6及び 7を参照しながら説明する。なお、各図の説 明において同一の要素には同一の符号を付す。図 6は、従来の複合管の製造方法 を示す一部断面斜視図であり、図 7は、図 6の VII— VII矢視平面断面図である。 図 6中、複合管 6は、管 62の外表面が榭脂発泡体 61によって被覆されているが、 管 62と榭脂発泡体 61との間には空隙 63が生じている。一方、ダイ 7には榭脂組成物 が押し出される円環形のダイ出口 71および管 62が挿通される管通路 73が設けられ ている。また、図 7に示すようにダイ 7の内部では、ダイ 74と-ップル 75との間に挟ま れる流路を榭脂組成物が搬送される。
[0007] 管 62がダイ 7の管通路 73を通過する際にダイ出口 71より榭脂組成物を押し出すと 、榭脂組成物がダイ出口 71から押し出されて発泡し、榭脂発泡体 61が管 62を被覆 し、複合管 6が作製される。ダイ 7から榭脂組成物が押し出されるとき、榭脂組成物中 に溶解して ヽたガスは気泡を形成して榭脂組成物の内部で発泡するとともに、矢印 B 方向に榭脂発泡体の外側表面や管側表面を通じて榭脂発泡体の外部へも拡散する 発泡倍率を上げるために多くの発泡剤を供給すると、前記の管側表面を通じたガス 拡散も多くなり、管 62と榭脂発泡体 61との間に溜まって空隙 63が形成されてしまい 、管 62と榭脂発泡体 61との間の接合強度が劣ってしまうという問題があった。また、 このとき、管通路 73における管 62とダイ 7との隙間 76から矢印 A方向に真空引きを 行うことで複合管 6内の空隙 63に溜まったガスを抜き出すことが行われるが、それで も接合強度の低下の問題を解決することはできな力つた。 発明の開示
[0008] 本発明は、押出発泡法で得られる、高い発泡倍率および接合強度を有し、高い断 熱性と優れた施工性を兼ね備えた複合管を提供することを課題とする。
[0009] 本発明者らは、鋭意検討を重ねた結果、榭脂発泡体の発泡倍率が高!ヽ場合でも、 ダイ出口力 押し出した直後において榭脂発泡体に切欠部を形成するようにし、榭 脂発泡体の管側表面に拡散するガスを該切欠部から排出させることにより、最終的 に発泡倍率が高くかつ管と榭脂発泡体との密着性 (接合強度)が高い複合管を得る ことができることを見い出した。本発明はこのような知見に基づいてなされるに至った ものである。
[0010] 本発明によれば、以下の手段が提供される:
(1)管の外表面に榭脂発泡体を押出発泡法により被覆した複合管であって、 前記榭脂発泡体が、管通路の周囲のダイより押し出されて被覆され、そのダイの出 口は、管通路の周囲において少なくとも 1つの遮蔽部分を有し、かつ前記の管の外 表面に対する前記榭脂発泡体の接合強度が 0. 003kgZcm2以上であることを特徴 とする複合管、
(2)前記榭脂発泡体の発泡倍率が 5〜30倍であることを特徴とする(1)項に記載の 複合管、
(3)前記榭脂発泡体がポリオレフイン系榭脂からなることを特徴とする(1)又は(2)項 に記載の複合管、
(4)前記榭脂発泡体がポリプロピレン力もなることを特徴とする(1)〜(3)の 、ずれか 1項に記載の複合管、
(5)前記押出発泡法における発泡剤が炭酸ガスであることを特徴とする(1)〜 (4)の いずれか 1項に記載の複合管、および
(6)発泡性榭脂組成物をダイ力 押し出して、押出発泡法により管の外表面に榭脂 発泡体を被覆する複合管の製造方法であって、前記ダイの出口が管通路の周囲に おいて少なくとも 1つの遮蔽部分を有し、前記の管の外表面に対する前記榭脂発泡 体の接合強度が 0. 003kg/cm2以上であることを特徴とする複合管の製造方法。
[0011] 本発明の上記及び他の特徴及び利点は、添付の図面とともに考慮することにより、 下記の記載力 より明らかになるであろう。
図面の簡単な説明
[0012] [図 1]図 1は、本発明の複合管の製造方法の好ましい一実施態様を示す一部断面斜 視図である。
[図 2]図 2は、図 1の II II矢視平面断面図である。
[図 3]図 3(a)〜図 3(g)は、それぞれ本発明に用いられるダイ出口の好ましい形状の一 例を示す正面図である。
[図 4]図 4は、管被覆装置の側面図である。
[図 5]図 5は、管と榭脂発泡体の接合強度の測定方法の概略図である。
[図 6]図 6は、従来の複合管の製造方法を示す一部断面斜視図である。
[図 7]図 7は、図 6の VII— VII矢視平面断面図である。
発明を実施するための最良の形態
[0013] 次に本発明の好ましい一実施態様について、添付の図面に基づいて詳細に説明 をする。なお、各図の説明において同一の要素には同一の符号を付す。
図 1は、本発明の複合管の製造方法の好ましい一実施態様を示す一部断面斜視 図であり、図 2は、図 1の II II矢視平面断面図である。
図 1中、複合管 1は、管 12の外表面が榭脂発泡体 11によって被覆されている。一 方、ダイ 2には管 12が挿通される管通路 23および管通路 23の周囲において少なくと も 1つの遮蔽部分 22を有するダイ出口 21が設けられている。ダイ出口 21から榭脂組 成物が押し出される。また、図 2に示すようにダイ 2の内部では、ダイ 24とニップル 25 との間に挟まれる流路を榭脂組成物が搬送される。
[0014] 管 12としては、銅や鉄等の金属管ゃ榭脂製の管を用いることができる。榭脂製の 管の場合は、管を形成する材料としてポリエチレン、ポリブテン、ポリプロピレンやこれ らを架橋したもの等が使用される力 これらに限られるものではない。
[0015] 榭脂発泡体 11を構成する材料としては目的に応じて任意のものが使用できるが、 押出安定性、発泡倍率の上げやすさの観点から、ポリオレフイン系榭脂が好ましい。 ポリオレフイン系榭脂としては、例えば、低密度ポリエチレン、直鎖低密度ポリェチ レン、高密度ポリエチレン、ポリプロピレン、エチレンプロピレンゴム、エチレンプロピレ ンジェン三元共重合体、スチレンブタジエンゴム、エチレン酢酸ビュル共重合体、ェ チレンビュルアルコール榭脂、エチレンェチルアタリレート榭脂、エチレンアクリル酸 榭脂等が挙げられるがこれらに限られるものではない。更に上記各榭脂のシラン変 性、カルボン酸変性等の変性体なども用いることができ、またこれらの榭脂は単独、 又は 2種以上の混合物として使用することができる。
[0016] 榭脂発泡体 11を構成する材料としては、高耐熱性の観点からポリプロピレンがより 好ましい。ポリプロピレンを使用する場合、押出加工性と発泡性を考慮すると、榭脂 のメノレトフローレート(MFR) (230。C、 2. 16kgf) iま、 0. 05〜: LO. Og/10min力好 ましく、 MFRiま 0. 5〜3. Og/lOmin力より好まし!/ヽ。
[0017] 榭脂発泡体 11には、必要に応じて通常用いられる気泡核剤、熱安定剤、加工助剤
、滑剤、衝撃改質剤、充填剤、酸化防止剤、紫外線吸収剤、光安定剤、顔料等が適 宜添カロされてもよい。
[0018] 本明細書にぉ 、て、発泡倍率とは棒状発泡体の集合体として構成されるチューブ 状発泡体全体の平均値を表す。榭脂発泡体の発泡倍率 φは、未発泡の榭脂組成 物の密度を p (g/cm3)、榭脂発泡体の密度を p (g/cm3)とした時に下記式(1)で 定義される。
[0019] = p / p 式(1)
[0020] 榭脂発泡体 11の発泡倍率は 5倍以上 30倍以下の範囲内にあることが好ましい。榭 脂発泡体の発泡倍率が小さすぎると複合管の断熱性が十分ではなぐ大きすぎると 対流伝熱が大きくなり、やはり断熱性が低くなる力 である。断熱性を考慮すると、榭 脂発泡体の発泡倍率は 5倍以上 20倍以下の範囲内にあることがより好ましぐ 10倍 以上 15倍以下であることが特に好ましい。
[0021] 本発明の複合管は、管 12の外表面に榭脂発泡体 11を押出発泡法により被覆する ことにより製造される。押出発泡法とは、押出機に榭脂とともに発泡剤を供給し、ダイ 力 榭脂を押し出すと同時に発泡させる方法であり、この方法によれば榭脂を発泡さ せると同時に管に被覆させることができる。
[0022] 前記発泡剤としては、ガス発泡剤、蒸発型発泡剤、化学発泡剤などを用いることが できる。ガス発泡剤としては窒素ガスや炭酸ガス等を用いることができ、蒸発型発泡 剤としてはブタン、ペンタン、メタノール、水等を用いることができ、化学発泡剤として は、ァゾジカルボンアミド、ァゾビスイソブチロニトリル、 N, N—ジニトロソペンタメチレ ンテトラミン、 p—トルエンスルホ-ルヒドラジド、 p, p,一ォキシビス(ベンゼンスルホ- ルヒドラジド)等を用いることができる力 これらに限られるものではない。上記発泡剤 の中では、環境への影響を考慮するとガス発泡剤が好ましぐ窒素ガス又は炭酸ガス 力 り好ましぐ炭酸ガスが特に好ましい。なお、発泡剤の量は上記発泡倍率を実現 するのに必要な量であり、適宜決定される。
[0023] 本発明では、前記ダイとして、管 12が挿通される管通路 23および管通路 23の周囲 において少なくとも 1つの遮蔽部分 22を有するダイ出口 21が設けられたダイが用い られる。ダイ出口の形状の例を図 3(a)〜図 3(g)に示すが、本発明はこれらに限定され ない。図 3(a)〜図 3(g)は、それぞれ本発明に用いられるダイ出口の好ましい形状の 一例を示す正面図である。
図 3 (a)には、管通路 23の周囲に円環状にダイ出口 21が設けられ、円環状のダイ 出口 21中の上部に遮蔽部分 22が設けられたダイ 2が示されている。同様に、図 3 (b )〜図 3 (d)には、管通路 23の周囲に円環状にダイ出口 21力設けられ、円環状のダ ィ出口 21中に遮蔽部分 22がそれぞれ 2、 4、 8箇所設けられたダイ 2が示されている 図 3 (e)には、管通路 23の周囲に等間隔で円形のダイ出口 21が設けられ、円形の ダイ出口 21同士の間には遮蔽部分 22が設けられたダイ 2が示されている。図 3 (f)及 び図 3 (g)にそれぞれ示されたダイ 2は、ダイ出口 21の形状が正方形又は楕円形で あること以外は図 3 (e)に示されたダイ 2と同様である。
なお、本明細書において、円形、正方形及び楕円形には、それぞれ略円形、略正 方形及び略楕円形が包含されるものとする。
[0024] ダイ出口の形状は、円環(ドーナッツ状)断面の出口力 チューブ状の発泡体を押 し出すよりも、円形断面の出口力 棒状発泡体を押し出した方が発泡倍率は上がり やすいことが知られている。これは、同じ断面積なら円形の方が円環よりも表面積が 小さいので、大気中へガスが拡散しにくいためと考えられる。したがって、ダイ出口の 流路断面形状は、発泡倍率を向上させる観点から、断面積に対する表面積の比が 最も小さい、図 3 (e)に示されるような円形であることが好ましい。
[0025] 本発明における接合強度の範囲は 0. 003kg/cm2以上であり、 0. 003-0. 1kg /cm2力 S好まし <、 0. 0035〜0. 08kg/cm2力 Sより好まし <、 0. 005〜0. 05kg/c m2がさらに好ましい。接合強度が低すぎると、施工時に管が抜けるという問題が生じ る。一方、接合強度が高すぎると、施工時に皮むき (管力も被覆材を剥がすこと)が困 難になるという問題が生じる。
[0026] 次に、本発明の複合管の製造方法の一例を、図 1、 2及び 4を参照しながら説明す るが本発明はこれに限定されない。図 4は管被覆装置の側面図であり、管被覆装置 はホッパー 31、ガス注入弁 32、クロスヘッド 33及びダイ 34を備えた押出機 30と成形 機 (サイジングダィ) 36とを含んでなる。
[0027] ホッパー 31には榭脂組成物を供給し、ガス注入弁 32にはガス発泡剤を供給するこ とができる。クロスヘッド 33には管 12が上カも揷通され、クロスヘッド 33の下部に設け られたダイ 34より榭脂組成物を押し出し管 12に榭脂組成物を被覆することができる。 クロスヘッド 33を通り抜けた榭脂組成物が被覆された管 12は下流に設けられた成形 機 36によって成形される。
[0028] 具体的に本発明の複合管の製造方法について説明する。
まず、榭脂と発泡剤や他の添加剤とからなる榭脂組成物を押出機 30のホッパー 31 に供給する。押出機 30は単軸押出機、二軸押出機のいずれを用いてもよぐ両者を 組み合わせてタンデム押出システムとしてもよ 、。発泡性の観点力 タンデム押出シ ステムを用いることが好ましい。ガス発泡剤を使用する場合は、押出機 30の側面に 設けられたガス注入弁 32からガスを注入してもよい。
[0029] ホッパー 31に供給された榭脂組成物は、クロスヘッド 33を通って図 2の断面図に示 した-ップル 25とダイ 24との間に挟まれる流路に搬送され、さらにダイ出口 21から押 し出されて発泡すると同時に、クロスヘッド 33に供給された管 12を被覆しながら外部 へと搬送される。図 2において、ダイ 2から榭脂組成物が押し出されるとき、榭脂組成 物中に溶解して ヽたガスは気泡を形成して榭脂組成物の内部で発泡するとともに、 矢印 B方向に榭脂発泡体の外側表面や管側表面を通じて榭脂発泡体の外部へも拡 散する。 本発明では、ダイ出口 21から押し出された直後の発泡体 11には、図 1におけるダ ィ 2の遮蔽部分 22の存在により、切欠部 13が生じる。この切欠部 13から榭脂発泡体 11の管 12側の表面に拡散するガスが排出され、さらに、図 2における矢印 A方向に 真空引きすることで榭脂発泡体 11が管 12に密着し、発泡倍率が高くかつ管と榭脂 発泡体との密着性 (接合強度)が高い複合管を得ることができる。該切欠部 13は真 空引きによって自然と塞がるので、最終的には切欠部のない榭脂発泡体を被覆した 複合管 1が得られる。
[0030] 図 4のダイ 34から押し出された管 12および榭脂発泡体 11は成形機 36を通ることで 表面が平滑に成形された複合管を得ることができる。
さらに、複合管の表面を保護する目的で、表面が平滑に成形された複合管にシー スを被覆してもよい。シースの材料としては、前述したポリオレフイン系榭脂等を使用 することができるが、これらに限られるものではない。シース材料は発泡していてもし ていなくても良い。
[0031] 上述したように、以上の製造方法は本発明を実施するための一例であり、本発明を 実現できる方法であれば特に上記方法に限定されない。
[0032] 本発明の複合管は、管に発泡倍率および接合強度の高い榭脂発泡体が被覆され ており、高い断熱性と優れた施工性を兼ね備える。
また、本発明の複合管は、前記榭脂発泡体としてポリオレフイン系榭脂を用いること で、上記の効果に加えて成形が容易になると 、う利点を有する。
また、本発明の複合管は、前記榭脂発泡体としてポリプロピレンを用いることで、上 記の効果に加えて耐熱性が高 、と 、う利点を有する。
さらに、本発明の複合管は、押出発泡法における発泡剤として炭酸ガスを用いるこ とで、上記の効果に加えて発泡剤が環境に与える負荷が少な 、と 、う利点を有する 本発明の方法によれば、高い発泡倍率および接合強度の榭脂発泡体を管に被覆 することができ、高 、断熱性と優れた施工性を兼ね備えた複合管を製造することがで きる。
[0033] 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定さ れるものではない。
実施例
[0034] 実施例 1
図 4に示した製造設備で、押出機としてタンデム押出システムを用いた。タンデム押 出システムの 1段目押出機として φ 40mm単軸押出機、 2段目押出機として φ 65m m単軸押出機を用いた。ダイには、図 3 (a)に示した出口形状で、かつ遮蔽部分 22 力 S 2mmのダイを用いた。
[0035] 次に、ポリプロピレン(SD632、商品名、サンァロマー社製; MFR= 3. Og/10mi n (230°C、2. 16kgf) ) 100質量部に対して、タルク(タルク MG、商品名、 日本タル ク社製) 1質量部を加えて榭脂発泡体成形材料を調製し、併せて 1段目押出機のシリ ンダー温度を 170°C〜220°Cに、 2段目押出機の設定温度を 175°C〜220°Cに、ダ ィ温度を 170°Cに設定した。
[0036] 調製した榭脂発泡体成形材料を上記 1段目押出機に供給し、さらに発泡剤として 炭酸ガスを 1段目押出機の側面に設けられたガス供給弁力 押出量に対して 3. 2質 量%の割合で供給した。次に、ガスが溶解した榭脂発泡体成形材料を多孔ダイより 押し出すと同時に直径 15. 9mmの銅管に被覆することで複合管を得た。銅管を被 覆した複合管を多孔ダイ出口に設置された内径 25. 9mmのサイジングダイに供給し 、複合管の表面を平滑に成形した。表面が平滑になった複合管を、図には示されな い第 2の押出機に供給し、ポリエチレン榭脂からなる厚さ lmmの未発泡シースを被 覆した。最後に、シースを被覆した複合管を 20mの長さに切断して力もコイル状に卷 き取った。このようにして、発泡倍率 10. 1倍(シース除く)、発泡体肉厚 5mmの複合 管を作製した。
[0037] 実施例 2
ダイを図 3 (d)に示した出口形状のものに変更したこと以外は、実施例 1と同様にし て複合管を作製した。
[0038] 実施例 3
ダイを図 3 (e)に示した出口形状のものに変更したこと以外は、実施例 1と同様にし て複合管を作製した。 [0039] 比較例 1
ダイを出口形状が円環状 (ドーナッツ状)で遮蔽部分 22のな 、ものに変更したこと 以外は、実施例 1と同様にして複合管を作製した。
[0040] 実施例 1〜3および比較例 1で得られた複合管について、図 5に示した引き抜き力 測定治具を用いて管と榭脂発泡体との接合強度を測定した。図 5は、管と榭脂発泡 体の接合強度の測定方法の概略図である。図 5に示される引き抜き力測定治具 4に 複合管 1をセットし、チャック 41で管 12を固定して力も矢印 Y方向に引っ張り、榭脂発 泡体 11から引き抜く。このとき計測される力の最大値 (単位: kg)を、管と榭脂発泡体 との接触面積 (単位: cm2)で割ったものとして最終的な引き抜き力(単位: kg/cm2) を計算した。なお、正しく測定するためには、管と榭脂発泡体が接触している部分の 長さが極端に短いことは避けるべきであり、例えば 20cm以上とすることが好ましい。 本測定は異なる 3つのサンプルで測定を各 1回行!、、それぞれの平均値を採用した
Figure imgf000012_0001
[0042] 表 1の結果力も明らかなように、比較例 1の複合管は、管と榭脂発泡体との間に隙 間が存在し、榭脂発泡体力も管を容易に引抜くことができ、接合強度が測定できない ほど劣るものであった。これに対し、実施例 1〜3の複合管は優れた接合強度を有す るものであった。このことから、円環形状のダイ出口力 押し出して作製した比較例 1 の複合管は発泡倍率が高いと接合強度が劣るが、本発明の複合管は高い発泡倍率 および接合強度を有し、高 、断熱性と優れた施工性を兼ね備えることがわ力る。 産業上の利用可能性
[0043] 本発明の複合管は高 、断熱性と優れた施工性を有し、熱交換器の冷熱媒用配管 や給水 ·給湯管等に用いることができる。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明 を説明のどの細部においても限定しょうとするものではなぐ添付の請求の範囲に示 した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。

Claims

請求の範囲
[1] 管の外表面に榭脂発泡体を押出発泡法により被覆した複合管であって、
前記榭脂発泡体が、管通路の周囲のダイより押し出されて被覆され、そのダイの出 口は、管通路の周囲において少なくとも 1つの遮蔽部分を有し、かつ前記の管の外 表面に対する前記榭脂発泡体の接合強度が 0. 003kgZcm2以上であることを特徴 とする複合管。
[2] 前記榭脂発泡体の発泡倍率が 5〜30倍であることを特徴とする請求項 1に記載の 複合管。
[3] 前記榭脂発泡体がポリオレフイン系榭脂からなることを特徴とする請求項 1又は 2に 記載の複合管。
[4] 前記榭脂発泡体がポリプロピレン力 なることを特徴とする請求項 1〜3の 、ずれか 1項に記載の複合管。
[5] 前記押出発泡法における発泡剤が炭酸ガスであることを特徴とする請求項 1〜4の いずれか 1項に記載の複合管。
[6] 前記榭脂発泡体の接合強度が 0. 003-0. lkgZcm2であることを特徴とする請求 項 1〜5のいずれか 1項に記載の複合管。
[7] 前記遮蔽部分の断面形状が円形であることを特徴とする請求項 1〜6のいずれか 1 項に記載の複合管。
[8] 発泡性榭脂組成物をダイ力 押し出して、押出発泡法により管の外表面に榭脂発 泡体を被覆する複合管の製造方法であって、前記ダイの出口が管通路の周囲にお いて少なくとも 1つの遮蔽部分を有し、前記の管の外表面に対する前記榭脂発泡体 の接合強度が 0. 003kgZcm2以上であることを特徴とする複合管の製造方法。
[9] 前記榭脂発泡体の接合強度が 0. 003-0. lkgZcm2であることを特徴とする請求 項 8に記載の複合管の製造方法。
[10] 前記遮蔽部分の断面形状が円形であることを特徴とする請求項 8又は 9に記載の 複合管の製造方法。
PCT/JP2006/309508 2005-05-12 2006-05-11 複合管 WO2006121130A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-139836 2005-05-12
JP2005139836A JP4346579B2 (ja) 2005-05-12 2005-05-12 複合管の製造方法

Publications (1)

Publication Number Publication Date
WO2006121130A1 true WO2006121130A1 (ja) 2006-11-16

Family

ID=37396639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309508 WO2006121130A1 (ja) 2005-05-12 2006-05-11 複合管

Country Status (2)

Country Link
JP (1) JP4346579B2 (ja)
WO (1) WO2006121130A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010653B1 (ko) * 2008-06-13 2011-01-25 주식회사 평화 고강성 지중매설용 하수관 및 하수관용 금형
KR101430575B1 (ko) 2012-12-28 2014-08-18 김진우 발포시트 압출장치
WO2021192030A1 (ja) * 2020-03-24 2021-09-30 三菱電機株式会社 熱交換器、空気調和装置、及び、熱交換器の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100570A (en) * 1976-02-17 1977-08-23 Sekisui Jushi Kk Process for manufacture of foamed resin coating material having skin
JPS5613147A (en) * 1979-07-14 1981-02-09 Matsushita Electric Works Ltd Mold for extrusion-molding foamable synthetic resin
JPS56136337A (en) * 1980-03-28 1981-10-24 Sekisui Chem Co Ltd Production of warming tube
JPS6112716U (ja) * 1984-06-28 1986-01-25 積水化学工業株式会社 熱可塑性樹脂発泡体で芯材を被覆する装置
JPS62167023A (ja) * 1986-01-17 1987-07-23 Mitsubishi Cable Ind Ltd 断熱パイプの製造方法
JP2004114359A (ja) * 2002-09-24 2004-04-15 Sekisui Chem Co Ltd 被覆パイプ、被覆パイプの製造方法及び被覆パイプの製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100570A (en) * 1976-02-17 1977-08-23 Sekisui Jushi Kk Process for manufacture of foamed resin coating material having skin
JPS5613147A (en) * 1979-07-14 1981-02-09 Matsushita Electric Works Ltd Mold for extrusion-molding foamable synthetic resin
JPS56136337A (en) * 1980-03-28 1981-10-24 Sekisui Chem Co Ltd Production of warming tube
JPS6112716U (ja) * 1984-06-28 1986-01-25 積水化学工業株式会社 熱可塑性樹脂発泡体で芯材を被覆する装置
JPS62167023A (ja) * 1986-01-17 1987-07-23 Mitsubishi Cable Ind Ltd 断熱パイプの製造方法
JP2004114359A (ja) * 2002-09-24 2004-04-15 Sekisui Chem Co Ltd 被覆パイプ、被覆パイプの製造方法及び被覆パイプの製造装置

Also Published As

Publication number Publication date
JP4346579B2 (ja) 2009-10-21
JP2006315281A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
US7528320B2 (en) Jacket for heat-insulated conduits and method for making same
US7462307B2 (en) Singlelayer and multilayer polyolefin foam pipes
CN101341553B (zh) 含发泡的聚烯烃绝缘体的电缆及其制造方法
CN1235692A (zh) 同轴电缆及其制造方法
JP6411700B1 (ja) 発泡樹脂チューブの製造装置及び発泡樹脂チューブ
WO2006121130A1 (ja) 複合管
JP4956028B2 (ja) 複合管
JP2011178957A (ja) 発泡シート及び発泡樹脂容器
CN100404940C (zh) 复合管
WO2006106755A1 (ja) 複合管
JP3895237B2 (ja) ポリプロピレン系樹脂発泡体の製造方法
WO2007073803A2 (en) Fibre reinforced polypropylene foam
JP3381877B2 (ja) 難燃発泡樹脂被覆断熱管の製造方法
JP4771518B2 (ja) 発泡中空成形体の製造方法
JP2007333062A (ja) 複合管
EP2607051B1 (en) Use of a blow moulded foam duct
JP2004044733A (ja) 複合管およびその製造方法
US7008577B2 (en) Extrusion head for expanded plastic tubes
JP2007276314A (ja) 複合管およびその製造方法
CN216479377U (zh) 一种预制ppr塑铝稳态复合保温管
JP2001191391A (ja) 発泡熱可塑性樹脂シートの製造装置、発泡熱可塑性樹脂シートの製造方法及び発泡熱可塑性樹脂シート
JP2006348976A (ja) 複合管、および複合管を用いた空調配管システム
CN117227132A (zh) 一种聚氨酯保温管包覆聚乙烯护套的生产设备及生产方法
JP2004044734A (ja) 複合管
JPH01229614A (ja) 熱収縮性発泡体チューブ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746305

Country of ref document: EP

Kind code of ref document: A1